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A stochastic approach to galactic propagation
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Abstract: We present a newly developed numerical code solving general Fokker-Planck type transport equations by
means of stochastic differential equations in four (space and momentum) dimensions and time. Besides propagation the
code is capable of describing the full diffusion tensor as well as particle sources and sinks. The approach was to design
the code very general and flexible, so that it can be applied to a large variety of physical problems. Adaption to graphics
cards within the CUDA framework significantly improves the performance. Here, we apply our code to the propagation
of cosmic ray protons in the Galaxy. Special account is devoted to the spiral arm structure and the consequence for
turbulence and, thus, for the diffusion process, leading to different diffusion tensors within and outside of the spiral arms.
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1 Introduction

The propagation of cosmic rays (CR) in the galaxy (or the
heliosphere) is described by the Fokker-Planck type trans-
port equation
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Here, f = f(7,q,t) is the distribution function depending
on the three spatial coordinates, , the momentum ¢ (or al-
ternatively the particles’ rigidity or energy), and ¢ denotes
the time. The velocity has been split here into a conser-
vative (V) and a non-conservative (W) contribution to the
transport equation. Further quantities are the (spatial) dif-
fusion tensor, K, the momentum loss term, €2, the momen-
tum diffusion coefficient, D, the linear term, L, describ-
ing catastrophic losses and the source term, S. In addi-
tion, initial and boundary conditions have to be specified.
Stochastic differential equations (SDE) have been used to
model the propagation of CR in the heliosphere [8] and re-
cently also to the galaxy [4]. We present a new, versatile
code based on SDE to solve Fokker Planck type equations
in up to three spatial dimension, momentum and time.

2 Stochastic Differential Equations

A stochastic differential equation describes the time evolu-
tion of a stochastic process. For our purposes we can con-

sider this process as the propagation (e.g. [2]) of a pseudo
particle (or phase space element) and thus the SDE

dr = Adt + B - dW, ©)

as its propagation equation, where dt is the time step. r
stands for the four-dimensional vector (7,¢), and A is a
four-dimensional propagation or convection vector, while
B is a 4 x 4 tensor representing the diffusive part in Eq. (1).
The quantity dW is a Wiener process, usually written as

dW = V/dth A3)

with h being a four-dimensional vector of normally (i.e.
Gaussian) distributed random numbers h;, i = 1,...,4 in
the range (—o0, 00). If, as it is the case in Eq. (1), there is
no coupling between spatial and momentum diffusion, the
SDE can be split into two parts:

P = A.dt+ B, -dW, (4a)
dg = Agdt+ BydW,, (4b)

where the momentum diffusion is a scalar contribution,
while the spatial part consists of a 3 x 3 tensor (cf. [6]). In
this case B, has to satisfy the relation B,!B, = K + K,
where the symmetry of the second order derivatives of f
was employed.

In contrast to traditional finite-difference or finite-volume
schemes, SDEs can be integrated forward or backward in
time, depending on the actual physical application, e.g. the
form of the particle sources, S. While the SDE is the same
for both directions of integration, the corresponding trans-
port equation changes. For the integration forward in time,
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the transport equation has to be written in a fully conserva-
tive form, while that for the time-backward integration has
to be fully non-conservative. For the general form, e.g. also
applicable to curvilinear coordinates, the resulting forms of
transport equation (1) read:

e Time-forward equation:
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e Time-backward equation:
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For technical details like the numerical realization of the
source (,S) and loss (L) terms or the binning process to ob-
tain the distribution function from the SDE solutions (tra-
jectories) we refer to [3].

3 Galactic propagation

As a first test for our new code, we compare the results of
our code with those obtained by [1]. In this case, Eq. (1)
reduces to

of
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where k is the coefficient of spatial diffusionand 7' the
time-scale of catastrophic losses. As in [1], we approxi-

mate continuous losses as catastrophic losses:

Tcont (p) = E . (8)

Where B is the rate of momentum loss.

As in [1], we consider a cylindrical diffusion volume of ra-
dius R = 15kpc and height 2H = 4kpc (see e.g. [5]
and references therein). For the distribution of the inter-
stellar gas, we assume a distribution of the interstellar gas
that only depends on the distance from the Galactic disc

w o ng/cosh (zhy) with ng = 1.24ecm=3, h,=30kpc~!
The diffusion coefficient
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(q is here the particle rigidity) with kg = 0.027kpc’*Myr—*
and gy =4 GV/c is also assumed to be independent of r and
®.

The galactic CR proton density was calculated assuming
the CR originate in SN 130001 events, which cluster in the
spiral arms, where we adopted the geometry of the spiral
structure from [7]. Each source was modeled as a sphere of
radius of 20 pc with lightcurve and spectrum

S = ag(t—ti)exp(l—ag(t—1t;))O(t—t;)qg >,
(10)

where ¢; is the time of explosion of the ith supernova. For
the sake of simplicity, as in [1], we here keep the spiral
arm pattern fixed and calculate the CR proton flux along
the Sun’s path around the Galaxy.

4 Results

We calculated the CR density for different times at one
position inside the spiral arm, using the time-backward
method. For each point, a total of 20000 pseudo particles
was traced. The same source distribution as in [1] was used.
In Fig. 1, we compare the temporal variation of the density
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Figure 1: Temporal variation of the density of 1 GeV CR
protons inside a spiral arm. Solid line: calculated as de-
scribed in [1], dotted line: new SDE code.

of 1 GeV CR protons inside a spiral arm computed as de-
scribed in [1] to results obtained with our new code. As is
apparent in Fig. 1, the SDE solution follows the solution of
[1], but does not fully reproduce it. This discrepancy is ex-
pected, as the SDE code treats the CR sources as spheres,
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whereas in [1] the sources are defined on single points in
the z grid, but are more extended in 7, ¢ directions owing
to the Fourier Bessel ansatz ([1] give a resolution of 75 pc
in galactocentric radius r and azimuth ¢ at the position of
the Sun).

Fig. 2 shows the spectra by [1] and those of the new SDE
code in the left and right column, respectively, where the
upper panels show the spectra in the inarm regions, while
the lower ones depict the spectra in the interarm regions.
Both codes show quite similar results, differences occur
mainly due to the different treatments of the sources: while
the code used by [1] described the sources as flat disks with
a high 80 pc and a diameter of 160 pc, the new SDE code is
capable of representing them as spheres with a radius of 30
pc, highlightening the importance of a realistic representa-
tion of nearby sources for a suitable modelling of the local
interstellar spectrum.

5 Conclusions

We presented a newly developed code that solves gen-
eral Fokker-Planck type transport equations by means of
stochastic differential equations in up to four (space and
momentum) dimensions and time. First results reproduc-
ing the calculations of [1] show reasonable agreement as
expected. The differences in the results are expected due to
the different numerical treatment of the point like sources
in the two calculations. Besides scalar propagation the code
is capable of describing the full diffusion tensor as well as
particle sources and sinks.
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Figure 2: Comparison between the results of [1] (left column) and that obtained with the new code (right column). The
upper and lower panels show the spectral variation in the inarm and interarm regions, respectively.
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