
HAL Id: tel-03586411
https://tel.archives-ouvertes.fr/tel-03586411

Submitted on 23 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Primordial cosmology and gravitational waves : from
phase transitions to cosmic strings and primordial black

holes
Pierre Auclair

To cite this version:
Pierre Auclair. Primordial cosmology and gravitational waves : from phase transitions to cosmic
strings and primordial black holes. Other. Université de Paris, 2021. English. �NNT : 2021UNIP7047�.
�tel-03586411�

https://tel.archives-ouvertes.fr/tel-03586411
https://hal.archives-ouvertes.fr


Université de Paris
École doctorale des Sciences de la Terre et de l’Environnement et Physique de l’Univers - ED560

Laboratoire AstroParticules et Cosmologie (APC) - Groupe Théorie

Primordial cosmology and gravitational waves:
from phase transitions to cosmic strings and primordial black holes

Par Pierre Auclair
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Mark Hindmarsh Professeur (University of Helsinki) Examinateur
David Langlois Directeur de recherche (Université de Paris, APC) Examinateur
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Abstract

The gravitational force governs the evolution of structures in the Universe, from the smallest scales,
those of moons and planets, to galaxies, clusters, and to the evolution of the Universe itself. Its
importance to describe the surrounding Universe is no longer to be demonstrated: the successes of
general relativity have been accumulating for more than a century now. However, it was not until
the first direct detection of gravitational waves in 2015 by LIGO/Virgo that gravity, in the form
of gravitational waves, became a direct observational tool to scrutinize the Universe in its darkest
and most inaccessible corners, such as the neighbourhood of black holes and the first moments
of the Big Bang. The perspectives offered by these new types of observations are comparable to
those brought by the cosmic microwave background at the turn of the millennium, thus marking
the beginning of precision cosmology.

This PhD work is part of the exciting research topic of gravitational wave studies within the
LIGO/Virgo/KAGRA collaboration – the network of ground-based gravitational wave detectors
currently in place – and the LISA collaboration, the constellation of three satellites, separated by
2.5 million of kilometres, designed to detect low frequency gravitational waves in space. The main
subject of this thesis is the study of primordial cosmology – i.e. the first instants of the Universe –
mainly through the prism of gravitational wave detectors. This manuscript has three independent
parts.

The first part of this thesis deals with cosmic strings, one-dimensional topological defects that
could be formed during phase transitions in the primordial Universe. If formed, these relics of the
early universe would be markers of the upheavals of our early universe. We study the evolution of
the cosmic string network, in particular the density of loops and their gravitational wave emission,
we make predictions for the future LISA mission, and finally constrain cosmic strings using the
results of LIGO/Virgo/KAGRA.

In a second part, we study the formation of primordial black holes at the end of inflation, a
period of accelerated expansion in the early Universe. During this so-called preheating phase, which
precedes the formation of standard model particles, the inflaton oscillates around the minimum of
its potential possibly generating a metric instability at the origin of the formation of a large number
of primordial black holes. This part of the thesis is therefore devoted to the study of this instability
and to quantifying the production of primordial black holes using the excursion-set formalism.

The third part is dedicated to first order phase transitions, in particular during the electroweak
transition in extensions of the standard model. During the transition, a large amount of energy is
transmitted to the ambient medium in the form of kinetic energy which can lead to turbulence. We
therefore propose a model for this freely decaying turbulence and the resulting gravitational wave
spectrum.

Keywords: gravitational waves, primordial cosmology, cosmic strings, primordial black holes, first
order phase transition, preheating
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Court résumé de la thèse

La force gravitationnelle régit l’évolution des structures dans l’Univers, depuis les plus petites
échelles, celles des lunes et des planètes, jusqu’aux galaxies, aux clusters et jusqu’à l’évolution de
l’Univers lui-même. Son importance pour décrire l’Univers qui nous entoure n’est plus à démontrer :
les succès de la relativité générale s’accumulent depuis maintenant plus d’un siècle. Cependant, il a
fallu attendre les premières détections directes d’ondes gravitationnelles en 2015 par LIGO/Virgo
pour que la gravité, sous la forme d’ondes gravitationnelles, devienne un outil direct d’observation
pour scruter l’Univers dans ses recoins les plus sombres et inaccessibles, tels l’environnement proche
des trous noirs et les premiers instants de l’Univers. Les perspectives qu’offrent ces nouveaux types
d’observations sont comparables à ce que l’étude du fond diffus cosmologique a pu apporter au
tournant du millénaire, marquant de ce fait le début de la cosmologie moderne de précision. Ce
travail de doctorat s’inscrit dans ce sujet de recherche particulièrement stimulant qu’est l’étude des
ondes gravitationnelles au sein de la collaboration LIGO/Virgo/KAGRA – le réseau de détecteurs
terrestres d’ondes gravitationnelles actuellement en place – et de la collaboration LISA, la con-
stellation de trois satellites séparés de 2,5 millions de kilomètres destinée à détecter des ondes
gravitationnelles de basse fréquence dans l’espace.

Le sujet principal de cette thèse est l’étude de la cosmologie primordiale – c’est-à-dire les pre-
miers instants de l’Univers – principalement par le prisme des détecteurs d’ondes gravitationnelles.
Ce manuscrit comporte trois parties indépendantes.

La première partie de cette thèse porte sur les cordes cosmiques, des défauts topologiques uni-
dimensionnels susceptibles d’être formés lors de transitions de phase dans l’Univers primordial. Si
elles étaient formées, ces reliques des premiers instants de l’Univers seraient des marqueurs des
bouleversements qu’a connus notre Univers à ses débuts. C’est dans cette perspective que nous
étudions l’évolution du réseau de cordes cosmiques, en particulier celle de la densité de boucles et
leur émission d’ondes gravitationnelles. Nous formulons des prédictions pour la future mission LISA
et mettons des contraintes sur les cordes cosmiques à partir des résultats de LIGO/Virgo/KAGRA.

Dans une seconde partie, nous étudions la formation de trous noirs primordiaux à la fin de
l’inflation, une période d’expansion accélérée dans l’Univers primordial. Durant cette phase dite de
preheating, qui précède la formation des particules du modèle standard, l’inflaton oscillant autour
du minimum de son potentiel aurait pu engendrer une instabilité de la métrique à l’origine de la
formation d’une grande quantité de trous noirs primordiaux. Cette deuxième partie de la thèse est
donc consacrée à l’étude de cette instabilité et à quantifier la production de trous noirs en utilisant
le formalisme d’excursion-set.

La troisième et dernière partie est, quant à elle, dédiée aux transitions de phase du premier ordre,
en particulier durant la transition électro-faible dans des extensions du modèle standard. Durant
la transition, une grande quantité d’énergie est transmise au milieu ambiant sous forme d’énergie
cinétique et peut générer de la turbulence. Nous proposons dans cette partie, une modélisation de
cette turbulence libre et du spectre d’ondes gravitationnelles qui en résulte.

Mots clefs : ondes gravitationnelles, cosmologie primordiale, cordes cosmiques, trous noirs pri-
mordiaux, transitions de phase du premier ordre, preheating
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Résumé de la thèse

La gravitation régit l’évolution des structures dans l’Univers, depuis les plus petites échelles, celles
des lunes et des planètes, jusqu’aux galaxies, aux clusters et jusqu’à l’évolution de l’Univers lui-
même. Son importance pour décrire l’Univers qui nous entoure n’est plus à démontrer : les succès
de la relativité générale s’accumulent depuis maintenant plus d’un siècle. Cependant, il a fallu
attendre les premières détections directes d’ondes gravitationnelles en 2015 par LIGO/Virgo pour
que la gravité, sous la forme d’ondes gravitationnelles, devienne un outil direct d’observation. Cet
outil nous est très précieux pour scruter l’Univers dans ses recoins les plus sombres et inacces-
sibles, comme l’environnement proche des trous noirs et les premiers instants de l’Univers. Les
perspectives qu’offrent ces nouveaux types d’observations sont comparables à ce que l’étude du
fond diffus cosmologique a pu apporter au tournant du millénaire, marquant de ce fait le début
de la cosmologie moderne de précision. Ce travail de doctorat s’inscrit dans ce sujet de recherche
particulièrement stimulant qu’est l’étude des ondes gravitationnelles d’un point de vue théorique
et également au sein de la collaboration LIGO/Virgo/KAGRA – le réseau de détecteurs terrestres
d’ondes gravitationnelles actuellement en place – et de la collaboration LISA, la constellation de
trois satellites séparés de 2,5 millions de kilomètres destinée à détecter des ondes gravitationnelles
de basse fréquence dans l’espace.

Le sujet principal de cette thèse est l’étude de la cosmologie primordiale – c’est-à-dire les pre-
miers instants de l’Univers – principalement par le prisme des détecteurs d’ondes gravitationnelles.
Si nos observations en ondes lumineuses ne peuvent provenir de plus loin et de plus tôt que la sur-
face de dernière diffusion, les ondes gravitationnelles produites très tôt dans l’Univers pourraient
s’être propagées librement jusqu’à aujourd’hui. L’apport des ondes gravitationnelles dans le do-
maine de la cosmologie primordiale s’annonce donc considérable pour les prochaines années. Le
travail contenu dans cette thèse a mené à la publication de huit articles, dont sept sont reproduits
dans le présent manuscrit. Celui-ci comporte trois parties indépendantes, chacune dédiée à un
phénomène de nature différente qui aurait pu se produire durant les premiers instants de l’Univers
et dont l’observation nous permettrait d’en apprendre plus sur la physique à de très hautes énergies.

La première mais aussi la plus longue partie de cette thèse porte sur les cordes cosmiques, des
défauts topologiques unidimensionnels susceptibles de s’être formés lors de transitions de phases
dans l’Univers primordial. En effet, alors que l’Univers primordial vieillit et s’étend, celui-ci se
refroidit. Il peut alors subir des transitions de phases durant lesquelles certaines symétries se
brisent. Ce sont les propriétés topologiques de ces brisures de symétries qui déterminent si des
cordes cosmiques peuvent se former. Les caractéristiques de ces cordes cosmiques seraient alors
déterminées par la physique en vigueur à de très hautes énergies, énergies qui nous sont inaccessibles
en laboratoire ou dans les accélérateurs de particules. Ainsi, si des cordes cosmiques étaient formées,
ces reliques des premiers instants de l’Univers seraient des marqueurs des bouleversements qu’il a
connus. C’est dans cette perspective que nous étudions dans cette partie l’évolution du réseau
de cordes cosmiques, leur émission d’ondes gravitationnelles et la dépendance de ce signal aux
différentes propriétés des cordes. Nous y étudions aussi d’autres signatures comme le fond diffus de
rayons γ et l’abondance de matière noire.

Cette partie commence par une courte introduction aux cordes cosmiques au chapitre 1 dans
laquelle nous rappelons le mécanisme à l’origine de leur formation. Nous y exposons leurs prin-
cipales propriétés ainsi que leurs conséquences observationnelles, aussi bien gravitationnelles que
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non-gravitationnelles. Puis dans le chapitre 2, rédigé en collaboration au sein du groupe de travail
“Cosmologie” de LISA, nous passons en revue différents modèles présents dans la littérature pour
quantifier la densité de boucles de cordes cosmiques ainsi que deux méthodes différentes pour cal-
culer leurs contributions au fond stochastique d’ondes gravitationnelles. Ce faisant, nous montrons
que la future mission LISA sera capable de confirmer ou de contraindre l’existence des cordes cos-
miques à des échelles d’énergies cinq ordres de grandeurs plus basses que les meilleures contraintes
actuelles provenant des analyses de réseaux de pulsars millisecondes.

Au chapitre 3, nous nous intéressons à la fonction de production qui décrit l’interaction entre
le réseau de cordes infinies, c’est-à-dire plus grandes que le rayon de Hubble, et les boucles qui
contribuent au fond stochastique d’ondes gravitationnelles. En particulier, nous étudions la fonction
de production de Polchinski et Rocha qui a la particularité de tenir compte de la structure fractale
des cordes. Par conséquent, ce modèle prédit que des boucles peuvent être produites à toutes
les échelles avec une certaine loi de puissance. La densité de boucle qui en résulte avait déjà été
étudiée dans un régime particulier, que nous avons entrepris d’étendre et que nous comparons
avec les résultats numériques d’autres groupes de recherche. L’impact de ce modèle sur le fond
stochastique d’ondes gravitationnelles est étudié en détail dans le chapitre 4. En plus de fournir des
formules analytiques pour le spectre d’ondes gravitationnelles pouvant être utilisées pour accélérer
l’analyse des données de fond stochastique, nous y évaluons de manière systématique la sensibilité
des différentes gammes de détecteurs d’ondes gravitationnelles selon leur fréquence.

Le chapitre 5, qui a été rédigé au sein de la collaboration LIGO/Virgo/KAGRA, est dédié à
l’analyse des données issues du troisième cycle d’observations. Nous utilisons ces données pour con-
traindre l’échelle d’énergie des cordes cosmiques en considérant différents scénarios pour l’évolution
du réseau de boucles. Pour ce faire, nous cherchons dans ces données à la fois des signaux de
nature stochastique et des bouffées très courtes d’ondes gravitationnelles. Parmi les nouveautés de
cette analyse, nous introduisons les modèles décrits aux chapitres 3 et 4. Nous avons aussi ajouté
les formes d’ondes associées aux collisions de kinks, une source jusqu’alors négligée mais qui peut
prédominer sur les cordes avec une dimension fractale élevée.

Les premiers chapitres supposent que l’épaisseur des cordes est infiniment petite par rapport
à leur taille, et que la dynamique des cordes suit l’action de Nambu-Goto telle qu’introduite au
chapitre 1. Cependant, les divergences entre la description Nambu-Goto des cordes cosmiques qui
prédit des boucles à longue durée de vie et les simulations numériques de théorie des champs dans
lesquelles les boucles se désintègrent rapidement en particules font l’objet d’un long débat dans la
communauté des cordes cosmiques. Le chapitre 6 est une tentative pour combler l’écart qui existe
entre ces deux descriptions au moyen d’un modèle hybride. Notre hypothèse principale suppose que
les boucles isolées évoluent selon les équations de Nambu-Goto jusqu’à atteindre une taille critique
en dessous de laquelle elles disparaissent rapidement en émettant des particules. Ce point de vue est
motivé par une série de simulations numériques conduites par l’un de nos collaborateurs : Tanmay
Vachaspati. Nous résolvons analytiquement ce modèle simplifié et prédisons que l’effet principal de
l’émission de particules est de réduire le spectre d’ondes gravitationnelles à haute fréquence. Pour
autant, cet effet n’est pas suffisamment fort pour remettre en question les contraintes exprimées par
les détecteurs actuels d’ondes gravitationnelles. À partir d’hypothèses simples sur la désintégration
de ces particules en rayons γ, nous sommes en mesure d’estimer la contribution des cordes cosmiques
au fond diffus de rayons γ et de montrer qu’elle reste quelques ordres de grandeur sous la barre
fixée par l’expérience Fermi-LAT.

Enfin, nous évoquons dans le chapitre 7 le cas des cordes cosmiques porteuses de courant et de
la formation de configurations stables de boucles, les vortons. La stabilité des vortons est due au
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moment angulaire porté par le courant qui prévient l’effondrement final de la boucle. Aux yeux d’un
observateur distant, ces vortons ressembleraient à des particules ponctuelles avec une masse et un
spin, et pourraient donc constituer une partie de la matière noire de notre Univers. En modélisant
l’évolution des cordes avec une équation de continuité, nous sommes en mesure de déterminer leur
abondance à tout temps et en particulier aujourd’hui, en fonction des échelles d’énergie de la corde
et du courant. Finalement, nous montrons qu’ils constituent, sous certaines conditions bien parti-
culières, un candidat viable et original pour expliquer la présence de matière noire dans l’Univers.

Dans la seconde partie, nous nous intéressons à la formation de trous noirs primordiaux à la
fin de l’inflation, une période d’expansion accélérée qui est supposée s’être produite dans l’Univers
primordial. Durant cette phase dite de preheating, qui précède la formation des particules du modèle
standard, l’inflaton oscillant autour du minimum de son potentiel aurait pu engendrer une instabilité
de la métrique à l’origine de la formation d’une grande quantité de trous noirs primordiaux.

Le chapitre 8 est une très brève introduction au vaste domaine qu’est l’étude des trous noirs
primordiaux. Nous commençons par donner quelques ordres de grandeurs pour apprécier la masse
des trous noirs primordiaux ainsi que leur durée de vie. En effet, nous savons depuis les travaux
pionniers de Hawking et Bekenstein que les trous noirs ont une température et une luminosité
et donc qu’ils perdent de l’énergie sous forme de rayonnement. Nous passons ensuite en revue
les différentes méthodes utilisées pour contraindre leur abondance. Enfin, nous utilisons l’analyse
perturbative multi-échelles pour acquérir une compréhension de la bande d’instabilité de l’équation
de Mathieu correspondant à l’instabilité de preheating.

Le cœur de cette partie est le chapitre 9 dédié aux différentes techniques utilisées pour cal-
culer la distribution de masse initiale des trous noirs primordiaux dans le contexte de l’instabilité
de preheating. Après un bref rappel concernant la physique de l’instabilité de preheating, nous
nous attardons sur les formalismes de Press et Schechter ainsi que d’excursion-set. Nous montrons
que ce dernier formalisme est le plus à même de prendre en compte le problème dit de cloud-in-
cloud, c’est-à-dire le problème de compter plusieurs fois des structures qui seraient incluses dans
de plus grands trous noirs. Nous mettons en lumière que ce problème est analogue au système
d’une particule soumise à une équation de Langevin avec une barrière mobile. En particulier, nous
mettons en évidence que ce système satisfait à un ensemble d’équations intégrales de Volterra dont
un choix particulier permet de résoudre très efficacement ce problème. Enfin, nous montrons que si
l’inflaton est très faiblement couplé aux particules du Modèle Standard, ce mécanisme produit très
efficacement des trous noirs primordiaux dont la masse varie entre dix grammes et une masse solaire.

La troisième et dernière partie est dédiée aux transitions de phase du premier ordre, en par-
ticulier durant la transition électro-faible dans des extensions du modèle standard. Durant la
transition de phase, une grande quantité d’énergie est transmise au milieu ambiant sous forme
d’énergie cinétique et peut générer de la turbulence. Si la transition de phase électro-faible est du
premier ordre, le signal en ondes gravitationnelles ainsi créé devrait être localisé dans la bande de
fréquences de LISA, ce qui en fait un sujet d’étude d’importance pour préparer le lancement de cette
mission. Dans le chapitre 10, nous commençons par rappeler comment calculer le fond stochastique
d’ondes gravitationnelles généré par un fluide parfait relativiste dont le mouvement est purement
rotationnel. Ce calcul suppose de connâıtre les caractéristiques spatiales et temporelles du champ
de vitesse au cours de la phase de turbulence libre. C’est pourquoi nous construisons un modèle
pour décrire cette période de turbulence libre qui suit la transition de phase. En particulier, nous
nous intéressons aux corrélations temporelles du champ de vitesse ainsi qu’aux lois d’évolution de
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l’énergie cinétique et de l’échelle intégrale du fluide. Le modèle que nous construisons s’appuie sur
différents travaux analytiques préexistants et nous les validons avec des simulations de mécanique
des fluides massivement parallèles que nous lançons sur des supercalculateurs. Par la suite, nous
mettons en avant l’importance de la condition de Mercer qui doit, en principe, être satisfaite par
toute fonction de corrélation à deux points. En pratique, la fonction de corrélation à deux temps
est souvent définie directement sur la base de considérations phénoménologiques, et non à partir
d’un processus stochastique. Ainsi, la condition de Mercer est un indice supplémentaire qui nous
guide dans la détermination de la fonction de corrélation. Les fonctions qui satisfont à la condi-
tion de Mercer sont appelées noyaux et nous passons en revue les exemples de noyaux les plus
communément employés : les noyaux séparables, stationnaires et localement stationnaires. Dans
le cas de la turbulence libre, nous proposons d’utiliser le noyau non-stationnaire de Gibbs qui est
en bon accord avec nos simulations numériques. Ce choix nous garantit la positivité des spectres
de vitesse et du fond stochastique d’ondes gravitationnelles. Enfin, nous calculons le signal en
ondes gravitationnelles en utilisant un algorithme d’échantillonnage préférentiel adapté au calcul
d’intégrales à plusieurs dimensions. Les résultats de ce chapitre sont encore préliminaires, mais ils
soulignent l’impact que les incertitudes sur la formation de la phase turbulente ont sur le spectre
d’ondes gravitationnelles.
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Thomas, Thibault et Valentin : ce fut un plaisir de passer ces années avec vous.
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Introduction

Mais ce n’est pas tout : Lorentz, dans l’Ouvrage cité, a jugé nécessaire de compléter son
hypothèse en supposant que toutes les forces, quelle qu’en soit l’origine soient affectées,
par une translation, de la même manière que les forces électromagnétiques, et que, par
conséquent, l’effet produit sur leurs composantes par la transformation de Lorentz est
encore défini par les équations (4).
Il importait d’examiner cette hypothèse de plus près et en particulier de rechercher quelles
modifications elle nous obligerait à apporter aux lois de la gravitation. J’ai d’abord été
conduit à supposer que la propagation de la gravitation n’est pas instantannée, mais se
fait à la vitesse de la lumière. (...) Quand nous parlerons donc de la position ou de la
vitesse du corps attirant, il s’agira de cette position ou de cette vitesse à l’instant où
l’onde gravifique est partie de ce corps; quand nous parlerons de la position ou de la
vitesse du corps attiré, il s’agira de cette position ou de cette vitesse à l’instant où ce
corps attiré a été atteint par l’onde gravifique émanée de l’autre corps. (...) Il n’est donc
pas, à première vue, absurde de supposer que les observation astronomiques ne sont pas
assez précises pour déceler une divergence aussi petite que celle que nous imaginons. Mais
c’est ce qu’une discussion approfondie permettra seule de décider.

Henri Poincaré, “Sur la Dynamique de l’électron”, 1905 [1]

A (very) brief history of gravitational waves

In his famous paper of 1905 [2], Albert Einstein shattered the traditional notions of space and time
with his theory of special relativity. The theory is based on two assumptions

1. All laws of physics must be the same for all observers moving at constant speed relative to
each other. This first premise may be seen as Galilean relativity (or invariance).

2. The speed of light must be the same for all inertial observers, regardless of their relative
motion. This second premise is motivated by the experiments conducted by Michelson and
Morley [3] which had failed to measure a significant difference between the speed of light in
the direction of movement of the earth and the speed in other directions.

Among other fundamental results, Albert Einstein used his theory of special relativity to derive
the transformation law for the passage from one inertial reference frame to another: the Lorentz
transformation. Hendrik Lorentz and Henri Poincaré had already found them by looking at the
transformation laws leaving Maxwell’s equation of electromagnetism invariant. However, Albert
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Einstein was the first to give a physical significance to these laws, breaking the notions of absolute
time and space.

Soon after this pioneering article, the scientific community questioned whether the laws of
gravity should also follow the principles of special relativity. We can find this questioning in a note
from Henri Poincaré in 1905 [1] (see quotation at the beginning of the chapter) including the first
mention of a “gravific wave”, a prototype of a gravitational wave. Then in 1915, Albert Einstein
published his manuscript on General Relativity (GR) [4], a consistent description of both gravity
and special relativity. He quickly postulated the existence of gravitational waves (GW) [5, 6] based
on his theory of general relativity, and this date is most often considered to be the beginning for
the history of gravitational waves.

Gravitational waves are perturbations of the metric satisfying a wave equation, i.e. they are
ripples of space-time curvature propagating unimpeded at the speed of light. Even though they
arise naturally from the perturbation of Einstein’s equations, the reality of gravitational waves was
debated for a long time. Indeed, the plane gravitational waves solution found by Einstein were first
classified into three types: longitudinal-longitudinal; longitudinal-transverse; transverse-transverse.
In 1922, Arthur Eddington showed [7] that the first two have no fixed velocity, or rather that it
depends on the choice of coordinates. Although Eddington found that the transverse-transverse
waves propagate at the speed of light in all systems of coordinates, his result raised suspicion as
to the objective existence of gravitational waves. Albert Einstein himself had serious doubts on
the subject. In 1936, he submitted a paper to Physical Review, together with Nathan Rosen,
in which they claimed that gravitational waves cannot exist in a full theory of general relativity
because any such solution would have singularities. The article was reviewed by Howard Robertson
who reported that the singularities in question were simply the harmless coordinate singularities of
the employed cylindrical coordinates (see for instance Ref. [8]). The issue was only settled in the
mid 1950s, thanks to the work of Felix Pirani who rephrased gravitational radiation in terms of
the manifestly observable Riemann curvature tensor [9]. Finally, in a famous thought experiment
presented during the first “GR” conference at Chapel Hill in 1957 known as the sticky bead argument,
Richard Feynman noted that if one takes a rod with beads then the effect of a passing gravitational
wave would be to move the beads along the rod; friction would then produce heat, implying that
the passing wave had done work.

After the Chapel Hill conference, Joseph Weber was the first person to realize that it is not
utterly hopeless to detect gravitational waves (see Chapter 10 of Ref. [10] for an historical review
about the conception of the GW detectors written by Kip Thorne). He designed and built the first
gravitational wave detectors known as Weber bars [11]: a cylindrical aluminium bar, about two
meters long, a half meter in diameter and a ton in weight. The principle is the following: the bar
has a natural mode of vibration which can respond resonantly to the oscillating tidal force applied
by a passing gravitational wave. To use such a bar, one has to adjust its size so that its natural
frequency matches the frequency of the incoming GW. In 1969, Joseph Weber published results
announcing the first detection of gravitational waves [12]. Although his claims were received with
scepticism by his peers, many groups of scientists built their own gravitational wave detectors to
repeat and improve on Weber’s measurements.

The first experimental confirmation of the existence of GW came after the measurement of the
orbital period decay in the PSR B1913+16 by Hulse and Taylor in 1974 [13, 14]. Not only does
this observation confirm the existence of gravitational radiation, it is also a remarkable quantitative
test of general relativity. This announcement sparked renewed interest in the field, and Hulse and
Taylor received the Nobel prize in 1993 for this discovery.
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In the 1970s, several groups of researchers independently devised a new type of GW detector
based on interferometry1. These laser interferometric GW detectors are very similar to the one
used by Michelson and Morley in 1887 to search for the motion of Earth through ether, and soon
became a serious alternative to Weber bars. Indeed, interferometers present a number of advantages
over Weber bars:

• The bar responds only to a narrow frequency band, therefore decoding the full GW signal
would require many bars each with different natural frequencies. On the contrary, interfer-
ometers respond, in principle, to all frequencies. Thus, they have a wider frequency range.

• Increasing the length of the interferometer arms increases the sensitivity of the detector by
roughly the same amount. By contrast, the Weber bar cannot be lengthened much, since its
natural frequency depends on its dimensions.

• Because an interferometer can be a thousand times larger than a Weber bar, it is more immune
to the quantum noise produced by the measurement process which fundamentally limits the
sensitivity of Weber bars.

In parallel to the development of ground-based interferometers, the idea of using millisecond
pulsars as low-frequency GW detectors germinated in the late 1970s [15, 16]. Much like a light-
house, a pulsar is a highly magnetized rotating compact star emitting beams of electromagnetic
radiation out of its magnetic poles. We observe a pulse whenever the beam is directed toward
the Earth. Millisecond pulsars are amazingly stable rotators and it is possible – after a precise
measurement of the pulsar’s spin, astrometric and orbital parameters – to predict the pulse time-
of-arrival to a very high accuracy. The passage of a gravitational wave would cause the time
of arrival of the pulses to vary by a few tens of nanoseconds. The Pulsar Timing Array (PTA)
experiments usually monitor a collection of tens of pulsars to account for the dispersion effects in the
atmosphere and in the space between the observer and the pulsar. At present, there are three active
PTA projects: the Parkes Pulsar Timing Array (PPTA) in Australia, the European Pulsar Timing
array (EPTA) using the four largest radio telescopes in Europe and the North American Nanohertz
Observatory for Gravitational Waves (NANOGRAV) in North America. These three projects have
begun collaborating under the title International Pulsar Timing Array (IPTA), releasing their first
data in 2016 [17].

Finally, in 2015, nearly forty years after the first prototypes of an interferometric detector, the
first direct detection of a GW by the LIGO/Virgo collaboration [18] ended this century long quest
for GWs and opened the era of gravitational wave astronomy.

The first successes of GW astronomy

In 2017, the Nobel prize went to Rainer Weiss, Barry C. Barish and Kip Thorne to reward their
research and the first direct detection of GWs. Four years later, the latest catalogue of gravitational-
wave detections by LIGO/Virgo listed a total of 50 events [19], from the first detection of a binary
black hole merger in 2015 to the end of the first half of the third observing run O3a (the masses
of all the detected compact objects are summarized in Fig. 1). We have moved from the quest for

1It is not known for sure who invented the interferometer method to detect gravitational waves, possibly because
the method had several precursors. See Refs. [10, 8] for a discussion on the subject.
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Figure 1: Masses of compact objects detected through gravitational waves [19]. The figure shows
black holes (blue), neutron stars (orange), and compact objects of uncertain nature (gray). Each
compact binary merger corresponds to three compact objects: the two coalescing objects and
the final merger remnant. (Credit: LIGO Virgo Collaboration/Frank Elavsky, Aaron Geller /
Northwestern).
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GWs to the era of gravitational astronomy, using GW to test the limits of GR and understand the
most inaccessible regions of our Universe.

Perhaps the most exceptional GW event of this list is GW170817 [20]2. It is the first observation
of GWs from the inspiraling of two neutron stars, and the electromagnetic counterpart was observed
in multiple wavelength bands and localized in the galaxy NGC 4993. In particular, 1.74 ± 0.05
seconds after the GW event, the γ-ray burst (GRB) GRB 170817A was observed independently
by the Fermi Gamma-ray Burst Monitor and by the SPectro-meter on board INTEGRAL Anti-
Coincidence Shield3. This unique multi-messenger observation in both GWs and electromagnetic
waves has a number of implications for fundamental physics, cosmology and astrophysics [22, 23].

Among the implications for fundamental physics, the temporal offset of 1.74 ± 0.05 s between
the GW and the GRB allows one to constrain the speed of GWs, cGW, relative to the speed of light
cEM. The luminosity distance to the source of about 26 Mpc can be accessed through the analysis of
the GW signal amplitude. An estimate of the upper bound on the speed difference ∆c = cGW−cEM

can be set by assuming that the GW and GRB were emitted simultaneously. To obtain a lower
bound on ∆c, one can assume that the two signals were emitted at times differing by more than
1.74± 0.05 s with the faster EM signal making up some of the difference. As a conservative bound
relative to the few second delays, the authors of Ref. [20] assume that the GRB signal was emitted
10 seconds after the GW signal. The resulting constraint on the speed difference is

− 3× 10−15 ≤ ∆c

cEM
≤ +7× 10−16. (1)

This observation has also been used to derive tests for violations of Lorentz invariance, on the
polarizations of the GW and of the equivalence principle, finding no deviations from GR and thus
constraining tightly models of modified gravity.

Regarding cosmology, the joint observation of GW and EM waves offered a unique and inde-
pendent measurement of the Hubble constant H0. If we restrict to the local Universe, the Hubble
constant relates the luminosity distance an object dL with its redshift z (see Ref. [24] for a discussion
on distances in cosmology)

dL(z � 1) =
cz

H0
. (2)

Different approaches exist to estimate the Hubble constant. One estimate comes from the mea-
surement of the peaks of the CMB temperature power spectrum, which correspond to the acoustic
scale at recombination. The latest Planck result assuming the Λ-CDM model is [25]

H0 = 67.37± 0.54 km.s−1Mpc−1. (3)

Other methods using Baryon-acoustic oscillations combined with physics of the big bang nucle-
osynthesis give similar values for H0 = 67.66 ± 0.42km.s−1Mpc−1. This is, however, lower than
the value obtained by independent measurements at low redshifts, such as the ones of the SH0ES
collaboration. This latter measurement involves the complex calibration of a distance ladder : a
succession of standard rulers to determine distances on a hierarchy of scales. The first ruler is the

2The nomenclature for confirmed GW events was initially GWYYMMDD with YY the year, MM the month and
DD the day of the detection. In the last catalogue GWTC-2, the events get the UTC time of their detection added
to their name. This way, they can have unique names even for two events detected on the same day, as happened
three times in O3a.

3The network of detectors found another binary neutron star merger in 2019, GW190425, but unfortunately could
not find the associated electromagnetic counterpart [21].
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measurement of parallax, which can be used at the scale of our galaxy. A second ruler comes from
Cepheid variables, a type of star that pulsates. A direct relationship between a Cepheid variable’s
luminosity and pulsation period allows one to use them as a ruler for scaling galactic and extragalac-
tic distances. Finally, type 1a supernovae are used to measure distances in distant galaxies. Type
1a supernovae have a characteristic light curve after the explosion and it is used to determine their
absolute luminosity and hence their distance. This succession of cosmic rulers has been calibrated
with increasing accuracy over the past thirty years [26], and the latest measurement of the Hubble
constant by the SH0ES collaboration is [27]

H0 = 73.2± 1.3 km.s−1Mpc−1. (4)

This 4σ discrepancy between low and high redshift measurements of the Hubble constant is known
as the Hubble tension and is one of the major lead for physics beyond the Λ-CDM model (see
Ref. [28] for a complete review on the Hubble tension). In this context, the gravitational-wave
signal of GW170817 gives a direct measurement of the luminosity distance of the source, which,
along with the redshift measurement of NGC 4993, can be used to infer cosmological parameters
independently of the cosmic distance ladder. From this observation, the LIGO/Virgo collaboration
estimated that [20]

H0 = 70+12
−8 km.s−1Mpc−1. (5)

This first measurement paves the way for a new independent and precise determination of the
Hubble constant, possibly helping in resolving the Hubble tension.

So far we have discussed the detection of individual GW signals, but it may not be the only
GW signals that we can hope to detect. A stochastic background of gravitational waves (SGWB)
is the superposition of unresolved GW signals, either coming from uncorrelated and unresolved
astrophysical mergers, or from cosmological sources in causally disconnected patches in the sky.
Some examples of cosmological sources from the early Universe are inflation, phase transitions,
primordial black holes and cosmic strings. Each of those sources has different properties and leads
to different spectra: standard slow-roll inflation for example leads to a stochastic background which
is unobservable [29]. The contribution from cosmic strings and first order phase transition will
be the subject of this thesis. Stochastic backgrounds are currently looked for in ground-based
detectors [30, 31, 32, 33] and PTA experiments [34]. The latest upper limits on the energy fraction
in gravitational waves ΩGW are4

Ω
LIGO/Virgo
GW (25 Hz) . 5.8× 10−9, ΩNANOGRAV

GW (1 yr−1) ∼ 1.4− 2.7× 10−15. (6)

These upper limits already constrain models for the populations of compact objects and of cos-
mology in the early Universe (see Chapter 5 for cosmic strings). Last year, the NANOGRAV
collaboration found strong evidence for a stochastic process across the monitored pulsars, but did
not claim a GW detection [36]. Soon after the publication of this article, different interpretations
of this signal were proposed (for instance [37, 38, 39, 40, 40, 41, 42, 42, 43, 44] only in the week
following the announcement). This clearly shows the excitement in the community, and we can
hope that the accumulation of new data will soon make it possible to highlight the true origin of
this signal.

4The actual limit depends on the shape of the power spectrum and on the prior. See Ref. [35] for a method to
reconstruct the spectral shape of a SGWB. For these limits, we assume a flat spectrum for ΩGW(f) and a log-uniform
prior.
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Figure 2: (Left panel) Projection of the maximum number of events detected per year for ground-
based detectors (except O2 which is fixed to 9 months) and in 4 years for LISA given the upper
bounds from the O1 and O2 runs. (Right panel) Fraction of multi-band events, defined as those
LISA detections merging within 10 years and being detected by a ground-based detector. Solid
lines represent a constant merger rate with redshift, while the shaded areas delineate the difference
resulting from a redshift evolution tracking the star formation rate. The figure is taken from
Ref. [45].

The (near) future of gravitational wave astronomy

The next leap in GW astronomy may come from future improvements on the network of ground-
based detectors. Between the third and the fourth observing run, the LIGO and Virgo detectors
will be upgraded and KAGRA, the Japanese interferometer, will be added. In Ref. [46], the new
LIGO/Virgo/KAGRA collaboration estimated that the number of binary black holes (BBH) de-
tected in O3 would be 17+22

−11
5, compared to 79+89

−44 for O4. But perhaps the most impressive gain

concerns the sky localization which is expected to be of 280+30
−23 deg2 for O3, dropping to 41+7

−6 for
O4 when the four detectors will be operating. Better determination of the sky localization offers
the possibility to detect more multi-messenger events such as GW170817 and to infer the redshift
of the GW source using galaxy catalogues.

In the not-so-distant future, we can hope that the data accumulated by the PTA experiments
will be able to discriminate the origin of the stochastic signal found in NANOGRAV [36]. By the
end of the 2020s and the beginning of the 2030s, the two radio-telescopes constituting the square
kilometre array (SKA) in South Africa and in Australia will start acquiring data and will greatly
increase the sensitivity of PTA experiments in the nanohertz frequency band [47]. They will either
contribute to detecting GWs, or confirm a detection if a first signal already has been identified.

By the mid 2030s, the Laser Interferometer Space Antenna (LISA) – a constellation of three
spacecrafts separated by more than a million kilometres – will be able to detect GW signals with
frequencies about 0.1 mHz to 1 Hz. The frequency band of LISA is ideally positioned for the
study of various cosmological sources [48] (see in Chapter 2 a discussion on cosmic strings and

521 were eventually detected in during O3a, the first half of O3. The difference with the prediction can be
explained by to the more conservative signal-to-noise threshold used to perform these predictions.
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Chapter 10 for first order phase transitions at the electroweak scale) and to observe the inspiraling
of supermassive black holes among other astrophysical sources [49].

The Einstein Telescope (ET), a proposed European ground-based gravitational-wave detector of
third-generation, is an evolution of second-generation detectors such as Advanced LIGO, Advanced
Virgo, and KAGRA which could be operating in the mid 2030s. The arm length of the detector
will be increased to 10 km, compared to 3 km for Virgo and 4 km for LIGO and it will be built
a few hundred meters underground. ET’s potential is discussed in great details in Ref. [50]. An
American equivalent of ET, Cosmic Explorer (CE), has been proposed in the US [51].

Fig. 2, taken from Ref. [45], shows the number of events expected per year in the next generations
of detectors including the different stages of LIGO (O2, aLIGO, A+ and Voyager), LISA, ET and
CE. It illustrates that we are still at the dawn of GW astronomy. By the next 10 to 15 years,
we will go from O(10) events detected per year to over O(1000) per year. Moreover, a substantial
fraction of the inspirals observed by LISA will eventually merge in the frequency band of ground-
based detectors, making it possible to track the evolution of individual binaries for years until they
merge.

Thesis outline

The main subject of this thesis is the study of primordial cosmology mainly through the prism
of gravitational wave detectors. Throughout we work with standard Λ-CDM cosmology, in a flat
Universe, assuming General Relativity. Part of this PhD work has been conducted within the Virgo
collaboration – Chapter 5 is dedicated on the analysis of the O3 data to constrain cosmic strings –
and within the LISA cosmology working group – in Chapter 2, we estimate the capability of LISA
to detect GW from cosmic strings. The manuscript is divided into three independent parts, each
focusing on a different type of phenomenon in the early Universe.

The first part of this thesis deals with cosmic strings, one-dimensional topological defects that
may be formed during phase transitions in the primordial Universe. If formed, these relics would
be markers of the upheavals of our early universe. After a short introduction on cosmic strings,
we study the evolution of the cosmic string network, in particular the number density of loops.
We estimate their gravitational wave emission, make predictions for the future LISA mission, and
finally constrain cosmic strings using the results of LIGO/Virgo/KAGRA.

In a second part, we study the formation of primordial black holes at the end of inflation,
the period of accelerated expansion of the Universe. During this so-called preheating phase, which
precedes the formation of standard model particles, the inflaton oscillates around the minimum of its
potential possibly generating a metric instability at the origin of the formation of many primordial
black holes. This part is therefore devoted to the study of this instability and to quantifying the
production of primordial black holes using the excursion-set formalism.

The third part is dedicated to first order phase transitions, in particular during the electroweak
transition in extensions of the standard model. During the transition, a large amount of energy is
transmitted to the ambient medium in the form of kinetic energy thus generating turbulence. We
therefore propose a model for this freely decaying turbulence and the resulting gravitational wave
spectrum.
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• [55] Manuel Arca Sedda et al. “The missing link in gravitational-wave astronomy: discoveries
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Chapter 1

Introduction to cosmic strings

The aim of this section is to give a very generic overview of cosmic strings and their observational
consequences, and place my work into context. Many more details, with corresponding calcula-
tions, can be found in the subsequent chapters to which I will refer in this introduction. Fig. 1.1
summarizes the specific subjects which I will treat later in this thesis.

1.1 Topological defects

Cosmic strings are a class of stable topological defect solutions of field theories [60] which may
form in spontaneous symmetry breaking phase transitions in the early Universe [61, 62]. In a
cosmological setting they may lead to interesting observational effects since they concentrate large
energy densities. In principle, different types of topological defects can form after a symmetry-
breaking phase transition: for example, if the vacuum manifold is disconnected, domain-walls may
form at the intersection of different vacua. Indeed, the type of topological defect that forms depends
on the topology of the vacuum manifoldM, characterized by its homotopy groups [61, 63]. Domain-
walls form when Π0(M) is non-trivial, strings when Π1(M) is non-zero whilst a non-vanishing
Π2(M) gives point-like monopoles. These defects are stable solutions of the field theory. Textures
may form if the homotopy group Π3(M) is non-trivial, but they are unstable and collapse on
themselves.

Since this part of the manuscript is devoted to cosmic strings, let me expand on the fundamental
group Π1 of a topological spaceM. A topological spaceM is simply connected if it is path-connected
and any closed path in M can be contracted to a point. Equivalently for any p : [0, 1] →M and
q : [0, 1] →M two closed paths with the same initial and final point (p(0) = q(0) = p(1) = q(1)),
there exists a homotopy

F : [0, 1]× [0, 1]→M
such that F (x, 0) = p(x) and F (x, 1) = q(x).

More generally, if such a homotopy exists, p and q are said to be homotopic, and this relation is an
equivalence relation. The fundamental group of a topological space can be seen an indicator of the
failure for the space to be simply connected. It is the group formed by the set of the equivalence

13
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1.2. OBSERVATIONAL CONSEQUENCES 15

Figure 1.2: Left hand side, Mexican hat potential with a S1 vacuum manifold. Right hand side,
the field configuration for a vortex string. The size of the arrow indicates the expectation value of
the order parameter. At the centre of the vortex, the field is necessarily at the top of the Mexican
hat potential.

classes of loops up to homotopy, and the concatenation of loops

p ◦ q : [0, 1]→M

(p ◦ q)(t)
{
p(2t) 0 ≤ t ≤ 1/2

q(2t− 1) 1/2 ≤ t ≤ 1
.

The elements of the fundamental group classify the different types of admissible string solutions.
The simplest example for the formation of cosmic strings is the breaking of an U(1) symmetry,
taking a complex scalar field φ and a quartic Mexican hat potential with a degenerate circle of
minima |φ| = η [64], as shown on Fig. 1.2. In this case, the vacuum manifold M = S1 is a circle,
the fundamental group is Π1(M) = Z, and the admissible string solutions are labelled by an integer
winding number.

Topology only tells us about the existence of cosmic strings, not their detailed properties, which
in the case of the Abelian-Higgs model will depend on the Higgs and gauge couplings (type I, type
II strings) [65, 66, 67, 68]. Furthermore, if the field forming the string is coupled to other fields, it
is possible for the latter to condense on the string and give rise to currents [69, 64], see Chapter 7.

1.2 Observational consequences

Alternatively, line-like “cosmic super-strings” can be cosmologically stretched fundamental strings
of String Theory, formed for instance at the end of brane inflation [70, 71]. The energy per unit



16 CHAPTER 1. INTRODUCTION TO COSMIC STRINGS

length of a string µ, is of order η2, where η is a characteristic energy scale: for topological strings

Gµ = 10−6
( η

1016GeV

)2

(1.1)

with η the energy scale of the phase transition. Generically the string tension is also of order µ,
and strings are relativistic objects: the combination of a high energy scale and a relativistic speed
clearly indicates that strings are a natural source of GWs. We will discuss the production of GW
from strings in details in the following Chapters 2 and 5.

There are other ways one can hope to detect the presence of cosmic strings in the Universe that
do not directly involve the observation of the GWs they generate. Multiple potential observational
signatures of cosmic string networks have been discussed in the literature, including anisotropies
in Cosmic Microwave Background (CMB) [72, 73, 74, 75], lensing events [76, 77], and cosmic rays
from the decay of strings into particle radiation [78, 79, 80, 81, 82, 83, 84, 85, 86] (see [69, 64,
87, 88] for a review). Currently, CMB data from the Planck Satellite [72] imply Gµ < 10−7 for
Nambu-Goto, Abelian-Higgs, and semi-local strings.

The most stringent bounds, however, come from searches for the SGWB, with pulsar timing
arrays (PTA) constraining Gµ for Nambu-Goto strings to be Gµ . 10−11 [89, 90], and LIGO-Virgo
observations constraining it to as low as Gµ < 2×10−14, depending on the string network model [32,
91, 59] which is one of the main subjects of this thesis.

1.3 Nambu-Goto action

Since the characteristic width δ ∼ 1/η of a cosmic string is generally much smaller than the horizon,
in this manuscript I mainly assume that strings can be described by the Nambu-Goto (NG) action,
which is the leading-order approximation for strings without current when the curvature scale of the
strings is much larger than their thickness [69]. Let τ be a time-like and σ a space-like coordinate
along the string and Xµ(τ, σ) the coordinates of the centre of the string. The induced metric on
the world-sheet is

γab = gµν∂aX
µ∂bX

ν (1.2)

where ∂a,b denote derivatives with respect to (τ, σ) and gµν is the background metric evaluated at
the position of the string. The Nambu-Goto action which minimizes the area of the world-sheet is
then

S = −µ
∫

dτ dσ
√
−det γ (1.3)

We refer to such string as NG strings.
The string energy-momentum tensor follows from Eq. (1.3)

Tµν(xσ)
√
−det g ≡ −2

δS
δgµν

= µ

∫
dτ dσ

√
− det γγab∂aX

µ∂bX
νδ(4)(Xσ(τ, σ)− xσ) (1.4)

using the relation δ(det γ) = det(γ)γab δγab. To find the equations of motion, we vary the action
with respect to Xµ(τ, σ), leading to

δS =
µ

2

∫
dτ dσ

√
−det γγab

(
δγab
δXµ

δXµ +
δγab
δ∂cXµ

δ∂cX
µ

)
, (1.5)
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Figure 1.3: Gravitational lensing by a cosmic string. The metric around the string is a cone with
a deficit angle ∆ = 8πGµ. The observer sees two images S1 and S2 of the same source.

with

δγab
δXµ

=
δgλν
δXµ

∂aX
λ∂bX

ν = −2Γµλν∂aX
λ∂bX

ν , (1.6)

δγab
δ∂cXµ

= gµν(γcb∂aX
ν + γca∂bX

ν). (1.7)

Finally the equation of motions becomes

1√−det γ
∂c

(√
−det γγacgµν∂aX

ν
)

+ γabΓµλν∂aX
λ∂bX

ν = 0. (1.8)

1.4 Cosmic strings in flat space-time

In this section, we study the solutions of the Nambu-Goto action in a flat space-time gµν = ηµν
to gain an understanding of their properties. Since the Nambu-Goto action is, by construction,
reparametrization invariant, we fix a specific gauge and choose the conformal gauge:

γ01 = γ00 + γ11 = 0, (1.9)

or equivalently

Ẋµ ·X ′µ = 0 (1.10)

Ẋ2 +X ′2 = 0. (1.11)

Here · = ∂/∂τ and ′ = ∂/∂σ . The gauge is called conformal because the metric is conformally flat

γab =
√
−det γηab, γab =

1√−det γ
ηab. (1.12)

The equations of motion simplify significantly to the wave equation

1√−det γ
∂a∂

aXµ = Ẍµ −X ′′µ = 0. (1.13)
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However, the conformal gauge does not fix the gauge entirely, and one usually removes the residual
freedom by setting τ = t = X0, which is a solution of Eq. (1.13) with µ = 0. The equations of
motion and the gauge conditions give the following system of differential equations for the three-
dimensional vector Xµ = (t,X)

Ẋ ·X′ = 0 (1.14)

Ẋ2 + X′
2

= 1 (1.15)

Ẍ−X′′ = 0. (1.16)

The solution of the wave equation of Eq. (1.16) is a superposition of left and a right movers

X(t, σ) =
1

2
[a(t− σ) + b(t+ σ)], (1.17)

where the gauge conditions (1.14) and (1.15) constrain a′ and b′ to be trajectories on a unit sphere,
also called the Kibble sphere

a′
2

= b′
2

= 1. (1.18)

With the equations of motion, the energy-momentum tensor in flat space-time is rewritten as

Tµν(t,x) = µ

∫
dσ
(
ẊµẊν −X ′µX ′ν

)
δ(3)(X(t, σ)− x). (1.19)

From this expression, one can directly that calculate the energy contained in the string

E =

∫
d3xT 0

0 = µ

∫
dσ . (1.20)

Hence for Nambu-Goto strings, the tension µ is equal to the energy per unit length.
A closed loop of strings is characterized by σ ∈ [0, `[ where ` is the invariant length, defined by

` ≡ E
µ
. (1.21)

In the centre of mass frame, the periodicity of the loop X(t, σ + `) = X(t, σ) implies that a and b
are also periodic and that the loop oscillates with a period

T =
`

2
, (1.22)

indeed one has X(t+ `/2, σ + `/2) = X(t, σ). This oscillation of the loop is one of the mechanisms
through which cosmic string loops emit GW.

For a straight and static string along the z-axis

T νµ = µδ(x)δ(y)diag(1, 0, 0, 1) (1.23)

Using this as the right-hand side of the linearized Einstein’s equations, the metric around the string
is [92]

ds2 = dt2 − dz2 − dr2 − r2 dθ (1.24)

with the angle varying in the range 0 ≤ θ < 2π(1 − 4Gµ). The space-time around the metric is
therefore flat and a particle at rest will not experience a gravitational attraction. However, the
string introduces a deficit angle

∆ = 8πGµ (1.25)

and can cause gravitational lensing, as illustrated in Fig. 1.3.
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Figure 1.4: Two cosmic string exchange partners when they collide. If a cosmic string intersects
itself, it produces a loop.

Figure 1.5: Cusps may form periodically on the string and travel instantly at the speed of light in
the NG limit. The emission of gravitational waves is concentrated in a localized beam.

1.5 Scaling of the cosmic string network

With the NG equations of motion, one can study the evolution of a string network, from formation
until the present time. While the basic picture is simple – a string network is stretched by the
cosmological expansion, and the motion of strings leads to multiple interactions and collisions
between them – in practice, this is a complicated problem which has been studied in depth in the
literature [93, 94, 95, 96, 63, 97, 98, 99, 100]. One often assumes (based on numerical simulations
of field theory strings [65, 66]) that when strings collide, they always intercommute, i.e., that they
always “exchange partners” and reconnect after a collision. Perhaps the most important conclusion
of these studies is that the cosmic string network reaches an attractor scaling solution in which
its energy density remains a fixed fraction of the background energy density, and all typical loop
lengths are proportional to cosmic time (equivalently they scale with the Hubble radius). We will
discuss in more detail in Chapter 2 the Velocity dependent One Scale model (VOS) and the results
of numerical simulations [101, 102, 103, 99] that support the existence of the scaling solution. Most
often, we use the scaling variables when studying the properties of the cosmic string network.

γ ≡ `

t
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Figure 1.6: Kinks travel along the string at the speed of light. They emit gravitational waves in a
localized beam whose direction changes during the propagation of the kink.

1.6 Gravitational wave bursts

Closed loops are formed when a string self-intersects or two curved strings collide. Loops smaller
than the horizon decouple from the cosmological evolution and oscillate under their own tension,
slowly decaying into GWs. Indeed, in flat space-time, as seen above, loops oscillate with period
`/2. A smooth loop generically develops cusps, namely points where the string momentarily moves
at the speed of light [104] as in Fig. 1.5. In a flat space-time, using Eq. (1.17)

Ẋ2(t, σ) =
1

4
[a′(t− σ) + b′(t+ σ)]

2
. (1.26)

If the two curves intersect on the Kibble sphere a′(ζa) = b′(ζb), then Ẋ2 = 1 and this happens
periodically whenever 2σ = −ζa + ζb + n` and 2t = ζa + ζb + n` for n ∈ Z.

Moreover, the intersections of strings generates discontinuities on their tangent vector known
as kinks, see Fig. 1.6. All loops will contain kinks — either as a result of the intercommutation
that produced them, or as historical remnants of past intersections. Cusps and kinks generate
gravitational wave bursts [105, 106], and these play a significant role in the stochastic background
of GW emitted by string networks. (One should note that a complementary strategy to the detection
of the stochastic background is therefore to search for such individual transient signals, see [107,
91] and Chapter 5.) It has also been shown that the collision of kinks produces isotropic bursts of
GW [108, 90], see Fig. 1.7. Even though kink-kink collisions produce bursts of GW with relatively
low amplitude compared to cusps and kinks; they may dominate the GW emission on very wiggly
strings since the number of collisions grows quadratically with the number of kinks on the string.
This is why this effect has been added in the third observing run of the LIGO/Virgo/KAGRA
collaboration [59], as detailed in Chapter 5.
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Figure 1.7: Kink-kink collisions emit gravitational waves isotropically. Even though the amplitude
of the emitted GW is relatively low, the number of events on a loop grows quadratically with the
number of kinks. These collisions may dominate on very wiggly strings.

1.7 Loop production function and loop number density

Although loop production is observed and measured in Nambu-Goto cosmic string simulations [99,
100, 109], it is still a matter of debate whether loops form in the same quantity in field theory
simulations [110, 111, 112, 113]. Nambu-Goto simulations from two independent groups have
shown that, on large scales (see discussion below), where these simulations can be trusted, the loop
distribution is a power-law, namely [99, 103, 114]

t4n(γ, t) ∝ γp. (1.27)

where n is the number density distribution of loops of size [`, ` + d`] at cosmic time t, and the
time-independence of the combination t4n is precisely the scaling regime.

Let us also notice that, due to the huge disparity of scales in the problem (ranging from, for
instance, the distance between kinks formed by string intercommutations, to the horizon size),
numerical simulations of cosmic string networks cannot incorporate all physical effects. In Nambu-
Goto simulations, in particular, effects from GW emission and backreaction onto the string dynamics
are ignored1. This is why Eq. (1.27) can only be trusted for loops large enough that these effects
remain negligible. GW’s emission means that loops loose energy and hence become smaller, with an
average emitted GW power Pgw = ΓGµ2 where Γ is a numerical constant estimated to be Γ = O(50)
[117, 118, 114]. Hence, loops decoupled from the Hubble flow shrink at an average rate given by

γd ≡ ΓGµ. (1.28)

1See, however, Ref. [115] and more recently Ref. [116] for an isolated loop.
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One therefore expects Eq. (1.27) to hold for loops of length ` & `d = γdt (numeric-wise, this is
a quite small number already for Gµ < 10−7). Emitted GWs will also backreact onto the string
thereby affecting its dynamics. The consequences of this process for the network and the loops are
still unknown and being studied [119, 120, 121]. However, one expects that loop production should
be cut-off below some length scale `c ≡ γct, with presumably γc ≤ γd, which I discuss in Chapters 3
and 4.

As was realized very early on, to include these physical effects one needs to combine results of
simulations with analytical modelling [64]. A powerful framework for this is to use a Boltzmann
approach to estimate the loop distribution on cosmological time and length scales [96, 122, 123,
124, 125, 126, 127]

∂

∂t

∣∣∣∣
`

(
a3n

)
+

∂

∂`

∣∣∣∣
t

(
d`

dt
a3n

)
= a3P (1.29)

in which P is the loop production function (LPF) and d`/dt is the rate at which the loop shrinks.2

As we will discuss in Chapter 3, radically different assumptions about the loop production function
can lead to similar powers p on large scales. Indeed, on one hand, motivated by the one-scale model
of cosmic string evolution [61, 64], an often studied case is one in which [128, 105, 129, 130, 48,
131, 107, 132, 133]

P(γ, t) ∝ δD(γ − α), (1.30)

namely all stable loops are formed with size ` = αt at time t (for constant α) and one can show
that in the radiation era p = −5/2 while in the matter era p = −2 (see Section 3.2.2). On the other
hand, all cosmic string simulations show that a lot of small-scale structure, namely kinks generated
from string intercommutation, build up on the strings (see Refs. [134, 102, 101, 93, 135, 136, 94]
for a discussion of small-scale structure on strings). As a result, one expects loops to be formed on
a wide range of scales at any given time. The most recent analytical work along these lines is by
Polchinski-Rocha and collaborators [137, 138, 122], who proposed a model of loop production from
long strings. It is given by

t5P(γ > γc, t) ∝ γ2χ−3, (1.31)

here the parameter χ will be referred to as the Polchinski-Rocha (PR) exponent3. This is clearly
very different from a Dirac distribution as a loop production function and the consequences of a
power-law loop production function on the loop number density and the SGWB are analysed in
Chapters 3 and 4.

1.8 Field-theory strings and particle emission

At a more fundamental level, as discussed above, cosmic strings are not NG but topological solutions
of field theories. Their dynamics can therefore also be studied by solving the field theory equations
of motions. In studies of large scale field theory string networks [110, 112, 74, 113], loops are
observed to decay directly into particles and gauge boson radiation on a short time scale of order of
the loop length. Hence, field theory string network simulations predict very different observational
consequences — in particular no SGWB from loops. Since field theory and Nambu-Goto strings
in principle describe the same physics, and hence lead to the same observational consequences,
this is an unhappy situation. Based on high resolution field theory simulations, a possible answer

2The explanations for this continuity equation and the link with a Boltzmann equation can be found in Section 7.A
3The PR exponent is related to the two-point correlation function of tangent vectors along cosmic strings.
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to this long-standing conundrum was proposed in Ref. [139]. In particular, for a loop of length
` containing kinks, a new characteristic length scale `k associated to the collision of kinks was
identified, and it was shown that if ` & `k gravitational wave emission is the dominant decay mode,
whereas for smaller loops ` . `k particle radiation is the primary channel for energy loss. If a
loop contains cusps, then one expects that particle radiation is the dominant channel for energy
loss below another length-scale `c [140, 141]. The observational consequences of this description
of particle emission are addressed in Chapter 6. It should be noted that in a recent article [142],
Hindmarsh and collaborators have attributed the long lifespan of the loops in Ref. [139] to their
particular choice of initial conditions. They argue that the way loops are formed in their simulations
is not representative of the actual formation of loops by the infinite string network.

1.9 Current-carrying strings

Most studies of cosmic strings suppose they are structureless, with equal energy per unit length
and tension, and therefore they are expected to be well described by a worldsheet action, i.e. the
Nambu-Goto action. This is no longer the case if, as first realized by Witten [143, 144], particles
couple to the string-forming Higgs field can condense in the string core and subsequently propagate
along the worldsheet. The resulting strings thus behave like current carrying wires and are endowed
with a much richer structure [145, 146].

One of the simplest examples of current-carrying strings is that of a U(1)R×U(1)Q gauge theory
with an unbroken gauge symmetry Q (which could be for instance electromagnetism) and a broken
symmetry R [143]. This model generalizes the prototypical Abelian-Higgs model of cosmic strings
behind much of the existing work on cosmic strings. At a temperature Tini, and a cosmic time tini,
the Higgs field φ with Q = 0 and R = 1 acquires a non-zero vacuum expectation value |〈φ〉| 6= 0,
thereby breaking the first component U(1)R of the total invariance group; this leads to the formation
of vortex lines. The field φ vanishes at the core of the string and its phase varies by an integer times
2π along any closed path around the vortex: this is the standard Kibble mechanism. If the theory
contains fermions obtaining their masses from the U(1)Q broken symmetry, those form zero modes
in the string core where the symmetry is restored, thereby forming a superconducting current.

The model also comprises a second scalar field σ with Q = 1 and R = 0, the coupling potential
between φ and σ being chosen such that 〈σ〉 = 0 in vacuum (where |〈φ〉| 6= 0). Under certain
conditions, it is energetically favourable to have 〈σ〉 6= 0 at the core of the string where 〈φ〉 = 0.
At a temperature Tcur < Tini, and cosmic time tcur > tini, the charged scalar field σ thus condenses
on the string and acts as a bosonic charge carrier making the string current-carrying (and in fact
actually superconducting). The presence of currents flowing along the strings affects the dynamics
of the network, and in Chapter 7 I will particularly focus on vortons [147, 148, 149, 150, 151, 152,
153, 154], namely closed loops of string which are stabilized by the angular momentum carried
by the current. Vortons do not radiate classically, and here I make the assumption that they are
classically stable as well (see for instance [155, 156, 157] for numerical studies of their stability). On
cosmological scales, they appear as point particles having different quantized charges and angular
momenta.

1.10 Plan for the part on cosmic strings

The structure of this part of the manuscript is given in Fig. 1.1. To summarize:
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• The infinite string network consists of all the cosmic strings larger than the Hubble horizon.
They are stretched by the expansion of the Universe and lose energy by producing loops. The
size and abundance of the produced loops is encoded in the loop production function (LPF)

• The loop number density is determined using the Boltzmann equation (1.29). It depends
crucially on the loop production function P and on ˙̀ the rate at which the loop shrinks.
The influence of the loop production function on the loop number density is the subject of
Chapter 3.

• The emission of GW is the standard channel by which cosmic string loop lose energy. This
emission can be detected either in the form of individual bursts from cusps, kinks and kink-
kink collisions, or through the uncorrelated sum of those signals: a stochastic background
of GW. In Chapter 2, I review the different methods to calculate the SGWB and assess the
capability of LISA, the Laser Interferometer Space Antenna to detect a stochastic signal from
cosmic strings. Then in Chapter 4, I study the impact of the loop production function on the
SGWB from cosmic strings at different frequencies while providing analytical templates for
these spectra. And in Chapter 5, I will present the results from the third data observing run
by the LIGO/Virgo/KAGRA collaboration on the GW signals of cosmic strings, both in the
form of bursts and of a SGWB.

• Numerical simulations of field theory string have shown that loops emit particles, thus short-
ening their lifetime. This energy loss channel modifies significantly the loop number density
and the signal in terms of GW. Additionally, this emission of particle may impact other
observables such as the Diffuse γ-ray background. This is the subject of Chapter 6.

• Finally, particles coupled to the string-forming Higgs field can condense in the string core
and act as charge carriers. One consequence is that closed loop do not shrink indefinitely but
are stabilized by the angular momentum of the current. These vortons appear as point-like
particles and may be a viable candidate for part of the dark-matter content of the Universe.
In Chapter 7, I calculate the abundance of vortons today based on the string tension and the
energy-scale of the charge carrier.



Chapter 2

Probing the gravitational wave
background from cosmic strings
with LISA

This chapter is a reproduction of Ref. [54] which was written in collaboration with the LISA
cosmology working group. A significant part of this work, which took a year and a half to complete,
involved writing my own code to calculate the stochastic background based on two independent
methods (one of which is very useful for bursts constraints, see Chapter 5) which are discussed in
sections 2.2.1 and 2.2.2. Other codes already existed and did not always agree amongst each other
nor to a sufficient precision. Finding the details and correcting all the codes took a certain time.
Thanks to this, I have my own well-tested code which I have also used in the subsequent chapters
of this thesis. I have contributed to all the sections of this chapter except for sections 2.6.2 on the
agnostic model, 2.5.4 on non-standard cosmologies and 2.6.3 on the gravitational wave bispectrum
from long strings.

Abstract

Cosmic string networks offer one of the best prospects for detection of cosmological grav-
itational waves (GWs). The combined incoherent GW emission of a large number of string
loops leads to a stochastic GW background (SGWB), which encodes the properties of the
string network. In this paper we analyse the ability of the Laser Interferometer Space Antenna
(LISA) to measure this background, considering leading models of the string networks. We
find that LISA will be able to probe cosmic strings with tensions Gµ & O

(
10−17

)
, improving

by about 6 orders of magnitude current pulsar timing arrays (PTA) constraints, and poten-
tially 3 orders of magnitude with respect to expected constraints from next generation PTA
observatories. We include in our analysis possible modifications of the SGWB spectrum due to
different hypotheses regarding cosmic history and the underlying physics of the string network.
These include possible modifications in the SGWB spectrum due to changes in the number of
relativistic degrees of freedom in the early Universe, the presence of a non-standard equation
of state before the onset of radiation domination, or changes to the network dynamics due to
a string inter-commutation probability less than unity. In the event of a detection, LISA’s fre-
quency band is well-positioned to probe such cosmic events. Our results constitute a thorough
exploration of the cosmic string science that will be accessible to LISA.

25
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2.1 Introduction

The direct detection of gravitational waves (GWs) by the LIGO and Virgo network [18, 158, 159,
160, 161] marks the dawn of a new era in astronomy, opening a unique window with which to
observe the Universe. GWs carry invaluable information about the sources that created them —
which could be of astrophysical or cosmological origin — since they propagate unimpeded through
space. Gravitational waves therefore constitute one of the most promising new messengers with
which we can probe aspects of the Universe so far undetermined by other means.

One of the main targets of GW experiments is the detection of a stochastic gravitational wave
background (SGWB) of cosmological origin. The most famous example of such a SGWB is the
quasi–scale invariant background from inflation, due to quantum fluctuations [162, 163, 164, 165].
This background is expected to be too small to be detectable by currently planned GW observa-
tories. However, if axion-type species are present during inflation, potentially observable GWs can
also be produced with a significant blue-tilt (see e.g. [166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
176, 177], or [178] for a general discussion on GWs from inflation). Furthermore, post-inflationary,
early-universe phenomena can also generate GWs with a large amplitude, e.g. a kination-dominated
phase [179, 180, 181, 182, 183], particle production during preheating [184, 185, 186, 187, 188, 189,
190, 191], oscillon dynamics [192, 193, 194, 195, 196], strong first order phase transitions [197,
198, 199, 200, 201, 202, 203], or cosmic defect networks [117, 204, 105, 106, 205, 206, 114]. For a
comprehensive review of SGWB signals of cosmological origin, see [29]. In this paper, we focus on
precisely one such cosmological source: cosmic strings. We investigate, in particular, the ability of
the Laser Interferometer Space Antenna (LISA) [207] — which will be the first GW observatory
in space — to probe the SGWB emitted by a network of cosmic strings.

Cosmic strings are stable topological defect solutions of field theories [60] which may have formed
in symmetry breaking phase transitions in the early Universe [61, 62]. Alternatively, they can be
cosmologically stretched fundamental strings of String Theory, formed for instance at the end of
brane inflation [70, 71]. The energy per unit length of a string µ, is of order η2, where η is a
characteristic energy scale (for topological strings, the energy scale of the phase transition). In the
simplest cases, the string tension is also of order µ, and strings are relativistic objects that typically
move at a considerable fraction of the speed of light. The combination of a high energy scale and
a relativistic speed clearly indicates that strings should be considered a natural source of GWs.

A network of strings formed in the early Universe emits GWs throughout the history of the
Universe, generating a SGWB from the superposition of many uncorrelated sources. In this paper,
we forecast the constraints that LISA may put on the dimensionless combination Gµ (where G =
1/M2

pl is Newton’s constant, and Mpl = 1.22× 1019 GeV the Planck mass), which is related to the
energy scale η through

Gµ ∼ 10−6
( η

1016GeV

)2

, (2.1)

and which parametrizes the gravitational interactions of the string.

There are other ways one can hope to detect the presence of cosmic strings in the Universe
that do not directly involve the observation of the GWs they generate. In fact, several potential
observational signatures of cosmic string networks have been discussed in the literature, including
anisotropies in Cosmic Microwave Background (CMB) [72, 73, 74, 75], lensing events [76, 77], and
cosmic rays from the decay of strings into particle radiation [78, 79, 80, 81, 82, 83, 84, 85, 86]
(see [69, 64, 87, 88] for a review). Currently, CMB data from the Planck Satellite [72] imply
Gµ < 10−7 for Nambu-Goto, Abelian-Higgs, and semi-local strings. The most stringent bounds,
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however, come from searches for the SGWB, with pulsar timing arrays (PTA) constraining Gµ for
Nambu-Goto strings to be Gµ . 10−11 [89, 90], and LIGO-Virgo observations constraining it to as
low as Gµ < 2 × 10−14, depending on the string network model [32, 91]. In this paper we show
that LISA will be sensitive to string tensions with Gµ & 10−17 for Nambu-Goto strings, improving
current upper bounds by ∼ 10 orders of magnitude relative to CMB constraints, by ∼ 6 orders of
magnitude relative to current PTA constraints, and even by ∼3–4 orders of magnitude relative to
future constraints from next generation of PTA experiments.

Since the characteristic width δ ∼ 1/η of a cosmic string is generally much smaller than the
horizon, in this paper we mainly assume that strings can be described by the Nambu-Goto (NG)
action, which is the leading-order approximation when the curvature scale of the strings is much
larger than their thickness. We refer to such string as NG strings. Furthermore, we mainly focus
on string networks without junctions; comments on cosmic superstring networks with junctions will
be made in Section 2.6.2. With the NG action, one can study the evolution of a string network,
from formation until the present time. While the basic picture is simple — a string network is
stretched by the cosmological expansion, and the motion of strings leads to multiple interactions
and collisions between them — in practice, this is a complicated problem which has been studied
in depth in the literature. Perhaps the most important conclusion of these studies is that the
cosmic string network reaches an attractor scaling solution in which its energy density remains a
fixed fraction of the background energy density. One often assumes that when strings collide, they
always intercommute, i.e., that they always “exchange partners” and reconnect after a collision1.
As a result, closed loops are formed when a string self-intersects or two curved strings collide.
Loops smaller than the horizon decouple from the cosmological evolution and oscillate under their
own tension, slowly decaying into GWs. Indeed, in flat space-time, one can show that loops have
oscillating trajectories which are periodic in time. The relativistic nature of these strings typically
leads to the formation of cusps, namely points where the string momentarily moves at the speed
of light [104]. Moreover, the intersections of strings will generate discontinuities on their tangent
vector known as kinks. All loops will contain kinks — either as a result of the intercommutation
that produced them, or as historical remnants of past intersections. Cusps and kinks generate
gravitational wave bursts [105, 106], and these play a significant role in the SGWB emitted by
string networks. (One should note that a complementary strategy to the detection of the stochastic
background is therefore to search for such individual transient signals, see [107, 91].)

Other than sub-horizon string loops, the network also contains long strings that that stretch
across a Hubble volume. These are either infinite or in the form of super-horizon loops, and are
also expected to emit GWs. However, the dominant contribution is generically that produced by
the superposition of radiation from many sub-horizon loops along each line of sight. Studying this
SGWB and the possibility of observing it with the LISA constellation [207] is the main focus of
this paper. We argue that, even though the next round of pulsar timing observations could improve
the constraint on the cosmic string tension Gµ in the near future, this will not continue for long.
Future tightening of these constraints will necessarily come from GW detectors operating in an
intermediate frequency band. This is precisely due to the fact that the GW background expected
from strings at lower energy scales will peak at these intermediate frequencies, which are out of
reach of PTA experiments. We therefore conclude that LISA is the ideal instrument with which
to search for cosmic strings in the future or, at the very least, to further improve constraints on
cosmic string scenarios.

1This corresponds to an intercommutation probability P = 1, which we mainly assume throughout this paper.
We comment briefly on P < 1, characteristic of cosmic superstrings, in Section 2.6.2.
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The paper is organized as follows. In Section 2.2, we briefly review the basic methods and
relevant formulae with which to calculate the energy density spectrum of the SGWB emitted by
sub-horizon loops in an evolving network of cosmic strings. In Section 2.3, we present different
approaches developed in the literature to determine the loop number density, which is a fundamental
quantity in the determination the SGWB from any string network. In Section 2.4, we review the
emission of GWs by individual strings, in particular the so-called ‘loop power spectrum’ and the GW
waveforms from bursts. These different results are put together in Section 2.5, where we characterize
the spectral shape of the SGWB from a cosmic string network. We discuss different (potentially
observable) features that can be imprinted in the SGWB spectrum, such as the details of radiation-
to-matter transition, the number of relativistic degrees of freedom active during expansion, and the
equation of state in the early Universe. In Section 2.6, we analyse in detail the ability of LISA
to measure the spectrum of the SGWB from a network of cosmic strings, and in particular we
determine the parameter space that is compatible with a detection. Finally, in Section 2.7, we
present an overview of our results and state our conclusions.

2.2 The calculation of the SGWB from Cosmic Strings

Several studies in the literature have calculated the SGWB generated by an evolving cosmic string
network (see, e.g., [92, 208, 117, 209, 210, 128, 211, 129, 212, 213, 214, 48, 131, 215, 216, 103, 217,
114, 89, 90, 218, 219]). This is often quantified in terms of the fraction of the critical density in
GWs per logarithmic interval of frequency,

ΩGW(t0, f) =
8πG

3H2
0

f
dρgw

df
, (2.2)

where H0 is the Hubble parameter, and dρgw/df is the energy density in gravitational waves per
unit frequency f , observed today (at t = t0). The basic idea is that, given a GW frequency today,
one must add up the GW emission from all the loops throughout the entire history of the Universe
that contribute to that frequency. To do so, two different and complementary approaches have been
developed in the literature, and the aim of this section is to introduce both of them. (These two
approaches are also discussed in more detail in Section 2.4.)

Before doing so, we introduce the basic ingredients common to the two approaches. The first
is the number density n(`, t) of non-self-intersecting, sub-horizon, cosmic string loops of invariant
length ` at cosmic time t. These are the loops which, through their oscillations, contribute to
the SGWB. When the network is scaling — as it is in the radiation and matter eras — n(`, t)
can be estimated through different numerical and analytical techniques (see Section 2.3). Scaling,
however, cannot be maintained during the radiation-to-matter transition, but analytical estimates
can nonetheless be extended to this regime.

The second ingredient is the loop power spectrum, namely the power Pgw(f, `) emitted in GWs
of frequency f by a cosmic string loop of length `. It is clear that individual loops of a given length
` will radiate in different ways according to their shape. Hence, either one can assume an average
(or typical) gravitational loop power spectrum Pgw(f, `) determined numerically from simulations;
or one can focus on particular events on the strings (cusps and kinks) for which Pgw(f, `) can be
determined analytically.
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2.2.1 Method I

Let us write the power Pgw(f, `) in units of Gµ2 and ` as

Pgw(f, `) = Gµ2` P (f`), (2.3)

where we have introduced a function P (f`) which in principle takes a different form for each
individual loop, depending on its shape. The first method to calculate ΩGW(t0, f) assumes the
existence of an averaged function, P (f`), computed from an ensemble of loops of length ` obtained
from simulations. Then the energy density in GWs observed at a particular frequency f today is
obtained by adding the amount of energy produced at each moment of cosmic evolution for loops
of all sizes. On taking into account the redshift of frequencies from the moment of emission until
today, one finds

dρgw

df
= Gµ2

∫ t0

0

dt

(
a(t)

a0

)3 ∫ ∞

0

d` ` n(`, t) P

(
a0

a(t)
f`

)
, (2.4)

where a(t) is the scale factor which takes the value a0 today. In order to compute ΩGW(t0, f) from
Eqs. (2.2) and (2.4), one must specify the cosmological model, the number density of loops n(`, t),
and an average power spectrum P (f`). This approach has been followed in e.g. [92, 208, 117, 209,
210, 128, 213, 214, 48, 216, 103, 217, 114, 89, 218].

2.2.2 Method II

At high frequencies f` � 1, Pgw(f, `) can be estimated analytically. Indeed, whatever the shape
of the loop, one can show that the gravitational waveform sourced by a loop is dominated at high
frequency by cusps, kinks, and kink-kink collisions. (See appendix 2.A for an overview of the
Nambu-Goto equations and the precise definitions of cusps and kinks). The form of Pgw(f, `) for
these 3 types of events is discussed in Section 2.4.

Cusps, kinks, and kink-kink collisions emit short bursts of GWs. The contribution to the SGWB
from the superposition of the unresolved signals from these three types of events is given by

dρgw

df
= f2

∫ ∞

0

dz

∫ ∞

0

d` h2(f, z, `)
∂2R(z, `)

∂z∂`
, (2.5)

where z is the redshift, h(f, z, `) is the amplitude of the Fourier transform of the trace of the metric
perturbation generated by each event, and ∂2R(z, `)

/
∂z∂` denotes the event rate per unit loop

length and per unit redshift. This rate is directly proportional to n(`, t), and therefore one must
know the number density of loops. This approach has been considered in Refs. [211, 212, 131, 215,
90, 91, 219].

2.2.3 Cosmology

Finally, one must provide the details of the expansion history of the Universe. Unless specified
otherwise, we assume a standard flat Λ-CDM model. The Hubble rate reads

H(z) = H0H(z), (2.6)

where
H(z) =

√
ΩΛ + Ωmat(1 + z)3 + ΩradG(z)(1 + z)4 , (2.7)
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and we use Planck-2018 fiducial parameters [25],

H0 = 100h km/s/Mpc ,

h = 0.678 ,

Ωmat = 0.308 , (2.8)

Ωrad = 9.1476× 10−5 ,

ΩΛ = 1− Ωmat − Ωrad .

The function G(z), which takes into account the effective number of degrees of freedom g∗(z) and
the effective number of entropic degrees of freedom gS(z), is given by [48]

G(z) =
g∗(z)g

4/3
S (0)

g∗(0)g
4/3
S (z)

. (2.9)

Unless explicitly stated otherwise, we use the Standard Model numbers of degrees of freedom as
given by microMEGAS [220]. We also make use of the following functions to describe proper distance

ϕr(z) =

∫ z

0

dz′

H(z′)
dz (2.10)

and proper volume

ϕv(z) =
4πϕ2

r(z)

(1 + z)3H(z)
. (2.11)

We describe the imprint of the expansion history on the SGWB from cosmic string loops in Sec-
tion 2.5.3. There we also discuss the effect of possible departures from this picture, including the
impact of increasing the effective number of degrees of freedom in the early Universe as well as the
impact of an equation-of-state different from that during radiation domination.

The following sections describe in detail the different ingredients which enter into the calculation
of the spectrum of gravitational waves.

2.3 String network modelling

We have mentioned earlier that one of the most important aspects of a cosmic string network is its
ability to reach a scaling solution. Analytical modelling as well as early cosmic strings simulations
demonstrated the approach of the long string network to this attractor regime [221, 93, 101]. Loops,
however, reach scaling over a longer time scale and therefore larger simulations are need to attain
this regime. It is only more recently that Nambu-Goto simulations performed by two independent
groups [99, 95] have shown the existence of a population of scaling loops.

As outlined in Section 2.2, in order to calculate the spectrum of GWs expected today, a crucial
input is the loop number density n(`, t) at all times t, since GWs are generated throughout the
history of the cosmic string network. In order to extrapolate results from simulations, which run
only over a finite time interval, to any moment in the history of the network, the scaling of loops
is crucial since it implies that

n(`, t) = t−4N (γ) , (2.12)

where γ = `/t is the ratio of the size of the loop to roughly the horizon scale.
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In order to obtain n(`, t), one approach is to determine the loop production function P(`, t) d`,
namely the number density of non-self-intersecting loops of lengths between ` and `+ d` produced
per unit time, per unit volume, which in scaling satisfies

P(`, t) = t−5P(γ) . (2.13)

The number density of non-self-intersecting loops is then obtained by solving the Boltzmann equa-
tion for loops: loops are diluted with the expansion of the Universe, lose energy through GWs, and
are sourced by loops being chopped off the infinite string network as described by P(`, t) d`.2 The
loop number density can thus be computed by integrating the loop production function

n(`, t) =

∫ t

ti

dt′ P(`′, t′)

(
a(t′)
a(t)

)3

, (2.14)

where the effect of the expansion is explicitly seen through the dependence of the scale factor a(t),
and `′ (which is given below) contains information on the evolution of the length of the loop due
to its gravitational decay from the time of formation t′ to the observation time t. More explicitly,
assuming that, on average, the total power emitted by a loop is given by ΓGµ2, where Γ is a
dimensionless constant (independent of the size and shape of a loop), then

` = `′ + ΓGµ (t′ − t) . (2.15)

(Namely, a loop with length `′ at time t′ has length ` at time t > t′.) As we discuss in more detail in
later sections, the value of Γ is given by the sum of the GW power radiated at all frequencies, and
therefore generally one would expect it to depend on the shape of the loop. However, following the
estimates from simple loops [117, 224, 225] as well as the results obtained from recent simulations
[114], in this paper we take Γ = 50.

The scaling loop number density for a power law cosmology parametrized by a(t) ∼ tν can be
obtained by combining Eqs. (2.12)-(2.15). Changing variables from t′ to γ′ = `/t′ one finds [103]

N (γ) =

[
1

(γ + ΓGµ)
3(1−ν)+1

]∫ ∞

γ

(γ′ + ΓGµ)
3(1−ν)P(γ′) dγ′ , (2.16)

which can be easily computed once P(γ) is given.3

Finally, we now relate P(`, t) — the loop production function for non-self-intersecting loops —
to the long string network with energy density ρ∞. If we assume that the production of loops is
the dominant energy loss mechanism of the long string network, then [64]

dρ∞
dt

= −2H(1 + v̄2)ρ∞ − µ
∫ ∞

0

`P(`, t) d` , (2.17)

where H = ȧ/a is the Hubble parameter and v̄ =
√
〈0|v2|0〉 is the root-mean-squared (RMS)

velocity of the long strings. The first term in this equation describes the dilution of the long string

2In principle loops could also collide with each other (to create larger, possibly self-intersecting, loops), leading
to a more involved Boltzmann equation, see [96]. Loops could also rejoin the infinite string network, see [222, 223].
However, in Ref. [95], this effect was shown not to be significant for non-self-intersecting loops, and we will neglect
it here.

3In Eq. (2.14) we have assumed that t� ti, meaning that the contribution from the loop distribution at the initial
time ti can be neglected, and this is also the reason for the infinite upper limit in (2.16). Note that the Boltzmann
equation may not always allow a scaling solution (see the analysis of [52], valid for all t ≥ ti).
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energy density in an expanding Universe, while the second, proportional to the loop production
function, takes into account the energy lost into loops. Loop production is essential to achieve the
linear scaling of long strings, see e.g. [64].

In remainder of this section, we review three expressions for the loop number density n(`, t)
which have been proposed in the literature for Nambu-Goto strings. Then, in Section 2.3.4, we
discuss the case of Abelian-Higgs string networks.

2.3.1 Model I: analytic approach

In the case of NG strings, the first expression for n(`, t) we consider is based on an analytic approach,
which was initially developed by Kibble in Ref. [63] and later extended in Refs. [128, 129, 213, 216].
Here, the basic idea is that the loops produced by the long string network are described by a single
free parameter (essentially the size of loops at formation), while Eq. (2.17) is used to determine the
normalization of the loop production function.

As a first step in the determination of n(`, t), it is therefore necessary to have an analytical
handle on the evolution of the long string energy density ρ∞, and hence also of the RMS velocity
v̄ appearing in Eq. (2.17). To do so, following [216], we use the successful Velocity-dependent One-
Scale (VOS) model [97, 98] since this not only describes the scaling evolution of the long string
network, but also its non-scaling evolution through the radiation-matter transition.4

The VOS model is a quantitative thermodynamical description of the cosmological evolution
of the network, in terms of two variables: In terms of the characteristic length L ≡ (µ/ρ∞)1/2 —
which measures the average distance between long strings — and v̄, the VOS equations of motion
are [97, 98]

dv̄

dt
=
(
1− v̄2

)[k(v̄)

L
− 2Hv̄

]
, (2.18)

dL

dt
=
(
1 + v̄2

)
HL+

cc
2
v̄ , (2.19)

where the constant phenomenological parameter cc quantifies the efficiency of the loop-chopping
mechanism. Indeed, since Eq. (2.19) is simply Eq. (2.17) rewritten in terms of L, it follows that

ccv̄
ρ∞
L

= µ

∫ ∞

0

`P(`, t) d` . (2.20)

In Eq. (2.18), the function k(v̄) phenomenologically accounts for the effects of small-scale structure
(namely, multiple kinks) on long strings, and we use the ansatz proposed in [98]

k(v̄) =
2
√

2

π

(
1− v̄2

)(
1 + 2

√
2v̄3
)1− 8v̄6

1 + 8v̄6
, (2.21)

which reproduces the expected asymptotic behaviour of k(v̄) both in the relativistic and non-
relativistic limits. The linear scaling of the long string network in the radiation- and matter-
dominated backgrounds follows directly from Eqs. (2.18)-(2.19) since the particular solutions

L

t
=

√
k(v̄)(k(v̄) + cc)

4ν(1− ν)
≡ ξs with v̄ =

√(
k(v̄)

k(v̄) + cc

)(
1− ν
ν

)
≡ v̄s , (2.22)

4Here we reformulate the results presented in the original papers, in an attempt to unify our notation across the
present paper.
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where the subscript s stands for “scaling”, are attractor solutions of these equations for a ∝ tν

and 0 < ν < 1. More generally, Eqs. (2.18)-(2.19) can be solved throughout any cosmological
era, including the radiation-to-matter and matter-to-dark-energy transitions, and hence one can
trace the evolution of cosmic string networks in a realistic cosmological background [216]. We
note that although the VOS model only treats small-scale structure phenomenologically through
k(v̄), Eqs. (2.18,2.19) were shown to provide an accurate description of the long string network
evolution in both Nambu-Goto [226] and Abelian-Higgs [227] simulations.5 In the NG case, taking
cc = 0.23± 0.04 fits both radiation and matter era simulations [98]. (Note that cc is the only free
parameter in the VOS model.)

The second step is to relate the loop production function to the long string network as described

by the VOS model. Let us define ξ ≡ L(t)
t and, as before, γ ≡ `

t . Then, in terms of these variables,
it follows from Eq. (2.17) (or alternatively Eqs. (2.19) and (2.20)) that the loop production function
satisfies ∫ ∞

0

γP(γ) dγ =
2

ξ2

[
1− ν(1 + v̄2)

]
= cc

v̄

ξ3
. (2.23)

We now make the following assumption, characteristic of this model I: throughout cosmic history,
all loops are assumed to be created with a length ` that is a fixed fraction of the characteristic length
of the long string network, namely ` = αLL, with αL < 1. Thus

P(γ) = C̃δD(γ − αLξ) , (2.24)

where from Eq. (2.23)

C̃ =
cc
αL

v̄

ξ4
(2.25)

with v̄ and ξ = L/t being the solutions of the VOS equations (2.18)-(2.19). In fact, for reasons
we now explain, we will consider a slightly modified form of P(γ), see (2.26) below. Indeed, note
that the value of C̃ given in (2.25) is in fact an upper limit, since Eq. (2.23) does not capture
the fact that some of the energy from the long string network goes into redshifting of the peculiar
velocities of loops: we account for this by introducing a reduction of the energy of loops by a factor
of fr ∼

√
2 [64]. Furthermore, the assumption that all loops are created with exactly the same size

is not expected to capture the true distribution of loop lengths at formation. The effect of relaxing
this assumption was studied in Ref. [213], where it was found that considering a distribution of
lengths generally leads to a decrease of the amplitude of the SGWB. To account for this effect,
we introduce a second factor, F , which in Ref. [103] was estimated to be O(0.1) for Nambu-Goto
strings. Taking these correction factors into account, we rewrite the loop production function in
(2.24) as

P(γ) =

(F
fr

)
C̃δ(γ − αLξ) ≡ A δD(γ − αLξ) . (2.26)

We stress that this expression is valid throughout cosmic history, even when the cosmic string

5Several other analytical models, using more than one length scale, have been developed in an attempt to provide
a description of a cosmic string network including small scales [228, 229, 94, 230]. These models can describe, in
particular, the effects of gravitational radiation and gravitational backreaction. They generally contain a larger
number of phenomenological parameters, and clearly the one describing the strength of gravitational backreaction
cannot be calibrated with simulations (since simulations do not include gravitational backreaction). For an impact
of the effect of gravitational backreaction on cosmic string dynamics, see Ref. [231].
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network is not in a linear scaling regime (in this case γ and C̃ will be time-dependent). 6 Note also
that since the length of a loop decreases with time due to gravitational radiation, see (2.15), the
maximum size of loops in this model is `/t = αLξ.

The third and final step is to substitute Eq. (2.26) into Eq. (2.14) in order to obtain the loop
number density n(`, t) for all times, including during the radiation-to-matter and matter-to-dark-
energy transitions. Note that this in general requires solving the VOS equations (2.19) and (2.20).
However, deep in the radiation era (ν = 1/2), the long string network is scaling and described
by the VOS solutions (2.22), namely ξr = 0.271 and vr = 0.662, hence it follows that the loop
distribution is given by

nr(γ) =
Ar
α

(α+ ΓGµ)
3/2

(γ + ΓGµ)
5/2

, (2.27)

with Ar = 0.54 (we fix F = 0.1, fr =
√

2), and where we have defined α = αLξr. As noted above,
this expression is only valid for x ≤ α. In a matter-only universe (ν = 2/3), the VOS scaling
solutions (2.22) give ξm = 0.625 and vm = 0.583 and the loop distribution is

nm(γ) =
Am
αm

αm + ΓGµ

(γ + ΓGµ)
2 , (2.28)

where αm = αLξm, Am = 0.039 and x ≤ αm.

In Section 2.5.2, we use this analytical approach to estimate the effect of the radiation-to-matter
transition on the GW spectrum in the LISA frequency band. In order to ease comparison with other
loop distributions — to which we now turn — our results will be expressed in terms of α = αLξr
(and not the more natural parameter of this model, namely αL). Furthermore, we also explore the
effect of changing the loop size at formation, through α, in Section 2.6.2.

2.3.2 Model II: simulation-inferred model of Blanco-Pillado, Olum, Shlaer
(BOS)

The second loop number density distribution n(`, t) we consider was discussed in Refs. [95, 103].
There the authors performed NG simulations of cosmic string networks in the radiation and matter
eras, and obtained the loop production functions for non-self-intersecting loops directly from these
simulations. We now review these results and present the corresponding loop number density
distributions in different cosmological eras.

Radiation era

In the radiation era, the results of Ref. [103] together with Eq. (2.16), lead to the following scaling
number density of loops

nr(γ) =
0.18

(γ + ΓGµ)
5/2

, (2.29)

6Note that in the radiation era, the choice ` = αLL is equivalent to assuming that ` = αt, with α = αLξr
(where ξr is given in Eq. (2.22) with ν = 1/2). In Ref. [95] the length of the loops produced in radiation and matter
era simulations is estimated to be, respectively, `r = 0.1t ' 0.33Lr and `m = 0.18t ' 0.35Lm. These values are
well-described by a single value of αL (more so than by a single value of `/t).
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with a cutoff at the maximum size of a loop, x ≡ `/t = 0.1. It then follows from (2.12) that the
number density of loops in physical units reads

nr(`, t) =
0.18

t3/2(`+ ΓGµt)
5/2

, (2.30)

with ` ≤ 0.1t. In Ref. [103], the form of the loop production function was found numerically. It
is not exactly a δD-function, as assumed in Model I, however, in Ref. [103] the precise form of the
loop production function was argued not to be important, since for any function that respects the
equation of energy balance given by Eq. (2.23), the final form of the number density is universal.
Hence, one may argue that the most important piece of information from the simulation is the
normalization factor of the loop number density in (2.29).

Comparing Eq. (2.29) with Eq. (2.27) shows the same power-law behaviour in the denominator,
and furthermore fixing α = 0.1 (the maximum size of loops in these radiation-era numerical simu-
lations), the normalization of Eq. (2.27) yields 0.17 in the numerator, which is in good agreement
with Eq. (2.29).

Matter era

The scaling distribution of loops from the radiation era survive past radiation-matter equality. The
resulting number density of loops can be written in terms of the radiation density, Ωrad, and redshift
z as

nr,m(`, t) =
0.18

(
2H0

√
Ωrad

)3/2

(`+ ΓGµt)5/2
(1 + z)

3
, (2.31)

where t(z). This matches the previous expression (2.30) deep in the radiation era, and has the
correct redshifting behaviour in the matter era.

Finally, loops are also produced once the network reaches scaling in the matter era. Following
the results in Ref. [103], the corresponding loop distribution is given by

nm(`, t) =
0.27− 0.45(`/t)0.31

t2(`+ ΓGµt)2
(2.32)

for `/t < 0.18. However, as we shall see in Section 2.5, for the values of the string tensionGµ . 10−10

of relevance to LISA, the contribution of this population of loops to the SGWB is in fact negligible
relative to (2.30) and (2.31).

To summarize, in order to calculate the SGWB generated by cosmic string loops described by
model II, Eqs. (2.29-2.32) contain all the necessary information on the number density of loops at
all times, from the formation of the cosmic string network until now.

2.3.3 Model III: simulation-inferred model of Lorenz, Ringeval, Sakel-
lariadou (LRS)

The final loop distribution we consider is that developed in Ref. [123] and based on a different
NG string simulation to model II, namely [99]. Furthermore, as opposed to Ref. [103], the loop
production function is not the quantity inferred from the simulation: rather, the authors [99]



36 CHAPTER 2. PROBING THE GWB FROM COSMIC STRINGS WITH LISA

extract directly the distribution of non-self-intersecting scaling loops from their simulation. On
scales γ � ΓGµ they find7

N (γ) =
C0

γp
for γ � ΓGµ , (2.33)

where the values of the two constants C0 and p in the radiation and matter eras are

p = 2.60+0.21
−0.15

∣∣
r
, p = 2.41+0.08

−0.07

∣∣
m
, (2.34)

C0 = 0.21−0.12
+0.13

∣∣
r
, C0 = 0.09−0.03

+0.03

∣∣
m
. (2.35)

Compared with Eq. (2.29), the radiation era solution has a similar amplitude but the power p
appears somewhat greater that 5/2, with the indicated error bars. The power in the matter era
differs from the one of Model II.

In order to extend the loop distribution (2.33) down to smaller scales, the authors of [123] solve
the Boltzmann equation described in sec. 2.3, using a loop production function which itself is theo-
retically derived. Indeed, following the analytical work of Polchinski, Rocha and collaborators [137,
232, 138], it is modelled by a power law P(γ) ∝ γ2χ−3 for γ > γc. Here γc � ΓGµ is a scale
characteristic of gravitational backreaction, and was estimated in Ref. [232] to be given by

γc ≡ 20(Gµ)1+2χ. (2.36)

The scaling loop distribution N (γ) ∀γ is then obtained8 by substituting P(γ) ∝ γ2χ−3 into equation
(2.16), and finally the constant χ is fixed by comparing the resulting distribution on scales γ � ΓGµ
to the numerically obtained distribution Eq. (2.33). One finds [123]9

χr = 0.200+0.07
−0.10 , χm = 0.295+0.03

−0.04 . (2.37)

These values, together with Eq. (2.35), fix all the parameters in the loop distribution ∀γ.
The resulting distribution is given in Ref. [123]. In our analysis below, we have worked with the

exact distribution given in that reference, but it is useful to present its approximate analytic form
in the different regimes of loop length assuming scaling:

• For loops with length scale large compared to γd ≡ ΓGµ:

N (x� γd) ' C

(γ + γd)3−2χ
, (2.38)

• For loops with length scale smaller than γd, but larger than γc:

N (γc < γ � γd) ' C(3ν − 2χ− 1)

2− 2χ

1

γd

1

γ2(1−χ)
, (2.39)

• For loops with length scale smaller than γc, the distribution is flat:

N (γ � γc � γd) ' C(3ν − 2χ− 1)

2− 2χ

1

γ
2(1−χ)
c

1

γd
. (2.40)

7NG simulations do not include gravitational radiation, for which the characteristic scale is ΓGµ
8As shown in Ref. [123], the form of the loop production function on smaller scales than γc is essentially unim-

portant to the final loop distribution.
9In Ref. [123], it is assumed that χ < (3ν − 1)/2; see Ref. [52] for an analysis in the case χ ≥ (3ν − 1)/2.
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In the above,

C = C0(1− ν)2−p . (2.41)

Relative to the BOS distribution, notice that the distribution in Eq. (2.40) contains many more
small loops (due to the inverse power of γc which is itself very small). In fact, these small loops
dominate the stochastic GW spectrum at high frequencies, as was already discussed in Ref. [91],
and hence can lead to very different constraints on Gµ to that of the BOS model in the high
frequency regime. Indeed, the energy density in these small loops is very large, so the question of
energy balance between the long string network and the loop distribution — at least as described
by Eq. (2.17) (with caveats mentioned in footnote 3) — remains to be fully understood.

2.3.4 Abelian-Higgs field theory simulations

So far we have focused on Nambu-Goto strings which are infinitely thin. However, as mentioned
in the introduction, cosmic strings are solitonic solutions of classical field theory models [60] which
means that, in principle, they can decay not only by releasing energy into gravitational waves but
also directly into excitations of their elementary constituents. For this reason, a number of authors
have simulated cosmic strings in different field theories. In this short section we review this work
and the implications it may have for the loop-distribution n(`, t).

In Ref. [233] global (axionic) strings were studied and it was shown that decay into elementary
constituents indeed takes place, in this case due to the coupling with the massless Goldstone mode
present in the vacuum of the theory. For local strings with no long-range interactions (and which,
in the infinitely thin limit, are expected to be described by the NG action), the excitations in
the vacuum are massive, and hence the expectation is that this radiation will be suppressed for
long wavelength modes of the strings. This expectation is supported by simulations of individual
oscillating strings [226] and standing waves [234], which observe that massive particle radiation
originates in high curvature regions of the string, e.g., in cusp-like regions where the string doubles
back on itself [141]. These simulations also support the fact that, except for the short bursts of
energy, the strings evolve according to the Nambu-Goto equations of motion. Furthermore, recent
simulations of individual loops in the Abelian-Higgs model [139] report that, for loops smaller than
a critical length scale, the lifetimes of loops scale with the square of their lengths. Extrapolating
their results to large loops, these authors conclude that for loops larger than the critical length
scale, GW emission is expected to dominate over particle emission [139].

In contrast, large-scale field theory (FT) simulations of the whole network of strings [110, 112,
235, 113] observe that the network of infinite strings reaches a scaling regime, thanks to energy
loss into classical radiation of the scalar and gauge fields of the Abelian-Higgs model. These large-
scale simulations of cosmic string networks are therefore in disagreement with the above massive
radiation arguments: they show the presence of extensive massive radiation being emitted, and so
loops formed in these simulations decay within a Hubble time. This intriguing discrepancy has been
under debate for the last ∼ 20 years, but the origin of this radiation is not currently understood.

The similarities and differences between FT and NG simulations of string networks can then be
summarized as follows: the infinite strings are rather similar in curvature radius and length density,
but loops decay into field modes in the FT simulations. In FT simulations the strings’ energy
density goes into massive modes of the fields, which are not part of the string network any more.
As a consequence, the string loops decay within a Hubble time, and hence do not contribute as a
source of GWs all through cosmic history. In the Nambu-Goto picture, this channel does not exist,
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and instead the energy of the infinite strings goes into loops, which then decay into gravitational
radiation.

Our analysis in this paper is based on the NG classical evolution of strings. Hence, we assume,
as supported by NG simulations, that loops are formed throughout cosmic history, and they decay
into GWs, as we describe in Section 2.4. Our conclusions about the ability of LISA to measure a
GW background from cosmic strings is therefore based on this fundamental assumption.

2.4 Gravitational wave emission from strings

As outlined in Section 2.2, a crucial input into the calculation of the SGWB from cosmic strings
is the loop power spectrum Pgw(f, `) (see Method I of Section 2.2.1). Alternatively (for method
II, Section 2.2.2), one requires both h(f, z, `) and ∂2R(z, `)

/
∂z∂l . Our purpose in this section is

to determine these crucial quantities. We also discuss the possibility of detecting individual burst
events from loops, as well the contribution of long strings to the SGWB.

2.4.1 GW loop power spectrum

The power lost into gravitational radiation by an isolated loop of length ` can be calculated using
the standard formulae in the weak gravity regime [236]. As a first approximation, we assume that
the loop evolves in flat space, meaning that its evolution is periodic and radiation is only emitted
at discrete frequencies, ωn = 2πn/T , where T = l/2 is the period of the loop, and n = 1, 2, . . ..
Then the power emitted at frequency ωn per solid angle is given by [224, 118]

dPn
dΩ

= 8πGµ2n2
(
|A+|2 + |A×|2

)
, (2.42)

where A+,× are the amplitudes of the two gravitational wave polarizations. In a coordinate system

in which Ω̂ = ẑ, they are given by

A+ = I+
x I
−
x − I+

y I
−
y , (2.43a)

A× = I+
x I
−
y + I+

y I
−
x (2.43b)

where the I±’s are functions of the mode number n, and are related to the Fourier transform of the
stress-energy tensor of the string. (The ± refer to the fact that the solutions of the NG equations in
flat space are a superposition of left and right-moving waves, see appendix 2.A, where we also give
the explicit expressions of I± in terms of these solutions.) These I± functions therefore encode the
information about the geometric shape of the loop over its entire oscillation. Integration of Eq. (2.42)
over the sphere around the loop yields the power, Pn, emitted in each mode for a particular loop.
If the loop contains cusps, kinks, and kink-kink collisions, then one can show generically that for
large n, Pn scales as n−4/3, n−5/3, and n−2 respectively [117, 108]. It is important to stress that
the gravitational radiation from loops is quite anisotropic: for cusps, most of the radiation at high
frequencies is localized within a small solid angle surrounding the cusp direction; for kinks, the
radiation is emitted in a narrow strip on the celestial sphere around the loop (see Section 2.4.2
below).

The procedure outlined above has been used to calculate the power spectrum of certain simple
analytic solutions of loops with a small number of harmonics [117, 224, 225]. The results are in
general agreement with the analytic estimates from cusps and kinks given above. However, in order
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to calculate the stochastic gravitational wave spectrum from the whole network of loops, we need
to estimate an averaged loop power spectrum, since different loops of different shapes (but same `)
may have quite distinct power spectra. One approach is to consider realistic loops obtained from
a simulation. Furthermore, one could aim to go beyond the first approximation mentioned above
(namely that the loop evolves in flat space), and consider how the shape of a loop changes due
to the emission of gravitational radiation: that is, gravitational backreaction may be important to
determine an accurate average power spectrum of loops.

The effect of gravitational backreaction on the average loop power spectrum was first considered
in Ref. [114]. Starting from a representative group of ∼ 1000 non-self-intersecting loops from a
population of scaling loops in a large scale simulation, a simple toy model for backreaction was
applied (the loops were smoothed at different scales), and finally the average power spectrum of
the full family of loops was computed. The resulting spectrum — which we denote as the BOS
spectrum — was found to be quite smooth, with a long tail well-described by n−4/3, namely the
high frequency region was dominated by cusps present on the smooth loops. Furthermore, the
distribution of results for the total power, Γ =

∑∞
n=1 Pn, for those loops was found to be highly

peaked at Γ ≈ 50. It is clear, however, that there is still some uncertainty in the accuracy of
this power spectrum, since the smoothing procedure used in Ref. [237] only shares some of the
key ingredients found in the results of recent studies of the gravitational backreaction [119, 120,
121, 238]. These latter results indicate that some parts of the power spectrum could be affected
differently by more realistic backreaction.

In the following, we also consider the simple averaged loop power spectra that are determined
exclusively from the frequency dependence of specific events (cusp, kinks and kink-kink collisions),
namely

Pn =
Γ

ζ(q)
n−q , (2.44)

where ζ(q) is the Riemann zeta function, introduced as a normalization factor to enforce the total
power of the loop to be equal to Γ =

∑
n Pn. The parameter q takes the values 4/3, 5/3, or 2

depending on whether the emission is dominated by cusps, kinks or kink-kink collision respectively.10

The sensitivity of the final SGWB to the value of q will give us an indication of the robustness of
our results relative to the uncertainty on Pn.

In terms of this average power spectrum Pn, Method I of Section 2.2.1 yields the stochastic
gravitational wave background as [114]

ΩGW(ln f) =
8πG2µ2f

3H2
0

∞∑

n=1

Cn(f)Pn , (2.45)

where

Cn(f) =
2n

f2

∫ ∞

0

dz

H(z)(1 + z)6
n

(
2n

(1 + z)f
, t(z)

)
, (2.46)

which depends on the loop distribution through n
(

2n
(1+z)f , t(z)

)
, and on the assumed cosmological

background through H(z) and t(z). As seen in Section 2.3, the number density of loops depends on
the total power Γ, and hence for consistency it is important to ensure that the average loop power
spectrum is properly normalized.

10This power spectrum should be understood as a discrete set of numbers that represent the power at each mode.
We take this spectrum as it is, but we should bear in mind that this may not be a good approximation at low
harmonics, where the structure of the entire loop becomes important.
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2.4.2 GW waveforms from bursts

As described in Section 2.2.2, an alternative method to compute the SGWB from strings is to
consider the incoherent superposition of many bursts from cusps, kinks and kink-kink collisions.
The logarithmic Fourier transform of the corresponding waveforms from these individual events was
calculated in Ref. [105, 106, 108]:

h(`, z, f) = Aq(`, z)f
−q , (2.47)

where

Aq(`, z) = g
(q)
1

GµH0`
2−q

(1 + z)q−1ϕr(z)
. (2.48)

Here ` is the length of the loop at redshift z at which this particular event takes place, ϕr(z) is
a measure of the proper distance from the observer to the source (cf. (2.10) in Section 2.2.3), and
as before q = 4/3, 5/3 and 2, for cusps, kinks and kink-kink collisions, respectively. The numerical

constant g
(q)
1 accounts for the fact that not all cusps and kinks are identical (different cusps/kinks

will have different geometry/sharpness), and this modulates the strength of the GW burst.
As mentioned above, cusps and kinks radiate non-isotropically meaning that the above waveform

is only valid for directions near the cusp or kink direction, and it should be cutoff on angles larger
than [106, 105]

θcutoff(`, z, f) =

(
1

g2f(1 + z)`

)1/3

, (2.49)

where g2 =
√

3
4 . On taking into account the geometry of this beaming effect, the fraction ∆(`, z, f)

of observable bursts from cusps, kinks and kink-kink collisions is given by [212]

∆(`, z, f) =

(
θcutoff(`, z, f)

2

)3(2−q)
Θ(1− θcutoff(`, z, f)) . (2.50)

The rate of bursts, which is required for the calculation of the SGWB with method II (see Eq.(2.5)),
is then given by [212]

∂2R(z, `)

∂z∂`
= 2ϕv(z) H

−3
0

(
n(`, t(z))

`(1 + z)

)
∆(`, z, f) , (2.51)

where ϕv(z) given in Eq. (2.11).
Finally, we can collect these results together, and insert Eqs. (2.47) and (2.51) into Eq. (2.5) to

find that the SGWB from Method II for a given type of burst to be given by

ΩGW(ln f) =

(
g

(q)
1

)2

g−2+q
2

25−3q

2Nq(Gµ)2(2πf)3

3H3
0

∫ ∞

0

dγ

∫ ∞

zmin(γ,f)

dz
(ft(z))−2−q

(1 + z)4+q
γ1−q H0

H(z)
N (γ) ,

(2.52)
where Nq is the average number of bursts per oscillation in a loop, and zmin(γ, f) is the solution
to θcutoff(`, zmin, f) = 1.

Determining the average number of cusps and kinks for the loop network is a very non-trivial task
and the subject of ongoing work, and given this uncertainty it is common to take Nc = Nk = O(1).
However, one can also consider a situation in which there will be contributions from all these types
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of events [90, 91, 219], namely Nc number of cusps, Nk kinks and Nkk number of kink-kink collisions
(with Nkk = N2

k/4, on assuming that there are equal numbers of left- and right-going kinks). We
then impose that the sum of all these events to the averaged total power of the loop, Γ, is equal to
the value used in the expression for the loop number density11. The resulting constraint between

the set of parameters g
(q)
1 , g2, Nc, Nk and Γ is given in appendix 2.A.

Before presenting the results of the SGWB for the three loop distributions of Section 2.5, we
finish this section by commenting on two important issues: the separation of strong infrequent
bursts from the SGWB; and the potential contribution (which we have not discussed until now) of
GWs being emitted by the long string network.

2.4.3 Strong infrequent bursts

The superposition of GW bursts from many cusps and/or kinks, as calculated in Section 2.4.2, leads
to a Gaussian stochastic background of GWs [29]. However, strong infrequent bursts observed with
a time interval greater than the period of GWs ∼ 1/f (∼ 102 − 103 s for LISA) exhibit a non-
Gaussian discontinuous signal, often referred to as “popcorn-like” [130]. Typically, these are bursts
from low redshift, z � 1. If a burst occurs in our neighbourhood and the amplitude is strong
enough, then the signal can be identified individually by the burst detection pipeline.

The non-Gaussian background from infrequent bursts is typically expected to be above the
Gaussian background when strings have large tension and small initial loop size (e.g., Gµ ∼ 10−6

and α ∼ 10−11 for LISA [130]). Infrequent bursts are negligible for strings satisfying the current
pulsar timing limit Gµ < 10−11. We should therefore supplement, in principle, the expression for
the SGWB calculation with a correction that suppresses the contribution from infrequent bursts.
However, in practice, we have found that for large initial loop sizes, removing the rare burst has
practically no effect on the present-day SGWB spectrum (see also [211, 212, 48, 114]), at least
when the number of cusps and kinks per loop oscillation period is O(1).

An interesting possibility is that the number of infrequent strong bursts could be greatly en-
hanced if we consider clustering of loops inside the dark-matter halo of our galaxy. This would
mean that the loop number density could be enhanced by several orders of magnitude at the Sun’s
position greatly improving the detectability of single-burst events in LISA for Gµ < 10−11 [239]. It
has also been shown recently using numerical relativity simulations that, for certain configurations,
very small loops can emit GW bursts by collapsing to form black holes [116]. These are interesting
proposals, but we do not discuss them further here, as they go beyond the scope of this paper,
where we focus on the SGWB from a string network.

2.4.4 Gravitational wave emission from long strings

So far we have exclusively focused on the GW signal emitted from sub-horizon string loops. However,
long strings (infinite and super-horizon loops) also emit GWs. One contribution to this signal is
characterized by GWs emitted around the horizon scale at each time t, sourced by the anisotropic
stress of the network [240, 241, 242, 206]. This background is actually expected to be emitted by any
network of cosmic defects in scaling, independently of the topology and origin of the defects [206],
and hence represents an irreducible background generated by any type of viable defect network
that has reached scaling. However, in the case of NG cosmic string networks, this background

11This is basically the same type of condition used to impose the normalization of the loop power spectrum in
Eq. (2.44).
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represents a sub-dominant signal compared to the GW background emitted from the loops. In the
case of field-theory strings (for which simulations to date indicate the absence of “stable” loops), it
is instead the only GW signal (and hence the dominant one) emitted by the network.

The GW energy density spectrum of this secondary background produced by long strings is
predicted to be exactly scale-invariant for the modes emitted during radiation domination [206].
At the level of the power spectrum, this background mimics therefore the spectral shape of the
dominant signal from the loop decay (see discussion in Section 2.5.1), except with a much smaller
amplitude. Even though the shape of the power spectrum of this irreducible GW background is
well understood theoretically, its ultimate amplitude depends on the fine details of the so called
unequal-time-correlator of the network’s energy-momentum tensor. Unfortunately, this correlator
can only be obtained accurately from sufficiently fine lattice simulations of defect networks. It is
therefore difficult to assess at this point whether this background can be detectable with LISA. In
the case of global defects, the scale-invariant GW power spectrum has been estimated in Ref. [241,
242]. The amplitude of the spectral plateau has been calibrated in lattice field theory simulations
for global strings12 as [206]

h2ΩGW ' 4× 104 h2Ωrad(Gµ)2 . (2.53)

Even though the numerical prefactor is much larger than unity, the quadratic scaling proportional
to (Gµ)2 suppresses significantly this background (see e.g. [243] for a comparison of this signal
and that emitted from the decay of string loops). This amplitude is clearly subdominant when
compared to the amplitude of the dominant GW signal from the loops, which scales as (Gµ)1/2

(see Eq. (2.56) and the discussion in Section 2.5.1). A proper assessment of the ability of LISA to
detect the power spectrum of this stochastic background requires further results not available yet;
namely, lattice simulations of cosmic networks with a larger dynamical range.

One can also consider the contribution to the GW spectrum coming from the accumulation of
small-scale structure on long strings. These kinks are the product of the multiple intercommutations
that infinite strings suffer over the course of their cosmological evolution, and were noticed early on
in numerical simulation of cosmic networks [221, 135]. The emission of GW from individual infinite
strings modulated by kinks has been calculated in Refs. [204, 244]. Using these results, one can
also compute the spectrum produced by these kinks on a network assuming the simple model in
which their characteristic scale is given by αt. At high frequencies one can then estimate that the
radiation-era plateau of this contribution should be [64]

h2ΩGW '
128π2

3ξ2α
h2Ωrad(Gµ)2 , (2.54)

which for α ≈ 0.1 and ξr = 0.271 shows a rough agreement with the value obtained from field
theory simulations. On the other hand, recently, Ref. [245] has calculated the GW spectrum
produced by kink-kink collisions on long strings, and found that the amplitude is larger than in
previous estimates. This is because the characteristic scale α turns out to be much smaller than
0.1 according to their semi-analytic estimation of the kink number distribution.

As all these backgrounds are clearly sub-dominant against the SGWB from loops, we will not
consider them in the following analysis of the paper (except for a brief discussion of the bispectrum
in Section 2.6.3).

12In the more interesting case of Abelian-Higgs lattice field theory simulations, there is unfortunately no quantifi-
cation of the amplitude of this background.
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2.5 Spectrum of the SGWB from cosmic string loops

As discussed above, a string network evolves towards a scaling solution in which its energy density
is simply proportional to the total background energy density Ω∞ ∝ Gµ Ωtot. The string network
constantly produces loops which then emit GWs, and follow the background expansion instead
of simply redshifting (which would correspond to Ω∞ ∝ a−2 for static infinite strings). This
continuous emission and tracking with expansion makes cosmic strings a perfect source for probing
the expansion history of the Universe. In fact, in this section we show that all features visible in
a stochastic GW frequency spectrum can be traced to a corresponding characteristic period in the
evolution of the Universe.

We start our analysis by determining the basic shape of the SGWB spectrum over many decades
in frequency, once a given loop number density distribution is chosen. We then study the impact
of loops created relatively recently, that is, during the radiation-to-matter transition. Finally, we
characterize the impact of extra degrees of freedom and other possible modifications of the equation
of state in the very early Universe.

2.5.1 Basic spectral shape

The expressions given in Eqs. (2.45) and (2.52) can be used to compute the SGWB. In the following,
we set Γ = 50 and we use Method I (Eq. (2.45)) to generate several SGWB spectra for different
values of Gµ. To illustrate our main points, we first take the loop number density from Model II
and the loop power spectrum denoted by BOS in Section 2.4.1: the results are shown in Fig. 2.1. In
Fig. 2.2 on the other hand, we use the loop number density from Model III and a monochromatic
spectrum of cusps only (q = 4/3). The difference between these results for the same value of Gµ
comes almost entirely from the different loop number density of small loops in these models, as
discussed in Section 2.3.3.

These figures plot the SGWB for a set of representative values of Gµ together with the current
sensitivity curves for EPTA pulsar timing collaboration [246], as well as the projected curves for
the SKA [47] and LISA [207] collaborations. In particular, we show the spectrum of Gµ = 10−10

as being the order of the bound on the string tension coming from current observations of pulsar
timing arrays (PTAs). This bound should be improved in the next few years. However, as the limit
on ΩGW becomes stronger and one probes lower values of the tension, one can see that the peak of
the SGWB moves towards high frequencies and outside of the PTA frequency bands. This makes
future bounds less strong than one would have thought because the PTA frequency band will then
be at the steep section of the SGWB curve. Eventually, the SKA collaboration will become more
competitive, potentially setting a bound of Gµ = 2 × 10−13, three orders of magnitude stronger
than current PTA constraints.

An important point to make here is that if any of these observations detect a SGWB, one
will probably have to wait for LISA before one can elucidate the origin of such background. It
is therefore interesting to see that if Gµ is in the range of values accessible by PTA experiments,
the higher-frequency part of the SGWB signal will be well within LISA’s sensitivity curve. The
spectrum for Gµ = 10−13 in Fig. 2.1 shows how such a curve might appear in LISA.

Looking at the curves for Gµ = 10−15 and 10−17 in Fig. 2.1, it is clear that for lower string
tensions, PTA-type experiments become irrelevant for detecting a background and at this level
LISA becomes the right instrument to probe these light strings [89]. The “bump” of the SGWB
will pass directly through the LISA sensitivity band, as shown for Gµ = 10−15, and Gµ = 10−17 is
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Figure 2.1: Cosmic string SGWB curves (all in red) near various relevant values of Gµ. The dashed
orange curve is the EPTA sensitivity, and the darkest red curve just below is for Gµ = 10−10.
The dash-dotted dark orange curve is the (projected) SKA sensitivity, and the dark red curve just
below is for Gµ = 10−13. The dotted black curve is the LISA PLS; the red curve whose peak passes
through it, and the light red curve just below, are for Gµ = 10−15 and 10−17 respectively. The Pn
are inferred from simulation [114], and the loop number density is from Model II.
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Figure 2.2: Idem as Fig. 2.1, but with Pn ∝ n−4/3 and using the loop number density from Model
III [123].
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the order of the lower bound on tension that LISA will set.

The high frequency regime

As we can see from the SGWB curves shown in Fig. 2.1, the spectrum becomes flat at very high
frequencies. This can be understood analytically using a scaling number density of loops as well
as a simplified cosmological background that describes the evolution of the Universe deep in the
radiation era. The combination of these two facts allows us to find an expression (following Method
I) for the spectrum of the form

Ωplateau
GW (ln f)I =

64πG2µ2Ωrad

3

( ∞∑

n=1

Pn

)(∫
dγ Nr(γ)

)
. (2.55)

This shows that indeed the SGWB is flat in this regime, but also that it only depends on two
properties of the network of strings: the averaged total power emitted by a loop, and the total
number of loops. Applying this to Model II, we find

Ωplateau
GW (ln f)I ≈ 8.04Ωrad

√
Gµ

Γ
. (2.56)

This is a relevant result as it tells us that the value of the high-frequency plateau only depends
on Gµ and the total Γ. In particular, it does not depend on the exact form of the loop’s power
spectrum, nor on if the GW emission is dominated by cusps or kinks, but rather depends only on
the total radiation emitted by the loops.

Similarly, we can perform the same kind of computation using Method II. Starting with Eq. (2.52),
and taking the cosmological background to be in the radiation era, we find 13 a good agreement for
the plateau with the expression found in Eq. (2.56). This is expected, given that the plateau only
depends on quantities that must be identical in both methods. However, given the different nature
of the calculations performed in both methods, this is a good consistency check.

2.5.2 Radiation-to-matter transition

Numerical simulations studying the strings scaling have typically been performed in fixed back-
grounds: pure radiation domination and pure matter domination [103, 114, 123, 90]. The usual
simplified approach would be to just switch between the two loop distributions at radiation–matter
equality; however, in reality we expect the network to smoothly evolve between the two regimes.
In fact, the string network evolves rather slowly and, as pointed out in [216], does not reach scaling
regime with matter background up until the current accelerated expansion starts. This may have
a significant impact on the number density of loops in the matter era.

We can study the impact of more careful modelling of the transition using the analytical model
discussed in Section 2.3.1. In Fig. 2.3 we compare results coming from the full evolution of
the loop density, Eq. (2.16), with the simplified spectrum obtained performing an instantaneous
switch between the scaling results in matter domination (Eq. (2.28)), and radiation domination
(Eq. (2.27)). Fig. 2.3 shows examples of spectra for several values of Gµ and α = 0.1 using both
prescriptions. As we can see, the inclusion of a smooth radiation-to-matter transition only modifies

13Note that in order to make this comparison, one should express the result in terms of the total power emitted
Γ. We give in appendix 2.A the calculation of Γ in terms of the parameters Nq , g1, g2.
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Figure 2.3: Examples of spectra for several values of Gµ and α = 10−1 using both the full VOS solu-
tion (with VOS superscript) and assuming the network is always in scaling through Eqs. (2.27,2.28)
(with scaling superscript). The gray area indicates LISA sensitivity.

the spectrum significantly at very low frequencies f . 10−10 Hz, outside of the LISA band. The
reason is that it is only at these very low frequencies that the signal is dominated by loops created
in the matter era [114].

Even though the peak in the spectrum always appears due to matter domination, for low
Gµ . 10−11 it is only created by redshifting of GWs and the loop density in the matter background,
while the loops dominantly contributing are formed much earlier, deep in the radiation era. With
this we can safely conclude that for large loops α = 0.1 suggested by recent simulations, the
modelling of the radiation-to-matter transition is irrelevant in the LISA sensitivity window. In
Section 2.6.2 we discuss how this situation may change if we assumed smaller loop sizes.

2.5.3 Variation of the relativistic degrees of freedom

Another feature in the expansion rate of the Universe that would leave a clear signature in the
stochastic GW spectrum of a cosmic string network is a modification in the number of relativistic
degrees of freedom [222]. Whenever the temperature of the plasma forming our radiation back-
ground drops below the mass of a certain particle, that species will annihilate, injecting energy into
the plasma and temporarily reducing its rate of cooling. This effect is automatically included in
our calculation by solving the Friedman equation, Eq. (2.7), which includes the impact of changes
in the number of degrees of freedom on the expansion rate through Eq. (2.9).

We show the impact of including this variation in Fig. 2.4, which shows both the result obtained
using the Standard Model number of degrees of freedom and just a constant value. As we can see,
the modification of number of degrees of freedom produces smooth variations in the spectrum at
the frequency corresponding to the temperature of the modification. The most prominent of these
variations in the spectrum correspond to electron-positron annihilation at T ≈ 200 KeV where the
lines first separate, the QCD phase transition at f ≈ 10−2 Hz (T ≈ 100 GeV), and the electroweak
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Figure 2.4: Examples of spectra with Gµ = 10−11 assuming a constant number of degrees of freedom
(black solid line) and standard cosmology with SM particle content (blue dashed line). The gray
area indicates LISA sensitivity.
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scale at f & 102 Hz. This means LISA could probe the QCD equation of state and other SM
processes through their impact on the stochastic background from cosmic strings [247].

Crucially, this effect would also potentially allow us to observe extra degrees of freedom (DOF)
from beyond the standard model [218, 248, 114, 249]. Had the number of DOF increased by a
factor of ∆g∗, that would have created another smooth step, changing the value of the plateau at
the corresponding frequency by

ΩGW

ΩSM
GW

≈
(

gSM
∗

gSM∗ + ∆g∗

)1/3

, (2.57)

where gSM
∗ and gSM

∗S are the number of degrees of freedom and the number of entropy degrees of
freedom, both calculated in the standard model.

We can numerically check that the frequency corresponding to a modification of the expansion
rate occurring at a temperature T∆ is given by [218]

f∆ = (8.67× 10−3 Hz)

(
T∆

GeV

)(
0.1× 50× 10−11

αΓGµ

)1/2(
gSM
∗ (T∆)

gSM∗ (T0)

) 8
6
(
gSM
∗S (T0)

gSM
∗S (T∆)

) 7
6

. (2.58)

Using this estimate, we can see that LISA frequency band corresponds to probing temperatures of
the order of a few GeV. It is important to point out this could lead to a significant improvement
over the current probes of the expansion rate, which can reach only to the BBN temperature of a
few MeV, which is still 3 orders of magnitude lower than the potential of a cosmic string signal at
LISA. In Fig. 2.5, we show examples of a cosmic string stochastic background in standard cosmology
with Gµ = 10−11 and several modifications with ∆g∗ = 100 new degrees of freedom dropping out
of equilibrium at the range of temperatures of interest in LISA.

2.5.4 Probing the cosmological equation of state at early times

The reasoning used in the last subsection also clearly applies to more dramatic modifications of
cosmology in which the expansion at early times is dominated by something other than primordial
radiation. A typical example here would be an early period of matter domination [250] after
which the matter decays and the Universe resumes the standard radiation dominated expansion.
Another example, so-called kination [251, 179, 180, 252, 253, 254, 255, 182, 256, 183], is a period
of domination of a new constituent of energy that redshifts faster than radiation and eventually
becomes subdominant, avoiding any conflict with late time experiments.

Observation of the plateau of GW spectrum from a cosmic string network would indeed verify
radiation domination up to T∆ from Eq. (2.58). If any non-standard behaviour is observed, it can
be traced back to the underlying modification. Simply expanding Eq. (2.45) at high frequencies,
we can check that the impact of modified redshifting in a background H2 ∝ a−β would simply lead
to

ΩGW(f > f∆) ∝
{
f (8−2β)/(2−β) β ≥ 10

3 ,

f−1 β < 10
3 ,

(2.59)

behaviour above T∆. An early period of matter domination corresponds to β = 3. However, for
expansion in the early Universe with any β < 10

3 , the emission from the string network is in fact
subdominant to the tail of the distribution produced at later times. This leads to some degeneracy,
and in fact if the network simply achieved scaling only at that time after their production [64], or if
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Figure 2.5: Examples of spectra with Gµ = 10−11 in standard cosmology (black solid line) and
several spectra in cosmological evolution with ∆g∗ = 100 new degrees of freedom annihilating at at
the range of temperatures of interest in LISA. The gray area indicates LISA sensitivity.



2.6. PROBING THE SGWB FROM A STRING NETWORK WITH LISA 51

Figure 2.6: Examples of spectra with Gµ = 10−11 in standard cosmology (black solid line) and
several spectra in cosmological evolution with a period of early matter domination as well as kination
ending in the range of temperatures of interest in LISA. The black dashed line indicates LISA
sensitivity.

scaling was delayed due to the network having been diluted by inflation [257], it would also amount
to the lower case in Eq. (2.59). For scenarios with a new energy constituent redshifting faster than
radiation (that is, β > 4), the spectrum rises after T∆, which generically gives better observational
prospects.14 We show examples of the resulting spectra with the range of T∆ of interest for LISA
in various modified cosmologies in Fig 2.6. It would significantly modify predictions of any other
process relying on the standard expansion rate, for instance modifying predictions for dark matter
relics [] and electroweak Baryogenesis both in terms of its possible GW signal [] and yield of
baryons [].

2.6 Probing the SGWB from a string network with LISA

The Laser Interferometer Space Antenna (LISA) [207], approved by the European Space Agency
(ESA) in 2017, will be the first GW observatory in space. The final configuration adopted by the
collaboration has been fixed to six links, 2.5 million km–length arms, and 4 years nominal duration,
possibly extensible to 10 years. LISA will have the ability to search for GWs around the currently
unexplored millihertz regime.

To characterize the detectability of a SGWB with a spectrum described by a single power law
(fully characterized by an amplitude and slope), Ref. [258] introduced a very useful concept: the
power law sensitivity curve (PLS) of a detector. This is a method that exploits the fact that the
sensitivity of a detector increases when integrating a SGWB signal over frequency, in addition to
integrating over time. The PLS curve is a spectral representation that graphically quantifies, for
a given signal-to-noise ratio, the ability of a detector to measure a SGWB with a power law (PL)
spectrum. Searches by current GW experiments (by LIGO/VIRGO and PTAs) on power spectra

14Note, however, that the current Planck data puts a constraint on the total energy density of gravitational
waves [132]

∫
ΩGW h2d(ln f) < 3.8 × 10−6. Consequently, any deviations from radiation domination with β > 4

should have had a limited duration to avoid overproduction of GWs.
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of the form ΩGW(f) = Afn have not succeeded in a detection, and hence they only provide upper
bounds on the amplitude A for different fixed values of the spectral index n [32, 259, 34].

Recently, the LISA collaboration has presented a new technique for a systematic reconstruction
of a SGWB signal without assuming a power-law spectrum [35]. The idea is to first separate the
entire LISA band into smaller frequency bins, and then to reconstruct a given arbitrary signal within
each bin, where it can be well-approximated in terms of a power law. The method can reconstruct,
in this way, signals with arbitrary spectral shapes, taking into due account instrumental noise at
each frequency bin. Such analysis would be particularly appropriate for our case, as the spectral
shape of the SGWB from cosmic string loops is not a simple plateau (and hence not a simple power
law) for the lowest Gµ values that LISA can probe. Furthermore, the spectrum can also exhibit
scale-dependent features within the LISA frequency band, such as whenever there are changes in
the number of relativistic degrees of freedom and/or the early Universe equation-of-state.

As this multi-band analysis technique has only very recently become available (∼ 1 − 2 weeks
before the completion of this draft), in the present paper we will simply continue using as a criterion
for detection that the spectrum of the SGWB from the string loops must be equal or above the
PLS curve. We will use the LISA PLS as introduced by Ref. [258], but using the most updated
LISA sensitivity curves based on the final configuration of LISA and new knowledge on its noise
(see Ref. [260] for all relevant LISA documents up to date, and in particular Ref. [261] for a direct
download of the Science Requirements Document). The details of the updated LISA PLS curve
used in this work can be found in Ref. [35]. Whenever we claim detection of a given spectrum of
the SGWB from cosmic string loops, if the spectrum is a power-law within the LISA sensitivity
band, this can be interpreted as a detection of a SGWB after 3 years of collecting data (which
corresponds to 4 years of LISA operation), with a signal-to-noise (S/N) ratio ≥ 10. If the shape is
more complicated than a simple power law, a more elaborated analysis following Ref. [35] is required
to assess the S/N for a given detection, see also [262]. In the present work, we simply quantify
the parameter space compatible with a detection, but do not quantify the S/N associated to such
detection, neither we reconstruct such parameter space with appropriate statistical techniques. We
leave these aspects for future work.

2.6.1 Projected constraints on the string tension

The LISA PLS band is well-positioned to set strong constraints on the string tension, due to how
the “bump” in the SGWB shifts as Gµ decreases. This effect can be seen e.g. in Fig. 2.1, where we
show how the SGWB curve for a network shifts through the LISA band for varying tension.

This shows us that it is the trailing edge of the SGWB bump which will be the last part of
that curve to pass through the LISA sensitivity band. By varying the string tension, it is possible
to find the lowest Gµ for which this intersection still takes place. While the exact bound depends
on our choice of model and Pn, in the regime LISA will probe, all three models predict a string
tension bound of O

(
10−17

)
. This is shown in Fig. 2.7, where we chose Pn ∝ n−4/3 for purposes of

comparison, as this is the chromatic index of pure cusps, which are expected to dominate at high
frequencies. Other choices include Pn ∝ n−5/3 (for kinks), Pn ∝ n−2 (for kink-kink collisions), or
an averaged spectrum of loops taken from simulation (cf. Fig. 2.1). However, these changes have
at most O(1) effects on the bounds set by LISA.

By comparing Eq. (2.27) to Eq. (2.29), we see that with our choice of α and Ar, these two
expressions converge when α� ΓGµ. As this is the case here, the curves for Model I and Model II
in Fig. 2.7 are effectively identical.



2.6. PROBING THE SGWB FROM A STRING NETWORK WITH LISA 53

10-4 10-3 10-2 10-1
10-14

10-13

10-12

10-11

frequency (Hz)

h
2
Ω
g
w LISA PLS

Model I

Model II

Model III

Figure 2.7: A comparison of the LISA sensitivity curve to the SGWB predicted by all three models
using Gµ = 10−17, Pn ∝ n−4/3. Models I and II are effectively identical in this regime, due to
α � ΓGµ. We therefore see that we expect that LISA could only constrain string tensions higher
than Gµ ≈ 10−17.

While we are primarily concerned with setting bounds on string tension, it is worth noting here
that for string tensions larger than the lower bounds, particularly those of an order of magnitude
or larger, LISA will probe the high-frequency side of the SGWB bump. The particular shape of
this region depends on how the degrees of freedom change across the Universe’s history. This
is additionally important because while the three models all predict roughly equal bounds for the
LISA window at this particular tension, Models I and II disagree with Model III at high frequencies.
E.g., when Gµ = 10−17, the plateau for Models I and II happens at h2ΩGW ≈ 6.04× 10−14, while
Model III’s plateau is at h2ΩGW ≈ 9.98× 10−9. Thus, if strings with a tension much greater than
O
(
10−17

)
exist, these discrepant regions will pass through the LISA band.

2.6.2 Agnostic approach to loop size and intercommutation probability

In previous sections, we discussed the results obtained from the largest and more recent Nambu-
Goto simulations. In this section, we take a different approach: an “agnostic” approach that
extends our analysis further by studying the capability of LISA to probe scenarios characterized
by different loop sizes α parametrically using Model I. This not only allows us to fully characterize
the parameter space available for exploration with LISA, but also to understand LISA’s ability
to detect string models that deviate from the standard Nambu-Goto scenario. Throughout this
section, we will take the normalizing parameter introduced in Section 2.3.1, F = 1 and fr =

√
2.

Loop size

Although the typical shape of the SGWB generated by cosmic string networks is roughly indepen-
dent of α, the amplitude of the radiation-era plateau and the height, broadness and location of
the peak of the spectrum are determined by the size of the loops that are created (as well as by
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cosmic string tension). In reality, the amplitude of the spectra generally decreases with decreasing
α and, therefore, one would expect LISA to be less sensitive in general to scenarios in which loops
are created with a smaller size. In fact, one finds, using Eq. (2.2), Eq. (2.4) and Eq. (2.27), that
the amplitude of the radiation era plateau is given by

Ωplateau
GW h2 =

128

9
πArΩrad h

2Gµ

ε

[
(ε+ 1)

3/2 − 1
]
' 1.02× 10−2Gµ

ε

[
(ε+ 1)

3/2 − 1
]
, (2.60)

where ε = α/(ΓGµ).

To analyse the capability of LISA to probe scenarios with different loop sizes, we consider two
different regimes. Let us first consider the case in which the physical length of loops is, at the time
of production, significantly larger than the gravitational backreaction scale, with ε� 1 (which we
shall refer to as large loops, for simplicity). In this case (particularly in the frequency range probed
by LISA) the dominant contribution to the SGWB comes, in general, from loops created in the
radiation era. As a result, we have roughly ΩGW ∝ α1/2 for α� ΓGµ and fixed Gµ (as Eq. (2.27)
shows). Indeed, we see by using Eq. (2.60), that for ε � 1 the amplitude of the radiation era
plateau15 is given by

Ωplateau
GW h2 ' 1.02× 10−2

√
Gµα

Γ
. (2.61)

This effect is seen in Fig. 2.8, where the SGWB spectra generated by cosmic string networks
with Gµ = 10−10 and different values of α are plotted. Note however that one does not have a
mere overall decrease of the amplitude of the spectrum as α decreases. As this figure illustrates, the
broadness of the peak of the spectra also decreases as a result of the decrease of the size of loops,
since for smaller α loops survive (and emit gravitational waves) for a shorter period of time. We also
note that although the relation in Eq. (2.61) is exact for the radiation-era plateau while α� ΓGµ,
the decrease in the height of the peak starts to slow down as we decrease α. This happens due to
the fact that, as α decreases and the lifetime of loops is shortened, the number of loops created
in the radiation era that decay during the matter era also diminishes. Thus, for sufficiently small
α, the dominant contribution to the peak of the spectrum are loops produced in the matter era
(during which n(`, t) is roughly independent of α for α� ΓGµ, as Eq. (2.28) shows). As a result,
the relative height of the peak of the spectrum in relation to the radiation-era flat region increases
as loop size decreases. This also means that, as α is lowered, the effect of the radiation-to-matter
transition on the shape and amplitude of the spectra becomes increasingly relevant. As a matter of
fact, assuming that cosmic string networks remain in a linear scaling regime after the onset of the
radiation-matter transition leads to a significant underestimation of the size and number density of
loops produced during the matter era [216]. On the other hand, as we have seen in Section 2.5.2,
for α = 10−1 the effect of this assumption of linear scaling is only observed at frequencies that are
outside of the LISA sensitivity window. As we consider smaller loops the effect of the radiation-to-
matter transition becomes relevant for the LISA mission. For this reason, we take this effect into
consideration in this agnostic forecast of the LISA projected constraints.

Another effect that we have to take into consideration when analysing the sensitivity of LISA
to scenarios with different loop sizes is the change of the location of the peak of the spectrum with

15Note that this has the same dependence on Γ and Gµ as Eq. (2.56) and, by setting α = 0.1 and F = 0.1, one
approximately recovers the result therein.
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Figure 2.8: The stochastic gravitational wave background generated by cosmic string networks with
Gµ = 10−10 and different values of the loop-size parameter α. The shaded area represents the LISA
sensitivity window. In these plots, we consider only the fundamental mode of emission and we did
not include the change in the effective number of degrees of freedom.

the variation of Gµ. The peak frequency scales approximately as [213]16

fpeak ∼
1

α

(
2 +

α

ΓGµ

)10/9

, (2.62)

which gives

fpeak ∝ α1/9(ΓGµ)
−10/9

(2.63)

in the large loop regime. For fixed Gµ, the dependence on α is weak and the peak appears at
approximately the same frequency as shown in Fig. 2.8 (wherein one can also see that the slight
shift towards higher frequencies predicted in Eq. (2.62) is present). However, the frequency in which
the peak appears depends more strongly on cosmic string tension and, as a result, the peak of the
spectrum, which has a significantly higher amplitude, is expected to shift towards higher frequencies
— and into the LISA window — as Gµ is lowered. This effect may be seen in Fig. 2.9, where we
plot the SGWB spectra generated by cosmic string networks with two different values of loop-size
parameter α for different values of Gµ.

In the small loop regime — in which the physical length of loops is significantly smaller than
the gravitational backreaction scale, with α � ΓGµ — the shape of the SGWB spectrum is not
affected by varying α or Gµ. As matter of fact, in this regime, loops survive significantly less than a
Hubble time and may, therefore, be regarded as decaying effectively immediately (on cosmological
timescales) once they are formed [217]. Thus, a decrease in the size of loops in this regime merely
results in a linear shift of the spectrum towards higher frequencies, without any impact on its overall
shape. For the same reason, decreasing the value of cosmic string tension merely causes a decrease

16Although this relation was fitted using a framework based on the one-scale model (in which cosmic strings are
assumed to be in the linear scaling regime throughout their evolution), we have verified that it still provides a
reasonably good approximation, with only small deviations, within the framework we use here.
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Figure 2.9: The stochastic gravitational wave background generated by cosmic string networks with
α = 10−1 (solid lines) and α = 10−5 (dash-dotted lines) for different values of Gµ. The shaded area
represents the LISA sensitivity window. In these plots, we consider only the fundamental mode of
emission and we did not include the change in the effective number of degrees of freedom.

of the amplitude of the spectrum: ΩGW ∝ Gµ, for fixed α. In fact, using Eq. (2.60), one finds that
for ε� 1 the amplitude of the radiation era plateau is, in this case,

Ωplateau
gw h2 =

64

3
πArh

2ΩradGµ ' 1.52× 10−2Gµ . (2.64)

This does not depend on the size of loops α and on Γ and it may, therefore, be regarded as the
“minimal” amplitude of the radiation era plateau for fixed Gµ. This is illustrated in Fig. 2.10,
where the spectra generated by small cosmic string loops is plotted for different values of α and
Gµ.

The combination of all these different effects makes it non-trivial to extend the forecasts com-
puted for a single value of α to significantly different loop sizes. For instance, as Fig. 2.9 shows,
LISA may probe cosmic string networks with α = 10−1 up to tensions just above Gµ = 10−18.
In the case of networks with α = 10−5, however, the maximum tension that LISA will be able
to detect is below Gµ = 10−16, which is significantly lower than one would naively expect from
Eq. (2.61). Moreover, Fig. 2.10 demonstrates that there is a range of α in the small loop regime
for which the peak of the spectrum — which is quite prominent in this regime — coincides with
the LISA window (for some values of Gµ) and, therefore, such scenarios may be more strongly con-
strained with LISA than other scenarios in which α is larger. To take these effects into account, we
have performed a numerical computation of the (α,Gµ) parameter space available for exploration
with LISA. The results are plotted in Fig. 2.11, and they show us the capability of LISA to probe
different cosmic string scenarios characterized by the production of loops with different sizes. Here,
we follow the approach introduced in Ref. [213] and present constraints for n∗ = 1 (dashed line)
and n∗ = 105 (dash-dotted line), where n∗ represents the maximum mode of emission included in
the simple gravitational wave power spectrum from loops with q = 4/3. These curves represent the
lowest possible values of the string tension that LISA will be able to probe for each value of α, in
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Figure 2.10: The stochastic gravitational wave background generated by cosmic string networks
with Gµ = 10−10 (solid lines) and Gµ = 10−12 (dash-dotted lines) for different values of the
loop-size parameter α in the small-loop regime. The shaded area represents the LISA sensitivity
window. In these plots, we consider only the fundamental mode of emission and we did not include
the change in the effective number of degrees of freedom.

these two scenarios.
To analyse these results, let us start by considering the small-loop regime. LISA cannot probe

the SGWB generated by cosmic string loops to arbitrarily small α. This is a mere consequence of
the fact that LISA shall only probe a finite frequency window and of the fact that, as we have seen,
lowering α in the small-loop regime moves the spectrum towards higher frequencies. As a matter
of fact, the minimum frequency emitted by a cosmic string network is that of loops created at the
present time, fmin ∼ 2/(αt0), and therefore the minimum loop-size parameter that can be probed
with LISA is given by

αmin = 6.8× 10−18 , (2.65)

independently of Gµ. As a result, scenarios in which the networks produce tiny loops will be beyond
the reach of LISA.17 In any case, this shows us that, in principle, LISA shall be able to probe cosmic
string scenarios spanning about 17 orders of magnitude in loop size.18 In the small-loop regime, the
amplitude of the peak of the spectrum — located at fpeak = 2×10−17/α (Hz) — is given by [217]19

Ωpeak
GW h2 ' 60Ωplateau

GW h2 ' 9.1× 10−1Gµ . (2.66)

One then finds that LISA will not be able to probe small-loop models for Gµ < 1.3× 10−13. This
is, thus, the most stringent bound that LISA may put on the cosmic string tension in scenarios in

17These scenarios are not particularly well physically motivated, since one generally expects smoothing to occur
on scales smaller than the gravitational backreaction scale. Nevertheless, several works have reported the existence
of such tiny loops [263, 110].

18Note however that, for tensions compatible with current CMB bounds, the SGWB spectrum “leaves” the LISA
window for larger values of α, around α ∼ 10−16 (cf. Fig. 2.11).

19Here, we have included the effect of the redshifting of the peculiar velocities of loops that was not taken into
account in the analytical approximation for the SGWB spectrum generated by small loops in Ref. [217].
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Figure 2.11: Projected constraints on Gµ of the LISA mission for cosmic string scenarios charac-
terized by different loop-size parameter α for n∗ = 1 (dashed line) and n∗ = 105, with q = 4/3
(dash-dotted line). The shaded area corresponds to the region of the (α,Gµ) parameter space that
will be fully available for exploration with LISA. The dotted line corresponds to scenarios for which
α = ΓGµ, so that the region above this line corresponds to cosmic string models in which loops are
small, while the region bellow corresponds to the large loop regime.

which loops are created with small size. This value corresponds to the case in which α ∼ 10−15

and n∗ = 1, as Fig. 2.11 shows, for which the peak of the spectrum coincides with the maximum
sensitivity of the LISA window (cf. Fig. 2.10).

In the large-loop regime, as we have seen, the amplitude of the spectra is highly dependent on
the size of loops and, for this reason, so is the strength of the constraints that LISA may put on
cosmic string tension. The amplitude of the radiation era plateau of spectrum for small loops in
Eq. (2.64) may be regarded as the “minimal” amplitude of this plateau. Thus, one may use it
to derive the value of cosmic string tension above which all cosmic string scenarios in which loop
production is significant (with α > 10−16) are excluded:

Gµ < 8.0× 10−12 . (2.67)

This provides us with the safest (yet most conservative) model-independent LISA bound on cosmic
string tension, which corresponds to the value of the plateau observed at the mid-α range in
Fig. 2.11. Note however that LISA shall be able to establish significantly more stringent constraints
for the largest possible α. Indeed, LISA may go seven orders of magnitude beyond the bound in
Eq. (2.67) for α = 10−1:

Gµ(α = 10−1) < 3.4× 10−18 . (2.68)

As we have seen in Section 2.6.1, this corresponds approximately to the case of Nambu-Goto strings,
apart from a factor of ∼ 0.1 (since in that case only about 10% of the energy lost by the network
goes into gravitational radiation). Apart from this factor, these results are in agreement with those
presented in Section 2.6.1.
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Intercommutation probability

In this paper, we have assumed that the intercommutation probability P is equal to 1. In effect,
this amounts to stating that when two strings collide, they exchange partners every time. Indeed,
in the Abelian-Higgs model (in the BPS and “type II” regime), the collision of two straight strings
with velocities ±v and relative orientation given by an angle θ essentially always (that is, in nearly
all of the (θ, v) parameter space) leads to the strings exchanging partners during the collision (see
Ref. [65, 66]). Setting P = 1 is then equivalent to this statement. For other field theory strings,
such as Abelian-Higgs strings in the type I regime, the collision may lead to other outcomes, such
as the formation of a junction [67, 68]. We do not consider these more complicated cases here.

Recent development in String Theory suggest that fundamental strings (or F-strings) and 1-
dimensional Dirichlet branes (or D-strings) may be stretched to macroscopic sizes and play the
cosmological role of cosmic superstrings. The copious production of these cosmic superstrings is, in
fact, predicted to occur at the end of several brane-inflationary scenarios (see, e.g., Refs. [264, 265,
71]).

Cosmic superstrings may have an intercommutation probability P significantly smaller than
unity, as a result of their quantum nature: in fact it has been shown [266] that 10−3 . P . 1 in
collisions between F-strings and 10−1 . P . 1 for D-string collisions. When a FF- or DD-string
collision occurs, the strings may then — unlike ordinary strings — pass through each other without
intercommutation. For this reason, cosmic superstring networks are expected to lose energy less
efficiently. Their energy density, and consequently the amplitude of the SGWB they generate, may
therefore be expected to be larger than that of ordinary strings. Hence, the constraints derived
on Gµ in this paper are conservative: with P < 1, the bounds on Gµ will be tighter (see, e.g.,
Ref. [107] for a discussion of this effect at LIGO frequencies). In general, one expects the loop-
chopping parameter of these networks to be such that

cc(P ) = cc(1)P γ , (2.69)

where cc(1) = cc = 0.23 is the loop-chopping parameter of ordinary strings (which have P =
1). Although one may naively expect, within the one-scale framework, γ = 1 [265], numerical
simulations indicate that this effect is less dramatic due to an accumulation of small-scale structure
on cosmic strings with reduced intercommutation probability. It has been observed that γ = 1/2 in
Nambu-Goto simulations in Minkowski space [267] and γ = 1/3 in both radiation- and matter-era
simulations [268]. Since the exact value of γ is still a matter for debate, here we restrict ourselves
to a (mostly) qualitative discussion of the effects of P .

Weakly interacting networks, with cc � 1, scale in the radiation era according to ξ =
√

2cc and
v̄2 ≈ 1/2 [269]. Therefore, one may, in general, expect the amplitude of the radiation era plateau
of the SGWB to scale as [133]

Ωplateau
GW ∝ c−2

c ∝ P−2γ . (2.70)

Note however that, in this case, the length of the loops created is not known. There is some
evidence that the reduction of the intercommuting probability is more efficient in suppressing the
production of large loops than of small loops [268], which seems to indicate that smaller α (∼ ΓGµ)
may be favoured for these networks. However, the precise number density of loops has not been
determined using numerical simulations yet. Nevertheless, one may obtain, using Eqs. (2.67,2.70),
a conservative α-independent constraint on the cosmic string tension of networks with P � 1. This
bound — corresponding to the lowest Gµ for which the SGWB is within the reach of LISA for all
values of α — is presented in Table 2.1 for P = 10−1, 10−2, 10−3.
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Conservative Stringent
P γ = 1/2 γ = 1/3 γ = 1/2 γ = 1/3
10−1 8.0× 10−13 1.7× 10−12 3.4× 10−19 5.6× 10−19

10−2 8.0× 10−14 3.7× 10−13 2.9× 10−20 1.2× 10−19

10−3 8.0× 10−15 8.0× 10−14 8.5× 10−21 2.9× 10−20

Table 2.1: Projected constraints of the LISA mission for cosmic string scenarios with reduced
intercommutation probability P . Here, “Conservative” refer to the safe (α-independent) bounds
obtained using the minimal amplitude of the radiation-era plateau, while the constraints labeled as
“Stringent” correspond to those of scenarios with the largest possible α.

Naturally, as with ordinary strings, LISA will impose tighter constraints for scenarios in which
α is large. The most stringent constraint on Gµ will necessarily be those of scenarios characterized
by the largest possible α, with αmax ∼ 0.3P γ (corresponding to the characteristic length of the
network which may, in this case, be significantly smaller than the horizon). These constraints are
also recorded in Table 2.1 for the same values of P . These two constraints are then indicative of
the ability of LISA to detect cosmic string scenarios with a reduced intercommutation probability.

However, we note that there are relevant aspects of cosmic superstring dynamics that were not
taken into account when deriving these constraints. In particular, when superstrings of different
types collide, they are expected to bind together to create a third type of string, which has a
higher tension than its two constituents. This is expected to lead to networks with junctions and a
hierarchy of tensions [71]. The creation of junctions is expected to have an impact on the large scale
dynamics of cosmic string networks [270, 271, 272, 273, 274, 275, 276, 277] and therefore to affect the
shape and amplitude of the SGWB generated by cosmic superstrings [278, 133]. Moreover, there are
several other important aspects regarding the gravitational wave emission by cosmic superstrings
that need to be clarified — most notably the number and strength of the cusps [279] as well as the
possible coupling of superstrings to other fields — before a detailed study of the parameter space
available to LISA can be performed.

2.6.3 Gravitational wave bispectrum from long strings

The GW signal due to the gravitational decay of loops that we have analysed in this paper cannot
be resolved beyond its stochastic nature, and it is expected to be Gaussian.20 The irreducible
emission of GWs from a defect network (described in Section 2.3.4) is however expected to be
highly non-Gaussian. This is simply due to the fact that the source of the GWs is bilinear in the
amplitude (modulo derivatives) of the fields of which the cosmic strings are made. This implies that
any correlator of an odd number of tensor perturbations will be characterized by the correlation
of an even product of fields, which is non-vanishing even if the fields were Gaussian. We therefore
expect that any non-Gaussianity in the continuous stochastic background sourced by a cosmic
string network is due to the irreducible GW emission, even if this signal is sub-dominant in terms

20In reality, on top of the continuous stochastic Gaussian background from cosmic strings, there can be individual
bursts emitted by nearby strings or a “popcorn” discontinuous noise [130]; recall the discussion in Section 2.4.3.
These signals due to bursts represent, in a sense, a temporal deviation from Gaussianity, that can be measured from
the two-point function. However, they do not correspond to the type of non-Gaussianity that we are referring to in
this subsection, as they do not form a continuous stochastic background.
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of amplitude of power spectra.
The capability of LISA to detect 3-point correlations of SGWB has been recently analysed in

detail in Ref. [280]. At present, the 3-point GW function of this background can be estimated
analytically only in a simplified case, namely in the large-N limit of a global phase transition due
to the spontaneous symmetry breaking of O(N) into O(N − 1). The GW background due to the
dynamics of such global defects has been estimated in the limit N � 1 (see Section 2.4.4 and in
particular Eq. (2.53)). The 3-point function (in the equilateral configuration) has been presented in
Ref. [281]. Order of magnitude calculations in the large-N limit leads to a GW bispectrum peaked
in the equilateral configuration as [281]

k6B(k, k, k) ∼ CNL(k3/2Ph(k))2 with CNL ∼
3.6√
N
, (2.71)

where Ph is the total power spectrum (summing over the two polarizations) and N � 1 is the
number of components of the symmetry-breaking field. This is of course a very rough estimate for
global strings, for which N = 2, and we certainly do not know how this relation is modified in
the case of Abelian-Higgs strings. However, Eq. (2.71) suggests very clearly that, in general, that
we should expect a large departure from Gaussianity for the irreducible GW background from any
defect network.

Let us note that even though Ref. [280] has provided a formalism to characterize a potential
detection by LISA of the bispectrum of a SGWB, Refs. [282, 283] have recently pointed out that
propagation effects of GWs across a perturbed universe like ours — from the generation point
to the LISA detector — will suppress the bispectrum to unobservable levels. This suppression is
expected to be present for any non-Gaussian SGWB, as long as the signal consists of GWs that
have travelled across cosmological scales. If this claim is finally sustained, it will essentially imply
that independently of the level of (intrinsic) non-Gaussianity of a given SGWB, the 3-point function
of GWs will never be measured by direct detection detectors21.

2.7 Discussion and conclusion

In this paper we have analysed the ability of LISA to detect and characterize a SGWB produced by
a network of cosmic strings. Our key finding is that LISA will be able to probe cosmic string with
tensions Gµ & O(10−17), under a “standard” set of assumptions: namely, that the string dynamics
are accurately described by the Nambu-Goto action, that colliding strings always intercommute,
and that the average loop size at formation (in units of cosmic time t) is α ≈ 0.1. This presents an
improvement of ∼ 6 orders of magnitude over current constraints from pulsar timing arrays (PTA),
and potentially in ∼ 3 orders of magnitude over estimated future constraints from next generation
of PTA experiments22. We have also explored scenarios in which the latter two assumptions are
relaxed. Decreasing the loop size at formation α generically leads to weaker constraints on the string
tension. Decreasing the intercommutation probability P leads to a range of possible constraints,
due to the uncertainty about α in these scenarios; however, for larger values of α, networks with a
small intercommutation probability are very strongly constrained, with LISA being able to reach
tensions as small as Gµ ≈ 10−20.

21Note that measurements of a 3-point function of perturbations in the CMB evade this problem.
22The reason for this is that the spectrum of the SGWB from cosmic strings, shifts towards larger frequencies

for small tensions, and hence “leaves behind” the frequency window accessible to PTA experiments, no matter how
precise these may become. See Figs. 2.1 and 2.2.
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In addition, we have shown the difference in shape of the GW spectra accessible to LISA, between
model II and model III. In particular, we observe that the high-frequency plateau for model II is
visible in the LISA band, whereas this is never the case for model III. Therefore, LISA could be
actually used to discriminate between these two models23. Furthermore, we have discussed how
a detection of the string SGWB (for a given model) could be used to probe fundamental physics,
such as changes in the number of relativistic degrees of freedom, or the inclusion of transient epochs
prior of radiation domination, characterized by a non-standard equation of state. Such studies are of
particular interest in LISA, because its detection window is well-positioned to measure the segment
of the string SGWB which contains information about these processes (in the event that Gµ is at
least an order of magnitude above the lower bound). Thus, a detection of cosmic strings is of use
and interest to the cosmology and particle physics communities at large.

Note that in our assessment of detection we have assumed an ideal case in which the stream data
to be measured by LISA is perfectly cleaned from all resolvable sources, glitches, and any impurities
in general. In particular, we assume that the presence of the foreground of galactic binaries can
be subtracted exploiting its yearly modulation [286]. We consider the only signal on top of LISA’s
intrinsic noise to be that of the homogeneous and isotropic stochastic GW background from the
sub-horizon loops of a string network. Future work will quantify the ability of LISA to reconstruct
the spectral shape of the SGWB for the lowest tensions that can be probed, as well as possible
spectral features due to changes in the number of degrees of freedom. For this we plan to use
the recent technique for systematic reconstruction SGWB signals without assuming any specific
spectral template [35].

Finally, we remark that we have not discussed the GW signal from Abelian-Higgs simulations,
nor considered how the dynamics of cosmic superstring networks would alter LISA’s detection
prospects. Most importantly, no simulation to date has included the real effect of back-reaction on
the string network24 (i.e., gravitational self-interaction), and therefore the best that can be done
is to model back-reaction with some ansatz. Our results are therefore predicated on such ansatz
representing good approximations to how true back-reaction would affect the SGWB from a string
network.

2.A Nambu-Goto dynamics

The dynamics of relativistic zero-thickness strings can be obtained from the Nambu-Goto action
(see for example [64] and references therein),

SNG = −µ
∫

d2ξ
√−γ, (2.72)

where µ parametrizes the tension of the string, and the integral describes the area of the string
worldsheet, whose induced metric is given by γ.

The equations of motion from this action can be solved in flat space in the gauge where the
most generic solution can be shown to be of the form

Xµ(σ, t) =
1

2

[
Xµ
−(σ−) +Xµ

+(σ+)
]
, (2.73)

23For a critical discussion about the details behind each model, we refer the reader to the recent references [52]
and [284, 285].

24See however Refs. [115, 119, 120, 121, 238, 116] for work along this direction.
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where σ and t are spacelike and timelike coordinates, respectively, on the worldsheet, and we have
introduced σ± = t ± σ. Furthermore we fix the gauge to X0

± = σ±, and the spatial part of these
functions are normalized so that |X′±| = 1.

2.A.1 Loop dynamics

Using the solutions found earlier, one can describe the evolution of a loop in its rest frame with the
periodic functions X±(σ±) = X±(σ± + `). This implies that

∫ `

0

X′±(σ±) dσ± = 0 , (2.74)

where ` is the length of the loop. This, together with the unit normalization, means that the
functions X′±(σ±) would trace out a loop on the Kibble-Turok sphere whose centre of mass is at
the centre of the sphere. These trajectories will therefore generically cross at points where

X′−(σc−) = X′+(σc+) . (2.75)

These special points in the string evolution are called cusps, and it is easy to check that they
represent instants during the string’s periodic motion when the string doubles back onto itself,
dX/dσ = 0, and therefore moves at the speed of light, | dX/dt | = 1. On the other hand, string
intersections can lead to intercommutations, which lead to kinks on both the previously-existing
string and the newly-formed loop. Kinks are discontinuities of either of X′±(σ±).

The consequences for GW emission of these two type of features are discussed in 2.A.2.

2.A.2 Gravitational wave power from cusps and kinks

Solving the linearized Einstein equation for a single Nambu-Goto cosmic string loop, one can write
the GW strain in the local wave zone as a mode sum [106]

h̄µν(t,x) ≈ 4Gµ`

r

∑

n

exp

[
−4πin

l
(t− r)

]
I

(µ
n,+I

ν)
n,− , (2.76)

where r ≡ |x| is the distance to the source, and ` is the invariant loop length. The motion of
the loop worldsheet is parametrized by the functions Xµ

±(σ±) and contributes to the GW signal
through the integrals

Iµn,± ≡
1

`

∫ `

0

dσ± exp

[
−2πin

`
Xµ
±kµ

]
∂±X

µ
± , (2.77)

where kµ = (1,x/r) is a null wavevector and ∂± = ∂/∂σ± .25 The n = ±1 frequencies correspond
to the fundamental mode of the loop (set by the period of loop oscillation T = `/2),

f1 ≈
dh

`
× 10−18 Hz, (2.78)

which for many loops is far below the LISA frequency window of 10−4–10−2 Hz (unless there were
loops of size ` many orders of magnitude smaller than the present-day Hubble length dH). We are

25In the calculation of the GW loop power spectrum, we define the analogous function in a coordinate system

whose z axis is in the vbΩ̂ direction. In this case we can write I±n = 1
`

∫ `
0 dσ± exp

[
− 2πin

`
(σ± −Xz(σ±))

]
X′±(σ±).
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therefore typically concerned with much higher frequencies f � f1, i.e. very high-order harmonics of
the loop, |n| � 1. In this limit, the integrals in Eq. (2.77) are generically exponentially suppressed
for large n, and there is little contribution to the GW signal at high frequencies.

There are two important exceptions where the integrals in Eq. (2.77) are not exponentially
suppressed, and have a much weaker power-law decay with frequency: (i) when there is a saddle
point in the phase, kµ∂±X

µ
± = 0; (ii) when the function ∂±X

µ
± is discontinuous.

In order to obtain a GW strain that is not exponentially suppressed, one or the other of these
conditions must hold for both sets of integrals Iµn,+ and Iµn,−. This gives rise to three possibili-
ties [106, 64, 90]:

1. Both sets of integrals have a saddle point in the phase, i.e. there are points Xµ∗
± such that

kµ∂±X
µ∗
± = 0. These points are then necessarily the same, Xµ∗

+ = Xµ∗
− . Physically, we

interpret this as an event where part of the loop moves at the speed of light, forming a sharp,
transient feature; this is what we referred to as a cusp earlier. The cusp emits a GW burst,
which is beamed along the spatial direction corresponding to Xµ∗

± , with an opening angle

θb = [1/(g2f`)]
1/3 ≈ [2/(

√
3n)]1/3.

2. One of the sets of integrals has a saddle point, while the other has a discontinuity in the
integrand, which is interpreted as a discontinuity in the shape of the loop; this is what we
called a kink before. In this case, the power-law scaling for h̄µν occurs not just centred on
a single direction (as for a cusp), but around a one-dimensional, “fan-like” set of directions.
We interpret this as the kink propagating around the loop, beaming GWs as it does so, with
the beam opening angle being given again by θb = [1/(g2f`)]

1/3 ≈ [2/(
√

3n)]1/3.

3. Both sets of integrals have a discontinuity at the same point on the worldsheet. This case
corresponds to two kinks, one left-moving and one right-moving, meeting each other. We
call this a kink-kink collision. In this case, there is no saddle point condition to determine a
preferred direction, so the GW emission is isotropic rather than beamed.

In each of these three cases, one can calculate the asymptotic |n| � 1, f � f1 GW waveform, and
take the Fourier transform of this to get the strain spectrum h̃(f). This gives

h̃c(f, r) = gc1
Gµ`2/3

rf4/3
, h̃k(f, r) = gk1

Gµ`1/3

rf5/3
, h̃kk(f, r) = gkk1

Gµ

rf2
, (2.79)

for the cusp, kink, and kink-kink collision cases, respectively, taking care to account for the beaming
angle in the cusp and kink cases.

Using these expressions, one can obtain the total power emitted for these events by performing
the following integral:

P =
1

T

∫ ∞

0

df
πf2

2G

∫

S2

d2r r2h̃2
i (f, r) . (2.80)

For example, in the case of cusps, one can estimate the power to be

P =
3π2g2

1

21/3g
2/3
2

(
Gµ2

)
, (2.81)

so we can say that a typical loop with Nc cusps will have a power of order of

Γ = Nc
3π2g2

1

21/3g
2/3
2

. (2.82)
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This expression allows us to relate the parameters of the cusp waveform g1 and g2 to the total power
emitted from this loop when the loop is assumed to emit only in the form of cusps. This relation
is important in order to make a consistent calculation of the total SGWB and compare Methods I
and II.
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Chapter 3

Cosmic string loop production
functions

This chapter is a reproduction of Ref. [52] in collaboration with Christophe Ringeval, Mairi Sakel-
lariadou and Danièle Steer. Our aim in this paper was to study the loop production function (LPF)
of Polchinski and collaborators Refs. [137, 287, 232]. Relative to the delta-function LPF which is
the simplest to study analytically, this LPF takes into account the small-scale structure on strings
and gravitational radiation, effects which cannot be considered in numerical simulations. This LPF
has a power-law shape allowing loops to be formed at different scales. The resulting loop distribu-
tion, obtained by solving the Boltzmann equation, had already been studied in Ref. [123] but in a
particular regime of parameter space which we wanted here to extend in order to compare it with
numerical results of other groups for large loops. I contributed to all the sections of this paper.

Abstract

Numerical simulations of Nambu-Goto cosmic strings in an expanding universe show that
the loop distribution relaxes to a universal configuration, the so-called scaling regime, which is
of power law shape on large scales. Precise estimations of the power law exponent are, how-
ever, still matter of debate while numerical simulations do not incorporate all the radiation
and backreaction effects expected to affect the network dynamics at small scales. By using a
Boltzmann approach, we show that the steepness of the loop production function with respect
to loops size is associated with drastic changes in the cosmological loop distribution. For a
scale factor varying as a(t) ∝ tν , we find that sub-critical loop production functions, having a
Polchinski-Rocha exponent χ < (3ν − 1)/2, yield scaling loop distributions which are mostly
insensitive to infrared (IR) and ultra-violet (UV) assumptions about the cosmic string net-
work. For those, cosmological predictions are expected to be relatively robust, in accordance
with previous results. On the contrary, critical and super-critical loop production functions,
having χ ≥ (3ν − 1)/2, are shown to be IR-physics dependent and this generically prevents
the loop distribution to relax towards scaling. In the latter situation, we discuss the additional
regularizations needed for convergence and show that, although a scaling regime can still be
reached, the shape of the cosmological loop distribution is modified compared to the naive
expectation. Finally, we discuss the implications of our findings.

67
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3.1 Introduction

The advent of gravitational wave astronomy provides an unprecedented opportunity to search for
topological defects, and in particular cosmic strings [288, 61, 143, 289]. In an expanding and
decelerating universe, a cosmic string network relaxes towards an attractor configuration exhibiting
universal properties — known as a scaling solution — and it subsequently remains self-similar with
the Hubble radius [69, 64, 290, 291, 292, 293, 294, 75, 88]. Hence, if cosmic strings were formed in
phase transitions early in the history of the universe, scaling implies that they should be present
all over the sky with a surface density growing with redshift z. Strings induce anisotropies in the
Cosmic Microwave Background (CMB) and they have been searched for in the Planck data [72, 295,
74, 296, 297, 298]. The current CMB constraints give an upper bound for the string energy per unit
length µ of Gµ < O

(
10−7

)
, where G is the Newton’s constant. However, CMB photons come from

the highest observable redshift set by their last scattering surface, namely zlss ' 1088. For gravitons,
z is only bounded by our understanding of the Friedmann-Lemâıtre model, or more probably by
the redshift at which cosmic inflation ended. For this reason, the stochastic gravitational wave
background (SGWB) is an observable particularly sensitive to cosmic strings and could provide the
opportunity for a first detection.

Current constraints on Gµ from the SGWB are already much stronger than those from the CMB,
of order Gµ < O

(
10−11

)
[90, 89, 91] (the actual value depends on some yet unknown microphysical

parameters). However, as opposed to the CMB constraints, bounds from GW crucially depend on
the loop distribution. Indeed, through their production by the string network, oscillating closed
cosmic string loops constitute the main source of the SGWB. Although loop production is observed
and measured in Nambu-Goto cosmic string simulations [99, 100, 109], it is still a matter of debate
if it plays the same role in a field theoretical model [110, 111, 112, 113]. Clearly the detailed shape
of the scaling loop distribution function is important to determine the properties of the SGWB
at different frequencies. Nambu-Goto simulations from two independent groups have shown that,
on large scales (see discussion below), where these simulations can be trusted, it is a power-law,
namely

t4n(γ, t) ∝ γp. (3.1)

Here we have defined

γ(`, t) ≡ `

t
, n(γ, t) ≡ dn

d`
, (3.2)

where n(`, t) is the number density distribution of loops of size ` at cosmic time t, and the time-
independence of the combination t4n is precisely the scaling regime. The simulations of Ref. [99]
give

p = −2.60−0.21
+0.15

∣∣
rad

, p = −2.41−0.08
+0.07

∣∣
mat

. (3.3)

Analysis of the simulations of Refs. [103, 114] favours slightly different values, namely p = −5/2 in
the radiation and p = −2 in the matter era. It is, however, important to stress that the approach
taken in the numerical simulations of Refs. [103, 114] is quite different to that of Ref. [99]. In
the latter reference, the shape of the scaling loop distribution t4n(γ) is estimated from simulations
whereas in the former references this is the shape of the scaling loop production function which is
inferred from numerical results.

Let us also notice that, due to the huge disparity of scales in the problem (ranging from, for
instance, the distance between kinks formed by string intercommutations, to the horizon size),
numerical simulations of cosmic string networks cannot incorporate all physical effects. In Nambu-
Goto simulations, in particular, effects from GW emission and backreaction onto the string dynamics
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are ignored1. This is why Eq. (3.1) can only be trusted for loops large enough that these effects
remain negligible. GW emission means that loops loose energy and hence become smaller, with an
average emitted GW power Pgw = ΓGµ2 where Γ is a numerical constant estimated to be Γ = O(50)
[117, 118, 114]. Hence, loops decoupled from the Hubble flow shrink at an average rate given by

γd ≡ ΓGµ. (3.4)

One therefore expects Eq. (3.1) to hold for loops of length ` & `d = γdt (numeric-wise, this is
a quite small number already for Gµ < 10−7). Emitted GWs will also backreact onto the string
thereby affecting its dynamics. The consequences of this process for the network and the loops are
still unknown and being studied [119]. However, one expects that loop production should be cut-off
below some length scale `c ≡ γct, with presumably γc ≤ γd, which we discuss below.

As was realized very early on. [64], in practise, to include these physical effects one needs to
combine results of simulations with analytical modelling. A powerful framework for this is to use a
Boltzmann approach to estimate the loop distribution on cosmological time and length scales [96,
122, 123, 124, 125, 126, 127]. At this stage it is remarkable to notice that radically different
assumptions about the loop production function can lead to similar powers p on large scales (where
the results should be fitted against simulations). Indeed, on one hand, motivated by the one-scale
model of cosmic string evolution [61, 64], an often studied case is one in which [128, 105, 129, 130,
48, 131, 107, 132, 133]

P(γ, t) ∝ δD(γ − α), (3.5)

namely all stable loops are formed with size ` = αt at time t (for constant α). It is then straightfor-
ward to extract the loop density distribution [64] (see Section 3.2.2) and show that in the radiation
era p = −5/2 while in the matter era p = −2. On the other hand, all cosmic string simulations show
that a lot of small-scale structure, namely kinks generated from string intercommutation, build up
on the strings (see Refs. [134, 102, 101, 93, 135, 136, 94] for a discussion of small-scale structure on
strings). As a result, one expects loops to be formed on a wide range of scales at any given time.
The most recent analytical work along these lines is by Polchinski-Rocha and collaborators [137,
138, 122], who proposed a model of loop production from long strings. It is given by

t5P(γ > γc, t) ∝ γ2χ−3, (3.6)

where the parameter χ will be referred to as the Polchinski-Rocha (PR) exponent2. This is clearly
very different from a Dirac distribution as a loop production function. In Ref. [123], the authors
have included backreaction effects to the PR model and extended Eq. (3.6) to the domains γ < γc,
but, motivated by the numerical results of Ref. [99], have considered only the cases χ < χcrit where

χcrit =
3ν − 1

2
. (3.7)

Here, we have assumed that the scale factor behaves as a ∝ tν so that χcrit = 0.25 and χcrit = 0.5
for the radiation and matter era, respectively. Under the condition χ < χcrit, Refs. [122, 123]
have shown that the loop distribution behaves as a power law on large scales, with the power p in
Eq. (3.1) given by

p = 2χ− 3. (3.8)

1See, however, Ref. [115] and more recently Ref. [116] for an isolated loop.
2The PR exponent is related to the two-point correlation function of tangent vectors along cosmic strings.
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From Eqs. (3.3) and (3.8), the Nambu-Goto simulations of Ref. [99] therefore give

χr = 0.200+0.07
−0.10 , χm = 0.295+0.03

−0.04, (3.9)

for the radiation and matter era, respectively. We also note that χ has been estimated from the two-
point correlators of tangent vectors along the long strings using an average over multiple Abelian
Higgs simulations in Ref. [112] where it was found that χr = 0.22 and χm = 0.35. At this stage it is
intriguing to notice that the powers p = −5/2 in the radiation era, and p = −2 in the matter era,
correspond precisely to χ = χcrit where the analysis of Ref. [123] breaks down. One of the aims of
this paper is precisely to extend the analysis of Ref. [123] to the “critical case” χ = χcrit and to the
“super-critical case” χ > χcrit.

Before doing so, however, it is important to comment that while the two loop production func-
tions of Eqs. (3.5) and (3.6) lead to similar loop distributions on large scales, they lead to very
important differences for small loops, namely for γ < γd. Until recently, these differences on
small scales were of no great concern for observable predictions. For instance, predictions for the
CMB power spectrum and induced non-Gaussianities are essentially blind to cosmic string loops3

(see Ref. [75] for a review). However, the situation is not the same for gravitational waves. The
Polchinski-Rocha (PR) loop production function induces a larger population of small loops. Small
loops oscillate faster, and being more numerous, they can potentially dominate the GW emission
within some frequency range.

In this paper, we show that the value of χ = χcrit is a separatrix between two different behaviours.
For values χ < χcrit, we recover the results presented in Refs. [123, 90] and confirm the weak
dependence of the scaling loop distribution on the details of the backreaction cut-off at small
scales. We will refer to this property as being ultra-violet (UV) insensitive. We also show that
the predicted loop number density is not affected by assumptions made for the distribution of the
largest loops, and this property will be referred to as infrared (IR) insensitive. On the contrary,
values of χ ≥ χcrit, including the equality, exhibit a very strong sensitivity to the IR. In fact,
under the simplest assumptions, we show that the loop distribution cannot even reach a scaling
regime and diverges in time. Scaling solutions can still be reached provided additional assumptions
are made to regularize the IR behaviour, the validity of which still remains to be assessed in the
cosmological context. For all these possible regularized scaling solutions, we show that the loop
distribution shape is modified compared to the naive expectation.

The paper is organized as follows. In the next section, we recap the hypothesis and solutions of
the Boltzmann equation presented in Ref. [123]. We then show in Section 3.2.4 that the solutions
can be readily extended to the super-critical cases χ > χcrit and that the loop distribution never
reaches scaling in that case. In Section 3.2.5, we solve the Boltzmann equation for the critical value
χ = χcrit and show again that the loop distribution diverges with time. In Section 3.3, we discuss
the extra-assumptions needed in the IR to produce a scaling loop distribution with χ ≥ χcrit.
For those, we derive the new scaling loop distributions and critically compare the results in all
three cases, sub-critical, critical and super-critical. We finally conclude by briefly discussing the
implications of our findings.

3.2 Cosmic string loop evolution

3The tri-spectrum depends however on χ due to its sensitivity to tangent vector correlators [299, 300].
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3.2.1 Boltzmann equation and loop production function

The number density n(`, t) of cosmic string loops of size ` at cosmic time t is assumed to follow a
conservation equation

d

dt

(
a3 dn

d`

)
= a3P(`, t), (3.10)

where P(`, t) is a loop production function (LPF) giving the number density distribution of loops
of size ` produced per unit of time at t and a(t) is the scale factor4. For an individual loop,
gravitational wave emission induces energy loss through

d`

dt
= −γd. (3.11)

Combining Eqs. (3.10) and (3.11), and working in terms of the variables (γ, t) and n ≡ dn/d` given
in Eq. (3.2), one obtains the two-dimensional Boltzmann equation

t
∂(a3n)

∂t
− (γ + γd)

∂(a3n)

∂γ
= a3tP(γ, t). (3.12)

Its general solution can be obtained by changing variables to (t, v) where v = t(γ + γd). Then
Eq. (3.12) becomes

∂[a3n(t, v)]

∂t

∣∣∣∣
v

= a3P(t, v). (3.13)

Assuming the infinite (super-horizon) string network is in scaling, the t-dependence of the LPF is
of the form

t5P(γ, t) = S(γ) = S
(v
t
− γd

)
, (3.14)

and it is straightforward to integrate Eq.(3.13) from some initial time tini and find its general
solution. In terms of the variables (γ, t) it reads

n(γ, t)− nini(γ, t) =

∫ t

tini

[
a(t′)
a(t)

]3

S
[

(γ + γd)t

t′
− γd

]
dt′

t′5
, (3.15)

where

nini(γ, t) =

[
a(tini)

a(t)

]3

Nini [(γ + γd)t− γdtini] , (3.16)

with Nini(`) the initial loop distribution at t = tini. Notice that the time dependence appears
because nini(γ, t) is evaluated at t′ = tini and physically encodes the fact that, at time t, a loop of
length γt corresponds to an initial loop of size ` = γt+γd(t− tini). Hence, once the loop production
function S(γ) is specified over its entire domain of definition, the loop distribution is uniquely given
by Eq. (3.15). As mentioned in the Introduction, physically very different LPF can give similar
loop distributions for large loops. We now discuss the LPF.

4This equation can be generalized to include collision terms describing loop fragmentation as well as loop collisions,
see Ref. [96].
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3.2.2 Dirac distribution for the loop production function

In order to compare with results in the literature, let us solve explicitly the Boltzmann equation
with a delta function LPF, motivated by the one-scale model, given in Eq. (3.5), namely t5P(γ, t) =
cδ(γ − α). From Eq. (3.15),

t4n(γ < α, t)− t4nini(γ, t) = c



a

(
t
γ + γd

α+ γd

)

a(t)




3

(α+ γd)3

(γ + γd)4
Θ

[
γ + γd −

tini

t
(α+ γd)

]
. (3.17)

The left-hand side of Eq. (3.17) contains nini, which is determined from the initial loop distribution
Nini through Eq. (3.16). This term is usually a transient for initial loop distribution converging
fast enough to zero at large `. However, if (as in numerical simulations) Nini is assumed to be
the Vachaspati-Vilenkin (VV) distribution [301] one has t4iniNini(`) ∝ (tini/`)

5/2 and because the
argument of Nini in Eq. (3.16) grows with t we see that, in the particular case of the radiation era
(ν = 1/2), the whole term becomes time-independent and “scales”. In a realistic situation, the VV
distribution is valid up to some size, typically the initial horizon size ` < dh(tini), where dh(t) =
t/(1− ν) with ν = 1/2 or 2/3 in the radiation or matter era, respectively. Above dh(tini), loops are
of super-horizon length and should actually be considered as long (dubbed “infinite”) strings from
a dynamical point of view. Once the argument of Nini (through nini) in Eq. (3.17) becomes larger
than this cut-off, the corresponding term in the left-hand side of Eq. (3.17) disappears.

Neglecting therefore the effects from initial distribution nini(γ, t), we find the loop distribution
in the radiation era:

t4n(γ, t) = c
(α+ γd)3/2

(γ + γd)5/2
Θ(α− γ) . (3.18)

This expression corresponds to a scaling solution with a p = −5/2 power-law for γ � γd, as stated
in the Introduction. For loops formed during matter era one has

t4n(γ, t) = c
(α+ γd)

(γ + γd)2
Θ(α− γ) , (3.19)

and this corresponds to a scaling solution with a p = −2 power-law for γ � γd. Notice that, in
both cases, the distributions are flat for values of γ < γd.

3.2.3 Polchinski-Rocha loop production function

In the remainder of this paper we focus on the PR loop production function, which exhibits a
power-law dependence in γ. For large loops, it is given by

t5P(γ ≥ γc, t) = c γ2χ−3. (3.20)

The “backreaction scale” γc was calculated in Ref. [232] and is given by5

γc ≡ Υ(Gµ)1+2χ, (3.21)

5The dependence on Gµ is to be expected given that this scale is fixed by gravitational physics.
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Figure 3.1: Sketch of possible loop production function shapes under the gravitational backreaction
length scale γc ≡ `c/t (logarithmic units), namely P(γ ≤ γc, t) = cc γ

2χc−3 where the constant
cc is chosen such that P is continuous at γ = γc. According to Ref. [232], minimal gravitational
backreaction effects correspond to χc = 1 and we take this value as a motivated lower bound. The
larger the value of χc, the sharper the cut is.
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where Υ = O(20). This suggests that the very small scales on a string network can potentially be
strongly dependent on the value of χ. On scales γ < γc, the actual shape of the LPF is unknown,
but, surely, loop production has to be cut-off. A phenomenologically motivated expression has been
proposed in Ref. [123], namely

t5P(γ < γc, t) = cc γ
2χc−3, (3.22)

with χc > 1. Continuity of the loop production function at γ = γc imposes

cc = c γ2(χ−χc)
c . (3.23)

The scaling function S(γ) is completely determined by Eqs. (3.20) and (3.22) and reads

S(γ) = c γ2χ−3Θ(γ − γc) + cc γ
2χc−3Θ(γc − γ) . (3.24)

Before giving explicit solutions of the Boltzmann equation for the PR based LPF, let us remark
that the original PR model applies to loops produced by long (dubbed “infinite”) strings, whereas
in numerical simulations loops are also created from other loops and can potentially reconnect.
Hence, the fit to numerical simulations can be viewed as a renormalization procedure that allows
us to extend the properties of loops chopped off from long strings to those produced by other loops.
In particular, the fit completely fixes the normalization constant c in the loop distribution. Unless
specified otherwise, we have used the values reported in Ref. [99]. Simulations show that the largest
loops created in a cosmological network are as large as the largest correlation length scale, which
is a fraction of the Hubble radius. This typical correlation length allows us to define

γ∞ =

(
µ

ρ∞t2

)1/2

, (3.25)

where ρ∞ is the energy density of super-horizon sized (infinite) strings in scaling [134, 102, 101,
99]. One gets γ∞ ' 0.32 in the radiation era and γ∞ ' 0.56 in the matter era. The PR model
with values of c consistent with those of simulations predicts a fractional number of loops having
γ ≥ γ∞. However, and as sketched in Fig. 3.1, the IR behaviour of P(γ, t) (at large γ) could a
priori be different than for γ < γ∞ and we will explore this possibility in Section 3.3.

3.2.4 Non-critical loop production function

In this section, we present the solution of the Boltzmann equation obtained for the non-critical
cases, i.e., χ 6= χcrit. As shown in Ref. [123], substituting Eq. (3.24) into Eq. (3.15) gives the
unique solution. In the domain γ ≥ γc it reads

t4n(γ ≥ γc, t) = t4nini(γ, t) +
c

ε
(γ + γd)2χ−3

[
f

(
γd

γ + γd

)
−
(

t

tini

)−ε
f

(
γd

γ + γd

tini

t

)]
, (3.26)

and, in the domain γ < γc,

t4n(γ < γc, t) = t4nini(γ, t) +
c

ε
(γ + γd)3ν−4 (γc + γd)

−ε
f

(
γd

γc + γd

)

− c

ε
(γ + γd)2χ−3

(
t

tini

)−ε
f

(
γd

γ + γd

tini

t

)

+
cc
εc

(γ + γd)2χc−3

[
fc

(
γd

γ + γd

)
−
(
γ + γd

γc + γd

)εc
fc

(
γd

γc + γd

)]
.

(3.27)
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In these equations, we have defined

f(x) ≡ 2F1(3− 2χ, ε; ε+ 1;x) , fc(x) ≡ 2F1(3− 2χc, εc; εc + 1;x) . (3.28)

with
2
F

1
(a, b; c;x) being the Gauss hypergeometric function, and

ε ≡ 3ν − 2χ− 1, εc ≡ 3ν − 2χc − 1. (3.29)

The above solution is valid provided one waits long enough for some transient domains to disappear6.
For completeness, the full solution including the transients is presented in the Appendix 3.A. Let
us stress that these equations become singular for ε = 0, which corresponds to χ = χcrit, and that
case must be treated separately, see Section 3.2.5.

The behaviour of the solution given by Eqs. (3.27) and (3.26) depends on whether χ < χcrit,
which we refer to as the sub-critical case, or whether χ > χcrit, the super-critical one.

Sub-critical loop production function

As discussed in Section 3.2.2, the first term in the right-hand side of Eq. (3.26), which is determined
from the initial loop distribution, vanishes if one waits long enough. For all positive values of ε,
namely χ < χcrit, the last term in Eq. (3.26) is also a transient that asymptotically vanishes for
t � tini. At vanishing argument, the hypergeometric function converges to unity and the time
dependence of this term indeed scales as (t/tini)

−ε.
Hence, the Boltzmann equation for ε > 0 predicts a scaling loop distribution for γ ≥ γc given

by

t4n(γ ≥ γc, t) =
c

ε
(γ + γd)

2χ−3
f

(
γd

γ + γd

)
. (3.30)

For γ � γd the hypergeometric function tends to 1, and we recover the power-law distribution
given in Eq. (3.8); it matches numerical simulations where gravitational effects are absent:

t4n(γ � γd, t) '
c

ε
γ2χ−3. (3.31)

Furthermore we can now predict the effects associated with gravitational wave emission. Taking
the limit γ � γd (but still γ > γc), one gets7

t4n(γc < γ � γd, t) '
c

2− 2χ

γ2χ−2

γd
. (3.33)

Notice that since we are in the regime χ < χcrit we necessarily have χ < 1. The only effect of
gravitational wave emission onto the scaling loop distribution is to reduce the power law exponent
by one unit in the domain γc < γ � γd [122].

To see what are the effects of gravitational wave backreaction on the loop distribution, let us
consider Eq. (3.27). As before, the first and third terms in the right-hand side of Eq. (3.27) are

6In the matter era, the hypergeometric function simplifies to a polynomial expression, see Eq. (55) in Ref. [123].
7To derive this expression, we have expanded the hypergeometric function around unity [302]

f(x) ∼
1

Γ(3ν − 2χ)Γ(2χ− 2)

Γ(3ν − 3)
x−ε +

ε

2− 2χ
(1− x)2χ−2 . (3.32)
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Figure 3.2: Scaling loop distribution in the radiation and matter era for ε > 0, which corresponds
to χ < (3ν − 1)/2. The values for γd and γc are illustrative only.

transient and only the second term and the fourth one survive. They are explicitly time-independent
showing that this part of the loop distribution also reaches scaling. Using the expansion (3.32), the
matching condition (3.23), and taking the limit γ � γc gives

t4n(γ � γc, t) = c

(
1

2− 2χ
+

1

2χc − 2

)
γ2χ−2

c

γd
+O

(
γ2χ−3

d

)

' c

2− 2χ

γ2χ−2
c

γd
,

(3.34)

where in the last step we have taken the limit for χc � χ and γc � γd. This expression makes
clear that the details of the backreaction process, namely the values of χc, have only a weak effect
on the final loop distribution [123]. Therefore, in the domain γ < γc, the scaling loop distribution
is flat.

The exact form for the scaling loop distribution is plotted in Fig. 3.2 for both the radiation and
matter era, see also Eqs. (3.67) to (3.69). Notice that the value of γc is χ-dependent, and thus,
even at constant Gµ, γc changes between radiation and matter.

Super-critical loop production function

As discussed in the Introduction, we now consider shallower loop production functions having ε < 0,
i.e. super-critical values of χ > χcrit. All solutions derived in Section 3.2.4 are regular in this limit,
and we can straightforwardly use Eqs. (3.26) and (3.27).

In the domain γ ≥ γc, neglecting the first term in the right-hand side of Eq. (3.26) for the afore-
mentioned reasons, we see that the third term (which was a transient for ε > 0) is now becoming
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a growing function of time as it scales as (t/tini)
−ε. Therefore, for t � tini, and for all values of

γ ≥ γc, the hypergeometric function that multiplies (t/tini)
−ε in Eq. (3.26) approaches unity and

one gets

t4n(γ ≥ γc, t) ' −
c

ε
(γ + γd)

2χ−3

[
−f
(

γd

γ + γd

)
+

(
t

tini

)−ε]
, (3.35)

which is not scaling! Another feature of this solution is that, taking the limit γc ≤ γ � γd, one has

t4n(γc ≤ γ � γd, t) ' −
c

ε
γ2χ−3

d

[
− ε

2− 2χ

(
γ

γd

)2χ−2

+

(
t

tini

)−ε]
. (3.36)

The solution only exhibits the γ2χ−2 power-law transiently. As soon as the growing term (t/tini)
−ε

takes over, the loop distribution becomes flat and incessantly grows with time. Notice that because
ε < 0, positiveness of the loop distribution still implies that c > 0 because it is now dominated by
the terms (t/tini)

−ε. Equation (3.23) implies cc > 0 as well.
The solution in the domain γ < γc presents the same pathology, namely, the fourth term of

Eq. (3.27), which is a transient for ε > 0, now becomes dominant and one gets for γ � γc

t4n(γ � γc, t) ' −
c

ε
γ2χ−3

d

[
−
(

ε

2− 2χ
+

ε

2χc − 2

)(
γc

γd

)2χ−2

+

(
t

tini

)−ε]
, (3.37)

which is flat and smoothly connects to the solution (3.36) at γ = γc.
In Fig. 3.3, we have plotted the exact solutions at various successive redshifts showing the non-

scaling behaviour of the super-critical cases, χ > χcrit. The time divergence ends up washing out
the change in slope of the loop distribution between γc and γd. But scaling is lost, and we have an
incessantly growing number density of loops at all scales.

Because Eq. (3.35) is actually valid in the regime probed by numerical simulations, this behaviour
not being observed, we conclude that deeply super-critical loop production functions are unlikely to
be physical. Of course, one cannot exclude the possibility that ε < 0 but very close to zero (hence
χ close to its critical value χc), since the time-dependence of Eq. (3.35) would hardly remain visible
in time-limited numerical simulations while being relevant on cosmological time-scales. We now
turn to the critical case itself, ε = 0.

3.2.5 Critical loop production function

None of the solutions of Section 3.2.4 are valid for ε = 0. Hence, we return to the general solution
(3.15) where, using Eq. (3.20) with χ = χcrit given in Eq. (3.7), one has

S(γ) = c γ3ν−4Θ(γ − γc) + cc γ
2χc−3Θ(γc − γ) . (3.38)

Here we have used the equality 2χcrit − 3 = 3ν − 4. As before, the initial condition at t = tini and
continuity of the solution at γ = γc, which is enforced by Eq. (3.38), completely fix the solution
of Eq. (3.15). We still find a complete integral (see Ref. [302]) that is presented, in full, in the
Appendix 3.A.2. Below, we report only the parts relevant for our discussion. In the domain γ ≥ γc,
one has

t4n(γ ≥ γc, t) = t4nini(γ, t) + c(γ + γd)3ν−4

[
g

(
γd

γ + γd

)
− g
(

γd

γ + γd

tini

t

)]
, (3.39)
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Figure 3.3: Growing loop distribution generated by a super-critical loop production function having
χ = 0.45 during the radiation era. The string tension has been set to Gµ = 10−7 and the initial
conditions are arbitrarily set at zini = 1018 with Nini(`) = 0 and c = 0.14. At redshift z = 107,
the change of shape associated with gravitational wave backreaction becomes washed out by the
number loops which diverges with time.
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Figure 3.4: Loop number density distribution at various redshifts for a critical loop production
function having χr = χcrit = 0.25. The network is assumed to be formed at zini = 1018 and
c = 0.03. At redshift z = 1017, the loop distribution is not yet fully relaxed from the initial
conditions. For later redshifts, z < 1015, the non-scaling logarithmic divergence becomes clearly
visible for all loops larger than the gravitational wave emission scale, γ ≥ γd. The smaller ones,
having γ < γd, remain in a transient scaling for most of the cosmological evolution, until the non-
scaling behaviour takes over (see text).
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and in the domain γ < γc, the solution reads

t4n(γ < γc, t) = t4nini(γ, t)

+
cc
εc

(γ + γd)2χc−3

[
fc

(
γd

γ + γd

)
−
(
γ + γd

γc + γd

)εc
fc

(
γd

γc + γd

)]

+ c(γ + γd)3ν−4

[
g

(
γd

γc + γd

)
− g
(

γd

γ + γd

tini

t

)]
.

(3.40)

The function g(x) is ν-dependent. In the radiation era, for ν = 1/2, it reads

grad(x) ≡ ln

(
1−
√

1− x
1 +
√

1− x

)
+

2

3

4− 3x

(1− x)3/2
, (3.41)

while in the matter era, for ν = 2/3,

gmat(x) ≡ 1

1− x ln

(
1− x
x

)
. (3.42)

As before, neglecting the terms associated with Nini, and taking the limit t � tini, Eq. (3.39)
can be further expanded for γ � γd as

t4n(γ � γd, t) ' c γ3ν−4 ln

(
t

tini

)
, (3.43)

for both the radiation and matter eras. As a result, the critical case χ = χcrit suffers from the
same problems as the super-critical ones: the loop number distribution never reaches a scaling
regime. For ε = 0, the power-law exponent is 3ν − 4 = 2χcrit − 3 and smoothly connects to its
sub- and super-critical values. Let us notice however that the time divergence is logarithmic, and
therefore, could very well remain undetected in numerical simulations while being quite relevant on
cosmological time-scales. The limit γc ≤ γ � γd gives

t4n(γc ≤ γ � γd, t) ' c γ3ν−4
d

[
1

3− 3ν

(
γ

γd

)3ν−3

+ ln

(
t

tini

)]
, (3.44)

which, up to the logarithmic divergence, is in all points similar to Eq. (3.36). As for the super-
critical case, in the future infinity limit t/tini → ∞, the dependence in γ disappears, the loop
distribution becomes flat, grows, and never reaches scaling. However, because the divergence is
only logarithmic in time, even on cosmological time scales, the first term can remain dominant. In
this situation, we are in presence of a very long transient scaling in the domain γ � γd.

Finally, for the small loops γ � γc, and assuming γc � γd, we can expand Eq. (3.40) at large
times t� tini. We get

t4n(γ � γc, t) '
cc

2χc − 2

γ2χc−2
c

γd
+ cγ3ν−4

d

[
1

3− 3ν

(
γc

γd

)3ν−3

+ ln

(
t

tini

)]

= c γ3ν−4
d

[(
1

3− 3ν
+

1

2χc − 2

)(
γc

γd

)3ν−3

+ ln

(
t

tini

)]
,

(3.45)
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Type γ < γc γc < γ < γd γ > γd

Sub-critical ε > 0
c

2− 2χ
γ2χ−2

c γ−1
d

c

2− 2χ
γ2χ−2γ−1

d

c

ε
γ2χ−3

Critical ε = 0 c γ3ν−4
d ln

(
t

tini

)
c γ3ν−4

d ln

(
t

tini

)
c γ3ν−4 ln

(
t

tini

)

Super-critical ε < 0 −c
ε
γ2χ−3

d

(
t

tini

)−ε
−c
ε
γ2χ−3

d

(
t

tini

)−ε
−c
ε
γ2χ−3

(
t

tini

)−ε

Table 3.1: Asymptotic contributions to the loop number density assuming no infrared regularization.
At late times, the critical and super-critical cases are non-scaling and the loop number density
diverges. For the critical case, notice however that a transient scaling can take place in the domains
γ < γd for most of the cosmological evolution (see text).

where the last step is obtained from Eq. (3.23), which ensures the continuity of the loop production
function. Again, this is in all point similar to the super-critical case of Eq. (3.37) and smoothly
connects to the domain γ ≥ γc. The logarithmic divergence will ultimately make the small loop
number density grow, although the presence of the first term will strongly delay this process and
one should expect a very long transient scaling.

Figure 3.4 shows the loop number density distribution in the radiation era as derived from
the exact expression, Eqs. (3.73) to (3.75), for Gµ = 10−7, and at various redshifts. Here again,
Nini = 0 has been assumed to clearly show the effects coming from the production function. The
network is arbitrarily assumed to be formed at zini = 1018 and relaxation from the initial conditions
takes place down to redshift z = 1017. For redshifts z ≤ 1015, the domain γ ≥ γd clearly exhibits
the logarithmic divergence. The loops having γ < γd remain, however, in the transient scaling for
essentially all the cosmological evolution.

3.2.6 Discussion

Critical and super-critical loop production functions, having χ ≥ χcrit = (3ν − 1)/2, yield a non-
scaling and growing population of cosmic string loops. This results from the combination of various
non-trivial effects acting together. For χ ≥ χcrit, the loop production functions are shallower with
respect to loop sizes than the sub-critical ones. Therefore, they produce, on site, relatively larger
loops compared to the smaller ones. These larger loops will contribute to the final population of
loops of given size since they incessantly shrink by gravitational wave emission. Similarly, at all
times, loops of given size disappear by the same effect. The detailed balance of loops disappearing,
being created on site, and being populated by shrunk larger loops is obviously χ-dependent and the
overall result is precisely given by the solution of the Boltzmann equation (3.12). Taking shallower
loop production functions clearly enhances the feeding by larger loops, at all scales. The critical
value χcrit is the precise power-law exponent above which such an effect produces a non-stationary
solution. We summarize our results in Table 3.1.

In striking contrast with the sub-critical case, we see that the critical and super-critical loop
production functions induce non-scaling loop distributions. This is quite dramatic in the super-
critical case as the number density of loops grows, on all scales, as (t/tini)

−ε, with ε < 0. The
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situation for the critical case χ = χcrit is, somehow, less catastrophic, as the divergence is only
logarithmic in time. In particular, for most of the cosmologically relevant situations, we find that
the loop number density remains in a transient scaling regime at small scales, for all γ � γd. The
number density of larger loops, having γ ≥ γd, is however logarithmically growing with time and
never scales.

3.3 Possible infrared regularizations

In view of the previous discussion, a way to regularize (super-) critical loop production functions is
to change their shape in some domains. As discussed in the Introduction, the PR model does not
necessarily apply to super-horizon loops, the ones having γ > γ∞, and these seem to be precisely
responsible for the time divergence. A possible regularization is therefore making a hard cut in the
IR, namely postulating that the loop production function is exactly vanishing above some new IR
scale, say γ > γ∞. Other regulator shapes are considered in Section 3.3.3.

We now consider the same PR loop production function as in Section 3.2 for γ ≤ γ∞ but we
now require that t4P(γ > γ∞, t) = 0 at all times. As a result, there is a new domain of solution for
Eq. (3.12) in which one trivially finds

n(γ ≥ γ∞, t) = nini(γ, t). (3.46)

The calculations are slightly longer than in Section 3.2 but do not present new difficulties. They
are detailed in the Appendix 3.B. The introduction of a new scale at γ∞ introduces various new
transient domains in which the loop distribution t4n grows for a while before becoming stationary.
Ignoring these domains, the main changes can be summarized as follows.

The asymptotic solutions are given by those of the previous section provided we make the formal
replacement

t

tini
−→ γ∞ + γd

γ + γd
. (3.47)

This expression makes clear that all terms that were explicitly depending on t/tini are regularized
to γ-dependent terms. As a result, the IR-regularized critical loop distribution reaches scaling,
but it does no longer exhibit the same shape on large scales. In the following, we explicitly derive
the induced distortions for the critical and super-critical case and discuss the impact of forcing an
unneeded IR-regularization to the sub-critical loop production functions.

3.3.1 Critical loop production function

For critical loop production function χ = χcrit, after the disappearance of the transient domains
(see Appendix 3.B), the loop distribution in the domain γ ≥ γc (and γ < γ∞) reads

t4n(γc ≤ γ < γ∞, t) = t4nini(γ, t)

+ c(γ + γd)3ν−4

[
g

(
γd

γ + γd

)
− g
(

γd

γ∞ + γd

)]
,

(3.48)



3.3. POSSIBLE INFRARED REGULARIZATIONS 83

and in the domain γ < γc, one gets

t4n(γ < γc, t) = t4nini(γ, t)

+
cc
εc

(γ + γd)2χc−3

[
fc

(
γd

γ + γd

)
−
(
γ + γd

γc + γd

)εc
fc

(
γd

γc + γd

)]

+ c(γ + γd)3ν−4

[
g

(
γd

γc + γd

)
− g
(

γd

γ∞ + γd

)]
.

The logarithmic growth in time has disappeared, and the solutions are now scaling. Taking
Eq. (3.48) in the limit γ � γd and neglecting all terms associated with the initial conditions,
one gets

t4n(γ � γd, t) ' c γ3ν−4 ln

(
γ∞
γ

)
. (3.49)

The limit γc < γ � γd consistently gives

t4n(γc < γ � γd, t) = c γ3ν−4
d

[
1

3− 3ν

(
γ

γd

)3ν−3

+ ln

(
γd

γ∞

)]
, (3.50)

and the distribution is back to the scaling power law γ3ν−3.
Finally, small loops with γ � γc � γd also scale with a flat distribution as

t4n(γ � γc, t) = c γ3ν−4
d

[(
1

3− 3ν
+

1

2χc − 2

)(
γc

γd

)3ν−3

+ ln

(
γd

γ∞

)]
. (3.51)

In conclusion, the IR-regularization we have used solves the logarithmic time divergence of the
loop distribution which now reaches scaling on all length scales. For γ � γd, Eqs. (3.50) and (3.51)
compared to Eqs. (3.44) and (3.45) show that the regularization is neat, the dependence of the loop
distribution with respect to γ is not affected. However, for γ > γd, the power law behaviour now
receives a logarithmic correction. We therefore conclude that the critical loop production function,
even regularized, exhibits an IR sensitivity.

3.3.2 Non-critical loop production function

The calculation follows in all points the one of Section 3.3.1 and applies to both sub- and super-
critical cases, ε > 0 and ε < 0. The full solution is presented in the Appendix 3.B, and we focus
below on the asymptotic behaviour only. For the purely IR domain, γ > γ∞, the solution is still
given by Eq. (3.46), our IR-regulator assuming an exactly vanishing production function there.
Again neglecting all transients, the solution in the domain γc ≤ γ < γ∞ reads

t4n(γc ≤ γ < γ∞, t) = t4nini(γ, t) +
c

ε
(γ + γd)2χ−3f

(
γd

γ + γd

)

− c

ε
(γ + γd)3ν−4 (γ∞ + γd)

−ε
f

(
γd

γ∞ + γd

)
,

(3.52)
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while for γ < γc one obtains

t4n(γ+ ≤ γ < γc, t) = t4nini(γ, t)

+
cc
εc

(γ + γd)2χc−3

[
fc

(
γd

γ + γd

)
−
(
γ + γd

γc + γd

)εc
fc

(
γd

γc + γd

)]

+
c

ε
(γ + γd)3ν−4 (γc + γd)

−ε
f

(
γd

γc + γd

)

− c

ε
(γ + γd)3ν−4 (γd + γ∞)

−ε
f

(
γd

γ∞ + γd

)
.

(3.53)

Here again, the IR cut in the loop production functions can be viewed as the same formal re-
placement as (3.47). Let us now discuss separately the physical consequences for the sub- and
super-critical loop production functions, and we start by the simplest case which is the sub-critical
one.

Sub-critical case

Even if sub-critical loop production functions produce a scaling loop distribution without any
regularization, one may wonder whether forcing the (unnecessary, for scaling!) cut at γ > γ∞ can
significantly change the shape of the scaling loop distribution.

At late times, and for sub-critical production functions, ε > 0, we can take the limit γ � γd of
(3.52)

t4n(γd � γ < γ∞, t) '
c

ε
γ2χ−3

[
1−

(
γ

γ∞

)ε]
. (3.54)

Compared to Eq. (3.31), we see that the correction term (γ/γ∞)ε induced by the IR-regularization
has an effect only for γ ' γ∞ and becomes rapidly negligible as soon as γ < γ∞. For loops having
γ � γd, we get

t4n(γc ≤ γ � γd, t ≥ tc) ' c

2− 2χ

γ2χ−2

γd
, (3.55)

the correction (γd/γ∞)ε can always be safely ignored. Finally, for loops smaller than the GW
backreaction length, γ � γc, we recover Eq. (3.34). The IR-correction added corresponds to the
fourth term of Eq. (3.53) and remains again always negligible for ε > 0.

We therefore conclude that sub-critical loop production functions yield scaling loop distributions
that are immune to the IR behaviour of the network.

Super-critical case

For super-critical values of χ > χcrit, we have ε < 0 and most of the arguments applying for ε > 0
are now reversed. For instance, the limit γd � γ < γ∞ becomes

t4n(γd � γ < γ∞, t) ' −
c

ε
γ2χ−3

[(
γ∞
γ

)−ε
− 1

]
' −c

ε
γ−ε∞ γ3ν−4. (3.56)



3.3. POSSIBLE INFRARED REGULARIZATIONS 85

The time divergence of the loop distribution is solved but the power-law exponent has been changed
from 2χ− 3 to 3ν − 4, see Eq. (3.35). For smaller loops, we get

t4n(γc ≤ γ � γd, t) ' −
c

ε
γ2χ−3

d

[
− ε

2− 2χ

(
γ

γd

)2χ−2

+

(
γ∞
γd

)−ε]
. (3.57)

Since γ∞/γd � 1, the IR cut is adversely introducing a new length scale! Thus, let us define γir by

γir ≡
[ −ε

(2− 2χ)γ−ε∞

] 1
2−2χ

γ
3−3ν
2−2χ

d . (3.58)

For γ > γir, Eq. (3.57) shows that the loop distribution is flat, the dependence in γ remains
negligible compared to the constant term introduced by the regularization. On the contrary, for
γ < γir, we recover a power-law behaviour as γ2χ−2. This new IR scale is relevant only if γir > γc,
which is model- and regularization-dependent. Nonetheless, if we assume the dependency in Gµ for
γd given in Eq. (3.4),

γir ∝ (Gµ)
3−3ν
2−2χ , (3.59)

and using Eq. (3.21)
γir

γc
∝ (Gµ)

4χ2−2χ+1−3ν
2−2χ . (3.60)

This defines a particular value for χ, namely

χIR ≡
1 +
√

12ν − 3

4
, (3.61)

whose numerical value in the radiation era is χIR ' 0.683 and χIR ' 0.809 for the matter era.
For all values χcrit < χ < χIR, the exponent of Eq. (3.60) is negative. For Gµ small enough, we
generically have γir > γc. As a result, the regularized loop distribution is now scaling but exhibits
a new plateau for γir < γ < γd, which smoothly connects to the γ2χ−2 behaviour in the domain
γc ≤ γ < γir. For larger values of χ > χIR (and deeper negative values of ε), only the plateau exists
in the whole domain γc ≤ γ < γd, the amplitude of the constant term (γ∞/γd)−ε is so large that
it erases any features that could be associated with the scale of gravitational wave emission. This
situation is actually reminiscent with the time-divergent behaviour discussed in Section 3.2.4.

Finally, for the very small loops, γ � γc, with γc � γd, the loop distribution reads

t4n(γ � γc, t ≥ tc) ' c
(

1

2− 2χ
+

1

2χc − 2

)
γ2χ−2

c

γd
− c

ε
γ−ε∞ γ3ν−4

d +O
(
γ2χ−3

d

)
. (3.62)

It is scaling with a plateau behaviour. The amplitude of the plateau is either given by the first
term, the one varying as γ2χ−2

c /γd, or the second term which is proportional to γ−ε∞ γ3ν−4
d . That

depends on their relative amplitude. Neglecting the terms in χc, which are sub-dominant, the ratio
R of the first to second term in the right-hand side of Eq. (3.62) simplifies to

R =

(
γir

γc

)2−2χ

. (3.63)

Consistently with the behaviour in the γ > γc domains, for χcrit < χ < χIR, one always has R � 1
and the regularization effects are small. Only for χ > χIR, the plateau at γ < γc is dominated by
the regulator and continuously matches the one at γ > γc.
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We conclude that IR-regularization of super-critical loop production functions solves their time-
divergence, but this has the consequence of significantly modifying the shape of the actual scaling
distribution. The results are therefore strongly IR-sensitive.

3.3.3 Influence of a power-law IR-regularization

Considering the strong dependence of the loop number density on the parameter γ∞, one might
ask whether the shape of the IR-cutoff has an additional influence on the results. To perform
this analysis, we introduce an additional source term c∞γ2χ∞−3Θ(γ − γ∞) to the collision term
of the Boltzmann equation (3.20) and, neglecting all possible transients, compute its contribution,
say t4n∞, to the asymptotic loop number density. For this source term to be a well-behaved IR-
regulator, it has to fulfil two conditions. First ε∞ > 0 otherwise we expect this term to present the
same time-divergent behaviour as the critical and super-critical distributions. Then, we should have

c∞ = cγ
2(χ−χ∞ )
∞ for the loop production function to be continuous in γ∞. Then the contribution

of such a power-law cutoff is

t4n∞(γ < γ∞) =
c∞
ε∞

(γ + γd)3ν−4

(γ∞ + γd)ε∞
f∞

(
γd

γ∞ + γd

)

− c∞
ε∞

(γ + γd)2χ∞−3

(
tini

t

)ε∞
f∞

(
γd

γ + γd

tini

t

)
,

(3.64)

where

f∞(x) ≡ 2F1(3− 2χ∞ , ε∞; ε∞ + 1;x) . (3.65)

The condition ε∞ > 0 ensures that all time-dependent contributions are suppressed at late-times.
Under the assumption that γd � γ∞, the contribution to the scaling loop number density coming
from the power-law cutoff is

t4n∞(γ < γ∞) = c∞
(γ + γd)3ν−4

ε∞γ
ε∞∞

= c
(γ + γd)3ν−4

ε∞γε∞
. (3.66)

This additional part generically contributes and can modify the shape of the loop distribution, as
for instance it would modify the value of γir for the super-critical case in Eq. (3.58). However, for
large enough values of ε∞, namely for ε∞ � |ε|, it can safely be neglected with respect to the one
computed earlier. As a result, the IR-regularization effects we have found in the previous section
are relatively generic in the sense that they are not simply induced by the choice of an infinitely
sharp cut in the LPF but rather by suppressing the production of large loops.

3.4 Conclusions

The aim of this paper has been to carry out an exhaustive study of the effect of the loop production
function on the cosmological distribution of loops. As explained in the Introduction, numerical
simulations of Nambu-Goto cosmic string networks are not currently able to capture some important
physical effects at very small scales, for instance GW emission and its backreaction effects. Hence,
determining the loop distribution, by construction, requires an interplay between numerical results
(valid for larger loops where the extra physics should be negligible) and analytical modelling.
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Type γ < γc γc < γ < γir γir < γ < γd γ > γd

Sub-critical c

2− 2χ
γ2χ−2

c γ−1
d

c

2− 2χ
γ2χ−2γ−1

d − c

ε
γ2χ−3

IR Critical c

3− 3ν
γ3ν−3

c γ−1
d

c

3− 3ν
γ3ν−3γ−1

d − cγ3ν−4 ln

(
γ∞
γ

)

IR Super-critical
with χ < χIR

c

2− 2χ
γ2χ−2

c γ−1
d

c

2− 2χ
γ2χ−2γ−1

d −c
ε
γ−ε∞ γ3ν−4

d −c
ε
γ−ε∞ γ3ν−4

IR Super-critical
with χ > χIR

−c
ε
γ−ε∞ γ3ν−4

d −c
ε
γ−ε∞ γ3ν−4

d −c
ε
γ−ε∞ γ3ν−4

d −c
ε
γ−ε∞ γ3ν−4

Table 3.2: Asymptotic contributions to the loop number density assuming a “strong” enough in-
frared cutoff. With this assumption, both critical and super-critical loop number densities scale
with time but their shape is modified compared to the unregularized ones (see Table 3.1).
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Figure 3.5: Difference between loop distributions in the radiation era generated by a Dirac distri-
bution LPF (green lower curve) and a super-critical, IR-regularized, Polchinski-Rocha one (purple
top curve). Given a super-critical power-law loop production function, one can reproduce the large
scale behaviour of the loop distribution with a Dirac distribution for the loop production function
(see Section 3.2.2). Doing so, one loses the small-scale behaviour of the loop distribution. For
illustration purposes, we have chosen Gµ = 10−7, c ' 0.25 and γ∞ = 0.1 for the super-critical LPF
and c ' 5.7 for the Dirac distribution.
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The analytical tool used to solve for the loop distribution is the Boltzmann equation (3.20). On
the one hand, we have shown that very different LPF, namely, a Dirac distribution motivated by
the one-scale model, and a sub-critical Polchinski-Rocha power-law distribution (χ < χcrit) taking
into account the small-scale structure built up on the strings, can give rise to a scaling, power-law,
distribution on large scales, albeit with different power-law exponents. On the other hand, we
have found that the actual value of the power-law exponent, i.e., the value of χ with respect to
χcrit = (3ν − 1)/2, produces very different behaviours. Critical and super-critical LPFs (χ ≥ χcrit)
lead to time-divergent loop distributions, which do not scale. The critical case however exhibits
only a logarithmic growth for large loops, γ ≥ γd, and a very long transient scaling for the smaller
ones, γ < γd, that can last longer than the age of the universe.

The divergent behaviour of the critical and super-critical cases has been traced back to a relative
over-production of large loops with respect to small loops, and we have shown that it can be
regularized by arbitrarily assuming that the PR loop production function vanishes above some
length scale γ∞. We find, however, that although such an IR regularization fixes the time divergence,
it is also changing the shape of the loop distribution. For this reason, we conclude that both the
critical and super-critical LPF are genuinely IR-sensitive. For the critical case, we find that the
large loop distribution acquires a new logarithmic dependence in γ (again for γ ≥ γd). On the small
scales γ < γd, the predictions are all very different and depend on both the PR exponent χ and on
the IR regulator. The results of our study are summarized in Tables 3.1 and 3.2, where we give the
asymptotic contributions to the loop number density on all scales γ depending on the value of the
parameter ε ≡ 3ν − 2χ− 1 (it vanishes for χ = χcrit). Let us notice that for extreme values of Gµ,
and times close to the transition from the radiation to the matter era, these results may not apply
and one should rely on the complete solutions given in the appendices.

It is interesting to observe from the last row of Table 3.2, that in the super-critical case only
and assuming an IR cutoff, the obtained distribution for large γ ≥ γd is essentially identical to
that obtained from assuming a Dirac distribution for the LPF. In particular, for large γ there is
a −5/2 power-law in the radiation era and −2 power-law in the matter era, which are the values
for the exponents that we have obtained in Section 3.2.2. At the same time, both distributions are
completely different on smaller scales. This is illustrated in Fig. 3.5.

In this paper, following Ref. [123], we have also introduced a small distance scale γc below
which gravitational backreaction is expected to be important. Generically, for γc � γd, and for
all values of χ, the amplitude of the loop distribution at small γ < γc is enhanced relative to the
Dirac distribution LPF, and, as discussed in Ref. [90], this leads to observational consequences on
the SGWB. Another interesting feature we have not discussed in the main text concern the various
transient domains associated with the IR regularization. They are excited soon after the network
is created, but also during the transition from the radiation to matter era. As such, they may also
lead to interesting phenomenological consequences, in particular regarding a gravitational wave
signature.

3.A Complete solutions

In this appendix, we give the explicit expressions of the solution of the Boltzmann equation (3.12).
Details of the calculation can be found in Refs. [123, 125] and we here simply report the results.
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3.A.1 Non-critical loop production function

For the piecewise PR loop production function given in Eqs. (3.20) and (3.22), assuming χ 6= χcrit,
one gets

t4n(γ ≥ γc, t) =
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)4 (aini
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− c
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)
, (3.67)
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, (3.68)

t4n(0 < γ < γτ , t) =
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. (3.69)

where we recap that

f(x) ≡
2
F

1
(3− 2χ, ε; ε+ 1;x) , fc(x) ≡

2
F

1
(3− 2χc, εc; εc + 1;x) . (3.70)

and

ε ≡ 3ν − 2χ− 1, εc ≡ 3ν − 2χc − 1. (3.71)

There is a transient domain for loops having γ smaller than

γτ (t) ≡ (γc + γd)
tini

t
− γd, (3.72)

which describes a virgin population of loops that started their evolution with a γ < γc and which
have never been contaminated by shrunk loops produced at γ > γc. This population of loops cannot
exist forever and the domain disappears for times t ≥ tτ where γτ (tτ ) = 0.
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3.A.2 Critical loop production function

In the critical case, the piecewise loop production function is given by Eq. (3.20) in the domain
γ ≥ γc with χ = χcrit, and Eq. (3.22) for γ < γc which is unchanged. The solution reads
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, (3.73)

t4n(γτ ≤ γ < γc, t) =
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t4n(0 < γ < γτ , t) =
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, (3.75)

where we recap that the first integral g(x) is given by

grad(x) ≡ ln

(
1−
√

1− x
1 +
√

1− x

)
+

2

3

4− 3x

(1− x)3/2
, gmat(x) ≡ 1

1− x ln

(
1− x
x

)
, (3.76)

in the radiation and matter era, respectively. Notice that the small scales transient, Eq. (3.75), is
identical to Eq. (3.69). To ease comparison with the non-critical case, let us stress that for χ = χcrit,
one has ε = 0 and 2χc−3 = 3ν−4 such that the critical functional shape is smoothly interpolating
between the sub- and super-critical solutions presented in Section 3.A.1.

3.B Sharp infrared regularization

The sharp IR-regularization consists in cutting the loop production function above some length scale
γ∞. Therefore, it is a piecewise function over three domains: for γ < γc it is given by Eq. (3.22),
for γc ≤ γ < γ∞ by Eq. (3.20) and for γ ≥ γ∞ it is vanishing. The new length scale γ∞ introduces
a new, time-dependent, length scale defined by

γ+(t) ≡ (γd + γ∞)
tini

t
− γd. (3.77)

Physically its meaning is the following: if we consider a loop which was created at time tini with
the maximal possible size γ∞tini, then at time t its length is `+ = γ+t. Therefore, at time t, loops
having γ < γ+(t) are not affected by the IR cutoff and the non-regularized solutions are still valid.
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← γτ γc ← γ+ γ∞
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γc← γ+ γ∞

γ

Figure 3.6: Schematic representation of the different domains of γ for t < tc and for t > tc. The
black regions are causally disconnected from the cutoff at γ∞ such that the solutions are exactly
the same as the non-regularized ones. On the contrary, this is not the case in the red dotted regions
and one has to use the modified expression for t4n(γ ≥ γ+, t) (see text).

On the contrary, the loop distribution for γ > γ+(t) has to be re-derived by solving the Boltzmann
equation and satisfying the two continuity conditions at γ = γc and γ = γ∞. In doing so, we must
distinguish the cases for which γ+(t) > γc from those having γ+(t) < γc. To this end, we define
t = tc through γ+(tc) = γc from which

tc ≡
γ∞ + γd

γd + γc
tini. (3.78)

If we compare Eqs. (3.72) and (3.77), we have γτ (tini) = γc and γ+(tini) = γ∞; the domains never
collide: γ+(t)− γτ (t) = (γ∞− γc)(tini/t) > 0. At last, the domain γ < γ+(t) disappears completely
for t > t+ where

t+ ≡
(

1 +
γ∞
γd

)
tini, (3.79)

which is defined by γ+(t+) = 0. The different transient domains thus defined are summarized in
Fig. 3.6. In practice, the solution is affected by the IR cutoff only within the red dashed zones
appearing in this figure, but for completeness, we give, and repeat, the solutions in all contiguous
domains.

3.B.1 Non-critical loop production function

We distinguish the two cases, t ≤ tc and t > tc. During the relaxation period t ≤ tc, the solution
reads

t4n(γ ≥ γ∞, t < tc) =
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t4n(γ+ ≤ γ < γ∞, t < tc) =
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For later times, t ≥ tc, we get the solution
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Neglecting all transients and initial condition effects, these equations show that the IR cut can
be viewed as the formal replacement written in Eq. (3.47).

3.B.2 Critical loop production function

For the critical case χ = χcrit and the sharp IR cut at γ∞, one gets during the relaxation times
t < tc
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Finally, for times t ≥ tc, γ+(t) becomes smaller than γc and the complete critical IR-regularized
loop distribution reads
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Chapter 4

Impact of the small-scale structure
on the Stochastic Background of
Gravitational Waves from cosmic
strings

This chapter is a reproduction of Ref. [56] of which I am the sole author. This paper is the direct
continuation of Chapter 3 and my aim was to study the stochastic background of GW with the loop
distributions of the previous chapter. The power-law loop production function (LPF) of Polchinski
and collaborators has been known to enhance the number of very small loop in the form of an extra
population of small loops. The question addressed in this chapter is whether this enhancement
modifies the shape of the GW background and the bounds on the string tension Gµ. I calculate
analytical templates for the evaluation of the stochastic background of GW adapted to these loop
number densities and use them to identify four classes of stochastic background signals.

Abstract

Numerical simulations and analytical models suggest that infinite cosmic strings produce
cosmic string loops of all sizes with a given power-law. Precise estimations of the power-law
exponent are still matter of debate while numerical simulations do not incorporate all the ra-
diation and back-reaction effects expected to affect the network at small scales. Previously it
has been shown, using a Boltzmann approach, that depending on the steepness of the loop
production function and the gravitational back-reaction scale, a so-called EPSL can be gen-
erated in the loop number density. We propose a framework to study the influence of this
extra population of small loops on the SGWB. We show that this extra population can have a
significant signature at frequencies higher than H0(ΓGµ)−1 where Γ is of order 50 and H0 is
the Hubble constant. We propose a complete classification of the GW power spectra expected
from cosmic strings into four classes, including the model of Blanco-Pillado, Olum and Shlaer
and the model of Lorenz, Ringeval and Sakellariadou. Finally, we show that given the uncer-
tainties on the Polchinski-Rocha exponents, two hybrid classes of GW power spectrum can be
considered giving very different predictions for the SGWB.
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4.1 Introduction

The first direct observation of Gravitational Waves (GW) coming from the merger of two black
holes [18] was both a wonderful check of the theory of General Relativity and the onset of GW
astronomy. Since GW propagate freely throughout the Universe, they are not limited by the last
scattering surface, and give us an unprecedented opportunity to look for topological defects, and in
particular cosmic strings.

Cosmic strings are one-dimensional topological defects that may have formed during a symmetry-
breaking phase transition in the early Universe [61, 69, 64, 88]. Nambu-Goto strings are a powerful
one-dimensional approximation to study these solitonic solutions on cosmological scales. The evolu-
tion of a Nambu-Goto string network in an expanding background has been studied both analytically
[61, 301, 63, 303, 304, 94, 137, 287, 232, 123, 103, 230, 305, 52] and through numerical simulations
[102, 93, 102, 101, 95, 109, 99] in the last decades, and is still subject of intense research.

A general result is that the network relaxes to an attractor solution known as the scaling solution
and remains self-similar with the Hubble radius. If cosmic strings were formed, scaling means they
survive during the whole history of the Universe and are present all over the sky. Strings can induce
anisotropies on the Cosmic Microwave Background and have been searched for in the Planck data.
The current CMB constraints give an upper bound for the string tension µ of Gµ < 1.5× 10−7 for
Nambu-Goto strings and Gµ < 2 × 10−7 for Abelian-Higgs strings, where G is Newton’s constant
[306, 75, 72, 74].

These bounds are calculated assuming a given scenario for the evolution of the loop number
density throughout the history of the Universe (see below), and can depend a lot on those assump-
tions. Furthermore, each closed cosmic string loop radiates GW and the superposition of them
produces a Stochastic Background of Gravitational Waves (SGWB) [117, 244, 118, 106, 307, 308]
which could be detected by gravitational wave detectors. This background has been looked for in
LIGO/Virgo for O1 and O2 and gives already a tighter upper bound for Gµ which is, however, very
dependent on the cosmic string model used, ranging from Gµ < 1.1 × 10−6 to Gµ < 2.1 × 10−14

[91, 32]. In Section 4.4.3 we will explain the origin of the orders of magnitude difference between
these two constraints. The most stringent and stable constraint today comes from pulsar timing
experiment giving Gµ . 10−10 [213].

Building a model for the evolution of the cosmic string network is challenging, and involves both
analytical modelling and numerical simulations. Nambu-Goto simulations are necessary to deter-
mine the large-scale behaviour of the loop number density, but are unable to provide a description
of the smallest scales as they do not include gravitational radiation nor the back-reaction that dom-
inates on these scales [120, 238, 121]. One of the difficulties is the proliferation of kinks – which are
discontinuities in the tangent vector of the string. Kinks are formed every time two strings inter-
sect each other, are removed by outgoing loops and are smoothed by gravitational back-reaction.
If the scaling of the large scales is today well-supported by numerical simulations, the build-up of
a population of kinks has raised some doubts on the scaling properties of the small-scales [137, 94,
136, 303, 304, 305, 230, 309, 109] and this situation cannot be settled with simulations available
today. A first attempt to model analytically the number of kinks using the one-scale model was
performed in Refs. [303, 304], and showed that kinks accumulate until the number of kinks reaches
a scaling regime introducing another scale to the system [136]. Models were later introduced to
take into account this small-scale structure, these include the three-scale model [94], a renormalized
velocity-dependent one-scale model [305, 230] and the Polchinski-Rocha model based on fractal
dimensions [137, 138, 307, 287] which we will use in the following. It introduces a positive exponent
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χ defined later in the equation (4.1), and one of its particular prediction is that the gravitational
back-reaction scale is not ΓGµt as in Refs. [307, 309], but rather the smaller scale Υ(Gµ)1+2χt
where Υ is of order 20.

The goal of this article is to provide a unified framework which can continuously describe,
with a limited set of parameters, different cosmic string loop models from the literature and give
predictions for the SGWB. It is built using the analytical model of Polchinski and Rocha [137,
287, 232] and later developments [52, 123], and therefore includes the parameter χ. With this
framework, we aim at gaining a deeper understanding of the SGWB and why constraints on the
string tension from LIGO/Virgo are so model-dependent. We also expect to use this framework to
give model-independent constraints on the string tension.

Using our unified framework, we can furthermore focus on two particular models, the BOS [103]
and the LRS [123] models. The BOS model is based on the simulations conducted in Refs. [103, 95]
and makes the assumption that the production of loops with sizes smaller than the gravitational
radiation scale tΓGµ, where Γ ≈ 50, is suppressed. On the other hand, the LRS model is based
on the simulations conducted in Ref. [99] and based on the analytical studies of Refs. [137, 287]
which assume that small loops are produced down to the gravitational back-reaction scale, which is
smaller than the gravitational radiation scale by several orders of magnitude. As a result the two
models give very different predictions for the loop number density. Relative to the first one, the
second gives rise to an Extra Population of Small Loops (EPSL). The smaller back-reaction scale à
la Polchinski-Rocha can be introduced in the BOS model producing also an additional population
of small loops [52]. It is therefore interesting to understand its effect on the SGWB.

This paper is set up as follows. Section 4.2 describes the theoretical framework used to unify
several cosmic string models found in the literature. In particular, we show that the loop number
density is naturally composed of two distinct population, a SLND which is very similar to the
prediction of the one-scale model, and an EPSL. Section 4.3 shows how to calculate analytically an
estimate to the SGWB from cosmic strings and discusses the validity of the approximations made.
Section 4.4 then combines the results to obtain the dependence of several types of GW experiments
to the uncertainties on the cosmic string parameters. Finally, Section 4.5 presents our conclusions.

4.2 Theoretical framework

4.2.1 The network of infinite strings

A standard way to model the evolution of cosmic strings is to study infinite strings and closed
loops as two distinct populations in interaction. These infinite strings of cosmological sizes are
stretched by the expansion of the universe characterized by the scale factor a(t) which evolves as
tν where ν = 1/2 in the radiation-dominated era and ν = 2/3 in the matter-dominated era. At the
same time, they lose energy by forming loops. Closed loops are formed when two infinite strings
intersect each other or when one self-intersects. In principle these loops can rejoin the infinite
strings or fragment into smaller loops. At the end of the fragmentation, one is left with smaller
non-self intersecting long-lived loops. It is this population of long-lived non self-intersecting loops
that dominates the SGWB and that we model.

In this article, we assume the inter-commutation probability to be equal to one, although some
types of cosmic strings may have it strictly smaller than one [310]. Based on analytical models [64]
and numerical simulations [99, 103, 95] we expect the network of infinite strings to scale in radiation-
dominated or in matter-dominated era. Scaling is an attractor solution of the network in which all
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the relevant length scales are proportional to the horizon size dh which itself is proportional to the
cosmic time t. During scaling the energy density contained in cosmic strings evolves as ρ∞ ∝ t−2.

The loop production function P(`, t) is the number of long-lived non self-intersecting loops of
invariant length ` per unit volume per unit time formed at cosmic time t. In scaling, t5P(`, t) is
expected to be only a function of the scaling variable γ = `/t. There exist different calculations
in the literature concerning the shape of this loop production function. In the one-scale model
introduced in Ref. [63], all loops are assumed to be formed with the same size, meaning the loop
production function is a Dirac-delta distribution. This typical size is then inferred from numerical
simulations. In the work of [137, 287], it has been argued that the loop production function is
a power-law, something which was found in the simulations of [109] and is compatible with the
simulations of [99]. In such a case the loop production function is parameterized by a parameter χ
and a multiplicative constant c

t5P(`, t) = cγ2χ−3 for γc < γ (4.1)

where the analytical study of the small-scale structure of [137] suggested the introduction of a
gravitational back-reaction scale γc below which the production of loops by the network is suppressed

γc = Υ(Gµ)1+2χ (4.2)

where Υ is of order 20. This loop production function was developed in an attempt to take into
account the small-scale structure of the network. The exponent χ controls the rate at which the
fractal dimension df of the infinite strings approaches to 1 on the smallest scales [137]

df − 1 ∝ χ(`/t)
2χ

(2χ+ 1)(2χ+ 2)
(4.3)

It was shown in Ref. [123] that the precise shape of the loop production function below γc has
only a small impact on the LND. It has been used in Refs. [90, 123] to calculate the loop number
density and leads to a significant EPSL with respect to the one-scale scenario. To fit the numerical
simulations of [99], their analysis assumed the network to be sub-critical meaning χ < χcrit where

χcrit =
3ν − 1

2
=

{
1/4 in radiation era

1/2 in matter era
(4.4)

They were able to infer the slope of the loop production function from the loop number density and
obtained χr = 0.2 and χm = 0.295 [123]. Critical χ = χcrit and super-critical χ > χcrit networks
were finally studied in Chapter 3. This super-critical regime is supported by the Nambu-Goto
simulations of [103] in which they measured the loop production function and obtained χr = 0.5
and χm = 0.655. It is therefore important to include super-critical regimes in our framework for
future applications.

4.2.2 Loop number density

Once the loop production function is known, it can be injected into the Boltzmann equation for
the LND n(`, t)

d

dt

(
a3n

)
= a3P(`, t), (4.5)
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where the effect of the expansion of the universe is taken into account by introducing the scale
factor a. The loops radiate GW with a rate we assume to be constant and given by Refs. [114, 118]

d`

dt
= −ΓGµ ≡ −γd (4.6)

where Γ is of order 50 [117, 114]. This Boltzmann equation can be solved if one assumes either
radiation or matter domination and that the network of infinite strings is scaling so that the loop
production function scales and is given by equation (4.1). The complete set of solutions can be
found in Chapter 3. The loop number density no longer necessarily scales, unless one assumes that
the loop production function is cutoff for γ ≥ γ∞, where γ∞ is expected to be of the order of the
Hubble horizon. The authors suggest the inclusion of a sharp infrared cutoff to regularize those
new solutions and showed that the precise shape of the cutoff only has a small effect on the loop
distribution. We neglect it in the remainder of this paper. Even in these critical and super-critical
regimes, one can observe a large population of small loops in the LND up to a new value of χ = χIR

χIR =
1 +
√

12ν − 3

4
=

{
≈ 0.68 in radiation era

≈ 0.8 in matter era
> χcrit (4.7)

introducing an additional knee in the LND at

γIR =

( −εγε∞
2− 2χ

)1/(2−2χ)

γ
(3−3ν)/(2−2χ)
d (4.8)

in which ε is given by1

ε ≡ 3ν − 2χ− 1 (4.9)

The fact that critical and super-critical models present an extra population of small loops motivates
us to study the impact of this population on the SGWB

4.2.3 Normalization of the loop production function

Currently, there is a debate on how to normalize the loop production function, that is the constant
c in (2.1) based on measurements from numerical simulations. In this section, we will review two
different approaches followed in the community.

The first approach — explicitly stated in Refs. [95, 284], and implicitly used in the one-scale
model [64] — is to use an energy conservation equation to put an upper bound on the energy lost
by the network of infinite strings into loops. Assuming that the energy density of the infinite string
network ρ∞ is lost through the expansion of the Universe, redshifting and by the formation of
non-self-intersecting loops [64]

dρ∞
dt

= −2H(1 + 〈v2
∞〉)ρ∞ − µ

∫
`P(`, t) d` (4.10)

where H is the Hubble parameter and 〈v2
∞〉 is the average velocity of the infinite strings and has

been measured to be 0.45 (resp. 0.40,0.35) in a flat space-time (resp. radiation dominated, matter-
dominated) [95]. On assuming that the scale factor a ∝ tν and inserting (4.1) into (4.10), the

1This parameter is noted µ in Refs. [52, 123, 90]. We change the notation to avoid confusion with the string
tension.
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Figure 4.1: Normalization of the loop production function. The boundary of the blue region is given
by the “one-scale energy balance”. The green region is given by measurements in Ref. [99]. The
red line shows the set of parameters giving order unity loops per Hubble radius, see Section 4.2.4.
The blue dot corresponds to the parameters of the BOS model, and the orange dot to those of the
LRS model.
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energy density of the infinite strings

ρ∞(t) =
cµt−2

2[1− ν(1 + 〈v2∞〉)]

∫ γ∞

γc

γ2χ−2 dγ (4.11)

is the well-known attractor scaling solution ρ∞ ∝ µt−2. This can be compared to the values found
for each era in numerical simulations and used to give an upper bound for the parameter c once χ,
γc and γ∞ are fixed. The corresponding allowed parameter space for (c, χ) is denoted as “one-scale
energy balance” in Fig. 4.1. It should be noted that numerical simulations do not include any
gravitational radiation nor back-reaction, meaning that there the only equivalent to a lower cutoff
in the integral of equation (4.11) is determined by the smallest length-scale set at the initialization
of the simulation. If χ ≤ 1/2, the integral is dominated by this non-physical lower bound, and one
expect t2ρ∞ to diverge if the simulation is long enough [284].

Another approach advocated in Ref. [123] is to consider only the large scale LND determined
in simulations as trustworthy. It can be parameterized as a power-law on large-scales γ > γd and
fitted to the analytical predictions [52]

t4n = Aγ−p. (4.12)

In the numerical simulations of [99], they obtain a value of A which is compatible with other
numerical simulations. As shown in Section 4.2.4, the value of A is related to the parameters of the
loop production function (c, χ). Hence a given value of A determines a curve in the (c, χ) which is
the red line of Fig. 4.1.

While there seems to be a general agreement for the parameter A, there is a strong tension on
the parameter p. Even though the uncertainty interval given for p in Ref. [99] does not exclude the
degenerate value 5/2 in the radiation era, their best fit systematically points to a higher value than
5/2 and the authors have used the best fit value p = 2.6 since then, thus selecting the green region
of parameter space denoted in Fig. 4.1.

One can see that these two interpretations of two different numerical simulations do not agree
on the values for the different parameters. It should be noted that the loop production function
has been measured directly in Ref. [95] giving values for (c, χ) compatible with the energy-balance
argument. The group of Ringeval and al. is currently working to improve the measurement of the
loop production function in their own simulations to see whether an agreement can be met and
results of [285] can be reproduced or not.

For the remainder of this paper, for a given value for χ, we will determine the normalization
factor c as to fit the parameter A of the large scale LND. This assumption allows us to study both
models on the same footing and is more likely to remain valid once an agreement will be found.

4.2.4 Decomposition of the contributions in the different eras

The aim of this study is to determine whether the EPSL described in Ref. [123] and Chapter 3
are observable features of the SGWB. To this end, we propose a natural decomposition of the loop
number density into two parts, as Fig. 4.2 illustrates. The first contribution, which we called the
SLND, is of the form

t4n(γ) = C(γ + γd)−pΘ(γ∞ − γ) (4.13)

where γ∞ is a cutoff on the sizes of the loops. It is, for instance, the result of a Dirac loop production
t5P = cδ(γ∞−γ) [64]. In this particular case C = c(γ∞+γd)3−3ν and p = 4−3ν. It also describes
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Figure 4.2: The decomposition of the LND into two populations, the SLND and the EPSL for
χ = 0.2 and Gµ = 10−13 in the radiation era. The infrared cutoff is set to γ∞ = 0.1.

well the large scale behaviour if the loop production function is the power-law of equation (4.1)
[52]. Then the constants are fixed by

• in the sub-critical regime χ < χcrit, C =
c

ε
and p = 3− 2χ

• in the super-critical regime χ > χcrit, C = −cγ
−ε
∞
ε

and p = 4− 3ν

where ε is given in equation (4.9) and c is fixed by the normalization of the loop production
function, as discussed in Section 4.2.3. These approximations break down near χcrit and one should
add regularization terms coming directly from the analytical expression of Chapter 3. For clarity,
we omit these terms here and put the details in Appendix 4.C.

On top of the SLND, we superimpose an EPSL described as a piece-wise function, motivated
by the work of Chapter 3 2

t4n(γ) =





cγ−1
d

2− 2χ
γ2χ−2

c if γ < γc

cγ−1
d

2− 2χ
γ2χ−2 if γc < γ < γd

0 if γd < γ

(4.14)

This definition comes directly from the fact that we assumed a sharp cutoff at the back-reaction
scale γc. The analytic formulae would be a little more complicated with a power-law cutoff, but
the result would not be qualitatively modified.

2Based only on the asymptotic description provided in Table 3.2 this decomposition might seem artificial and one
could be concerned that loops smaller than γd are counted twice. In fact, it is just the opposite and this decomposition
is well motivated when we refer to the full solutions. See Appendix 4.B for more details.
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In the following, the analysis focuses on the impact of these two populations either in radiation-
dominated era, or in matter-dominated era. One should note that large loops produced during the
radiation era can survive long enough to be an important source of GW in the matter era. They
are a non-scaling population of loops and some models (see [114]) predict they dominate during
the matter-dominated era. Their contribution to the SGWB is calculated in Appendix 4.E.3 and
taken into account in our analysis. On the contrary loops of size smaller than γd during radiation
era, which is the case of the EPSL, do not survive long enough in the matter era to be a significant
contribution to the SGWB.

4.3 The Stochastic Background of Gravitational Waves

4.3.1 Emission of gravitational waves

Cosmic string loops oscillate and emit GW. The incoherent sum of their gravitational radiation
forms a SGWB which was first calculated in Ref. [117]. The oscillation of the loops is not the only
channel of gravitational radiation and burst-like events, from cusps, kinks and kink-kink collisions
are also sources of gravitational radiation whose wave-forms were calculated in Refs. [105, 106, 90].

There exists two main methods to calculate the SGWB. The first consists in introducing an
effective decomposition into harmonics Pm,m ∈ N where the lowest modes are dominated by the
oscillatory movement of the loop with typical frequency 2/`, where ` is the invariant length of the
loop, and the higher modes are dominated by burst-like events [114]. Typically, Pm ∝ m−q with
q = 4/3 (respectively 5/3, 2) for cusps (respectively kinks and kink-kink collisions). The energy
density carried by the GW per unit logarithmic interval of frequency is given by Ref. [114]

ρgw(t, f) = Gµ2
∞∑

m=1

Cm(f)Pm (4.15)

Cm(f) =
2m

f2

∫ z∗

0

dz

H(z)(1 + z)6
n

[
2m

(1 + z)f
, t(z)

]
(4.16)

in which H(z) is the Hubble parameter, t(z) is the cosmic time, and f is the frequency of the
wave in the detector. Details on the cosmological parameters used in this paper are summarized in
Appendix 4.A. The redshift at which cosmic strings where formed is denoted by z∗, and it depends
on the energy scale of the phase transition determined by the string tension. Considering the phase
transition happened during the radiation era and that the temperature today is T0, the redshift z∗
is given by

1 + z∗ ∝
1039/2 GeV

T0

√
Gµ (4.17)

which we will fix to be infinity in the following.
The other method to calculate the SGWB consists in considering the sum of all burst-like events

which are typically not isotropic [106, 308, 212]. This approach allows one to remove events resolved
inside a detector from the SGWB, as they are not part of the background any more. A detailed
discussion of the differences of the two approaches can be found in Chapter 3.

In this paper we will use the first method. To keep the following analysis simple, we make the
simplifying assumption that cosmic string loops emit only in their fundamental mode. The modes
m > 1 are only a small modification of its qualitative properties [213, 311] and we discuss briefly
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their impact Section 4.3.3. Introducing Q = 16π/(3Γ), the fraction of the critical density given by
the energy of GW is

ΩGW(ln f) =
Q

fH2
0

γ2
d

∫ ∞

0

dz

H(z)(1 + z)6
n

[
2

(1 + z)f
, t(z)

]
. (4.18)

4.3.2 Asymptotic description of the stochastic background of GW

With the assumptions made in this framework, one can calculate the energy density power spec-
trum for each contribution individually, namely the contribution from SLND on one side and the
contribution from the EPSL on the other side. Consider for instance the SGWB produced by the
SLND in the radiation era.

In the radiation era, we can make the following approximations for the Hubble parameter and
the cosmic time

H(z) = (1 + z)2Hr (4.19)

t(z) =
1

2(1 + z)2Hr
(4.20)

where Hr = H0

√
Ωrad. This allows us to simplify equation (4.18) into

ΩGW(ln f) =
64QHrΩrad

f
γ2

d

∫ ∞

zeq

dz t4n

[
4(1 + z)Hr

f

]
. (4.21)

Inserting the SLND contribution from equation (4.13) and noticing that p > 1

ΩGW(ln f) =
4QCΩrad

(p− 1)
γ3−p

d

[(
1 +

4Hr(1 + zeq)

fγd

)1−p
−
(

1 +
γ∞
γd

)1−p]
(4.22)

We can make several remarks on this particular result that can be extended to the other con-
tributions. The power spectrum has of two characteristic frequency scales. In particular f =
4Hr(1 + zeq)γ−1

∞ is a low frequency cutoff for the energy density. This frequency is so low with
respect to the frequency range of the GW detectors that we omit it in the following. The frequency
f = 4Hr(1 + zeq)γ−1

d is a knee in the SGWB. These two scales are well separated and the power
spectrum can be approximated by power-laws far from these frequencies.

We performed the same calculations for the other contributions, the SLND and EPSL during
the radiation and the matter era in the Appendices 4.D and 4.E and summed up the asymptotic
behaviour in Tables 4.1, 4.2 and 4.3. We can make the general remarks:

• a typical frequency scale at which the power spectrum presents a knee, roughly H0γ
−1
d for

the SLND and H0γ
−1
c for the EPSL. Those two frequencies are very well separated.

• at low and high frequencies, the power spectrum behaves as a power law

• the width of the knees can be estimated from the complete calculations but is essentially small
compared to the separation between H0γ

−1
d and H0γ

−1
c for Gµ� 1

• the power spectrum is cutoff at low frequencies, roughly H0γ
−1
∞ for the SLND and H0γ

−1
d for

the EPSL
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Frequency range f � H0γ
−1
d H0γ

−1
d � f

Radiation era Qrγ
2
d

[
f

4(1 + zeq)Hr

]2−2χr

Qrγ
2χr

d

Matter era
Qm

2(2− χm)
γ2

d

(
f

3Hm

)2−2χm

3HmQmγ
2χm−1
d f−1

Decaying into matter era
2Qrm(1 + zeq)2χr

(4χr + 1)
γ2

d

(
f

3
√

1 + zeqHm

)2−2χr

3QrmHm

(1− 3χr)
γ2χr−1

d f−1

Table 4.1: SLND – sub-critical case. For clarity, we have introduced Qr =
4crΩradQ

(1− χr)(1− 4χr)
,

Qm =
27cmΩmatQ

8(1− 2χm)
and Qrm =

27crΩmatQ

8(1− 4χr)
√

1 + zeq

.

Frequency range f � H0γ
−1
d H0γ

−1
d � f

Radiation era Q̃rγ
2
d

(
f

4(1 + zeq)Hr

)3/2

Q̃rγ
1/2
d

Matter era
Q̃m

Hm
γ2

df 3HmQ̃mf
−1

Decaying into matter era Q̃rmγ
2
d

(
f

3
√

1 + zeqHm

)3/2
12HmQ̃rm√

1 + zeq

γ
−1/2
d f−1

Table 4.2: SLND – super-critical case. For clarity, Q̃r =
16crγ

−εr∞ ΩradQ

3(4χr − 1)
, Q̃m =

3cmΩmatγ
−εm∞ Q

8(2χm − 1)

and Q̃rm =
27crΩmatγ

−εm∞ Q

8(4χr − 1)
.

From these tables, one recovers that the loops produced during the radiation-dominated era
give a plateau at high frequencies while all the other contributions decay as f−1 meaning that at
high enough frequencies, the SGWB is a plateau where the dominant contribution comes from the
radiation era. On the contrary, the low frequency region is usually dominated by GW produced
during the matter-dominated era. Indeed, the contributions from radiation era and from the loops
produced in radiation era and decaying into matter era have similar shapes in the low frequency
range, but as Ωmat � Ωrad, the latter contribution dominates.

Another feature one can see is that in the sub-critical case (Table 4.1), the slopes of the SGWB
from the large loop population is dependent on the values of χr and χm where the r index denotes
radiation-domination and m matter-domination. Whereas in the super-critical regime Table 4.2,
the frequency dependence of the spectrum is completely frozen.

For the EPSL, the spectrum presents a knee at the frequency scale H0γ
−1
c and is completely

suppressed on frequencies below H0γ
−1
d . Therefore, any impact on the SGWB happens on frequen-

cies higher than H0γ
−1
d . In this frequency range, the dominant contribution coming for SLND is

the radiation-domination one.
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Frequency range f � H0γ
−1
c H0γ

−1
c � f

Radiation era χr < 1/2
Q̂r

(1− 2χr)(1− χr)
γd

[
f

4(1 + zeq)Hr

]1−2χr 2Q̂r

(1− 2χr)
γdγ

2χr−1
c

Radiation era χr = 1/2 2Q̂rγd ln

(
γdf

4Hr(1 + zeq)

)
2Q̂r

[
1 + ln

(
γd

γc

)]
γd

Radiation era χr > 1/2
Q̂r

(2χr − 1)(1− χr)
γ2χr

d

Q̂r

(2χr − 1)(1− χr)
γ2χr

d

Matter era
Q̂m

3− 2χm
γd

(
f

3Hm

)1−2χm

3HmQ̂mγdγ
2χm−2
c f−1

Table 4.3: EPSL. For clarity, Q̂r = 2crΩradQ and Q̂m =
27cmΩmatQ

16(1− χm)
.

4.3.3 Beyond the fundamental mode

In Subsection 4.3.2 we have made the assumption that a loop emits GW in its fundamental mode,
but this is not generally the case, especially if cusps or kinks are present on the loop [106, 308].
If cusps or kinks are present, the higher modes of the spectral power Pm are not zero but behave
as m−q where q = 4/3 for cusps, 5/3 for kinks and 2 for kink-kink collisions. Even though there
have been attempts to calculate the spectral power for all values of m [118], some even taking into
account the gravitational back-reaction [120], we will make the following Ansatz for Pm

Pm = Γ
m−q

ζ(q)
(4.23)

where ζ is the Riemann zeta function to ensure the normalization of Pm. Starting from equation
(4.15) during the radiation era and injecting this spectral power Pm gives

ΩGW(ln f) =
16QHrΩrad

f
γ2

d

∞∑

1

m−q

ζ(q)
m

∫ ∞

zeq

dz t4n

[
4(1 + z)mHr

f

]
. (4.24)

For the SLND from equation (4.13)

ΩGW(ln f) =
4QCΩrad

(p− 1)
γ2

d

∞∑

1

m−q

ζ(q)

[(
4Hrm(1 + zeq)

f
+ γd

)1−p
− (γ∞ + γd)1−p

]
. (4.25)

At high frequency and under the assumption that γ∞ � γd, the spectral power is factorized and
one recovers the result assuming only the fundamental mode

ΩGW(ln f) =
4QCΩrad

(p− 1)
γ3−p

d . (4.26)

At low frequency the picture is slightly different and

ΩGW(ln f) =
4QCΩrad

(p− 1)
γ2

d

[
4Hr(1 + zeq)

f

]1−p
ζ(p+ q − 1)

ζ(q)
. (4.27)
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Figure 4.3: Impact of the extra population of small loops onto the SGWB in the parameter space
χr, χm for Gµ = 10−13. In the blue region, the high frequency plateau for ΩGW is dominated by
the extra population of small loops produced during radiation era. In the red region, the spectrum

presents a peak around H0γ
(m)
c

−1
produced by the EPSL during the matter era. Outside those

regions, the population of small loops can be neglected.

Even though we have only included the effects of the spectral power Pm on this single case, a
simple calculation shows that this result can be generalized to the other types of loops distribution
we discussed so far. At high frequencies, the SGWB of GW is insensitive to the decomposition into
harmonics, while at low frequencies it is multiplied by a factor

ζ(p+ q − 1)

ζ(q)
. (4.28)

4.4 Results

The aim of this section is to characterize the shape of the SGWB, as a function of the loop production
function exponents χr and χm. In particular, we assess the influence of the EPSL on the SGWB
and divide the parameter space (χr, χm) into four classes with specific features.
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4.4.1 Influence of the Extra Population of Small Loops on the SGWB

We can split the parameter space (χr, χm) in different regions depending on whether the EPSL
from radiation or matter era has a significant imprint on the SGWB.

Loops from the radiation era produce a plateau at high frequency in the SGWB. The extra
population of small loops introduces new features in the spectrum if its plateau is higher than the
plateau of SLND, meaning

3(2χr − 1/2)

2(1− 2χr)

(
Υ

γ∞

)2χr−1
√

Γ

γ∞
(Gµ)4χ2

r−1/2 > 1. (4.29)

This is shown as the blue region of Fig. 4.3. In this figure we have used the regularized formulae
of Appendix 4.C around χcrit. We provide an analytical expansion in terms of 1/ ln(Gµ) in Ap-
pendix 4.F for the position of the blue region. It should be noted that the EPSL produced during
radiation era can be dominant at high frequencies even if the network is super-critical. This sets a
new scale for χr, between χcrit and χIR.

For loops produced during matter era, we assume that the extra population of small loops is
visible if its peak at frequency 3Hmγ

−1
c with amplitude

27QcmΩmat

8(3− 2χm)(2− 2χm)
γdγ

2χm−1
c (4.30)

is bigger than all the other contributions at this frequency. This is represented as the red region in
Fig. 4.3. Contrary to the loops produced during the radiation era, only a subset of the sub-critical
models during matter era produce detectable features for the SGWB.

From Fig. 4.3, one can see that the BOS model can be safely replaced by an effective Dirac
distribution loop production function for two reasons. First, the network is super-critical during
both matter and radiation era meaning the SLND is universal with slope −5/2 during the radiation
era and −2 during matter era [52]. Secondly, Fig. 4.3 shows that the extra population of small
loops has a negligible impact on the SGWB.

4.4.2 Hybrid models

Fig. 4.3 can be used to build a classification of the various SGWB in the parameter space (χr, χm).
Including the separation between sub-critical and super-critical regimes, there are nine different
classes of spectra one can expect. For simplicity let us neglect the separation between sub-critical
and super-critical and present four classes having distinctive features in terms of the SGWB.

The two first classes are represented by the well-known BOS model in Fig. 4.4a and the LRS
model in Fig. 4.4b whose properties have been summed up on the figure. As we showed in the
previous section, the BOS model can effectively neglect entirely the EPSL. On the contrary, it
EPSL is a dominant source of GW in both the radiation and the matter era for the LRS model.

We can add to this list two new hybrid classes of models. In Fig. 4.4c, the EPSL of the radiation
era can be neglected but not during the matter era, leading to peak around the frequency 3Hmγ

−1
c .

As we explain in the following section, this peak leads to interesting features when we consider the
detection by GW detectors. Fig. 4.4d shows the opposite class in which the EPSL of the matter
era can be neglected but not in the radiation era, producing a small valley in the SGWB.

As we attempted to make apparent in Fig. 4.4, each of those classes have different shapes on
which one can read the parameters of the cosmic string network, apart from models like the BOS
models, for which the shape of the SGWB does not depend on (χr, χm).
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(a) Gµ = 10−13, χr = 0.5, χm = 0.655.

10−15 10−12 10−9 10−6 10−3 100 103 106 109

f

10−18

10−16

10−14

10−12

10−10

10−8

10−6

Ω
g
w

∝ f

Constant

3Hmγ
−1
d

(b) Gµ = 10−13, χr = 0.2, χm = 0.295.

10−15 10−12 10−9 10−6 10−3 100 103 106 109

f

10−18

10−16

10−14

10−12

10−10

10−8

10−6

Ω
g
w

∝ f1−2χm

Constant

3Hmγ
−1
c3Hmγ

−1
d

10−15 10−12 10−9 10−6 10−3 100 103 106 109

f

10−18

10−16

10−14

10−12

10−10

10−8

10−6

Ω
g
w

∝ f1−2χm ∝ f−1

Constant

3Hmγ
−1
c3Hmγ

−1
d

(c) Gµ = 10−13, χr = 0.45, χm = 0.295.
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(d) Gµ = 10−13, χr = 0.2, χm = 0.45.

Figure 4.4: Four different classes of SGWB.
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4.4.3 Constraints on the string tension from GW experiments

We have not yet been able to detect any SGWB in the European Pulsar Timing Array [213] nor
in the first two LIGO/Virgo runs [91, 32], giving only upper bounds on the cosmic string tension.
New data analysis techniques are being devised for the next generation of GW detectors such as
LISA [35]. If ongoing and future GW experiments could potentially detect the SGWB coming from
cosmic strings, it is a challenging data analysis problem to characterize the observed spectrum and
distinguish between the variety of expected astrophysical and cosmological sources.

In this section, we do not pretend to tackle any of the technical difficulties of the detection of
a SGWB. In particular, we will assume that we are able to separate the astrophysical foreground
from the cosmological source of GW. The theoretical GW detector is modelled as having a given
sensitivity curve, function of the frequency. We will make the assumption that the bandwidth of
the detector is infinitely thin around a typical frequency and a given sensitivity ΩGW. This is
of course a brutal assumption, however we expect that progress in the data analysis techniques
can be effectively taken into account by changing the sensitivity of the instrument. As we possess
analytic expressions for the stochastic background of gravitational waves within our framework, we
can easily explore the parameter space (Gµ, χr, χm). The result are summarized in Fig. 4.5.

As was shown in previous sections, the extra population of small loops modifies the GW spectrum
at frequencies higher than 3Hmγ

−1
d , hence we expect it to have an impact on high frequency

instruments such as LIGO/Virgo. It turns out the effect of the EPSL is quite dramatic for ground-
based telescopes as illustrated in Fig. 4.5a. Not only does the constraint on Gµ spans over nearly 10
orders of magnitude on the parameter space, it also presents a folding for small values of χm . 0.3
and χr & 0.3. The folding is illustrated by a slice at constant χm in Fig. 4.5b. This peculiar feature
means that the constraint on Gµ for these models is not an upper bound on Gµ but rather that a
set of intervals for Gµ being excluded. This can be understood by looking at Fig. 4.4c. The peak
at f = 3Hmγ

−1
d caused by the EPSL produced during matter era enters within the bandwidth of

the detectors for a given set of Gµ excluding another interval for Gµ.
On the contrary, experiments at lower frequencies, are not affected by the extra population of

small loops and are only sensitive to the slopes of the SLND. As the shape of the SLND is universal
for super-critical models we expect the detection surface to be flat in the upper-right corner for low
frequency experiments. For sub-critical networks however, the shape of the spectrum is modified,
and we expect the detection surface to be dependent on the values of χr and χm as can be seen in
Figs. 4.5c and 4.5d.

4.5 Conclusion

Our framework allowed us to produce analytic formulae for the SGWB for cosmic strings including
its small-scale structure. In particular, the introduction of a back-reaction scale γc � γd produces
an EPSL which can have an important effect on the SGWB for the LRS model [123]. We proposed
a parametrization, using variables χr and χm, of the uncertainty on the dynamics of the infinite
string network [123, 52]. We showed that the predictions of BOS [114] are stable if one introduces
this back-reaction scale, and that the extra population of loops is subdominant in terms of GW
production in this particular model. We are also in agreement with LRS [123].

We showed the small-scale structure of cosmic strings can have a significant impact on the SGWB
even outside the super-critical regime and calculated the region of the parameter space where its
effect cannot be neglected. We classified the GW power spectra coming from cosmic strings into
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Figure 4.5: Detection surface for the three types of GW detectors in the (χr, χm) parameter
space. The color scale gives the upper bound on Gµ. Note that the detection surface is folded
for LIGO/Virgo explaining why constraints on Gµ jump several orders of magnitude in the lower
left corner. Fig. 4.5b is a slice at constant χm.
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four different classes, for which we have shown two new and called hybrid models. The values of the
parameters χr and χm for these two hybrid models are not supported by any numerical simulation,
however the uncertainty on χr and χm motivates us to consider them.

We have also estimated systematically the constraints on the string tension Gµ of different
types of GW detectors and showed that low-frequency experiments will provide more stable and
model-independent bounds while ground-based detectors will be very sensitive to the details of the
small-scale structure of the cosmic string network.

4.A Cosmological parameters

We assumed the Λ-CDM cosmology with the parameters in Table 4.4. For the sake of simplicity, we
neglected the impact of the late-time acceleration of the Universe. We also neglected the changes
in the relativistic degrees of freedom, something which would decrease slightly the high frequency
plateau. The Hubble parameter is

H(z) = H0

√
Ωrad(1 + z)4 + Ωmat(1 + z)3 (4.31)

and the cosmic time is given by

t(z) =

∫ ∞

z

dz′

H(z′)(1 + z′)
(4.32)

Parameter Value
h 0.678

H0 100hkm.s−1Mpc−1

Ωrad 9.1476× 10−5

Ωmat 0.308
Hr H0

√
Ωrad

Hm H0

√
Ωmat

Table 4.4: Cosmological parameters from Ref. [312].

4.B Note on the decomposition of the loop number density

In the sub-critical regime, the scaling LND is given by

t4n(γc ≤ γ) =
c

ε
(γ + γd)2χ−3f

(
γd

γ + γd

)
(4.33)

In this equation the function f is defined by

f(x) ≡
2
F

1
(3− 2χ, ε; ε+ 1;x) ∼

1

Γ(3ν − 2χ)Γ(2χ− 2)

Γ(3ν − 3)
x−ε +

ε

2− 2χ
(1− x)

2χ−2
(4.34)

where we have expanded the hypergeometric function around unity using Gamma functions [313].
Taking the limit γc ≤ γ � γd

t4n(γc ≤ γ � γd) ∼ Γ(3ν − 2χ)Γ(2χ− 2)

Γ(3ν − 3)

c

ε
γ2χ−3

d +
cγ−1

d

2− 2χ
γ2χ−2 (4.35)
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where the Gamma function factor is 1 for χ = χcrit, of order unity for 0.1 < χ and eventually
diverges for χ = 0. A similar approach in the super-critical regime ε < 0 leads to Eq. (3.57)

t4n(γc ≤ γ � γd) ' cγ−1
d

2− 2χ
γ2χ−2 − cγ−ε∞

ε
γ−4+3ν

d (4.36)

The scale γIR giving a knee in the LND is precisely set by the competition between these two
contributions. It should be noted that the EPSL can be described uniformly in the three regimes
sub-critical, critical and super-critical. This property makes it easier for us to conduct our analysis
and makes this decomposition very natural.

4.C Regularization around χcrit for the standard loop num-
ber density

The decomposition for the SLND of Section 4.2.4 fails around χcrit and needs regularization terms
to remain consistent. Introducing γd, we suggest the following scheme

• for sub-critical regimes, C =
c

ε

[
1−

(
γd

γ∞

)ε]

• for super-critical regimes, C = −c

ε

(
γ−ε∞ − γ−εd

)

leading to the limit when ε→ 0

C = c ln

(
γd

γ∞

)
(4.37)

This regularization scheme gives a good approximation around χcrit at the expanse of underesti-
mating the LND for large γ. We can use this approximation to calculate the stochastic background
for which we give the asymptotic behaviour in Table 4.5.

Frequency range f � H0γ
−1
d H0γ

−1
d � f

Radiation era Qrγ
2
d

(
f

4(1 + zeq)Hr

)3/2

Qr
√
γd

Matter era
Qm

Hm
γ2

df 27HmQmf
−1

Decaying into matter era
Qrm

4
γ2

d

(
f

3
√

1 + zeqHm

)3/2
3HmQrm√

1 + zeq

γ
−1/2
d f−1

Table 4.5: SLND – critical case. For simplicity Qr =
8crΩrad

3
ln
(
γ∞
γd

)
, Qm =

3cmΩmat

8
ln
(
γ∞
γd

)
,

Qrm =
27crΩmat

4
ln
(
γ∞
γd

)
.
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4.D Contributions in the radiation era

In the radiation era, we can make the following approximations:

H(z) = (1 + z)2Hr (4.38)

t(z) =
1

2(1 + z)2Hr
(4.39)

where Hr = H0

√
Ωrad. In this case,

ΩGW(ln f) =
64QHrΩrad

f
γ2

d

∫ ∞

zeq

dz t4n

[
4(1 + z)Hr

f

]
. (4.40)

4.D.1 Standard loop distribution

If we consider in the radiation era a loop distribution function

t4n(γ) = C(γ + γd)−pΘ(γ∞ − γ), (4.41)

we can evaluate analytically ΩGW. In particular there is a typical frequency fb = 4(1 + zeq)Hrγ
−1
d

which corresponds to a knee in the power spectrum which can be used to rewrite the GW power
spectrum.

ΩGW(ln f) =
4QCΩrad

(p− 1)
γ3−p

d

[(
1 +

4Hr(1 + zeq)

fγd

)1−p
−
(

1 +
γ∞
γd

)1−p]
(4.42)

4.D.2 Extra population of small loops

We perform the same analysis but with the distribution defined in equation (4.14). Due to the
piece-wise nature of the LND, we have to distinguish two cases. In this case, fa = 4(1 + zeq)Hrγ

−1
d

and fb = 4(1 + zeq)Hrγ
−1
c

ΩGW(ln f < ln fb) =
4QcrΩrad

(1− 2χr)(2− 2χr)
γdγ

2χr−1
c

[(
fb
f

)2χr−1

−
(
γd

γc

)2χr−1
]

(4.43)

ΩGW(ln f > ln fb) =
4QcrΩrad

(1− 2χr)(2− 2χr)
γdγ

2χr−1
c

[
(2− 2χr)−

fb
f

(1− 2χr)−
(
γd

γc

)2χr−1
]

(4.44)

One can remark several things

• when χr < 1/2 the value of the plateau at high frequencies is given by the scale γc

• when χr > 1/2 the plateau is given by the scale γd in a way very similar to the SLND

In the special case where χr = 1/2, the cutoff is of primordial importance

ΩGW(ln f < ln fb) = 4QcrΩradγd ln

(
f

fa

)
(4.45)

ΩGW(ln f > ln fb) = 4QcrΩradγd

[
1− fb

f
+ ln

(
γd

γc

)]
(4.46)
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4.E Contributions during matter era

In the matter era, we can make the following approximations:

H(z) = (1 + z)3/2Hm (4.47)

t(z) =
2

3(1 + z)3/2Hm
(4.48)

where Hm = H0

√
Ωmat. In this case,

ΩGW(f) =
81QHmΩmat

16f
γ2

d

∫ zeq

0

dz (1 + z)−3/2t4n

[
3
√

1 + zHm

f

]
(4.49)

We expect two types of sources in the matter era, scaling loops formed during the matter era
and remnants from the radiation era which decay with time.

4.E.1 Scaling loops during matter era – Standard loop distribution

Assuming a scaling large-loop distribution

t4n(γ) = C(γ + γd)−pΘ(γ∞ − γ) (4.50)

Changing variables from z to x =
3
√

1 + zHm

fγd
we obtain

ΩGW(f) =
35QCH2

mΩmat

8f2
γ1−p

d

∫ 3
√

1+zeqHm
fγd

3Hm
fγd

dx (1 + x)−px−2Θ

(
γ∞
γd
− x
)

(4.51)

Approximate solution

One can introduce the typical frequency

fc = (p+ 1)1/p 3Hm

γd
(4.52)

and use it to interpolate the GW power spectrum between the two solvable regimes of low and high
frequency

ΩGW(ln f) =
81QCHmΩmat

8f
γ2−p

d

(
f

fc + f

)p
(4.53)

Exact solution

There exists a well-defined exact primitive to this integral we can use to obtain an exact solution
even around the peak.

−
2
F

1

(
p, 1 + p; 2 + p;− 1

x

)

(1 + p)xp+1
(4.54)
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Indeed, even though the Gauss hypergeometric function has a radius of convergence of 1, it turns

out it converges for
1

x
< 0.

This primitive can be used but is not very practical. However, we can use it to perform a simple
comparison. We know that the region where the approximation will be the worse is around fc, we
can calculate the precision of this approximation there.

In the case of the approximate solution

ΩGW(fc) =
34QCHmΩmat

fc2p+3
γ2−p

d (4.55)

While for the exact solution, if f = fc

ΩGW(fc) =
34QCHmΩmat

8fc
γ2−p

d


2F1

(
p, 1 + p; 2 + p;−(p+ 1)1/p

)
−

2
F

1

(
p, 1 + p; 2 + p;− (p+ 1)1/p

√
1 + zeq

)

√
1 + zeq

p+1




(4.56)
Then the ratio between the exact value divided by the approximate one in the limit zeq →∞ is

2p
2
F

1

(
p, 1 + p; 2 + p;−(p+ 1)1/p

)
=
p=2

0.82 (4.57)

We see that the approximate solution overestimate the value of the peak.

4.E.2 Scaling loops during matter era – extra population of small loops

Assuming the EPSL distribution. Five cases happen depending on the frequencies:

f1 =
3Hm

γd
, f2 =

3Hm

√
1 + zeq

γd
(4.58)

f3 =
3Hm

γc
, f4 =

3Hm

√
1 + zeq

γc
(4.59)

ΩGW(f < f1) = 0. The other results come straightforwardly

ΩGW(f1 < f < f2) =
81QcmHmΩmat

8(3− 2χm)(2− 2χm)f
γdγ

2χm−2
c

(
f3

f

)2χm−2
[

1−
(
f1

f

)3−2χm
]

(4.60)

we can check the continuity in f1. The next region gives

ΩGW(f2 < f < f3) =
81QcmHmΩmat

8(3− 2χm)(2− 2χm)f
γdγ

2χm−2
c

(
f3

f

)2χm−2
[

1−
(
f3

f4

)3−2χm
]

(4.61)
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One can check easily the continuity in f2 and f3.

ΩGW(f3 < f < f4) =
81QcmHmΩmat

8(3− 2χm)(2− 2χm)f
γdγ

2χm−2
c

f3

f

[
(3− 2χm)

f

f3
+ (2χm − 2)−

(
f

f4

)3−2χm
]

(4.62)

=
81QcmHmΩmat

8(2− 2χm)f
γdγ

2χm−2
c (){1− f3

f

1

3− 2χm

[
(2− 2χm) +

(
f

f4

)3−2χm
]
}

(4.63)

here are again two formulae for the continuity in f3 and f4. The last region gives

ΩGW(f4 < f) =
81QcmHmΩmat

8(2− 2χm)f
γdγ

2χm−2
c

(
1− f3

f4

)
(4.64)

4.E.3 Decaying loops from radiation era

For loops created during radiation era, the relaxation term in matter era is

t4n(γ) = C

(
t

teq

)4(
1 + z

1 + zeq

)3(
teq

t

)p
(γ + γd)−pΘ

[
γ∞ + γd − (γ + γd)

t

teq

]
(4.65)

= c

(
1 + zeq

1 + z

)3−3p/2

(γ + γd)−pΘ

[
γ∞ + γd − (γ + γd)

(
1 + zeq

1 + z

)3/2
]

(4.66)

Loops smaller than γd decay very rapidly. Changing variables from z to x =
3
√

1 + zHm

fγd

ΩGW(f) =
81QCHmΩmat

8f
(1 + zeq)3/2(2−p)γ2−p

d

(
fγd

3Hm

)3p−7 ∫
x3p−8(1 + x)−p dx (4.67)

Approximate solution

Using the same idea as in the previous section, we introduce a new frequency fd that separates the
different regimes.

fd =
3Hm

γd

[
2p− 7

3p− 7

(1 + zeq)−1/2 − (1 + zeq)3/2(2−p)

(1 + zeq)−(p+1)/2 − (1 + zeq)3/2(2−p)

]1/p

(4.68)

One can use to find an interpolating formula for the GW power spectrum

ΩGW(ln f) =
81QCHmΩmat

8f
γ2−p

d

(
f

f + fd

)p
(1 + zeq)−1/2 − (1 + zeq)3/2(2−p)

3p− 7
(4.69)

This expression starts to be much more complicated because we need to keep track of the two
boundary terms of the integral. Different behaviour appear:

• p < 7/3 ≈ 2.33, a very soft slope, all the integrals are dominated by the lower bound
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• 7/3 < p < 7/2 = 3.5, the large f bound is dominated by the lower bound and the low f is
dominated by the higher bound.

• 7/2 < p, a very steep slope, all the integrals are dominated by the higher bound

In practice, we will only consider p ∈ [2, 3]
There is also a well-defined primitive for this integral

x−7+3p
2
F

1
(p,−7 + 3p;−6 + 3p;−x)

−7 + 3p
(4.70)

but it is not very practical to use.

4.F Analytic estimation for the boundary in χr

The question is to find for which values of χr does the EPSL leave a signature in the SGWB.
This boils down to finding the value for χr at which the two contributions are equal. Gµ being an
infinitesimal quantity, one can perform an expansion as:

χr(Gµ) = χ? +
A

ln(Gµ)
+

B

ln2(Gµ)
(4.71)

. Where χ? =
√

3ν − 1/2 =
1

2
√

2
. One obtains

A =
1

8χ?
ln

(
(1− 2χ?)

(2χ? + 1− 3ν)(3− 3ν)

(
Γ

γ∞

)3ν−2(
Υ

γ∞

)1−2χ?
)

(4.72)

B =
−A
4χ?

[
2A+

1

2χ? + 1− 3ν
+

1

2− 2χ?
+

1

1− 2χ?
+ ln

(
Υ

γ∞

)]
(4.73)



Chapter 5

Constraints on cosmic strings
using data from the third
Advanced LIGO-Virgo observing
run

This chapter is a reproduction of [59] written by the LIGO/Virgo/KAGRA collaboration. The aim
of this work was to use the data from the third observing run (O3) to put constraints on cosmic
strings. I was asked to be part of the paper writing team, together with five other colleagues, and
of the analysis team. Therefore, I contributed fully to writing the paper. Regarding calculations,
I was responsible for the burst analysis, and I cross-checked all the results from the stochastic
analysis. The code I developed for the LISA collaboration was very useful in this context, and was
the basis of the new analysis (it underwent review within the collaboration). Relative to previous
publications by the LVK collaboration on cosmic strings, the novelties in this paper were:

• The addition of a new class of models dubbed Models C, developed in the Chapters 3 and 4.

• The addition of the waveforms for kink-kink collisions, something relevant for very wiggly
strings.

• The update of certain numerical factors in the waveforms for cusps, kinks and kink-kink
collisions.

Abstract

We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO
and Virgo full O3 data set. Search results are presented for gravitational waves produced by
cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions. A
template-based search for short-duration transient signals does not yield a detection. We also
use the stochastic gravitational-wave background energy density upper limits derived from the
O3 data to constrain the cosmic string tension, Gµ, as a function of the number of kinks, or
the number of cusps, for two cosmic string loop distribution models. Additionally, we develop
and test a third model which interpolates between these two models. Our results improve upon

119
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the previous LIGO-Virgo constraints on Gµ by one to two orders of magnitude depending on
the model which is tested. In particular, for the one-loop distribution model, we set the most
competitive constraints to date, Gµ . 4×10−15. In the case of cosmic strings formed at the end
of inflation in the context of Grand Unified Theories, these results challenge simple inflationary
models.

5.1 Introduction

The Advanced LIGO [314] and Advanced Virgo [315] detectors have opened a new channel to observe
the Universe through the detection of gravitational waves. In their first three observing runs (O1,
O2, and the first half of O3) the LIGO Scientific Collaboration and the Virgo Collaboration have
reported the detection of 50 candidate gravitational-wave events from compact binary coalescences
[19]. These detections have yielded important information on the population properties of these
compact binary sources [316]. In the future, ground-based detectors may discover new sources
of gravitational waves [317], some of which could probe the physics of the early Universe. Cosmic
strings [61] belong to this category of sources. The third observing run (O3) started on April 1, 2019,
and ended on March 27, 2020, and we use the data from the LIGO-Hanford (H1), LIGO-Livingston
(L1) and Virgo (V1) interferometers to place constraints on cosmic strings. These constraints are
reported in this letter.

Cosmic strings are line-like topological defects — analogues of vortices in different condensed
matter systems — which are formed from spontaneous symmetry breaking phase transitions (with
the additional condition that the vacuum manifold has non-contractible closed curves [61, 64, 69,
88]). In cosmology, such phase transitions may have occurred at grand unification [62], correspond-
ing to an energy scale of about 1016 GeV, and more generally at lower energy scales. Thus cosmic
strings, through their different observational predictions, offer a tool to probe particle physics
beyond the Standard Model at energy scales much above the ones reached by accelerators. In
particular, the production of gravitational waves by cosmic strings [117, 204] is one of the most
promising observational signatures that can be accessed by ground-based detectors.

The width of the string, of the order of the energy scale of the transition, is generally negligible
compared to the cosmological scales over which it extends. This limit is well described by the
Nambu-Goto action. Nambu-Goto strings [64] are parametrized by a dimensionless quantity: the
string tension Gµ related to the energy scale η at which cosmic strings are formed, Gµ ∼ (η/MPl)

2,
where G stands for Newton’s constant, MPl is the Planck mass, µ denotes the string linear mass
density1, and we set the speed of light c = 1. In an expanding background, such as a radiation
or dominated era, a cosmic string network relaxes towards a scaling solution — a self-similar,
attractor solution in which all typical loop lengths are proportional to cosmic time, or equivalently
they scale with the Hubble radius. Super-horizon (also called infinite) strings reach this scaling
solution [221, 101, 135] being stretched by the expansion of the Universe and by losing energy
through the formation of sub-horizon (loop) strings, which consequently lead to a cascade of smaller
loops eventually decaying through emission of gravitational waves [92, 208, 204]. In this chapter we
focus on the gravitational waves emitted by the network of loops. The length distribution of loops

1Cosmic superstrings [318], the analogues of cosmic strings arising from string theory, are characterized also
by the intercommutation probability which can take values between 10−3 and 1 for fundamental superstrings (F-
strings) and between 10−1 and 1 for D-branes extended in one macroscopic dimension (D-strings). In our present
study we concentrate on field theoretical objects [294], and in particular Nambu-Goto strings with intercommutation
probability of order one.
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will therefore be crucial in determining the gravitational-wave signatures from cosmic strings. We
consider different models for the loop distribution, each of which has been studied in the literature,
and whose differences arise from different modelling of the production and cascade of loops from
the infinite string network.

Cosmic string loops oscillate periodically in time, emitting gravitational waves with power [117]
Pgw = ΓdGµ

2 and decay in a lifetime `/γd, where Γd is a numerical factor (Γd ∼ 50 [118]), ` is
the invariant loop length and γd = ΓdGµ is the gravitational-wave length scale measured in units
of time2. The high-frequency (f`� 1, where f denotes frequency) gravitational-wave spectrum of
an oscillating loop is dominated by bursts emitted by string features called cusps and kinks [105,
106, 205]. Cusps3 are points on the string that briefly travel at the speed of light; they are
generic features for smooth loops. Kinks are discontinuities in the tangent vector of the string that
propagate at the speed of light. They appear in pairs as the result of collisions between two cosmic
strings and are chopped off when a loop forms, hence a loop can contain any integer number of
kinks. Numerical simulations of Nambu-Goto strings have shown that kinks accumulate over the
cosmological evolution [221, 101, 135], while the number of cusps per loop is yet undetermined.

Cusps are short-lived and produce beamed gravitational waves in the forward direction of the
cusp, while left-moving (right-moving) kinks propagate around the string, creating gravitational
waves with a fan-like emission (like a lighthouse) in the directions generated by right-moving (left-
moving) waves. Additionally, the collision of two kinks is expected to radiate gravitational waves
isotropically. In this chapter, we report on searches for gravitational waves produced by cusps, kinks
and kink-kink collisions, using O3 LIGO-Virgo data. In addition to distinct individual bursts, the
incoherent superposition of weaker gravitational-wave bursts from cosmic strings produced over the
history of the Universe would create a stochastic gravitational-wave background [211, 205].

Cosmic strings emit gravitational waves with a wide range of frequencies that can be searched
by other means, including the cosmic microwave background [321], Big Bang nucleosynthesis [322]
and pulsar timing arrays [323, 324, 36], see also e.g., [38, 37, 43].

The gravitational-wave emission from cosmic string loops is introduced in Section 5.2. We
consider two simulation-based models [103, 123] (labelled A and B) for the distribution of cosmic
string loops. In addition, we develop a third model (labelled C) which interpolates between the
other two models. From these, we derive gravitational-wave burst rates and the dimensionless
energy density spectra in Section 5.2. Individual gravitational-wave bursts are searched in O3
data with a dedicated analysis presented in Section 5.3. The incoherent superposition of bursts
from cusps, kinks and kink-kink collisions, produces a stationary and nearly Gaussian stochastic
background of gravitational waves. We search O3 data for this background and the results, detailed
in [325], are summarized in Section 5.4. Both the burst and stochastic background searches yield no
detection. Combining their sensitivities, we constrain two cosmic string parameters in Section 5.5:
the string tension Gµ and the number of kinks per loop. We provide a table listing the meanings
of symbols used in this study in Appendix 5.A.

2Super-horizon cosmic strings also emit gravitational waves, due to their small-scale structure resulting from string
intercommutations [204, 244, 319].

3We also include the so-called pseudocusps [320], defined as cuspy features moving with a velocity close to the
speed of light.
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5.2 Gravitational waves from cosmic string loops

Gravitational waves are produced by cusps, kinks and kink-kink collisions on cosmic string loops.
The strain waveforms are linearly polarized and have been calculated in [106, 205, 105]. For a loop
of length ` at redshift z, they are power-law functions in the frequency domain for the strain [91]:

hi(`, z, f) = Ai(`, z)f
−qi , (5.1)

where i = {c, k, kk} identifies the cusp, kink, and kink-kink collision cases. The power-law indices
are qc = 4/3, qk = 5/3, and qkk = 2 and the signal amplitude Ai is given by [106]

Ai(`, z) = g1,i
Gµ `2−qi

(1 + z)qi−1r(z)
, (5.2)

where r(z) is the comoving distance to the loop. In the following we adopt the cosmological model
used in [91]; it is encoded in three functions ϕr(z), ϕV (z), and ϕt(z) (see Appendix A of [91]). The
proper distance, the proper volume element and the proper time are given by r(z) = ϕr(z)/H0,
dV (z) = ϕV (z)/H3

0 dz, and t(z) = ϕt(z)/H0 respectively, where H0 = 67.9 km s−1 Mpc−1 [312]
is the present value of the Hubble constant. The prefactor g1,i takes three different numerical
values [219]: g1,c = 8/Γ2(1/3) × (2/3)2/3 ≈ 0.85, g1,k = 2

√
2/π/Γ(1/3) × (2/3)2/3 ≈ 0.29, and

g1,kk = 1/π2 ≈ 0.10, where Γ is the Gamma function [313].

Cusps and kinks emit gravitational waves in highly concentrated beams. Cusps are transient
and produce a beam along a single direction, while kinks propagate around the loop, beaming over
a fan-like range of directions. The beam opening angle is

θm = (g2f(1 + z)`)−1/3, (5.3)

where g2 =
√

3/4 [219] is a numerical factor. To guarantee self-consistency (validity of the wave-
form), we require that θm < 1rad, which is equivalent to setting a lower limit on the frequency for
a fixed loop length. For kink-kink collisions the gravitational-wave emission is isotropic [108].

The burst rate of type i, per unit loop size and per unit volume, can be decomposed into four
factors:

∂2Ri
∂`V 2

=
2

`
Ni ×

∂2N
∂`∂V

×∆i × (1 + z)−1. (5.4)

The first factor accounts for an average of Ni gravitational-wave burst events of type i produced
per loop oscillation time periodicity `/2. The second factor stands for the number of loops per unit
loop size and per unit volume at cosmic time t

n(`, t) =
∂2N
∂`∂V

. (5.5)

The third factor, ∆i, reflects that only a fraction of burst events can be effectively detected due to
the beamed emission of gravitational waves with respect to the 4π solid angle. The gravitational-
wave emission within a cone for cusps, a fan-like range of directions for kinks and all directions
for kink-kink collisions can be conveniently absorbed into a single beaming fraction expression:
∆i = (θm/2)3(2−qi). Finally the last factor shows that the burst emission rate is red-shifted by
(1 + z)−1.
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The burst rate at redshift z is then obtained by integrating over all loop sizes,

dRi
dz

= f
ϕV (z)

H3
0 (1 + z)

∫ `max

`min

d`
2Ni
`

n(`, t)∆i. (5.6)

Introducing the dimensionless loop size parameter γ ≡ `/t, Eq. (5.6) reads:

dRi
dz

=
φV (z)

H3
0 (1 + z)

×
∫ γmax(z)

γmin(z,f)

dγ
2Ni
γ

n(γ, z)∆i(γ, z, f). (5.7)

The upper bound of the integral, γmax(z), is derived by requiring the loop size to be smaller than the
horizon size, i.e., γmax = 2 and 3 for radiation and matter dominated universes, respectively [91].
The lower bound, γmin, corresponds to the fundamental frequency of a loop, i.e., 2/`, leading to
γmin(z, f) = 2/[f(1 + z)ϕt(z)/H0].

We consider two analytical models, labelled A [103] and B [123], to describe the distribution of
cosmic string loops, n(γ, z), in a scaling regime, within a Friedmann-Lemâıtre-Robertson-Walker
metric. These models were respectively dubbed M=2 and M=3 in [91]. In model A the number of
long-lived non-self-intersecting loops of invariant length ` per unit volume per unit time formed at
cosmic time t, is directly inferred from Nambu-Goto simulations of cosmic string networks in the
radiation and matter eras. Model B is based on a different Nambu-Goto string simulation [99]. In
this model the distribution of non-self-intersecting scaling loops is the extracted quantity. Within
model B, loops are formed at all sizes following a power-law specified by a parameter taking different
values in the radiation and matter eras, while the scaling loop distribution is cut-off on small scales
by the gravitational back-reaction scale. There is a qualitative difference between these two models,
since in the latter, tiny loops are produced in a much larger amount than in the former. In addition,
we will use a new model, based on [52] and labelled C, which extends and encompasses both models
A and B. Similarly to model B, model C assumes that the scaling loop distribution is a power-law,
but leaves its slope unspecified. Given the wide parameter space opened by model C, we will select
two samples: models C-1 and C-2. Model C-1 (respectively C-2) reproduces qualitatively the loop
production function of model A (resp. B) in the radiation era and the loop production of model B
(resp. A) in the matter era. We expect the addition of these two models to showcase intermediate
situations in between the two simulation-inferred models A and B. The loop distribution functions
n(γ, z) for the three models are given in the Appendix4.

For models A, B and C, the contributions from cusps, kinks and kink-kink collisions to the
gravitational-wave emission must be considered altogether. Indeed, the dimensionless decay con-
stant Γd of a cosmic string, driving the loop size evolution, can be decomposed into three contri-
butions:

Γd ≡ Pgw

Gµ2
=
∑

i

Pgw,i

Gµ2

= Nc

3π2g2
1,c

(2δ)1/3g
2/3
2

+Nk

3π2g2
1,k

(2δ)2/3g
1/3
2

+Nkk2π2g2
1,kk,

(5.8)

4See Appendix for more descriptions on the cosmic string loop distributions, and the burst analysis pipeline
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where δ = max(1, 1/(2g2)), since the gravitational-wave frequency cannot be smaller than the
fundamental frequency of the loop, 2/`, while the condition θm < 1 for cusps and kinks imposes
f > 1/(`g2). Parameters Nc, Nk are respectively the average number of cusps and kinks per
oscillation. The number of kink-kink collisions per oscillation Nkk is Nkk ≈ N2

k/4 in the limit of
large Nk. While this equation is only an approximation when Nk is order unity, the kink-kink
contribution is very small in this case and the error would hardly affect our results. On the other
hand, it is clear that the kink-kink collision quickly dominates the gravitational-wave production
when the number of kinks increases, as it was also shown in Ref. [90]. In this analysis we fix Nc to
be 1; we comment later on the effects of increasing the number of cusps. The only free parameter
is the number of kinks Nk; we consider Nk = 1, . . . , 200, with the upper limit being motivated by
numerical simulations of string loops that favour Γd ∼ 50 [118].

The incoherent superposition of bursts from loops with all possible sizes through the history of
the Universe produces a stochastic gravitational wave background [326]. The normalized energy
density of which is defined as

ΩGW(f) =
f

ρc

dρGW

df
, (5.9)

where ρc = 3H2
0 c

2/(8πG). The spectrum of the stochastic gravitational wave background is [212]

ΩGW(f) =
4π2

3H2
0

f3
∑

i

∫
dz

∫
d` h2

i ×
∂2Ri
∂z∂`

. (5.10)

The integration range is restricted by two requirements. First, the size of a loop is limited to a
fraction of the Hubble radius, or equivalently of the cosmic time ` < αt(z). Second, the frequency
has to be larger than the low-frequency cutoff f`(1 + z) > δ. In Fig. 5.1 we show examples
of gravitational-wave spectra calculated with Eq. (5.10). The two plots at the top are derived
from model A and B with Nk � 1. The dominant contribution comes from kink-kink collisions.
The lower plots show gravitational-wave spectra taking Nk = 1 (left) and Nk = 100 (right) and are
derived from model C with a given set of parameters (see Appendix), i.e., χrad = 0.45, χmat = 0.295,
crad = 0.15, and cmat = 0.019; the subscripts refer to matter and radiation eras, respectively. When
Nk is large, the dominant contribution to the spectrum depends on the frequency band, which is
a unique feature in this model. In this study, we ignore the suppression of the gravitational waves
from cusps due to the primordial black hole production as pointed out in [327]. Including such an
effect leads to lower spectrum amplitudes when Nk is small and consequently reduces the sensitivity
to cosmic string signals. In Fig. 5.1 we also show the 2σ power-law integrated (PI) curves [258]
indicating the integrated sensitivity of the O3 search [325], along with projections for 2 years of
the Advanced LIGO-Virgo network at design sensitivity, and the envisioned upgrade of Advanced
LIGO, A+ [328], sensitivity after 2 years, assuming a 50% duty cycle.

5.3 Burst Search

The O3 data set is analysed with a dedicated burst search algorithm previously used to produce
LIGO-Virgo results [329, 91, 107]. The burst analysis pipeline, as well as its O3 configuration, is
described in the Appendix. The search can be summarized into three analysis steps. First, we
carry out a matched-filter search using the cosmic string waveform in Eq. (5.1). Then, resulting
candidates are filtered to retain only those detected in more than one detector within a time window
accounting for the difference in the gravitational-wave arrival time between detectors. Finally,
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Figure 5.1: Predictions of the gravitational-wave energy density spectra using different models for
the loop distribution function n(γ, z) and for two values of the number of kinks per loop oscillation
Nk, 1 and 100. The string tension Gµ is fixed to 10−8. Top-left: model A, Nk = 100. Top-right:
model B, Nk = 100. Bottom-left: model C-1, Nk = 1. Bottom-right: model C-1, Nk = 100. For
model C-1, we use the following model parameters (see Appendix): χrad = 0.45, χmat = 0.295,
crad = 0.15, cmat = 0.019; the subscripts refer to the radiation and matter eras, respectively. We
also show the energy density spectra of the three different components and 2-σ power-law integrated
(PI) curves [258] for the O3 isotropic stochastic search [325], and projections for the HLV network
at design sensitivity, and the A+ detectors [328].
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Figure 5.2: Left panel: cumulative distribution of cosmic string burst candidate events produced
by cusps (top), kinks (middle) and kink-kink collisions (bottom). The expected distributions from
background noise are represented by ±1σ shaded areas. Right panel: the detection efficiency is
measured using simulated signals, as a function of the signal amplitude for cusps, kinks and kink-
kink collisions. Note that the horizontal axis measures different amplitude quantities, Ai, for the
three types of signals, parametrized by the waveform frequency power law qi.

double- and triple-coincident events are ranked using an approximated likelihood ratio Λ(x), where
x is a set of parameters used to discriminate true cosmic string signals from noise [330]. The
burst search is performed separately for cusps, kinks and kink-kink collision waveforms, integrating
Tobs = 273.5 days of data when at least two detectors are operating simultaneously.

The left panel of Fig. 5.2 presents the cumulative distribution of coincident O3 burst events as
a function of the likelihood ratio Λ for the cusp, kink and kink-kink collision searches. To estimate
the background noise associated with each search, time shifts are applied to each detector strain
data such that no real gravitational-wave event can be found in coincidence. For this study, we
use 300 time-shifts, totalling Tbkg = 225 years of data containing only noise coincident events, the
distribution of which is represented in the left panel of Fig. 5.2 with a ±1σ shaded band. The
candidate events, obtained with no time shift, are all compatible with the noise distribution within
±2σ. The cusp, kink and kink-kink collision waveforms are very similar, resulting in the loudest
events being the same for the three searches. The ten loudest events were carefully scrutinized.
They all originate from a well-known category of transient noise affecting all detectors, that are
broadband and very short-duration noise events of unknown instrumental origin [331, 332].

From the non-detection result, we measure our search sensitivity to cosmic string signals by
performing the burst search analysis over O3 data with injections of simulated cusp, kink and kink-
collision waveforms. The amplitudes of injected signals comfortably cover the range where none
to almost all the signals are detected. Other parameters (sky location, polarization angle, high-
frequency cutoff) are randomly distributed. To recover injected signals, we use the loudest-event
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method described in [333], where the detection threshold is set to the level of the highest-ranked
event found in the search: log10(Λ) ' 15.0, 15.1, and 15.1 for cusps, kinks, and kink-kink collisions,
respectively. The resulting efficiencies εi(Ai) as a function of the signal amplitude are presented
in the right panel of Fig. 5.2. Cusp events directed at Earth with Ac > 2 × 10−20s−1/3 would
have produced a result more significant than any of the ones obtained by our search, with ∼ 90%
confidence. In terms of loop proper lengths, this corresponds, for example, to loops larger than
1.7×106(Gµ/10−10)−3/2 light years at redshift 100. The expected detection burst rate is calculated
from the detection efficiency:

Ri =

∫
dRi
dAi

εi(Ai) dAi . (5.11)

The detectable burst rate dRi
dAi

is obtained from Eq. (5.7), which can be expressed in terms of
amplitude using Eq. (5.2) and calculated for the lowest value of the high-frequency cutoff f∗ which
can be most abundantly observed (see Appendix for details).

We assume that the occurrence of a detectable burst of gravitational waves follows a Poisson
distribution with mean given by the estimated detection rate. For a set of parameters (Gµ,Nk),
models which predict a detection rate larger than 2.996/Tobs are excluded at 95%, i.e., we exclude
models that predict a > 95% confidence level detection.

5.4 Stochastic Search

A search for a stochastic gravitational wave background [326] is carried out using the LIGO and
Virgo O3 data [325] in which a correlated background in different interferometer pairs is sought.
These results are combined with those from the previous two observing runs, O1 and O2 [31, 91, 32].
The results reported in [325] assume the normalized energy density of the stochastic background,
Eq. (5.9), to be a power-law α of the frequency:

ΩGW(f) = Ωref

(
f

fref

)α
, (5.12)

where fref denotes a reference frequency, fixed to 25 Hz, a convenient choice in the sensitive part of
the frequency band. The search reported in Ref. [325] does not detect a stochastic background, and
so sets upper limits depending on the value of α. The stochastic background from cosmic strings
in the LIGO-Virgo frequency band is predicted to be approximately flat, setting the upper bound
ΩGW ≤ 5.8 × 10−9 at the 95% credible level for a flat α = 0 background and using a log-uniform
prior in ΩGW; the 20-76.6 Hz band is responsible for 99% of this sensitivity.

In the present study, we perform a Bayesian analysis taking into account the precise shape of
the background (see Fig. 5.1) instead of a power-law and use it to derive upper limits on the cosmic
string parameters. We first calculate the log-likelihood function assuming a Gaussian distributed
noise, which up to a constant is

lnL(ĈIJa |Gµ,Nk) = −1

2

∑

IJ,a

(ĈIJa − Ω
(M)
GW(fa;Gµ,Nk))2

σ2
IJ(fa)

. (5.13)

Here ĈIJa ≡ ĈIJ(fa), and IJ are detector pairs L1-H1, L1-V1, and H1-V1. ĈIJ(fa) and σ2(fa)
are, respectively, a cross-correlation estimator for the IJ detector pair and its variance at frequency
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fa as detailed in [334]. Following the same approach as in the O1 stochastic analysis we use the
frequency bins ranging from 20 to 86 Hz [91]; higher frequencies do not contribute to the sensitivity.

The gravitational-wave energy density, Ω
(M)
GW(fa;Gµ,Nk), is predicted by the cosmic string model

M = {A,B,C} and computed with Eq. (5.10) at frequency fa.
For our Bayesian analysis, we specify priors for the parameters in the cosmic string model, i.e.,

p(Gµ|IGµ) and p(Nk|INk
). The variables IGµ and INk

denote the information on the distributions
of Gµ and Nk, which are determined by theory predictions. For p(Gµ|IGµ), we choose a log-uniform
prior for 10−18 ≤ Gµ ≤ 10−6. Here the upper bound is set by the cosmic microwave background
measurements [72, 74, 132, 295]. The lower bound is arbitrary, chosen for consistency with the study
in Ref. [54]; we note, however, that our results remain almost unchanged if we choose a smaller
value for the lower bound on Gµ. For p(Nk|INk

), we aim at constraining Gµ for each choice of Nk.
Therefore the prior p(Nk|INk

) is taken to be a δ-function for each value of Nk. The number of kinks
per loop oscillation Nk being fixed, the posterior for the parameter Gµ is calculated according to
Bayes’ theorem:

p(Gµ|Nk) ∝ L(ĈIJa |Gµ,Nk)p(Gµ|IGµ)p(Nk|INk
). (5.14)

We calculate 95% credible intervals for Gµ.

5.5 Constraints

We show in Fig. 5.3 the region of the Gµ and Nk parameter space excluded at the 95% confidence
level by the burst and stochastic searches; the number of cusps Nc being fixed to 1. For the
stochastic search (Section 5.4) we present constraints from the combined O1+O2+O3 data; for the
burst search (Section 5.3) we derive constraints from the non-detection result using O3 data. We
consider three models for the Nambu-Goto cosmic string loop distributions, dubbed A, B and C. For
the latter we choose two sets of benchmark numbers: for model C-1 we set (χr, χm) = (0.45, 0.295)
and for model C-2 (χr, χm) = (0.2, 0.45) (see the Appendix).

Using model A, the derived gravitational-wave power spectrum is much weaker than in the
other models, leading to weaker constraints. Model C-2 mimics the loop production function of
model A in the matter era and of model B in the radiation era. In the frequency band of LIGO-
Virgo, the stochastic background is dominated by the contribution from loops in the radiation era,
hence models B and C-2 give similar results. Conversely, the gravitational-wave power spectrum
obtained from model C-1, which mimics the loop production function of model A in the radiation
era and of model B in the matter era, presents more subtle features. Larger values of Gµ do not
necessarily produce larger signal amplitudes, creating structures in the constraint plot. For an
analytical understanding of these findings, we refer the reader to [56]. For a better understanding
of the loop visibility domain in terms of redshift, we refer to the Fig. 2 of [90].

The stochastic analysis leads to the following constraints on Gµ. For model A, we rule out the
range Gµ & (9.6×10−9−10−6), depending on the number of kinks per oscillation Nk. For model B,
we rule out: Gµ & (4.0− 6.3)× 10−15. For model C-1, we rule out Gµ & (2.1− 4.5)× 10−15, aside
from a small region where Nk & 180. Finally, for model C-2, we rule out: Gµ & (4.2−7.0)×10−15.

The burst search upper limits are not as stringent as the ones derived from the stochastic search.
In particular, the constraints on the string tension for model A are too weak to be represented in
the figure. The only case where the burst analysis leads to tighter constraints, is for model C-1
and for Nk > 70.
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Figure 5.3: Exclusion regions at 95% C.L. on the cosmic string parameter space, (Nk, Gµ), derived
from the stochastc search (pink), the burst search (turquoise) and both searches. Four models are
considered to describe the distribution of cosmic string loops: model A (top-left), model B (top-
right), model C-1 (bottom-left) and model C-2 (bottom-right). Note that the stochastic result
combines the data of O1, O2 and O3 while the burst search only includes O3 data. We also report
limits from other experiments: pulsar timing arrays (PTA) [323, 324], cosmic microwave background
(CMB) [321] and Big Bang nucleosynthesis [322]. The notch in the SWGB constraint for Model
C-1 is explained in Appendix 5.D.
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In the present analysis, the average number of cusps per oscillation on a loop has been set to 1.
It has been shown that the number of cusps per period of string oscillation scales with the number
of harmonics on the loop [335]. Note that with many cusps on the string, the decay constant Γd

is enhanced and the lifetime of the loop is hence greatly reduced. Consequently, a high number of
cusps on the loops gives qualitatively the same result as increasing the number of kinks: for model
A, the constraints are weakened, whereas for models B and C the bounds are insensitive to Nc;
this has been confirmed by our numerical study.

One can also compare these results with limits obtained from pulsar timing array measurements,
and indirect limits from Big Bang nucleosynthesis and cosmic microwave background data [323].
Note that in our analysis we do not investigate non-standard thermal history; see however, e.g. [336,
337]. Repeating the analysis done in Ref. [91] with Nk up to 200, we find that for model A, the
strongest limit comes from pulsar timing measurements, excluding string tensions Gµ & 10−10. For
model B, C-1 and C-2 the strongest upper limits are derived from this search. The next observing
run, O4, will give us a new opportunity to detect signals from cosmic strings.

5.6 Conclusions

Using data from the third observing run of Advanced LIGO and Virgo, we have performed a burst
and a stochastic gravitational wave background search to constrain the tension of Nambu-Goto
strings, as a function of the number of kinks per oscillation, for four loop distributions. We have
tested models A and B already considered in the O1 and O2 analyses [32]. The current constraints
on Gµ are stronger by two and one orders of magnitude for models A and B, respectively, when
fixing Nk = 1. In addition, we have used two variants of a new model, dubbed model C, that
interpolates between models A and B. For the first time, we have studied the effect of kink-kink
interactions, which is relevant for large numbers of kinks, and investigated the effect of a large
number of cusps, as both effects are favoured by cosmic string simulations. In the context of cosmic
strings formed at the end of an inflationary era, these results raise questions about the validity of
simple inflationary models (occurred between 1016 − 1011 GeV) in the context of Grand Unified
Theories [62], unless one invokes extra fields in order to avoid cosmic string formation [338].

Given the current experimental results, it would seem important to intensify numerical and
theoretical studies on cosmic strings. From a numerical point of view, the number of kinks and
cusps should be determined. Concerning phenomenological aspects, new models, like model C
that interpolates between model A and B, should be further explored as well as models including
particle physics leading to cosmic string formation in the early Universe. On the experimental side,
the sensitivity of Advanced LIGO and Virgo detectors will continue to improve [328] and a fourth
interferometer, KAGRA [339], will join the network.

5.A Table of quantities appearing in the chapter

The main quantities used in this analysis and their meaning are listed in Table 5.1.
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G Gravitational constant
z redshift
µ string tension
Nc average number of cusps per loop oscillation
Nk number of kinks
Γd dimensionless decay constant of cosmic strings
g1, g2 dimensionless prefactors for the GW amplitude and beaming angle
` cosmic string loop length

γ ≡ `/t loop size parameter
θm beaming angle for GW emission
Pgw power of GW emission of cosmic strings
Ri GW burst rate

n(`, t) number density of cosmic string loops with length ` at t
ΩGW(f) present fractional GW energy density spectrum
L likelihood used in the Bayesian analysis

p(parameters|I) probability density distribution of “parameters” given prior information “I”

Table 5.1: Table of quantities appearing in the chapter.

5.B Loop distributions

For model A, the loop distribution is given by the sum of

t4nrad =
0.18× 2

√
H0Ω

3/4
rad

(γ + γd)5/2
t3/2(1 + z)3

{
Θ (0.18t− `) t < teq

Θ [0.18teq − `+ γd(t− teq)] t > teq

(5.15)

for loops produced during the radiation era, and

t4nmat =
0.27− 0.45γ0.31

(γ + γd)2
Θ(0.18− γ)Θ [`+ γd(t− teq)− 0.18teq] (5.16)

for loops produced during the matter era. Note that teq is the time of the radiation to matter
transition and that γd = ΓdGµ.

Models B and C rely on the assumption that loops are produced at all sizes with a given
power-law. The loop production P is parametrized by two additional parameters (c, χ)

t5P = c

(
`

t

)2χ−3

, (5.17)

and is cutoff on scales smaller than the gravitational backreaction scale γc ≈ 20(Gµ)1+2χ. The
parameter χ controls the tilt of the loop production function, low values of χ favour the production
of very small loops whereas high values of χ can be approximated by a Dirac delta loop production
function on the large scales, i.e., to the one-scale model. For model B, the loop distribution is the
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sum of

t4nrad =





0.08

(γ + γd)3−2χr
γd < γ

0.08(1/2− 2χr)

(2− 2χr)γdγ2−2χr
γc < γ < γd

0.08(1/2− 2χr)

(2− 2χr)γdγ
2−2χr
c

γ < γc

(5.18)

for loops produced during the radiation era,

t4nmat =





0.015

(γ + γd)3−2χm
γd < γ

0.015(1− 2χm)

(2− 2χm)γdγ2−2χm
γc < γ < γd

0.015(1− 2χm)

(2− 2χm)γdγ
2−2χm
c

γ < γc

(5.19)

for loops produced during the matter era, and

t4nrad−mat =

(
t

teq

)3(
1 + z

1 + zeq

)3

t4eqn
(3)
rad

[
γt+ γd(t− teq)

teq

]
(5.20)

for loops produced during the radiation era and decaying during the matter era. The subscripts rad

and mat refer to the radiation- and matter-dominated eras, respectively, and γc is the gravitational
back-reaction scale.

For model C, the loop distribution can be approximated in the radiation era as

t4nrad =
crad

1/2− 2χr





(γ + γd)2χr−3 − γ
2χr−1/2
∞

(γ + γd)5/2
γd < γ

γ2χr−2

(2− 2χr)γd
− γ

2χr−1/2
∞

(γ + γd)5/2
γc < γ < γd

γ2χr−2
c

(2− 2χr)γd
− γ

2χr−1/2
∞

(γ + γd)5/2
γ < γc

(5.21)

and in the matter era as

t4nmat =
cmat

1− 2χm





(γ + γd)2χm−3 − γ2χm−1
∞

(γ + γd)2
γd < γ

γ2χm−2

(2− 2χm)γd
− γ2χm−1

∞
(γ + γd)2

γc < γ < γd

γ2χm−2
c

(2− 2χm)γd
− γ2χm−1

∞
(γ + γd)2

γ < γc

(5.22)

where γ∞ is the size of the largest loops in scaling units.

5.C The burst analysis pipeline

The cosmic string burst search pipeline is divided into three main analysis steps. First, the cosmic
string gravitational waveform is searched in LIGO and Virgo data using match-filtering techniques.
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A bank of waveform templates is chosen to match the expected signal in the frequency domain:

τi,j(f) = Af−qiΘ(fj − f)Θ(f − fl). (5.23)

The spectral index qi is taken from Eq. (5.1) for cusps, kinks or kink-kink collisions. The waveform
frequency f is limited in range using the Heaviside function Θ. The low-frequency cut-off fl,
resulting from the size of the feature producing the gravitational waves, takes values well below the
sensitive band of the LIGO and Virgo detectors. We take fl = 16 Hz. The high-frequency cutoff
fj is a consequence of the gravitational-wave emission being observable only within a (frequency-
dependent) viewing angle θm, given in Eq. (5.3). The angle between the line of sight and the
gravitational-wave direction, θ, must be smaller than θm/2, yielding f < [2g2`(1 + z)θ3]−1. This
high-frequency cutoff is unknown and is considered as a free parameter, taking discrete values
indexed by j. When searching for gravitational waves produced by cusps and kinks, we use 31
templates with high-frequency cutoff values distributed between 30 Hz and 4096 Hz and spaced
in such a way that we guarantee less than 0.1 % loss in the signal-to-noise ratio due to template
mismatch. The cutoffs fj are sparser at higher frequencies, with 17 templates below 100 Hz. For
kink-kink collisions, the gravitational-wave radiation is isotropic and a single template covering the
entire frequency band is used.

The standard matched filter output for template τi,j on the gravitational wave data hdet is

ρi,j,det(t) = 4 Re

∫ ∞

0

τ∗i,j(f)hdet(f)

Sn(f)
exp
(
2
√
−1πft

)
df. (5.24)

Here, Sn(f) is the single-sided noise power spectral density of the detector. It is estimated locally
over a few minutes of detector data. The normalization parameter A in each template is determined
by [308]

4 Re

∫ ∞

0

τ∗i,j(f)τi,j(f)

Sn(f)
exp
(
2
√
−1πft

)
df = 1. (5.25)

The O3 LIGO-Virgo dataset is analysed in five consecutive chunks of data to account for the de-
tectors’ noise evolution over the entire run. This is because the statistic we use to rank events better
separates the signal from noise when the characteristics of the noise are relatively unchanged. The
chunk boundaries are defined by sudden changes of sensitivity of one detector and by commission-
ing interventions, including the 1-month commissioning break in October 2019. The signal-to-noise
ratio time-series ρi,j,det(t) is computed for each detector, accumulating a total of 245 days, 252 days
and 250 days for the L1, H1 and V1 detectors respectively. The signal-to-noise ratio time-series are
required to be above 3.75 and are clustered among templates. If multiple templates trigger within
a 0.1 second window, we cluster the event as a single trigger, the parameters of which are derived
from the highest signal-to-noise ratio template in the cluster.

After the match-filtering step, a time coincidence is performed pair-wise between the triggers
of each detector using a time window wide enough to account for the maximum light-travel time
between detectors and calibration time uncertainties of 8ms. A resulting set of double- and triple-
coincident events is obtained when at least two detectors are taking data in nominal conditions,
yielding a total observation time of Tobs = 273.5 days.

Finally, to discriminate astrophysical signals from background noise, we apply the multivariate
method described in [330], which uses a set of simulated cosmic string events and typical noise
events to statistically infer the probability for a coincident event to be signal or noise. Hence,
a likelihood ratio, Λ, is constructed with parameters characterizing the event [107]. For the O3
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Figure 5.4: The gravitational-wave spectra for model C-1 for different choices of Gµ where Nk is
fixed to be 90. The gray band corresponds to the frequency range (20−86) Hz used in the analysis.

analysis, we introduce for the first time the event duration as a new discriminating variable. The
event duration is defined as the duration for which ρi,j,det(t) remains above threshold considering
all templates j and using a tolerance of 100 ms. Using this parameter, coupled to the signal-to-noise
ratio, allows us to reject a large population of long-duration and low signal-to-noise ratio transient
noise events contributing to the search background.

5.D Feature in SGWB constraint for Model C-1

The stochastic gravitational-wave constraint for model C-1 has a special feature, shown in Fig. 5.3.
The appearance of this notch, whenNk > 70, is induced by the unique behaviour of the gravitational-
wave spectrum in this model. In Fig. 5.4 we compare the corresponding spectrum for different
choices of Gµ with Nk fixed to be 90. The cosmic string network produces a stochastic background
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in a wide frequency range, while LIGO/Virgo is only sensitive to a very narrow frequency window
labelled by the grey band. As Gµ increases, the stochastic power spectrum within the LIGO/Virgo
window does not change monotonically. This leads to a non-exclusion in a small range of Gµ when
Nk > 70. The exact location of the notch is determined through a detailed Bayesian analysis
presented in the main text.
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Chapter 6

Particle emission and gravitational
radiation from cosmic strings:
observational constraints

This chapter is a reproduction of Ref. [53] written in collaboration with Danièle Steer and Tanmay
Vachaspati. The discrepancies between the Nambu-Goto (NG) description of cosmic strings – which
predicts long-lived loops – and the numerical simulations of field theory strings – in which loop decay
rapidly into particles– has been a matter of debate for a long time in the community. Our aim
for this work was to bridge the gap between these two descriptions using a Boltzmann approach
and modifying the evolution laws for isolated loops. Our main assumption is that isolated loops
on large scales behave according to the NG equations of motion, but decay rapidly below a certain
scale due to particle emission from cusps and kink-kink collisions. This point of view was motivated
by a series of numerical simulations in Ref. [139] of which Tanmay Vachaspati was an author. This
paper takes advantage of the experience with manipulating the Boltzmann equation I gained when
working on Chapter 3. This is also the first chapter of my PhD interested in different signatures
than the GW signatures. I have contributed to all the sections of this chapter.

Abstract

We account for particle emission and gravitational radiation from cosmic string loops to
determine their effect on the loop distribution and observational signatures of strings. The
effect of particle emission is that the number density of loops no longer scales. This results in
a high frequency cutoff on the stochastic gravitational wave background, but we show that the
expected cutoff is outside the range of current and planned detectors. Particle emission from
string loops also produces a diffuse gamma ray background that is sensitive to the presence of
kinks and cusps on the loops. However, both for kinks and cusps, and with mild assumptions
about particle physics interactions, current diffuse gamma-ray background observations do not
constrain Gµ.
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6.1 Introduction

Most often the dynamics of local cosmic strings formed in a phase transition in the early universe
(see [64, 88, 69] for reviews) is described by the Nambu-Goto (NG) action. This approximation is
valid when the microscopic width of the string

w ∼ µ−1/2 ∼ 1/η (6.1)

(with µ the string tension and η the energy scale of the phase transition), is very small relative to its
characteristic macroscopic size ` — a situation which is well satisfied in the early universe. Closed
loops of NG strings loose energy slowly by radiating gravitational waves, and as a result NG string
networks contain numerous loops whose decay generate a stochastic gravitational wave background
(SGWB) ranging over a wide range of frequencies [64]. Depending on the details of the particular
cosmic string model, the corresponding constraints on the dimensionless string tension Gµ from
the SGWB are Gµ . 10−7 at LIGO-Virgo frequencies [91], Gµ . 10−11 at Pulsar frequencies [89],
whereas at LISA frequencies one expects to reach Gµ . 10−17 (see Chapter 2).

On the other hand, at a more fundamental level, cosmic strings are topological solutions of
field theories. Their dynamics can therefore also be studied by solving the field theory equations
of motions. In studies of large scale field theory string networks [110, 112, 74, 113], loops are
observed to decay directly into particles and gauge boson radiation on a short time scale of order of
the loop length. Hence, field theory string network simulations predict very different observational
consequences — in particular no SGWB from loops.

Since field theory and Nambu-Goto strings in principle describe the same physics, and hence lead
to the same observational consequences, this is an unhappy situation. Based on high resolution field
theory simulations, a possible answer to this long-standing conundrum was proposed in Ref. [139].
In particular, for a loop of length ` containing kinks, a new characteristic length scale `0 = `k was
identified, and it was shown that if ` & `k gravitational wave emission is the dominant decay mode,
whereas for smaller loops ` . `k particle radiation is the primary channel for energy loss. That is,

d`

dt
=




−γd, `� `k

−γd
`k
`
, `� `k,

(6.2)

where

γd ≡ ΓGµ

with Γ ∼ 50 the standard constant describing gravitational radiation from cosmic string loops [117,
224, 225, 114]. Notice that Nambu-Goto strings correspond to `k → 0; and if particle radiation
is dominant for all loops, `k → ∞. In practise `k is neither of these two limiting values, and in
Ref. [139] was estimated (for a given class of loops with kinks) to be given by

`k ∼ βk
w

ΓGµ
(6.3)

where w is the width of the string, Eq. (6.1), and the constant βk ∼ O(1). Note that the simulations
of [139] consider the oscillations of loops with kinks over their entire lifetime. The results show
episodic emission, with the net result of all the dynamics being the 1/` behaviour of Eq. (6.2).
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If a loop contains cusps, then one expects the above to be modified to [140, 141]

d`

dt
=




−γd, `� `c

−γd

√
`c
`
, `� `c

(6.4)

where
`c ∼ βc

w

(ΓGµ)2
(6.5)

with βc ∼ O(1). We note that this 1/
√
` dependence is less certain since, to the best of our

knowledge, no field theory simulations of loops with cusps over their entire lifetime exist. 1

The aim of this paper is to determine the observational effects — and corresponding constraints
on Gµ — of a finite, fixed, value of `k or `c. A first immediate consequence of the presence of the
fixed scale is that the distribution of loops n(`, t), with n(`, t) d` the number density of loops with
length between ` and `+ d` at time t, will no longer be scaling. That is, contrary to the situation
for NG strings, the loop distribution will depend explicitly on t as well as the dimensionless variable
γ = `/t. We determine this non-scaling loop distribution N (γ, t) in Section 6.2, taking into account
exactly (and for the first time) the back-reaction of particle emission on the loop distribution.

We then study the consequence of the non-scaling distribution of non-self intersecting loops
on the stochastic GW background, determining the fraction of the critical density in GWs per
logarithmic interval of frequency,

ΩGW(t0, f) =
8πG

3H2
0

f
dρgw

df
, (6.6)

where H0 is the Hubble parameter, and the dρgw/df factor is the energy density in gravitational
waves per unit frequency f observed today (at t = t0). A scaling distribution of NG loops gives a
spectrum which is flat at high frequencies [64]; we will show below that a consequence of the non-
scaling of the loop distribution is the introduction of a characteristic frequency f∗, with ΩGW(f >
f∗) → 0. The precise value of f∗ depends on `k or `c, as well as Gµ. For cusps and kinks with
`c and `k given respectively by Eqs. (6.2) and (6.4), the characteristic frequency f∗ is outside the
LIGO and LISA band provided Gµ & 10−17, and so in this case the new cutoff will only be relevant
for very light strings but for which the amplitude of the signal is below the observational thresholds
of planned gravitational wave detectors.

In Section 6.5 we turn to particle physics signatures. At lower string tensions Gµ, the grav-
itational signatures of strings weaken, while the particle physics ones are expected to increase.
Following [340], we focus on so-called “top down” models for production of ultra-high energy cos-
mic rays in which heavy particles, namely the quanta of massive gauge and Higgs field of the
underlying (local) field theory trapped inside the string, decay to give ultra-high energy protons
and gamma rays. We focus on the diffuse gamma ray flux which at GeV scales is constrained by
Fermi-LAT [341]. However, taking into account back-reaction of the emitted particles on the loop
distribution we find that current gamma ray observations do not lead to significant constraints.
(Early studies on the production of cosmic rays assumed NG strings and particle emission rates

1Ref. [141] studies a single cusp on a field-theory string, and gives the energy emitted per cusp, from which one

deduces the 1/
√
` behaviour. It shows that the shape of the string is modified after the cusp event, and argues that

further smaller cusps will be formed in future loop oscillations. What we assume above is that the net result is an
1/
√
l dependence.
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that were based on dynamics without taking back-reaction into account. See Refs. [340, 342, 343,
344, 345] and [340] for a review. Other work has focused on strings with condensates, e.g. [346, 85,
125], or strings coupled to other fields such as Kaluza-Klein or dilaton fields [347, 81].)

This paper is organized as follows. In Section 6.2 we determine the effect of an `-dependent
energy loss

d`

dt
= −γdJ (`), (6.7)

on the loop distribution n(`, t). The function J (`) will initially be left arbitrary. Specific cases
corresponding to (i) NG loops with J = 1; (ii) loops with kinks, see Eq. (6.2), and (iii) loops with
cusps, see Eq. (6.4) are studied in subsections 6.3.1-6.3.3. Given the loop distribution, we then
use it to calculate the SGWB in Section 6.4, and the predicted diffuse gamma ray flux in 6.5. We
conclude in Section 6.6 by discussing the resulting experimental constraints on Gµ.

6.2 The loop distribution

All observational consequences of string loops depend on n(t, `) d`, the number density of non self-
intersecting loops with length between ` and ` + d` at time t. In this section we calculate n(t, `)
given (6.7), that is we take into account the back-reaction of the emitted particles on the loop
distribution. As noted in the introduction, the existence of the fixed scale `k or `c means that
the loop distribution will no longer scale, that it will no longer be a function of the dimensionless
variable γ ≡ `/t.

6.2.1 Boltzmann equation and general solution

The loop distribution satisfies a Boltzmann equation which, taking into account the `-dependence
of ˙̀ (that is the flux of loops in `-space), is given by Ref. [96]

∂

∂t

∣∣∣∣
`

(
a3n

)
+

∂

∂`

∣∣∣∣
t

(
d`

dt
a3n

)
= a3P (6.8)

where a(t) is the cosmic scale-factor, and the loop production function (LPF) P(t, `) is the rate at
which loops of length ` are formed at time t by being chopped of the infinite string network. On
substituting (6.7) into Eq. (6.8) and multiplying each side of the equation by J (`), one obtains

1

γd

∂

∂t

∣∣∣∣
`

g(t, `)− J (`)
∂

∂`

∣∣∣∣
t

g(t, `) = a3J (`)P(t, `), (6.9)

where
g(t, `) ≡ γdJ (`)a3(t)n(t, `). (6.10)

In order to solve (6.9), we first change variables from (t, `) to

τ ≡ γdt , ξ ≡
∫

d`

J (`)
. (6.11)

Notice from (6.7) and (6.11) that for a loop formed at time ti with length `i, its length at time t
satisfies

ξ(`) + γdt = ξ(`i) + γdti. (6.12)
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In terms of these variables Eq. (6.9) reduces to a wave equation with a source term

∂

∂τ

∣∣∣∣
ξ

g(τ, ξ)− ∂

∂ξ

∣∣∣∣
τ

g(τ, ξ) = S(τ, ξ), (6.13)

where
S(τ, ξ) = a3(τ)J (ξ)P(τ, ξ).

We now introduce the light-cone variables

2u ≡ τ − ξ , 2v ≡ τ + ξ, (6.14)

so that the evolution equation simply becomes

∂

∂u

∣∣∣∣
v

g(u, v) = S(u, v), (6.15)

which is straightforward to integrate. In the following we neglect any initial loop distribution at
initial time tini (since this is rapidly diluted by the expansion of the universe), so that the general
solution of (6.15), and hence the original Boltzmann equation Eq. (6.8), is

g(u, v) =

∫ u

−v
du′ S(u′, v). (6.16)

Finally one can convert back to the original variables n(`, t) using (6.10) to find

n(t, `) =
1

γdJ (`)a3(t)

∫ u(t,`)

−v(t,`)

du′ a3
(
u′, v(t, `)

)
J (u′, v(t, `))P(u′, v(t, `)) (6.17)

where v(t, `) is obtained from Eqs. (6.11) and (6.14). Notice that J appears in two places: as an
overall factor in the denominator, as well as in the integrand.

6.2.2 Solution for a δ-function loop production function

We now assume that all loops are chopped off the infinite string network with length αt at time
t. This assumption, which has often been used in the literature, will lead to analytic expressions.
The value α ∼ 0.1 is suggested by the NG simulations of [95, 103], particularly in the radiation
era. However, one should note that other simulations [99] are consistent with power-law loop
productions functions [52, 123], which have also been predicted analytically [137, 232, 138]. These
will be considered elsewhere. Since αt� (`k, `c) for α ∼ 0.1, we expect that particle radiation from
infinite strings will not affect the (horizon-size) production of loops from the scaling infinite string
network, and hence we consider a loop production function of the form

P(t, `) = Ct−5δ

(
`

t
− α

)
(6.18)

where the constant C, which takes different values in the radiation and matter eras, will be specified
below. Substituting into (6.16), assuming a ∝ tν , (with ν = 1/2 in the radiation era, and ν = 2/3
in the matter era) gives

g(u, v) = C

∫ u

−v
du′ J [`(u′, v)]t(u′, v)−5a[t(u′, v)]3δ

[
`(u′, v)

t(u′, v)
− α

]
.
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In order to evaluate this integral, in which v = v(t, `) is fixed, let us denote the argument of the
δ-function by

y ≡ `(u′, v)

t(u′, v)
− α.

For the given v, the argument vanishes (y = 0) for some u′(v), that we will denote u?(v) and which
therefore satisfies

`(u?, v) = αt(u?, v). (6.19)

Let us rewrite this more simply as `? = αt? where `? ≡ `(u?, v) = `?(v) and t? ≡ t(u?, v) = t?(v).
Now, from the v equation in (6.14), one has 2v = γdt?(v) + ξ(`?(v)). Furthermore — since our final
goal is to write the loop distribution in terms of (t, `) (rather than v) — we note from the same
equation that v is related to (t, `) by 2v = γdt + ξ(`). Thus t?(t, `), which will be required below,
is the solution of

γdt? + ξ(αt?) = γdt+ ξ(`), (6.20)

which physically is simply relating the length of the loop αt? at its formation time t?, with its
length ` at time t, see Eq. (6.12).

The final step needed to evaluate the integral in Eq. (6.2.2) is the Jacobian of the transformation
from u′ to y which, on using (6.14), is given by

∂

∂u′

∣∣∣∣
v

(y(u′, v)) = −γdJ (`(u′, v))t(u′, v) + `(u′, v)

γdt(u′, v)2
.

Evaluating this at u′ = u? and using `? = αt? gives

∂

∂u

∣∣∣∣
v

(y(u?, v)) = −γdJ [αt?(t, `)] + α

γdt?(t, `)
.

Having now expressed all the relevant quantities in terms of (t, `), one can combine the above results
and use the definition of g in terms of n(t, `) in Eq. (6.10) to find

t4n = C
1

J (`)

J (αt?)

α+ γdJ (αt?)

(
t?
t

)−4(
a(t?)

a(t)

)3

. (6.21)

This equation, which is exact, is the central result of this section and gives the loop distribution
for any form of energy loss d`/dt = −γdJ (`), provided the loop production function is a δ-function.
It generalizes and extends other approximate results which may be found in the literature.

For loops that are formed in a given era (either radiation or matter domination) and decay in
the same era, the above solution reduces to

t4n = C
1

J (`)

J (αt?)

α+ γdJ (αt?)

(
t?
t

)3ν−4

. (6.22)

In the matter era, however, there also exists a population of loops which were formed in the radiation
era, where C = crad, and decay in the matter era. Indeed, this population generally dominates over
loops formed in the matter era. From (6.21) one can find a general expression for the distribution
at any redshift z, provided the loops were formed in the radiation era (ν = 1/2): it is given by

t4n(t, `) = crad
1

J (`)

J (αt?)

α+ γdJ (αt?)

(
t?
t

)−5/2

(1 + z(t))3
(

2
√

ΩradH0t
)3/2

(6.23)
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This reduces to (6.21) in the radiation era, and has the correct scaling in the matter era.

In the following we use standard Planck cosmology with Hubble constant H0 = 100hkm/s/Mpc,
h = 0.678, Ωmat = 0.308, Ωrad = 9.1476 × 10−5 and ΩΛ = 1 − Ωmat − Ωrad [25]. We model
the varying number of effective degrees of freedom in the radiation era through H(z) = H0H(z)
with H(z) =

√
ΩΛ + Ωmat(1 + z)3 + ΩRG(z)(1 + z)4 where G(z) is directly related to the effective

number of degrees of freedom g∗(z) and the effective number of entropic degrees of freedom gS(z)
by Ref. [48]

G(z) =
g∗(z)g

4/3
S (0)

g∗(0)g
4/3
S (z)

. (6.24)

We model this by a piecewise constant function whose value changes at the QCD phase transition
(T = 200MeV), and at electron-positron annihilation (T = 200KeV):

G(z) =





1 for z < 109,

0.83 for 109 < z < 2× 1012.

0.39 for z > 2× 1012

. (6.25)

6.3 Loop distributions for particle radiation from cusps and
kinks

Given a specific form of J (`), the loop distribution n(`, t) is given by (6.21), where t?(t, `) is
obtained by solving (6.20). The existence or not of an analytical solution depends on the form of
J (`). In this section we consider three cases:

1. Nambu-Goto loops: here ˙̀ = −γd so that J = 1;

2. Loops with kinks: The asymptotic behaviour of J (`) is given in Eq. (6.2). This can be
captured, for instance, by J1 = 1 + `k/` or alternatively by

Jk =

√
1 +

(
`k
`

)2

. (6.26)

This second form gives a simpler analytic expression for t?, and we work with it below.
(We have checked that the differences in predictions arising from the choice of J1 or Jk are
negligible.)

3. Loops with cusps: Following Eq. (6.4), we take

Jc =

[
1 +

(
`c
`

)3/2
]1/3

, (6.27)

which has the correct asymptotic behaviour and also leads to analytical expressions. An
alternative and seemingly simpler, form J = 1 +

√
`c/` does not give analytical expressions

for n(t, `).
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We now determine the corresponding loop distribution in scaling units, namely in terms of the
variables

γ ≡ `

t
, γk(t) ≡ `k

t
, γc(t) ≡ `c

t
, (6.28)

and determine
N (t, γ) ≡ t4n(t, γ). (6.29)

6.3.1 NG strings

A first check is that the above formalism yields the well-known, standard, loop distribution for NG
strings (J = 1). Eq. (6.11) yields ξ = `, and from Eq. (6.20) it follows that

t?
t

=
γ + γd

α+ γd
.

Hence, from Eq. (6.22)

NNG(t, γ) = C
(α+ γd)3(1−ν)

(γ + γd)4−3ν
, (6.30)

which is the standard scaling NG loop distribution for a delta-function loop production function
[64]. In the radiation/matter eras, and on the scales α � γd observed in simulations, comparison
with the numerical results of [95, 103, 99] sets the value of C to respectively

cradα
3/2 ' 0.18 (radiation era)

cmatα ' 0.27 (matter era)

The scaling distribution Eq. (6.30) is shown in the black (solid) curve in Fig 6.1, where we have
taken α = 0.1, γd = 10−6 and ν = 1/2 (radiation era).

6.3.2 Loops with kinks

From Eq. (6.11), with Jk given Eq. (6.26), we now have ξ(`) =
√
`2 + `2k. Thus, from Eq. (6.20),

t? satisfies a quadratic equation with solution

t?
t

=

−γ̄
(
γd

α

)
+

√
γ̄2 − γ2

k

(
1−

(
γd

α

)2)

α
(
1−

(
γd

α

)) (6.31)

where γk(t) is given in (6.28) and

γ̄(t, γ) ≡ γd +
√
γ2

k(t) + γ2 (6.32)

Since α ∼ 0.1 and γd ≡ ΓGµ . 10−6 (from cosmic microwave background constraints on cosmic

strings [72]) in our analytical expressions below we ignore terms in γd/α so that (αt?/t)
2

= γ̄2−γ2
k(t).

(This approximation was not used in our numerical calculations.) Thus, from Eq. (6.21) we find,
assuming α� γd,

N (t, γ) = Cα3(1−ν)

(
γ̄2(t, γ)

1 + γ2
k(t)/γ2

)1/2(
γ̄2(t, γ)− γ2

k(t)
) 3ν−5

2 where γ ≤ α, (6.33)
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Figure 6.1: Loop distribution for kinks in the radiation era, with α = 0.1 and γd = 10−6, and at
several different epochs. Black solid line: γk = 0 (t → ∞), the NG loop distribution. Red dash
line: γk(t) = 10−5γd (corresponding to t = 105tk). Blue dot-dash line γk(t) = γd (corresponding to
t = tk). Green dotted line γk(t) = 104γd (corresponding t = 10−4tk).

This distribution, in the radiation era, is plotted in Fig. 6.1 for illustrative values of γk(t), with
γd = 10−6, α = 0.1.

The important qualitative and quantitative features to notice are the following:

• The existence of the fixed scale `k gives rise to a non-scaling distribution: N is explicitly
t-dependent.

• When γk → 0, namely when t → ∞, Eq. (6.33) reduces to the standard scaling NG loop
distribution given in Eq. (6.30) (in the limit α� γd).

• For γ � γk(t), the loop distribution is scaling since γ̄ ∼ γ + γd, so that

N (t, γ) ' Cα3(1−ν)(γ + γd)3ν−4. (6.34)

This behaviour is clear in Fig. 6.1 where for γ � γk(t) the various curves coincide with the
NG curve. Hence, for loops of these lengths, gravitational radiation is important but particle
radiation plays no role. Furthermore

– when γd � γ � γk, the distribution is flat, see Fig 6.1 dashed-red curve.

– when γ � (γd, γk) N drops off as γ3ν−4, as for NG loops, a dependence which is simply
due to the expansion of the universe.

• For γ � γk(t), the distribution no-longer scales because of particle radiation. Indeed, γ̄ ∼
γk(t) + γd so that

N ' Cα3(1−ν)γ
3ν−5

2

d

(
γ

γk(t)

)
(2γk(t) + γd)

3ν−5
2 (γk(t) + γd). (6.35)
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This linear dependence on γ for γ � γk is visible in Fig. 6.1. Notice that

– when γd � γk, there is no plateau in the distribution, which goes from the linear
behaviour Eq.(6.35) to the scaling behaviour Eq. (6.34), at a value of γ obtained by
equating these two equations, namely

γ∗k(t) '
√

2γkγd.

This is clearly visible in the green-dotted curve in Fig. 6.1.

When γk(t)� γd, an excellent approximation to the distribution is

N (γ, t) ' Cα3(1−ν) 1

J (γ, t)
(γ + γd)3ν−4. (6.36)

where, for the kinks considered here,

J (γ, t) =

√
1 +

(
γk(t)

γ

)2

.

On the other hand, when γk(t) ≥ γd the distribution changes behaviour, and for γk(t) � γd its
amplitude is significantly suppressed due to particle emission. Indeed, when γ = γ∗k(t), which is

at the maximum of N (see green curve, Fig 6.1), N scales as γ
−(4−3ν)/2
k which decreases with

increasing γk. The equality γd = γk(t) defines a characteristic time tk by

tk ≡
`k
γd
. (6.37)

For t� tk, particle emission is dominant, γk(t) ≥ γd, and the distribution is suppressed. Using `k
given by Eq. (6.3),

tk = βk
tpl

Γ2(Gµ)5/2
' βkteq

(
2.5× 10−24

Gµ

)5/2

or in terms of redshift

zk ' zeq
(

Gµ

2.5× 10−24

)5/4
1√
βk

(6.38)

where zeq ' Ωmat/Ωrad ∼ 3367. The LH panel of Fig. 6.2 shows the loop distribution for different
redshifts for `k given in Eq. (6.3) and βk = 1. The effect of the suppression of the loop distribution
at z � zk on the SGWB will be discussed in Section 6.4.

6.3.3 Loops with cusps

For loops with cusps, where J = Jc given in Eq. (6.27), the analysis is very similar. We only
give the salient features. As for kinks (see Eq. 6.37), one can define a characteristic time through
γd = γc(t), namely

tc ≡
`c
γd
, (6.39)
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and again, as for kinks, when t � tc the effects of particle radiation are more important and the
loop distribution is suppressed. For `c given in Eq. (6.5), we have

tc = βc
tpl

Γ3(Gµ)7/2
' βcteq

(
4.6× 10−18

Gµ

)7/2

(6.40)

or in terms of redshift

zc ' zeq
(

Gµ

4.6× 10−18

)7/4
1√
βc
. (6.41)

For the relevant range, namely Gµ < 10−6, we have zc < zk and hence the observational conse-
quences of cusps, both on the SGWB and the diffuse Gamma-ray background, are expected to be
more significant than those of kinks — since, as discussed above, the loop distribution is suppressed
when z < (zc, zk), see Fig. 6.2.

The explicit γ-dependence of the distribution is the following. First, substituting Jc in the
definition of ξ(γ) and t∗, Eqs.(6.11) and (6.20) respectively, we find

ξ(`) =
(
`3/2 + `3/2c

)2/3

,

(
αt?
t

)3/2

=

[
γd +

(
γ3/2 + γ3/2

c

)2/3
]3/2

− γ3/2
c for α� γd.

It then follows from Eq. (6.22) that the resulting distribution again scales for γ � γc where it is
given by Eq. (6.34); and for γ � γd, N ∝ √γ. When γc � γd, we find

N ∝
{
γ3ν−4 (γ � γ∗c )
√
γ (γ � γ∗c )

where
γ∗c ' (γd

√
γc)

2/3
.

6.4 The Stochastic Gravitational Wave Background

The stochastic GW background ΩGW(t0, f) given in (6.6) is obtained by adding up the GW emission
from all the loops throughout the whole history of the Universe which have contributed to frequency
f . Following the approach developed in Refs. [128, 64, 114]

ΩGW(ln f) =
8πG2µ2f

3H2
0

∞∑

j=1

Cj(f)Pj , (6.42)

where

Cj(f) =
2j

f2

∫ zfriction

0

dz

H(z)(1 + z)6
n

(
2j

(1 + z)f
, t(z)

)
, (6.43)

and zfriction is the redshift below which friction effects on the string dynamics become negligible
[64]

zfriction ' zeq (4.4× 1016)

(
Gµ

10−11

)
. (6.44)
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Figure 6.2: Loop number density N = t4n for kinks [LH panel] and cusps [RH panel], for Gµ =
10−17. Thus zk ∼ 1012 and zc ∼ 104. From bottom to top, the curves show snapshots of the
loop distribution at redshifts z = 1013, 1011, 109, 107, 105, and the black curve is the scaling loop
distribution at z → 0. The loop distributions are suppressed for z � zk or z � zc.

The Cj depend on the loop distribution n(`, t) through n(2j/((1 + z)f), t(z)), whilst the Pj are
the “average loop gravitational wave power-spectrum”, namely the power emitted in gravitational
waves in the jth harmonic of the loop. By definition of Γ, these must be normalized to

Γ =

∞∑

j=1

Pj .

For loops with kinks, Pj ∝ j−5/3, whereas for loops with cusps Pj ∝ j−4/3 [117, 108, 64].
As explained above, the effect of γk and γc on the loop distribution is particularly important

at large redshifts z > (zc, zk), and hence in the radiation era. Therefore, we expect the effect of
particle radiation to be visible in the high-frequency part of the spectrum. This is indeed observed
in Fig. 6.3, where the LH panel is for kinks with `k given in Eq. (6.3) and Pj ∝ j−5/3; whereas the
RH panel is for cusps with `c given in Eq. (6.5) and Pj ∝ j−4/3. As a result of the non-scaling loop
distribution, the spectrum is no longer flat at high frequencies and, as expected, the effect is more
significant for cusps than for kinks since zc < zk.

We can estimate the frequency above which the spectrum decays as follows. In the radiation
era

H(z) = (1 + z)2
√

ΩradH0 (6.45)

t(z) =
1

2(1 + z)2

1√
ΩradH0

(6.46)

At high frequency, the lowest harmonic j = 1 is expected to dominate [64], so we set Pj = Γδj,1.
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Figure 6.3: SGWB including the backreaction of particle emission on the loop distribution. LH
panel: kinks on loops, RH panel: cusps on loop. The spectra are cutoff at high frequency, as indi-
cated by the black vertical lines. Gµ ranges from 10−17 (lower curve), through 10−15, 10−13,10−11,
10−9 and 10−7 (upper curve). Also plotted are the power-law integrated sensitivity curves from
SKA (pink dashed) [47], LISA (yellow dashed) [35], adv-LIGO (grey dashed) [31] and Einstein
Telescope (blue dashed) [348, 349].
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Then using (6.45) and (6.46), Eq. (6.42) simplifies to

ΩGW(ln f) = 24 16π(ΓGµ)2

3Γ

H0

f
Ω

3/2
rad

∫ zfriction

zeq

dz N
(

2

(1 + z)f
, t(z)

)

∝ H0

f

[∫ zc,k

zeq

dz N
(

2

(1 + z)f
, t(z)

)
+

∫ zfriction

zc,k

dz N
(

2

(1 + z)f
, t(z)

)]
.

' H0

f

∫ zc,k

zeq

dz N
(

2

(1 + z)f
, t(z)

)
. (6.47)

Here, in going from the second to the third equality, we have used the fact that (i) for Gµ &
10−18, which is relevant range for current and future GW detectors, zeq < (zc, zk) � zfriction (see
Eqs. (6.38), (6.41) and (6.44)), and (ii) that the loop distribution above z(c,k) is subdominant, see
e.g. discussion above equation (6.37) in Section 6.3.2. Using Eq.(6.46) as well as the approximation
for the loop distribution for z < zk given in Eq. (6.36), it follows that for kinks

[ΩGW(ln f)]k ∝
∫ xk

xeq

[
1 +

(
`kxf

2

8H0

√
Ωrad

)2
]−1/2

(γd + x)
−5/2

dx (6.48)

where we have changed variable from z to

x =
4

f
(1 + z)H0

√
Ωrad

so that

xeq =
4

f
(1 + zeq)H0

√
Ωrad , xk =

4

f
(1 + zk)H0

√
Ωrad .

In order to understand the frequency dependence of ΩGW, let us initially focus on the standard
NG case, namely `k = 0. (Here, the same change of variable starting from the first line of Eq. (6.47)
again yields Eq. (6.48) but with upper bound replaced by xfriction = 4(1 + zfriction)H0

√
Ωrad/f).

Then Eq. (6.48) gives

[ΩGW(ln f)]NG ∝
1

(
feq

f + 1
)3/2

− 1
(
ffriction

f + 1
)3/2

,

where

feq =
4H0

√
Ωrad(1 + zeq)

γd
∼ 10−18

Gµ
s−1 , ffriction =

4H0

√
Ωrad(1 + zfriction)

γd
∼ 1010s−1,

and where in the last equality we have used Eq. (6.44). At frequencies f for which ffriction � f � feq

it follows that [ΩGW(ln f)]NG → constant meaning that the spectrum is flat, which is the well-known
result for NG strings [64].

For `k 6= 0, the argument is altered because of the frequency dependence of the term in square
brackets in Eq. (6.48). A further characteristic frequency now enters: this is can be obtained by
combining the typical scales of the two terms in Eq. (6.48). Namely, on one hand, from the first
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term (in square brackets) we have `kf
2 ∼ 8H0

√
Ωradx

−1; and on the other hand from the second
(standard NG) term we have x ∼ γd. Combining these yields the characteristic frequency

fk ∼
(

8H0

√
Ωrad

`kγd

)1/2

. (6.49)

For fk > f > feq the spectrum is still flat, as in the NG case. However, for f > fk it decays since the

first term in square brackets in Eq. (6.48) dominates. With `k given in Eq. (6.3), fk ∝ (Gµ)1/4β
−1/2
k ,

and this behaviour is clearly shown in Fig. 6.3 where fk is shown with a vertical black line for each
value of Gµ, and we have assumed βk = 1.

For cusps the analysis proceeds identically with

fc =

(
8H0

√
Ωrad

`cγd

)1/2

. (6.50)

Now, on using `c defined in Eq. (6.5), we have fc ∝ (Gµ)3/4β
−1/2
c . The spectrum of SGWB in this

case is shown in the RH panel of Fig. 6.3 where fc is shown with a vertical black line for each value
of Gµ, and we have taken βc = 1.

As the figure shows, with βc = 1 and in the range of Gµ of interest for GW detectors, the
decay of ΩGW for f > fc is outside the observational window of the LIGO, LISA (and future ET)
detectors. In order to have fc ∼ fLIGO, one would require large values of βc which are not expected.

6.5 Emission of particles

The loops we consider radiate not only GW but also particles. Indeed, for loops with kinks, from
Eq. (6.2)

˙̀
∣∣∣
particle

= −γd
`k
`

(6.51)

The emitted particles are heavy and in the dark particle physics sector corresponding to the fields
that make up the string. We assume that there is some interaction of the dark sector with the
standard model sector. Then the emitted particle radiation will eventually decay, and a significant
fraction of the energy feff ∼ 1 will cascade down into γ-rays. Hence, the string network will be
constrained by the Diffuse Gamma-Ray bound measured at GeV scales by Fermi-LAT [341]. This
bound is

ωobs
DGRB . 5.8× 10−7 eVcm−3, (6.52)

where ωDGRB is the total electromagnetic energy injected since the universe became transparent to
GeV γ-rays at tγ ' 1015s, see e.g. [346].

The rate per unit volume at which string loops lose energy into particles can be obtained by
integrating (6.51) over the loop distribution n(`, t) = t−4N (γ, t), namely

ΦH(t) = µγd`k

∫ αt

0

n(`, t)
d`

`
= µt−3γdγk

∫ α

0

N (γ′, t)
γ′

dγ′ (6.53)
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The Diffuse Gamma Ray Background (DGRB) contribution is then given by (see e.g. [346])

ωDGRB = feff

∫ t0

tγ

ΦH(t)

(1 + z)4
dt

= feffµγd

∫ t0

tγ

γk(t)

t3(1 + z(t))4

[∫ α

0

N (γ′, t)
γ′

dγ′
]

dt

= Γ(8.4× 1039)feff

(
Gµ

c4

)2 ∫ t0

tγ

γk(t)

t3(1 + z(t))4

[∫ α

0

N (γ′, t)
γ′

dγ′
]

dt eVcm−3 (6.54)

where in the last line we have explicitly put in factors of c converted to physical units of eV/cm
3
.

For cusps, one finds

ωDGRB = Γ(8.4× 1039)feff

(
Gµ

c4

)2 ∫ t0

tγ

√
γc(t)

t3(1 + z(t))4

[∫ α

0

N (γ′, t)√
γ′

dγ′
]

dt eVcm−3 (6.55)

In the matter dominated era, the loop distribution is dominated by those loops produced in the
radiation era but decay in the matter era: its general expression is given in Eq. (6.23), and can
be deduced straightforwardly from the results of subsections 6.3.2 and 6.3.3 for kinks and cusps
respectively. We have calculated (6.54) and (6.55) numerically, and the results are shown in Fig. 6.4
for kinks [LH panel] and cusps [RH panel], together with the Fermi-LAT bound. It is clear from
this figure that particle radiation from loops containing kinks and/or cusps, with `k and `c given
in (6.3) and (6.5), are not constrained by the Fermi-LAT data.

The general shape of the spectra in Fig. 6.4 can be understood from the results of Section 6.2.
Let us focus on the case of cusps (for kinks the analysis is similar). First, we can determine the
range of Gµ for which the characteristic time tc defined in Eq. (6.39) falls within the range of
integration of (6.55), namely

tγ ≤ tc ≤ t0 ⇐⇒ 10−19 . Gµ . 10−18

(we have assumed βc = 1 and, from Eq. (6.40), t = tc implies Gµ ∼ 4.6 × 10−18(teq/t)
2/7). This

range of Gµ defines the position of the maximum of the DGRB in the RH panel of Fig. 6.4. For lower
Gµ, all times in the integration range are smaller than tc. As we have discussed in Section 6.3.3, in
this case the loop distributions are suppressed due to particle radiation: there are fewer loops, and
hence fewer particles are emitted leading to a decrease in the DGRB. This is shown in Fig. 6.4, and

using the results of Section 6.3.3, one can show that for Gµ� 10−19, ΦH(t) ∝ µ2/3`
−1/6
c (1+z)3t−4/3

leading to
ωDGRB ∝ µ2/3`−1/6

c ∝ (Gµ)13/12 (Gµ� 10−19).

On the other hand, for Gµ� 10−18, all times in the integration range are larger than tc. There is
no suppression of the loop distribution, since GR dominates over particle emission (see Section 6.2).
But precisely because GR dominates, fewer particles are emitted, and hence we also have a decrease
in the DGRB. We now find that ΦH(t) ∝ γ−1

d µ
√
`c(1 + z)3t−2 so that

ωDGRB ∝
√
`c ∝ (Gµ)−5/4

which is the slope seen in Fig. 6.4. For kinks the discussion is very similar, and the slopes are given
in the caption of the figure. However, each kink event emits fewer particles, leading to a lower
overall DGRB.
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Figure 6.4: Contribution of cosmic strings to the Diffuse Gamma-Ray Background. The (blue)
horizontal line is the experimental constraint from Fermi-LAT, while the (orange) line is the exact
numerical calculation for kinks (LH panel) and cusps (RH panel). On either side of the maxima,
the slope and amplitude can be estimated using the results of previous sections. Kinks: for low Gµ
the slope is 9/8 (dashed-green line), and for high Gµ it depends on µ−2 log(µ) (dashed-red line).
Cusps: For low Gµ the slope is 13/12 (dashed-green line), and for high Gµ it is −5/4 (dashed-red
line). The slightly different amplitude between the numerical calculation and the analytical one
is because the latter assumes a matter dominated universe, and hence neglects effects of late time
acceleration.
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6.6 Conclusion

Cosmic string loops emit both particle and gravitational radiation. Particle emission is more impor-
tant for small loops, while gravitational emission dominates for large loops. In this work, we have
accounted for both types of radiation in the number density of loops and calculated the expected
stochastic gravitational wave background and the diffuse gamma ray background from strings. Our
results show that the number density of loops gets cutoff at small lengths due to particle radiation.
The strength of the cutoff depends on the detailed particle emission mechanism from strings – if
only kinks are prevalent on strings, small loops are suppressed but not as much as in the case when
cusps are prevalent (see Fig. 6.2). The cutoff in loop sizes implies that the stochastic gravitational
wave background will get cut off at high frequencies (see Fig. 6.3). The high frequency cutoff
does not affect current gravitational wave detection efforts but may become important for future
experiments.

Particle emission from strings can provide an important alternate observational signature in the
form of cosmic rays. Assuming that the particles emitted from strings decay into standard model
Higgs particles that then eventually cascade into gamma rays, we can calculate the gamma ray
background from strings. This background is below current constraints in the case of both kinks
and cusps.

It is important to evaluate more carefully the prevalence of kinks versus cusps on cosmological
string loops. In Ref. [139], particle radiation from a loop of a specific shape was studied where the
shape was dictated by general expectations for the behaviour of the cosmological string network.
That particular loop only contained kinks. It would be of interest to study other loop shapes
that are likely to be produced from the network and that contain cusps and to assess if the 1/

√
`

dependence in (6.4) (and assumed throughout this paper) is an accurate characterization of such
loops over their lifetimes. In practice one might expect that if kinks are smoothed out by particle
emission, then cusps (perhaps minicusps) must be produced, and if cusps (or minicusps) annihilate
then kinks must be produced. Hence, in reality the situation might be a combination of both cases.
Finally, it would also be interesting to study other loop production functions, particularly those
of [137, 232, 138] which predict a larger number of small loops relative to the situation studied in
Section 6.2.2; hence one might expect a larger gamma ray background from strings in this case 2.

2Work in progress



Chapter 7

Irreducible cosmic production of
relic vortons

This chapter is a reproduction of Ref. [58] written in collaboration with Patrick Peter, Christophe
Ringeval and Danièle Steer. The aim of this paper was to quantify the abundance of vortons,
stable configuration of loops, in networks of current-carrying cosmic strings. These vortons can
be candidates for Dark Matter and their predicted abundance can therefore be constrained by
observations since Ωmat . 0.3. In Ref. [125], Patrick Peter and Christophe Ringeval had used a
Boltzmann equation to calculate the accumulation of vortons from an initial distribution of cosmic
string loops. In this paper, we build upon the solution Eq. (6.21) found in Chapter 6 for the
continuity equation, but in this chapter loops have a charge in addition to a length. With this
framework, we were able to calculate the abundance of vortons formed from the loop production
function, something which is new and had not been calculated before. I contributed to all the
sections of this chapter.

Abstract

The existence of a scaling network of current-carrying cosmic strings in our Universe is
expected to continuously create loops endowed with a conserved current during the cosmolog-
ical expansion. These loops radiate gravitational waves and may stabilize into centrifugally
supported configurations. We show that this process generates an irreducible population of
vortons which has not been considered so far. In particular, we expect vortons to be massively
present today even if no loops are created at the time of string formation. We determine their
cosmological distribution, and estimate their relic abundance today as a function of both the
string tension and the current energy scale. This allows us to rule out new domains of this
parameter space. At the same time, given some conditions on the string current, vortons are
shown to provide a viable and original dark matter candidate, possibly for all values of the
string tension. Their mass, spin and charge spectrum being broad, vortons would have an
unusual phenomenology in dark matter searches.

7.1 Introduction

Cosmic strings are expected to be formed in most extensions of the standard particle physics model
as stable line-like topological defects formed during high temperature, Tini say, symmetry breaking
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phase transitions in the early Universe [61]. This occurs whenever a symmetry G is broken down to
a smaller one H provided the first homotopy group of the quotient group G/H (vacuum manifold)
is non-trivial, producing similarly non-trivial topological solutions for the symmetry-breaking Higgs
field. The scaling evolution of cosmic string networks (see e.g. Ref. [123] and references therein)
means that they are present throughout the evolution of the Universe, possibly giving rise to
numerous observational signatures, such as line-like discontinuities in temperature in the Cosmic
Microwave Background (CMB), or bursts of gravitational waves [106, 114, 90]. These very much
sought-for signatures in turn lead to strong constraints on the string tension Gµ.

Most studies of cosmic strings suppose they are structureless, with equal energy per unit length
and tension, and therefore they are expected to be well described by a no-scale 2-dimensional
worldsheet action, i.e. the Nambu-Goto action. This is no longer the case if, as first realized by
Witten [143, 144], particles coupled to the string-forming Higgs field can condense in the string core
and subsequently propagate along the worldsheet. The resulting strings thus behave like current
carrying wires and are endowed with a much richer structure [145, 146].

One of the simplest examples of current-carrying strings is that of a U(1)R×U(1)Q gauge theory
with an unbroken gauge symmetry Q (which might be electromagnetism, but not necessarily) and a
broken symmetry R [143]. This model generalizes the prototypical Abelian-Higgs model of cosmic
strings behind much of the existing work on cosmic strings. At a temperature Tini, and a cosmic
time tini, the Higgs field φ with Q = 0 and R = 1 acquires a non-zero vacuum expectation value
|〈φ〉| 6= 0, thereby breaking the first component U(1)R of the total invariance group; this leads to
the formation of vortex lines. The field φ vanishes at the core of the string and its phase varies by an
integer times 2π along any closed path around the vortex: this is the standard Kibble mechanism.
If the theory contains fermions obtaining their masses from the U(1)Q broken symmetry, those form
zero modes in the string core where the symmetry is restored, thereby forming a superconducting
current.

The model also comprises a second scalar field σ with Q = 1 and R = 0, the coupling potential
between φ and σ being chosen such that 〈σ〉 = 0 in vacuum (where |〈φ〉| 6= 0). Under certain
conditions, it is energetically favourable to have 〈σ〉 6= 0 at the core of the string where 〈φ〉 = 0.
At a temperature Tcur < Tini, and cosmic time tcur > tini, the charged scalar field σ thus condenses
on the string and acts as a bosonic charge carrier making the string current-carrying (and in fact
actually superconducting). In the present paper, we assume that the current sets in long after
the string formation scale. In the language of Refs. [350, 149], this means we assume the current
is formed long after the friction damping regime has finished, i.e. during the radiation era. In
practice, it means that we consider Tini (and tini) to be the end of the friction dominated regime.

Cosmic strings can also be produced [351, 352] in superstring theory, also forming, under specific
conditions, a network similar to a Nambu-Goto network [353]. Whether these so-called cosmic
superstrings can carry a current deserves more investigation since they have been shown to not be
able to hold fermionic zero modes so that only bosonic condensates can source such a current [318].
It should, however, be mentioned that because cosmic superstrings live in a higher dimensional
manifold, their motion in the extra dimensions projected into the ordinary 3 dimensional space
should be describable by means of a phenomenological non-trivial equation of state [354, 355]
mimicking that of a current-carrying string; this can be interpreted as moduli field condensates.

The presence of currents flowing along the strings affects the dynamics of the network, and in
this paper we particularly focus on vortons [147, 148, 149, 150, 151, 152, 153, 154], namely closed
loops of string which are stabilized by the angular momentum carried by the current. Vortons do
not radiate classically, and here we make the assumption that they are classically stable as well (see
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for instance [155, 156, 157] for numerical studies of their stability). On cosmological scales, they
appear as point particles having different quantized charges and angular momenta.

In this work, we extend the derivation of the vorton abundance of Ref. [149] by not only con-
sidering vortons produced from pre-existing loops at tini, but also those vortons that may form
from the loops chopped off the network at all subsequent times. In particular, we extend the work
of Ref. [125], in which a Boltzmann equation governing the vorton density has been derived and
integrated for any loop production function (LPF), but not explicitly solved to get cosmological
constraints. Let us notice that some of these new produced vortons, when created from the net-
work, may be highly boosted. However, extrapolating the mean equation of state obtained for
Nambu-Goto cosmic string loops, their momentum gets redshifted away and, on average, they be-
have as non-relativistic matter [99]. For this reason, the produced vortons are, as those originally
considered in Ref. [149], potential dark matter and cosmic rays candidates [148, 356].

The total abundance of vortons today is expected to depend on tcur as well as tini, and hence on
the underlying particle physics model. Determining their density parameter today, say Ωtot, and
using the current constraints on Ωdmh

2 ' 0.12 will allow us to place constraints on the physics at
work in the early Universe [25].

The formation and build-up of a population of vortons can be studied using a Boltzmann
Eq. [125]. In this paper, we extend this work by applying the framework introduced in Chapter 6 to
estimate quantitatively the density of vortons today. In Section 7.2 below, we review the necessary
physics underlying vorton properties, then in Section 7.3, we evaluate the distribution of loops and
vortons, in order to be able to calculate, in Section 7.4, the actual vorton distribution and, finally,
their relic abundance in Section 7.5. We end this work by some concluding remarks.

7.2 Assumptions on the physics of vortons

As discussed in the introduction, we focus in this paper on cosmic strings that emerged at a
temperature Tini and later became current carrying at a temperature Tcur.

For non-conducting strings, the boost invariance along the string implies that the string tension
T and its energy per unit length µ are equal and, in order of magnitude, given by µ = T = m2

φ,
where mφ ∝ |〈φ〉| is the mass of the string-forming Higgs field φ. As soon as a current flows along
the string, the worldsheet Lorentz invariance is broken and so is the degeneracy between the stress-
energy tensor eigenvalues µ and T [357, 358, 146], the tension being reduced and the energy per
unit length increased by the current in such a way that

T < m2
φ < µ. (7.1)

The equation of state of current-carrying strings [359, 360, 355, 361, 362, 363] provides us with a
saturation condition

µ− T ≤ m2
σ =⇒ 0 <

µ− T
m2
φ

≤ m2
σ

m2
φ

, (7.2)

according to which there exists a maximal spacelike current, above which it becomes energetically
favoured for the condensate to flow out of the string. For a timelike current [360, 364], i.e. a
charge, there exists a phase frequency threshold allowing, in principle, for arbitrary large values of
the charge. However, vacuum polarization effectively reduces the integrated charge [365] so that
saturation holds for all possible situations.



158 CHAPTER 7. IRREDUCIBLE COSMIC PRODUCTION OF RELIC VORTONS

Denoting by λ the Compton wavelength of the current carrier (λ ' m−1
σ ), we define the param-

eter R by

R ≡ λ√µ . (7.3)

Because µ ' m2
φ, this quantity is approximately the ratio between the Compton wavelengths of the

current carrier and the one of the string forming Higgs field, or, equivalently, R ' mφ/mσ which
we assume to be greater than unity. Given (7.2), it is safe to assume that, at least for R � 1, the
string tension and the energy per unit length are numerically so similar that distinguishing between
them is irrelevant in the forthcoming cosmological context; we will thus denote them both by the
notation µ.

A current-carrying closed string loop is characterized by two classically conserved integral
quantum numbers N and Z, generally non-zero, which prevent the loop from disappearing com-
pletely [366]. As the loop loses energy through friction or radiation, it reaches a classically stable
state called a vorton [147]. However, this state can decay through quantum tunnelling if the size of
the loop is comparable with the Compton wavelength of the current carrier, λ. Hence, a vorton can
only be stable if the current flowing along the string loop can prevent its collapse and if its proper
length is much larger than λ.

Although the values of N and Z are initially randomly distributed, it is expected that the
majority of closed loops are of nearly chiral [367, 151, 361, 368] type with almost identical quantum
numbers [366]. Besides, the loop rotation velocity vvort =

√
T /µ ' 1 is roughly approximated by

that of light and

|Z| ≈ N. (7.4)

In the rest of the paper, we focus on such nearly chiral vortons. Using of the central limit theorem,
we estimate that the value of N at the formation of a loop is given by

N? =

√
`?
λ
. (7.5)

In (7.5) and in the rest of this paper, a subscript ? on a quantity denotes the value it had at the
time of formation of the corresponding loop. Since the charge N is conserved, we can, in what
follows, omit the index ? and simply write N? = N .

To estimate the size of the vortons `0, we first have to note that they have been shown to
approach circularity [155]. Moreover, large vortons would also tend to circularize through either
gravitational or gauge field radiation, on time scales much smaller than the Hubble time. It thus
seems reasonable to consider mostly circular loops, therefore described by one parameter only,
namely their radius r0 = `0/2π. Vortons are also characterized by their angular momentum quan-
tum number J = NZ ≈ N2. Equivalently, it is also given in terms of the energy per unit length
and tension by [148] J = 2πr2

0

√T µ, i.e. J2 = µT `40/(4π2). Hence, for chiral vortons with R � 1

`0 =

√
2π

µ
N =

√
2π`?
λµ
≈
√
`?
λµ

, (7.6)

provided `0 > λ. The length `0(N) being itself a function of the charge N , this is equivalent to
imposing that N > R. Therefore, R gives also the minimal possible charge of a vorton.

Following the same procedure as in Chapter 6, we model the physics of the vortons using an
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arbitrary function J which describes how the current-carrying loops lose energy

d`

dt
= −ΓGµJ (`,N), (7.7)

dN

dt
= 0, (7.8)

in which Γ ≈ 50 is a numerical factor for the emission of gravitational waves (GW) [118]. In order
to model string networks with vortons, we impose the following properties on J :

• J (` � `0, N) ≈ 1, meaning that on scales much larger than the vorton size, the effect of
the current is mostly negligible so that the dynamics of the current-carrying string is well
approximated by that of a Nambu-Goto string; gravitational wave radiation is the dominant
energy-loss mechanism, and we neglect other such mechanisms.

• J (` � `0, N) ≈ 0 if `0 > λ, meaning that the angular momentum carried by the current
prevents the loop from shrinking, provided the loop is large enough to prevent quantum
tunnelling.

We will consider a smooth form of J , regulated by a parameter σ, in particular

J (`,N) =
1

2

{
1 + tanh

[
`− `0(N)

σ

]}
. (7.9)

We call vortons all the loops with sizes ` ≤ `0(N) and N > R. In the limit σ → 0, J (`,N) reduces
to Θ[`− `0(N)], and the vortons accumulate around `0(N).

Let us mention that our approach, and results, differ from the vorton abundances derived in
Refs. [151, 150]. These latter references were concerned with the extreme limit in which the current
carrier condensation and string forming times are similar (R ' 1 in our notation). For this reason,
they were not concerned with the emission of gravitational waves. Indeed, in the limit R → 1,
strong currents have been shown to dampen the loop oscillations and this allows for a population
of vortons to be rapidly created (soon after the string forming phase transition). The vortons
considered in Refs. [151, 150] are of this kind only. Let us recall that the current-carrier particles
are trapped on the string worldsheet by means of a binding potential. As such, when there are
strong currents, there is always the possibility that they tunnel out [360]. Such an instability
could drastically affect the current, and hence the mechanism by which the vortons considered
in Refs. [151, 150] are formed. On the contrary, the vortons we are considering here carry weak
currents and our results are only valid in the domains for which R > 1. The damping mechanism
by which the weak current-carrying loops become vortons is the emission of gravitational waves (as
in Ref. [149]).

Having recalled the basic properties of vortons and their dynamics, we now turn to the expected
distributions of loops of various kinds, including those ending up as vortons.

7.3 Distribution of loops and vortons

In the following sections, we extend a statistical method originally based on the Boltzmann Eq. [96,
123, 122, 125] to study current carrying strings. Our aim is to find the number density of vortons,
marginalized over their charge N , with length ` at time t > tcur, given some initial loop distribution
at time tini and some assumptions about the loop production function (see Fig. 7.1).
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tini

standard NG strings

tcur

current carrying strings
t

Figure 7.1: At time tini and temperature Tini a network of strings forms with an initial distribution.
At the later time tcur the strings become current-carrying, and vortons can form. At all times, loop
can be produced from long strings and larger loops with a given loop production function.

7.3.1 Continuity equation for the flow of loops in phase space

Let ∂2
/
∂N (`, t,N)2 /`N be the number density of loops with length ` and charge N at time t. In

an expanding universe with scale factor a(t), and taking into account the fact that loops lose length
at a rate which depends on their length as expressed through Eq. (7.7), the continuity equation for
the number density of loops is given by [96, 53]

∂

∂t

[
a3 ∂

2N
∂`∂N

]
− ΓGµ

∂

∂`

[
a3J (`,N)

∂2N
∂`∂N

]
= a3P(`, t,N). (7.10)

Here P(`, t,N) is the charged loop production function (LPF), namely the rate at which loops of
length ` and charge N are formed at time t by being chopped off the string network, and we will
specify it below. Note that this equation is exactly equivalent to that of Ref. [125], as we explain
in details in Appendix 7.A.

The solution to Eq. (7.10) can be obtained in integral form following a similar procedure to that
explained in Chapter 6, though one must take into account the new independent variable N . Upon
multiplying by J (`,N), Eq. (7.10) becomes

∂g

∂t
− ΓGµJ (`,N)

∂g

∂`
= a3(t)J (`,N)P(`, t,N), (7.11)

where we have defined

g(`, t,N) ≡ a3J (`,N)
∂2N
∂`∂N

. (7.12)

The change of variables (){`, t,N} → (){ξ, τ,N}, with

ξ ≡
∫

d`

J (`,N)
and τ ≡ ΓGµt, (7.13)

enables Eq. (7.11) to be written in the simpler form

∂g(ξ, τ,N)

∂τ
− ∂g(ξ, τ,N)

∂ξ
=
a3(τ)

ΓGµ
J (ξ,N)P(ξ, τ,N). (7.14)

Upon using light cone type coordinates

u ≡ 1

2
(τ − ξ) and v ≡ 1

2
(τ + ξ), (7.15)

it follows that Eq. (7.10) reduces to

∂g(u, v,N)

∂u
=
a3(u, v)

ΓGµ
J (u, v,N)P(u, v,N), (7.16)
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which can be integrated between tcur and t, or in terms of the variable u = −v + τ = −v + ΓGµt,
between ucur = −v + τcur = −v + ΓGµtcur to u,

g(u, v,N)− g(−v + ΓGµtcur, v,N) =

∫ u

−v+ΓGµtcur

a3(u′, v)

ΓGµ
J (u′, v,N)P(u′, v,N) du′ , (7.17)

the integral in Eq. (7.17) being calculated with v constant. Rewritten in terms of ∂2N
/
∂`∂N using

Eq. (7.12) finally gives

a3(t)J (`,N)
∂2N
∂`∂N

= a3(tcur)J (`cur, N)
∂2N
∂`∂N

(`cur, tcur, N)

+

∫ u

−v+ΓGµtcur

a3(u′, v)

ΓGµ
J (u′, v,N)P(u′, v,N) du′ .

(7.18)

Here `cur is the size of the loops at condensation and is a function `cur(`, t,N). It is found using
the variable v = τ + ξ of Eq. (7.15) which is a constant along the flow, namely `cur is a solution of

ξ(`cur, N) = ξ(`,N) + ΓGµ(t− tcur). (7.19)

The solution of the continuity Eq. (7.10) is therefore given by Eq. (7.18). On the right-hand-side,
we recognize two terms. The first are the loops left over from the pre-existing loop distribution
at the time of condensation, t = tcur. The second term contains those loops which are produced
from the string network at time t > tcur. As we will see in more detail in Section 7.4, each of these
distributions contain three kinds of loops [149]:

1. Doomed loops: these loops have an initial size which is too small to support a current, and
hence they decay through gravitational radiation never becoming vortons. They are charac-
terized by quantum numbers N < R.

2. Proto-vortons: these are loops which are initially large enough to be stabilized by a current
(thus N > R), but have not yet reached the vorton size `0.

3. Vortons: these are all those proto-vortons which have decayed by gravitational radiation to
become vortons. Hence, vortons have N > R, and in the limit σ → 0, they accumulate with
length `0(N).

Our aim in the following is to extract these different distributions. Each will contain two
contributions: those formed from the initial distribution i.e. coming from the first term in Eq. (7.18),
and those produced at later times from being chopped off the string network, i.e. coming from the
second term in Eq. (7.18). In the case of vortons, we call these two families “relaxed vortons” and
“produced vortons”, respectively. In Section 7.5, we will use these to determine their relic density
and put constraints on Gµ and R.

7.3.2 The loop distribution at condensation

A first step is to specify the loop distribution at tcur. The strings are assumed to form at a
temperature Tini corresponding to a time tini in the early Universe. At all times tini < t < tcur,
that is before condensation, they behave as standard Nambu-Goto strings, see Fig. 7.1. Hence, the
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loop distribution is the canonical one, i.e. contains a population of loops formed at tini and another
population of scaling loops created from the long strings and larger loops [52].

The main simplifying assumption of our work is to assume a Dirac distribution for the loop
production function, namely

P(`, t) = Ct−5δ

(
`

t
− α

)
, (7.20)

with C = 1 and α = 0.1 as to match the Kibble, or one scale, model [61]. Hence, all the produced
loops that are chopped off the network are assumed to be of the same size, given by the fraction
α of t, which is, up to a constant of order unity, the horizon size. This assumption allows us
to analytically solve for the produced vorton distribution later on. However, we stress that more
realistic loop production functions, such as the Polchinski-Rocha one [137, 138, 122, 123, 56],
produce smaller loops while matching in amplitude with the Dirac LPF for `/t = α [99, 52].
Therefore, when gravitational wave emission from loops is accounted for (which is the case here),
the resulting scaling loop distributions end up being quite similar over the length scales ` > γdt.
They may, however, differ significantly on smaller length scales, namely for γct < ` < γdt, where γc

stands for the length scale at which gravitational backreaction damps the LPF [123]. For Nambu-
Goto strings, this length scale is expected to verify γc � γd [309, 232]. Therefore, our results
derived here from a Dirac LPF should provide a robust lower bound for all the others LPF, and
may also be directly applicable to the Polchinski-Rocha ones but only in the limit in which γc ' γd.

Under these assumptions, the resulting distribution of cosmic string loops at time tcur is given
by [52]

dN
d`

(`, tcur) = C t−3/2
cur

(α+ ΓGµ)3/2

(`+ ΓGµtcur)5/2
Θ(αtcur − `)Θ[`+ ΓGµtcur − tini(α+ ΓGµ)]

+ Cini

(
tini

`

)5/2

t−4
ini Θ[(α+ ΓGµ)tini − `− ΓGµtcur].

(7.21)

The first term is the scaling loop distribution associated with the Dirac LPF of Eq. (7.20). The
second term is the initial distribution of loops at tini associated with the random walk model of
Vachaspati-Vilenkin [301]. Assuming the random walk to be correlated over a length scale `corr,
one has [301]

Cini ' 0.4

(
tini

`corr

)3/2

. (7.22)

A natural value for `corr is obtained by assuming that it is given by the thermal process forming
the strings, namely `corr = 1/Tini. We will, however, discuss various other possible choices in
Section 7.5.

At the time of condensation tcur, the loops acquire quantum numbers N , and we assume again
a Dirac distribution for the generated charge:

∂2N
∂`∂N

=
dN
d`

δ

(
N −

√
`

λ

)
. (7.23)

This is in agreement with Refs. [149, 125] and motivated by the fact that, if a thermal process of
temperature Tcur = 1/λ is at work during current condensation, the conserved number N laid down
along the string should be given by a stochastic process of root mean squared value close to

√
`/λ.
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String formation at tini and current condensation at tcur are assumed to occur in the radiation
era. In the following we will use as model parameters Gµ and R. The current condensation redshift
can be determined using entropy conservation:

1 + zcur =

(
qcur

q0

)1/3
Tcur

Tcmb
, (7.24)

where qcur = q(zcur), and q0 = q(z = 0), denotes the number of entropic relativistic degrees of
freedom at the time of current condensation, and today, respectively. In the following, we consider
Tcur to be given by

Tcur =
1

λ
=

√
µ

R , (7.25)

and we take Tcmb = 2.725 K. In order to solve Eq. (7.24) for zcur, we have used the tabulated values
of q(z) associated with the thermal history in the Standard Model and computed in Ref. [369].
Still, from entropy conservation, the redshift associated with the formation of the string network
(at the temperature Tini) is given by

1 + zini =

(
qini

q0

)1/3
Tini

Tcmb
, (7.26)

where
Tini =

√
µ = RTcur . (7.27)

7.4 Cosmological distribution of vortons

From Eq. (7.18), we can determine the distribution dN
d` of relaxed vortons and produced vortons.

Both of these being stable, they will contribute to the relic content of the universe.
Regarding the distributions of doomed loops and proto-vortons, these could be important for

some observational effects of strings, for instance the stochastic gravitational wave background,
but they cannot contribute significantly to the dark matter content of the Universe [123]. Their
distributions are determined from Eq. (7.18) through

dN
d`

∣∣∣∣
doom

(`, t) ≡
∫

dN
∂2N
∂`∂N

Θ(R−N), (7.28)

dN
d`

∣∣∣∣
proto

(`, t) ≡
∫

dN Θ(N −R)
∂2N
∂`∂N

Θ[`− `0(N)], (7.29)

and are given in Appendix 7.B.
In order to determine the vorton distribution, we recall that a vorton is a loop with topological

number N > R and size ` ≤ `0(N) if σ > 0. In the limit σ → 0, the charge N of the vorton is
proportional to its length `0(N) = N/

√
µ. In order to deal correctly with the singular behaviour

in the limit σ → 0, we firstly express the vorton distribution in terms of the charge N , namely
calculate dN

dN , then take the limit σ → 0, and finally determine dN
d` through a simple change of

variables since ` = `0 = N/
√
µ.

Our starting point is therefore

dN
dN

∣∣∣∣
vort

(t,N) ≡ Θ(N −R)

∫
d`

∂2N
∂`∂N

Θ[`0(N)− `], (7.30)
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which we calculate for both relaxed and produced vortons below.

7.4.1 Relaxation term

The distribution of the vortons coming from the initial conditions at the condensation is determined
from (7.30), substituting the first term of Eq. (7.18), together with the initial distribution of loops
in Eq. (7.23). This gives

dN
dN

∣∣∣∣
vort,rel

= Θ(N −R)

∫ `0(N)

−∞

[
a(tcur)

a(t)

]3J (`cur, N)

J (`,N)

dN
d`

(`cur, tcur)δ

(
N −

√
`cur

λ

)
d` , (7.31)

in which `cur(`, t,N), given in Eq. (7.19), is the size of the loop at condensation. In order to
integrate over the Dirac delta distribution, we change integration variable from ` to

y = N −
√
`cur

λ
, (7.32)

with corresponding Jacobian

dy

d`
= − 1

2
√
λ`cur

∂`cur

∂`

∣∣∣∣
t,N

= − 1

2
√
λ`cur

J (`cur, N)

J (`,N)
, (7.33)

where we have used Eq. (7.19). As a result, the J terms cancel, and we obtain

dN
dN

∣∣∣∣
vort,rel

= 2λNΘ(N −R)

[
a(tcur)

a(t)

]3
dN
d`

(
λN2, tcur

)
Θ(){`cur[`0(N), t, N ]− λN2}. (7.34)

In the limit σ → 0, the size of a vorton is ` = `0(N) = N/
√
µ, and Eq. (7.19) simplifies to

`cur[`0(N), t, N ] = ΓGµ(t− tcur) + `0(N). (7.35)

Finally, using dN/d` =
√
µ dN/dN , the vorton distribution generated from the initial loop

distribution at tcur is given by

dN
d`

∣∣∣∣
vort,rel

(`, t) = 2λµ`

[
a3(tcur)

a3(t)

]
dN
d`

(
λµ`2, tcur

)
Θ
[
ΓGµ(t− tcur) + `− λµ`2

]
Θ(`− λ). (7.36)

This distribution scales like matter (modulo the time-dependence in the Θ-functions). This term
was already derived in Ref. [125], and our results agree though the approach is different.

We now turn to the vorton population sourced by loops chopped off from the network, namely
from the second term in Eq. (7.18).

7.4.2 Production term

After the condensation, all the strings and loops carry a current, which implies that all new loops
formed from the network will inherit the charge density carried by their mother strings. As a result,
the charged loop production function is still given by Eq. (7.20), modulated by the charge density
distribution, i.e.

P(`, t,N) = Ct−5δ

(
`

t
− α

)
δ

(
N −

√
`

λ

)
Θ(t− tcur). (7.37)
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Substituting into the last term of Eq. (7.18) (see Chapter 6) gives the number density

∂2N
∂`∂N

=
C

J (`,N)

[
a(t?)

a(t)

]3

t−4
?

J (αt?, N)

α+ ΓGµJ (αt?, N)
δ

(
N −

√
αt?
λ

)
Θ(t? − tcur). (7.38)

where t?(`, t,N) is the time of loop formation, obtained by solving

ΓGµt? + ξ(αt?, N) = ΓGµt+ ξ(`,N), (7.39)

which again follows from the fact that 2v = ΓGµt + ξ(`,N) is a conserved quantity during the
lifetime of the loops. The definition in Eq. (7.30) then gives

dN
dN

∣∣∣∣
vort,prod

= Θ(N − λ√µ)

×
∫ `0(N)

−∞
d`

C

J (`,N)

[
a(t?)

a(t)

]3

t−4
?

J (αt?, N)

α+ ΓGµJ (αt?, N)
δ

(
N −

√
αt?
λ

)
Θ(t? − tcur).

(7.40)
We again integrate the Dirac delta distribution by means of the change of variable

ỹ = N −
√
αt?
λ

, (7.41)

with corresponding Jacobian

dỹ

d`
= −

√
α

λ

1

2
√
t?

∂t?
∂`

∣∣∣∣
t,N

= −
√
α

λ

1

2
√
t?

J (αt?, N)

J (`,N)[α+ ΓGµJ (αt?)]
. (7.42)

Thus Eq. (7.40) gives

dN
dN

∣∣∣∣
vort,prod

= Θ(N − λ√µ)

× 2λN

α
C

[
a
(
λN2/α

)

a(t)

]3(
λN2

α

)−4

Θ(λN2 − αtcur)Θ

[
t?(`0(N), t, N)− λN2

α

]
.

(7.43)
In the limit σ → 0, Eq. (7.39) reduces to

(α+ ΓGµ)t? = `0(N) + ΓGµt, (7.44)

and, using the fact that vortons have size ` = `0(N) = N/
√
µ, it follows that the produced vorton

distribution is given by

dN
d`

∣∣∣∣
vort,prod

=
2λµ`

α
C

[
a
(
λµ`2/α

)

a(t)

]3

×
(
λµ`2

α

)−4

Θ(λµ`2 − αtcur)Θ

(
ΓGµt+ `

α+ ΓGµ
− λµ`2

α

)
Θ(`− λ),

(7.45)
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Figure 7.2: Diagram (`, t) for the different types loops/vortons. The left panel is for Gµ = 10−16

and the right panel for Gµ = 10−19. The dark-dashed vertical line is the time of condensation,
when strings become superconducting. The diagonal dark line represents ` = αt (with α = 0.1) the
size at which loops are produced. The orange horizontal line shows the value of λ.

which again scales as matter.

In Fig. 7.2 we show the different regions of (`, t)-space which are populated by either relaxed
or produced vortons, and also proto-vortons and doomed loops (see Appendix 7.B). Essentially, for
vortons, these are fixed by the Θ-functions in Eq. (7.45) and Eq. (7.36). In particular, we observe
that for

Gµ >
αGtcur

λ3
⇐⇒ R >

αtcur

λ
, (7.46)

there are no relaxed vortons produced, explaining the differences between the two panels of Fig. 7.2.

A consequence of the different Θ-functions in Eq. (7.45) is that when evaluating t?, the formation
time of loops, it turns out that all vortons were produced initially during radiation era. If one
imposes that the loop production function of Eq. (7.37) is only valid for t < teq, one finds that
Eq. (7.45) is multiplied by the Heaviside function Θ(αteq − λµ`2).

7.5 Relic abundance

In the previous sections we have established that the number density of vortons produced during
the radiation era contains two components, namely the relaxed vortons with length distribution
given in Eq. (7.36), and the produced vortons with length distribution given in Eq. (7.45).

7.5.1 Analytic estimates

In order to estimate the density parameter associated with the relic vortons today, we can use the
results of the previous section evaluated at present time t = t0. The density parameter for each
population is defined by

Ω ≡ 8πGµ

3H2
0

∫ ∞

0

`
dN
d`

d` . (7.47)
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Starting with the contribution of the relaxed vortons, from Eq. (7.36), estimated today, the dimen-
sionless loop distribution reads

t0
4 dN

d`

∣∣∣∣
vort,rel

=
2R2

(1 + zcur)3

`

λ

(
t0
tcur

)4

t4cur

dN
d`

Θ(`− λ) Θ[`t(t0)− `] , (7.48)

where we have introduced the typical length [125]

`t(t0) ≡ λ

2R2

[
1 +

√
1 + 4R2

γd(t0 − tcur)

λ

]
, (7.49)

solution of the quadratic equation appearing in the argument of the first Heaviside function in
Eq. (7.36). As explicit in the above expression, this is the maximal possible length of a relaxed
vorton today, larger loops belonging to the (relaxed) proto-vorton distribution, see also Fig. 7.2.
In this expression, the loop distribution at tcur is given by Eq. (7.21). The vorton distribution of
Eq. (7.48) obtained by taking, in Eq. (7.21), C = 0 and Cini given by Eq. (7.22) is the one originally
considered and derived in Ref. [149]. We see that by considering C 6= 0, i.e. by including all the
Nambu-Goto loops produced between tini and tcur, we are adding a new population, not considered
so far, to the relaxed vorton abundance.

It is actually possible to derive an analytical expression for the density parameter of these new
relaxed vortons only. Let us consider a loop distribution at tcur given by Eq. (7.21) with C 6= 0
and Cini = 0. In other words, we take the extreme situation in which at t = tini, there is no loop at
all. All loops present at tcur are therefore created from the network between tini and tcur. Plugging
Eq. (7.48) into Eq. (7.47), one gets after some algebra

Ωmin
rel =

2R2C

9(1 + zcur)
3
(H0tcur)2

(α+ γd)
3/2

(Mpltcur)2γd

× (){ x3
max[

γd +
(
λxmax/¯̀

cur

)2]3/2 −
x3

min[
γd +

(
λxmin/¯̀

cur

)2]3/2},
(7.50)

with the dimensionless numbers

xmax ≡ min

(
`t
λ
,

¯̀
cur

λ

)
, xmin = max

[
1,

1

R

√
¯̀
ini(tcur)

λ

]
, (7.51)

and where we have introduced the new length scales

¯̀
cur ≡

√
αλtcur

R , ¯̀
ini(tcur) ≡ tini(α+ γd)− γdtcur . (7.52)

From the fact that we started with no loop at all at the string forming time tini, Eq. (7.50) is
necessarily a robust lower bound for the relaxed vorton abundance today. These objects will be
referred to as the “irreducible relaxed vortons”.

Similarly, the produced vorton density distribution today is given by Eq. (7.45) evaluated at
t = t0. The dimensionless distribution today reads

t0
4 dN

d`

∣∣∣∣
vort,prod

=
2C

[1 + z(t`)]
3

(
α

R
λ

t0

)3(
t0
`

)7

Θ
(
`− ¯̀

cur

)
Θ
[
¯̀
t(t0)− `

]
Θ(`− λ) , (7.53)
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Figure 7.3: The left panel shows the density parameter Ωmin
rel (today) from the population of ir-

reducible relaxed vortons, i.e. we have assumed that there is no loop at the string forming time
(Cini = 0). The right panel shows the density parameter Ωprod of produced vortons derived an-
alytically in Eq. (7.58). The thick green line shows the value Ωdm = 0.3, typical of the current
dark matter density parameter. The white patches on these figures correspond to regions of the
parameter space where no vortons are present: all loops there are either doomed or proto-vortons.
Abundances of these two populations of vortons have not been derived before and constitute an
irreducible contribution.

where we have made explicit the new length scale

¯̀
t(t0) ≡ λ

2R2

α

α+ γd

[
1 +

√
1 + 4R2

α+ γd

α

γdt0
λ

]
, (7.54)

which is the analogue of `t(t0) but for the produced vortons, see Eq. (7.49). This is the maximal
possible size of a produced vorton today. Let us notice the appearance of the redshift z(t`), evaluated
at some (past) `-dependent cosmic time

t` ≡
R2

α

`2

λ
. (7.55)

Plugging Eq. (7.53) into (7.47), one gets

Ωprod =
16πGµ

3(H0t0)2
C
( α

R2

)3
(
t0
λ

)2 ∫ ymax

ymin

[1 + z(tλt)]
3

y6
dy , (7.56)

with

ymin ≡ max

(
1,

¯̀
cur

λ

)
, ymax ≡

¯̀
t(t0)

λ
. (7.57)

Equation (7.56) shows that the knowledge of the whole thermal history of the Universe through
z(tλt) is a priori required to accurately determine Ωprod. This is expected as the “time of flight” of
a proto-vorton between its creation and stabilization as a vorton depends on its size at formation.
Therefore, at any given time, the population of produced vortons keeps a memory of the past history
of the Universe.
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The integral (7.56) can be analytically performed with some simplifying assumptions. One
can consider an exact power-law expansion for the radiation and matter era together with an
instantaneous transition at teq. Taking a(t) ∝ tν , with ν = νrad ≡ 1/2 and ν = νmat ≡ 2/3 in the
radiation and matter era, respectively, one gets

Ωprod =
16πGµ

3(H0t0)2
C
( α

R2

)3
(
t0
λ

)2−3νmat

×
{(R2

α

)3νrad [min (ymax, yeq)]
6νrad−5 − y6νrad−5

min

5− 6νrad

(
teq

λ

)3(νmat−νrad)

+

(R2

α

)3νmat y6νmat−5
max − [max (1, yeq)]

6νmat−5

5− 6νmat

}
,

(7.58)

where

yeq ≡
¯̀
eq

λ
, with ¯̀

eq ≡
√
αλteq

R . (7.59)

Unsurprisingly, the particular cosmic time teq imprints a new length scale ¯̀
eq in the distribution.

We have represented in Fig. 7.3 both Ωmin
rel and Ωprod as a function of (Gµ, 1/R) given by the

Eqs. (7.50) and (7.58). The thick green line shows the contour matching the value Ωdm = 0.3. For
the irreducible relaxed vortons, the only additional parameter entering Eq. (7.50) is zcur, which has
been determined using a(t) ∝ tνrad for the radiation era together with the thermal initial conditions
of Eq. (7.24) (using qcur = 104). As already discussed, these two populations of vortons are an
unavoidable consequence of the loop production associated with a scaling cosmic string network
and have not been considered before. For instance, taking R . 102, these figures show that all
values of Gµ greater than 10−15 are overclosing the Universe with vortons, even though no loops
at all are present at tini when the strings are formed. Although not very visible on the figure, there
is a small region around R = 1 in which Ωmin

rel = 0. Indeed, if tini = tcur and Cini = 0, there is no
time at all to produce loops before the current appears. However, this region is actually ruled out
as filled with vortons produced afterwards (see right panel of Fig. 7.3).

Returning to Eqs. (7.48) and (7.21), the most general situation for the relaxed vortons is to
start with a mixture of loops created at the string forming time and loops created from the network
between tini and tcur, i.e. one has both C 6= 0 and Cini 6= 0. Moreover, from Eq. (7.56), the accurate
expression for Ωprod requires specifying the whole thermal history of the Universe and the integral
has to be performed numerically. In the next section, we numerically integrate both Ωrel and Ωprod

and discuss their sensitivity to the initial conditions.

7.5.2 Numerical integration and initial conditions

Compared to the previous section, we now numerically integrate both Ωrel and Ωprod starting from
the general initial loop distribution described in Section 7.3.2. Thermal initial conditions are taken
assuming that the number of relativistic degrees of freedom is given by the Standard Model as
derived in Ref. [369].

Figures 7.4 and 7.5 show the density parameters today of all the relaxed vortons, the produced
vortons and the sum of the two contributions when the string forming network at t = tini is given
by the Vachaspati-Vilenkin initial condition (see Section 7.3.2). This implies that the typical size
of loops at tini is given by thermal fluctuations of the Higgs field and `corr = 1/

√
µ.
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Figure 7.4: The upper left-hand panel shows the density parameter of relaxed vortons coming only
from loops present at the string-forming phase transition, when starting from a Vachaspati-Vilenkin
distribution at t = tini. This is the population derived in Ref. [149], that we recover by setting C = 0
in our equations. The upper right-hand panel shows the numerically evaluated density parameter of
the irreducible relaxed vortons Ωmin

rel (to be compared to our analytic estimation in the left panel of
Fig. 7.3). The lower left-hand panel shows the density parameter Ωrel (today) from the population
of all relaxed vortons (the sum of the upper left and right panels). Thermal history effects are
visible on the upper boundary towards the minimum possible values of 1/R and Gµ. The lower
right-hand panel shows the density parameter Ωprod today of produced vortons derived numerically,
and is indistinguishable from our analytic estimation of Eq. (7.58) (see right-hand panel of Fig. 7.3).
The thick green line corresponds to all density parameter values in the range [0.2, 0.4].
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Figure 7.5: The total relic abundance of all vortons starting from a Vachaspati-Vilenkin initial
loop distribution, with an initial thermal correlation length curorr = 1/

√
µ, and a one-scale loop

production function with α = 0.1. The green line corresponds to the range of values [0.2, 0.4]. The
different populations contribution is represented in Fig. 7.4.
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The lower right panel of Fig. 7.4, compared to the right panel of Fig. 7.3, shows that our
approximated formula (7.58) is relatively accurate. The lower left panel of Fig. 7.4 exhibits a
triangle-like region which is not visible on the left panel of Fig. 7.3. This region, with a high
density of relaxed vortons, is precisely the one associated with the relaxed vortons created from
the loops initially present at the string forming time and which were studied in Ref. [149]. This
contribution is represented alone in the upper left panel of Fig. 7.4. In this corner of parameter
space, we recover the results already presented in Ref. [149]: essentially all values of Gµ are ruled
out, only values of Gµ = O

(
10−30

)
and R = O

(
104
)

remain compatible with the cosmological
bounds.

When all contributions are combined, as shown in Fig. 7.5, one can see that for all Gµ there are
values of R which make the vortons either an acceptable candidate for dark matter (green line) or
a subdominant component today (left of the green line). However, this figure also shows that there
is an absolute lower bound for R below which vortons would overclose the universe, independently
of the value of Gµ (which is also given by the green line). For instance, there are no acceptable
regions for which R < 102, implying that stable vortons in our Universe can only be created if the
temperature of current condensation is at least two orders of magnitude lower than the one of the
formation of strings. This result is the consequence of the irreducible relaxed and produced vorton
contributions closing the parameter space up to the maximum admissible values of Gµ. It may
have some implications on the particle physics models creating strings and currents [62, 370].

Despite the fact that Vachaspati-Vilenkin initial conditions are quite motivated from the point of
view of a thermal process, loops could be created from other processes [371, 372]. Therefore, instead
of assuming `corr = 1/

√
µ, one could use the Kibble argument [61, 350] and take `corr = dhtini, where

dhtini = 2tini denotes the distance to the would-be particle horizon at the string forming time. Doing
so leads to the same overall relic abundance of vortons as in Section 7.5.1 where we were assuming
Cini = 0. There are simply not enough loops initially, compared to the one produced later on, to
significantly change the final density parameter.

In order to quantitatively study the dependence of Ωtot with respect to the loop distribution
at tini, we have represented in Fig. 7.6 the values of Ωtot = 0.3 in the plane (Gµ, 1/R) for various
choices of `corr. They range from the thermal value `corr = 1/

√
µ to the causal one `corr = dhtini, and

even above, a situation that could appear if loops have been formed during cosmic inflation [373].
Everything on the right of the lines represented in this figure would lead to an overclosure of the
Universe, while everything on the left is compatible with current measurements. The hatched
region in this figure shows the robust bound discussed earlier, where there are only irreducible
relaxed vortons and produced vortons.

In all our analysis and equations, we have left the parameter α arbitrary, fixing only α = 0.1 for
the figures for well motivated reasons. Changing α to smaller values, while keeping everything else
fixed, increases the population of doomed loops, and thus decreases the vortons abundance. The
explicit dependence in α can be read off from Eqs. (7.50) and (7.58).

7.5.3 Other observables

A network of cosmic strings can let imprints in various cosmological observables, such as the stochas-
tic background of gravitational waves and the Cosmic Microwave Background (CMB). In the present
case, the stabilization of vortons is expected to prevent a part of the energy to be converted into
gravitational waves. We have therefore estimated the gravitational wave power spectrum generated
from proto-vortons and doomed loops only. Their loop number densities are clarified in the Ap-



7.5. RELIC ABUNDANCE 173

10−6 10−5 10−4 10−3 10−2 10−1 100

1/R

10−30

10−27

10−24

10−21

10−18

10−15

10−12

10−9

10−6

G
µ

Ωtot = 0.3

ℓcorr = 1/
√

µ

ℓcorr = 102/
√

µ

ℓcorr = 104/
√

µ

ℓcorr = 106/
√

µ

ℓcorr = 108/
√

µ

ℓcorr ≥ dh(tini)

Figure 7.6: The total relic abundance of all vortons starting from a Vachaspati-Vilenkin initial loop
distribution with various correlation length `corr ranging from the thermal one 1/

√
µ to the Kibble

one dhtini. Each curve represents the value Ωtot = 0.3. Domains right of this curve lead to vortons
overclosing the Universe, domains on the left are compatible with current cosmological constraints.
The upper hatched region corresponds to the irreducible relaxed and produced vortons not affected
by the initial conditions.
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pendix 7.B. Due to the very small size of the vortons, the lack of energy in terms of gravitational
waves ends up being negligible and the predictions for the stochastic background of gravitational
waves remain unchanged compared to Nambu-Goto strings with a one-scale loop production func-
tion (see Chapter 4). For the one-scale LPF, the current Laser Interferometer Gravitational-Wave
Observatory (LIGO) bound on the string tension is Gµ < O

(
10−11

)
[89, 90, 91] but depends on some

assumptions on the string microstructure. Concerning the CMB, detectable distortions induced by
cosmic strings are mostly due to the long strings in scaling such that they are not sensitive to the
loop distribution and provide a robust upper bound Gµ < O

(
10−7

)
for all types of strings [374, 72,

375, 295, 376]. Both of these bounds therefore apply to current-carrying strings with vortons. Let
us also remark that current-carrying strings may lead to other observational signatures, for instance
gamma ray or radio bursts [377, 378] (see also Chapter 6).

7.6 Conclusion

The main result of this work is the derivation of the relic abundance of an irreducible population of
vortons not considered so far. These vortons are continuously created by the scaling string network
at all times during the cosmological expansion and allow us to probe new regions of the parameter
space (Gµ, 1/R), namely energy scales that spawn the entire spectrum from TeV scales to the
Planck scale. In particular, vortons are a viable dark matter candidate for all possible value of Gµ
(with, however, some quite tuned values of R). We have derived their number density distribution
at all times, which is the quantity of interest for dark matter direct detection searches [356, 379,
380], and derived the relevant cosmological constraints, summarized in figures 7.5 and 7.6.

Throughout this work, we have, however, assumed that all the scaling loops are produced at the
same size αt. A more complete analysis would take into account the fact that the loop production
function is a priori more complicated. Due to the proliferation of kinks on the infinite string
network and the fragmentation of large loops, we expect scaling loops to be produced at all sizes
with a power-law LPF

P(`, t,N) = Ct−5

(
`

t

)2χ−3

δ

(
N −

√
`

λ

)
Θ(t− tcur)Θ(`− γct), (7.60)

where χ is the so-called Polchinski-Rocha exponent and γc is the gravitational backreaction scale.
Under this assumption, many more small loops are produced, and one can expect some boost to the
density of vortons [54, 56]. Solving for the vorton distribution by using a Polchinski-Rocha LPF is,
however, mathematically challenging, and we have not taken this route in the present paper.

Let us also mention that, in the present work, we have solved a continuity equation to derive
the vorton number density. This approach is strictly equivalent to the one presented in Ref. [125],
which is based on solving a Boltzmann equation. As a matter of fact, all the results presented have
been cross-checked using the two methods. For completeness, we give in Appendix 7.A a proof of
the equivalence between the two formalisms and how to pass from one evolution equation to the
other.

Finally, concerning the influence of the initial conditions, let us remark that in the most generic
situation, one cannot exclude that the redshift zini at which strings are formed and the redshift
zcur at which the current appears are independent of the value of Gµ and R (or λ). Although
such a situation would be difficult to envisage for cosmic strings interpreted as topological defects,
it could be very well the case for cosmic superstrings. For instance, zini could be very large,
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close to the Planck energy scales while the warped observed value of Gµ can remain very low. In
this case, our assumptions of Section 7.3.2 do no longer apply and this could change the relaxed
vorton contribution. However, this would not change the produced vorton abundance, these being
generated by the network at all subsequent times. A complete model-independent treatment would
require to consider a four-dimensional parameter space made of (Gµ,R, zini, zcur), which could be
explored using Monte-Carlo-Markov-Chain methods, but we leave such a study for a future work.

7.A Connection between the Boltzmann and continuity equa-
tions

We clarify in this Appendix the equivalence between Eq. (2.7) of Ref. [125] and our Eq. (7.10) to
show that the difference merely comes from the use of either lagrangian or eulerian coordinates.
In Ref. [125], one has ` = `(`ini, t), i.e., one follows the evolution of a given loop size ` that begun
with an initial value `ini; somehow, the relevant variable is `ini, and the flow is lagrangian. In the
present work, the size of the loop ` is just what it is at the time one is concerned with, with no
mention of the individual loop; this is the eulerian version.

Going from the eulerian set {`, t} to the lagrangian one {`ini, t} means that for any quantity
X(`, t) = X[`(`ini, t)], one has

dX =

(
∂X

∂t

)

`

dt+

(
∂X

∂`

)

t

d` =

(
∂X

∂t

)

`ini

dt+

(
∂X

∂`ini

)

t

d`ini ,

with the subscript on the brackets for the partial derivatives indicating the quantity left constant
for the evaluation of the derivative. Similarly expanding the differential d` and identifying the
partial derivatives, one finds

(
∂X

∂t

)

`ini

=

(
∂X

∂t

)

`

+

(
∂X

∂`

)

t

(
∂`

∂t

)

`ini

and

(
∂X

∂`ini

)

t

=

(
∂X

∂`

)

t

(
∂`

∂`ini

)

t

. (7.61)

One also notes that

j ≡ d`

dt
=

(
∂`

∂`ini

)

t

d`ini

dt
+

(
∂`

∂t

)

`ini

=

(
∂`

∂t

)

`ini

, (7.62)

the final step being a consequence of the fact that in lagrangian coordinates, `ini does not depend
on time. Combining (7.62) and (7.61), one immediately gets that

(
∂X

∂t

)

`

+ j(PX`)t =

(
∂X

∂t

)

`ini

. (7.63)

We are now in position to compare Eq. (2.7) of Ref. [125] and our Eq. (7.10). The former indeed
reads

∂

∂t

(
a3FJpsd

)
+ j

∂

∂`

(
a3FJpsd

)
= a3PJpsd, (7.64)

where Jpsd = ∂`/∂`ini accounts for phase space distortion, and we have set F ≡ ∂2N
∂`∂N for conve-

nience. Expanding the partial derivatives of (7.64) and simplifying by Jpsd (assumed non vanishing),
one gets

∂

∂t

(
a3F

)
+ j

∂

∂`

(
a3F

)
+
a3f

Jpsd

[(
∂Jpsd

∂t

)

`

+ j

(
∂Jpsd

∂`

)

t

]
= a3P, (7.65)
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the term in square brackets being, by virtue of (7.61) and (7.62), simply (∂Jpsd/∂t )`ini
. Given the

definition of Jpsd and swapping partial derivatives, it turns out that
(
∂Jpsd

∂t

)

`ini

=

(
∂j

∂`

)

t

∂`

∂`ini
= Jpsd

(
∂j

∂`

)

t

,

so that Eq. (7.65) now becomes

∂

∂t

(
a3F

)
+ j

∂

∂`

(
a3F

)
+
(
a3F

)∂j
∂`

= a3P, (7.66)

which is, as announced, Eq. (7.10) after grouping the `−derivative terms and making j explicit as
in Eq. (7.7).

To conclude this appendix, we give in Table 7.1, a dictionary between the different notations
used in Refs. [149, 125] and the present work.

Present work Ref. [125]
µ U
`0 `v
R N∗
γd γd

σ → 0 γv → 0
`? = λ3µ `+
`t(t) `t(t)

Table 7.1: Dictionary of notations between the present work and Refs. [149, 125].

7.B Distribution of proto-vortons and doomed loops

In this Appendix, we give the distributions of proto-vortons and doomed loops, both of which
contribute to the stochastic gravitational wave background. Proto-vortons and doomed loops decay
through gravitational wave radiation and their collapse is not prevented by the current: indeed for
both, J = 1 (in the limit σ → 0). Hence, for these distributions, and without loss of generality, we
set J = 1 in this Appendix.

7.B.1 Doomed loops

Doomed loops are the loops which do not have enough current to prevent their final collapse, hence
N < R. From Eqs. (7.28), (7.18) and (7.23), the relaxed doomed loop distribution, that is to say
the doomed loops which are produced from the initial conditions at condensation, reads

dN
d`

∣∣∣∣
doom,rel

=

[
a(tcur)

a(t)

]3 ∫
dN

dN
d`

(`cur, tcur)δ

(
N −

√
`cur

λ

)
Θ(R−N), (7.67)

in which `cur, the size of the loop during condensation at tcur, is given by

`cur(`, t) = ΓGµ(t− tcur) + `. (7.68)
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Integrating over the charge N and replacing `cur, one obtains the number density of doomed loops
in relaxation

dN
d`

∣∣∣∣
doom,rel

=

[
a(tcur)

a(t)

]3
dN
d`

[ΓGµ(t− tcur) + `, tcur]Θ

[
R−

√
ΓGµ(t− tcur) + `

λ

]
. (7.69)

Concerning the doomed loops produced after condensation, from Eqs. (7.28) and (7.38), their
number density is given by

dN
d`

∣∣∣∣
doom,prod

= C

∫
dN Θ(R−N)

[
a(t?)

a(t)

]3

t−4
?

1

α+ ΓGµ
δ

(
N −

√
αt?
λ

)
Θ(t? − tcur), (7.70)

in which t? is the loop formation time. Assuming, as we have done throughout this paper, that
loops are produced at a given size ` = αt at time t, the formation time satisfies

t?(`, t) =
`+ ΓGµt

α+ ΓGµ
. (7.71)

Finally, integrating over the charge N and replacing the formation time by the above equation, one
obtains the number density of doomed loops produced after condensation:

dN
d`

∣∣∣∣
doom,prod

= C



a
(
`+ΓGµt
α+ΓGµ

)

a(t)




3

(α+ ΓGµ)3

(`+ ΓGµt)4

×Θ

(
`+ ΓGµt

α+ ΓGµ
− tcur

)
Θ

[
R−

√
α(`+ ΓGµt)

λ(α+ ΓGµ)

]
.

(7.72)

7.B.2 Proto-vortons

Proto-vortons are loops which will eventually become vortons after a certain time, but which are
still large enough to behave like Nambu-Goto strings. From Eq. (7.29), (7.18) and (7.23), the
distribution of “relaxed proto-vortons” is given by

dN
d`

∣∣∣∣
proto,relax

=

∫
dN Θ(N −R)

[
a(tcur)

a(t)

]3
dN
d`

(`cur, tcur)δ

(
N −

√
`cur

λ

)
Θ[`− `0(N)], (7.73)

where `0(N) = N/
√
µ and, again, the size of the loop at formation is given by

`cur(`, t) = ΓGµ(t− tcur) + `. (7.74)

On carrying out the integral over the charge N in equation (7.73), the number density of proto-
vortons produced at condensation is

dN
d`

∣∣∣∣
proto,relax

=

[
a(tcur)

a(t)

]3
dN
d`

[ΓGµ(t− tcur) + `, tcur]

×Θ

[
`−

√
ΓGµ(t− tcur) + `

λµ

]
Θ

[√
ΓGµ(t− tcur) + `

λ
−R

]
. (7.75)
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Proto-vortons can also be produced after condensation, in which case their distribution is ob-
tained from Eqs. (7.29) and (7.38)

dN
dN

∣∣∣∣
proto,prod

= C

∫
dN

[
a(t?)

a(t)

]3

t−4
?

Θ(N −R)

α+ ΓGµ
δ

(
N −

√
αt?
λ

)
Θ(t? − tcur)Θ[`− `0(N)].

(7.76)
Similarly, the loop formation time t? is given by

t?(`, t) =
`+ ΓGµt

α+ ΓGµ
, `0(N) =

N√
µ
. (7.77)

The distribution of proto-vortons produced after the condensation now reads

dN
dN

∣∣∣∣
proto,prod

= C



a
(
`+ΓGµt
α+ΓGµ

)

a(t)




3

(α+ ΓGµ)3

(`+ ΓGµt)4

×Θ

(
`+ ΓGµt

α+ ΓGµ
− tcur

)
Θ
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`−

√
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]
Θ

[√
α(`+ ΓGµt)

λµ(α+ ΓGµ)
−R

]
. (7.78)
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Chapter 8

Introduction to primordial black
holes

Since Primordial Black Holes (PBHs) were proposed almost 50 years ago [381, 382, 383], it has been
realized that they can be relevant in various aspects of cosmology, ranging from dark matter [384]
and the generation of large-scale structures through Poisson fluctuations [385, 386] to the seeding of
supermassive black holes in galactic nuclei [387, 388]. More recently, they have attracted even more
attention as it was pointed out that they may account for the black-holes observed to merge by
the LIGO/Virgo collaboration [389] through their gravitational wave emission, see e.g. Refs. [390,
391]. The aim of this introduction is to give a very generic overview of PBH formation and the
constraints that have been established on their abundance (for reviews, see Refs. [392, 393, 394,
395] that were the inspiration for this introduction). Then in Section 8.4, I introduce the Mathieu
equation and its parametric instabilities which are crucial for the next chapter.

8.1 PBH masses and Hawking evaporation

The most commonly considered PBH formation mechanism is the collapse of large over-densities
during radiation era. At the re-entry of time, the Hubble horizon dh = 2ct turns out to be the
Schwarzschild radius RS = 2GM/c2 of a black hole with mass

M ≈ γc3t

G
≈ γ1015

(
t

10−23s

)
g, (8.1)

where γ is a numerical factor smaller than 1 denoting the fraction of the Hubble horizon collapsing
into the black hole. Hence, PBH masses may range from ∼ 10−5g if produced at the Planck time
(10−43s) to ∼ 105 solar masses for those formed one second after the big bang. In Chapter 9, we
study PBHs formed through a different mechanism called the preheating instability. The order of
magnitude is nonetheless similar, and we show that these PBHs may have masses ranging from 10g
to a solar mass.

Hawking famously discovered in Ref. [396] that black holes radiate particles through quantum
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effects with a black-body spectrum of temperature

TBH =
~c3

8πGkBM
, (8.2)

the subscript BH meaning either Black Hole or Bekenstein-Hawking. Hawking radiation is therefore
more important, the lower the mass of the black hole. I should mention at this point that there
is a profound analogy between the properties of black holes (mass, area and surface gravity) and
thermodynamics (energy, entropy and temperature) also known as black hole thermodynamics [397]
but this is out of the scope of this manuscript.

The radiation of a black-hole is that of a black body and its luminosity can be approximated
by the Bekenstein-Hawking luminosity

L = AσT 4
BH =

~c6

15360πG2M2
(8.3)

in which A = 4πR2
S is the area of the horizon and σ the Stefan-Boltzmann constant. The underlying

assumption behind this equation is that of pure photon emission by a black hole with no charge
nor spin. The lifetime of a black hole with initial mass M0 can be estimated by integrating this
equation with L = (dM/dt )c2, to find

τ =
5120πG2

~c4
M3

0 ≈ 3× 1011

(
M0

5× 1014g

)3

years. (8.4)

A more precise analysis would take into account that the actual Hawking radiation is not exactly
that of a black body and depends on the spin and the charge of the black hole [398]. Additionally,
black holes do not only emit photons but also neutrinos, gravitons and subsequently electrons,
muons and even hadrons as the mass drops, i.e. the Hawking temperature rises [399]. Taking these
into account, the critical mass M? for which the lifetime equals the age of the Universe of 13.8Gyr
is [400]

M? = 5.0× 1014g. (8.5)

In the next sections, I will briefly review some constraints on the fraction of Dark Matter (DM) in
the form of PBHs

fPBH =
ΩPBH

Ωdm
. (8.6)

PBHs with masses below M? have all completely evaporated by the present day and cannot account
for the DM content of the Universe. However, they may still be relevant for other aspects in cos-
mology. The constraints on PBH abundance are generally divided between evaporation constraints
that apply to PBHs with masses M . 1017g, and constraints on non-evaporating black holes.

8.2 Evaporation constraints

PBHs with masses around 109−1013g would evaporate during or shortly after Big Bang Nucleosyn-
thesis. The injection of high-energy neutrinos and antineutrinos [401], of high-energy nucleons and
anti-nucleons [402] and of photons [403] have a strong impact on the abundance of light elements
which allows us to place constraints on their numbers. This bound is not shown in Fig. 8.1 since
it concerns PBHs that have evaporated today and therefore cannot account for the DM content



8.3. CONSTRAINTS ON NON-EVAPORATING PBHS 183

of the Universe today. It is, however, important to constrain the production of PBHs during the
preheating instability with masses ranging from 10g to a solar mass.

PBHs with masses slightly above the critical mass M? are strongly constrained by observations
of the extragalactic γ-ray background (EGB) [404]. Measurements of the diffuse EGB constrain the
average number density of PBHs at the present epoch. This bound has subsequently been updated
by refining the description of the PBH emission [405] and by taking into account new generations
of detectors.

It has also been suggested that the positrons produced by PBHs of masses 1016 − 1017g would
annihilate and contribute to the flux of the 511 KeV annihilation line radiation from the Galactic
Centre (GC) [406]. Measurements of this line by SPI/INTEGRAL now exclude models in which
PBHs of this mass range constitute all the DM [407].

There are other evaporation constraints in this mass range. Constraints on the electron-positron
flux from Voyager 1 limit the contribution if PBHs to the local DM density [408]. PBHs of masses
around M? clustering inside our Galaxy would produce an anisotropic Galactic γ-ray background.
The ratio of the anisotropic to isotropic intensity in EGRET observations between 30MeV and
120MeV has been used by Ref. [409] to claim the detection PBH clustering in our galaxy. However,
more detailed analyses by Refs. [410, 411] used these observations to constrain the PBH abundance.
It should be noted that this limit is sensitive to the width of the PBH mass function.

These bounds depend crucially on whether Hawking evaporation is realized in nature. If not,
such light PBHs would be stable and viable as DM.

8.3 Constraints on non-evaporating PBHs

Contrary to the bounds presented in the previous section, the constraints on non-evaporating PBHs
do not rely on the assumption that Hawking evaporation is realized in nature, but on the gravita-
tional interaction of PBHs with their environment.

Gravitational lensing is a very powerful method to constrain or detect PBHs at it is solely based
on gravitational physics and does not suffer from the uncertainties that exist in the studies of the
radiation of black holes and their interaction with the surrounding matter. There are different
types of gravitational lensing events. Microlensing events are lensed objects in which the angular
separation of the images is too small to be resolved by observations [412]. The observer sees the
unresolved superposition of two images which is brighter than the original source. Microlensing
observations of the Large and Small Magellanic clouds by the EROS collaboration, the MACHO
project and the OGLE experiment probe the fraction of DM halo in black holes in the mass range
10−8 − 1 solar mass. More recently, the high-cadence observations (one observation every two
minutes) of more than tens of million stars in M31 by the Subaru Hyper Suprime-Cam (HSC)
placed stringent upper limits on the abundance of PBHs with masses 10−13−10−5 solar mass [413].
Microlensing may also affect the magnification distribution of type 1a supernovae (SN1a). If the DM
is concentrated in compact object, then a few of the SN1a would be significantly magnified [414].
These constraints are represented in Fig. 8.1. On the other side, femtolensing refers to lensing
events in which the wavelength of light is comparable or larger than the Schwarzschild radius of
the lens

RS ≡
2GM

c2
= 0.3×

(
M

10−13M�

)
nm. (8.7)

This technique probes PBHs with masses between 10−16 − 10−13 solar masses. Due to diffraction,
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it was proposed that femtolensing of γ-ray bursts would induce oscillatory features in their spec-
trum [415]. However, it was later demonstrated that most γ-ray bursts are too large to be modelled
as point-like sources [416] relaxing the limits from femtolensing.

A slightly more controversial type of constraint come from dynamical effects: PBHs affecting
or even disrupting astrophysical systems through their gravitational interactions. Indeed, it was
pointed out that the passage of a PBH through a white dwarf could ignite the thermonuclear
reaction at the origin of type 1a supernovae and that we can constrain the abundance of PBHs by
observing the mass distribution of white dwarfs [417]. Similarly, a high abundance of PBHs with
M = 10−14 − 10−8M� would disrupt neutron stars [418]. Wide halo binaries in the galactic halo–
binaries of stars with large separations of order one parsec and very weak binding energy – are also
vulnerable to disruption from the passing of PBHs. It is a challenging task to distinguish wide halo
binaries from the purely coincident position in the sky of two stars, but it still places upper bounds
for M ∼ 100M� [419]. At higher mass scales, PBHs moving randomly in the Galactic disks would
increase the variance of the stars’ velocity, a mechanism called disk heating [420]. A relatively
similar mechanism in nature, but on larger scales constrain the existence of massive intergalactic
black holes with M > 1015M� which would increase the peculiar velocity of galaxies. As we have
measured the peculiar velocity of our galaxy with the CMB dipole anisotropy, this places a bound
on the very large end of the mass spectrum [421].

Massive PBHs distributed randomly in space with Poisson fluctuations may generate primordial
density perturbations and enhance the matter power spectrum at small scales: this is called the
large scale structure constraint [385]. Observations of the Lyman-α absorption lines in the spectra
of distant galaxies and quasars are used to estimate the inhomogeneous distribution of baryonic
matter along the line of sight and allow to probe the DM perturbations on small scales. In Fig. 8.2,
this constraint is decomposed into its individual components from Clusters (Cl), Milky Way galaxies
(Gal) and dwarf galaxies (dG), as they originate from different redshifts.

At early times, PBHs could have had a large luminosity due to the accretion of background
gas [422]. A complete analysis of the phenomenon is however very challenging and require numerical
simulations, as the luminosity of the black hole backreacts on its environment thereby reducing
accretion. Accretion by PBHs may have an impact in the early Universe on the power spectrum of
the CMB temperature and the polarization anisotropies [423]; and in the present day they would
contribute to the observed number density of compact X-ray objects in galaxies [424].

Finally, the detection of gravitational waves from coalescing black holes by the LIGO / Virgo /
KAGRA (LVK) collaboration opens a new window to look for PBHs [18]. Black holes and neutron
stars formed by standard stellar evolution can only have masses larger than∼ 1M�, hence a compact
object with a mass lower than 1M� would be necessarily of primordial origin. However, no such
objects were found in the different LVK searches [316, 19]. Even if the black holes detected by the
LVK are not necessarily of primordial origin, the observations place important constraints on the
number of PBHs in our neighbourhood. A different type of constraint comes from the gravitational
wave background produced by a population of massive PBHs [425], or by large second-order tensor
perturbations generated by the scalar perturbations which produce them [426].

8.4 Mathieu instability with the method of multiple scales

The primordial black holes studied later in Chapter 9 are produced after inflation, during a phase
called the preheating instability [427, 428]. The oscillations of the inflaton at the bottom of its
potential act as a forcing term in the equation of motion for the Mukhanov-Sasaki variable, leading
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Figure 8.1: Constraints on f(M) for a monochromatic mass function. Evaporation constraints
(red) excludes PBHs slightly above the critical mass M? = 5 × 1014. Its enveloppe is determined
by bounds from the diffuse Extra Galactic Background (EGB), Voyager positron flux (V) and the
511KeV annihilation line in the Galactic Centre (GC). Constraints on the Galactic γ-ray background
have not been included in the figure as it is very sensitive to the width of the PBH mass function.
Constraints from lensing (blue) include the microlensing of M31 by the high-cadence Subaru HSC
experiment (HSC), of the Magellanic clouds by EROS and MACHO (EM) and of the galactic bulge
by OGLE (O). Microlensing of type 1a supernovae (SN) is also reported on the figure. Dynamical
effects (green) include limits from the existence of wide binaries (WB), disk heating (DH) and the
CMB dipole (CMB). Accretion limits include – in the early Universe – the observations of the CMB
distortions (orange, PA) and –in the present day – of X-ray compact objects in the galaxy (light
blue, XB). Constraints from gravitational waves (gray, GW) are also reported. Figure taken from
Ref. [394].
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Figure 8.2: The limits on the PBH abundance of Fig. 8.1 for different redshifts. The large scale
structure limit has been broken down into its individual components from clusters (Cl), Milky Way
galaxies (Gal) and dwarf galaxies (dG). This figure is taken from Ref. [394].

to an enhancement in the production of primordial black holes. Before diving into the details of
the preheating phase, let me review the key properties of the Mathieu equation (9.2) used in the
next chapter.

The Mathieu equation is a second-order ordinary differential equation

d2x

dt2
+ (A+ 2q cos 2t)x = 0 (8.8)

in which A and q are constant. This equation describes a parametrically forced linear oscillator
whose frequency changes sinusoidally in time as in Fig. 8.3. In Section 9.2, the variable playing
the role of x will be the Mukhanov-Sasaki variable, and Eq. (8.8) will be used to determine the
evolution of this variable through preheating. As is well-known and as is discussed in detail below,
the solutions of Eq. (8.8) are unstable if the resonant frequency

√
A ∼ 1 and if the amplitude of

the forcing q � 1. One can understand this instability by performing an expansion for q � 1 using
the method of multiple scales [429]. We also assume that

A = 1 + qδ, (8.9)

where δ = O(1) as q → 0. The method of multiple scales is a technique to construct uniformly
valid approximations to the solutions of perturbative problems by introducing fast scale and slow
scale variables, and treating them as if they were independent. This additional degree of freedom
introduced by the new variables is then used to remove secular terms in the expansion.

In the case of the Mathieu equation, the idea of the method of multiple scales is to describe the
evolution over long-time scales of the order q−1 by introducing the “slow” variable

η = qt. (8.10)
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Figure 8.3: This parametrically forced linear oscillator is described by the Mathieu equation (8.8)
in the limit of small angles.

We then look for a solution of the form

x(t, q) = x̃(t, η, q)

where x̃(t, η, q) is a function of two time variables (t, η) that gives x when η = qt. The derivatives
of x are written as partial derivatives of x̃

dx

dt
=
∂x̃

∂t
+ q

∂x̃

∂η
, (8.11)

d2x

dt2
=
∂2x̃

∂t2
+ 2q

∂2x̃

∂η∂t
+ q2 ∂

2x̃

∂η2
. (8.12)

Substituting into the original Mathieu equation (8.8), we find that x̃ satisfies

∂2x̃

∂t2
+ 2q

∂2x̃

∂η∂t
+ q2 ∂

2x̃

∂η2
+ (1 + qδ + 2q cos 2t)x̃ = 0. (8.13)

Actually, x̃(t, η, q) only has to satisfy this equation when η = qt, but we require that Eq. (8.13)
remains satisfied for all values of (t, η). In particular, this requirement implies that x satisfies
Eq. (8.8).

With the method of multiple scales, we have replaced an ordinary differential equation for x
by a partial differential equation for x̃, which may seem like an even more difficult problem. But
thanks to the extra degree of freedom provided by the independence of the short and long scales,
we will below require that x̃(t, η, q) is a periodic function of the “fast” variable t.

We perform an expansion for x̃ for small values of the amplitude q � 1

x̃(t, η, q) = x0(t, η) + qx1(t, η) +O
(
q2
)
,

and insert it in Eq. (8.13). The leading and next-to-leading order equations in are

∂2x0

∂t2
+ x0 = 0 (8.14)

∂2x1

∂t2
+ x1 = −2

∂2x0

∂t∂η
− (δ + 2 cos 2t)x0. (8.15)
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Figure 8.4: Stability diagram for the Mathieu equation (8.8). The periodic solutions µ = 0 (black
solid lines) delimit the different instability bands starting at A = 1, 4 and 9; each with a different
color. In the empty/white regions, the solutions are stable. The multi-scale analysis of Section 8.4
concerns the bottom of the orange region at A ∼ 1. The rest of the diagram has been determined
numerically.

The solution of Eq. (8.14) of course

x0(t, η) = C(η) exp(it) + complex conjugate,

in which C(η) is an arbitrary complex valued function of η. Substituting into Eq. (8.15) gives

∂2x1

∂t2
+ x1 = −C(η) e3it−

(
2i

dC

dη
+ C∗(η) + δC(η)

)
eit + c.c. (8.16)

Whose solution for x1 is periodic in t and does not contain secular terms in t if and only if the
coefficient of the term exp(it) is zero1. This implies that the function C(η) satisfies the ordinary
differential equation

2i
dC

dη
+ C∗ + δC = 0. (8.17)

Finally, by separating the real and imaginary parts of C(η) = a + ib, we find that it satisfies the
system

d

dη

(
a
b

)
=

1

2

(
0 1− δ

1 + δ 0

)(
a
b

)
. (8.18)

1Take the linear second-order ODE ÿ + y = exp(ait) with a ∈ R. The solutions of the homogeneous equation are
a superposition of a sine and a cosine. A particular solution when a 6= ±1 is a periodic y(t) = exp(ait)/(1 − a2),
whereas when a = ±1, a particular solution y(t) = exp(it)(1− 2it)/4 always contain a secular term, and is therefore
non-periodic. The purpose of the multi-scale analysis is precisely to remove this secular term from the expansion.
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The eigenvalues of this matrix equation are λ = ±
√

1− δ2/2, and the function C(η) governing the
long-time evolution is proportional to exp(±λη) = exp(±µt) in which

µ =
q

2

√
1− δ2 (8.19)

is also known as the Floquet coefficient. This result implies that at leading order in q � 1, the
solution is

• periodic if µ = 0, hence when |δ| = 1 or equivalently when A = 1 + q

• stable if µ is imaginary, hence when |δ| > 1 or equivalently when A > 1 + q

• unstable if µ is real, hence when |δ| < 1 or equivalently when A < 1 + q

In Chapter 9, I am interested in the unstable solution, when A ≈ 1, in which case the coefficient µ
is proportional to q

µ =
q

2
. (8.20)
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Chapter 9

Primordial black holes from metric
preheating

This chapter is a reproduction of Ref. [57] written in collaboration with Vincent Vennin. The aim of
this article was to extend the calculation of the PBH mass function during the preheating instability
in Ref. [430], of which Vincent Vennin was one of the authors. Indeed, the analysis carried out in
Ref. [430] showed that the production of ultra-light PBHs from this instability is so efficient that
they can quickly come to dominate the universe content, finding that the fraction of the total energy
budget that is comprised inside PBHs, is larger than one. This clearly signals an inconsistency and
the authors of the article had to include renormalization procedures to cope with this issue. In the
present article, we show that this issue is due to the technique used to calculate the mass fraction,
limited to narrow distributions; and use the excursion-set formalism to calculate the mass fraction.
This work makes use of much of the experience I gained during my research internship in 2017
with Gilles Chabrier at the University of Exeter on the excursion-set formalism but applied to the
formation of stars and clouds in the galaxy.

Abstract

We calculate the mass distribution of Primordial Black Holes (PBHs) produced during
metric preheating. After inflation, the oscillations of the inflaton at the bottom of its potential
source a parametric resonant instability for small-scale scalar perturbations, that may collapse
into black holes. After reviewing pedagogically different techniques that have been developed in
the literature to compute mass distributions of PBHs, we focus on the excursion-set approach.
We derive a Volterra integral equation that is free of a singularity sometimes encountered, and
apply it to the case of metric preheating. We find that if the energy density at which the
instability stops, ρΓ, is sufficiently smaller than the one at which inflation ends, ρend, namely if
ρ

1/4
Γ /ρ

1/4
end < 10−5(ρ

1/4
end/1016GeV)3/2, then PBHs dominate the universe content at the end of

the oscillatory phase. This confirms the previous analysis of Ref. [430]. By properly accounting
for the “cloud-in-cloud” mechanism, we find that the mass distribution is more suppressed at
low masses than previously thought, and peaks several orders of magnitude above the Hubble
mass at the end of inflation. The peak mass ranges from 10 g to stellar masses, giving rise to
different possible cosmological effects that we discuss.
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9.1 Introduction

Since Primordial Black Holes (PBHs) were proposed almost 50 years ago [382, 383], it has been
realized that they can be relevant in various aspects of cosmology, ranging from dark matter [384]
and the generation of large-scale structures through Poisson fluctuations [385, 386] to the seeding of
supermassive black holes in galactic nuclei [387, 388]. More recently, they have attracted even more
attention as it was pointed out that they may account for the progenitors of the black-hole merging
events detected by the LIGO/Virgo collaboration [389] through their gravitational wave emission,
see e.g. Refs. [390, 391]. There are several observational bounds that constrain the abundance of
PBHs in various mass ranges (for a recent review, see e.g. Ref. [393]).

PBHs are expected to form when large density fluctuations re-enter the Hubble radius and col-
lapse into black holes. Their abundance is usually computed by assuming that they are rare objects
that are formed at around a single scale, and the probability that a given region of the universe
ends up in a black hole can be inferred from the knowledge of the primordial curvature power
spectrum at that scale. Such an approach may however fail in cases where PBHs are abundantly
produced, and/or if they arise over a wide range of masses. This could notably be the case for
PBHs with masses smaller than 109 g, which Hawking evaporate before big-bang nucleosynthesis
and are therefore not limited by observational constraints.

A prototypical example of a mechanism leading to such ultra-light, yet extremely abundant,
PBHs, is the parametric instability of single-field metric preheating [427, 428] (see Ref. [431] for
multiple-field setups). After inflation, the oscillations of the inflaton at the bottom of its potential
source a parametric instability in the equation of motion of scalar perturbations, that are enhanced
on small scales. In Ref. [430], it was shown that the production of ultra-light PBHs from this
instability is so efficient that they can quickly come to dominate the universe content, such that
reheating no longer occurs because of the inflaton decay, but rather through PBHs evaporation.

Although these conclusions lead to a substantial change in the cosmological scenario, they were
however reached by employing the usual estimate for PBH abundance, whose usage is questionable
in contexts in which PBHs are abundant. The goal of this paper is to re-examine this calculation,
in the light of more refined techniques that were originally proposed for large-scale structures but
that can (and have) also be applied to PBHs. This will allow us to investigate generic properties of
the expected mass distribution of ultra-light black holes, in regimes in which they densely populate
the primordial universe.

This could have important consequences for various physical phenomena associated to those
black holes. For instance, it was recently shown [432] that gravitational waves induced at second
order by the gravitational potential underlain by ultra-light PBHs lead to a stochastic background
that might be detected in future gravitational-wave experiments, and that is even already excluded
in some regimes. Since the amplitude and frequency coverage of this background strongly depend
on the details of the mass distribution of PBHs, it seems important to derive robust predictions for
the scenarios in which they are produced.

The rest of this paper is organized as follows. In Section 9.2, we briefly describe the mechanism
of metric preheating and the production of PBHs that is associated to it. In Section 9.3, we review
the different techniques that have been proposed to compute the abundance of objects formed from
gravitational collapse. Our main goal is to identify those that are best suited to the problem at
hand, but we also designed this section as a pedagogical introduction to the calculation of the mass
fraction, trying to highlight some aspects that are often left implicit. This section may however be
skipped by readers already familiar with the topic. In Section 9.4, we apply one of the methods
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introduced in Section 9.3, namely the excursion-set approach, to the calculation of the mass fraction
of PBHs arising from metric preheating. We finally present our conclusions in Section 9.5, and the
paper ends with several appendices where various technical aspects of the calculation are deferred.

9.2 Metric preheating

In this section, we briefly review the physics of metric preheating. More details can be found in
Refs. [427, 433, 430, 434]. If a homogeneous and isotropic universe, described by the Friedmann-
Lemâıtre-Robertson-Walker metric ds2 = −dt2 + a2(t)dx2 where a is the scale factor, is dominated
by a single scalar field φ, scalar perturbations are described by a single gauge-invariant combination
of fluctuations in the scalar field and in the metric components, the so-called Mukhanov-Sasaki
variable [435, 436]. Its equation of motion in Fourier space is given by [437]

v′′k +

[
k2 −

(
a
√
ε1
)′′

a
√
ε1

]
vk = 0 . (9.1)

In this expression, a prime denotes derivative with respect to conformal time η (related to cosmic
time via dt = adη), and ε1 = −Ḣ/H2 is the first slow-roll parameter, where H = ȧ/a is the Hubble
parameter. If the inflaton φ oscillates at the bottom of a quadratic potential V (φ) = m2φ2/2,1

the scale factor undergoes oscillations too (superimposed to an average matter-like behaviour), and
Eq. (9.1) can be put in the form [427]

d2

dz2

(√
avk
)

+ [Ak − 2q cos(2z)]
(√
avk
)

= 0 , (9.2)

with

Ak = 1 +
k2

m2a2
, q =

√
6

2

φend

Mpl

(aend

a

)3/2

. (9.3)

In those expressions, aend and φend are the values of a and φ at the onset of the oscillating phase,
i.e. at the end of inflation, Mpl is the reduced Planck mass, and z ≡ mt+ π/4.

If Ak and q were constant, this equation would be of the Mathieu type, and it would feature
parametric resonant instabilities when Ak and q fall into the instability bands. In Ref. [427] (see
also Ref. [434] where the perturbative decay of the inflaton is included in the analysis), the time
dependence of Ak and q is shown to be sufficiently slow to be considered as adiabatic, and the
resonant instability takes place when Ak and q cross the instability bands. At the end of inflation,
the displacement of the field away from the minimum of its potential is typically of order the Planck
mass, so Eq. (9.3) indicates that q starts out being of order one and quickly decreases afterwards.
This means that one falls into the regime of “narrow resonance”, q � 1, in which the boundaries
of the first instability band are given by 1− q < Ak < 1 + q, which here translates into

k < a
√

3Hm. (9.4)

Since the universe behaves as matter-dominated during the oscillatory phase, a
√
H ∝ a1/4, the

upper bound (9.4) increases with time, and the range of modes subject to the instability widens as
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Figure 9.1: Evolution of the physical scales appearing in Eq. (9.6), with time parametrised by
the number of e-fold N = ln a (counted from the end of inflation). The blue line represents the
Hubble radius 1/H, the orange line the new length scale 1/

√
3Hm and the dotted lines the physical

wavelengths of modes of interest, which may enter the instability band after inflation, during the
oscillatory phase. Here the Klein-Gordon equation for the inflaton field has been solved for the
quadratic potential V (φ) = m2φ2/2, where m = 10−6Mpl.

time proceeds. Inside the first instability band, the Floquet index of the unstable mode is given by
µk ' q/2, so vk ∝ a−1/2 exp

(∫
µkdz

)
∝ a [438, 427].

Note that during the oscillatory phase, H � m, so the upper bound in Eq. (9.4) corresponds to
a sub-Hubble scale. As a consequence, the modes subject to the instability are (i) all super-Hubble
modes and (ii) those sub-Hubble modes such that aH < k < a

√
3Hm. For super-Hubble modes, the

fact that v ∝ a implies that the curvature perturbation is simply conserved, which is a well-know
result [435, 436], and the dynamics of super-Hubble scales is therefore not affected by the oscillations.
For sub-Hubble scales however, in a matter-dominated background, the overdensity δ = δρ/ρ̄
(where ρ̄ is the energy density of the background) is related to the Mukhanov-Sasaki variable via
δk ∝ [k/(aH)]2vk/(aMpl) (notice that, at sub-Hubble scales, there is no gauge ambiguity in the

1As the amplitude of the oscillations get damped, the leading order in a Taylor expansion of the function V (φ)
around its minimum quickly dominates, which yields a quadratic potential unless there is an exact cancellation at
that order.
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definition of the density contrast, see Section 9.3.7 for further details), so the fact vk ∝ a implies
that

δk ∝ a , (9.5)

and the density contrast grows inside the band

aH < k < a
√

3Hm. (9.6)

The scales appearing in this relation are displayed in Fig. 9.1. An instability is triggered if the
physical wavelength of a mode (dotted line) is smaller than the Hubble radius (blue line) during
the oscillatory phase and larger than the new scale 1/

√
3Hm (orange line). Let us note that this

implies that the instability only concerns modes that are inside the Hubble radius at the end of the
oscillatory phase, which is not the case for the scales probed in the Cosmic Microwave Background
(CMB).

The behaviour (9.5) signals that inside the resonance band, scalar-field inhomogeneities behave
as pressure-less matter fluctuations in a pressure-less matter universe. As a consequence, an over-
density δR over the length scale R eventually collapses into a PBH, and in Ref. [439] (see also
appendices A and B of Ref. [430]), it is shown that this occurs after a time

∆tcollapse =
π

H [tbc(R)] δ
3/2
R [tbc(R)]

, (9.7)

where tbc(R) denotes the “band-crossing” time, i.e. the time at which the scale R crosses in the
instability band (9.6). Assuming that the instability ends when the Hubble scale reaches a certain
value that we denote HΓ,2 at a time tΓ, a black hole forms if tend + ∆tcollapse < tΓ, which leads to
a lower bound on the density contrast, namely

δR[tbc(R)] >

(
3π

2

)2/3 [
Hbc(R)

HΓ
− 1

]−2/3

. (9.8)

One then has to assess the probability that the condition (9.8) is fulfilled in a given patch of size R in
the universe, in order to compute the abundance of PBHs at every scale. This problem corresponds
to the calculation of the mass fraction of PBHs, which we describe in the next section.

9.3 Computation of the mass fraction

The calculation of the mass fraction of gravitationally-formed objects has received much attention
over the last decades, and in this section we describe the main tools that have been developed to
address it. While our goal is primarily to identify those that are best suited to the problem at hand
in this work, we hope to also clarify the main assumptions that these approaches rest on, and how
they are connected together. This section is therefore rather independent of the rest of this article
(and is not specific to metric preheating), and while it may serve as a pedagogical introduction
to calculations of the mass fraction, it can also be skipped by readers already familiar with these
techniques.

In general, cosmological fluctuations can be characterized in terms of an over-density field δ(x).
In practice, the precise realization of this field is not known, and one can only predict its statistical

2This could correspond for instance to the time when H drops below Γ, the decay rate of the inflaton into other
degrees of freedom, in the context of perturbative reheating [440, 441, 442] (hence the notation).
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properties (for instance, if the field is Gaussian, its is fully characterized by its power spectrum).
The problem can thus be divided into two parts. Given a certain realization of the density field in
real space, a first question is to identify the regions where the field will collapse into a certain type
of astrophysical object. Second, given the statistical properties of the field, one has to work out the
probability that such objects form, and the mass distribution associated to them.

The first question is a very delicate one, and little can be learnt about it analytically without
resorting to some approximations. The problem can also be tackled numerically, see Section 9.3.6
below. Most of the time, it is assumed that a region where the field collapses is one in which the
mean density is larger than some threshold value δc, that may depend on the size of that region (as
well as its shape, the details of its surrounding, etc.). In practice, one coarse-grains the field δ over
a spherical region of radius R about the point x,

δR(x) ≡
( a
R

)3
∫

dyδ(y)W

(
a |y − x|

R

)
, (9.9)

and the collapse criterion is often assumed to be of the form δR > δc(R). In the above expression,
W is a window function such that W (x) ' 1 if x � 1 and W (x) ' 0 if x � 1, and normalized
in the sense that 4π

∫∞
0
x2W (x)dx = 1, such that after coarse graining, a constant field remains a

constant field of the same value (here x and y are comoving spatial coordinates, while R denotes a
physical distance, notations are summarized in Table 9.1 for clarity).

The second question is then a well-posed one, and consists in computing the probability that
the collapse criterion is satisfied, and the distribution in sizes R (or in resulting mass M) of the
regions where this is the case, knowing the statistics of the random field δ.

9.3.1 The Press-Schechter formalism

A first approach was developed in 1974 by William H. Press and Paul Schechter in Ref. [443] and
proceeds as follows. From Eq. (9.9), the Fourier transform of the coarse-grained density perturbation
is given by

δR(k) = δ(k) 4π
( a

kR

)3
∫ ∞

0

W
( a

kR
u
)

sin(u)udu

︸ ︷︷ ︸
W̃( kRa )

,
(9.10)

which defines W̃ , that shares similar properties to W . Indeed, when a/(kR) � 1, the values of u
such that W

(
a
kRu

)
is not close to zero are much smaller than one, so one can replace sin(u) ' u in

the integral over u, and using the normalization condition stated above, one obtains W̃ [kR/a] ' 1
in that limit. In the opposite limit, when a/(kR) � 1, since W ' 1 until u ∼ kR/a, the integral

over u in Eq. (9.10) is of order kR/a, hence W̃ [kR/a] ∝ [a/(kR)]2 � 1.3

3The details of W̃ between these two limits depend on those of W . For instance, if W is a Heaviside step function,

W (x) =
3

4π
θ(1− x), (9.11)

where θ(x) = 1 if x > 0 and 0 otherwise, and where the pre-factor is set in such a way that the normalization
condition is satisfied, Eq. (9.10) gives rise to

W̃

(
kR

a

)
= 3

( a

kR

)3
[
sin

(
kR

H

)
− kR

H
cos

(
kR

a

)]
, (9.12)
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Notation Definition
δ(x) Density contrast field on a space slice
δk Fourier transform of the density contrast

δR(x)
Density contrast averaged over a patch of (physical) size R,
around (comoving) x

σ2
R = S =

〈
δ2
R(x)

〉 Variance of δR(x) seen as a stochastic variable,
also used to label R

δc(R) [or δc(S)] Collapse criterion over a patch of size R (or with variance S)
δD Dirac delta distribution
Pδ(k) Power spectrum of the density contrast
Pδ(k) = k3Pδ(k)/(2π2) Reduced power spectrum of the density contrast

Table 9.1: Definitions and notations.

The power spectrum of δ, Pδ, is defined as

〈δ(k)δ∗(k′)〉 = Pδ(k)δD(k − k′) =
2π2

k3
Pδ(k)δD(k − k′) , (9.13)

where δD is the Dirac distribution, and which also defines the reduced power spectrum Pδ. The
power spectrum of the coarse-grained density field, PδR(k), is defined through a similar relation,

and Eq. (9.10) implies that PδR(k) = Pδ(k)W̃ 2(kR/a). This allows one to express the coincident
two-point function of the coarse-grained density field as

σ2
R ≡

〈
δ2
R(x)

〉
=

∫ ∞

0

Pδ(k)W̃ 2

(
kR

a

)
dk

k
. (9.14)

If δ has Gaussian statistics, so does δR since the two are linearly related via Eq. (9.10), hence the
probability density function associated to δR reads

P (δR) =
e
− δ2R

2σ2
R√

2πσ2
R

. (9.15)

This allows one to express the probability that a given region of size R lies above the threshold,

P [δR > δc(R)] =

∫ ∞

δc(R)

P (δR)dδR =
1

2
erfc

[
δc(R)√

2σR

]
. (9.16)

An important remark is that when a given region of size R has an average density above the
threshold, it ends up inside a structure, the size of which has to be equal or larger than R (for
instance if δR is much larger than δc(R), by averaging over a slightly larger distance R′ > R, one
may still find δR′ > δc(R′), which indicates that the size of the resulting structure is at least R′).
Therefore, the above probability is the one to lie inside structures of size at least R.

which verifies the two limits given in the main text. Conversely, one can set W such that W̃ is a Heaviside step

function [i.e. W is of a similar form as Eq. (9.12)], and one then has δR(x) = (2π)−3/2 ∫
k<a/R dk δke

ik·x.
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This naturally leads us to the notion of mass fraction β(M), defined such as β(M)d lnM cor-
responds to the fraction of the universe that is comprised in structures of masses between M and
M + dM . By construction,

∫∞
M
β(M̃)d ln M̃ corresponds to the fraction of the universe made of

structures of sizes larger than M . Since there is a one-to-one correspondence between M and R
(M = 4πρ̄R3/3 at leading order in perturbations), this is nothing but the probability computed in
Eq. (9.16). By differentiating both expressions with respect to M , one obtains

β(M) = −M ∂R

∂M

∂

∂R
P [δR > δc(R)] . (9.17)

Making use of Eq. (9.16), this gives rise to

β(M)d lnM = −
(

1

2

δc
σ2
R

− ∂δc
∂σ2

R

)
e
− δ2c

2σ2
R√

2πσ2
R

dσ2
R , (9.18)

where we give the result in terms of σ2
R for future convenience. In particular, one finds that the

abundance of objects is exponentially suppressed when σR is smaller than δc(R).
Although rather straightforward, this approach is however plagued with the following issue.

Consider a region of size R centred on a given point x, such that the criterion δR > δc(R) is not
satisfied. According to the above considerations, that region is not part of any structure, since it is
excluded from Eq. (9.16). However, it could happen that if one considers another radius R′ > R, the
criterion δR′ > δc(R′) is satisfied, hence the region of size R is comprised inside a larger region that
does collapse into a structure, which contradicts the fact that it is not part of any. This issue is often
referred to as the “cloud-in-cloud problem”, and leads to underestimating the number of structures.
It can also be seen by considering the limit δc(R) → 0, in which the entire universe should end
up in structures. However, letting δc = 0 in Eq. (9.16) leads to only half of the universe lying in
collapsed structures. For this reason, the Press-Schechter result is often simply multiplied by 2. In
the following, we will see how to go beyond this approach, and in which cases the Press-Schechter
result (with or without the factor 2) provides a good approximation.

9.3.2 The excursion-set approach

In 1990, Peacock and Heavens proposed in Ref. [444] to solve the cloud-in-cloud problem of the
Press-Schechter formalism using an excursion set approach. They were soon followed in 1991 by
Bower, see Ref. [445], and by Bond, Cole and Efstathiou, see Ref. [446].

The idea is to view δR as a random variable. When R is very large, recalling that W̃ (x) ' 0
when x � 1, only a small number of modes contribute to Eq. (9.14) (namely those for which
k < a/R), hence σR is small. In the limit R→∞, the distribution function (9.15) thus asymptotes
a Dirac distribution centred around zero. Starting from δR = 0 at R = ∞, one can then make R
decrease. To be explicit, let us consider the case where W̃ is a Heaviside function,4 and

δR(x) = (2π)
−3/2

∫

k< a
R

dk δke
ik·x , (9.19)

see footnote 3. As R decreases, more and more modes contribute to the above integral. Each
of these modes takes a random realization, so δR, seen as a function of R, follows a stochastic,

4In the case where W̃ is taken as a smooth function of the wavenumber, the random noise appearing in the
Langevin equation (9.22) becomes coloured, which makes the analysis more involved [447, 448].
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Langevin equation, which can be obtained as follows. Between the “times” R and R − ∆R, the
variation in δR is given by

δR−∆R(x)− δR(x) = (2π)
−3/2

∫

a
R<k<

a
R−∆R

dk δke
ik·x . (9.20)

Given that 〈δ(k)〉 vanishes, and since the two-point function of δ(k) is given by Eq. (9.13), one
finds that 〈δR−∆R(x) − δR(x)〉 = 0 and that 〈[δR−∆R(x) − δR(x)]2〉 = Pδ(a/R)∆R/R, at leading
order in ∆R. This leads to the Langevin equation

dδR(x)

dR
=

√
Pδ(a/R)

R
ξ(R) , (9.21)

where ξ is a white Gaussian noise with vanishing mean and unit variance, i.e. 〈ξ(R)〉 = 0 and
〈ξ(R)ξ(R′)〉 = δD(R − R′), and one should stress that R is a decreasing variable. Since Eq. (9.14)
relates R and σ2

R monotonously, the Langevin equation is sometimes written with S ≡ σ2
R as the

“time” variable, leading to the particularly simple form

dδR(x)

dS
= ξ(S) , (9.22)

where ξ(S) is a white Gaussian noise normalized with respect to S, and where S is an increasing
variable.

Starting from S = 0 (or equivalently, R =∞), the first “time” (i.e. the largest radius R) when
δR crosses the collapse threshold δc corresponds to the size of the largest structure surrounding x.
The calculation thus boils down to solving a first-passage-time problem, for which there are various
dedicated techniques in stochastic analysis. Before detailing one of them in Section 9.3.3, let us
note that if, along a given realization of the Langevin process (9.22), δR crosses δc(R) multiple
times, then there are as many substructures, but by considering the first crossing time, i.e. the
largest structure, one accounts for the “cloud-in-cloud” mechanism described in Section 9.3.1.5

The distribution of first crossing times, denoted PFPT(S) hereafter, thus gives the size (hence mass)
distribution of structures, according to6

β(M)d lnM = −PFPT(S)dS . (9.24)

In this expression, the relationship between M = 4πR3/3 and S = σ2
R is given by the link between

R and σ2
R, that is to say by Eq. (9.14), which depends on the initial statistics of the density field.

9.3.3 Volterra integral equations

The first-passage-time problem associated to Eq. (9.22) can be solved by means of a Volterra integral
equation, that we derive in this section. We first note that in the absence of any boundary condition,

5The distribution of substructures can also be worked out by solving the “two-barrier problem” [449], i.e. by
deriving the probability that, after upcrossing the threshold δc(R1) at R = R1, a second upcrossing of δc(R2) occurs
at R2.

6By comparing Eqs. (9.18) and (9.24), one can see that the distribution of first crossing times that would be
associated to the Press-Schechter result is given by

PPS
FPT(S) =

[
1

2

δc(S)

S
− δ′c(S)

]
e−

δ2c (S)

2S

√
2πS

. (9.23)
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the solution to (the Fokker-Planck equation associated to) Eq. (9.22) is of the Gaussian form

Pfree(δR, S; δR,in, Sin) =
1√

2π (S − Sin)
exp

[
− (δR − δR,in)

2

2 (S − Sin)

]
, (9.25)

which denotes the probability density that the coarse-grained density contrast takes value δR at
time S, given that at initial “time” Sin, its value is δR,in. Since it depends only on S − Sin

and δR − δR,in, hereafter it will be noted as P (δR − δR,in, S − Sin) for notation convenience. We
also introduce P (δR, S), the solution to Eq. (9.22) when an absorbing boundary at δR = δc(S) is
enforced, starting from δR = 0 at S = 0. It represents realizations of the Langevin equation (9.22)
that, at time S, have not yet crossed out the absorbing boundary. Finally, PFPT(S) denotes the
probability density associated to the time of first crossing of the boundary δc(R), starting from
δR = 0 at S = 0.

At a given “time” S, any realization of the Langevin equation has either crossed out the ab-
sorbing boundary at a previous time s < S, or still contributes to the distribution P , so one can
write

1 =

∫ S

0

PFPT(s)ds+

∫ δc(S)

−∞
P (δR, S)dδR . (9.26)

The link between P and Pfree can be derived by noting that, at time S, P contains all realizations of
Pfree that have not yet crossed the boundary. In order to get P (δR), one should therefore subtract
from Pfree the probability that a given realization has crossed the boundary at a previous time, and
then, from there, has moved to δR. In other words,

P (δR, S) = Pfree(δR, S)−
∫ S

0

PFPT(s)Pfree [δR − δc(s), S − s] ds . (9.27)

Our goal is to extract PFPT from the above two equations. This can be done by differentiating
Eq. (9.26) with respect to S, and by using Eq. (9.27) to express P in terms of Pfree and PFPT only,
leading to

PFPT(S) =− δ′c(S)Pfree [δc(S), S] + δ′c(S)

∫ S

0

dsPFPT(s)Pfree [δc(S)− δc(s), S − s]

−
∫ δc(S)

−∞
dδR

∂

∂S
Pfree (δR, S) +

∫ δc(S)

−∞
dδRPFPT(S)Pfree [δR − δc(S), 0]

+

∫ δc(S)

−∞
dδR

∫ S

0

dsPFPT(s)
∂

∂S
Pfree [δR − δc(s), S − s] .

(9.28)

This expression contains 5 terms. The third term can be computed explicitly by making use of
Eq. (9.25), and so can the fifth term (where only the integral over s remains). The fourth term
features Pfree[δR − δc, 0], which is nothing but δD[δR − δc, 0], and the integral over δR can also be
easily performed. These give rise to

PFPT(S) =

[
δc(S)

S
− 2δ′c(S)

]
Pfree [δc(S), S]

+

∫ S

0

ds

[
2δ′c(S)− δc(S)− δc(s)

S − s

]
Pfree [δc(S)− δc(s), S − s]PFPT(s) .

(9.29)
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Although mathematically correct, the above expression is nonetheless flawed with a singularity
that appears in the integrand of the second term, close to the upper bound of the integral, where it
approaches δ′c(S)δD(0). This leads to numerical issues when trying to solve Eq. (9.29) iteratively,
which can be dealt with by introducing an averaging procedure when s→ S, as proposed for instance
in Ref. [450]. However, Eq. (9.29) is only one version of an infinite set of Volterra equations [451],
and it can be generalized as follows. Let us consider the realizations of the Langevin equation
which, at time S, lie at the position δR = δc(S). At time S, those realizations have necessarily
already crossed the boundary, so one can write

Pfree [δc(S), S] =

∫ S

0

dsPfree [δc(S)− δc(s), S − s]PFPT(s). (9.30)

Multiplying both hands of this equation by a generic function K(S), and plugging the result into
Eq. (9.29), one obtains

PFPT(S) =

[
δc(S)

S
− 2δ′c(S) +K(S)

]
Pfree [δc(S), S]

+

∫ S

0

ds

[
2δ′c(S)− δc(S)− δc(s)

S − s −K(S)

]
Pfree [δc(S)− δc(s), S − s]PFPT(s) .

(9.31)

Let us stress that this relation is valid for any functionK(S). In particular, by settingK(S) = δ′c(S),
one gets rid of the above-mentioned singularity, leading to

PFPT(S) =

[
δc(S)

S
− δ′c(S)

]
Pfree [δc(S), S]

+

∫ S

0

ds

[
δ′c(S)− δc(S)− δc(s)

S − s

]
Pfree [δc(S)− δc(s), S − s]PFPT(s) .

(9.32)

This allows one to compute PFPT(S) iteratively, by discretizing the S variable and starting from
PFPT = 0 at S = 0. See Appendix 9.A for more details. In Eq. (9.32), recall that Pfree is given
by Eq. (9.25), and the function δc(S), as well as the link between S and R (the physical scale at
which the density contrast is coarse grained), are given by the physical details of the problem under
consideration.

9.3.4 Relation between the Press-Schechter and excursion-set formalisms

The excursion-set approach is an extension of the Press-Schechter formalism, that incorporates the
cloud-in-cloud mechanism, and allows for multiple crossings of the threshold value. In this section,
in order to clarify the link between the two approaches, we discuss two limiting cases where the
excursion set yields a result closely related to the one obtained with the Press-Schechter formalism.

Scale-invariant threshold

When the formation threshold, δc(R), does not depend on the scale R, the excursion-set approach
greatly simplifies. Indeed, in Eq. (9.32), the kernel of the integral term vanishes in that limit, so
the Volterra implicit equation becomes an explicit formula for the first-passage-time distribution,
namely

PFPT(S) =
δc
S
Pfree (δc, S) =

δc
S

e−
δ2c
2S√

2πS
, (9.33)
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where, in the second equality, Eq. (9.25) has been used. One thus recovers Eq. (9.23) exactly, with
an additional factor 2. This proves that the Press-Schechter formula, corrected by the factor 2 (the
origin of which is left rather heuristic in the Press-Schechter approach, see the discussion at the end
of Section 9.3.1), becomes exact in the case of a scale-invariant threshold.

Very red threshold

Another limit of interest is the situation in which the threshold quickly decreases as the scale R
decreases. In this case, multiple crossing events become unlikely since after the threshold is crossed
for the first time, its value swiftly decays away from the realization of the overdensity. One therefore
expects the Press-Schechter formula (without the additional factor 2) to be recovered in this regime.

More precisely, this limit can be studied by introducing the rescaled stochastic variable δ̂R(S) ≡
δR(S)/δc(S), which follows a Langevin equation with a drift term, dδ̂R/dS = −(δ′c/δc)δ̂R + ξ/δc,

but with a time-independent threshold since by construction δ̂c = 1. The “very-red-threshold”
limit thus corresponds to the regime in which the drift term dominates over the noise term in this
rescaled Langevin equation (conversely, the limit investigated in Section 9.3.4 corresponds to when
the noise dominates over the drift).

However, given that, over an infinitesimal time increment ∆S, the drift contribution scales
as ∆S while the typical noise contribution scales as

√
∆S, the drift term cannot dominate for

arbitrarily small time resolutions. In other words, multiple, repeated crossings are inevitable, and
one can only require that they happen within a certain finite time interval, below which we do not
try to resolve the distribution of first crossing times. Denoting ε = ∆ lnR the time resolution one
requires [since the mass distribution is usually expressed in ln(M) units, in practice, one imposes a
fixed resolution on ln(M) or equivalently on ln(R)], the very-red limit can thus be mathematically
expressed by requiring that

∀R1, R2 such that ln

(
R1

R2

)
> ε, δc(R1)− δc(R2)�

√
S(R2)− S(R1). (9.34)

Notice that for practical purposes, it may be enough to satisfy this criterion at the scales R where
the mass function is substantial (unless one wants to resolve the tails properly).

In order to see that Eq. (9.34) leads to the Press-Schechter formula, the integral over s ∈ [0, S]
appearing in Eq. (9.32) can be split into an integral over [0, S − η] and an integral over [S − η, S],
where η is the width of the region where the term Pfree does not lead to an exponential suppression
of the integral. From Eq. (9.25), it is order (δ′c)−2, hence it is small in the very-red-threshold limit.
It is also related to the ε-smoothing scale in S-units [so η is of order ε∂S/∂ lnR = εPδ(k = a/R)].
In the first integral, the criterion (9.34) implies that Pfree exponentially suppresses the integrand,
while the second integral is also negligible since the integrand vanishes when s → S (hence the
second integral is of order η2). Let us now consider the first term in Eq. (9.32). Since δc(S) is a

decreasing function of S in the regime of interest, the term Pfree[δc(S), S] ∼ e−δ2
c (S)/S does not lead

to exponential suppression only for large enough values of S such that S & δ2
c (S), which implies

that δc/S . 1/
√
S. Since Eq. (9.34) states that 1/

√
∆S � |δ′c|, this entails that δc/S � |δ′c|,

hence Eq. (9.32) reduces to PFPT(S) ' −δ′c(S)Pfree[δc(S), S], which matches the Press-Schechter
formula (9.23) in the same limit and without the factor 2, as announced above.

Later on in the present work, these considerations will be illustrated by an explicit example
in which we will check numerically that when the criterion (9.34) is satisfied, the Press-Schechter
result is indeed recovered, see Appendix 9.B.



9.3. COMPUTATION OF THE MASS FRACTION 203

9.3.5 Other methods

Other approaches to the cloud-in-cloud problem have been proposed, and although, in the present
work, we make use of the excursion-set method, for completeness, let briefly mention those alter-
native techniques.

Supreme statistics

A first approach to the cloud-in-cloud problem was proposed in 1985 by Bhavsar and Barrow in
Ref. [452], and is called the “supreme statistics” (or “extreme-value statistics”) method. The idea
is to consider a region of size R`, over which the averaged density contrast is above the threshold.
This region is made of ∼ (R`/Rs)

3 subregions of size Rs, and one needs to determine the probability
that one of these regions is also above the threshold. On generic grounds, considering n samples,
each of size m, all drawn from the same underlying distribution, the distribution of the maxima
within each sample, and therefore the most probable maximum value, can be determined using the
supreme statistics (see Ref. [453] for a recent example of application to PBHs).

Peak theory

In 1986, Bardeen, Bond, Kaiser and Szalay studied the statistics of peaks of Gaussian random fields
in Ref. [454]. Assuming that structures form where the density field locally peaks, this allows one
to derive the number density of objects satisfying certain conditions on the size of their peak, the
volume enclosed within the peak, the deviation from sphericity of the peak, etc. Although the
same exponential suppression ∝ e−δ

2
c (R)/(2σ2

R) as in the Press-Schechter formalism is obtained, see
the discussion below Eq. (9.17), the details of the prefactor are found to be different. Ref. [454] also
introduced the “peak-background split” approximation, which allows one to compute correlations
between peaks belonging to two populations having two different, well-separated scales. The peak-
theory and excursion-set approaches can also be combined, see e.g. Ref. [455], and a recent
comparison between these different techniques can be found in Ref. [456].

Improved Press-Schechter formalism

In 1994, an improved version of the Press-Schechter formalism was proposed by Jedamzik in
Ref. [457], in which the number density of isolated overdense regions (defined as overdense regions
that are not comprised in larger overdense regions) is computed by making use of Bayes’ theorem.
The method was improved in Ref. [458] (see also Ref. [459] for further refinements, in particular
the implementation of the condition that objects form around peaks), and leads to implicit integral
equations, similar to the Volterra equations presented in Section 9.3.3.

9.3.6 Further refinements

The methods presented above assume that structures form when the overdensity δ is above a certain
threshold δc, but more refined formation criteria have also been studied.

Critical scaling

From studying spherically symmetric collapse of a massless scalar field by numerical means, Chop-
tuik has shown in Ref. [460] that, close to the critical threshold, the mass of the resultant black hole,
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M , is proportional to (δ − δc)γ where γ ' 0.37 is a universal exponent. This has been generalized
to radiation fluids in Refs. [461, 462], and reviews of critical phenomena in gravitational collapse
can be found in Refs. [463, 464]. The relation

M = KmH(δ − δc)γ , (9.35)

where K is a constant and mH is the mass contained within a Hubble volume at the time the black
holes form, has been applied to the calculation of the PBH mass fraction in Ref. [465]. It was then
numerically analysed in the context of PBHs in Refs. [466, 467], and further investigations on its
applicability can be found in Ref. [468].

Compaction function

Recent numerical works by Musco, see Ref. [469] and subsequent publications, suggest that a more
accurate criterion for PBH formation follows from the analysis of the compaction function

C(r) = 2
m(r, t)− m̄(r, t)

R(r, t)
, (9.36)

where r is the distance away from the overdensity peak, m(r, t)−m̄(r, t) is the excess mass contained
inside a sphere of radius r, and R(r, t) is the areal radius. The scale of the fluctuations relevant
for the formation of PBHs is the one that maximizes the compaction function. In other words, a
PBH forms at the scale rm where C(r) is maximal, provided C(rm) is larger than some threshold
Cc (which is roughly equivalent to requiring that the overdensity averaged over a sphere of radius
rm overcomes the threshold value δc, see Ref. [470]).

Critical collapse can be implemented with the criterion based on the compaction function (see
Appendix A of Ref. [471]), simply by replacing δ by C(rm), and δc by Cc in Eq. (9.35), and by
using different values of the constants K and Cc (γ is still the same).

Compaction-function based criteria have also been employed within the peak-theory approach
in Ref. [471] (see also Refs. [472, 473]). They cannot be directly implemented in the excursion
set program since, here, the size of the structure is not determined by the first C-crossing of the
threshold, but rather by the “time” (i.e. scale) at which C is maximal (and by the value of that
maximum through the critical-scaling relation). See also Ref. [470] for a comparison between these
different criteria.

9.3.7 Application to primordial black holes

The methods introduced above were originally developed in the context of large-scale structures
in general (except for the refinements presented in Section 9.3.6), and their application to the
calculation of the mass distributions of PBHs requires some further considerations.

Removing the super-horizon modes

Primordial black holes are expected to form when a large curvature fluctuation re-enters the Hubble
radius after inflation, and collapses into a black hole. The relevant smoothing scale R is therefore
the Hubble radius at the time the black hole forms. In the coarse-graining procedure (9.9), given the

properties of the function W̃ detailed at the beginning of Section 9.3.1, most modes k that contribute
to Eq. (9.14) are such that k < a/R, hence they are super Hubble at the time of formation. This
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raises two issues (that do not appear in the context of large-scales structures, where all modes that
contribute to the overdensity field are far inside the Hubble radius).

First, far super-Hubble curvature perturbations should only lead to a local rescaling of the
background metric, and can hardly determine whether an object forms inside a local Hubble patch.
Second, in general relativity, there is no unique definition of the energy density (hence of the density
contrast), which depends on the space-like hypersurface on which it is computed. All possible choices
coincide on sub-Hubble scales (where observations are performed), but they differ on super-Hubble
scales. In practice, in most gauges studied in the literature, the density contrast δ and the Bardeen
potential Φ are related through a formula of the form [474]

δk = −2

3

(
k

aH

)2

Φk + αΦk + β
Φ̇k
H

, (9.37)

where α and β are two constants, that possibly depend on the equation-of-state parameter w. For
instance, in the Newtonian gauge, α = β = −2, in the flat gauge, α = 5− 3w and β = −2, and in
the comoving gauge, α = β = 0. On sub-Hubble scales, when k � aH, the first term in Eq. (9.37)
dominates, and δk does not depend on the choice of slicing as mentioned above. Since the Bardeen
potential Φ is related to the curvature perturbation ζ via [475]

ζk =
2

3

Φ̇k/H + Φk
1 + w

+ Φk , (9.38)

on super-Hubble scales, where Φ̇k can be neglected since it is proportional to the decaying mode,
one has

δk ' −
2

5

(
k

aH

)2

ζk +
3α

5
ζk . (9.39)

This shows that there are essentially two families of slicings for the density contrast. If α 6= 0,
as in the Newtonian gauge or in the flat gauge (if w 6= 5/3) for instance, on super-Hubble scales,
δk ∝ ζk, so for quasi scale-invariant curvature power spectra (as expected from inflation), super-
Hubble modes give a substantial contribution to Eq. (9.14), leading to the problem mentioned
above. If, on the contrary, α = 0, as in the comoving gauge, then δk ∝ k2ζk on super-Hubble
scales, hence it is highly suppressed and far super-Hubble modes do not contribute much to the
integral of Eq. (9.10). For this reason, in Ref. [476], it is proposed to work with the comoving
density contrast, as a way to effectively remove the contribution from far super-Hubble modes.
In principle, a well-defined formation criterion should come with a prescription for which density
contrast to use, and in practice, formation criteria derived from numerical investigations are indeed
most often formulated in the comoving slicing, see for instance Refs. [477, 469]. This is why we
will adopt this choice in what follows, and in Appendix 9.B, we will investigate how the results are
modified if one makes a different choice and works with the Newtonian density contrast.

Simplified Press-Schechter estimate

The above considerations lead to a simplified version of the Press-Schechter formalism that is often
used to estimate the abundance of PBHs. Indeed, in the integral of Eq. (9.14), modes that lie

far below the coarse-graining scale, such that k � a/R, are cut away by the filter function W̃ ,
while modes that lie far above the coarse-graining scale, such that k � a/R, give a negligible
contribution since they are suppressed by k2 as explained in Section 9.3.7. Therefore, the only
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modes that give a substantial contribution to Eq. (9.14) are those such that k ∼ aR, and Eq. (9.14)
can be approximated as

σ2
R ∼ Pδ

(
k =

a

R

)
. (9.40)

It is then usually assumed that the power spectrum peaks at a single scale. At the time when
that scale re-enters the Hubble radius, the fraction of Hubble patches where the density contrast is
larger than the critical value is given by Eq. (9.16), so it is common to use directly use Eq. (9.16)
as the mass fraction, and to write (see for instance Ref. [478])

β(M) ∼ erfc

[
δc(R)√
2Pδ(k)

]
∼
√

2Pδ√
πδc

e
− δ2c

2Pδ , (9.41)

where R is the Hubble radius and M the Hubble mass at the time when k = aH, and where in the
last expression, we have expanded the error function in the regime where PBHs are rarely produced,
i.e. when δc �

√Pδ. Let us note that, when comparing Eq. (9.41) to the full Press-Schechter
formula (9.17), the same exponential suppression is obtained, but the prefactor is obviously different.
However, as noted in Section 9.3.5, that prefactor was also found to differ in other approaches such
as peak theory, so one may consider that the details of the prefactor are ultimately dependent on
the approach one follows, and that only the exponential suppression is a robust result, in which case
Eq. (9.41) may provide a useful estimate. This is why this formula is widely employed, including
in Ref. [430] for the calculation of PBHs from metric preheating, in which we are interested in this
work.

However, it is pretty clear that this approximation breaks down for broad spectra, i.e. when
a wide range of scales is involved in the formation of PBHs. As pointed out e.g. in Ref. [472],
the problem is that Eq. (9.16) is not a differential quantity. So it can happen for instance that the
integrated mass fraction,

ΩPBH =

∫ ∞

0

β(M)d lnM , (9.42)

which corresponds to the fraction of the total energy budget that is comprised inside PBHs, is
found to be larger than one if Eq. (9.41) is used, which clearly signals an inconsistency. This is in
fact precisely what happens in Ref. [430], where renormalization procedures had to be introduced
to cope with this issue, see Appendix 9.C. In the rest of this paper, we re-examine this problem
with the excursion-set formalism, in order to assess more precisely the mass distribution of PBHs
produced from the preheating instability.

9.4 Primordial black holes from metric preheating

We are now in a position in which we can apply the excursion-set formalism, presented in Sec-
tions 9.3.2 and 9.3.3, to the calculation of the mass fraction of PBHs arising from the preheating
instability described in Section 9.2.

9.4.1 Collapse criterion

As explained in Section 9.3.2, one of the two ingredients required by the excursion set approach is
the critical value of the density contrast, above which PBHs form. This was derived in the case
of metric preheating in Section 9.2, see Eq. (9.8). This formula provides a critical value for the
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density contrast evaluated at a time that depends on the scale R (namely at the band-crossing time
of R). Below, we rather choose to express all relevant quantities at the same reference time. The
reason is that if the time of evaluation depends on the scale R, then, when deriving Eq. (9.20), an
additional term, which stands for the time evolution of the mode function, appears. This term acts
as a drift term in the Langevin equation (9.22), but it can be absorbed by a change of variables.
This amounts to rescaling δ with a transfer function that evolves the density contrast to a fixed
time, hence is equivalent to working with fixed-time quantities anyway. In either case, one has to
relate the value of the density contrast at the band-crossing time to its value at a fixed, reference
time.

Two natural choices for such a reference time are (i) the time at the end of inflation and (ii) the
time at the end of the instability phase. The problem with the latter choice is that, since coarse
graining δ at a scale R selects modes that are larger than R, see the discussion at the beginning
of Section 9.3.7, the scales that contribute to δR at the end of the instability are either sub- or
super-Hubble, hence they have a priori different behaviours (i.e. different transfer functions)
between the band-crossing time of R and the end of the instability, which makes it harder to relate
δR[tbc(R)] with δR(tΓ). The first option is therefore more convenient, since all scales larger than R
are super-Hubble between the end of inflation and the band-crossing time of R.

One thus has to study how δ evolves on super-Hubble scales during the oscillatory phase. In Sec-
tion 9.3.7, we explained why the comoving density contrast had to be considered. From Eq. (9.37),
it is related to the Bardeen potential via δk = −2/3[k/(aH)]2Φk, while the Bardeen potential is
related to the curvature perturbation through Eq. (9.38). As shown in Section 9.2, the curvature
perturbation ζk is constant on super-Hubble scales during the oscillatory phase. As a consequence,
if the equation-of-state parameter w were constant, then Eq. (9.38) seen as a differential equa-
tion for Φk would show that, up to a quickly decaying mode, Φk reaches a constant value, hence
δk ∝ (aH)−2.

However, during the oscillatory phase, w is only constant on average, and otherwise under-
goes large oscillations. Indeed, at leading order in H/m, the inflaton oscillates according to
φ ' φend(aend/a)3 sin(mt), which gives rise to w = cos(2mt) + O(H/m). Through Eq. (9.38),
these oscillations give rise to oscillations in Φk with frequency ∼ m, hence Φ′/(HΦ) is of order
m/H � 1 and can a priori not be neglected in Eq. (9.38). Nonetheless, deep in the oscillatory
phase, when H � m, these oscillations can be averaged out, and one has

Φk '
3

5
ζk . (9.43)

In order to verify the validity of this statement, in Fig. 9.2, we display the numerical solution of
Eq. (9.38) in the same situation as the one shown in Fig. 9.1 (namely, from the numerical solution of
the Klein-Gordon equation, we extract w(t) and H(t), and solve Eq. (9.38) for Φk(t) while assuming
that ζk is constant). We also superimpose the approximation (9.43). One can see that, after a few
oscillations, it provides an excellent fit to the full numerical solution. Therefore, on average, the
Bardeen potential is indeed constant, and δk ∝ (aH)−2.

As stressed above, all scales contributing to δR are super-Hubble between the end of inflation and
the band-crossing time, hence they all evolve according to δk ∝ (aH)−2 ∝ a in a matter-dominated
era. Therefore, δR itself evolves in the same way, and

δR (tend) = δR [tbc(R)]
aend

a [tbc(R)]
. (9.44)
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Combining this result with Eq. (9.8), and denoting by Rend the value of R at the end of inflation,
one obtains for the critical value of the density contrast at the end of inflation

δc(R, tend) =

(
3π

2

)2/3 [
Hend

HΓ
− (RendHend)

3

]−2/3

. (9.45)

9.4.2 Overdensity variance

The second ingredient required by the excursion-set approach is the expected variance of δR, σ2
R,

and how it relates to R. If one sets the function W̃ to a Heaviside function in Eq. (9.14), see
footnote 3, one has

σ2
R(tend) =

∫ a/R

0

Pδ (k, tend)
dk

k
. (9.46)

As explained in Section 9.4.1, in the comoving gauge, the density contrast is related to the Bardeen
potential via δk = −2/3[k/(aH)]2Φk, and the link between the Bardeen potential and the curvature
perturbation is given by Eq. (9.43). This gives rise to

σ2
R(tend) =

(
2

5

)2 ∫ a/R

0

(
k

aendHend

)4

Pζ (k, tend)
dk

k
. (9.47)

In this expression, the curvature power spectrum Pζ (k, tend) depends on the details of the infla-
tionary phase that precedes metric preheating. Hereafter, we will assume that the inflationary
potential can still be assumed as being almost quadratic at the time the scales of interest cross out
the Hubble radius during inflation, where the mass of the inflaton is related to Hend, and the power
spectrum is obtained by solving the Mukhanov-Sasaki equation (9.1) numerically during inflation,
starting from the Bunch-Davies vacuum.

9.4.3 Numerical results

As explained in Section 9.3.2, in the excursion-set approach, the mass fraction of PBHs is directly
related to the first-crossing-time distribution of realizations of the Langevin equation (9.22), see
Eq. (9.24). This distribution can be estimated using a Monte-Carlo sampling. In Fig. 9.3, we show a
few realizations of the Langevin equation (9.22), for the density contrast δR evaluated on comoving
slices at the end of inflation. The collapse threshold obtained in Eq. (9.45) is displayed with the
(quasi) horizontal black dashed line, and in the right panel, the time of first crossing is shown with
the vertical black dashed line.

This gives rise to the mass fraction displayed in Fig. 9.4 with the vertical black bars and where
the size of the bars corresponds to a 5σ estimate of the statistical error using jackknife resampling.
We report a good convergence in estimating the mass fraction for a sample of 106 trajectories with
1000 logarithmically spaced values of R.

This method is, however, computationally expensive, especially in the tails of the distribution
where one needs to simulate a very large number of Langevin realizations to compensate for the
sparse statistics. Instead, as explained in Section 9.3.3, one can solve the Volterra equation (9.32),
making use of the numerical procedure outlined in Appendix 9.A. For npoints values of R, this
algorithm requires to invert a npoints × npoints lower triangular matrix, which is far more efficient
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than having to solve Langevin realizations.7 In practice, we find good convergence for npoints ≥ 500.
The result is displayed in Fig. 9.4 with the red line, where one can check that the two methods give
compatible results.

The total fraction of the universe made of PBHs, ΩPBH, is obtained by integrating the mass
fraction, see Eq. (9.42). The result is shown in Fig. 9.5 as a function of ρend, the energy density at
the end of inflation, and ρΓ, the energy density at the end of the instability phase. It is obtained
from numerically solving the Volterra equation. One can see that the transition from small values
of ΩPBH to values of order one is very sharp, and that there exist a region in parameter space,
corresponding to the dark red region in the right panel of Fig. 9.5, where the universe is dominated
by a gas of PBHs already at the end of the oscillatory phase.

Another quantity of interest is the typical mass of the resulting black holes, which is displayed
across parameter space in Fig. 9.6. In the left panel, the average mass is shown, in the form of
exp(〈lnM〉), and one can see that in the region of parameter space in which PBHs are substantially
produced, it spans a large range of values, from 10g to 1033g ∼ M�, where M� is the mass of the
sun. In the right panel, the standard deviation of ln(M) is displayed, in order to see how many
orders of magnitude the mass fraction distribution covers (this standard deviation is also shown
with the grey shaded stripe in Fig. 9.4). One can see that ∆ lnM < 2, so the mass distributions
never extend over many orders of magnitude.

9.4.4 Analytical approximation

In this section, we try to gain further analytical insight into the numerical results presented in
Section 9.4.3 by performing a few approximations. The main simplification comes from the remark
that in Eq. (9.45), Hend/HΓ � (RendHend)3 except for the scales that enter the instability band
close to the end of the oscillatory phase. Those undergo little amplification anyway, and are therefore
mostly irrelevant for PBH production. In that limit, one can approximate Eq. (9.45) as

δc(R, tend) '
(

3π

2

HΓ

Hend

)2/3

, (9.48)

which crucially does not depend on R (hence on S) any more. As explained in Section 9.3.4, in
that limit, the first passage-time distribution is given by Eq. (9.33) and one recovers the result from
the Press-Schechter formalism, with an additional factor 2. Note that this simplification is rather
coincidental in the present case, since when expressed at the band-crossing time, the threshold is
strongly scale-dependent, but the behaviour of the comoving density contrast on super-Hubble scale
is such that, when re-expressed at the end of inflation, it exactly cancels out that scale dependence
(this is no longer true if other density contrasts are used, see Appendix 9.B).

We have not displayed the (two times) Press-Schechter formula (9.33) in Fig. 9.4 since it cannot
be distinguished by eye from the red line (i.e. the full numerical result), confirming that this is

7In terms of numerical performance, when producing Fig. 9.4 we found on our machine that the Volterra approach
is more than 1000 times faster than the Monte-Carlo sampling of Langevin realizations. This is a generic result:
if Nreal realizations are simulated, the average number of points per bin is of order n̄ ∼ Nreal/npoints, hence the

statistical error is of order 1/
√
n̄ ∼

√
npoints/Nreal. Requiring that this is smaller than a target accuracy ε leads

to Nreal > npoints/ε
2. Since each realization requires npoints evaluations of the noise, the Langevin approach

relies on ∼ n2
points/ε

2 numerical operations. On the other hand, the Volterra method implies to invert a npoints ×
npoints triangular matrix (see Appendix 9.A), which requires ∼ n2

points operations (using the “forward substitution”

algorithm), and is thus more efficient by a factor ε2.
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indeed an excellent approximation. The (two times) Press-Schechter formula is, however, shown
in the left panel of Fig. 9.5 as the dashed green line, where one can check that it reproduces the
excursion set result very accurately.

Then, in order to make Eq. (9.33) explicit, one needs to relate the overdensity dispersion S = σ2
R

to the mass M , which implies to first derive an approximation for Eq. (9.47). In single-field inflation,
in the slow-roll approximation, one has [479, 480]

Pζ(k) ' H2(k)

8π2M2
plε1(k)

, (9.49)

where H(k) and ε1(k) are respectively the values of the Hubble parameter and the first slow-
roll parameter when the scale k crosses-out the Hubble radius during inflation. As argued before,
towards the end of inflation when the inflaton approaches the minimum of its potential, the potential
can be approximated as being quadratic, V (φ) ' m2φ2/2. In such a potential, the slow-roll
trajectory reads [481] φ(k) ' Mpl

√
2− 4(N −Nend). Given that, still at leading order in slow

roll, one has H2 ' V/(3M2
pl) and ε1 ' (V ′/V )2/(2M2

pl), this allows one to approximate the power

spectrum (9.49) as Pζ ' 3H2
end/(24π2M2

pl)[1 − 2 ln(k/aendHend)]2. Since we have made use of the
slow-roll approximation, which breaks down when inflation ends, this formula is in fact accurate
only for scales that emerge sufficiently early before the end of inflation, k � aendHend, and in this
regime, Eq. (9.47) gives rise to

σ2
R =

Pζ(kend)

50

{
5− 4

3
ln

(
HendM

4π

)[
−3− 2

3
ln

(
HendM

4π

)]}(
HendM

4π

)−4/3

. (9.50)

In this expression, we have used that the link between R and M is given by M = 4πρR3/3 =
4πH2R3M2

pl. By plugging Eqs. (9.48) and (9.50) into Eq. (9.33), one thus obtains an explicit
expression for the mass fraction β(M), that we do not reproduce here since it is not particularly
insightful, but which is nonetheless straightforward.

Note that in general, the mass fraction has to be evolved from the time black holes form (which
here depends on the mass) to the time at which β is given, taking into account that PBHs may
dilute at a different rate than the background energy density. However, here, given that the universe
behaves as matter-dominated during the instability phase, β remains constant so our result does
correspond to the mass fraction at the time tΓ, when the instability stops.

The corresponding formula is displayed in Fig. 9.5 with the solid blue line, and one can check
that it gives a reliable approximation to the full result. It can thus be used to assess its overall
integral, i.e. ΩPBH, and the mass at which it peaks, which we now do.

By integrating Eq. (9.33) over S (and reminding that δc does not depend on S), one has

ΩPBH = erfc

[
δc√

2Smax

]
, (9.51)

where Smax is the maximal value of S, i.e. the one corresponding to the minimum value of R,
or of M . It can thus be obtained by setting M = 4πM2

pl/Hend in Eq. (9.50), giving rise to
Smax = Pζ(kend)/10. Making also use of Eq. (9.48), one obtains

ΩPBH = erfc

[√
5

Pζ(kend)

(
3π

2

HΓ

Hend

)2/3
]
. (9.52)
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This formula is displayed in the left panel of Fig. 9.5 with the dashed blue line, and is found to
provide a good fit to the full numerical result. Furthermore, it allows one to identify the region of
parameter space in which the universe is dominated by PBHs at the end of the instability phase,
ΩPBH > 1/2, which reduces to

ρ
1/4
Γ

ρ
1/4
end

< 8× 10−6

(
ρ

1/4
end

1016GeV

)3/2

. (9.53)

This upper bound is displayed with the dashed blue line in the right panel of Fig. 9.5, and one can see
that it indeed provides an accurate estimate of the boundary between the region in parameter space
in which PBHs are very abundantly produced and the region in which they remain subdominant.
Up to a prefactor of order one, this also matches Eq. (4.1) of Ref. [430]. Indeed, the bound (9.53)
corresponds to requiring that the instability phase be sufficiently long that when the linear theory
is extrapolated throughout the oscillatory phase, the most amplified scales, i.e. the ones around the
Hubble radius at the end of inflation, reach a typical value for the density contrast,

√Pδ, that is of
order one when the instability stops. This conclusion seems therefore to be robust to the inclusion
of cloud-in-cloud effects, and to the detailed description of the mass distribution of PBHs, which
the present, more refined analysis, allows for.

Our analytical approximation can also be used to estimate the typical mass at which the mass
fraction peaks. From Eq. (9.33), in the limit of a scale-invariant threshold, the distribution of first-
crossing “times” peaks at Speak = δ2

c/3. In practice, this may select a mass that is smaller than
the Hubble mass at the end of inflation, which then indicates that the mass fraction is a decreasing
function of the mass, and is maximal near the Hubble mass at the end of inflation,

Mend =
4πM2

pl

Hend
' 10g

(
ρ

1/4
end

1016GeV

)−2

. (9.54)

Otherwise, in the regime where M �Mend, Eq. (9.50) can be approximated by keeping the squared
logarithmic term only, and in this limit one obtains

Mpeak

g
' 1.22× 10−9 ρ

1/4
end

1016GeV

(
ρ

1/4
end

ρ
1/4
Γ

)2

ln3/2


3.62× 10−7

(
ρ

1/4
end

1016GeV

)2(
ρ

1/4
end

ρ
1/4
Γ

)4/3

 . (9.55)

This value is displayed with the dashed green line in Fig. 9.4, where one can check that it provides
indeed a reliable estimate. It is interesting to notice that the condition (9.53) for an efficient
production of PBHs is (roughly) equivalent to requiring that Mpeak > Mend. As a consequence, in
the regime where PBHs are abundantly produced, the peak mass is substantially larger than the
Hubble mass at the end of inflation, and hence corresponds to scales that emerge from the Hubble
radius several e-folds before the end of inflation. This is because, although smaller scales spend
more time within the instability band and are thus more amplified, the initial value of their power
spectrum is also smaller, and the trade-off selects intermediate scales.

9.5 Discussion and conclusion

In this work, we have made use of the excursion-set approach to accurately compute the mass
distribution of primordial black holes that are produced during metric preheating. The parametric
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instability of metric preheating occurs in any inflationary model in which the inflaton oscillates
around a minimum of its potential after inflation. It is therefore a rather generic, not to say
inevitable, phenomenon, for which it is thus important to precisely characterize the properties of
the resulting black holes. Since metric preheating leads to the amplification of a wide range of
scales, the cloud-in-cloud mechanism, in which small-mass black holes are trapped inside regions
later collapsing into larger-mass black holes, plays an important role. This is why one needs to go
beyond the simplified, Press-Schechter inspired, common estimate to assess the mass distribution
of black holes.

After reviewing the different techniques that have been proposed in the literature to compute
mass distributions of PBHs, and highlighting salient aspects of these methods that are most of
the time only alluded to, we have studied the problem at hand with the excursion-set formal-
ism, combining different numerical techniques (namely a direct Monte-Carlo sampling of Langevin
realizations and numerical solutions of Volterra integral equations) and analytical approximations.

Assuming that the potential of the inflaton is almost quadratic in the last stages of inflation
(and during the oscillatory phase), the result only depends on two parameters, namely the energy
density at the end of inflation, ρend, and the energy density at the time the inflaton decays into
other degrees of freedom and the instability stops [434], ρΓ.

We have found that in the region of parameter space corresponding to Eq. (9.53), PBHs are very
abundantly produced, in such a way that they even dominate the energy content of the universe
at the end of the oscillatory phase. For this to happen, the inflaton needs to be sufficiently weakly

coupled, such that more than 5 order of magnitude separate ρ
1/4
end from ρ

1/4
Γ , but as soon as this is

the case, one is led to this rather drastic conclusion that the universe undergoes an early phase of
PBH domination.

The typical masses of the black holes range from 10 grams to the mass of the sun. For masses
smaller than 109 grams, PBHs evaporate before big-bang nucleosynthesis (BBN) and can therefore
not be directly constrained. Heavier black holes would, however, survive until and after BBN, and
given that the universe is radiation dominated at BBN, this excludes the region with M > 109g
in Fig. 9.6a. In fact, even if M > 109g, it was recently shown in Ref. [432] that the gravitational
potential underlain by a gas of PBHs induces the production of gravitational waves at seconder order
in cosmological perturbation theory, and that these gravitational waves may lead to a backreaction
problem if ΩPBH > 10−4(109g/M)1/4 at the time PBHs form. This excludes the value ΩPBH ∼ 1
for any M > 10g, hence the whole region described by Eq. (9.53), and located above the dashed
blue line in Fig. 9.5, may be excluded too.

This region was correctly identified in Ref. [430] already, in which metric preheating was studied
with the simplified, Press-Schechter inspired approach described in Section 9.3.7. A detailed com-
parison between our result and the ones obtained in Ref. [430] is given in Appendix 9.C. The main
difference we find concerns the mass at which the mass distributions peak. While in Ref. [430], it
was found to correspond to the Hubble mass at the end of inflation, see Eq. (9.54), in the present
analysis we find that, in the regime where PBHs are substantially produced, the peak mass is
substantially larger, see Eq. (9.55). This is a consequence of the cloud-in-cloud mechanism, which
could not be taken into account in Ref. [430], and this has two main consequences. First, since
heavier black holes take more time to Hawking evaporate, they survive for a longer period, hence
the constraints on the parameters of the model arising from the present result are more stringent
than the ones obtained in Ref. [430], which made conservative assumptions as pointed out in that
reference. Second, this implies that the bulk of the PBH population comes from modes that exit
the Hubble radius several e-folds before the end of inflation, at a stage where it is not clear that the
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potential can still be approximated as being quadratic. This means that, in practice, it may be nec-
essary to analyse each potential individually instead of using the generic parametrization employed
in this work. We have, however, provided all the relevant formulae and technical considerations for
such an exploration to be carried out (the numerical code we have developed to produce the results
presented in this article is also publicly available in the arXiv ancillary files).

Let us also highlight that, although a large range of scales is amplified during metric preheating,
the mass distributions we have found are rather peaked, and never extend over more than a couple of
orders of magnitude. This is in agreement with Ref. [453], where the mass distribution associated
to broad spectra was explored, and it was found to be quasi-monochromatic (i.e. peaked at a
single mass), which corresponds to either the smallest enhanced scale or the largest enhanced scale,
depending on the tilt of the spectrum. In the present case, we found that the peak mass arises at
rather intermediate scales, but this is because the cloud-in-cloud mechanism plays an important
role (such that the mass fraction at small masses is suppressed), while Ref. [453] focused on regimes
where the mass fraction remains small and the cloud-in-cloud phenomenon is almost absent.

Another remark of interest is that, as argued in Section 9.3.7, we have evaluated the density
contrast in comoving slices in order to apply our PBH formation criterion. In Appendix 9.B, we
investigate the consequences of interpreting the formation threshold in a different slicing (namely
the Newtonian one). While we find that most conclusions are unchanged, the main difference
is that the mass distributions are much wider when working in the Newtonian slicing. This is
because, in the Newtonian gauge, the density contrast is not suppressed on super-Hubble scales,
hence large-scale fluctuations substantially contribute to the coarse-grained density perturbation
inside a Hubble patch. This is precisely the effect we have tried to avoid by using the comoving
slicing, since large-scale fluctuations should only lead to a local rescaling of the background, and
not determine the fate of overdensities inside the Hubble radius [476].

Let us also note that our analysis was restricted to scales that are larger than the Hubble radius
at the end of inflation, and we did not explicitly compute the mass fraction at smaller scales.
However, there is a small range of scales that are within the Hubble radius at the end of inflation,
but that still enter from below the instability band during the oscillatory phase (see the lowest
dotted line in Fig. 9.1). Although the physical status of those scales is unclear (since they remain
within the Hubble radius throughout inflation, they behave as Minkowski vacuum fluctuations,
and never undergo classical amplification [482, 483, 484, 485]), they can nonetheless be readily
incorporated in the excursion-set approach. When doing so, given that the corresponding range of
scales is very narrow, and that the initial density contrast is tiny (since those scales are not excited
during inflation), we find that this only adds a negligible, low-mass end to the mass distributions
we have computed, so these scales can be safely discarded.

A final remark of interest is that the collapse criterion we have employed was derived in Ref. [439]
for a universe filled with a scalar field with quadratic potential by assuming a spherically symmetric
profile for the overdensity. In the case of a universe filled with a pressure-less perfect fluid, it is
well-known that PBH peaks no longer need to be rare and hence may not be close to spherically
symmetric, and that corrections arising from spherical asymmetries typically lead to less abundant
PBHs (see for instance Ref. [486]). Although those two systems are different, as discussed in detail
in Ref. [434], one may expect that a similar effect takes place in the setup under consideration
in this work. In order to address it, one would have to generalize the calculation of Ref. [439] to
non-spherical geometries, which could be the topic of future work.

In summary, by properly taking into account the cloud-in-cloud mechanism, which plays an
important role in the metric preheating instability in which a large range of scales is enhanced,
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we have derived accurate predictions for the mass distribution of primordial black holes produced
during preheating. Given that those black holes may dominate the universe for a transient period
afterwards, reheat the universe by Hawking evaporation, and induce a detectable stochastic gravi-
tational wave background [432], the details of these mass distributions may indeed have important
cosmological consequences, some of which remain to be explored.

9.A Numerical solution of the Volterra equation

In Section 9.3.3 we have shown that the first-crossing-time distribution associated to the Langevin
equation (9.22) satisfies a family of Volterra integral equation, one of them being of the form

PFPT(S) =

[
δc(S)

S
− δ′c(S)

]
Pfree [δc(S), S]

+

∫ S

0

ds

[
δ′c(S)− δc(S)− δc(s)

S − s

]
Pfree [δc(S)− δc(s), S − s]PFPT(s) ,

(9.56)

see Eq. (9.32). Upon discretizing the time variable according to S = n∆s and s = m∆s, where n
and m are integer numbers and ∆S is a numerical time step, the Volterra equation can be written
as

PnFPT = Xn +Mn
mP

m
FPT , (9.57)

where the implicit summation notation is employed. In this formula, PnFPT and Xn are vectors,
and Mn

m is a lower triangular matrix, with non-zero cells only if m ≤ n, defined as

PnFPT = PFPT(n∆S) (9.58)

Xn =

[
δc(n∆s)

n∆s
− δ′c(n∆s)

]
Pfree [δc(n∆s), n∆s] (9.59)

Mn
m =

[
δ′c(n∆s)− δc(n∆s)− δc(m∆s)

(n−m)∆s

]
Pfree [δc(n∆s)− δc(m∆s), (n−m)∆s] . (9.60)

Note that we chose to solve the Volterra equation that is such that the diagonal of the matrix Mn
m

is 0. If one tries to discretize Eq. (9.31) in general, then one obtains a matrix Mn
m with diverging

elements on the diagonal, unless the specific choice (9.32) is made, which proves its usefulness.
The solution to Eq. (9.57) is simply given by

PFPT = (Id−M)−1X. (9.61)

Since Id−M is a lower triangular matrix, it can be easily inverted with the “forward-substitution”
algorithm, the numerical cost of which only scales as the square of the size of the matrix (compared
to cubic scaling in general).

9.B Density contrast in the Newtonian slicing

In Section 9.3.7, we motivated the choice of the comoving slicing to evaluate the density contrast on
super-Hubble scales, and express our PBH formation criterion. In the present appendix, we explore
the consequences of choosing a different slicing, in order to understand how much our conclusions
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depend on that choice. In practice, we consider the Newtonian slicing, which consists in setting
α = β = −2 in Eq. (9.37), and Eq. (9.39) reduces to

δk ' −
2

5

[
3 +

(
k

aH

)2
]
ζk . (9.62)

The main difference with the comoving slicing is that, for a curvature perturbation that is scale
invariant on super-Hubble scales, the density contrast is not suppressed any more above the Hubble
radius. This is why we discarded this choice of slicing in Section 9.3.7, since super-Hubble scales
should only lead to a local rescaling of the background field values inside a Hubble patch, and thus
not contribute to whether a black hole forms.

In the Newtonian slicing, on super-Hubble scales, δk ' − 6
5ζk, so δk is conserved since ζk is (and

contrary to the comoving slicing where δk grows like the scale factor). This means that the variance
of the density contrast can equally be evaluated at the end of inflation or at the band-crossing time,
namely

σ2
R(tend) = σ2

R(tbc) =

(
6

5

)2 ∫ a/R

0

Pζ (k, tend)
dk

k
. (9.63)

The collapse criterion is given by Eq. (9.8), and it is strongly scale-dependent, contrary to the case
of the comoving density contrast. As explained in Section 9.3.4, a good approximation in the case of
very red thresholds is given by the Press-Schechter formula without the additional factor of 2. This
is explained by the fact that the barrier moves faster than the average trajectories and multiple
crossings are unlikely.

We apply the techniques described in Appendix 9.A and present our results in Fig. 9.7. In
Fig. 9.7a, one can check that indeed, the (one times) Press-Schechter formula provides a good
approximation to the excursion-set result, up until ΩPBH reaches 1/2. This is because the Press-
Schechter formula does not allow for more than half of the universe being collapsed. One can check
that the condition (9.34) is indeed verified only when ΩPBH < 1/2. For that purpose we set ε ≈ 1/2
and, in Fig. 9.7a, we display

max
ln(R1/R2)>ε

[√
S(R2)− S(R1)

δc(R1)− δc(R2)

]
(9.64)

with the solid yellow line. One expects the Press-Schechter formula to provide a good approximation
when this quantity is below unity, which is indeed the case. Above ΩPBH = 1/2, the abundance
of PBHs continues to slowly increase. This behaviour is rather different from the results obtained
with the comoving density contrast in Section 9.4.3, where we found an abrupt transition from
ΩPBH = 0 to ΩPBH = 1, see Fig. 9.5.

Beside those differences, by comparing the right panel of Fig. 9.5 with Fig. 9.7b, one can see that
the region of parameter space that substantially produces PBHs is roughly the same (in Fig. 9.7b,
we have reported the dashed blue line of the right panel of Fig. 9.5 in order to guide the reader’s
eye). By comparing Fig. 9.6a with Fig. 9.7c, one can see that the typical masses involved are
also roughly the same. However, when comparing Figs. 9.6b and 9.7d, one realizes that the mass
distributions are much wider in the Newtonian case. This is because, since the density contrast is
not suppressed on large scales in the Newtonian slicing, it yields a heavier large-mass tail than in
the comoving slicing.
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9.C Comparison with Ref. [430]

In Ref. [430], a calculation of the PBH abundance in metric preheating was performed by making
use of the simplified, commonly used estimate presented in Section 9.3.7. While this is enough
to correctly identify the region in parameter space that leads to substantial PBH production, see
the discussion below Eq. (9.53), which is consistent with Eq. (4.1) of Ref. [430], this is a priori
not sufficiently accurate to derive detailed predictions about the mass distribution, in particular in
regimes where the cloud-in-cloud mechanism plays an important role.

In Ref. [430], it was indeed pointed out that in cases where PBHs are abundantly produced,
i.e. under the condition (9.53), the simple estimate of Section 9.3.7 predicts ΩPBH > 1, which
clearly signals its breaking down. In order to deal with this issue, two solutions were proposed in
Ref. [430]: either remove by hand the small-mass end of the distribution, in order to bring ΩPBH

back to one, and to model the possible absorption of small black holes into larger black holes (this
was dubbed “renormalization by absorption”); or stop the instability phase prematurely, at the
time when ΩPBH crosses one, since the universe stops being dominated by an oscillating scalar field
at that point (this was dubbed “renormalization by premature ending”). Since the later approach
effectively removes larger-mass black holes from the distributions (given that heavier black holes
come from larger scales, that enter the instability band later), it was assumed in Ref. [430] that
these two results would bound the true mass distribution on each side, and that any conclusion
that can be drawn in both approaches probably applies to the actual result.

In this appendix, we want to verify these statements, and in Fig. 9.8, we compare the mass
fraction obtained in this work (solid red line) with the formulas derived in Ref. [430] when “renor-
malization” is performed by absorption (olive line) or by premature ending (purple line), starting
from the “raw” result (orange line) that leads to the problematic ΩPBH > 1. Although, as ex-
pected, neither approach provides a good description of the full result, the order of magnitude of
the overall amplitude is correctly reproduced, and the actual mass distribution is indeed approx-
imately bounded by the results from the two renormalization procedures (although it is closer to
the “renormalization by absorption” result). This therefore confirms the relevance of Ref. [430].

The main difference in the shape of the mass distribution concerns the location of the peak mass:
in Ref. [430], it was found that the mass where most PBHs form is the smallest mass that undergoes
parametric amplification, i.e. the Hubble mass at the end of inflation, see Eq. (9.54), or the cutoff
mass in the case of “renormalization by absorption”. Here, we find that the mass distribution peaks
several orders of magnitude above that mass, see the discussion following Eq. (9.55).
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Figure 9.2: Bardeen potential Φk rescaled by the curvature perturbation ζk during the last e-
folds of inflation and the first e-folds of the oscillatory phase, in the same situation as the one
displayed in Fig. 9.1, for a scale k that is sufficiently far outside the Hubble radius such that ζk
can be taken as constant. The blue line stands for the full numerical solution of Eq. (9.38), seen
as a differential equation for Φk(t), where w(t) and H(t) are extracted from Fig. 9.1. The red line
stands for the approximation (9.43), Φk/ζk = 3/5, obtained as the late-time solution of Eq. (9.38)
when setting w = 0 and H = 2/(3t), and towards which the full numerical result asymptotes after
a few oscillations. The orange line stands for Eq. (9.38) where we neglected Φ̇k/H with respect to
Φk. This approximation is well justified on super-Hubble scales during inflation, since w is almost
constant there, but fails during the subsequent oscillatory phase where w vanishes on average but
otherwise undergoes large oscillations.
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Figure 9.3: Example of Langevin trajectories for the density contrast evaluated on comoving slices
at the end of inflation, and coarse-grained at the scale R, for Hend = 10−8Mpl and HΓ = 10−25Mpl.
The (quasi) horizontal black dashed line shows the collapse criterion (9.45). In the right panel, we
isolate one realization and the vertical dashed line denotes the first crossing “time” (i.e. scale) of
the critical threshold.
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Figure 9.4: Mass fraction β of primordial black holes for Hend = 10−8Mpl and HΓ = 10−25Mpl,
as a function of the mass M in grams. The vertical black bars stand for the distribution of first
crossing times obtained from 106 simulated realizations of the Langevin equation (9.22), binned
into 1000 logarithmically spaced values of R. The size of the bars correspond to 5σ estimates of
the statistical error by jackknife resampling. The red line corresponds to numerically solving the
Volterra equation (9.32), using the method described in Appendix 9.A. The blue line displays the
analytical approximation developed in Section 9.4.4, which provides a good fit to the full numerical.
The vertical green line denotes the mass at which β peaks, as estimated from Eq. (9.55), and the
grey shaded area stands for the 1σ deviation of ln(M) according to the distribution β(M), centred
on its mean value.
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Figure 9.5: Total fraction of the universe comprised in PBHs, ΩPBH, as a function of ρend, the energy
density at the end of inflation, and ρΓ, the energy density at the end of the instability phase. On the
left panel, we fix ρend = 10−12M4

pl and let ρΓ vary. The solid red curve is the full numerical result
obtained in the excursion-set approach. The dashed green line corresponds to the Press-Schechter
result with the additional factor 2, which becomes exact in the limit of a scale-invariant threshold,
see Section 9.3.4. The dashed blue line corresponds to the analytical approximation (9.52). On
the right panel, the full parameter space is explored (where ρΓ < ρend since the oscillatory phase
occurs after inflation). The colour encodes the value of ΩPBH, and the transition from tiny values
to values close to one is very abrupt. The dashed blue line stands for the analytical estimate (9.53)
for the location of this transition.
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Figure 9.6: Typical masses of the PBHs produced in metric preheating. The left panel shows the
average mass, computed from the mass fraction distribution. In the white region the abundance
of PBHs is too small to be numerically resolved, hence the average mass cannot be computed. On
the right panel, we show the standard deviation of ln(M), which describes the typical width of the
mass fraction distribution.
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(b) ΩPBH as a function of ρend and ρΓ.
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Figure 9.7: PBH mass fraction if the formation criterion is interpreted in the Newtonian slicing.
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Figure 9.8: Mass fraction β of primordial black holes for ρend = 10−12M4
pl and ρΓ = 10−40Mpl. As

in Fig. 9.4, the red line corresponds to numerically solving the Volterra equation (9.32). The olive,
orange and purple lines correspond to the results of Ref. [430] and are taken from Fig. 4 of that
reference. The orange line displays the “raw” result obtained with the estimate of Section 9.3.7,
which leads to the problematic ΩPBH > 1. Then, “renormalization” is either performed by “pre-
mature ending” (purple dashed line) or by “absorption” (olive dashed line).
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Chapter 10

Generation of gravitational waves
from freely decaying turbulence

This chapter is based on an ongoing work with Daniel Cutting, David Weir, Mark Hindmarsh and
Kari Rummukainen of the University of Helsinki and my supervisors Chiara Caprini and Danièle
Steer. Our collaboration began in November 2018 with an initial visit in Helsinki. Initially, the goal
was to study both the formation and the decay of turbulence after a first order phase transition using
the numerical simulation code developed by the group in Finland [201]. The project received support
from the HPC-Europa3 Transnational Access program, which provided computational resources as
well as funding for a one-month visit in May 2019, and by the International Emerging Actions
program awarded by the CNRS in February 2020 to fund visits between France and Finland.
During the project, we realized that the code was not adapted to study the formation of turbulence
and the project refocused on the subsequent phase of free decay. This project is taking a long time
to complete as it is at the intersection of many areas of expertise: gravitational waves, turbulence,
and massively parallel numerical simulations. Additionally, the Covid pandemic unfortunately put
an end to our regular visits between France and Finland which slowed down the completion of the
project. I have contributed to all the aspects of this work, including adapting the code of the group
at the University of Helsinki to our problem and running the large scale numerical simulations.

Abstract

We calculate the stochastic background of gravitational waves (SGWB) produced by a
phase of freely decaying turbulence in the early Universe. Turbulence may be sourced by a
first order phase transition at the electroweak scale, in scenarios beyond the Standard Model.
In this case, the gravitational wave signal that turbulence generates may fall in the frequency
band of the space-based interferometer LISA. We start by reviewing the computation of the
SGWB from purely vortical motions in a relativistic fluid to calculate the GW spectrum. We
then construct a model for freely decaying turbulence and compare it with direct numerical
simulations. In particular, we validate numerically the unequal-time correlations (UETCs)
of the velocity field and the evolution laws of the kinetic energy and the integral scale. We
stress that any two point correlator must satisfy the Mercer condition, and we propose to use
the Gibbs kernel for the turbulent UETC: this interpolates well the result of the numerical
simulations, and guarantees positivity of the velocity, anisotropic stresses and gravitational
wave energy density power spectra. In order to calculate the SGWB spectrum, we directly
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perform the four-dimensional integration (on time and wave-vector convolution) using VEGAS:
an algorithm based on importance sampling.

10.1 Introduction

Gravitational wave (GW) signals from the early universe have the potential to open a new obser-
vational window on high energy physics phenomena. In this context, first-order cosmological phase
transitions (FOPTs) provide a compelling source of GWs. This was first proposed many years ago
(see Refs. [487, 488, 489, 490, 491, 197]), before it became clear that the electroweak (EW) symme-
try breaking proceeds as a cross-over in the Standard Model [492]. However, it has since emerged
that many scenarios beyond the Standard Model (BSM) lead to first-order phase transitions at,
and beyond, the EW scale, reopening the case for the study of GW production from FOPTs (for a
recent, GW-oriented review, see [493]).

This is particularly interesting in the context of the Laser Interferometer Space Antenna (LISA),
which has been selected by the European Space Agency in 2017 as the large class mission L3 [207].
LISA is sensitive to a frequency window around the mHz. In the context of primordial GW-sourcing
processes that are localized in time, such as a FOPT, the characteristic frequency of the GWs today
can be connected to the characteristic time/length scale of the source anisotropic stresses R∗, via

f ∼ 16.5 · 10−3 mHz
1

R∗H∗

T∗
100 GeV

( g∗
100

)1/6

. (10.1)

Here a subscript ∗ denotes the epoch at which the phase transition occurs. This shows that LISA can
potentially detect the GW signal from FOPTs in the window 100 GeV – 1 TeV, if the characteristic
time/length scale of the anisotropic stresses is of the order R∗ ∼ 10−2 to 10−3 of the Hubble scale
H∗ at the FOPT time. The latter can be considered as typical values for R∗H∗, given that R∗
is related to the mean bubble separation (see i.e. [202, 493] and references therein). LISA can
therefore offer a new way to probe BSM physics, complementary to the Large Hadron Collider.

There are several processes possibly leading to sizable anisotropic stresses in connection with a
FOPT. This rich phenomenology renders FOPTs particularly appealing as primordial GW sources.
Bubble percolation, with the consequent break of spherical symmetry, is the most direct one [489,
490, 491]. The GW generation by bubble collision has been analysed both with numerical simula-
tions [199, 203, 494, 495] and analytical approaches [198, 496, 497].

The first numerical simulations of the coupled system of a scalar field and a relativistic fluid
have shown that sound waves, produced in the fluid by expanding bubbles, are also a promising
source of GWs [200, 201, 498, 499]. Refs. [200, 201, 498] showed that they are indeed the dominant
GW source, in the case of FOPTs of weak to intermediate strength, i.e. α . 0.1, where α is the
ratio of the trace anomaly of the energy momentum tensor and the thermal energy.

In stronger FOPTs with α ∼ 1 or larger, the characteristic time of shock formation τsh ∼ R∗/v||,
where v|| denotes the root mean squared (rms) velocity of the acoustic motion, can become shorter
than the Hubble time τshH∗ . 1 [202, 500, 501]. Shocks can therefore develop in the fluid motion,
and are expected to convert the acoustic phase into a turbulent one [502]. Vortical flows has also
been seen to be generated in the numerical simulations carried out in Ref. [503], by the non-linear
interactions of relativistic compressional fluid flows surrounding the colliding bubbles of the stable
phase.

In the present work, we study the GW signal generated by a hypothetical turbulent phase in the
aftermath of a FOPT. The first analyses of the GW signal from turbulence have relied on analytical
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modelling of the turbulent flow, and semi-analytical estimates of the GW signal [197, 504, 505, 506,
507, 508, 509]. Ref. [510] is the most recent one adopting semi-analytical techniques, and evaluates
the GW signal from all components (compressional, vortical, magnetic field) of both standard,
and helical, freely-decaying magneto-hydrodynamic (MHD) turbulence. Various spectral shapes
and scaling of the GW power spectrum have been found, depending on the relative amplitude
of the compressional and vortical components, and on the presence of helicity. In Ref. [510], it
is also argued that the correct auto-correlation time to be used in the equations describing GW
production by turbulence is the Eulerian eddy turnover time τe ∼ (kvsw)−1, where vsw is a locally
uniform velocity field sweeping the vortices in accordance with Kraichnan Random Sweeping Model
[511], and not the Lagrangian one τ` ∼ (kv`)

−1, where v` is the velocity on the scale ` (used e.g. in
Refs. [505, 506, 508]).

Recently, numerical simulations of both non-helical and helical MHD turbulence and the sub-
sequent GW generation have been carried out in Refs. [512, 513, 514, 515]. These works introduce
also an initial phase, in which the MHD turbulence develops, starting from a nearly monochromatic
electromotive force, or a kinetic forcing. The spectral shape of the GW signal depends on whether
magnetic and/or kinetic energy is present in the initial conditions, with a well-established power
spectrum, or if it is sourced by the forcing.

In this chapter, we develop a semi-analytical model of GW generation by freely-decaying kinetic,
vortical, non-helical turbulence, which is supported by the results of numerical simulations. We
rely on the relativistic hydrodynamic code developed by Refs. [200, 201, 498], but we use it to study
the evolution of vortical fluid motions, excluding the dynamics of the scalar field undergoing the
FOPT (see Section 10.3). We have chosen to over-simplify the turbulence model (no compressional
modes, no helicity, no magnetic field, no initial forcing phase) in order to have fully under control
the analytical understanding of the GW production. Increase in complexity will be tackled in future
works.

The simulation is initialized in Fourier space, assuming Gaussian and vortical velocity fluctu-
ations, following an input power spectrum (see Section 10.3 and Section 10.4.1). We therefore do
not simulate the turbulence formation in our numerical simulations, but only the turbulence decay.
However, as already pointed out in the analytical evaluations of [516, 508, 509], and found in the
numerical simulations of [512, 513, 514, 515], we confirm here that the initial phase, in which the
turbulent kinetic energy (i.e. the kinetic energy associated with the vortical motion) is sourced and
grows, plays an important role in shaping the final GW signal. This is one of our main results,
as we shall see. The initial phase of turbulence development is modelled here in three heuristic
ways: an instantaneous generation of turbulence, a linear growth of the kinetic energy, as done
in Refs. [508, 510], imposing continuity with the free-decay phase; and C1 growth of the kinetic
energy, designed specifically to guarantee that the transition to the decay phase is smooth (see
Section 10.4.5). It is difficult to connect these simplified models with the electromotive forcing of
Ref. [517, 513], however, they are of help in the analytical interpretation, as we shall see.

Correctly assessing, and implementing, how the GW source decorrelates in time is also of
paramount importance for the GW signal evaluation [516, 508, 509]. In the present context,
the decorrelation model must be suited to freely-decaying turbulence. This was attempted in
Ref. [508], which extended the exponential Kraichnan decorrelation proposed in Ref. [511], and
adopted in Refs. [505, 506] in the context of stationary turbulence, to freely-decaying turbulence
(erroneously with the Lagrangian eddy turnover time instead of the Eulerian one, as previously
mentioned [510]). By doing so, [508] ran into the question of how to define a valid correlation
function for a non-stationary process.
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The solution of this problem originally proposed in Ref. [508], consisting in modelling the decor-
relation directly in the anisotropic stresses with a top-hat Ansatz, rather than in the velocity
field, is not satisfactory, since it effectively sets the decorrelation time of the turbulent flow to the
light-crossing time τ ∼ 1/k, which does not depend on the velocity of the turbulent flow. Here, we
consistently address this issue in the context of the theory of positive Kernels, and propose to model
the unequal time power spectrum of the turbulent velocity field as a Gibbs Kernel (see Section 10.5).
This provides a way to symmetrize the unequal time power spectrum, and it most importantly guar-
antees that the anisotropic stress two-point function is a valid correlation function, and therefore
guarantees that it leads to a positive GW energy density power spectrum (c.f. Eq. (10.15)).

Concerning the turbulent velocity decorrelation law, we adopt here the Kraichnan sweeping
hypothesis [511], which is supported by numerical works simulating decaying isotropic turbulence
[518], and has been used in the context of GW generation in Ref. [510]. The numerical simulations
we perform show very good agreement with the Kraichnan Sweeping Model in the inertial range (see
Section 10.4.2). Furthermore, we have performed, for the first time to our knowledge, numerical
simulations allowing us to measure the unequal time correlations of the velocity field also at large
scales, outside the inertial range (see Section 10.4.3). Thanks to these simulations, we can validate
the decorrelation model also in the infrared tail of the velocity power spectrum. This might not be
of much interest in the study of turbulent evolution, but constitutes a necessary step to calculate
GW production by turbulence.

The free-decay of the turbulence can also be extracted from our simulations. We study the
evolution of the kinetic energy and of the integral scale of the flow, and link it to the model
of Refs. [519, 520] (see Section 3.2). The decay laws inferred from the simulations are broadly
consistent with the findings of [520] for the case of purely kinetic, non-helical turbulence. We insert
them in the analytical model of the turbulence developed to evaluate the GW production. As we
shall see, the exact values of the power-law exponents of the turbulent decay do not play a relevant
role in determining the final shape of the GW spectrum, as the bulk of the GW signal is sourced
on a characteristic time which is smaller than the typical time it takes for the decay of the kinetic
energy and the growth of the integral scale to equilibrate to well-defined power-laws.

Finally, we use the turbulent model developed so far (consisting in the equal time spectral shape,
the unequal time symmetrized power spectrum, the time decorrelation at small and large scales,
the growth phase of the kinetic energy, the overall free decay and turbulence duration) to evaluate
the anisotropic stresses (see Section 10.6.1) and calculate the GW signal (see Section 10.6.2). This
is tackled by means of a four-dimensional numerical integration code, which handles the two time
integrations arising from the GW time evolution, and the two momentum integrations arising from
the velocity power spectrum convolution (c.f. Eq. (10.97)).

10.2 Stochastic background of gravitational waves

10.2.1 Generation of gravitational waves

In the cosmological context GWs are described by transverse and traceless tensor perturbations hij
over the background FLRW metric describing the homogeneous and isotropic Universe:

ds2 = a2(η)
[
− dη2 + (δij + 2hij) dxi dxj

]
, (10.2)
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with ∂ihij = hii = 0. It follows from the linearized Einstein equations that

ḧij + 2Hḣij + k2hij = 8πGa2(η)T
(TT )
ij (k, η) (10.3)

where H = ȧ/a is the comoving Hubble parameter, · = d/dη , and T
(TT )
ij is the transverse traceless

part of the perturbed fluid stress-energy tensor. We work in the radiation era, and define T
(TT )
ij =

(4ρ/3)Π̃ij so that using Friedmann’s equation, Eq. (10.3) can be rewritten as

ḧij + 2Hḣij + k2hij = 4H2Π̃ij(k, η). (10.4)

Assuming that there were no changes in the relativistic degrees of freedom, H = η−1, and

ḧij +
2

η
ḣij + k2hij =

4

η2
Π̃ij(k, η). (10.5)

Changing variable from hij(k, η) to η hij(k, η), Eq (10.5) becomes the equation for a forced harmonic
oscillator whose Green’s function is known (see Ref. [29] for a review). The solution is

hij(k, η) = 4

∫ η

ηini

sin k(η − ζ)

kη
Π̃ij(k, ζ)

dζ

ζ
, (10.6)

where ηini is the conformal time at which the source turns on. Thus,

ḣij(k, η) = 4

∫ η

ηini

[
cos k(η − ζ)

η
− sin k(η − ζ)

kη2

]
Π̃ij(k, ζ)

dζ

ζ
. (10.7)

The solution at late times, η � ηfin when the source has stopped operating, can be found by
matching Eqs. (10.6) and (10.7) with the homogeneous solution [29]. For wavenumbers kη � 1, we
can further neglect the sine contribution in Eq (10.7), and obtain

ḣij(k, η > ηfin) = 4

∫ ηfin

ηini

cos k(η − ζ)

η
Π̃ij(k, ζ)

dζ

ζ
. (10.8)

10.2.2 GW energy density power spectrum

The superposition of GW signals, coming from patches in the sky that were causally disconnected at
the moment of their emission in the very early universe, can only be studied statistically. Assuming
statistical homogeneity and isotropy, the two-point correlation function of the strain tensor can be
written 〈

ḣ∗ij(k, η)ḣij(q, η)
〉

= (2π)3δ(q− k) ˙|h|2(k, η). (10.9)

The fractional GW energy density is (where ρc denotes the critical energy density)

ρgw

ρc
=

〈
ḣ∗ij(x, η)ḣij(x, η)

〉

8πGa2(η)ρc
≡
∫

dk

k

dΩgw

d ln k
. (10.10)

The fractional GW energy density power spectrum is then

dΩgw

d ln k

∣∣∣∣
η

=
k3 ˙|h|2(k, η)

2(2π)3Ga2(η)ρc
. (10.11)
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The GW source must also be described statistically: the anisotropic stress two-point correlation
function, taken at different times, is defined by

〈
Π̃ij(k, ζ), Π̃ij(q, τ)

〉
= (2π)3δ(k− q)Π̃2(k, ζ, τ). (10.12)

From Eq (10.8), one then obtains

˙|h|2(k, η) =
8

η2

∫∫ ηfin

ηini

cos k(τ − ζ)Π̃2(k, ζ, τ)
dτ

τ

dζ

ζ
, (10.13)

where we have used the trigonometric identities and averaged over a long time η � k−1.
Accounting for the fact that the GW signal redshifts as radiation,

dΩgw

d ln k

∣∣∣∣
η0

=

(
afin

a0

)4
dΩgw

d ln k

∣∣∣∣
ηfin

, (10.14)

and combining Eqs. (10.11) and (10.13), one finds

dΩgw

d ln k

∣∣∣∣
η0

=
4

3π2
Ω0

rad

gfin

g0

(
gs,0
gs,fin

)4/3

k3

∫∫ ηfin

ηini

cos k(τ − ζ)Π̃2(k, ζ, τ)
dτ

τ

dζ

ζ
, (10.15)

where g and gs denote respectively the radiation and entropy relativistic degrees of freedom. In
Eq. (10.15) we have further used

afin = a2
0H0

√
Ω0

rad

(
gfin

g0

)1/2(
gs,0
gs,fin

)2/3

ηfin (10.16)

to transform the pre-factor afin
4/(2π3Ga0

4a2
finη

2
finρc).

As can be seen from Eq. (10.15), the GW signal is determined by the unequal-time stress energy
Π̃2(k, ζ, τ) of the fluid. In the case under analysis, the source of GW is provided by decaying
turbulence in a relativistic fluid. In Section 10.4, we model the turbulence power spectrum, and in
Section 10.6.1, we derive the connection between the turbulence power spectrum Eq. (10.86) and
the anisotropic stress power spectrum: see Eq. (10.95).

As we discuss in Section 10.5, the power spectrum of any random variable must be a positive
kernel (see i.e. [521]). Consequently, Π̃2(k, ζ, τ) defined in Eq. (10.12), must be a positive kernel,
since it describes the random anisotropic stresses arising from the turbulent field. This guarantees
that the GW energy density power spectrum is indeed positive, c.f. Eq. (10.15). This issue had
already been raised in Ref. [508].

10.3 Numerical simulations

We carry out a series of direct numerical simulations in order to study unequal-time correlations
(UETCs) during hydrodynamical turbulence in the early Universe. For our numerical simulations
we use a modified version of the relativistic hydrodynamics code previously used to study the
coupled evolution of the scalar field and the fluid, and the production of gravitational waves during
a thermal phase transition [200, 201, 498, 503]. While earlier uses of the code simulated the phase
transition itself with the coupled field-fluid model [522], here we are interested in the dynamics of
the fluid after the transition has completed. We therefore “turn off” the evolution of the scalar
field and are left with the evolution of a relativistic fluid. We now specify the equations of motion
of the fluid and then explain how we fix the initial conditions for our simulations.
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10.3.1 Evolution laws

The energy momentum tensor of the system is that of a perfect fluid in Minkowski space

Tµν = (ε+ p)UµUν + gµνp, (10.17)

with ε the internal energy density in the fluid, p the pressure, Uµ = γ(1,v) the fluid four-velocity
and with Lorentz factor γ = 1/

√
1− v2. We fix the equation of state to be that of a relativistic

gas with p = ε/3. It has been shown that the hydrodynamic equations of motion in an expanding
Universe with zero curvature are the same as the hydrodynamic equations in Minkowski space-time
in conformal time, provided the dynamical quantities are replaced by scaled variables [523]. Hence,
we do not need to adapt our simulation code to study hydrodynamic turbulence in an expanding
background.

The dynamical quantities that we evolve are the fluid energy density E = γε with equation of
motion [201]

Ė + ∂i(Ev
i) + p

[
γ̇ + ∂i(γv

i)
]

= 0, (10.18)

and the fluid momentum density Zi = γ2(ε+ p)vi, the components of which evolve according to

Żi + ∂j(Ziv
j) + ∂ip = 0. (10.19)

Our evolution algorithm follows the approach taken in Ref.[524] with a leapfrog method for
updating the dynamical quantities. For this chapter we use a van Leer scheme for the advection
update, whereas earlier uses of this code used an upward donor cell scheme [525, 526]. We find that
using the van Leer scheme the UETCs converge faster with decreasing lattice spacing.

10.3.2 Initial conditions of the numerical simulation

We initialize the velocity field of our simulation in Fourier space

v(x) =
∑

k

vk eik·x, (10.20)

where k takes discrete values in the reciprocal lattice. Each mode vk is randomly distributed and
follows Gaussian statistics with mean zero and variance determined by an arbitrary velocity power
spectrum serving as initial condition (see Section 10.4.1 for its specification).

The velocity field is then projected onto its vortical component with the projector

Pij(k) = δij − k̂ik̂j . (10.21)

Since x ∈ R3, we finally impose that
vk = v∗−k. (10.22)

This method allows us to initialize the simulation with an arbitrary choice of velocity power spec-
trum. Our motivation at the beginning of this project was to start the simulation with sound waves
whose power spectrum matched the end state of Ref. [498] This would have allowed us to study
the long-term evolution of the thermal phase transition, without having to resolve the thickness of
the bubbles on our lattice. We were hoping to observe, for high enough velocities, the formation
of shocks and the subsequent development of turbulence. Unfortunately, this idea did not bring
significant results, and we adapted this procedure to initialize a purely vortical fluid.
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Lattice size vrms,∗ ξ∗/ dx Duration τ0 for UETCs Label
40963 0.1 32 71 – (A)
20483 0.1 79 4.5 0.36 (B)
20483 0.1 8.5 92 4.6 (C)

Table 10.1: List of the simulations used in this work. The input values for the initial power
spectrum (10.35) are the initial root mean squared turbulent velocity

√
〈v2(τ∗)〉 ∼ vrms,∗ and the

initial integral scale of the turbulent spectrum ξ∗ in units of the lattice spacing dx. The duration
of the simulation and the reference time τ0 at which the UETCs are evaluated are given in units of
the eddy turnover time at the integral scale τξ = ξ∗/vrms,∗.

10.3.3 Unequal time correlations

We are interested in studying the UETCs of the velocity field in these simulations, in order to
calculate Π̃2(k, τ, ζ), see Eq. (10.15). For a field in momentum space, v(k, τ), we measure the
following correlator

〈v(k, τ)v∗(k′, ζ)〉 . (10.23)

However, evaluating this quantity for many values of τ and ζ is very costly within a numerical
simulation, in part because each pair of τ and ζ represents snapshots of the field v that must be
stored concurrently in memory. Instead, we define a reference time τ0 at which we store in memory
the field v(k, τ0), and then compute the UETC at regular intervals with the field on the current
timestep, i.e

〈v(k, τ0)v∗(k′, τ0 + n∆τ)〉 , (10.24)

where here ∆τ is the interval between UETC outputs and n is some positive integer.

10.4 Analytical model: freely decaying turbulence

In this section we present the model of freely decaying turbulence used in the present analysis.
The model is based on the findings of Refs. [508, 510]: in particular, we correct Ref. [508] by
accounting for the Kraichnan sweeping model to describe the time decorrelation of the velocity field,
as proposed in Ref. [510] (Section 10.4.2). We extend the results of Ref. [510] by symmetrizing the
velocity power spectrum. We adopt a new form of the decorrelation function which is validated by
the numerical simulations and describes the decorrelation of the velocity field also at large scales,
outside the inertial range (Section 10.4.3). The symmetrization of the velocity power spectrum
is chosen to guarantee positivity of the GW energy density power spectrum (10.15). We have
also tried to validate the decay laws of the turbulent kinetic energy and correlation scale with the
simulation results (Section 10.4.4). With respect to [508] and [510], we propose several forms for the
growth phase of the turbulence, which constitutes an important ingredient in order to determine
the spectral shape of the GW power spectrum [516, 509, 508] (Section 10.4.5).

10.4.1 Velocity power spectrum

Under the assumption that the velocity field is divergence-free, Gaussian and statistically isotropic
and homogeneous, its properties are characterized by the two-point correlation function in real



10.4. ANALYTICAL MODEL: FREELY DECAYING TURBULENCE 235

space [504]

bij(r, τ, ζ) =
〈vi(x, τ)vj(x + r, ζ)〉

〈v2〉 ≡ Σ(r, τ, ζ)(δij − r̂ir̂j) + Γ(r, τ, ζ)r̂ir̂j . (10.25)

The functions Σ and Γ represent respectively the transverse and longitudinal correlation functions.
Since the velocity field is divergence-free, ∂bij/∂ri = 0 and the correlation functions are related
through

Γ′(r) =
2

r
[Σ(r)− Γ(r)]. (10.26)

The properties of statistical homogeneity, isotropy and that ∇ · v = 0 imply that in Fourier space

〈
vi(k, τ)v∗j (q, ζ)

〉
≡ (2π)3

(
δij − k̂ik̂j

)
δ(k− q)Pv(k, τ, ζ). (10.27)

This equation defines for the velocity spectral density Pv. It can be expressed in terms of the
correlation functions Γ and Σ by matching the Fourier transform of Eq. (10.27) and the trace of
Eq. (10.25):

Pv(k, τ, ζ) =
〈
v2
〉 ∫

d3r eik·r
[
Σ(r, τ, ζ) +

1

2
Γ(r, τ, ζ)

]
. (10.28)

One can rewrite the spectral density in terms of spherical coordinates using Eq. (10.26)

Pv(k, τ, ζ) = 4π
〈
v2
〉 ∫

r2 dr

[
Σ(r) +

1

2
Γ(r)

]
sin(kr)

kr

= 2π
〈
v2
〉 ∫

dr
[
r3Γ′(r) + 3r2Γ(r)

] sin(kr)

kr
. (10.29)

We can understand the large scale behaviour of the spectral density by performing an expansion in
k � 1, to find

Pv(k, τ, ζ) = 2π
〈
v2
〉 ∫

dr
[
r3Γ′(r) + 3r2Γ(r)

][
1− (kr)2

6
+O

(
k4
)]
. (10.30)

It is legitimate to assume that the correlation function (10.25) has a compact support and vanishes
outside the horizon, by causality. As a consequence, the leading order of Eq. (10.30) is r3Γ

∣∣∞
0

= 0,
and the spectral density on large scales is given by

Pv(k → 0) =
2π

3

〈
v2
〉
k2

∫ ∞

0

dr r4 Γ(r) +O
(
k4
)
. (10.31)

The integral
∫

dr r4Γ(r) is also known as the Loitsyansky integral and it is a measure of the angular
momentum of the system. Therefore, we see that causality in the early universe points to Batchelor
turbulence [527], at least at super-horizon scales.

The power spectrum Pv(k) encodes how the kinetic energy is distributed into the different
length-scales

〈
v2
〉

(τ) ≡
∫

dk

k
Pv(k, τ, τ). (10.32)

It is related to the spectral density through

Pv(k) =
k3

π2
Pv(k). (10.33)
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To characterize the typical length-scale of the system, we define the integral scale ξ in terms of
the longitudinal correlation function, or equivalently in terms of the power spectrum

ξ(τ) ≡
∫ ∞

0

dr Γ(r, τ, τ) =
π

4 〈v2〉

∫
k−1Pv(k, τ, τ) d ln k , (10.34)

We use the integral scale to define dimensionless, time-dependent wave-numbers K(τ) = A k ξ(τ),
with A a normalization constant defined later in Eq. (10.36).

Concerning the shape of the velocity power spectrum, we assume that in the inertial range it is
determined by the Kolmogorov K−2/3 law, and on large scales by the causal K5 slope, motivated
by Eq. (10.31). Pv(k) is usually approximated by the following formula [508, 510, 528, 527]

Pv(k, τ, τ) = B
〈
v2
〉

(τ)
K5(τ)

[1 +K2(τ)]
17/6

. (10.35)

The coefficients A and B are chosen to ensure that the definitions of the kinetic energy and the
integral scale of Eqs (10.32) and (10.34) are consistent:

A =
55Γ(1/3)

12
√
πΓ(17/6)

≈ 4.02, B =
8Γ(17/6)

3
√
πΓ(1/3)

≈ 0.97. (10.36)

Note that in Ref. [510], the authors introduce a factor of 5/12 in the denominator of the velocity
power spectrum, with the motivation to localize the peak of the spectrum around K = 1. We do
not follow this convention here.

10.4.2 Kraichnan sweeping model

In order to model the time decorrelation of the velocity field, we adopt the Kraichnan’s sweeping
scenario [511, 518], as put forward in Ref. [510]. We compare the predictions of this scenario
to numerical simulations of a relativistic fluid in the early Universe. We propose a form for the
decorrelation function which reduces to the classical sweeping decorrelation scenario in the case of
non-decaying turbulence, and in the inertial range. However, in order to perform the calculation
of the GW energy density spectrum, we need to model the decorrelation also at large scales: we
therefore use a form for the decorrelation function proposed in [529] which appears to be valid
also outside the inertial range. As shown in Section 10.4.3, we validate this form with numerical
simulation as far as possible. Here we first concentrate on the time decorrelation in the inertial
range, and revise the classical sweeping scenario, before extending to large scales in the next section.

Kraichnan’s sweeping model is based on the assumption that vortices in the inertial range are
advected without deformation by a locally uniform velocity field V, which may be time-dependent
[511]:

∂v

∂t
+ i[k ·V(t)]v = 0. (10.37)

Since V is locally uniform, the evolution of modes with different wavenumbers k is decoupled. The
turbulent velocity field can be explicitly integrated: from Eq. (10.37) we find

v(k, t+ ∆t) = v(k, t) exp

(
−i
∫ t+∆t

t

k ·V(s) ds

)
. (10.38)
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Under the assumption that the locally uniform velocity field V is statistically independent of the
turbulent velocity field v at the initial time, the unequal-time correlations of this latter field can
be expressed as

〈vi(k, t+ ∆t)v∗i (k, t)〉 = 〈vi(k, t)v∗i (k, t)〉
〈

exp

(
−i
∫ t+∆t

t

k ·V(s) ds

)〉
. (10.39)

The average of the exponential can be calculated assuming that its argument is a Gaussian random
variable 1. It results that the velocity field decorrelates with a characteristic Gaussian law such as

〈vi(k, t+ ∆t)v∗i (k, t)〉 = 〈vi(k, t)v∗i (k, t)〉 exp
(
−
〈
X2
〉)
, (10.41)

where

X2 ≡
∫∫ t+∆t

t

(k ·V(s))(k ·V(s′)) dsds′ . (10.42)

This expression can be further simplified assuming that the locally uniform velocity has on average
the same amplitude in the three space directions [511], leading to

〈vi(k, t+ ∆t)v∗i (k, t)〉 = 〈vi(k, t)v∗i (k, t)〉 exp
[
−(k∆t vsw(t,∆t))2

]
, (10.43)

where vsw(t) is the sweeping velocity and takes the form [518, 530]

v2
sw(t,∆t) =

1

3∆t2

∫∫ t+∆t

t

〈V (s)V (s′)〉dsds′ . (10.44)

The most common assumption for the sweeping velocity is to set it equal to the root-mean-squared
velocity of the turbulent field in one direction [511, 531]. Assuming statistical isotropy, this amounts
to v2

sw '
〈
v2
〉
/3. Generalizations for freely decaying turbulence are given for instance in Refs. [518,

530], as v2
sw(t,∆t) =

∫ t+∆t

t

〈
V 2(s)

〉
/∆t2 ds ' [

〈
v2(t)

〉
+
〈
v2(t+ ∆t)

〉
]/2. In the following, we will

adopt a model that reduces to
〈
v2(t)

〉
/3 at equal time and in the inertial range, as presented in

the next Section 10.4.3.

10.4.3 Unequal-time correlations outside the inertial range

The Kraichnan sweeping model derived in the previous section only applies to the inertial range.
In order to evaluate the GW generation, however, we need to model the time decorrelation of the
velocity field on all scales (c.f. for example Eq (10.97)).

The decorrelation dynamics at scales larger than the integral scale in freely decaying turbulence
has not received a lot of attention in the literature: numerical studies such as those performed
in Refs. [518, 530], for example, study decorrelation only in the inertial range. The largest scale
analysed in Ref. [532] is k = 1, corresponding to the scale of the forcing, i.e. of the peak of the
energy spectrum: it appears from this analysis that the peak scale already decorrelates slower than
scales in the inertial range.

1We recall that for a Gaussian random variable,

〈exp(X)〉 =

〈 ∞∑
n=0

Xn

n!

〉
=

∞∑
k=0

〈
X2
〉k

2kk!
= exp

(〈
X2
〉

2

)
(10.40)
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Figure 10.1: Extension of the sweeping velocity at scales larger than the integral scale, following
the model given in Eq. (10.45). It interpolates smoothly between

〈
v2
〉
/3 in the inertial range as in

Eq. (10.44) and 2
〈
v2
〉
/15 on large scales. These limits are shown with the black dashed lines.

In the context of the literature dedicated to GW production by turbulence, this problem has
been tackled for instance in Refs. [508, 510], with different approaches. Ref. [508] assumed that
the large scales do not decorrelate. The only time dependence of the velocity spectrum outside the
inertial range was therefore due to the free decay, and an exponential decorrelation was inserted
for wavenumbers in the inertial range by means of a step function. This introduced a non-physical
discontinuity (c.f. Eq. (57)). Furthermore, as pointed out in Ref. [510], Ref. [508] erroneously used
the Lagrangian eddy turnover time as typical decorrelation time.

Ref. [510] was the first to point out that the random sweeping model was the correct one to
describe the time decorrelation in the context of GW dedicated studies. This leads to the Eulerian
eddy turnover time τe as typical decorrelation time [533, 529]

v2
sw(k, τ, τ) ≡ 1

k2τ2
e (k, τ)

=

∫ ∞

0

h
( q
k

)
Pv(q, τ, τ) d ln q , (10.45)

in which the function h(x) is given by

h(x) =
1

48
(13− 8x2 + 3x4) +

1

32
(1− x2)3 ln

1 + x

|1− x| . (10.46)

Note that the function h(x) of Refs. [533, 529] has a factor of 2 difference due to our definition of the
power spectrum in Eq. (10.32). As shown in Fig. 10.1, vsw(k, τ) provides a continuous interpolation
from large to small scales, reducing to

〈
v2(τ)

〉
/3 in the inertial range, and going to 2

〈
v2(τ)

〉
/15

on large scales. Although we solve the integral (10.45) numerically, we give below an analytical fit
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to the sweeping velocity, and compare with the numerical result in Fig. 10.1

v2
sw(K, τ, τ) '

〈
v2(τ)

〉

3

(
1 + 0.2K√
5/2 + 0.2K

)2

. (10.47)

To model decorrelation on all scales, we can therefore use Eq. (10.45) as an extension of the
sweeping velocity. Note that, as will be motivated in Section 10.5, we will choose the geometrical
mean to symmetrize the velocity at unequal times (as opposed i.e. to the proposal of Ref. [518]):

v2
sw(K, τ, ζ) = 2

v2
sw(K, τ, τ)v2

sw(K, ζ, ζ)

v2
sw(K, τ, τ) + v2

sw(K, ζ, ζ)
. (10.48)

All in all, one can therefore substitute in the exponential of Eq. (10.43) the decorrelation velocity
given in Eq. (10.48). From Fig. 10.2, it appears that the decorrelation obtained using the “sweeping”
velocity of Eq. (10.48) is qualitatively similar to the step function adopted in Ref. [508], but it
is continuous. Furthermore, it provides a slower decorrelation in the infrared than the classical
sweeping model, which would amount to fix a constant v2

sw '
〈
v2
〉
/3 at initial time and at all

scales.
The decorrelation model that we adopt interpolates reasonably well the results of numerical

simulations, as one can appreciate from Fig. 10.3. There, we plot the unequal time correlation

R(k, τ, ζ) ≡ Pv(k, τ, ζ)√
Pv(k, τ, τ)Pv(k, ζ, ζ)

√
v2

sw(k, τ, τ) + v2
sw(k, ζ, ζ)

2vsw(k, τ, τ)vsw(k, ζ, ζ)
(10.49)

as a function of vsweep(k, τ, ζ) k |τ − ζ| for different values of the wave-number k, both larger and
smaller than the wave-number corresponding to the peak of the spectrum at the initial time of the
simulation, kpeak ' 0.75/ξ(τini). The second term in the definition of R(k, τ, ζ) is motivated in
Section 10.5. One of the two times is fixed to a reference time of the order of the eddy turnover
time, τe ∼ ξ/

√
〈v2〉, while the other one varies. Because of limitations in the dynamical range of

the simulations, it is not possible to analyse very small values of k/kpeak, but one can appreciate
that the model provides a reasonably good fit for the decorrelation of scales k ≥ 0.125 kpeak.

10.4.4 Evolution of the velocity field in decaying turbulence

Together with the time decorrelation properties of the turbulent field, we also need to model its
overall time evolution. From Eq. (10.35), we see that this amounts to describe how the kinetic energy〈
v2
〉

and the integral scale ξ evolve with time. For fully developed, freely decaying turbulence,
〈
v2
〉

and ξ are expected to evolve as power-laws, as we demonstrate in the following. We therefore start
by defining the instantaneous scaling exponents

p ≡ −d ln
〈
v2
〉

d ln t
, q ≡ d ln ξ

d ln t
. (10.50)

In order to analyse the self-similarity properties of the turbulence that ultimately determine its
time evolution, in Ref. [519], Olesen starts by noting the invariance of the Navier-Stokes equations
upon the rescaling

x→ `x, t→ `1−ht, v→ `hv, ν → `1+hν, (10.51)
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Figure 10.2: Comparison between the outcome of different choices for the velocity field to be inserted
in the decorrelation model of Eq. (10.43) (or, more appropriately, Eq. (10.86)). Blue: assuming a
constant decorrelation velocity equal to vsw '

√
〈v2〉 /3 at initial time and at all scales; orange, the

step function used in Ref. [508], where the decorrelation is inserted only at K > Kpeak ' 3 ; green:
the model proposed here, obtained from Eqs. (10.45) and (10.48).
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Figure 10.3: Real part of the unequal time correlator measured in simulation (C) on the left panel
and simulation (B) on the right panel. The y-axis displays R(k, τ0, τ). The solid dark line is the
prediction of our model combining Eqs. (10.43,10.45,10.48).
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where ` is dimensionless, and the parameter h is a priori unknown2. In particular, the author shows
that in the inertial range – far away from the energy injection scale and the Kolmogorov microscale
– the power spectrum follows the scaling

Pv(k, t) = `−2hPv
(
k

`
, `1−ht

)
. (10.52)

It is possible to derive, from this equation, the evolution laws for the kinetic energy and the integral
scale. Taking ` = t−1/(1−h), one is left with

Pv(k, t) = t2h/(1−h)φ
(
kt1/(1−h)

)
, (10.53)

in which φ(x) = Pv(x, 1) is a function of only one variable. From the argument of φ, we see that
t1/(1−h) acts as a typical length-scale describing the evolution of the flow. It can therefore be
assumed to be proportional, at all times, to the integral scale, so we can write [520]

Pv(k, t) = ξ−1−βφ(kξ). (10.54)

The coefficient β defined in Ref. [520] is directly related to h and can be used to determine the
scaling exponent for the integral scale

β ≡ −1− 2h, q =
1

1− h =
2

β + 3
. (10.55)

The evolution of the kinetic energy can be found upon integration

〈
v2(t)

〉
=

∫
Pv(k, t) d ln k = ξ−1−β

∫
φ(kξ) d ln k ∝ ξ−1−β , (10.56)

meaning that the quantity
〈
v2
〉
ξ1+β is a constant along the evolution, and

p =
−2h

1− h = 2
1 + β

β + 3
. (10.57)

In Ref. [519], it is argued that the parameter h (or equivalently β) should be fixed by the initial
conditions. The argument is the following: take ` = k−1, the scaling relation then reads

Pv(k, t) = k2hψ(kh−1t), (10.58)

in which ψ(x) = Pv(1, x) is a function of only one variable. If, at time t = 0, the power spectrum
is a power-law Pv(k, 0) ∝ k1+α, then α = −1 − 2h thus determining the value of h. However, the
argument presented above has a flaw, as noted in Ref. [520]. Indeed, if one calculates the exponent
of the power spectrum at any time

d lnPv
d ln k

= 2h+ (h− 1)
d lnψ

d ln k

(
kh−1t

)
, (10.59)

there is no reason for the second term to vanish when t → 0, and the initial conditions are not
sufficient to fix the value of h.

2h should not be confused with the function h(x) in Eq. (10.46). We have decided to use the same notation as
Ref. [519] for clarity.
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Motivated by the work carried out in Ref. [520], we use direct numerical simulations to infer the
value of the parameter β and the laws governing freely decaying turbulence. In Fig. 10.4, we show
the evolution of the instantaneous exponents p and q in phase space. Combining Eqs (10.55) and
(10.57), the scaling exponents satisfy the relationship

p = 2(1− q) (10.60)

represented by a dark line in Fig. 10.4. On the other hand, they also have to satisfy

p = (1 + β)q (10.61)

shown for various values of β as dashed lines in Fig. 10.4. The simulation broadly converges to the
intersection of Eqs (10.60) and (10.61), thus suggesting that β = 3. This result is consistent with
the findings of Ref. [520] for hydrodynamic simulations.

In Fig. 10.5 we display the evolution of p and q as a function of time and with the predictions
for β = 3:

For β = 3, p =
4

3
and q =

1

3
. (10.62)

The simulation relaxes toward the scaling regime after ∼ 30τ∗ξ , where τ∗ξ = ξ∗/vrms,∗ is the initial
eddy turnover time. As already hinted by Fig. 10.4, the simulation does not reach the exact
power-laws corresponding to β = 3. On the other hand, in Fig. 10.6, the power spectrum remains
self-similar with β = 3 during the scaling regime. We also check in Fig. 10.7 that

〈
v2
〉
ξ1+β remains

constant during the scaling regime as shown in Eq. (10.56).

10.4.5 Turbulence sourcing

Refs. [516, 508, 509] have shown the importance of the time continuity of the GW sourcing process
in shaping the SGWB signal. Ideally, to properly model the GW source, one would have to simulate
the development of the turbulence starting from the PT dynamics. Unfortunately, the simulation
code in its present form is not suited for this. However, it is important to ensure time continuity
of the GW source, i.e. introduce a phase when the turbulence grows. Since we were not able
to study the formation of turbulence with our numerical simulations, we model the growth phase
heuristically. Starting from an initial time τini, we assume that turbulence is sourced on a timescale
the order of the eddy turnover time τ∗ξ = ξ∗/vrms,∗. Consequently, turbulence is fully developed at
τini + τ∗ξ – we label the corresponding Hubble scale H∗ – and then starts decaying (cf Fig. 10.8).
We consider two heuristic models for the initial growth, occurring in the time interval τ∗ξ .

First, we suppose that the vortical kinetic energy grows linearly with the conformal time and
then starts decaying as a power-law with the coefficients of Eq. (10.50)

〈
v2
〉

(τ) = v2
rms,∗





τ − τini

τ∗ξ
if τ < τini + τ∗ξ

(
τ − τini

τ∗ξ

)−p
if τ > τini + τ∗ξ .

(10.63)

In this first model, we also assume that the integral scale remains constant during the growth phase,
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Figure 10.4: Trajectory of the instantaneous exponents (p, q) in simulation (A). Time is represented
by the color scheme: early times are shown with darker colors and late times with brighter colors.
The dark solid line represents Eq. (10.60). The colored dashed lines show Eq. (10.61) for various
choices of β.
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Figure 10.5: Evolution of the instantaneous kinetic energy and integral scale exponents (p, q) as a
function of time in simulation (A). The dash-dotted lines show the values expected for p and q if
β = 3.
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Figure 10.6: Power spectrum of simulation A rescaled with the scaling laws corresponding to β = 3.
We start displaying the power spectra once the scaling regime is reached, after ∼ 30ξ∗/vrms,∗.
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Figure 10.7: Evolution of
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ξ1+β for different values of β in simulation (A). Following Eq. (10.56),

this quantity should remain constant in freely decaying turbulence, thus indicating that β ∼ 3.
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and starts evolving during the phase of free decay

ξ(τ) = ξ∗





1 if τ < τini + τ∗ξ(
τ − τini

τ∗ξ

)q
if τ > τini + τ∗ξ .

(10.64)

This is the approach followed by Refs. [508, 510].

Our second model for the growth phase is motivated by the work of Ref. [516]. In this article, the
authors propose different forms for the growth phase of the GW source, with increasing regularity:
discontinuous, C0 or C1. They show that the smoothness of the growth phase has an important
impact on the GW spectrum at high frequencies. To test this, let us first define the smooth step
function

SStep(x) =





0 x < 0

3x2 − 2x3 0 < x < 1

1 1 < x

(10.65)

which is both continuous and differentiable at 0 and 1: SStep′(0) = SStep′(1) = 0. To connect with
the decay phase, we define the smooth power law

SPL(x, p) = (1− p)xp + pxp−1 (10.66)

so that SPL′(1, p) = 0 and SPL(1, p) = 13. With these functions, the vortical kinetic energy

〈
v2
〉

(τ) = v2
rms,∗





SStep

(
τ − τini

τ∗ξ

)
if τ < τini + τ∗ξ

SPL

(
τ − τini

τ∗ξ
,−p

)
if τ > τini + τ∗ξ ,

(10.67)

and the integral scale

ξ(τ) = ξ∗





1 if τ < τini + τ∗ξ

SPL

(
τ − τini

τ∗ξ
, q

)
if τ > τini + τ∗ξ .

(10.68)

are C1 at the times τini and τini + τ∗ξ . In both scenarios for the turbulence growth, we assume that
the UETCs of Section 10.4.4 hold uniformly during both the growth and the free decay phases, i.e.
we assume that the velocity field during the growth phase and during the free decay are correlated
assuming the model described in Section 10.3.3. If we refer to Fig. 10.8, all four regions contribute to
the GW power spectrum. Additionally, we also evaluate the SGWB signal in the case of a scenario
of instantaneous generation, in which we neglected the growth phase, as in the discontinuous case
of Ref. [516].

3Note that this function can only be used if p < 1
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10.5 Mercer condition and consequences

As we have discussed in Section 10.4.4, the kinetic energy and the integral scale are evolving, while
the turbulent source decorrelates. GW are therefore generated by a non-stationary, random process,
of which we need to model the correlation function. In this section, we would like to take a step
back and review some key properties of two-point correlators (see Ref. [521]). Consider an arbitrary
stochastic process φ(t). In our case we are interested in functions defined on one dimension – i.e.
time – but the discussion can be generalized in higher dimensions. We define the kernel of φ through
the two-point correlation

K(t1, t2) ≡ 〈φ(t1)φ(t2)〉 . (10.69)

In practice, the kernel K is often defined directly, thus implicitly determining the stochastic function
φ. This is, for example, what we do in Section 10.4.2: we build the kernel explicitly based on our
direct numerical simulations and hints from analytical models. It is therefore important to review
the key properties of kernels to ensure that we indeed build a viable one. First, a kernel should be
symmetric and satisfy the Cauchy-Schwartz inequality

K(t1, t2) = K(t2, t1) (10.70)

K(t1, t2) ≤
√
K(t1, t1),K(t2, t2). (10.71)

However, these conditions are not sufficient. Indeed, for any well-behaved function f , one can define
a stochastic variable

X =

∫
dt f(t)φ(t), (10.72)

whose variance must be positive

〈
X2
〉

=

∫∫
dt1 dt2 f(t1)f(t2) 〈φ(t1)φ(t2)〉 =

∫∫
dt1 dt2 f(t1)f(t2)K(t1, t2) ≥ 0. (10.73)

This condition is called the Mercer condition. It is a necessary and sufficient condition that any
symmetric function K(t1, t2) should satisfy in order to be a kernel [534]. One can easily show that
the linear combination of two kernels and that the multiplication of two kernels yields a kernel

K(t1, t2) = a1K1(t1, t2) + a2K(t1, t2) (10.74)

K(t1, t2) = K1(t1, t2)×K2(t1, t2). (10.75)

Maybe the simplest example of a positive kernel is the separable kernel

K(t1, t2) = g(t1)g(t2) (10.76)

since it factorizes the Mercer condition into a square

〈
h2
〉

=

∫∫
dt1 dt2 f(t1)f(t2)K(t1, t2) =

[∫
dt f(t)g(t)

]2

≥ 0. (10.77)

This type of kernel had already been proposed in the context of turbulence during first order phase
transition in Ref. [508] where it is referred to as the coherent approximation.
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Another example of kernels most often used in the literature are stationary kernels such that
K(t1, t2) = K(t1 − t2). It has been proven in 1955 that stationary functions are kernels if and only
if there exist a positive finite function F such that [535]

K(t1 − t2) =

∫
cos[ω(t1 − t2)]F (ω) dω . (10.78)

This result is very powerful and provides a demonstration that kernels can be constructed using a
Dirac distribution

K(t1, t2) = δ(t1 − t2). (10.79)

A kernel of this form is referred to as incoherent in Ref. [508]. Stationary kernels also include the
Gaussian kernel

K(t1, t2) = exp
[
−(t1 − t2)2

]
. (10.80)

It is important to note that a top-hat function Θ(t1 − t2) is not a positive kernel, since it is
the Fourier transform of a sinus cardinal function. Ref. [508] has used the top-hat function to
model time decorrelation of the turbulent anisotropic stresses, but the only reason why the SGWB
thereby obtained is positive, is that the authors have manually restricted the function in its regime
of positivity (x` ≤ π).

Freely decaying turbulence is, by definition, non-stationary and one may ask if there aren’t
similar techniques to build well-defined non-stationary kernels for the velocity field. Let us mention
that a simple departure from the stationary kernels discussed above is provided by locally stationary
kernels [536]

K(t1, t2) = K1

(
t1 + t2

2

)
K2(t1 − t2), (10.81)

whereK1 is a non-negative function andK2 a positive stationary kernel. Although locally stationary
kernels are very useful, the UETC of Eq. (10.86) is not of this, form since the sweeping velocity
depends explicitly on time. We therefore need to go beyond local stationarity, and we do so by
introducing process-convolution kernels [537]. This specific class of non-stationary kernels is defined
as such

K(t1, t2) =

∫
g(t1, u)g(t2, u) du (10.82)

where g(t, u) is a two-valued function. It is easy to show that it satisfies the Mercer condition of
Eq (10.73)

∫∫
dt1 dt2 f(t1)f(t2)K(t1, t2) =

∫∫
dt1 dt2 f(t1)f(t2)

∫
g(t1, u)g(t2, u) du (10.83)

=

∫
du

[∫
dt f(t)g(t, u)

]2

≥ 0.

Using this technique, it is possible to build a non-stationary Gaussian kernel of the type of
Eq. (10.86) using

g(t, u) =
1

[2πΣ(t)]1/4
exp

[
− (t− u)2

2Σ(t)

]
(10.84)
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in which Σ is a variance dependent on time. The kernel then reads

K(t1, t2) =

∫
1

2
√
π[Σ(t1)Σ(t2)]1/4

exp

[
− (t1 − u)2

2Σ(t1)
− (t2 − u)2

2Σ(t2)

]
du

=
√

2
[Σ(t1)Σ(t2)]1/4√
[Σ(t1) + Σ(t2)]

exp

[
− (t1 − t2)2

2[Σ(t1) + Σ(t2)]

]
. (10.85)

Note that we have designed this kernel so that K(t, t) = 1. In terms of our unequal-time velocity
power spectrum, this yields

Pv(k, τ, η) =
√
Pv(k, τ, τ)Pv(k, η, η)

×
√

2vsw(k, τ, τ)vsw(k, η, η)

v2
sw(k, τ, τ) + v2

sw(k, η, η)
exp

[
−k2 (τ − η)2

4
v2

sw(k, τ, η)

]
(10.86)

in which the unequal-time sweeping velocity is chosen as the harmonic average of the equal-time
sweeping velocity as in Eq. (10.48).

10.6 Results

In this section, we evaluate the stochastic background of GWs. We start with reviewing the compu-
tation of the unequal time anisotropic stress power spectrum in terms of a purely vortical velocity
power spectrum. Equipped with Eq. (10.86), we can avoid modelling the source decorrelation in
the anisotropic stresses, as done in Ref. [508]. Furthermore, we have developed a numerical method
to perform an exact evaluation of the SGWB, without resorting to approximating the angular de-
pendence in Eq. (10.97) (as done in Ref. [510]). This approach is possible because we use a method
of sampling importance to numerically calculate the 4-dimensional integral of Eq. (10.97).

10.6.1 The unequal time anisotropic stress power spectrum

We start with the spatial, off-diagonal part of the energy momentum tensor of the cosmic fluid

T`m(x, η) = (ε+ p)u`(x, η)u`(x, η). (10.87)

In order to simplify the computation, we neglect the spatial dependence of the fluid enthalpy density
(ε + p) and set the Lorentz factor γ = 1. We are therefore implicitly assuming that turbulence is
non-relativistic. The transverse trace-less projector is

Λij`m(k̂) = Pi`(k̂)Pjm(k̂)− 1

2
Pij(k̂)P`m(k̂), (10.88)

with Pij defined in Eq. (10.21). The two point correlation of the anisotropic stress then reads

〈
Π̃ij(k, ζ), Π̃ij(k

′, τ)
〉

= Λij`m(k̂)Λijrs(k̂′)

×
∫

d3p

(2π)3

d3h

(2π)3
〈v`(p, ζ)vm(k− p, ζ)v∗r (h, τ)v∗s (k′ − h, τ)〉 . (10.89)
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Figure 10.8: Two time diagram for the evolution of turbulence in terms of τ and ζ. The injection
of kinetic energy starts at τini and turbulence develops on a timescale given by the eddy turnover
time τ∗ξ in region 1. In region 2, the turbulence is freely decaying. In principle, the growth and free
decay phases are correlated: regions 3 and 4 also contribute to the production of GWs.
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The four-point velocity correlator can be decomposed into a sum of two-point correlators assuming
quasi-normality of the velocity field

〈
Π̃ij(k, ζ), Π̃ij(k

′, τ)
〉

=Λij`m(k̂)Λijrs(k̂′)
∫

d3p

(2π)3

d3h

(2π)3

[ 〈v`(p, ζ)vm(k− p, ζ)〉 〈v∗r (h, τ)v∗s (k′ − h, τ)〉
+ 〈v`(p, ζ)v∗r (h, τ)〉 〈vm(k− p, ζ)v∗s (k′ − h, τ)〉
+ 〈v`(p, ζ)v∗s (k′ − h, τ)〉 〈vm(k− p, ζ)v∗r (h, τ)〉]. (10.90)

The first term gives zero, using Eq (10.27) and noting that Λij`m(k̂)Λijrs(k̂) = Λ`mrs(k̂) we obtain

〈
Π̃ij(k, ζ), Π̃ij(k

′, τ)
〉

= π4Λ`mrs(k̂)δ(k− k′)
∫

d3p

p3q3
Pv(p, τ, ζ)Pv(q, τ, ζ)

× [(δ`r − p̂`p̂r)(δms − q̂mq̂s) + (δ`s − p̂`p̂s)(δmr − q̂mq̂r)]. (10.91)

In which q = k − p. This calculation has already been done multiple times in the literature [508,
510] with slightly different results. We would like to point out to the reader that the two terms in
the contractions of the tensor indices in Eq. (10.91) are not identical as claimed in Ref. [510]. More
specifically

2Λ`mrs(k̂)(δ`r − p̂`p̂r)(δms − q̂mq̂s) = 1 + 2
[
(k̂ · p̂)2 + (k̂ · q̂)2

]
+ (k̂ · p̂)2.(k̂ · q̂)2 (10.92)

2Λ`mrs(k̂)(δ`s − p̂`p̂s)(δmr − q̂mq̂r) = 1 + (k̂ · p̂)2.(k̂ · q̂)2. (10.93)

Eq (10.92) is identical to the Eqs (A6) and (A12) of [510], but contrary to their claim, the second
term, i.e. Eq (10.93), differs. Taking this into account, the stress-energy two point correlation
yields [508]

〈
Π̃ij(k, ζ), Π̃ij(k

′, τ)
〉

= π4δ(k− k′)
∫

d3p

p3q3
Pv(p, τ, ζ)Pv(q, τ, ζ)

×
[
1 + (k̂ · p̂)2 + (k̂ · q̂)2 + (k̂ · p̂)2.(k̂ · q)2

]
. (10.94)

We can now extract the kernel of the anisotropic stress defined in Eq. (10.12) and obtain

Π̃2(k, ζ, τ) =
π4

(2π)3

∫
d3p

p3q3
Pv(p, τ, ζ)Pv(q, τ, ζ)

[
1 + (k̂ · p̂)2

][
1 + (k̂ · q̂)2

]
. (10.95)

The two dot products are often replaced by the coefficients [504]

β = k̂ · p̂, γ = k̂ · q̂ = k̂ · k̂− p (10.96)

10.6.2 The Gravitational wave spectrum

We obtain the stochastic GW spectrum combining Eqs (10.15) and (10.95)

dΩgw

d ln k

∣∣∣∣
η0

=
π4k3

3π5
Ω0

rad

gfin

g0

(
gs,0
gs,fin

)4/3

×
∫

d3p

p3q3

[
1 + (k̂ · p̂)2

][
1 + (k̂ · q̂)2

] ∫∫
cos k(ζ2 − ζ1)Pv(p, ζ1, ζ2)Pv(q, ζ1, ζ2)

dζ1
ζ1

dζ2
ζ2
. (10.97)
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Figure 10.9: Gravitational wave power spectrum in a scenario of an instantaneous generation (dotted
lines), a C0 growth phase (dashed lines) and a C1 growth phase. The left panel shows H∗ξ∗ = 10−3

and vrms,∗ = 0.1, the middle panel H∗ξ∗ = 10−2 and vrms,∗ = 0.2 and the right panel H∗ξ∗ = 10−1

and vrms,∗ = 0.6.

recalling that q = k − p. Rigorously, the computation of the GW background involves perform-
ing a four-dimensional integration for each mode k (the integration over the azimuthal angle is
trivial). Contrary to previous estimates, we calculate the stochastic background using Eq. (10.97)
without any further approximation. We perform this four-dimensional integral using the VEGAS
algorithm [538], an iterative and adaptive Monte Carlo scheme. We give more details on the im-
plementation in Appendix 10.A.

More precisely, we factor out the relativistic degrees of freedom and calculate dΩ̃gw

/
d ln k

defined as

dΩgw

d ln k

∣∣∣∣
η0

= Ω0
rad

gfin

g0

(
gs,0
gs,fin

)4/3
dΩ̃gw

d ln k
. (10.98)

In our numerical integration, we have assumed that the turbulence is long-lasting, taking the limit
ηfin to infinity. Since the turbulent source decays in time over a time-scale of the order of the eddy
turnover time, this assumption does not influence our result. We have numerically checked that
the integration has converged to a fixed result after O(10) eddy turnover times (for typical values
of the parameters in the game, vrms and ξH, it is expected to last about 300τ∗ξ – cf Ref. [508]). We
collect in Figs 10.10 and 10.11 the GW power spectra for different values of the initial root mean
squared velocity vrms,∗ and integral scale ξ∗. As explained in Section 10.4.5, we test three different
scenarios for the generation of turbulence: an instantaneous generation, a C0 growth phase and a
C1 growth phase.

For an instantaneous generation of turbulence (see Fig. 10.10), the GW spectrum peaks at a
frequency set by the initial integral scale ξ−1

∗ and presents a k−7/3 slope in the ultraviolet. As the
initial velocity vrms,∗ and the initial integral scale ξ∗ decrease, the peaks broadens in the infrared
and a k1 region develops. Far in the infrared, the spectrum follows a k3 slope.

The addition of a growth phase leads to a decrease of GW power and a steeper slope at high
frequencies, as predicted by the analytical work of Ref. [516] (see Fig. 10.11). The suppression of the
high frequencies shifts the peak to the infrared as the initial velocity decreases, thus the k1 region
of the instantaneous growth phase never develops. It should be noted that, contrary to the findings
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Figure 10.10: Gravitational wave power spectrum for decaying turbulence in a scenario of instan-
taneous generation. Each panel displays a different value for the initial integral scale H∗ξ∗, and
vrms,∗ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. Dark dashed lines have been added to show a k1 slope in
the intermediate range and a k−7/3 in the ultraviolet.

of Ref. [516], the C0 and C1 growth phases yield almost identical GW spectrum, as illustrated by
Fig. 10.9. This is the reason why we only show the results from the latter. This may be due to the
fact that the authors of Ref. [516] were studying short-lasting sources in which they also imposed
regularity condition at the end of the source.

At first, it may seem counter-intuitive that the addition of a growth phase decreases the energy
in GWs, especially after our discussion on Mercer’s condition in Section 10.5. We illustrate this
using Fig. 10.8: Mercer’s condition of Eq. (10.73) applies to intervals of the form I × I, hence the
contributions from the regions 1 and 2 are positive. However, the contributions from the regions
3 and 4 can very well be negative, thus lowering the energy in terms of gravitational waves. This
effect depends crucially on the correlations between the growth and the free decay phase, and we
leave the study of the growth of turbulence from various initial conditions to a future work.

Finally, we tested the dependence of our results on the duration of the phase transition by
varying ηfin in our integration algorithm. We found that the GW spectrum develops during the
first eddy turnover times ξ∗/vrms,∗ and remains constant when ηfin goes to infinity. The generation
of GWs is very localized in time and the decay of turbulence cuts it off after a few eddy turnover
times.

10.7 Discussion

In this chapter, we studied the GW signal generated by a hypothetical turbulent phase in the
aftermath of a FOPT. We have developed a semi-analytical model for the generation of a Stochastic
Background of GWs by freely-decaying kinetic, vortical, non-helical turbulence. To do so, we relied
on the relativistic hydrodynamic code developed by Refs. [200, 201, 498], and used it to study the
evolution of vortical fluid motions. We modified this code to give it a velocity power spectrum as
input. The velocity field was initialized in Fourier space, assuming Gaussian and vortical velocity
fluctuations, following the given power spectrum.

We adopted the Kraichnan sweeping hypothesis to model the turbulent velocity decorrelation.
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Figure 10.11: Gravitational wave power spectrum for decaying turbulence in a scenario of a C1

growth phase. Each panel displays a different value for the initial integral scale H∗ξ∗, and vrms,∗ =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7.

We consistently addressed issues related to the modelling of decorrelation in the context of the the-
ory of positive Kernels, and proposed to model the unequal time power spectrum of the turbulent
velocity field as a Gibbs Kernel. This provides a way to symmetrize the unequal time power spec-
trum, and it most importantly guarantees that the velocity two-point function is a valid correlation
function, and therefore guarantees that it leads to a positive GW energy density power spectrum.
The numerical simulations we performed showed very good agreement with the Kraichnan Sweeping
Model in the inertial range. Furthermore, we have performed numerical simulations allowing us to
measure the unequal time correlations of the velocity field also at large scales, outside the inertial
range. Thanks to these simulations, we were able to validate the decorrelation model also in the
infrared tail of the velocity power spectrum.

We have also used our simulations to extract the free-decay laws of the turbulence. We studied
the evolution of the kinetic energy and of the integral scale of the flow. The decay laws inferred from
the simulations were broadly consistent with the findings of [520] for the case of purely kinetic, non-
helical turbulence. Therefore, we inserted them in the analytical model of the turbulence developed
to evaluate the GW production. The exact values of the power-law exponents of the turbulent
decay do not play a relevant role in determining the final shape of the GW spectrum, as the bulk
of the GW signal is sourced on a characteristic time which is smaller than the typical time it takes
for the decay of the kinetic energy and the growth of the integral scale to equilibrate to well-defined
power-laws.

One of our main results is the confirmation that the initial phase, in which the turbulent kinetic
energy (i.e. kinetic energy associated with the vortical motion) is sourced and grows, plays an
important role in shaping the final GW signal. The initial phase of turbulence development is
modelled here in three heuristic ways: an instantaneous generation of turbulence; a linear growth
of the kinetic energy, as done in Refs. [508, 510], imposing continuity with the free-decay phase;
and a C1 growth of the kinetic energy, designed specifically to guarantee that the transition to
the decay phase is smooth. More than the regularity of the growth phase, we have shown that
correctly assessing, and implementing, how the GW source decorrelates between the growth and
the free-decay phases is also of paramount importance for the GW signal evaluation

Finally, we have used the turbulent model developed so far (consisting in the equal time spec-



254 CHAPTER 10. GWS FROM FREELY DECAYING TURBULENCE

k

p

q

k− p

α = cos θ

Figure 10.12: Coordinate system consisting of (q, α).

tral shape, the unequal time symmetrized power spectrum, the time decorrelation at small and
large scales, the growth phase of the kinetic energy, the overall free decay and turbulence dura-
tion) to evaluate the anisotropic stresses (see Section 10.6.1) and calculate the GW signal (see
Section 10.6.2). This was tackled by means of a four-dimensional numerical integration code, which
handles the two time integrations arising from the GW time evolution, and the two momentum
integrations arising from the velocity power spectrum convolution. We leave a detailed analysis of
the SGWB signal scaling with the parameters vrms,∗ and ξ∗ to a future analysis.

10.A Tools for the numerical GW power spectrum calcula-
tion

We describe here the changes of variable we perform, to tackle numerically the integral of Eq. (10.97).
To make the symmetries of the integral apparent, we make the following change of variables
q = p− k/2 so that

[
1 + (k̂ · p̂)2

][
1 + (k̂ · k̂− p)2

]
= 4

[
k2/4 + q2(1 + (k̂ · q̂)2/2)

]2
− (qk k̂ · q̂)2

|k/2− q|2|k/2 + q|2
. (10.99)

Expressed in terms of spherical coordinates (q, θ, φ), the integrand is invariant by rotations over φ
and the volume element is

d3q = q2 dq dθ sin(θ) dφ = dφ dq sin(θ) dθ (10.100)

Finally, we change variables from (q, θ) to

M ≡ k2

k2 + q2
, α ≡ k̂ · q̂. (10.101)
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Note the symmetry α→ −α. The volume element is now

d3q = dφ
k dM

2
√

1−MM3/2
dα (10.102)

with M ∈]0, 1] and α ∈ [0, 1].
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Summary and outlook

The main theme of this thesis has been that of constraining early universe cosmology with gravi-
tational waves. The last years have been particularly rich in discoveries in GW physics, following
the first direct detection of GWs by the LIGO-Virgo collaboration in 2015. The catalogue GWTC2
resulting from the third observing run of LIGO-Virgo, now contains about 50 observations of com-
pact binary mergers, and PTA observatories such as NANOGRAV have promising data on the
SGWB. The next five years will also be of paramount importance for refining our understanding of
the science potential of the future LISA mission.

In this context, in this thesis we have focused on three possible sources of primordial gravitational
waves, each with rather different properties. In Part I, we considered cosmic strings. These are
line-like topological defects, which may be formed in phase transitions in the early universe, and
are long-lived sources meaning that they may be present in the universe until today. In Part II, we
focused on PBHs, which may be formed at the end of inflation, whereas in Part III we discussed
GWs formed from turbulence which may be produced in the aftermath of short-lived first order
PTs. Our work has tackled theoretical studies of these sources, as well as predictions for LISA, and
also constraints from LIGO-Virgo.

Concerning cosmic strings, in Chapter 2, we presented work on the potential of the future LISA
mission to constrain these sources. Written in collaboration with members of the LISA Cosmology
Working Group, one of the main conclusions of this work is that, with the expected LISA sensitivity,
it will be possible constrain strings (or even detect) with tension Gµ & 10−17. Physically, this
corresponds to strings formed at energy scales O

(
1010

)
GeV. The SGWB signal from cosmic string

networks is highly model dependent. However, we have found that the signal predictions at LISA
frequencies are very similar for the two main cosmic string loop models considered in the literature.
The situation is rather different at LIGO/Virgo frequencies: here the SGWB predicted from cosmic
strings is more model dependent as discussed in detail in Chapter 5, based on a paper written with
the LIGO/Virgo collaboration. In this paper we used the O3-data to constrain cosmic strings at
LIGO/Virgo frequencies, for different loop models.

In chapters 3, 4 and 7 we attempted to understand in more detail the loop models, or more
exactly the length distribution of cosmic loops. In general, loops can decay through different
channels, including gravitational radiation, and hence understanding their distribution is crucial in
order to make motivated observational predictions from cosmic strings. Indeed, we have focused
on several observables: the SGWB (chapters 2, 4, 5 and 6); GW bursts from cusps and kinks on
loops (Chapter 5); and also a diffuse gamma-ray background from cosmic strings (Chapter 6); as
well as “vortons” as dark matter (Chapter 7). The loop distribution can be obtained by solving
a Boltzmann equation (see Eq. (6.8)), which has two important ingredients: ˙̀, namely the rate at
which a loop looses energy; and P(`, t), the loop production function (LPF), namely the rate at
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which loops of length ` are chopped off the infinite string network at time t.
In Chapter 3 we considered different LPFs proposed in the literature, assuming (as done also

in Chapter 4) that gravitational radiation is the dominant form of energy loss from loops. These
LPFs give the same loop distribution on large scales, where they also agree with different numerical
simulations. However, on those scales for which gravitational radiation and gravitational backre-
action become important, their predictions differ dramatically. Furthermore, at small scales there
are no simulations to compare with. The work presented in Chapter 3 extends results on the loop
distribution obtained from the LPF of Polchinski and Rocha.

In Chapter 4, I applied the new models of Chapter 3 to make complete predictions for SGWBs
from cosmic strings. These models are part of those constrained by LIGO-Virgo in Chapter 5.

In Chapter 6, we considered the possibility that cosmic strings can also lose energy through
other forms of radiation (particle, as well as gravitational). Indeed, during cusps, and kink-kink
collisions, parts of the loop may annihilate thus emitting energy in the form of the fundamental
fields making up the loop. Motivated by recent work presented in Ref. [139], we modelled these
other forms of radiation though a modified expression for ˙̀ (see Eq. (6.7)). Feeding this into the
Boltzmann equation, and then solving it, determines their effect on the loop distribution, which we
calculated for the first time in Chapter 64. We then calculated the γ-ray background emitted by
the cosmic string network, and compared it with observations from Fermi-LAT [341].

Finally, in Chapter 7, we considered the possibility that strings may carry a current. This can
occur if, for example, the fields forming the string couple to other fields, and fermion zero-modes
propagate along the string. The angular momentum due to the current can stabilize a collapsing
loop, and form a stationary object called a vorton which can act as dark matter. In this chapter we
calculated for the first time the population of vortons formed from a current-carrying string network.
We used the same approach as in Chapter 6, i.e. we solved a Boltzmann equation accounting for
a modified ˙̀ to model the stabilization of the loops.

In Part II of this thesis we turned our attention to PBHs. Here we have not focused on the
possible GW signatures from PBH, but rather we have analysed the production of PBHs during the
preheating instability at the end of inflation. So far in the literature, e.g. in Ref. [430], estimates
of the initial mass function considered that the distribution of PBHs was monochromatic, thus
leading to an unphysical scenario in which ΩPBH > 1. In Chapter 9 we applied the excursion-set
formalism to calculate the initial mass function. The advantage of this formalism is that it takes
into account a hierarchy of structures, i.e. small black holes are likely to be formed in dense regions
of space which will eventually collapse into a larger black hole, so that only the largest collapsed
structures are accounted for in ΩPBH. We also presented efficient numerical methods to calculate
the distribution of first crossing using one, among an infinite set of, Volterra integral equations.
Accounting for the cloud-in-cloud problem with the excursion-set formalism, we found that the
abundance of light PBHs is suppressed and that the peak of the initial mass function is shifted to
higher masses than previously expected.

Finally, in Part III, we presented some work in progress on the SGWB from freely decaying
turbulence following a first order phase transition. The frequency band of the future LISA mission
is ideally positioned to probe deviations of the standard model at the electro-weak scale, if they occur
in the form of a first order PT associated with the electro-weak symmetry breaking. We have built a
semi-analytical model for purely vortical hydrodynamical turbulence, validating our hypothesis on
its unequal-time correlations and long-term evolution with massively parallel numerical simulations.
We have also reviewed Mercer’s condition, a property that has to be satisfied by any two-point

4Previous work did not take into account the fact that particle radiation could affect the loop distribution.
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correlator, and showed how to construct stationary, locally stationary kernels as well as some
examples of non-stationary kernels. In particular, we introduced the Gibbs kernel, a Gaussian non-
stationary kernel. We have shown that the understanding of the initial growth phase of turbulence is
of primordial importance to give precise estimates of the SGWB for LISA. We plan to complete our
findings by providing analytical fits and scaling laws for the SGWB spectrum, as well as validating
them with the predictions on the GW signal from numerical simulations.
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[500] John Ellis, Marek Lewicki, and José Miguel No. “Gravitational waves from first-order cos-
mological phase transitions: lifetime of the sound wave source”. In: JCAP 07 (2020), p. 050.
doi: 10.1088/1475-7516/2020/07/050. arXiv: 2003.07360 [hep-ph].

[501] John Ellis et al. “Gravitational wave energy budget in strongly supercooled phase tran-
sitions”. In: JCAP 06 (2019), p. 024. doi: 10.1088/1475- 7516/2019/06/024. arXiv:
1903.09642 [hep-ph].

[502] Ue-Li Pen and Neil Turok. “Shocks in the Early Universe”. In: Phys. Rev. Lett. 117.13 (2016),
p. 131301. doi: 10.1103/PhysRevLett.117.131301. arXiv: 1510.02985 [astro-ph.CO].

[503] Daniel Cutting, Mark Hindmarsh, and David J. Weir. “Vorticity, kinetic energy, and sup-
pressed gravitational wave production in strong first order phase transitions”. In: (June
2019). arXiv: 1906.00480 [hep-ph].

[504] Chiara Caprini and Ruth Durrer. “Gravitational waves from stochastic relativistic sources:
Primordial turbulence and magnetic fields”. In: Phys. Rev. D 74 (2006), p. 063521. doi:
10.1103/PhysRevD.74.063521. arXiv: astro-ph/0603476.

[505] Grigol Gogoberidze, Tina Kahniashvili, and Arthur Kosowsky. “The Spectrum of Gravita-
tional Radiation from Primordial Turbulence”. In: Phys. Rev. D 76 (2007), p. 083002. doi:
10.1103/PhysRevD.76.083002. arXiv: 0705.1733 [astro-ph].

[506] Tina Kahniashvili et al. “Gravitational Radiation from Primordial Helical Inverse Cascade
MHD Turbulence”. In: Phys. Rev. D 78 (2008). [Erratum: Phys.Rev.D 79, 109901 (2009)],
p. 123006. doi: 10.1103/PhysRevD.78.123006. arXiv: 0809.1899 [astro-ph].

[507] Tina Kahniashvili, Grigol Gogoberidze, and Bharat Ratra. “Gravitational Radiation from
Primordial Helical MHD Turbulence”. In: Phys. Rev. Lett. 100 (2008), p. 231301. doi: 10.
1103/PhysRevLett.100.231301. arXiv: 0802.3524 [astro-ph].

[508] Chiara Caprini, Ruth Durrer, and Geraldine Servant. “The stochastic gravitational wave
background from turbulence and magnetic fields generated by a first-order phase transition”.
In: JCAP 12 (2009), p. 024. doi: 10.1088/1475-7516/2009/12/024. arXiv: 0909.0622
[astro-ph.CO].

[509] Chiara Caprini, Ruth Durrer, and Elisa Fenu. “Can the observed large scale magnetic fields
be seeded by helical primordial fields?” In: JCAP 11 (2009), p. 001. doi: 10.1088/1475-
7516/2009/11/001. arXiv: 0906.4976 [astro-ph.CO].

[510] Peter Niksa, Martin Schlederer, and Günter Sigl. “Gravitational Waves produced by Com-
pressible MHD Turbulence from Cosmological Phase Transitions”. In: Class. Quant. Grav.
35.14 (2018), p. 144001. doi: 10.1088/1361-6382/aac89c. arXiv: 1803.02271 [astro-ph.CO].

[511] Robert H. Kraichnan. “Kolmogorov’s Hypotheses and Eulerian Turbulence Theory”. In:
The Physics of Fluids 7.11 (1964), pp. 1723–1734. doi: 10.1063/1.2746572. eprint: https:
//aip.scitation.org/doi/pdf/10.1063/1.2746572. url: https://aip.scitation.
org/doi/abs/10.1063/1.2746572.

https://doi.org/10.1088/1475-7516/2021/04/014
https://arxiv.org/abs/2010.00971
https://doi.org/10.1088/1475-7516/2020/07/050
https://arxiv.org/abs/2003.07360
https://doi.org/10.1088/1475-7516/2019/06/024
https://arxiv.org/abs/1903.09642
https://doi.org/10.1103/PhysRevLett.117.131301
https://arxiv.org/abs/1510.02985
https://arxiv.org/abs/1906.00480
https://doi.org/10.1103/PhysRevD.74.063521
https://arxiv.org/abs/astro-ph/0603476
https://doi.org/10.1103/PhysRevD.76.083002
https://arxiv.org/abs/0705.1733
https://doi.org/10.1103/PhysRevD.78.123006
https://arxiv.org/abs/0809.1899
https://doi.org/10.1103/PhysRevLett.100.231301
https://doi.org/10.1103/PhysRevLett.100.231301
https://arxiv.org/abs/0802.3524
https://doi.org/10.1088/1475-7516/2009/12/024
https://arxiv.org/abs/0909.0622
https://arxiv.org/abs/0909.0622
https://doi.org/10.1088/1475-7516/2009/11/001
https://doi.org/10.1088/1475-7516/2009/11/001
https://arxiv.org/abs/0906.4976
https://doi.org/10.1088/1361-6382/aac89c
https://arxiv.org/abs/1803.02271
https://doi.org/10.1063/1.2746572
https://aip.scitation.org/doi/pdf/10.1063/1.2746572
https://aip.scitation.org/doi/pdf/10.1063/1.2746572
https://aip.scitation.org/doi/abs/10.1063/1.2746572
https://aip.scitation.org/doi/abs/10.1063/1.2746572


298 BIBLIOGRAPHY

[512] Alberto Roper Pol et al. “The timestep constraint in solving the gravitational wave equa-
tions sourced by hydromagnetic turbulence”. In: Geophys. Astrophys. Fluid Dynamics 114.1-
2 (2020), pp. 130–161. doi: 10 . 1080 / 03091929 . 2019 . 1653460. arXiv: 1807 . 05479

[physics.flu-dyn].

[513] Alberto Roper Pol et al. “Numerical simulations of gravitational waves from early-universe
turbulence”. In: Phys. Rev. D 102.8 (2020), p. 083512. doi: 10.1103/PhysRevD.102.083512.
arXiv: 1903.08585 [astro-ph.CO].

[514] Tina Kahniashvili et al. “Circular polarization of gravitational waves from early-Universe he-
lical turbulence”. In: Phys. Rev. Res. 3.1 (2021), p. 013193. doi: 10.1103/PhysRevResearch.
3.013193. arXiv: 2011.05556 [astro-ph.CO].

[515] Axel Brandenburg et al. “The scalar, vector, and tensor modes in gravitational wave turbu-
lence simulations”. In: (Mar. 2021). arXiv: 2103.01140 [gr-qc].

[516] Chiara Caprini et al. “General Properties of the Gravitational Wave Spectrum from Phase
Transitions”. In: Phys. Rev. D 79 (2009), p. 083519. doi: 10.1103/PhysRevD.79.083519.
arXiv: 0901.1661 [astro-ph.CO].

[517] Axel Brandenburg et al. “Evolution of hydromagnetic turbulence from the electroweak phase
transition”. In: Phys. Rev. D 96.12 (2017), p. 123528. doi: 10.1103/PhysRevD.96.123528.
arXiv: 1711.03804 [astro-ph.CO].

[518] Guo-Wei He, Meng Wang, and Sanjiva K. Lele. “On the computation of space-time corre-
lations by large-eddy simulation”. In: Physics of Fluids 16.11 (2004), pp. 3859–3867. doi:
10.1063/1.1779251. eprint: https://doi.org/10.1063/1.1779251. url: https:

//doi.org/10.1063/1.1779251.

[519] P. Olesen. “On inverse cascades in astrophysics”. In: Phys. Lett. B 398 (1997), pp. 321–325.
doi: 10.1016/S0370-2693(97)00235-9. arXiv: astro-ph/9610154.

[520] Axel Brandenburg and Tina Kahniashvili. “Classes of hydrodynamic and magnetohydro-
dynamic turbulent decay”. In: Phys. Rev. Lett. 118.5 (2017), p. 055102. doi: 10.1103/

PhysRevLett.118.055102. arXiv: 1607.01360 [physics.flu-dyn].

[521] Marc G. Genton. “Classes of Kernels for Machine Learning: A Statistics Perspective”. In: J.
Mach. Learn. Res. 2 (Mar. 2002), pp. 299–312. issn: 1532-4435.

[522] K. Enqvist et al. “Nucleation and bubble growth in a first order cosmological electroweak
phase transition”. In: Phys.Rev. D45 (1992), pp. 3415–3428. doi: 10.1103/PhysRevD.45.
3415.

[523] Axel Brandenburg, Kari Enqvist, and Poul Olesen. “Large scale magnetic fields from hydro-
magnetic turbulence in the very early universe”. In: Phys. Rev. D 54 (1996), pp. 1291–1300.
doi: 10.1103/PhysRevD.54.1291. arXiv: astro-ph/9602031.

[524] J.R. Wilson and G.J. Matthews. Relativistic Numerical Hydrodyamics. Cambridge: Cam-
bridge University Press, 2003.

[525] Bram Van Leer. “Towards the ultimate conservative difference scheme. IV. A new approach
to numerical convection”. In: Journal of Computational Physics 23.3 (1977), pp. 276–299.
issn: 0021-9991. doi: https://doi.org/10.1016/0021-9991(77)90095-X. url: https:
//www.sciencedirect.com/science/article/pii/002199917790095X.

https://doi.org/10.1080/03091929.2019.1653460
https://arxiv.org/abs/1807.05479
https://arxiv.org/abs/1807.05479
https://doi.org/10.1103/PhysRevD.102.083512
https://arxiv.org/abs/1903.08585
https://doi.org/10.1103/PhysRevResearch.3.013193
https://doi.org/10.1103/PhysRevResearch.3.013193
https://arxiv.org/abs/2011.05556
https://arxiv.org/abs/2103.01140
https://doi.org/10.1103/PhysRevD.79.083519
https://arxiv.org/abs/0901.1661
https://doi.org/10.1103/PhysRevD.96.123528
https://arxiv.org/abs/1711.03804
https://doi.org/10.1063/1.1779251
https://doi.org/10.1063/1.1779251
https://doi.org/10.1063/1.1779251
https://doi.org/10.1063/1.1779251
https://doi.org/10.1016/S0370-2693(97)00235-9
https://arxiv.org/abs/astro-ph/9610154
https://doi.org/10.1103/PhysRevLett.118.055102
https://doi.org/10.1103/PhysRevLett.118.055102
https://arxiv.org/abs/1607.01360
https://doi.org/10.1103/PhysRevD.45.3415
https://doi.org/10.1103/PhysRevD.45.3415
https://doi.org/10.1103/PhysRevD.54.1291
https://arxiv.org/abs/astro-ph/9602031
https://doi.org/https://doi.org/10.1016/0021-9991(77)90095-X
https://www.sciencedirect.com/science/article/pii/002199917790095X
https://www.sciencedirect.com/science/article/pii/002199917790095X


BIBLIOGRAPHY 299

[526] Peter Anninos and P. Chris Fragile. “Non-oscillatory central difference and artificial viscosity
schemes for relativistic hydrodynamics”. In: Astrophys. J. Suppl. 144 (2003), p. 243. doi:
10.1086/344723. arXiv: astro-ph/0206265.

[527] P. A. Davidson. Turbulence: An Introduction for Scientists and Engineers. en. Oxford, UK
; New York: Oxford University Press, 2004. isbn: 978-0-19-852948-4.

[528] T. von Karman. “Progress in the Statistical Theory of Turbulence”. en. In: Proceedings of the
National Academy of Sciences 34.11 (Nov. 1948), pp. 530–539. issn: 0027-8424, 1091-6490.
doi: 10.1073/pnas.34.11.530.

[529] Yukio Kaneda. “Lagrangian and Eulerian Time Correlations in Turbulence”. en. In: Physics
of Fluids A: Fluid Dynamics 5.11 (Nov. 1993), pp. 2835–2845. issn: 0899-8213. doi: 10.
1063/1.858747.

[530] Yu-Hong Dong and Pierre Sagaut. “A Study of Time Correlations in Lattice Boltzmann-
Based Large-Eddy Simulation of Isotropic Turbulence”. en. In: Physics of Fluids 20.3 (Mar.
2008), p. 035105. issn: 1070-6631, 1089-7666. doi: 10.1063/1.2842381.

[531] M. Wilczek and Y. Narita. “Wave-Number–Frequency Spectrum for Turbulence from a Ran-
dom Sweeping Hypothesis with Mean Flow”. en. In: Phys. Rev. E 86.6 (Dec. 2012), p. 066308.
issn: 1539-3755, 1550-2376. doi: 10.1103/PhysRevE.86.066308.

[532] T. Sanada and V. Shanmugasundaram. “Random Sweeping Effect in Isotropic Numerical
Turbulence”. en. In: Physics of Fluids A: Fluid Dynamics 4.6 (June 1992), pp. 1245–1250.
issn: 0899-8213. doi: 10.1063/1.858242.

[533] Yukio Kaneda and Toshiyuki Gotoh. “Lagrangian Velocity Autocorrelation in Isotropic Tur-
bulence”. en. In: Physics of Fluids A: Fluid Dynamics 3.8 (Aug. 1991), pp. 1924–1933. issn:
0899-8213. doi: 10.1063/1.857922.

[534] J. Mercer. “Functions of Positive and Negative Type, and their Connection with the Theory
of Integral Equations”. In: Philosophical Transactions of the Royal Society of London Series
A 209 (Jan. 1909), pp. 415–446. doi: 10.1098/rsta.1909.0016.

[535] Salomon Bochner and T Teichmann. “Harmonic analysis and the theory of probability”. In:
Physics Today 9.3 (1956), p. 22.

[536] R. Silverman. “Locally stationary random processes”. In: IRE Transactions on Information
Theory 3.3 (1957), pp. 182–187. doi: 10.1109/TIT.1957.1057413.

[537] Dave Higdon, Jenise Swall, and J Kern. “Non-stationary spatial modeling”. In: Bayesian
statistics 6.1 (1999), pp. 761–768.

[538] G. Peter Lepage. “A new algorithm for adaptive multidimensional integration”. In: Journal of
Computational Physics 27.2 (May 1978), pp. 192–203. doi: 10.1016/0021-9991(78)90004-
9.

https://doi.org/10.1086/344723
https://arxiv.org/abs/astro-ph/0206265
https://doi.org/10.1073/pnas.34.11.530
https://doi.org/10.1063/1.858747
https://doi.org/10.1063/1.858747
https://doi.org/10.1063/1.2842381
https://doi.org/10.1103/PhysRevE.86.066308
https://doi.org/10.1063/1.858242
https://doi.org/10.1063/1.857922
https://doi.org/10.1098/rsta.1909.0016
https://doi.org/10.1109/TIT.1957.1057413
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9

	Abstract
	Court résumé de la thèse
	Résumé de la thèse
	Remerciements
	Introduction
	A (very) brief history of gravitational waves
	The first successes of GW astronomy
	The (near) future of gravitational wave astronomy
	Thesis outline
	Publications resulting from this thesis

	I Cosmic strings
	Introduction to cosmic strings
	Topological defects
	Observational consequences
	Nambu-Goto action
	Cosmic strings in flat space-time
	Scaling of the cosmic string network
	Gravitational wave bursts
	Loop production function and loop number density
	Field-theory strings and particle emission
	Current-carrying strings
	Plan for the part on cosmic strings

	Probing the GWB from cosmic strings with LISA
	Introduction
	The calculation of the SGWB from Cosmic Strings
	Method I
	Method II
	Cosmology

	String network modelling
	Model I: analytic approach
	Model II: simulation-inferred model of Blanco-Pillado, Olum, Shlaer (BOS)
	Model III: simulation-inferred model of Lorenz, Ringeval, Sakellariadou (LRS)
	Abelian-Higgs field theory simulations

	Gravitational wave emission from strings
	GW loop power spectrum
	GW waveforms from bursts
	Strong infrequent bursts
	Gravitational wave emission from long strings

	Spectrum of the SGWB from cosmic string loops
	Basic spectral shape
	Radiation-to-matter transition
	Variation of the relativistic degrees of freedom
	Probing the cosmological equation of state at early times

	Probing the SGWB from a string network with LISA
	Projected constraints on the string tension
	Agnostic approach to loop size and intercommutation probability
	Gravitational wave bispectrum from long strings

	Discussion and conclusion
	Nambu-Goto dynamics
	Loop dynamics
	Gravitational wave power from cusps and kinks


	Cosmic string loop production functions
	Introduction
	Cosmic string loop evolution
	Boltzmann equation and loop production function
	Dirac distribution for the loop production function
	Polchinski-Rocha loop production function
	Non-critical loop production function
	Critical loop production function
	Discussion

	Possible infrared regularizations
	Critical loop production function
	Non-critical loop production function
	Influence of a power-law IR-regularization

	Conclusions
	Complete solutions
	Non-critical loop production function
	Critical loop production function

	Sharp infrared regularization
	Non-critical loop production function
	Critical loop production function


	Impact of small-scale structure
	Introduction
	Theoretical framework
	The network of infinite strings
	Loop number density
	Normalization of the loop production function
	Decomposition of the contributions in the different eras

	The Stochastic Background of Gravitational Waves
	Emission of gravitational waves
	Asymptotic description of the stochastic background of GW
	Beyond the fundamental mode

	Results
	Influence of the Extra Population of Small Loops on the SGWB
	Hybrid models
	Constraints on the string tension from GW experiments

	Conclusion
	Cosmological parameters
	Note on the decomposition of the loop number density
	Regularization around crit for the standard loop number density
	Contributions in the radiation era
	Standard loop distribution
	Extra population of small loops

	Contributions during matter era
	Scaling loops during matter era – Standard loop distribution
	Scaling loops during matter era – extra population of small loops
	Decaying loops from radiation era

	Analytic estimation for the boundary in r

	Constraints from LIGO-Virgo O3 run
	Introduction
	Gravitational waves from cosmic string loops
	Burst Search
	Stochastic Search
	Constraints
	Conclusions
	Table of quantities appearing in the chapter
	Loop distributions
	The burst analysis pipeline
	Feature in SGWB constraint for Model C-1

	Particle emission and gravitational radiation
	Introduction
	The loop distribution
	Boltzmann equation and general solution
	Solution for a -function loop production function

	Loop distributions for particle radiation from cusps and kinks
	NG strings
	Loops with kinks
	Loops with cusps

	The Stochastic Gravitational Wave Background
	Emission of particles
	Conclusion

	Irreducible cosmic production of relic vortons
	Introduction
	Assumptions on the physics of vortons
	Distribution of loops and vortons
	Continuity equation for the flow of loops in phase space
	The loop distribution at condensation

	Cosmological distribution of vortons
	Relaxation term
	Production term

	Relic abundance
	Analytic estimates
	Numerical integration and initial conditions
	Other observables

	Conclusion
	Connection between the Boltzmann and continuity equations
	Distribution of proto-vortons and doomed loops
	Doomed loops
	Proto-vortons



	II Primordial Black Holes
	Introduction to PBHs
	PBH masses and Hawking evaporation
	Evaporation constraints
	Constraints on non-evaporating PBHs
	Mathieu instability with the method of multiple scales

	Primordial black holes from metric preheating
	Introduction
	Metric preheating
	Computation of the mass fraction
	The Press-Schechter formalism
	The excursion-set approach
	Volterra integral equations
	Relation between the Press-Schechter and excursion-set formalisms
	Other methods
	Further refinements
	Application to primordial black holes

	Primordial black holes from metric preheating
	Collapse criterion
	Overdensity variance
	Numerical results
	Analytical approximation

	Discussion and conclusion
	Numerical solution of the Volterra equation
	Density contrast in the Newtonian slicing
	Comparison with Martin et al.


	III First order phase transitions
	GWs from freely decaying turbulence
	Introduction
	Stochastic background of gravitational waves
	Generation of gravitational waves
	GW energy density power spectrum

	Numerical simulations
	Evolution laws
	Initial conditions of the numerical simulation
	Unequal time correlations

	Analytical model: freely decaying turbulence
	Velocity power spectrum
	Kraichnan sweeping model
	Unequal-time correlations outside the inertial range
	Evolution of the velocity field in decaying turbulence
	Turbulence sourcing

	Mercer condition and consequences
	Results
	The unequal time anisotropic stress power spectrum
	The Gravitational wave spectrum

	Discussion
	Tools for the numerical GW power spectrum calculation


	IV Conclusion
	Summary and Conclusions


