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The behaviour of the interaction of the induced electric
dipole moment of an atom with a uniform magnetic
field and a non-uniform electric field are investigated
in a rotating reference frame. An interesting aspect of
this interaction is that it gives rise to an analogue of
a spinless particle subject to the doubly anharmonic
oscillator. Then, it is shown that analytical solutions
to the Schrödinger equation can be obtained. Another
point raised is that the quantum effects on the induced
electric dipole moment can be observed if the uniform
magnetic field possesses a discrete set of values.

1. Introduction
In recent decades, several studies have reported effects
on quantum systems due to the interaction with a
field configuration established by crossed magnetic and
electric fields. Examples of these studies are the quasi-
Landau behaviour in atomic systems [1,2], geometric
quantum phases [3,4], large electric dipole moments
[5] and systems of atoms and molecules [6–14]. In
particular, based on a field configuration of a uniform
magnetic field and a radial electric field produced by a
uniform volume distribution of electric charges inside
a non-conductor cylinder, it has been shown in [15]
that the Landau levels of an atom with an induced
electric dipole moment can be obtained. Recently, the
field configuration proposal of Furtado et al. [15] has
been extended to investigate effects in quantum rings
[16] and in rotating reference frames [17–19]. It is worth
mentioning that this radial electric field produced by a
uniform volume distribution of electric charges inside a
non-conductor cylinder has been proposed in [20] with
the aim of discussing the quantum Hall effect for neutral
particles with a permanent magnetic dipole moment.
Further, this radial electric field has been used in

2018 The Author(s) Published by the Royal Society. All rights reserved.
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studies of the scalar Aharonov–Bohm effect for a neutral particle with an electric quadrupole
moment [21] and the arising of a Coulomb-like potential in a neutral particle system with a
magnetic quadrupole moment [22].

Another point of view of the interaction between quantum systems and external fields is the
presence of a non-uniform electric field. In [21], bound states solutions to a neutral particle with
an electric quadrupole moment that interacts with an electric field produced by a non-uniform
distribution of electric charges inside a non-conductor cylinder are discussed. In [23,24], Landau
levels and rotating effects are investigated in a magnetic quadrupole moment system. In this
work, we discuss the interaction of a neutral particle with an induced electric dipole moment
with a field configuration given by a uniform magnetic field and a non-uniform electric field. In
addition, we consider a rotating frame. We show that this interaction gives rise to an analogue of
the doubly anharmonic oscillator [25,26]. By following the study of Flessas & Das [25], the doubly
anharmonic oscillator is given by the scalar potential:

V(r) =� r2 + λr4 + ηr6, (1.1)

where η > 0 and r =
√

x2 + y2 is the radial coordinate. In field theory, the doubly anharmonic
oscillator has been dealt with the perturbation theory [27–32]. From these studies, analytical
solutions to the Schrödinger equation for the doubly anharmonic oscillator have been
investigated in [25,33–36].

The structure of this paper is: in §2, we introduce the quantum description of a neutral
particle with an induced electric dipole moment in a rotating reference frame. We consider a
field configuration given a uniform magnetic field and a non-uniform electric field. Then, we
show that the interaction of the induced electric dipole moment of the neutral particle with this
crossed magnetic and electric fields gives rise to an analogue of the doubly anharmonic oscillator
potential (1.1). Finally, we show that the Schrödinger equation can be solved analytically; in §3,
we present our conclusion.

2. Analogue of the doubly anharmonic oscillator
In recent years, several works have analysed the effects of rotation on non-relativistic quantum
systems [17–19,23,37–40]. There, it is considered a rotating frame with a constant angular velocity
given by Ω =Ω ẑ. Then, it has been shown in [17] that the time-independent Schrödinger equation
in this rotating frame is given by

H0Ψ − Ω · L̂Ψ = EΨ , (2.1)

where H0 is the Hamiltonian operator of a particle system in the absence of rotation and L̂ is the
angular momentum operator.

In this work, our focus is on a non-relativistic quantum system of a neutral particle (atom
or molecule) with an induced electric dipole moment that interacts with external fields. By
considering this quantum particle is moving with a velocity v� c, the quantum description of
the interaction between the induced electric dipole moment with electric and magnetic fields is
given by the following Hamiltonian operator [3,15,18]:

H0 = 1
2m

(p̂ + αE × B)2 − α

2
E2, (2.2)

where m = m̄ + αB2, m̄ is the mass of the neutral particle and we assume that B2 = const. We
shall work with units h̄ = c = 1. Note in equation (2.2) that m is the mass of the particle, α is
the dielectric polarizability, and E and B are the electric and magnetic fields in the laboratory
frame, respectively. Besides, according to Wei et al. [4], the term αE2 given in equation (2.1) is very
small compared with the kinetic energy of the atoms, therefore we can neglect it without loss
of generality from now on.1 From the Hamiltonian operator (2.1), it is easy to observe that the
angular momentum operator is given by L̂ = r × (p̂ + αE × B).

1A discussion about possible values of the dielectric polarizability in experimental contexts has been made in [4].
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Henceforth, let us work with the cylindrical symmetry. In particular, by dealing with a
planar system, we can write r = rr̂, where r is the radial coordinate. Let us also consider a field
configuration that interacts with the induced electric dipole moment of the atom given by the
following magnetic and electric fields:

B = −B0ẑ and E =μr3r̂, (2.3)

where B0 is a constant and the electric field is given by a non-uniform electric charge density
u = μ̄r2 inside of a long non-conductor cylinder [21]. Note that the magnetic field is in the
z-direction, while the electric field is in the radial direction. By substituting equations (2.2) and
(2.3) into equation (2.1), hence, the time-independent Schrödinger equation becomes

Eψ = − 1
2m

∇2ψ − i
αμB0

m
r2 ∂ψ

∂ϕ
+ (αμB0)2

2m
r6ψ − iΩ

∂ψ

∂ϕ
+ αμB0Ωr4ψ , (2.4)

where ∇2 is the Laplacian in cylindrical coordinates. Let us write ω= αμB0/m as in [15]. In
addition, since the operators L̂z = −i∂ϕ and p̂z = −i∂z commute with the Hamiltonian operator
given in the right-hand side of equation (2.4), therefore, we can write the solution to equation (2.4)
in terms of their eigenvalues as ψ(r,ϕ, z) = eilϕ+ikzR(r), where l = 0, ±1, ±2, . . . and −∞< k<∞.
In this way, we obtain the following radial equation:

d2R
dr2 + 1

r
dR
dr

− l2

r2 R − 2mωlr2R − mωΩr4R − m2ω2r6R + βR = 0, (2.5)

where β = 2m(E −Ωl) − k2. Note that we have in equation (2.5) an effective scalar potential given
by Veff = 2mωlr2 + mωΩr4 + m2ω2r6, which plays the role of the doubly anharmonic oscillator
potential (1.1). It stems from the interaction of the induced electric dipole moment of the neutral
particle with the electric and magnetic fields. Therefore, in the medium with the particular field
configuration as given in equation (2.3), the interaction of the induced electric dipole momentum
with external fields gives rise to an analogue of the doubly anharmonic oscillator potential (1.1).
Next, let us define x = √

mω/2r2, and thus, equation (2.5) becomes

d2R
dx2 + 1

x
dR
dx

− l2

4x2 R − λxR − x2R + β̄

x
R − lR = 0, (2.6)

where we have defined the parameters:

λ= Ω

mω

√
2

mω
and β̄ = β√

2mω
. (2.7)

By analysing the asymptotic behaviour of equation (2.6), i.e. the behaviour when x → ∞ and
x → 0, then, the solution to equation (2.6) can be given in the form:

R(x) = e−(λ/2)x e−x2/2x|l|/2H(x), (2.8)

where H(x) is a solution to the second-order differential equation:

d2H
dx2 +

[ |l| + 1
x

− λ− 2x
]

dH
dx

+
[
λ2

4
− |l| − l − 2 − λ(1 + |l|) − 2β̄

2x

]
H = 0. (2.9)

Note that equation (2.9) is called in the literature as the biconfluent Heun equation [26], and thus,
the function H(x) = HB(|l|, λ, (λ2/4) − l, −2β̄; x) is the biconfluent Heun function.

Let us proceed with our analysis by using the Frobenius method [41,42]. In this method, we
write the function H(x) as a power series around the origin, i.e. H(x) =∑∞

k=0 fkxk. By substituting
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this series into equation (2.9), we obtain two relations. The first relation is

f1 =
[
λ

2
− β̄

1 + |l|
]

f0, (2.10)

while the second relation corresponds to the recurrence relation:

fk+2 = [λ(2k + |l| + 3) − 2β̄]fk+1 − 2((λ2/4) − |l| − l − 2 − 2k)fk
2(k + 2)(k + 2 + |l|) . (2.11)

Our objective is to find bound state solutions, then, we need that the function R(x) goes to
zero when x → ∞ and x → 0. For this reason, we must search for polynomial solutions to the
biconfluent Heun equation (2.9). Thereby, from the recurrence relation (2.11), we have that the
biconfluent Heun series terminates when we impose the following conditions:

λ2

4
− |l| − l − 2 = 2n; fn+1 = 0, (2.12)

with n = 1, 2, 3, . . . being the quantum number associated with the radial modes. As an example,
let us construct a polynomial of first degree (n = 1) to H(x). With n = 1, the condition λ2/4 − |l| −
l − 2 = 2n yields

ω3
1,l = Ω2

2m3(|l| + l + 4)
. (2.13)

Note that we have changed the notation of cyclotron frequency ω in equation (2.13) and written
it as ω=ωn,l. This means that the cyclotron frequency can be adjusted with the purpose of
achieving the polynomial of first degree to H(x). Therefore, the allowed values of the cyclotron
frequency that permit us to obtain a polynomial of first degree to H(x) are given in equation (2.13).
Furthermore, since ω= αμB0/m, then, we can extend the discussion made in equation (2.13) to
the magnetic field. Hence, from equation (2.13), the discrete set of values of the magnetic field is
given by

B1,l
0 = m

αμ

(
Ω2

2m3[|l| + l + 4]

)1/3

. (2.14)

It is worth pointing out that an analogous discussion about a discrete set of values of the magnetic
field was made in [43]. There, the magnetic field acquires a discrete set of values due to the effects
of a topological defect and the self-interaction. Hence, our results agree with [43].

We go further by analysing the condition fn+1 = 0 given in equation (2.12). For n = 1, we
have fn+1 = f2 = 0. By using the recurrence relation (2.11) and the relation (2.10) to calculate the
coefficient f2, then, with fn+1 = f2 = 0, we obtain the second-degree algebraic equation for β1,l:

β2
1,l − 2Ω

mω1,l
(2 + |l|)β1,l + Ω2

m2ω2
1,l

(3 + |l|)(1 + |l|) − 4mω1,l(1 + |l|) = 0. (2.15)

Since we have defined β = 2m(E −Ωl) − k2, therefore, we obtain from equation (2.15):

E1,l,k =Ωl + Ω

2m2

(
2m3[|l| + l + 4]

Ω2

)1/3

×
{

2 + |l| ±
√

1 + 2(1 + |l|)
(|l| + l + 4)

}
+ k2

2m
. (2.16)

Hence, equation (2.16) gives us the allowed energies associated with the radial mode n = 1.
Observe that the first term of equation (2.16) is the Page-Werner et al. term [44–46]. It corresponds
to the coupling between the angular momentum quantum number and the angular velocity. The
last term corresponds to the free energy along the z-direction. Note that we reduce the system to
a planar system by taking k = 0. Further, by taking Ω → 0, the effects of rotation vanish and there
are no bound states solutions associated with the radial mode n = 1. It is worth pointing out that
it is possible to obtain the energy associated with other radial modes (n = 2, 3, . . .) if we perform
the same steps from equation (2.9) to equation (2.16).
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3. Conclusion
In this work, we have investigated quantum effects on a neutral particle with an induced electric
dipole moment in a rotating reference frame. Then, by analysing the interaction of the electric
dipole moment with a uniform magnetic field and a non-uniform electric field, we have seen
that an analogue of the doubly anharmonic oscillator potential (1.1) arises from this interaction.
Moreover, we have shown that the Schrödinger equation can be solved analytically. In particular,
we have obtained the allowed energies associated with the radial mode n = 1. These exact
expressions for the allowed energies have been obtained from the analysis of the radial wave
function, where we have searched for a polynomial of first degree to the biconfluent Heun series.
As a consequence of constructing a polynomial of first degree to the biconfluent Heun function,
we have seen that the magnetic field can have a discrete set of values (as we can see equation
(2.14)), otherwise, we cannot achieve this polynomial solution. Furthermore, we have seen a
contribution to the allowed energies for the radial mode n = 1 given by the coupling between the
angular momentum quantum number and the angular velocity, which stems from the rotating
effects [44–46].

Despite the field configuration to be proposed in a theoretical point of view, it can be in
the interests of the studies of atomic systems, since it opens new discussions about fields and
quantum effects in elastic medium. As an example, an elastic medium with a topological defect
[47–49] can modify the electric field [50]. In the present case, the non-uniform electric field given
in equation (2.3) is hard to achieve in the experimental context. An idea of achieving it is based
on the study of Spear & Le Comber [51]. This non-uniform electric field could be made by
successive processes of deposition of trivalent semiconductor materials, ring by ring and layer
by layer, as the dopant inside the matrix of a tetravalent semiconductor material. It could be filled
by increasing the charge from the symmetry axis to the edge of the cylinder, until the cylinder
can be completed. If we consider a long non-conductor cylinder and each step of the deposition
process to be sufficiently small, this non-continuous array of rings can produce a macroscopic
effect, where non-uniform electric charge density inside the cylinder is proportional to r2.
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