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aspects of holography and cosmology. Standard requirements in the AdSd+1/CFTd lead to
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effective action is given by a Liouville gravity with a scalar field matter. Finally, we also
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1 Introduction

The end-of-the-world (EOW) brane has recently played crucial roles in the AdS/CFT corre-
spondence [1–3]. First of all, it provides a gravity dual of a conformal field theory (CFT)
on a manifold with boundary i.e. the boundary conformal field theory (BCFT), so called
the AdS/BCFT correspondence [4–6]. Moreover, EOW branes provide many new insights
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on the quantum gravity aspects of holography. For example, it provides a class of excellent
models [7, 8] to explore black hole information problem in the light of island formula [8, 9].
Indeed, the computation rule of holographic entanglement entropy [10–12] is modified in
the presence of EOW branes [4, 5] and this can be understood a special form of the island
formula [13, 14]. EOW branes have also provided us with useful approached to constructing
models for quantum cosmology [15–20] by combining the AdS/BCFT with the brane-world
holography [21–29]. EOW branes have also been an important tool to build holographic
models of condensed matter systems [30–39].

In most of previous studies of EOW branes and AdS/BCFT, purely gravity models
were assumed in order to analytically solve the dynamics of the brane coupled to the AdS
gravity. Thus, the effects of matter fields have not been well understood especially in time-
dependent backgrounds, in spite that matter fields are important ingredient to construct
various cosmological models. Motivated by this, we would like to analyze a class of AdS/BCFT
models with a scalar field localized on an EOW brane, which we can often solve analytically.
This class was first studied in [38, 39] and various static brane solutions which are dual
to BCFTs with time-like boundaries were found. This includes gravity duals of boundary
renormalization group (RG) flows and in particular an interesting phase transition which
is very similar to the entanglement phase transition was realized.

In this paper, we will employ the same model mainly focusing on a time-like EOW brane
with a localized scalar field ϕ in AdS3 and will analyze various time-dependent solutions of
EOW branes which either do not end on the AdS boundary or do end on a space-like region.
We concentrate on the brane with the translational invariance in space-like directions, which
excludes well-studied AdS branes. This model has an advantage that we can solve its back
reaction easily because any solution in the three dimensional pure gravity coincides with the
AdS3 locally. This simple model turns out to have a rich variety of cosmological solutions.
Even though the bulk spacetime is an anti de Sitter space (AdS), the brane spacetime can
be a de Sitter (dS) space, which has a positive cosmological constant. A holography in de
Sitter space, so called dS/CFT [40–42], has still been not well understood mainly because
the dual CFTs are expected to be highly exotic [43, 44]. Therefore, our model provides
another route to study the dS/CFT by embedding it in a higher dimensional AdS/CFT. Even
though we will concentrate on the lowest dimensional model i.e. AdS3/BCFT2, we can extend
our analysis to higher dimensional AdS/BCFT, though in general it is not straightforward
to solve the back reaction problem. We would also like to mention that dS branes have
another interesting application to holography in the context of gravity duals of CFTs on
non-oriented manifolds [45, 46].

In general, the spacetime with a EOW brane can be classified into two types: type I and
type II. For a type I brane, the bulk spacetimes is the region surrounded by the brane and the
AdS boundary as depicted in the left panel of figure 1. On the other hand, for a type II brane,
the bulk region is the interior side with respect to the brane. It can be either a region which is
surrounded by the brane and the AdS boundary (i.e. middle panel of figure 1) or a completely
interior region which does not reach the AdS boundary as in the right panel of the figure.

Before we turn on the localized scalar, the simplest solution is given by the setup where
the EOW brane is a time-like hyperplane, as shown in figure 2. This hyperplane is identical to
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Figure 1. Two setups: type I (left) and type II (middle and right) of EOW branes in AdS/BCFT.
The radial and time coordinate of AdS are denoted by z and t, respectively, such that the AdS
boundary is situated at z = 0. The normal vector N , for which we calculate the extrinsic curvature, is
also indicated.

two dimensional de Sitter space (dS2) in the bulk AdS3. In the type I case, the bulk gravity
is expected to be dual to a two dimensional BCFT with the space-like boundary at t = 0 [47].
We can view this as a CFT with the final state projection at t = 0 [48, 49]. If we turn on the
scalar field on the EOW brane, then we can describe the boundary RG flow in the presence
of the space-like boundary. We have been lacking knowledge of quantum field theory with a
space-like boundary, because it has unusual properties such as the causality violation. Our
AdS/BCFT model provides a powerful tool to explore such a setup. Indeed, we will manage
to prove a monotonicity property analogous to g-theorem from our holographic description.

In the type II case, which is more interesting from the cosmological interpretation, the
AdS3 gravity with the EOW brane which is given by the two dimensional hyperplane is dual
to a two dimensional system which consists of a CFT in the lower half plane and a gravity on
dS2, which are coupled with each other at the time slice t = 0 [47, 50]. Since they are dual to
the bulk gravity, the gravity on dS2 should include quantum gravity effects. By turning on the
scalar field on the brane, we can study the dynamics of quantum gravity on dS2, from which
we will get implications on the dS/CFT. In the presence of scalar field, we can construct type
II branes which do not reach the AdS boundary. By applying the brane world holography, we
expect that the three dimensional bulk gravity inside the brane is dual to the two dimensional
quantum gravity on the EOW brane. This provides us with a simple toy model of quantum
cosmology. Indeed we will be able to find various interesting cosmological models where the
Universe is created at a time and expands like a big-bang process. Depending on the values of
potential of the scalar field on the brane, it can either continue to expand and start to shrink.

This paper is organized as follows. In section 2, we describe our basic setup of an
EOW brane with a localized scalar and present several interesting solutions. This includes
perturbed de Sitter branes and we will discuss implications of our results on the dS/CFT
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Figure 2. DS2 brane and its CFT dual in the type I (left) and type II (right) case. They are
solutions when the scalar field takes a constant value. If we place BCFT on upper half plane, our
result is applicable.

correspondence. In section 3, we consider boundary RG flows in our holographic models
and derive an analogue of holographic g-theorem. In section 4, we argue that the dynamics
of EOW branes is well approximated by a Liouville gravity coupled to a scalar field when
the brane fluctuations are small. In section 5, we analyze the cosmological aspects of EOW
brane dynamics. We also classify time-dependent solutions when the potential is a constant.
In section 6, we study the case where EOW branes have the boost symmetry. In section 7,
we summarized our conclusions and discuss future problems. In appendix A, we present
analytical solutions when the potential is vanishing. In appendix B, analytical solutions for a
non-zero constant potential are derived. In appendix C, the Euclidean brane solutions are
computed and classified. In appendix D, branes in the hyperbolic slice of AdS are analyzed.

2 dS branes in AdS3

As in [38, 39], we assume the AdS/BCFT setup with a localized scalar ϕ on the EOW
brane described by the action:

I = 1
16πGN

∫
d3x

√
−g(R − 2Λ) + 1

8πGN

∫
Σ

d2x
√
−hK (2.1)

+ 1
8πGN

∫
Q

d2x
√
−h

(
K − hab∂aϕ∂bϕ − V (ϕ)

)
,

where Λ = −1 in the current convention, Σ is the asymptotic boundary of the AdS3 spacetime,
and Q is a time-like two dimensional hypersurface and is called the end-of-the-world brane
(EOW) brane. The variation of the action reads

δI = 1
16πGN

∫
Q

d3x
√
−hδhab

[
Kab − habK − 2∂aϕ∂bϕ + hab

(
hcd∂cϕ∂dϕ + V (ϕ)

)]
, (2.2)

where hab and Kab are the induced metric and the extrinsic curvature on the surfaces Σ
and Q, where we chose the normal vector in the outward direction. Its trace is expressed
as K = habKab.
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By setting this variation to zero, we find that the Neumann boundary condition on
the EOW brane is

Kab − habK = TQ ab, (2.3)

where, TQab ≡ 2∂aϕ∂bϕ − hab

(
hcd∂cϕ∂dϕ + V (ϕ)

)
. (2.4)

The equation of motion of the localized scalar reads

2∂a

(√
−hhab∂bϕ

)
−

√
−hV ′(ϕ) = 0. (2.5)

It is useful to note that the above EOM for the scalar can be found from (2.3) by noting
∇a(Kab − habK) = 0 in the pure AdS3. Therefore, in the following, we consider the solutions
to (2.3) in AdS3 (2.14).

It is also very important and convenient to note that all the solutions to the vacuum
Einstein equation with the negative cosmological constant Rµν + 2gµν = 0 are given by pure
AdS3 (2.14) locally. Therefore, we do not need to worry about the backreaction due to the
EOW brane, which is present in higher dimensions.

For simplicity we assume that the scalar field depends only on some time-like parameter1

ϕ = ϕ(t) (2.6)

In this case the null-energy-condition (NEC) on EOW is automatically satisfied as long as the
scalar field takes real values, which is easily confirmed as follows. Without loss of generality,
we can set the induced metric in a form

ds2 = httdt2 + hxxdx2. (2.7)

Here, x denotes any other space-like coordinate: x for Poincaré, ϕ for global coordinate.
The arbitral null vector is k = C(

√
hxx∂t +

√
−htt∂x), and we set C = 1. The components

of the energy-momentum tensor is

TQtt = ϕ̇2 − httV (ϕ) (2.8)
TQxx = −hxx(httϕ̇2 + V (ϕ)) (2.9)

Thus NEC is

TQabk
akb = (ϕ̇2 − httV (ϕ))hxx + (−hxx)(httϕ̇2 + V (ϕ))(−htt) (2.10)

= 2hxxϕ̇2 ≧ 0. (2.11)

In this paper, the extrinsic curvature is always diagonal Ktx = 0, in such cases we can
solve the Neumann boundary condition (2.3) for ϕ̇2 and V . The result is

ϕ̇2 = 1
2(Ktt − htth

xxKxx) (2.12)

V = 1
2K (2.13)

Note that the second equation is just the trace of eq. (2.3), so it holds in any situation.
1Depending on the profile of the brane, it can be space-like parameter.
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2.1 General argument in Poincaré AdS3

In this section, we choose the Poincaré coordinate of AdS3 and analyze the EOW brane:

ds2 = dz2 − dt2 + dx2

z2 . (2.14)

We insert an EOW brane along the trajectory z = Z(t), which is also extended in the x

direction. There are two different setups of AdS/BCFT, depicted in figure 1:

Type I: 0 ≤ z ≤ Z(t),
Type II: z ≥ Z(t). (2.15)

In the type I case, the physical region in three-dimensional gravity extends from the AdS
boundary to the EOW brane. As we shall see, the type I EOW brane always intersects
with the AdS boundary. However, in the type II case, the physical region is inside the
EOW brane. The type II EOW brane either stays entirely within the interior of AdS3 or
intersects the AdS boundary.

The induced metric on the EOW brane reads

ds2
Q = −(1− Ż2)dt2 + dx2

Z2 , (2.16)

where Ż = dZ
dt . In order to make the brane time-like, we impose 1 − Ż2 > 0. The normal

vector is

N = ϵ
dz − Żdt

Z
√
1− Ż2

(2.17)

where ϵ = ±1. When ϵ = 1 (or ϵ = −1), N has a positive (or negative) direction on the z

axis, which is a type I (or type II) set up. This expression of normal vector leads to

Kabdxadxb = ϵ
1− Ż2 − ZZ̈

Z2
√
1− Ż2

dt2 − ϵ
1

Z2
√
1− Ż2

dx2. (2.18)

The boundary condition (2.13) is explicitly written as follows:

ϕ̇2 = − ϵZ̈

2Z
√
1− Ż2

(2.19)

V = ϵZZ̈

2(1− Ż2)3/2 − ϵ√
1− Ż2

. (2.20)

We immediately see that the null energy conditions are Z̈ ≤ 0 in type I and Z̈ ≥ 0 in type
II. This shows that the type I brane always intersects with the AdS boundary in the past
and future, which is related to the fact that the potential V always satisfies V < −1 for
the type I brane. On the other hand, the potential V of the type II brane has neither
upper nor lower bound.

There are some setups which are obviously prohibited by the null energy condition.
Consider two EOW branes such that the bulk sub-region enclosed by them connects the two
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regions [t1, t2] and [t3, t4] on the asymptotic boundary. We can interpret this as a kind of
wormhole, which extends in the time-like direction as opposed to usual space-like ones, from
the perspective of BCFT. However, we find that it is not allowed because the inner side
of the EOW brane does not satisfy the type II null energy condition. Thus the time-like
wormhole is prohibited by the null energy condition.

From (2.19) and (2.20), we obtain the kinematic-energy-conservation-like relation;

Z2√
1− Ż2

ϕ̇2 +
√
1− Ż2V (ϕ) = −ϵ. (2.21)

As an trivial example, we can set a hyperplane

Z(t) = −ϵλt, (2.22)

with time-like condition 0 < λ < 1. This setup is shown in figure 2. This solves the boundary
condition when ϕ = const. and V = −ϵ/

√
1− λ2. Induced metric is

ds2
Q = −(1− λ2)dt2 + dx2

λ2t2 . (2.23)

Thus when Z(t) approaches to −ϵλt + O(t2), the geometry of the brane approaches to dS2
with radius RdS =

√
1− λ2/λ near the asymptotic boundary.

Now let us consider the CFT dual of the type I and type II hyperplane dS2 solu-
tion (2.22). The AdS/BCFT [4, 5] argues that the gravity dual of a boundary conformal field
theory (BCFT) on a d dimensional manifold S is given by the gravity on the d+1 dimensional
region Σ which boundaries consist of S and an EOW brane Q, such that ∂Σ = S ∪ Q. The
manifold S is assumed to have a boundary ∂S and this clearly coincides with ∂Q. In the
Lorentzian AdS, this was originally argued when the boundary ∂S is time-like.

In our setup, on the other hand, ∂Q = ∂S is space-like i.e. t = 0 and thus we need
to consider a generalization of AdS/BCFT. This was first considered in [47]. As depicted
in figure 2, we expect that the type I brane geometry is dual to a two dimensional BCFT
i.e. a two dimensional CFT on the lower half plane. On the other hand, the type II one is
dual to a two dimensional system which consists of two dimensional CFT on the lower half
plane t < 0 and the gravity on the dS2 in the upper half plane t > 0, which are coupled
with each other at the space-like interface t = 0 [47, 50].

2.2 Perturbations of dS branes and dS2/CFT1

Now let us consider a perturbation of the dS2 brane solution (2.22) by turning on the scalar
field ϕ on the brane. We assume that the brane asymptotically behaves like:

Z(t) ≃ −αt − ϵβtp + o(tp) (2.24)

in the t → 0 limit. Since it is time-like and satisfies the null energy condition we require

0 < α < 1, β > 0, p > 1 (2.25)
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Then (2.19) and (2.20) approach to the following expression

ϕ̇2 ≃ p(p − 1)β
2α

√
1− α2

tp−3, (2.26)

V (ϕ) ≃ − ϵ√
1− α2

− p(p − 3)αβ

2(1− α2)3/2 tp−1. (2.27)

By solving the first equation we find

ϕ ≃ ϕ∗ ±
√

2pβ

(p − 1)α
√
1− α2

t
p−1

2 . (2.28)

Thus the potential can be rewritten as

V (ϕ) ≃ − ϵ√
1− α2

+ α2(p − 1)(3− p)
4(1− α2) (ϕ − ϕ∗)2 + · · · (2.29)

First of all, this shows that we need V ≤ −1 in type I and V ≥ 1 in type II at the AdS boundary.
The mass of the scalar field is found from (2.29) to be M2 = α2(p−1)(3−p)

4(1−α2) . Since the
radius of dS2 before the perturbation reads R2

dS = 1−α2

α2 , we obtain

M2R2
dS = (p − 1)(3− p)

4 = −(p − 2)2 + 1
4 ≤ 1

4 . (2.30)

Now let us focus on the type II brane setup, which looks like the right panel of figure 2.
Since the dS-brane is gravitating, we expect that two dimensional gravity is localized on
the brane as in the brane-world model [21–23, 26]. In summary, gravity with the type II
brane is dual to a two dimensional CFT on the Lorentzian lower half plane t < 0 coupled
at t = 0 to a gravitational theory on dS2 extends in the upper half t > 0. We expect that
the latter i.e. gravity on dS2 is dual to a one dimensional conformal quantum mechanics
localized on t = 0 assuming the dS/CFT duality [40–42]. Notice that since the quantum
mechanical degrees of freedom at t = 0 is coupled to the two dimensional CFT on t < 0,
the total theory might properly be regarded as a boundary conformal field theory with a
space-like boundary. Below we would like to examine the implication of our EOW brane
analysis in terms of dS/CFT. As we will discuss later in section 2.5, we can extend our
argument here to higher dimensions in a straightforward way.

The scalar field ϕ localized on the dS brane can be regarded as the bulk scalar on
dS2/CFT1. Thus the scalar field is dual to a scalar operator in the CFT1. Via the standard
relation between the mass M and conformal dimension ∆, we can obtain the value of
conformal dimension of the dual operator as

∆± = 1
2 ±

√
1
4 − M2R2

dS = 1
2 ± |p − 2|

2 (2.31)

The analysis of the perturbation of the dS brane (2.24) predicts that the mass satisfy the upper
bound (2.30) and this guarantees that the conformal dimension ∆± take only real values.

If we try to consider the other mass range M2R2
dS > 1/4, the only possibility that the

brane profile becomes real valued (we set p = 2 + iγ) is to choose

Z(t) ≃ −αt + βt2+iγ + β∗t2−iγ . (2.32)

– 8 –



J
H
E
P
0
3
(
2
0
2
5
)
1
3
5

In this case, we can easily see that Z̈(t) takes both positive and negative sign. In the latter
case we find ϕ̇2 < 0, violating the null energy condition. Thus, this does not seem to be
physically allowed solution in our setup embedded into the higher dimensional AdS.

At first, this result might look a little surprising from the conventional treatment of
dS/CFT. This is because in dS/CFT, we normally allow the conformal dimensions to take
complex values, which correspond to a scalar field with a large mass M2R2

dS > 1/4. On the
other hand, from our analysis in the light of AdS3/CFT2, we observed that the conformal
dimensions should always take real values in order for the EOW brane to satisfy the null
energy condition.

However, this may be natural as the violation of null energy condition usually leads to
that of unitarity and we indeed expect that the CFT dual to the dS gravity is non-unitary.
Thus, our result suggests that if we restrict to the spectra of the dual CFT to be those have
real valued conformal dimensions, we may be able to extract a unitary model of dS/CFT.
This clearly deserves future studies.

When the profile approaches Z(t) ∼ βtp as t → 0, then its derivatives Ż = βptp−1 and
Z̈ = βp(p − 1)tp−2 imply that p > 1, β > 0, which tells us that this is type II. Neumann
boundary condition is

ϕ̇2 = βp(p − 1)tp−2

2βtp
√
1− β2p2t2p−2 ≃ p(p − 1)

2 t−2, (2.33)

thus

ϕ − ϕ∗ ≃ ±

√
p(p − 1)

2 log t. (2.34)

The potential is

V ≃ 1 + β2p

2 exp
[
±2
√

2(p − 1)
p

(ϕ − ϕ∗)
]

. (2.35)

This again shows that we need V ≥ 1 in order for type II brane to reach the AdS3 boundary.

2.3 Examples of type I branes

2.3.1 Example(I-i): Z(t) = β(t2
0 − t2)

As an example we choose

Z(t) = β(t2
0 − t2), −t0 < t < t0 (2.36)

This setup is showed in figure 3. Since the EOW brane should be time-like we require
2βt0 < 1. The boundary condition is solved by choosing

ϕ̇2 = 1
(t2

0 − t2)
√
1− 4t2β2 , (2.37)

V (ϕ) = −1 + t2
0β2 − 5t2

0β2

(1− 4β2t2)3/2 . (2.38)
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Figure 3. The left side is EOW brane setup. The right side is V -ϕ graph. We choose β = 1
3 and

t0 = 1, so Z(t) = 1
3 (1− t2).

Near the AdS boundary z → 0 and t → t0, we can solve (2.37) as

ϕ ≃ ϕ∗ −
√
2(t0 − t)√

t0(1− 4β2t2
0)1/4 . (2.39)

The behavior of the potential is found from (2.38)

V ≃ − 1√
1− 4β2t2

0

+ t2
0β2

1− 4t2
0β2 (ϕ∗ − ϕ)2. (2.40)

Since the induced metric near the tip t = t0 reads

ds2 ≃ −(1− 4t2
0β2)dt2 + dx2

4t2
0β2(t0 − t)2 . (2.41)

We can read off the dS2 radius t = t0 as R2
dS = (1− 4t2

0β2)/4t2
0β2. Thus the potential (2.40)

looks like

V (ϕ) ≃ − 1√
1− 4β2t2

0

+ 1
4R2

dS

(ϕ∗ − ϕ)2. (2.42)

Since we find the mass of scalar field on dS2 is R2
dSM2 = 1

4 , we can obtain the conformal
dimension of the dual operator via ∆ = 1

2 +
√

1
4 − M2R2

dS = 1
2 . V -ϕ graph is sketched

in figure 3.

2.3.2 Example(I-ii): Z(t) = β cos t
t0

As an example we choose

Z(t) = β cos t

t0
, −π

2 t0 < t <
π

2 t0. (2.43)

This setup is showed in figure 4. Since the EOW brane should be time-like we require
1 − β2

t2
0

> 0. The boundary condition is solved by choosing

ϕ̇2 = 1

2t2
0

√
1− β2

t2
0
sin t

t0

, (2.44)

V (ϕ) =
−4 + β2

t2
0
− 3β2

t2
0
cos 2 t

t0

√
2
(
2− β2

t2
0
+ β2

t2
0
cos 2 t

t0

)3/2 . (2.45)
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Figure 4. The left side is EOW brane setup. The right side is V -ϕ graph. We choose β = 1 and
t0 = 2, so Z(t) = cos t

2 .

Near the AdS boundary z → 0 and t → π
2 t0, we can solve (2.44) as

ϕ ≃ ϕ∗ −
1

√
2t0

(
1− β2

t2
0

)1/4

(
π

2 t0 − t

)
. (2.46)

The behavior of the potential is found from (2.45)

V ≃ − 1√
1− β2

t2
0

−
3β2

t2
0

2
(
1− β2

t2
0

)3/2 (ϕ∗ − ϕ)4. (2.47)

Thus the scalar field is massless M2 = 0. We obtain the conformal dimension of the dual
operator via ∆ = 1

2 +
√

1
4 − M2R2

dS = 1. V -ϕ graph is sketched in figure 4.

2.4 Examples of type II branes

2.4.1 Example(II-i): Z(t) = λ
√

t2 + α2

We can choose the profile of EOW brane as

Z(t) = λ
√

t2 + α2. (2.48)

The boundary conditions are solved by setting

ϕ̇2 = α2

2(α2 + t2)3/2
√
(1− λ2)t2 + α2 ,

V (ϕ) =
√

α2 + t2 (2(1− λ2)t2 + (2− λ2)α2)
2 ((1− λ2)t2 + α2)3/2 . (2.49)

The profile and V -ϕ graph are in figure 5.

2.4.2 Example(II-ii): Z(t) = a log
[
cosh t

t0

]
− b

We can choose the profile of EOW brane as

Z(t) = a log
[
cosh t

t0

]
− b, t < t0 cosh−1(eb/a) (2.50)
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Figure 5. The left side is EOW brane setup. The right side is V -ϕ graph. We choose λ = 0.5 and
α = 1, so Z(t) = 0.5

√
t2 + 1.

Figure 6. The left side is EOW brane setup. The right side is V -ϕ graph. We choose a = 0.1,
b = 0.01 and t0 = 1, so Z(t) = 0.1 log(cosh(t)) + 0.01.

The boundary conditions are solved by setting

ϕ̇2 = a

2t0 cosh2
(

t
t0

)√
t2
0 − a2 tanh2

(
t
t0

) [
a log

(
cosh

(
t
t0

))
− b
] (2.51)

V (ϕ) = −

at0

cosh2
(

t
t0

) [a log
(
cosh

(
t
t0

))
− b − 2a

]
+ 2t0(a2 − t2

0)

2
(
t2
0 − a2 tanh2

(
t
t0

))3/2 (2.52)

The profile and V -ϕ graph are in figure 6.

2.5 Branes in higher dimensions

In higher dimensional AdS/CFT, due to the back-reaction of the EOW brane, we cannot
analytically find gravity solutions in general. However, we can still find a special class of
solutions by focusing on an EOW in the Poincaré AdSd+1:

ds2 =
dz2 − dt2 + dx2

1 + · · ·+ dx2
d−1

z2 . (2.53)
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We again specify the shape of the EOW brane Q and the brane-localized scalar field on Q

by z = Z(t) and ϕ = ϕ(t). The induced metric on Q reads

ds2 =
−(1− Ż2)dt2 + dx2

1 + · · ·+ dx2
d−1

Z2 . (2.54)

The normal vector of the EOW brane is

(N z, N t, Nx1 , · · · , Nxd−1) = ϵZ√
1− Ż2

(1,−Ż, 0, · · · , 0), (2.55)

where ϵ = ±1. As before ϵ = 1 and ϵ = −1 correspond to type I and type II, respectively.
Then, the extrinsic curvature satisfies

Ktt − httK = ϵ
−(d − 1)

√
1− Ż2

Z2 , (2.56)

Kxixi − hxixiK = ϵ
(d − 1)(1− Ż2)− ZZ̈

Z2
(
1− Ż2

)3/2 , (2.57)

and the boundary condition (2.3) leads to

ϕ̇2 = −ϵ
Z̈

2Z
√
1− Ż2

, (2.58)

V (t) = ϵ
−2(d − 1)(1− Ż2) + ZZ̈

2(1− Ż2)3/2 . (2.59)

We again consider a small perturbation around the dSd brane solution Z = −αt which
is assumed to be the following form:

Z(t) ≃ −αt − ϵβtp + o(tp), (2.60)

in the t → 0 limit. Since it is time-like and satisfies the null energy condition we require

0 < α < 1, β > 0, p > 1. (2.61)

Then we obtain the following behaviors

ϕ̇2 ≃ p(p − 1)β
2α

√
1− α2

tp−3,

V (ϕ) ≃ −ϵ
d − 1√
1− α2

− p(p − 2d + 1)αβ

2(1− α2)3/2 tp−1. (2.62)

By solving the first equation we find

ϕ ≃ ϕ∗ ±
√

2pβ

(p − 1)α
√
1− α2

t
p−1

2 . (2.63)

Thus the potential can be rewritten as

V (ϕ) ≃ −ϵ
(d − 1)√
1− α2

+ α2(p − 1)(2d − 1− p)
4(1− α2) (ϕ − ϕ∗)2 + · · ·. (2.64)
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Since the dS radius in this case at t = 0 reads R2
dS = 1−α2

α2 , we find

M2R2
dS = (p − 1)(2d − 1− p)

4 ≤ (d − 1)2

4 . (2.65)

The dual conformal dimension reads

∆ = d − 1
2 + |d − p|

2 . (2.66)

This result is consistent with the d = 2 case (2.31). We obtain the implication to dSd/CFTd−1
in the same way as the one we already discussed for d = 2.

3 Holographic time-like g-theorem

In the absence of the scalar field, the solution of EOW brane is given by a dS2 branes. Its
CFT dual is given by a BCFT in the type I case and by a CFT coupled to dS2 gravity
in the type II case, as depicted in figure 2. Therefore we can regard perturbations of the
brane solutions by turning on the scalar field ϕ can be regarded as those of the dual CFT
localized along the line at t = 0. Thus this can be regarded as a boundary perturbation
in a BCFT in the type I case and as an interface perturbation in the system of the CFT
coupled to gravity in the type II case.

This motivates us to consider a possibility of monotonicity under the renormalization
group (RG) flow trigger by such a relevant perturbation localized on a space-time line. In the
standard BCFT with a time-like boundary, such a monotonicity is known as g-theorem [51, 52].
We can reformulate the g-theorem in terms of entanglement entropy [53]. Consider a two
dimensional BCFT on the right half plane x > 0. We choose the subsystem A to be the
interval 0 ≤ x ≤ l at the time slice t = 0. As found in [54], the entanglement entropy
SA = −Tr[ρA log ρA] defined for the reduced density matrix ρA takes the following form

SA = c

6 log l

ϵUV
+ log g, (3.1)

where ϵUV is the UV cut off and c is the central charge. In this expression, the constant g

coincides with the g function and log g is also called the boundary entropy. If we perform a
boundary relevant perturbation, g starts to depend on the subsystem size l. The g-theorem
argues that g is monotonically decreasing as a function of l [53]. Below we would like to explore
a similar theorem in our setup with the space-like boundary (type I) or interface (type II).

For this we will employ the holographic calculation of entanglement entropy [10–12] in the
presence of EOW brane [4]. The entanglement entropy can be computed in AdS3/BCFT2 by

SA = L(ΓA)
4GN

= c

6L(ΓA), (3.2)

where ΓA is the space-like geodesic which ends on the boundary of A and L(ΓA) is its geodesic
length. A new special feature is that ΓA is allowed to end also on the EOW brane and we
need to extremize the geodesic length with respect to the end point on the brane.

We will choose the subsystem A to be a semi-infinite interval 0 ≤ x < ∞ at a fixed time
t = t̃(< 0). We now pick up the finite term in the entanglement entropy SA and regard it
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as a function of the time t̃, which will be called a time-like g-function. Since t̃ is the only
scale in the BCFT, it is natural to regard it as the RG scale when we perturb the BCFT.
Indeed, below we will be able to confirm that the time-like g-function is indeed monotonically
decreasing function of |t̃| for both the type I and type II brane. We would also like to note
that a closely related monotonic behavior, called p-theorem, for cross cap states was shown
in the interesting paper [45], by using holography. Though the setup is similar, we will show
this monotonicity by using the holographic entanglement entropy.

It is intriguing to note that we can also interpret this entanglement entropy as the
time-like entanglement entropy [55–57] for which the subsystem is chosen to be the time-like
interval t̃ ≤ t ≤ 0 at a fixed value of x. This is because the holographic entanglement entropy
is given by the same geodesic which connects (t, x) = (t̃, 0) to a point on the EOW brane.
This interpretation is very similar to the original g-theorem setup because the g function
is a monotonic function of the length of interval i.e. |t̃|.

3.1 g-theorem in the type I case

First we consider the dS2 EOW brane Z(t) = −λt before we turn on the scalar field. As
we mentioned we choose the subsystem A to be the semi-infinite line x > 0 at a fixed
time t = t̃. Then SA can be found from the geodesic which connects (t, z) = (t̃, ϵUV) and
(t, z) = (a, z(a)) as depicted in the left panel of figure 7. By maximizing the geodesic length
as a function of a, we find

a = t̃√
1− λ2

. (3.3)

Thus, we obtain the following result of holographic entanglement entropy (3.2):

SA = c

6 log |t̃|
ϵUV

+ c

6 log

2
(
1−

√
1− λ2

)
λ

 . (3.4)

The second term in this equation gives log g, namely the time-like g function.
Now we extend this calculation to the general EOW brane profile z = Z(t), in the

presence of non-trivial scalar field ϕ(t). We can again compute SA from the geodesic length
(see the right panel of figure 7). The length of ΓA reads

L(ΓA) ≃ log
[

Z(a)2 − (a − t̃)2

Z(a)ϵUV

]
, (3.5)

in the limit ϵ → 0. We choose a which maximizes the geodesic length L(ΓA), leading to
the relation between a and t̃ as follows:

a − t̃ = Z(a)
Ż(a)

(
1−

√
1− Ż(a)2

)
. (3.6)

Thus, we can calculate the derivative of log g with respect to |t̃|.

6
c
|t̃|d log g

d|t̃|
= |t̃|dL(ΓA)

d|t̃|
− 1 = aŻ(a)− Z(a)

Z(a)
√
1− Ż(a)2

(3.7)
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Figure 7. The profile of the geodesic ΓA which computes the entanglement entropy (left) and the
calculation of its geodesic length (right). For type I brane, time coordinates a of the endpoint on the
EOW brane is negative.

We can find that the numerator aŻ(a) − Z(a) vanishes in the limit a → 0 and that
the derivative of the numerator, d

da(aŻ(a) − Z(a)) = aZ̈(a), is positive owing to the type
I null energy condition Z̈(a) ≤ 0. This shows aŻ(a) − Z(a) ≤ 0 for a ≤ 0. Thus, finally
we can conclude that

d log g

d|t̃|
≤ 0, (3.8)

which gives the holographic proof of the time-like g-theorem.

3.2 g-theorem in the type II case

Now we would like to turn to the type II brane and would like to evaluate SA for the
same subsystem A. At first, one may be puzzled because the computation of holographic
entanglement entropy (3.2) is not straightforward because there is no space-like geodesic
which ends on (t, z) = (t̃, ϵUV) and on a point on the EOW brane.

We resolve this problem in two ways as we will explain below. First, we consider the
type II dS2 brane in the Euclidean setup described in the left panel of figure 8. We obtain
the entanglement entropy

S
(E)
A = c

6 log

− 2t̃E

ϵUV

1 +
√
1 + λ2

E

λE

 . (3.9)

Now we perform the Wick rotation tE = it and introduce λ = iλE (i.e. the right panel of
figure 8). This leads to the entanglement entropy in our Lorentzian setup as follows:

S
(L)
A = c

6 log
[

2t̃

ϵUV

(
1 +

√
1− λ2

λ

)]
(3.10)

= c

6 log |t̃|
ϵUV

+ c

6 log
[
21 +

√
1− λ2

λ

]
+ c

6πi. (3.11)
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Figure 8. Type II Hyperplane in the Euclidean(left) and Lorentzian(right) setup.

Now we move on to the general profile of the type II EOW brane. It is difficult to
consider the Euclidean counterpart. Rather, it is convenient to calculate the entanglement
entropy directly via (3.5).

We take a subregion A in the same way as figure 7. The EOW brane is supposed to
be characterized by z = Z(t), whose argument t is positive since the brane is type II. As
we mentioned, any space-like geodesic starting at (t, z) = (t̃, ϵUV) cannot end on the brane
directly, which is because the argument of logarithm in (3.5) must be negative in type II
case. This is led by the fact Ż(t) ≤ 1, which says immediately

Z(a) ≤ a ≤ a − t̃. (3.12)

Note that a is positive but t̃ is negative.
Since the argument of logarithm function is negative, the entanglement entropy will

have the imaginary part:

SA(t̃) =
c

6 log
[
−Z(a)2 + (a − t̃)2

Z(a)ϵUV

]
+ c

6πi, (3.13)

where a is chosen so that the real part of the entanglement entropy is minimized.
Now we define a boundary entropy for the type II brane as

log g = SA(t̃)−
c

6 log |t̃|
ϵUV

− c

6πi = c

6 log
[
−Z(a)2 + (a − t̃)2

2Z(a)|t̃|

]
. (3.14)

The derivative of the boundary entropy will be calculated as

6
c
|t̃|d log g

d|t̃|
= − aŻ(a)− Z(a)

Z(a)
√
1− Ż(a)2

. (3.15)

By similar discussion of the type I case, since Z̈ ≥ 0 according to the null energy condition
for type II branes, we can conclude

d

d|t̃|
log g ≤ 0, (3.16)

which is the time-like g-theorem for the type II brane.
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Figure 9. The left panel illustrates the profile of the brane and the RT surface in global AdS
using (3.17), while the middle panel shows their counterparts in Poincaré AdS. The blue solid line
represents the original EOW brane, while the blue dotted line represents its copy. Additionally,
the green solid curves represent the space-like geodesics, which contribute to the real part of the
entanglement entropy, and the red curve represents the time-like geodesic, which gives to the imaginary
part. The right panel shows the configuration if the EOW brane is hyperplane Z(t) = λt.

Now we present the geometric interpretation of the type II entanglement entropy in (3.13).
To do this, it is useful to embed the Poincaré AdS into the global AdS ds2 = dρ2−cosh2 ρdτ2+
sinh2 ρdϕ2 via

cosh ρ =
√

t2 + D2

z
, tan τ = t

D
, tanϕ = x

D − 1 , (3.17)

where D = (z2 + x2 − t2 + 1)/2. The left panel of figure 9 illustrates the embedding
described above.

In figure 9, the blue solid line represents the EOW brane and a point P1 is the endpoint
of the half-line A. Additionally, we place a copy of the EOW brane under the Poincaré
patch, represented by the blue dotted curve. From the perspective of global AdS, we can
calculate the geodesic length between the points P1 and P ′

2, which lies on the copy of the
brane. In fact, this length is given by

L(P1P ′
2) = log

[
−Z(a)2 + (a − t̃)2

Z(a)ϵ

]
, (3.18)

which is exactly the same as the real part of the entanglement entropy. The point P ′
2 is

chosen so that the distance between P1 and P ′
2 is minimized.

Let the point P3 be the intersection of the lower Poincaré horizon and the geodesic curve
connecting P1 and P ′

2 and let the point P ′
3 be the copy of P3 on the upper Poincaré horizon.

Note that the curve connecting P3 and P ′
3 is time-like and its length is given by L(P3P ′

3) = π,
regardless of the choice of the brane as we will see soon. Since L(P1P ′

2) = L(P1P3)+L(P ′
3P2),

the entanglement entropy (3.13) is identified as

SA = c

6
(
L(P1P3) + iL(P3P ′

3) + L(P ′
3P2)

)
. (3.19)

In fact, for the hyperplane case Z(t) = λt in the right panel of figure 9, we find that
the length L(P1P3) + L(P ′

3P2) coincides with the real part of (3.11). Although the curve
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P3P ′
3 in the left panel of figure 9 is non-trivially curved, it can be straightened, like the right

panel of figure 9, using a different embedding than (3.17) due to the isometry of AdS space.
Consequently, we conclude that L(P3P ′

3) = π for any brane configuration, which yields the
imaginary contribution to the entanglement entropy (3.11).

This complex-valued entropy has the same imaginary part as that of the time-like
entanglement entropy [55, 56]. In fact, as we mentioned above, we can interpret SA as the
time-like entanglement entropy for the time-like interval t̃ ≤ t ≤ 0 at x = 0.

4 Liouville gravity description

In this section, we will show that the dynamics on the EOW brane Q can be approximated
by a Liouville gravity [13, 58–61] coupled to scalar field when the EOW brane varies slowly,
i.e. |Ż| ≪ 1. This helps us to understand how the two-dimensional quantum gravity on
the EOW brane looks like, which expected to be dual to the three dimensional classical
gravity on the AdS3 spacetime surrounded by the brane. For simplicity, we assume the
brane has a translational invariance in the space x direction and we take into account only
the time-dependence.

4.1 Analysis of brane action

First, we focus on the type I brane. Given that the brane is determined by z = Z(t), the
induced metric on the brane is

ds2
Q = −(1− Ż2)dt2 + dx2

Z2 = −dτ2 + dx2

Z2 . (4.1)

Here, we introduce a new coordinate τ , which is defined through
dτ

dt
=
√
1− Ż2 = 1√

1 + Z ′2
, (4.2)

where the differential with respect to new coordinate τ is denoted as Z ′.
The total action, including the asymptotic surface Σ at z = ϵUV, is given by I =

IM + IΣ + IQ,

IM = 1
16πGN

∫
M

d3x
√
−g(R − 2Λ) = Lx

8πGN

∫
dτ

√
1 + Z ′2

Z2 − LxLt

8πGN ϵ2
UV

, (4.3)

IΣ = 1
8πGN

∫
Σ

dxdt
√
−hK = LxLt

4πGN ϵ2
UV

, (4.4)

IQ = 1
8πGN

∫
Q

dxdt
√
−h(K − httϕ̇2 − V (ϕ)) (4.5)

= Lx

8πGN

∫
dτ

−2− 2Z ′2 + ZZ ′′ + Z2ϕ′2 −
√
1 + Z ′2V (ϕ)

Z2
√
1 + Z ′2

. (4.6)

Here we define Lx and Lt as infinite lengths in the x direction and the t direction and use
R = −6 and Λ = −1. Furthermore, by introducing φ(τ) := − logZ(τ), i.e. ds2

Q = e2φ(−dτ2 +
dx2), the total action is reduced to

I = 1
8πGN

∫
dτdx

(
−φ′′ − e2φ√
1 + e−2φφ′2 + ϕ′2√

1 + e−2φφ′2 − e2φV (ϕ)
)

. (4.7)
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Here we omit the constant term. Although this integral contains the second derivative, it
is eliminated by a partial integral as follows:

I = 1
8πGN

∫
dτdx

[
eφφ′ sinh−1(e−φφ′)− e2φ

√
1 + e−2φφ′2 + ϕ′2√

1 + e−2φφ′2 − e2φV (ϕ)
]

− 1
8πGN

∫
dτdx

d

dτ

[
eφ sinh−1(e−φφ′)

]
(4.8)

Finally, since |Ż| ≃ |e−φφ′| ≪ 1, we obtain the effective action of the EOW brane
of type I as:

Ieff = 1
8πGN

∫
dτdx

(1
2(∂τ φ)2 + (∂τ ϕ)2 − e2φ(1 + V (ϕ))

)
. (4.9)

If the EOW brane ends on the asymptotic boundary at t = 0 as in figure 2, we canceled the
boundary term (4.8) by adding the corner term (or Hayward term) [60, 62, 63]. To deform
the boundary condition we can further add the following boundary term

Ibdy = 1
8πGN

∫
dxµBeφ, (4.10)

where µB is a constant which parametrizes the boundary condition as is familiar in the
boundary Liouville theory [64]. In this way, the total effective theory is identified as the
Liouville field theory, which couples to another scalar field ϕ(τ) through its potential V (ϕ).
Indeed, this action agrees with the Liouville CFT action with the central charge c via the
relation c = 3

2GN
[65].

We can process the same discussion for the type II case. Using ϵ = ±1 defined in
subsection 2.1, both type I and type II results are combined as

Ieff = 1
8πGN

∫
ϵτ<0

dτdx

[1
2ϵ(∂τ φ)2 + (∂τ ϕ)2 − e2φ(ϵ + V (ϕ))

]
+ 1

8πGN

∫
τ=0

dxµBeφ. (4.11)

In the type II case (ϵ = −1) the overall sign of the action is opposite to that of the Liouville
CFT. This is because it corresponds to the effective action when we integrate out a CFT
with the central charge c and this action is known to have the opposite sign [58, 66, 67].

We can easily construct a covariant expression of the action (4.11) as follows:

Icov=
1

8πGN

∫
dτdx

√
g

[
− ϵ

8R
1
□

R + (∂ϕ)2 − (ϵ + V (ϕ))
]
+ 1
8πGN

∫
τ=0

dxµB
√

γ. (4.12)

4.2 Solving the equation of motion

The equations of motion of (4.11) are given as

φ′′ = −2ϵe2φ(ϵ + V (ϕ)), (4.13)
2ϕ′′ = −e2φ∂ϕV (ϕ) (4.14)

These equations can be rewritten as

V (ϕ) = −1
2ϵe−2φφ′′ − ϵ, (4.15)

ϕ′2 = −
∫

e2φ dV (ϕ(τ))
dτ

dτ (4.16)
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This means that, if we choose φ(τ), the corresponding profile of the brane scalar ϕ(τ)
and its potential V (ϕ) are uniquely determined. In addition, fields φ and ϕ are imposed
boundary conditions:

∂τ ϕ = 0, ∂τ φ + µBeφ = 0 (4.17)

at τ = 0.

4.3 Approximate solution

We start with the consistency check of the general argument in subsection 2.1. For simplicity,
we consider the type II brane (i.e., ϵ = −1) defined by z = Z(t) = αt + βtp under α ≪ 1. In
this case, since τ is related to t as τ ≃

√
1− α2t, the Liouville field φ(τ) is

φ(τ) = − log
[
α

τ√
1− α2

+ β

(
τ√

1− α2

)p]
. (4.18)

Using the equations (4.15) and (4.16), we obtain

2(V (ϕ)− 1) ≃ α2 − αβp(p − 3)
(

τ√
1− α2

)p−1
, ϕ′2 ≃ βp(p − 1)

2α
τp−3. (4.19)

This leads the potential V (ϕ) as

V (ϕ)− 1 ≃ 1
2α2 + (p − 1)(3− p)

4 α2ϕ2, (4.20)

which agrees with (2.29) to α2-order. The effective boundary cosmological constant µB

also turns out to be

µB = α√
1− α2

≃ α. (4.21)

In addition, using the conformal weight ∆ (2.31) of the boundary primary operator of
BCFT inserted at t = 0, the equation (4.20) is reduced to

V (ϕ)− 1 ≃ α2

2 + ∆(1−∆)ϕ2. (4.22)

From this, we find that if the boundary primary is relevant (∆ < 1), the effective cosmological
constant V (ϕ) increases during the time evolution with respect to τ . Conversely, if the
boundary primary operator is irrelevant (∆ > 1), V (ϕ) decreases. Note that both V (ϕ)− 1
and µB at the boundary τ = 0 are positive.

The EOW brane of type I can be discussed by the similar way. As the result, for the
brane z = −αt − β(−t)p, we obtain

µB = −α (4.23)

V (ϕ) + 1 = −α2

2 + ∆(1−∆)ϕ2, (4.24)

which are negative at t = τ = 0.
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4.4 Exact solution

There is an exact solution of a type II brane (ϵ = −1) to the equations (4.15) and (4.16).
This solution is obtained by setting

φ(τ) = − log(βτp). (4.25)

Now V (ϕ) and ϕ(τ) are given as

V (ϕ)− 1 = 1
2pβ2τ2(p−1), ϕ = ±

√
p(p − 1)

2 log τ. (4.26)

This implies

V (ϕ) = 1 + 1
2pβ2e±

√
2(1−1/p)·2ϕ. (4.27)

In addition, we find easily µB vanishes. This potential corresponds to (2.35).

5 Cosmology from branes

The brane-world holography [21–23, 26] argues that the bulk gravity surrounded by a EOW
brane is dual to a lower dimensional gravity on the EOW brane with quantum effects taken
into account, where the gravity gets localized. From this viewpoint, time-dependent type
II brane solutions in AdS3 can be regarded as a model for mini-cosmology. The classical
brane dynamics in AdS3 is expected to describe a two dimensional quantum gravity in
cosmological spacetimes, such as the big bang and inflation. Therefore it is intriguing to
explore cosmological solutions in our brane model. In order to have a global viewpoint of
spacetime geometry, here we employ the global AdS3 coordinate:

ds2 = dρ2 − cosh2 ρdτ2 + sinh2 ρdϕ2. (5.1)

We insert an EOW brane along the trajectory ρ = R(τ), which also extends in the ϕ direction.
Two types of branes in the global AdS3 are specified by

Type I : R(τ) ≤ ρ,

Type II : 0 ≤ ρ ≤ R(τ).

We can write induced metric as follows:

ds2
Q = −(cosh2 R − Ṙ2)dτ2 + sinh2 Rdϕ2, (5.2)

where Ṙ = dR(τ)
dτ . Since we assume that the EOW brane is time-like in the bulk AdS3, we

require cosh2 R > Ṙ2. The normal vector and extrinsic curvature are

N = ϵ coshR√
cosh2 R − Ṙ2

(−dρ + Ṙdτ), (5.3)

Kabdxadxb = ϵ
sinhR(cosh2 R − 2Ṙ2) + R̈ coshR√

cosh2 R − Ṙ2
dτ2 − ϵ

cosh2 R sinhR√
cosh2 R − Ṙ2

dϕ2. (5.4)
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Again, ϵ = 1 and ϵ = −1 corresponds to the type I and II, respectively. The boundary
condition (2.3) can be written as follows:

ϕ̇2 = ϵ
(1− sinh2 R)Ṙ2 + coshR(R̈ sinhR − coshR)

2 sinhR
√
cosh2 R − Ṙ2

, (5.5)

V (ϕ) = −ϵ
cosh2 R(cosh2 R + sinh2 R)− Ṙ2(2 sinh2 R + cosh2 R) + R̈ sinhR coshR

2 sinhR(cosh2 R − Ṙ2)3/2 . (5.6)

The energy conservation like low is

sinhR

cosh2 R

(
ϕ̇2√

cosh2 R − Ṙ2
+ V (ϕ)

√
cosh2 R − Ṙ2

)
= −ϵ (5.7)

5.1 Brane cosmology

In order to construct a toy model of the expanding universe, we set a new coordinate by

dT =
√
cosh2 R − Ṙ2dτ (5.8)

which results in the FRW form induced metric

ds2
Q = −dT 2 + a(T )2dϕ2 (5.9)

with the scale factor a(T ) = sinhR(τ(T )).
Let us derive an analogue of Friedmann equation. Here, we denote a′(T ) = da

dT . The
first and second derivative of a are

a′(T ) = coshR
dR

dτ

dτ

dT
= Ṙ coshR√

cosh2 R − Ṙ2
(5.10)

a′′(T ) = d

dτ

(
Ṙ coshR√

cosh2 R − Ṙ2

)
dτ

dT
= R̈ cosh3 R − Ṙ4 sinhR

(cosh2 R − Ṙ2)2 (5.11)

To get the Friedmann equation we need the expression of the energy density ε and pressure p

in terms of R(τ). Before that, however, we also need to recall that physical energy-momentum
tensor is obtained by taking holographic renormalization. With this prescription, we subtract
the value of TQ when the brane is exactly on the asymptotic boundary, here it is ϵhab as
we check soon. Thus the energy-momentum tensor is T ab

holo := T ab
Q − ϵhab. Now, the energy

density ε and pressure p are defined as

T ab
holo (= T ab

Q − ϵhab ) =: ε ea
τ eb

τ + p ea
ϕ eb

ϕ (5.12)

where vierbein {ea
i } satisfies ηij = habe

a
i eb

j , equivalently ea
τ ∂a = 1√

cosh2 R−Ṙ2
∂τ , ea

ϕ∂a =
1

sinh R∂ϕ and there is a completeness relation hab = ηijea
i eb

j = −ea
τ eb

τ + ea
ϕeb

ϕ. Thus we get
following expression

ε − ϵ = (−ϵ) cosh2 R

sinhR
√
cosh2 R − Ṙ2

(5.13)

p + ϵ = (−ϵ)−R̈ coshR + 2Ṙ2 sinhR − sinhR cosh2 R

(cosh2 R − Ṙ2)3/2 (5.14)
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By combining (5.11), (5.13) and (5.14), we see that the Friedmann equation becomes sur-
prisingly simple form

a′′(T )
a

= R̈ cosh3 R − sinhR(2Ṙ2 cosh2 R − cosh4 R + (cosh2 R − Ṙ2)2)
sinhR(cosh2 R − Ṙ2)2

= −1− cosh2 R

sinhR
√
cosh2 R − Ṙ2

−R̈ coshR + sinhR(2Ṙ2 − cosh2 R)
(cosh2 R − Ṙ2)3/2

= −1− (−ϵ)(ε − ϵ) (−ϵ)(p + ϵ)
= −ϵ(ε − p)− εp. (5.15)

This is different from the well known Friedmann equation, it is because we used the Neumann
boundary condition instead of the Einstein equation.

As we noted in section 2, pure AdS3 satisfies 0 = ∇a(Kab − habK) = ∇aT ab
Q . Insert-

ing (5.12) into the right hand side results in the equation of motion

dε

dT
+ a′

a
(ε + p) = 0, (5.16)

which is the two dimensional version of ordinal cosmological equation of motion. The above
two equations (5.15) and (5.16) can be regarded as the fundamental equation of motion of
this cosmology. Note that these equations do not depend on the bulk coordinate, in fact
one can derive the same equation in Poincaré coordinate.

Below we would like to examine a few simple examples in the above cosmological
interpretation.

5.2 dS brane solution

First, consider the dS2 brane which is a solution in the absence of scalar field. The profile
is R(τ) = arcosh

[
cosh ξ
cos τ

]
. This is a solution of ϕ̇2 = 0, V = −ϵ/ tanh ξ, derived by using

Hyperbolic-slice coordinate (see appendix D). Energy density and pressure are

ε = ϵ

(
1− 1

tanh ξ

)
, p = ϵ

(
−1 + 1

tanh ξ

)
. (5.17)

5.3 Constant radius solution

Next we would like to consider the constant radius solution R(τ) = b, ϕ̇2 has finite value
so that the only possible setup is type II, and the boundary conditions (5.5) (5.6) are
written as follows;

ϕ̇2 = 1
2 tanh(b) (5.18)

V (ϕ) = 1
tanh(2b) (5.19)

The energy-momentum tensor is

T Q
ττ = cosh2 b

tanh b
b→∞−−−→ −hττ (5.20)

T Q
ϕϕ = − sinh2 b tanh b

b→∞−−−→ −hϕϕ (5.21)
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Under the b → ∞ limit, the brane is exactly on the AdS boundary. Here, the cosmological
data are a(T ) = sinh b and

ε = 1
tanh b

− 1, p = 1− tanh b. (5.22)

They are positive and vanishes when the brane is on the AdS boundary, while ϕ̇2 and V survive.

5.4 Big-bang like solutions

It is also intriguing to consider solutions which describe a creation of universe via big-bang
like phenomena. For this we focus on the small R behavior of type II brane by setting
R(τ) = 0 at τ = 0. We assume the profile

R(τ) ≃ Aτα, (5.23)

in the limit τ → 0. We need to require α ≥ 1 in order for the brane to be time-like.
First let us examine the case α > 1. Then we obtain from (5.5)

ϕ̇2 ≃ V (ϕ) ≃ 1
2Aτα

. (5.24)

This leads to

ϕ(τ) ≃ 2√
2A|2− α|

τ−α
2 +1. (5.25)

Then the potential looks like

V (ϕ) ≃ 1
2A

(√
2A

|2− α|
2 ϕ

) 2α
α−2

. (5.26)

In this way, the potential gets positively divergent at τ = 0 i.e. the big-bang of our mini
cosmology. Later the potential gets decreased and R increases. In order to keep the potential
finite at τ = 0, we need to consider the other possibility α = 1 where we have R(τ) ≃ τ .
The constant potential solutions, which will be studied in the next subsection, provide
such an example.

Now let us consider the other case α = 1. Adding the next order term, we assume
the profile:

R(τ) ≃ τ − Aτp. (5.27)

The time-like condition considered in the region τ ≃ 0 is as follows:

A > 0 (1 < p < 3) (5.28)
1 + 6A > 0 (p = 3) (5.29)

When p > 3, the EOW brane is automatically time-like near τ = 0. We obtain from (5.5)

ϕ̇2 ≃


√

Ap(p+1)
2
√

2 τ
p−3

2 (1 < p < 3)
√
1 + 6A (p = 3)

1 (3 < p)

(5.30)
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This leads to

ϕ ≃


(

4
√

2Ap
p+1

) 1
2 τ

p+1
4 (1 < p < 3)

(1 + 6A)
1
4 τ (p = 3)

τ (3 < p)

(5.31)

We also obtain from (5.6)

V (ϕ) ≃



3−p
p+1ϕ−2 (1 < p < 3)
−3A2−14A−2

2(1+6A)
3
2

− 4212A4+3024A3−1116A2−144A−1
144(1+6A)3 ϕ2 (p = 3)

−Ap(p−3)
2 ϕp−5 (3 < p < 5)

−(5A − 1) + 10800A2−480A+1
144 ϕ2 (p = 5)

1− Ap(p−3)
2 ϕp−5 (5 < p < 7)

1− 2016A−1
144 ϕ2 (p = 7)

1 + 1
144ϕ2 (7 < p)

(5.32)

If we add the higher term, V (ϕ) will change a little.
The cosmological scale factor is

a(T ) ≃ τ ≃



(
p−1√
4Ap

T
) 2

p+1 (1 < p < 3)(
2√

1+6A
T
)1/2

(p = 3)
(2T )1/2 (3 < p)

(5.33)

5.5 Constant potential solutions

As an important model for the mini cosmology, we would like to focus on the case where the
potential of the scalar field takes a constant value V (ϕ) = V and classify all possible solutions
for both type I and type II branes. Below we will present our numerical analysis which
exhausts all possible solutions. We sketched the summary of classification of solutions in
figure 10. In fact, analytical solutions are also available. However, to make our presentation
simpler, we will describe the analytical solutions in the appendix A (when V = 0) and
appendix B (when V ̸= 0). We also present brane solutions in Euclidean AdS3 in appendix C.

Before the explicit analysis, it is useful to first note that we need three initial conditions
i.e. R, Ṙ and ϕ at a fixed time. However, the initial value of ϕ can be set to zero because of
the obvious symmetry which shifts the value of ϕ as the potential is a constant. Moreover,
as the system has the time translational invariance, we can always shifts a solution in the
time direction. This removes one more parameter of the initial conditions. Thus non-trivial
solutions are parameterized by only one parameter.

5.5.1 Type II brane solutions

First, we consider the type II brane solution in the global AdS3 for a constant value of V

by numerically solving (5.6). We require the scalar field is real valued to obtain physical
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Solution

Unphysical 
Solution

Unphysical 
Solution

Unphysical 
Solution

Unphysical 
Solution

Figure 10. A sketch of profiles of physical solutions in type I (upper panels) and type II branes
(lower panels). The red colored regions describe the physical spacetimes inside the EOW branes.
The value R∗ denotes the radius where Ṙ vanishes. A physical solution in type I (or II) at V = V0
corresponds to a unphysical solution (i.e. ϕ̇2 < 0) at V = −V0 in type II (or I). We set R2 = R1

2 . If
V > 1 and R∗ > R1 for type II case, there is no solution of Ṙ = 0. Instead we study Ṙ > 0 at R = R∗
in this regime.

solutions. An important class of solutions can be found by imposing the initial condition
Ṙ = 0 and R = R∗ at τ = 0. We find at τ = 0:

R̈ = 2V cosh2 R∗ −
coshR∗(1 + 2 sinh2 R∗)

sinhR∗
= coshR∗

sinhR∗
(V sinh 2R∗ − cosh 2R∗) , (5.34)

which leads to

ϕ̇2 = 2 cosh2 R∗(coshR∗ − sinhR∗V )
2 sinhR∗

. (5.35)

Since ϕ̇2 ≥ 0, we get the important constraint at τ = 0:

V ≤ coshR∗
sinhR∗

. (5.36)

Thus it is useful to introduce R1 such that

V = coshR1
sinhR1

. (5.37)

Then for R∗ < R1, the condition (5.36) is satisfied. We also find that for R∗ > R1
2 (≡ R2),

we get R̈ > 0 and vice versa.
When V < 1, for any value of R∗, the condition (5.36) is satisfied and always we have

R̈ < 0 at τ = 0. Therefore we expect to have bouncing solutions, as depicted in figure 11.
Also this is consistent with the fact that in order to a type II brane to intersect at the AdS
boundary we need V ≥ 1, as we noted in section 2.2.
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Figure 11. The plot of R(τ) (blue) and ϕ̇2 (orange) as a function of τ for the initial condition R = 1
and Ṙ = 0 at τ = 0. We chose V = −1 (left), V = 0 (middle) and V = 1 (right). They are all
bouncing universe solutions.

-0.4 -0.2 0.2 0.4
t
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3.5

R(t)
V = 1.5, R = 0.3, R ' = 0

-1.5 -1.0 -0.5 0.5 1.0 1.5
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R(t)
V = 1.5, R = 0.7, R ' = 0

-1.0 -0.5 0.5 1.0
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1
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4

R(t)
V = 1.5, R = 1, R ' = 1

Figure 12. The plot of R(τ) (blue) and ϕ̇2 (orange) as a function of τ for the constant potential
V = 1.5. We chose the initial conditions (R, Ṙ) at τ = 0 of them to be (0.3, 0), (0.7, 0) and (1, 1)
in the left, middle and right panel, respectively. Note that for V = 1.5 we have R1 ≃ 0.805 and
R2 ≃ 0.402. The left graph describes a bouncing solution. In the middle one, the EOW brane reaches
the AdS boundary in the past and future. The right one corresponds to a big-bang like solution where
universe is created in the past.

When V ≥ 1, the brane can reach the AdS boundary R = ∞ at a finite time, as in the
dS2 branes. We find that for R∗ < R1

2 we get the bouncing solution as shown in the left panel
of figure 12, while for R1

2 < R∗ < R2 we get a time symmetric solution which reaches the
AdS3 boundary at both past and future (finite) time as in the middle panel of figure 12. For
R∗ > R1, we cannot find any solution with Ṙ = 0 at a time. Instead we can find a solution
which starts from a big bang like creation of universe i.e. R = 0 at an initial time and then
expands toward the AdS boundary within a finite time, depicted in the right panel of figure 12.

To better understand the properties of big-bang like solutions, it is helpful to examine
the behavior near R = 0. By studying the solutions near R = 0, we always find the behavior
R(τ) ≃ τ . By solving (5.6) as a power series of τ we obtain

R(τ) = τ − Aτ3 + 1
10
(
−2− 14A + 3A2 + 2 + 2

√
1 + 6A + 12A

√
1 + 6AV

)
+ O(τ7),

ϕ̇2 =
√
1 + 6A − 2√

1 + 6A

(
−1− 6A +

√
1 + 6AV + 6A

√
1 + 6AV

)
+ O(τ4). (5.38)

It is clear that this is a physical solution ϕ̇2 > 0 for any A > −1
6 . A = −1

6 corresponds to
the null solution where the brane becomes light-like.
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5.5.2 Type I brane solutions

Now we turn to the constant potential solution of type I branes. We can relate type I brane
solutions to the previous analysis of type II by replacing V with −V and ϕ̇2 with −ϕ̇2. The
latter means that a real value scalar field in type I (or II) becomes an imaginary one in type
II (or I). Below we focus on the real valued solutions for type I branes.

Again let us try to find solutions under the initial condition Ṙ = 0 and R = R∗ at
τ = 0. Then we obtain

R̈ = −coshR∗
sinhR∗

(V sinh 2R∗ + cosh 2R∗) ,

ϕ̇2 = −2 cosh2 R∗(coshR∗ + sinhR∗V ))
2 sinhR∗

. (5.39)

The non-negativity of the above equation gives the important constraint

V ≤ −coshR∗
sinhR∗

. (5.40)

Thus it is useful to introduce R1 such that

−V = coshR1
sinhR1

. (5.41)

Then we find R̈ > 0 if R∗ > R1
2 and vice versa.

In order to find a real valued solution we need V ≤ −1 as is clear from (5.40). We can
numerically confirm that when V > −1, there is no solution at all. Thus we focus on the
V ≤ −1 case. For R∗ > R1, we can find a time symmetric solution where we have R = ∞
at τ = τ̃ and τ = −τ̃ , where τ̃ is finite. This is depicted in figure 13. We cannot find any
other types of solutions in type I brane for a constant V . Indeed, there is no big-bang like
solution of the form (5.38) as the sign of ϕ̇2 flips.

We summarized the profiles of type I and II branes in figure 10. It is useful to note
that in order to end on the AdS3 boundary we need V ≤ −1 for type I brane and V ≥ 1
for type II brane. At V = −1, there is only the constant scalar solution in type I, while at
V = 1, there is non-trivial solution with scalar in type II.

6 EOW branes with boost symmetry

In this section, we assign boost symmetry on EOW branes in Poincaré coordinate, while we
have assigned translational symmetry in section 2. The EOW brane is defined as hypersurface
z = Z(ρ), where ρ =

√
|t2 − x2|. To distinguish whether the brane lies in region t2 > x2 or

x2 > t2, we introduce σ := sign(t2 − x2). In each region, the metric and induced metric are

ds2 = dz2 − σ(dρ2 − ρ2dη2)
z2 → −σ(1− σZ ′2)dρ2 + σρ2dη2

Z2 (6.1)

Here we denoted Z ′ := dZ
dρ . Note that when σ = 1 the time-like condition requires 1−Z ′2 > 0,

but when σ = −1 the brane is automatically time-like and there is no extra condition on
the function Z(ρ).
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Figure 13. The plot of R(τ) (blue) and ϕ̇2 (orange) as a function of τ for the type I brane with the
initial condition R = 1 and Ṙ = 0 at τ = 0 for V = −1.5.

Normal vector is

N = χ
dz − Z ′dρ

Z
√
1− σZ ′2

. (6.2)

Here we express the direction of normal vector using χ = ±1. This works in the same
way as ϵ = ±1 have done so far, but its physical meaning is ambiguous since we cannot
classify this setup based on whether it has AdS boundary or not. The normal vector leads
to the extrinsic curvature

Kabdxadxb = χ
{σ(1− σZ ′2)− ZZ ′′}dρ2 + (−σρ2 + ρZZ ′′)dη2

Z2
√
1− σZ ′2

. (6.3)

Therefore the Neumann boundary condition is

ϕ′2 = 1
2(Kρρ − hρρhηηKηη) = χ

(1− σZ ′2)Z ′ − ρZ ′′

ρZ
√
1− σZ ′2

(6.4)

V = 1
2K = χ

2ρ(1− σZ ′2)3/2 [σρZZ ′′ + (σZZ ′ − 2ρ)(1− σZ ′2)]. (6.5)

The NEC is satisfied when (1 − σZ ′2)Z ′ − ρZ ′′ = 0, which is easily solved as

Z ′(ρ) = ρA√
1 + σρ2A2 (6.6)

where A is constant. As an generalization we allow A to be function A = A(ρ), which
leads to boundary condition

ϕ′2 = −χρA′(ρ)
2Z(ρ)(1 + σρ2A2(ρ)) , (6.7)

and some more complicated expression of V .
In this setup, let us discuss some examples which can be constructed by analytical

continuation of Euclidean versions [38].
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Floating ‘sphere’. When we define the brane as Q : −t2 +x2 +(Z −a)2 = R2, the boundary
condition is solved as

ϕ′2 = 0, V = a

R
, (6.8)

so this is a consistent solution. This brane contains the two region σ = ±1, in both region
arbitral function is related to the radius A = 1

R .

‘cone’. Defining as Q : Z(ρ) = aρ, we think of it as reside in region σ = −1. The normal
vector and boundary conditions are

N = χ
dz − adρ

aρ
√
1 + a2

, (6.9)

ϕ′2 = χ

√
1 + a2

ρ2 , V = −χ
(2 + a2)

2(1 + a2)1/2 . (6.10)

Thus χ = +1, which concludes that the spacetime resides between the brane and AdS
boundary. Note that the singularity at ρ = 0 is contained in the arbitral function A = a

ρ
√

1+a2

Floating ‘torus’. Another example is Q : (ρ − R)2 + (Z(ρ) − b)2 = a2 ⇔ Z(ρ) = b ±√
a2 − (ρ − R)2. We choose σ = −1. The normal vector is

N = χ

Z
√
1 + Z ′2

(
dz + ρ − R

Z − b
dρ

)
(6.11)

The arbitral function is A(ρ) = ±R−ρ
aρ , where ± coincides with the sign of Z(ρ) − b. One

boundary condition (6.7) is

ϕ′2 = ±χ
aR

2ρZ(Z − b)2 . (6.12)

So χ = +1 for Z − b > 0 and χ = −1 for Z − b < 0, which indicates that the spacetime
is inside of the ‘torus’. Potential is

V (ρ) = b

a
− R

2aρ

(
b ±

√
a2 − (ρ − R)2

)
(6.13)

7 Conclusions and discussions

In this paper, we studied the time-dependent dynamics of end-of-the-world (EOW) branes
in AdS backgrounds, mainly focusing on the three dimensional AdS (AdS3). Our important
ingredient is to put a scalar field ϕ on the EOW brane, though the bulk gravity is the pure
gravity, which allows us to keep the theory solvable. We note that the bulk gravity couples
to the localized scalar field ϕ through the Neumann boundary condition imposed on the
brane. Thus, we can see the scalar field changes brane setups, which enables us to extract
rich brane dynamics, which looks like a mini-cosmology.

When the brane intersects with the AdS boundary, this provides an example of the
AdS/BCFT correspondence. When it does not, we can view this as a quantum gravity model
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Figure 14. Plots of analytically continuated branes. The blue part (t > 0) are our solutions and the
orange part (t < 0) are corresponding Euclidean branes. (Left) The ‘sphere’ is described by setting
(a, R) = (1.5, 1.0), we can freely choose the spacetime to be upper or lower side of the brane. (Center)
The ‘cone’ is described by setting a = 1.0, its spacetime is lower side of the brane. (Right) The ‘torus’
is described by setting (a, b, R) = (1.0, 1.5, 1.5), its spacetime is in the ‘torus’.

of mini-cosmology on the brane, dual to the classical gravity in the bulk region surrounded
by the brane, assuming brane-world holography. In the former case, there are two types
of brane configurations: type I and type II as depicted in figure 1, while in the latter case,
we can only allow the type II brane.

When the brane intersects with the AdS boundary, the bulk gravity surrounded by the
brane and AdS boundary is dual to a boundary conformal field theory (BCFT) on a lower
half plane as shown in figure 2, which has a boundary at t = 0. Such a setup with a space-like
boundary has not been studied well till now because it violate basic properties of quantum
field theories such as the causality. However, a space-like boundary in the type I brane can
be regarded as a final state projection and is expected to be important in order to embed
quantum information theoretic operations into quantum field theories. In the type II brane,
we may more properly interpret the setup as a CFT on a lower half plane coupled to a gravity
in a dS. We believe these themselves deserve future studies also from field theory sides, for
which our holographic results provide predictions.

Without the localized scalar field, the time-like world-volume of the brane becomes a
de Sitter space (dS), assuming the translational invariance in the space direction. Thus we
can regard the scalar field as a matter field in the dS gravity. We used this setup to embed
the dS/CFT into a higher dimensional AdS/CFT. We found that if we assume the null
energy condition in this embedding in AdS/CFT, then we have a strong constraint on the
spectrum in dS/CFT such that the conformal dimension takes real values and the mass M of
a scalar field on the dSd with a radius RdS is bounded as M2R2

dS ≤ (d−1)2

4 . We also construct
fully back-reacted solutions, with various scalar field profiles, each of which can be viewed
as examples of the dS/CFT. In order to see the relation between the EOW brane setups
and the potentials, we put figures of them in each example.

In the BCFT side, the scalar field perturbations for type I branes can be regarded as RG
flows. We derived a monotonicity property in field theories with a space-like boundary, which
is analogous to the g-theorem in the time-like boundary case, by employing our holographic
descriptions with the null energy condition imposed. Interestingly, this time-like g-theorem
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works also for type II brane, which predicts a monotonicity property in a system of a CFT
coupled to a dS gravity.

In the latter half of this paper, we investigated cosmological properties of our brane model
in AdS3. First we noted that when the curvature of the brane is small, the effective action of the
two dimensional quantum gravity on the brane is given by the Liouville gravity with a scalar
field matter. This clarifies how the brane-world holography looks like in our brane model.

In order to make mini-cosmology models, we extensively studied the time-dependence of
brane solutions in global AdS3 geometry. We were able to rewrite the equation of motion of
branes in terms of Friedman like equation, which governs how the two dimensional spacetime
evolves, by introducing energy density and pressure. We also found that the big-bang like
solutions are possible for suitable choices of the potential V (ϕ). We also exhaust all solutions
when the potential V takes a constant value as summarized in figure 10, by both numerical
and analytical calculations. For type II branes, we can have varieties of solutions depending
on the value of V : (a) a universe is created by a big-bang and is later shrunk to zero size,
ended up with a big-crunch, (b) a time symmetric universe which has a minimum radius
in the middle, and (c) after a universe is created at the big-bang, it expands to a infinite
size one to reach the AdS boundary. For type I branes, we can only find a universe which
is created at the AdS boundary, expands for a while and finally disappears by intersecting
again with the AdS boundary.

It will be an interesting future problem to push such brane models further in higher
dimensions towards constructing realistic models of cosmology. In particular, it would be
intriguing to better understand the quantum gravity effect in big-bang singularities as our
holographic model can describe a quantum gravity in spacetime with a singularity in terms
of a classical gravity in a smooth higher dimensional spacetime with a conical brane. It is
intriguing to note that the conical singularities in BTZ black holes turn out to be deformed
to a geometry with a horizon in the AdS4 brane-world model [68]. This may motivate us
to study our brane with the scalar field in higher dimensions.
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A Analytical solutions at V (ϕ) = 0

Let us consider the case V (ϕ) = 0 in the type II brane in global AdS3. By setting V = 0
in (5.6), we find

R̈ = 2 sinh2 R + cosh2 R

sinhR coshR
Ṙ2 − coshR

sinhR
(cosh2 R + sinh2 R), (A.1)

where Q̇ = dQ
dt . We can rewrite this as

d

dt

(
Ṙ

cosh2 R sinhR

)
= −cosh2 R + sinh2 R

sinh2 R coshR
. (A.2)
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By introducing y(t) such that

ẏ = Ṙ

cosh2 R sinhR
, (A.3)

the equation of motion (A.2) can be rewritten as

ÿ = −cosh2 R + sinh2 R

sinh2 R coshR
. (A.4)

We can solve (A.3) as

y = log tanh R

2 + 1
coshR

. (A.5)

In R → 0, we find y ≃ 1 + log R
2 → −∞. In R → ∞ limit we have y ≃ −8

3e−3R.
Then (A.4) can be rewritten as

ÿ = −dU(y)
dy

, (A.6)

where the potential U(y) is given by

U(y) = − 1
2 sinh2 R cosh2 R

. (A.7)

In the y → 0 limit we find U(y) ≃ −8
(
−3y

8

) 4
3 . On the other hand, in the limit y → ∞

we obtain U(y) ≃ −1
8e2−2y.

The energy conservation tells us

1
2 ẏ2 + U(y) = E0. (A.8)

For this trajectory we can evaluate

cosh2 R − Ṙ2 = −2E0 cosh4 R sinh2 R. (A.9)

Since this should be positive to get the time-like brane and this requires E0 < 0. Thus we
get the bounce solution as sketched in the left panel of figure 15. This describes a closed
universe with big-bang and big-crunch singularity as depicted in the right panel of figure 15.

The scalar field profile is also given by

ϕ̇2 = coshR2

sinhR

√
coshR2 − Ṙ2 =

√
−2E0 cosh4 R. (A.10)

Finally we turn to the case V ((ϕ) = 0 in the type I case. The equation of motion of
R(t) is identical to the type II one and we get (A.9). However, for the type I brane, we find
ϕ̇2 < 0. Thus there is no real value solution in the type I case.
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U(y）

y
0
E0<0

R=∞R=0

Global 
AdS3

Type II brane

Figure 15. The sketch of the bounce solution in the potential U(y) (left panel) and the type II brane
in global AdS3 (right panel).

B Analytical solutions at V (ϕ) ̸= 0

In this section, we will explore the analytical solution for V ̸= 0 of type II brane. To do this,
it is convenient to parametrize the brane as t = T (ρ), since the equation of motion of the
EOW brane, a second-order differential equation with respect to T (ρ), does not explicitly
depend on T (ρ) itself due to time-translational symmetry of global AdS. In other words, the
equation of motion is just a first-order differential equation with respect to S(ρ) := T ′(ρ).

The induced metric on the brane is given by

ds2 = −(S2 cosh2 ρ − 1)dρ2 + sinh2 ρdϕ2. (B.1)

Because the EOW brane is a time-like surface, we demand S cosh ρ ≥ 1. Note that, due
to time-reversal symmetry, it is safe to assume S > 0 without loss of generality. For later
convenience, we define

coshH(ρ) := S(ρ) cosh ρ. (B.2)

Using H(ρ) the normal vector is taken as

Nµ =
( 1
tanhH

,
1

sinhH cosh ρ
, 0
)

. (B.3)

Additionally, the extrinsic curvature and the stress tensors are

Kρρ − Khρρ = sinh(2H)
2 tanh ρ

, Kϕϕ − Khϕϕ = sinh2 ρ

sinh2 H

(
H ′ − 1

2 tanh ρ sinh(2H)
)

(B.4)

and
Tρρ = ϕ′2 + V sinh2 H, Tϕϕ = sinh2 ρ

sinh2 H

(
ϕ′2 − V sinh2 H

)
. (B.5)

Hence, we obtain the equation of motion of the brane

H ′ = sinh(2H)
tanh(2ρ) − 2V sinh2 H. (B.6)

Fortunately, this equation reduces to

d

dρ

(
V cosh(2ρ)− sinh(2ρ)

tanhH

)
= 0. (B.7)
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Therefore, using some constant V0, which will be determined later, we find the solution

V cosh(2ρ)− sinh(2ρ)
tanhH

= V0. (B.8)

Finally, T (ρ) is obtained by integrating S(ρ):

T (ρ) =
∫

dρS(ρ) =
∫

dρ
V cosh(2ρ)− V0

cosh ρ
√
(V cosh(2ρ)− V0)2 − sinh2(2ρ)

. (B.9)

The above equation can be integrated analytically and the result is a linear combination
of F (Θ|m) and Π(n; Θ|m), which are the incomplete elliptic integrals of the first kind and
the third kind:

T (ρ) = αF (Θ(ρ)|m) + βΠ(n; Θ(ρ)|m) + t̃. (B.10)

Here Θ(ρ) depends on ρ, while α, β, n and m are constant and we set t̃ = 0.
The derivative ϕ′ of the brane scalar is given by

ϕ′2 = 1
2

(
H ′ + sinh 2H

sinh 2ρ

)
. (B.11)

Using (B.8), we obtain the derivative of the brane scalar with respect to t as

ϕ̇2 = ϕ′2

S2 = 2 cosh4 ρ

(V cosh(2ρ)− V0)2 (V − V0). (B.12)

Therefore, the sign of ϕ̇2 is determined by V − V0.
To determine V0, we impose two kinds of boundary conditions. The first corresponds to

the case where, at t = 0, the gradient dρ/dt = 0, i.e., at ρ = R∗, S(ρ) diverges. The second
is the case where, at t = 0, the brane shrinks, i.e, T (ρ = 0) = 0. The former corresponds
to R∗ < R1, while the latter corresponds to R∗ > R1 in figure 10.

For the first condition, since S(ρ = R∗) diverges, we find

V0 = V cosh(2R∗)− sinh(2R∗). (B.13)

In this case, coefficients and Θ(ρ) are

α = sinhR∗(coshR∗ − V sinhR∗)√
V sinh(2R∗)− cosh(2R∗)

, β = sinh2 R∗(V − tanhR∗)√
V sinh(2R∗)− cosh(2R∗)

, (B.14)

n = 1
cosh2 R∗

, m = − (coshR∗ − V sinhR∗)2

V sinh(2R∗)− cosh(2R∗)
, (B.15)

cosΘ(ρ) = sinhR∗
sinh ρ

. (B.16)

Furthermore, since V − V0 = 2 sinhR∗(coshR∗ − V sinhR∗), we find that the scalar ϕ is real
if coshR∗ − V sinhR∗ > 0. This result is consistent with (5.35).

– 36 –



J
H
E
P
0
3
(
2
0
2
5
)
1
3
5

Move on to the second boundary condition. To obtain finite V0, we assume

sinh(2ρ)
tanhH(ρ) → κ < ∞, (B.17)

as ρ → 0. In other words, we assume T (ρ) behaves

T (ρ) ≃ ρ + 1− κ2

6κ2 ρ3 + O(ρ4). (B.18)

Note that the coefficient of ρ3 is always bigger than −1/6. Now V − V0 = κ and the
corresponding coefficients and Θ(ρ) are

α = −κV 2 + κ + 2γV − 2V

2 (γ − V 2)
√

κV − γ
, β = (γ − 1)(κ − 2V )

2 (γ − V 2)
√

κV − γ
, (B.19)

n = V 2 − γ

V 2 − 1 , m = 2 + κV − 1
γ − κV

, (B.20)

tanΘ(ρ) = 2
√

κV − γ

κ
sinh ρ, (B.21)

where we use

γ := κV + 1 +
√

κ2 − 2κV + 1
2 . (B.22)

C Constant potential Euclidean solutions

Here we would like to analyze the solutions of type I and II branes in the Euclidean AdS3
assuming the potential is a constant V (ϕ) = V . To study this problem, we perform the Wick
rotation of the Lorentzian global AdS3 (5.2), by introducing the Euclidean time τE = iτ :

ds2 = dρ2 + cosh2 ρdτ2
E + sinh2 ρdϕ2. (C.1)

The brane equation of motion can also be found by setting τ = it in the Lorentzian one (5.5).
One motivation to consider the Euclidean brane solution is to set the initial condition of

the Lorentzian brane solution studied in section 5.5,as we normally do in the Hartle-Hawking
prescription of cosmological models. In the absence of scalar field, we have the simplest
example, namely the dS2 brane solution given by

sinh2 ρ

sinh2 ξ
− tan2 τ

tanh2 ξ
= 1, (C.2)

where ξ is a positive constant. We can regard this solution for τ > 0 emerges from the
semi-sphere Euclidean brane solution

sinh2 ρ

sinh2 ξ
+ tanh2 τE

tanh2 ξ
= 1, (C.3)

for the period −η ≤ τE ≤ 0.
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Figure 16. The plot of R(τE) (blue) and
(

dϕ
dτE

)2
(orange) as a function of τE for the type I brane

with the initial condition R = 1
2 and Ṙ = 0 at τE = 0 for V = −1.5 (left) and V = 0 (right).

To start, let us ask if we can construct solutions with R = 0 at a time as such a
Euclidean solution provides an instanton which creates two dimensional universe. However, a
straightforward analysis of (5.5) shows that the only possible solution looks like

R(t) ≃
√

2
−ϵV

√
τE + O(τ3/2

E ), (C.4)

where ϵ = 1 and ϵ = −1 correspond to type I and II, respectively. In this solution, the scalar
field turns out to be vanishing and thus this is identical to the semi-sphere solution (C.3).
Therefore we cannot construct any Euclidean instantons which create universe with a non-
trivial scalar field as long as V (ϕ) is a constant.

Now we turn to time symmetric solutions which have a point with Ṙ(≡ dR
dτE

) = 0 at a
specific time, which we set τ = 0. As in section 5.5, we define

V = −ϵ
coshR1
sinhR1

, (C.5)

and R2 = R1
2 .

First consider type I branes. When V < −1, we can construct oscillating solutions under
R∗ < R1, as depicted in the left panel of figure 16, which have the sign ϕ̇2 > 0 and for
R∗ > R1, we can only find singular solutions with ϕ̇2 < 0. Figure 18 shows the profile of
this singular brane, which is terminated in the middle. It is useful to note that when Ṙ = 0
we have R̈ > 0 (or R̈ < 0) for R < R2 (or R > R2) and indeed the oscillation is around
R = R2. On the other hand, when V > −1 we can find solutions ϕ̇2 > 0 with which reach
the AdS boundary in the past and future as depicted in the right panel of figure 16. Note
that in order to continue to a Lorentzian solution with a real valued scalar field at t = 0
we need ϕ̇2 ≤ 0 in the Euclidean solution.

To obtain results for type II branes, we can simply replace V → −V and ϕ̇2 → −ϕ̇2

and thus we omit the details. The final summary of classification of all possible solutions
in type I and II branes is provided in figure 17.
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Type I 
branes

Type II 
branes

V<-1

V>1

V>-1

V<1

R*>R1

R*=any0<R*<R1

0<R*<R1

ሶ𝝓𝟐 > 𝟎

ሶ𝝓𝟐 < 𝟎 ሶ𝝓𝟐 < 𝟎

R*=any

ሶ𝝓𝟐 > 𝟎ሶ𝝓𝟐 < 𝟎

R*>R1

ሶ𝝓𝟐 > 𝟎

Figure 17. A sketch of profiles of Euclidean solutions in type I (upper panels) and type II branes
(lower panels). The red colored regions describe the physical spacetimes inside the EOW branes. The
value R∗ is the radius where Ṙ = 0. The Euclidean solution with ϕ̇2 < 0 can have a real valued
scalar solutions in the Lorentzian continuation and they are colored in green. In the case R∗ > R1
for V < −1 (type I) and V > 1 (type II), we find only singular branes which are terminated in the
middle as in figure 18.

Figure 18. The profile of Euclidean type I brane at V = −1.2 and R = 2. In the regime R∗ > R1,
the EOW brane curves inwards strongly and is terminated at that point.
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D Hyperbolic slice

Consider the Hyperbolic slice in a Global AdS3:

ds2 = dη2 + sinh2 η(−dt2 + cosh2 tdϕ2). (D.1)

This coordinate (t, η) is related to the global coordinates (τ, ρ) via

sinh ρ = cosh t sinh |η|, tan τ = tanh η sinh t (D.2)

We insert EOW brane along the trajectory η = H(t), which also extend in the ϕ direction.
Two types of global AdS3 are

Type I: 0 ≤ |η| ≤ H(t),
Type II: |η| ≥ H(t). (D.3)

We can write induced metric as follows:

ds2 = −(sinh2 H − Ḣ2)dt2 + sinh2 H cosh2 tdϕ2, (D.4)

where Ḣ = dH(t)
dt . Since we assume that the EOW brane is time-like in the bulk AdS3,

we require sinh2 H > Ḣ2. Since induced metric is diagonal, the null energy condition is
also ϕ̇2 ≥ 0.

We choose the normal vector to be

Na = ϵ
sinhH√

sinh2 H − Ḣ2

(
1,−Ḣ, 0

)
, (D.5)

where ϵ = ±1. When ϵ = 1 (or ϵ = −1), N has a positive (or negative) direction on the
z axis, which is a type I (or type II) set up.

This leads to

Ktt = ϵ
2Ḣ2 coshH − sinhH(coshH sinhH + Ḧ)√

sinh2 H − Ḣ2
, (D.6)

Kϕϕ = −ϵ
cosh t sinhH(cosh t coshH sinhH + Ḣ sinh t)√

sinh2 H − Ḣ2
, (D.7)

Ktϕ = 0. (D.8)

The boundary condition (2.3) can be written as follows:

ϕ̇2 = ϵ
sinhH

(
−Ḧ + Ḣ tanh t + Ḣ2 cothH − Ḣ3 tanh tcsch2H

)
2
√
sinh2 H − Ḣ2

, (D.9)

V (ϕ) = ϵ

(
sinhH

(
Ḧ − Ḣ

(
3 cothH + Ḣcsch2H tanh t

)
+ sinh 2H

))
2
(
sinh2 H − Ḣ2

)3/2 . (D.10)

We obtain a simple example, V (ϕ) = const. We choose

H(t) = ξ. (D.11)
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The boundary conditions (D.9), (D.10) are written as follows;

ϕ̇2 = 0 (D.12)
V (ϕ) = coth ξ (D.13)

Thus the behavior of the scalar field is

ϕ = const. (D.14)

This is the important example because it can be both type I and type II.
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