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Abstract
The generalized uncertainty principle (GUP) modifies the uncertainty relation
between momentum and position giving room for a minimal length, as
predicted by candidates theories of quantum gravity. Inspired by GUP, Planck’s
distribution is derived by considering a new quantization of the electromagnetic
field. We elaborate on the thermodynamics of the black body radiation obtaining
Wien’s law and the Stefan–Boltzmann law. We show that such thermodynamics
laws are modified at Planck-scale.
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1. Introduction

Candidate theories of quantum gravity, such as string theory, loop quantum gravity, as well as
gedanken experiments in black hole physics predict the existence of a minimal uncertainty in
the position [1–10]. Such a minimal length is in direct contradiction with the Heisenberg uncer-
tainty principle. Thus, a modification to the Heisenberg principle has to be introduced that is
expected to be relevant at the Planck scale. Such a modification is considered in phenomenolog-
ical models of quantum gravity [11]. In particular, the generalized uncertainty principle (GUP)
consists in modifying the standard position-momentum commutation relation by including a
function of the momentum operator [12–25]. A typical model involves a quadratic modification
of the form
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[q, p] = ih̄[1 + γ2 p2], (1)

where

γ =
γ0

MPlc
, (2)

with MPl =
√

h̄c
G the Planck mass and γ0 a dimensionless parameter that determines the energy

scale at which such a modification takes place. Such a parameter is determined experimentally.
For example, in the case of a macroscopic harmonic oscillator, it has been possible to find an
upper bound for such a parameter of the order of 104 [26]. If it is assumed to be of order unity,
the modification will be relevant at the Planck energy.

This model has been applied to several low-energy systems searching for indirect quan-
tum gravity effects. Examples of such indirect tests concern the quantum harmonic oscillator,
condensed matter, and atomic experiments [21, 27–31]. Further studies have been pursued in
statistical mechanics [32–35], where the GUP affects thermodynamic variables.

The black body radiation represents one of the most interesting problems in the history of
physics. The solution to the black body problem with the introduction by Planck of the hypoth-
esis of the quantized energy exchanges revealed the issues of classical mechanics and laid the
foundation for the development of modern quantum mechanics. Specifically, Planck assumed
that the energy exchange between the modes of radiation enclosed in a cavity is proportional to
the frequency of the mode,ΔE = hν. That means that the energy is not absorbed continuously,
but discretely. Such a discretization is related to the discrete energy spectrum of a quantum
harmonic oscillator; the energy difference between two neighbouring energy levels is propor-
tional to the frequency of the oscillator. However, the introduction of a minimal length changes
such energy differences [14, 21, 36]. Thus, equation (1) implies a change in Planck’s postulate.
In this paper, we elaborate on the modification of black body thermodynamics. By introducing a
new modification on the radiation field inspired by the GUP, we intend to study Planck’s distri-
bution and the corresponding GUP modification. Studying the resulting expression, we obtain
further features of the black body distribution, such as Wien’s law and the Stefan–Boltzmann
law. Similar considerations have been elaborated in [37–40] following different techniques.
However, the novelty of the present approach consists in following Bose’s statistical method
[41] when studying the statistical properties of a photon gas.

The paper is organized as follows. In section 2, we introduce the quantization relation for
the radiation field inspired by GUP. In section 3, we elaborate a statistical analysis using the
modified spectrum to obtain Planck’s distribution. In sections 4 and 5, we obtain the modified
Wien’s law and Stefan–Boltzmann law to complete the study of the black body radiation. In
section 6, we conclude by presenting future perspectives.

2. GUP modification to the radiation field

In this section, we review the GUP modification to the electromagnetic field quantization.
According to [42], such a modification is introduced by modifying the generalized coordinates
and momenta of the electromagnetic field qk and pk, respectively, as follows

[qk, pk′] = ih̄δk,k′ [1 + γ2
EMp2

k], (3)

where γEM corresponds to the deformation parameter for the electromagnetic field with units
of inverse (energy)1/2
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γEM =
γ0√
EPl

. (4)

Here, EPl = MPlc2 is the Planck energy. The transverse electric field �ET is written in terms of
qk and pk as [43]

�ET =
∑
�k

√
1

ε0V
�εk

[
ωkqk sin θ − pk cos θ

]
, (5)

where k is the magnitude of the wavenumber used to label the different modes and ωk is the
corresponding frequency. Furthermore, θ is the phase angle, �εk the polarization vector, and V
the cavity volume. Using equation (5), the units for the generalized momenta of the radiation
field are (energy)1/2. With the deformed quantization rule in equation (3), the energy spectrum
with GUP for a mode with wave vector k is [21]

Ek
n = h̄ωk

{(
n +

1
2

)
+

h̄ωk

4
γ2

EM(1 + 2n + 2n2)

}
. (6)

Here, we see that, differently from the standard theory, the energy difference between the
ground state and a state n is

ΔEk
n = h̄ωkn + ζkn(n + 1), (7)

where ζk = 1
2 (h̄ωkγEM)2. This term carries the modification to the energy due to GUP. It is

worth observing that in the limit γEM → 0, we recover the usual expression for the energy
difference.

3. Modified Planck’s law

Here, we follow the argument introduced by Bose to derive Planck’s distribution [41]. Consid-
ering the statistics of indistinguishable photons, we construct a distribution Zk

n for the number
of photons in the state n with an infinitesimal range of frequencies dωk centered around ωk.
By introducing the energy equation (7), the total energy is then

E =
∑

k

(ΔEk
1Zk

1 +ΔEk
2Zk

2 +ΔEk
3Zk

3 + · · · ) =
∑

k

[
h̄ωkNk + ζk(Nk + Mk)

]
,

(8)

where

Nk =
∑

n

nZk
n, Mk =

∑
n

n2Zk
n. (9)

For any distribution Zk
n , the occupation number for the system in a range dωk around ωk is Ak,

expressed by

Ak =
∑

n

Zk
n. (10)
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The probability of observing a particular distribution Zk
n is related to the number of different

ways that particular distribution can be formed, that is

W =
∏

k

Ak!∏
n Zk

n!
. (11)

For a large number of photons, we adopt the following expression using Stirling’s approxima-
tion

log W =
∑

k

Ak log Ak −
∑

k

∑
n

Zk
n log Zk

n. (12)

The quantity log W can be understood as a probability distribution of the microstates. Thus,
maximizing such a quantity corresponds to look for the equilibrium condition for the system,
as its maximum value is related to the most probable distribution [44]. Therefore, we deter-
mine the distribution Z̄k

n that maximizes W. Furthermore, we note that the system is subject to
two constraints i.e. equations (8) and (10). By applying Lagrange’s method of undetermined
multipliers

δ

{
log W +

∑
k

τ k
∑

n

Zk
n + α

∑
k

[
h̄ωkNk + ζk(Nk + Mk)

]}
= 0, (13)

where τ k and α are Lagrange multipliers. The variation with respect to Zk
n gives∑

k

∑
n

δZk
n

{
1 + log Zk

n + τ k + α
[
nh̄ωk + ζkn(1 + n)

]}
= 0. (14)

As each δZk
n is arbitrary, we can impose the curly brackets to vanish obtaining

Z̄k
n = Bk e−α h̄ωkn e−αζkn(n+1), (15)

where

Bk = e−1−τk
. (16)

The second exponential in equation (15) carries the contribution due to GUP. Assuming for the
moment that αζk � 1, a condition that will be clarified and verified once a physical meaning
will be associated with α, we can approximate equation (15) writing

Z̄k
n = Bk e−α h̄ωkn

[
1 − αζkn(n + 1)

]
. (17)

It is worth noticing that, by definition, Z̄k
n is a non-negative quantity. However, the minus

sign implies that, for some values of n larger than some value nmax, we have Z̄k
n < 0. Such

values of n are therefore not physical within the approximation and cannot be considered. The
maximum value for n for each mode k is then found as

nk
max =

⌊(
1

αζk
+

1
4

)1/2

− 1
2

⌋
. (18)

In turn, such a maximum value for nk corresponds to a maximum value for the energy

Ek
max = h̄ωk + ζk

{(
1

αζk
+

1
4

)1/2

+
1
2

}
. (19)
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Having the most probable distribution equation (17), we can proceed following Bose’s
approach [41]. We calculate equations (9) and (10) using the geometric series and its deriva-
tives. With the further condition γEM/

√
α � 1, we can express the sums in equation (9) as

ranging from n = 0 up to infinity instead of up to nk
max. Specifically, the difference between

the two sums, that ranging up to infinity and that ranging up to nk
max, is negligible under the

assumption γEM/
√
α � 1, to be clarified once a physical meaning will be assigned to α. Thus,

for the mean occupation number in the mode k, we obtain the following expression

Ak =
∑

n

Z̄k
n

=
Bk

(1 − e−α h̄ωk )3

[
(1 − e−α h̄ωk

)2 − 2αζk e−α h̄ωk
]
, (20)

which can be solved for Bk. Then, substituting in equation (9), we find

Nk =
∑

n

nZ̄k
n

=
Ak

eα h̄ωk − 1

{
(1 − e−α h̄ωk

)2 − 2αζk(1 + 2 e−α h̄ωk
)

(1 − e−α h̄ωk )2 − 2αζk e−α h̄ωk

}
, (21)

Mk =
∑

n

n2Z̄k
n

=
Ak e−α h̄ωk

(1 − e−α h̄ωk )2

×
{

(1 − e−α h̄ωk
)2(1 + e−α h̄ωk

) − 2αζk(1 + 7 e−α h̄ωk
+ 4 e−2α h̄ωk

)

(1 − e−α h̄ωk )2 − 2αζk e−α h̄ωk

}
.

(22)

Following standard arguments, the density of modes in a cavity around a wave number of
magnitude k and per unit of volume can be found by counting the wavelengths admissible in
the cavity [44]. Such a procedure is not affected by a minimal length and the density of modes
per unit volume is then given by the ordinary Rayleigh–Jeans expression

Q(k)dk =
k2

π2
dk. (23)

To find the same density but as a function of the frequency ωk, we need to employ a disper-
sion relation. In general, quantum gravity theories predict modifications of dispersion relations.
However, studies have showed that such deformations may be relevant only at scales compa-
rable or higher than the Planck scale [45, 46]. Since the framework of the present analysis is
based on quantities with values much below the Planck scale, as it will be further clarified
below, we can safely neglect the effects of a modification of the dispersion relation for elec-
tromagnetic waves, assuming ωk = ck. Therefore, the number of photons in a frequency range
[ωk,ωk + dωk] can be written as follows
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R(ω)dωk =
(ωk)2

π2c3
dωk. (24)

Following the approach in [41], the total number of fundamental cells in phase space is equal
to the number of possible ways of placing a photon in the relevant volume. Thus, integrating
equation (24) over the volume of the cavity V, we find that the number of cells allowed in an
infinitesimal interval of frequencies around ωk is

Ak =
V(ωk)2

π2c3
dωk. (25)

Let us now define entropy S using the probability function W from equation (12), according to
Boltzmann entropy definition. We then find

S = kB log W

= kB

{
αE −

∑
k

3Ak log(1 − e−α h̄ωk
)− Ak log

[
(1 − e−α h̄ωk

)2 − 2αζk e−α h̄ωk
]}

,

(26)

where kB is the Boltzmann constant. To find equation (26), we have used equations (8) and
(10). Thus, considering the relation between entropy and temperature, ∂S

∂E = 1/T, we get that
the Lagrange multiplierα acquires the value 1/kBT. Now, we can indeed see that the conditions
αζk � 1, that is h̄ωk/kBT � EPl/h̄ωk, and γ/

√
α � 1, that is kBT/EPl � 1, are valid for val-

ues of frequency and temperature away from the Planck scale. Therefore, the results obtained
via approximations that relied on such constraints are valid under the same conditions for the
frequency and temperature.

From equation equation (8), and using equations (21) and (22), we can obtain the total
energy

E =
∑

k

[
h̄ωkNk + ζk(Nk + Mk)

]
= V

∫ ∞

0
ρT(ω)dω, (27)

where ρT(ω) is the energy density. Since we want to study the effects of a minimal length in
the black body radiation, the following transformation is introduced ρT(λ) = −ρT(ω) dω

dλ . Thus,
the energy density as a function of the wavelength λ is

ρT(λ) =
8πhc
λ5

⎧⎪⎨
⎪⎩

1 + hc
2λ γ

2
EM

e
hc

λkBT − 1

⎡
⎢⎣
(

e
hc

λkB T − 1
)2

− (hcγEM)2

λ2kBT e
hc

λkBT

(
2 + e

hc
λkBT

)
(

e
hc

λkBT − 1
)2

− (hcγEM)2

λ2kBT e
hc

λkBT

⎤
⎥⎦

+
hc
2λ γ

2
EM e

hc
λkBT

(
e

hc
λkBT − 1

)2

⎡
⎢⎣
(

e
hc

λkBT − 1
)2(

e
hc

λkB T + 1
)
− (hcγEM)2

λ2kBT e
hc

λkBT

(
4 + 7 e

hc
λkB T + e

2hc
λkBT

)
(

e
hc

λkBT − 1
)2

− (hcγEM)2

λ2 kBT e
hc

λkB T

⎤
⎥⎦

⎫⎪⎬
⎪⎭
. (28)

It is worth noting that in the limit γEM → 0, the extra terms that carry the modification on
the energy density vanish. In such a limit, ρT(λ) is reduced consistently to the usual expression

ρ0T(λ) =
8π h̄c
λ5

1

e
hc

λkBT − 1
. (29)
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Figure 1. Relative modification of the energy density ΔρT
ρ0T

for different temperatures.
For higher temperatures, the difference between the standard energy density and the
modified one with GUP is larger.

We can study the modification in the energy density by plotting the relative modification

ΔρT

ρ0T
=

ρ0T − ρT

ρ0T
. (30)

In figure 1, we show the ratio for different temperatures. As it can be observed, the larger
difference takes place at larger temperatures.

4. Wien’s law

In the black body distribution, Wien’s law establishes a relation between a given temperature
and the wavelength of the maximum of the distribution. In particular, the higher the temperature
of the black body, the lower the wavelength of the maximum. As we are including a minimal
length we expect a modification of this law at high temperatures. Wien’s Law can be deduced
by finding the maximum of the distribution in equation (28). In the standard theory, that is, in
the limit γEM → 0, this procedure leads to a constant quantity x = hc

λ0kBT = 5 + W(0,−5 e−5),
where W(z) is the Lambert W function. In the present case, we consider the approximated
expression

x =
hc

λ0kBT

(
1 − δλ

λ0

)
, (31)

where λ0 is the wavelength that satisfies Wien’s law in the standard cases and δλ is the shift
on the wavelength of the maximum due to GUP.

In order to simplify the expression, we consider an expansion up to the first order in kBTγ2
EM.

Such approximation is justified for temperatures much smaller than the Planck temperature.
By differentiating equation (28) with respect to λ and imposing the maximum condition,
we get

kBTγ2
EMx ex

[
x2(e2x + 4 ex + 1) − 8x(e2x − 1) + 6(ex − 1)2

]
− x ex(ex − 1)2 + 5(ex − 1)3 = 0. (32)
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Figure 2. Relative shift δλ
λ0

as a function of the temperature for different values of the
parameter γ0.

Equation (32) can be solved numerically for δλ
λ0

with the condition δλ
λ0

< 1. In figure 2, we
show the temperature dependence of relative shift for the wavelength of the maximum for
different values of γ0. We observe that the modification grows with the temperature reaching
the value δλ

λ0
= 1. For such a value and beyond, the approximation in equation (31) cannot

be considered valid. Specifically, for γ0 = 1, the approximation breaks close to the Planck
temperature. Consistently with the approximation, the modification δλ goes to 0 for much
smaller temperatures.

5. Stefan–Boltzmann law

The Stefan–Boltzmann law describes the total power radiated by a cavity with volume V at an
absolute temperature T. More precisely, the law establishes that the radiance of a black body,
that is the amount of energy radiated per unit of surface is proportional to the fourth power of
the absolute temperature

RT = σT4, (33)

where the proportionality constant, called the Stefan–Boltzmann constant, is σ =
2π5k4

B
15h3c2 . This

law can be derived from the total energy emitted by the black body by integrating equation (28)
and using the relation between spectral radiance and the energy density RT(λ)dλ = c

4ρT(λ)dλ.
For simplicity, we expand equation (28) up to the first order in kBTγ2

EM. Such approximation

8
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Figure 3. Plot of the radiance of a black body RT. The solid blue line represents the
Stefan–Boltzmann law in the ordinary theory. The solid orange line corresponds to the
modified law in equation (35).

is justified for small values of the temperature compared to the Planck temperature. The total
energy per unit volume is then

RT =
2π5k4

B

15h3c2
T4 − 2πk4

B

h3c2
(kBTγ2

EM)T4
∫ ∞

0

x4 ex(1 + x − ex + x ex)
(ex − 1)3

dx

=
2π5k4

B

15h3c2
T4(1 − 16kBTγ2

EM).

(34)

By substituting the value of the Stefan–Boltzmann constant, we obtain the following equation

RT = σT4(1 − 16kBTγ2
EM). (35)

This is the first-order modification of the Stefan–Boltzmann law by including a minimal mea-
surable length. Due to the existence of a minimal length, and therefore a minimal wavelength,
modes corresponding to shorter wavelengths are expected to not contribute to the spectrum.
Thus, the energy radiated by a blackbody considering GUP is smaller than the standard value,
in agreement with equation (35). We notice that in the limit γEM → 0, we recover the usual
Stefan–Boltzmann law for the black body equation (33).

In figure 3, we plot the radiance for both the GUP modification and the ordinary case.

6. Conclusions

Statistical mechanics, as well as thermodynamics, may offer indirect evidence of quantum
gravity effects related to a minimal measurable length. The effects of such a length modifies
the potentials as well as the laws established in both disciplines. However, the energy at which
such effects become relevant is still outside the range offered by current experiments.

In this paper, we analyzed the effects of a minimal measurable length on the black body
spectrum. To do so, we have considered a quantization procedure for the electromagnetic

9



Class. Quantum Grav. 39 (2022) 175001 P Bosso and J M López Vega

field inspired by the GUP. One of the effects of such a procedure is that of modifying the
dependence of the quanta of energy on the frequency. Using Bose’s approach [41], we obtained
the Planck distribution that matches with the standard expression in the limit γEM → 0. The
modified energy density at any given temperature results to be smaller than the energy density
in the standard theory for the same temperature excluding values close to Planck length. This
is consistent with known features of models of quantum mechanics with a minimal length.
Specifically, first we notice that GUP changes the de Broglie relation between the (physical)
momentum and the wave number of a system [25]. In particular, the model in equation (1)
implies that larger wave numbers, and therefore shorter wavelengths, are associated with a
value of momentum, and therefore of energy, larger than in the ordinary case. Therefore, since
short wavelengths are characterized by higher values of energy than in the standard case, they
also result harder to excite, contributing less to the energy distribution. Elaborating on Wien’s
law using the modified energy density, we found that GUP effects shift the maximum of the dis-
tribution. We observed that such a modification depends on the temperature. For much smaller
temperatures compared to the Planck temperature, the modification goes to zero, consistently
with the approximation. The modified Stefan–Boltzmann law was obtained by integrating the
spectral radiance related to the modified energy density. The results suggest that the total energy
radiated is lower than in the ordinary case at high temperatures. Such an effect is compatible
with results obtained in DSR for a photon gas [47]. For both modifications, the effects of a
minimal measurable length are temperature-dependent.

The importance of the black body radiation lies in its applications, in thermodynamics
as well as other contexts. For example, the adsorption and emission of black holes make
them similar to a black body [48]. However, black holes cannot absorb wavelengths longer
than their size [49]. Furthermore, gedanken experiments in black hole thermodynamics con-
sider black holes with the size of the order of Planck length. For such systems, the Hawking
temperature is of the order of Planck temperature. At such a temperature, as we have seen in
the paper, the Planck distribution is expected to be modified by quantum gravitational effects.
Thus, the modification considered here may have a role in the thermodynamics of Planckian
black holes. Furthermore, the study of black body radiation applies to cosmology as well [50].
The microwave background radiation is observed to be an almost perfect black body with a
temperature of 2.7 K [51]. Thus, a modification in the Planck distribution due to the GUP
can play a role in obtaining new information in the early stage of the universe by considering
quantum gravity corrections.
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