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Abstract
Our concept ofmass has evolved considerably over the centuries,most notably fromNewton to
Einstein, and then evenmore vigorously with the establishment of the standardmodel and the
subsequent discovery of theHiggs boson.Mass is now invoked in various guises depending on the
circumstance: it is used to represent inertia, or as a coupling constant inNewton’s law of universal
gravitation, and even as a repository of amysterious formof energy associatedwith a particle at rest.
But recent developments in cosmology have demonstrated that rest-mass energy ismost likely the
gravitational binding energy of a particle in causal contact with that portion of theUniverse within our
gravitational horizon. In this paper, we examine how all these variations on the concept ofmass are
actually interrelated via this newdevelopment and the recognition that the source of gravity in general
relativity is ultimately the total energy in the system.

1. Introduction

Already byNewton’s time therewere potentially two kinds ofmass invoked in burgeoning physical laws.On the
one hand, objects exhibited an acceleration in proportion to the force applied to them, implying they possessed a
conserved ‘inertialmass,’mi. And afterNewton formulated his law of universal gravitation, it became apparent
that a body also has ‘gravitationalmass,’mg, that todaywewould refer to as a gravitational coupling constant.
Newton viewed these two quantities as being conserved, irreducible properties ofmatter, and simplified the
description further by considering them to be indistinguishable [1].

Bondi [2] refined these definitions further, including also a possible dichotomy between ‘passive’
gravitationalmass–that which responds to a gravitational field–and ‘active’ gravitationalmass–that which
creates the gravitational effect. He also allowed for the possibility of negative values for all these quantities. He
argued, however, that the law of action and reaction inNewtonian physics implies the equality of active and
passive gravitationalmasses. This concept has been tested experimentallymany times since then, beginningwith
Kreuzer [3], who inferred an upper bound of∼5× 10−5 for the fractional difference between the passive and
active gravitationalmasses, to the latestmeasurement by Singh et al [4], who lowered the limit considerably to
∼3.9× 10−14.

All we can really say about inertial and gravitationalmasses is that the clues fromnature point to a strict
proportionality between them, since in principleNewton’s gravitational constant (see equation (1) below) can
always be adjusted to complywith any change in the ratiomi/mg. This proportionality is also the basis for
Einstein’s Principle of Equivalence, one of themost important founding tenets of general relativity [5].

A century later, we have amuchmore nuanced interpretation ofmass, certainly with the establishment of the
standardmodel [6–8] and the subsequent discovery of theHiggs boson [9–11].We nowunderstand that inertial
mass is better described as an emergent quality rather than an intrinsic property ofmatter, given that several
fundamental particles, such as electrons, positrons and quarks, owe their inertia to a couplingwith theHiggs
field, while other composite particles, such as neutrons and protons, acquire inertia via the dynamical back
reaction of accelerated quarks, which radiate gluons to conservemomentum (see [12] for a recent review). In this
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context,mi ought to be viewed as a ‘place holder’ for something else, a notionwe shall utilize liberally throughout
this paper.

The gravitationalmass has undergone quite an evolution as well. Following the broad acceptance of general
relativity as the correct description of space and time, we now view the source of gravity to be the total energy, E,
in the system.Coupled to anothermajor discovery in relativity—the existence of rest-mass energy—it now
appears thatNewton’s gravitationalmassmay simply be amore primitive representation ofE/c2. None of this
necessarily gives us confidence, though, thatmi andmg should be considered as representing the same thing.

Butmore recent work appears to have uncovered the origin of rest-mass energy [12], which in the endmay
tie all of these loose threads together. Aswe shall discuss later in this paper, the energy associatedwith a particle at
rest appears to be its gravitational binding energywith that portion of theUniverse containedwithin our
gravitational horizon. Thus, in an odd twist of history,mi andmg appear to be linked after all—owing both of
their existence to the energy of the particle.

To unravel this intricate quilt of physical attributes, we shall examineNewton’s law of universal gravitation
in theweak-field, static limit of general relativity, but go beyond its traditional application to particles ‘with
mass.’Wenowknow that gravity accelerates ‘massless’ particles as well, as proven by themeasured deflection of
light in transit toward Earth through a cosmicmediumwith variable gravity.We shall therefore derive the analog
ofNewton’s law for particles such as photons, whichNewtonwould never have considered in his gravitational
framework forwant of any physical evidence of their existence.Were he alive today, however, hewould no doubt
have devised two versions of equation (1): one for ‘massive’ particles, the other for ‘massless.’This will be our
principal task in section 2.2, with important foundational work in section 2.1.

Finally, in section 3, we shall unify the various concepts of inertial and gravitationalmass via the rest-mass
energy associatedwith them.We shall concludewith some closing thoughts in section 4.

2.Gravitational coupling

2.1. Particles with established inertia
Newton’s law of universal gravitation is an expression of the force experienced by a particle with established
inertiami and gravitationalmassmg, due to a gravitatingmassMg located at r= 0,

m
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which is understood relativistically in the limit of weak, staticfields and low velocities. Of necessity, the latter
condition implies that particles coupling to the forcemust have non-zero inertia,mi≠ 0, for the acceleration g
would otherwise be infinite. Equation (1)may also bewritten in terms of the gravitational potential,
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Equations (2) and (3) actually represent two distinct phenomena. Thefirst accounts for the potential created
by the hypothesized gravitatingmassMg, while the second describes the response of a test particlemg to the
presence of this potential. Thus, to ensure consistency between general relativity in theweak-field, static, low-
velocity limit andNewton’s law of universal gravitation, two separate physical effectsmust be considered. First,
the response of the particle given by equation (3) ismost naturally inferred from the geodesic equation,
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describing the trajectory of a free particle through the spacetime created by the gravitatingmassMg (see
equation (30) below). The affine parameterλ is often chosen to be the proper time τ in the particle’s rest frame
whenmi≠ 0, though not formassless particles, such as a photon, for which τ is always zero. In this expression,
Gm

ab are theChristoffel symbols containing information about the spacetime curvature,most directly calculated
from themetric coefficients themselves:
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The procedure for reducing equation (4) to its Newtonian form iswell known, sowewon’t dwell on the
details, butmention only the key points,mostly in preparation for section 2.2 below. For a particle with inertia
movingwell below the speed of light, the second term is dominated by theα= β= 0 component, and therefore
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Then, to calculate 00Gm for aweak gravitational field, we put

g h , 8( )h= +ab ab ab

where ηαβ= diag(+ 1,− 1,− 1,− 1) and |hαβ|= 1. The inversemetric tensor is simply gαβ= ηαβ− hαβ. If in
addition thefield is static,
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Substituting equation (9) into (7), we thusfind that
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so that d2x0/dτ2= 0, whichmeans that dt/dτ is constant. That is, time progresses forward at a steady rate for a
particle inNewtonian gravity, consistent with the prevailing view on the nature of time duringNewton’s era.

For the spatial coordinates ( j= 1, 2, 3), we instead find that
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or, using the chain rule of differentiation,
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A comparison of equations (3) and (12) therefore shows that, in order for Einstein’s theory to correctly describe
themotion of a particle with established inertia in a classical gravitational field, wemust havemg→mi in the
Newtonian limit (see section 3)which is, afterall, the basis for the Equivalence Principle that gave rise to the
general relativistic description of particle trajectories in thefirst place. In addition, h00≡ 2Φ/c2, so that
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In the next section, we shall learn that the gravitational coupling of particles believed to have zero inertia is
very similar to this result, but differs from it in at least one very significant aspect. Before we begin to examine
that situation, however, wemustfirst understand the second phenomenon associatedwithNewtonian gravity—
that giving rise to the gravitational potential itself (equation (2)). For this, we need to beginwith the gravitational
field equations in general relativity, whichmay bewritten
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Gαβ is the Einstein tensor, written in terms of the Ricci tensor,
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(also known as the curvature scalar) and the stress-energy tensorTαβ. In equation (15), the quantity
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is known as the Riemann-Christoffel (or curvature) tensor.
The appearance of the curvature scalar on the left-hand side of equation (14) is sometimes inconvenient.

Contracting this equationwithα andβ reduces it to the form
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It is beyond the scope of the present paper to describe how andwhy these equations are derived, but this topic is
well covered in both the primary and secondary literature [5, 13].We do point out, however, that the coefficient
multiplyingTαβ on the right-hand side of equations (14) and (19)was chosen in order for Einstein’s equations to
correctly reproduce theNewtonian potential in equation (2) for a gravitating inertial sourceMg in theweak-
field, static, low-velocity limit, whichwe nowdescribe.

For simplicity, we adopt the so-called perfect fluid approximation, inwhich the stress-energy tensor excludes
all possible shear forces associatedwith the transport ofmomentum components in directions other than those
associatedwith the components themselves. The covariant formof this tensormay bewritten

T
c

p u u p g
1

, 20
2

( ) ( )r= + -ab a b ab

where uα is the local value of dxα/dτ for a comoving fluid element in the source, and p and ρ are the pressure and
energy density, respectively, measured by an observer in a locally inertial frame comovingwith thefluid at the
instant ofmeasurement.

The trace of this stress-energy tensor is simply

T T p3 , 21( )rº = -g
g

providing a clear, unequivocal affirmation that the source of spacetime curvature in general relativity is all forms of
energy andmomentum.This aspect of Einstein’s theory cannot be overstated because it represents a clear
departure from theNewtonian framework, inwhich gravity is due to an intrinsic ‘mass’ associatedwith the
source, considered byNewton to be synonymouswith inertia, and neither having anything to dowith energy.
Our continued examination of themeaning ofmg,mi andMg belowwill be heavily based on this crucial
distinction between Einstein’s andNewton’s theories, and their behavior in the classical limit. Equation (19)
may thus also bewritten in themore suggestive form
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This expression is completely valid for all forms of energy, with orwithout inertia, andwe shall use it also in
the following sectionwherewe consider the gravitational coupling of particles believed to have no inertia. Here,
however, we use the fact thatmatter (or itsmore common designation as ‘dust’) has essentially zero pressure, so
T= ρ, and equation (22) therefore implies that, tofirst order in theweak-field (Newtonian) limit (see
equation (8)),
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which relates derivatives of themetric coefficients (specifically h00 andΦ) to the energy density, providing a
direct link to the Poisson equation forΦ, fromwhich equation (2) is derived.

From equation (15), we see that
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The second termon the right-hand side is zero for a staticfield, while the third and fourth terms are second order
in h00. This leaves
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and, combining equation (23)with (26), gives
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which is the relativistically derived Poisson’s equation for the gravitational potential in the presence of an energy
density ρ in theweak-field, static limit. Itmust be emphasized that this equation excludes anymomentum (and
therefore the pressure this would create) of the gravitating source specifically becausewe attributed inertia to the
medium, allowing it to reside near the originwith a very low (or even zero) velocity. It is for this reason that
T= ρ− 3p simply reduces to ρ in equation (22), andwe acknowledge the fact that the coefficient 4πG in
equation (27)was chosen to ensure that Einstein’s andNewton’s theories yield the same potential,Φ, when the
gravitationalmass,Mg, is calculated solely from the energy density in the system, and nothing else.

But there is another subtle, yet crucial, feature of this equation that wemust fully understand, particularly
whenwe begin to compare this result with its counterpart in the following section, addressing gravity in the
presence of energywithwhatwe believe to be zero inertia, i.e. in cases whereT= ρ− 3p is notmerely ρ.
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Equation (27) is fully consistent with equation (2) only if we followNewton in attributing the gravitational
influence to a hypothesized ‘gravitationalmass,’Mg, which necessarily would have to correspond to a
gravitationalmass density ρg≡ ρ/c2 in equation (27).

Those of us accustomed to the language of general relativity would be tempted to consider this as being self-
evident. After all, isn’t rest-mass energy simply given by this relation?Well yes, but not completely, as we shall
soonfind out. Later in this paperwe shall better understand the distinction between gravitational and inertial
mass, and realize that the interpretation ofMg in equation (2) as the ‘rest-mass’—from the conversion of the
energy density ρ to ρg≡ ρ/c2 in equation (27)—is valid only becauseNewton’s law of universal gravitationwas
specifically formulated for particles with non-zero inertia in the low-velocity limit, where the gravitational and
inertialmasses are proportional to each other—or even equal, with an appropriate choice of units for the
gravitational constantG. The situation is very different for photons, becausemg for them isnot zero.

2.2. Gravity with ‘Zero Inertia’
Whether light has inertia and/or gravitationalmass, andwhether these two are equal, was something that could
not easily be discussed or explored prior to the advent of relativity theory. But this did not prevent classical
physicists from entertaining the idea that large heavenly bodies, such as the Sun, could in principle accelerate
rays of light and cause them to deviate in discernible ways from straight-line trajectories. Very famously, Einstein
himself used his Principle of Equivalence couched inNewtonian theory, essentially equation (1)withmi andmg

cancelled fromboth sides, to predict howmuch starlight would be bent upon grazing the surface of the Sun on its
way toward Earth [14].

Without the full theory of general relativity to support this calculation, he partially relied on intuition,
arguing that the rate of proper time (as seen by an observer fixedwith respect to the source of gravity) varies with
distance from the center of the gravitating body, thereby creating a speed of light varyingwith radius if one
ignores the spatial variations. The latter assumption is key to understandingwhy he had to correct his prediction
once general relativity was completed five years later. ApplyingHuygenss principle to awave front passing
through such a region, he could then calculate the degree of bending based on the time dilation produced by the
centralmass. This prediction amounted to about 0.875 seconds of arc, which turns out to bewrong by a factor 2.
We shall see belowwhy ignoring the spatial variations results in this not insignificantmistake. Onemay still
predict the correct deflection angle usingNewtonian theory, however, but only by using an alternative formof
equation (1) appropriate for light (see equation (52)), whichwas not available to him at that time.

This type of speculation had already been carried out by others before him, even byNewtonwho, in his
treatise onOpticks[15]published in 1704, asked the question: “Donot Bodies act upon Light at a distance, and
by their action bend its Rays, and is not this action strongest at the least distance?”Acentury later, JohannGeorg
von Soldner had usedNewton’s Lawof universal gravitation to calculate the deflection of starlight by the Sun
treating ‘a light ray as a heavy body’ and predicted a deflection angle of 0.84 arcseconds, virtually identical to
Einstein’s estimate based on hisfirst attempt [16].

Einstein redid his calculationfive years later onceGeneral Relativity was completed, taking into account all
spacetime curvature effects and corrected hismistake, predicting a deflection angle of 1.745 arcseconds. As is
well known by now, Sir Arthur Eddington subsequently led an expedition to an island off the coast of Africa,
with a second group in Brazil, tomeasure the deflection of starlight grazing the edge of the Sun during the total
eclipse ofMay 29, 1919. Theirmeasurement provided a spectacular (if controversial) confirmation that General
Relativity is the correct theory of gravity [17].

Questions have been raised about Eddington’s analysis of their data because turbulence in Earth’s
atmosphere causes deflections of starlight comparable to those predicted by Einstein’s theory.Onemust rely on
the assumption that these are random in nature, so that they can be averaged awaywith the use ofmany images,
leaving only the relativistic effect. By the end of their observations, Eddington and his coworkers had only two
reliable images (with aboutfive stars) at one site, and eight usable plates (with at least seven stars) at the Sobral
location.Nineteen other plates takenwith a second telescope had to be abandoned. Given this paucity of
measurements, did Eddington really have the evidence to support Einstein’s theory [18]? Some have argued that
Eddington’s enthusiasm for general relativity biased his approach. Butmany re-analyses between 1923 and 1956
of the plates from those expeditions yielded similar results within ten percent. A reanalysis in 1979 using the
Zeiss Ascorecord and its data reduction software [19] yielded the same deflection as that calculated by
Eddington, thoughwith even smaller errors. The Sobral plates gave similar results, all consistent with general
relativity. Amodern assessment of Eddington’s work has thus tended to showno credible evidence of bias in his
conclusions [20].

Having said this, we nowknow, that photons do not have restmass in the conventional form seen in the
standardmodel of particle physics. Sowhy arewe justified in usingGeneral Relativity to calculate the
gravitational acceleration of a photonwhen Einstein’s theory is based on the equality ofmi andmg (i.e. the
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Principle of Equivalence)? This questionwill become evenmore acute later in this paper, whenwe learn that
Newton’s approach of identifying gravitationalmass suggests thatmg strictly cannot be zero for light. To place
this in context, we should ask ourselves whether we aremissing a law of universal of gravitation, analogous to
equation (1), representing theweak-field, static limit of General Relativity for photons and other particles that do
not have inertia in the conventional sense.

Such particles do not follow trajectories described by equation (7). Themagnitude of their velocity is always
c, so one cannot adopt an asymptotically small speed to go alongwith the assumption ofweak, staticfields. As
was the case in section 2.1, there are two effects we need to consider: thefirst arises from the impact of non-zero
momentumon the source of gravity,modifyingNewton’s definition ofMg, and the second provides the
gravitational coupling of a particle we believe to have zero restmass to the ‘force’ created by the former.

Thefirst of these phenomena is quite straightforward to understand.Whereas the trace of the stress-energy
tensor,T= ρ− 3p, reduces to ρ for ‘dust,’ the pressure cannot be ignoredwhen the source is radiation since its
momentummakes a significant contribution to the overall energy budget. For example, isotropic radiation
exerts a pressure p= ρ/3, soT= 0. Thus, instead of equation (23), we now get

R
G

c

8
, 2800 4

( )p
r= -

resulting in themodified Poisson’s equation
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The factor 2multiplying the density is directly due to themomentumwithin the source, which cannot be ignored
when the gravitating particles cannot come to rest.When the source of gravity is radiation,Newton’s
‘gravitationalmass’Mg producing the potential in equation (2)must therefore be twice the value onewould
naively have calculated from the energy density alone. (But beware that this is not the factor 2 associatedwith the
deflection of starlight by the Sun. A correction such as this, in cases where the source of gravity is not completely
inertial, is typically absorbed into the empirically determined value ofMg).

Once the potentialΦ and theNewtonian gravitationalmassMghave been properly identified in equation (2),
wemay then proceedwith equation (4) to derive the correct equations ofmotion for a photon in the vicinity of a
spherically symmetric object, where the appropriate spacetime is described by the Schwarzschildmetric:
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is the Schwarzschild radius for an object with gravitationalmassMg. Our goal is to uncover the radial acceleration
experienced by the photon at a radius r? rS, i.e. in theweak-field limit and, to facilitate the calculation, we shall
assume that the photon’s velocity is perpendicular to rrr ˆ= at that instant.
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Thus, letting overdot denote differentiationwith respect toλ, we obtain the following expression from theμ= 0
component of equation (4):
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Wealign our coordinate system so that the photon’s trajectory is restricted to the equatorial plane. Then, θ
(λ)= π/2 and 0( )q l = , and equation (35) becomes irrelevant. Equation (36) reduces to
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Differentiating this equation oncemorewith respect tof gives us the equation ofmotion for a photon,
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whichmay be thought of as a relativistic version of the classical Binet orbit equation [21], best known for its use
in calculating the deflection angle of starlight grazing the surface of the Sun on its way toward Earth.

In the absence of gravity (rS→ 0), the solution to this equationwould be a straight line perpendicular to r,
given as

u
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where r0 is the radius of closest approach to the origin, corresponding to the value of r atf= 0. If we nowmake a
weak-field approximation, consistent with r? rS, the corresponding null trajectory will be a perturbation of this
straight line, allowing us towrite
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Our interest here is not somuch how the null geodesic ismodified due to the accumulated effect of gravity
over the ray’s transit to Earth but, rather, the instantaneous acceleration experienced by a photon in the vicinity
off= 0. The acceleration is obtained by differentiating this expression twicewith respect to the observer’s time,
t, starting with

r

dr

dt r

d

dt

r

r

d

dt

1 sin
cos sin . 47

2
0

S

0
2

( )f f
f f

f
- = - +

Wealso have

r
d

dt
c cos , 48( )f

f=

and so

dr

dt
c

cr

r
cos sin , 49S ( )f f= -

using also the relation in equation (44), since gravity perturbs this trajectory only slightly in theweak-field limit.
A second differentiation results in the expression

d r

dt

c

r

cr

r

dr

dt

c r

r
cos sin cos . 50

2

2

2
2 S

2

2
S

2
2 ( )f f f= + -

In this equation, however, the first term is simply the effect of seeing the straight line trajectory (equation (44)) in
spherical coordinates. The radial acceleration due to gravity in equation (50) is the rest of the righthand side.
Thus, subtracting thefirst (geometric) term, substituting for dr/dt from equation (49), and noting that rS= r in
theweak-field limit, we arrive at theNewtonian acceleration for a photon

d r

dt

GM

r

2
1 2 sin . 51

g
2

2 2
2( ) ( )f= - -

The dependence of this expression on the anglef is simply due to the fact that the photon experiences zero
acceleration in its longitudinal direction, so equation (51) gives solely the component of acceleration in the radial
direction. Be aware, however, that the approximations we havemade in reaching this result are valid only near
f= 0, so this expression is not validwhen sin 1f  . On the other hand, given thatf→ 0when r→ r0, this
simply reduces to ourfinal result,

d r

dt

GM

r

2
, 52

g
2

2 2
( )= -

which is themaximal radial acceleration experiencedby aphoton transverse to its directionofmotion. Equation (52)
is theweak-field (r? rS), radial acceleration experiencedby aphotonmovingperpendicular to r̂ in the vicinity of a
gravitationalmassMg. It represents theNewtonian, static limit ofGeneralRelativity for particleswebelieve tohave
zero restmass, the analog of equation (1). Aside from their evident similarity, the other feature that standsout is the
additional factor 2 emerging in the latter,whichowes its appearance to the samephysics responsible for the famous
factor 2 in the calculationof thedeflection angle of starlight grazing the surfaceof the Sun.This factor 2 appears as
long asweuse the samevalue of the gravitational constant,G, in both equations (1) and (52). It is not due to a
doubling of the source inPoisson’s equation (29), which arises from the contributionofmomentumto the active
gravitationalmass, andwould be absorbed into the overall ‘measured’ valueofMg, independently ofG.

It is instead due to the different geometries of particles with andwithout inertia along their longitudinal
direction ofmotion. Simply put, particles with inertia satisfy equation (1) in the low-velocity limit because, for
them, the onlymetric coefficient in the Schwarzschild spacetime (equation (30)) thatmatters is gtt, i.e. the time
dilation. As noted earlier in this section, Einstein himself used solely the effects of gtt to estimate the bending of
light passing near the Sun, even though a lightwavewas thought to bemassless. These particles aremoving too
slowly compared to the speed of light for the distance covered during their acceleration to contribute
significantly to ds2. For particles propagating at lightspeed, however, the impact of grr cannot be ignored
compared to gtt. In essence, the effects of spacetime curvature are doubled for photons compared to particles
with established non-zero inertia. The inclusion of spatial variations resulting from grr, once the full theory of
general relativity was available to him, is the reason Einstein’s recalculation of the deflection angle of starlight
passing near the Sun doubled the effect he had anticipated in 1911.

3.Mass andRest-mass Energy

The inferencewe draw from equations (3), (27), (29) and (52) is that all particles experience aNewtonian-like
gravitational attraction to each other in the non-relativistic limit, whose coupling strength—according to
general relativity—is the total energy in each of the gravitating objects. TheNewtonian approach of assigning
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them ‘masses’ appears to be away of representing these energies in terms of an inertial or gravitational context, a
distinction that no doubt arises from the nature of rest-mass energy, as we shall further develop in this section.

In our previous, detailed examination of the origin of rest-mass energy [12], we showed that, of the four
known forces, only gravity has all of the attributes required to satisfy a ‘Principle of Equivalence’. Thus, the
energywe commonly assign to a particle’s restmass is almost certainly gravitational in nature. Indeed, in the
context ofmodern cosmology, the binding energy of a particle with gravitationalmassmg in causal contact with
that portion of theUniverse within our gravitational horizon,Rh≡ c/H, whereH is theHubble constant, is
exactly m cg

2. If inertialmass is viewed as a surrogate formg, we find in this result a natural explanation for the
origin of rest-mass energy, though it still leaves open the question of whethermi andmg are truly different
characteristics of the same object (or particle).

We should stress at this point that the proposal being discussed here, and introduced in [12], is unique in a
cosmological setting for the simple reason that it directly addresses the question of where rest-mass energy
comes from, not simplymass. For example, other definitions ofmass in cosmology, such a theKomarmass [22],
or the Tolmanmass [23], are statements concerning howmuch ‘mass’ is required to account for the (static)
spacetime curvature in a closed volume, but none of these alternative approaches explains why the energy
associatedwithmgmust be m cg

2. In our proposal, on the other hand, any particle with gravitationalmassmg has
a binding energy m cg

2 due to its gravitational coupling to the energy containedwithinRh.
What we learn from equation (52) is that particles we believe to have zero restmass nevertheless also

experience a gravitational force that accelerates them at a finite rate, albeit solely in a direction perpendicular to
their velocity (withfixedmagnitude c). Attempting to naively interpret this result in the context ofNewton’s
original formulation of his law of universal gravitation (equation (1)), however, wewould instead be compelled
to assign them anon-zero inertial ‘mass’, for otherwise their accelerationwould be infinite. Of course, this
simple-minded approach does not comport verywell with our conventional view that photons should be
‘massless.’ It appears, therefore, that our current definition ofmass, inertial or otherwise,may be inaccurate,
perhaps even defective.

Let us reconsider theNewtonian gravitational attraction between two particles. The cluewe glean from
general relativity, e.g. via equation (21), is that the coupling constant for this interaction is the particle’s total
energy,E. And since theNewtonian gravitational force is symmetric between them,wewrite the force on particle
1 due to 2 as

Gm m

r
rF , 53g

g g
1

1 2

2
ˆ ( )= -

where r points from1 to 2. Crucially, we nowdefine

m c E m c qc , 54g i
2 2 2 2 2 2( ) ( ) ( ) ( )º = +

where qhere is themomentumof particlemi (distinguishing it from the symbol pweused earlier to denote the
pressure).

According to our earlier study on the origin of rest-mass energy, [12], the binding energy of particlemg to
that portion of theUniverse withinRh≡ c/H, which also coincideswith our apparent horizon [24] and the
Hubble radius, equals its escape energyEesc= qc attainedwhen its proper distance,R, approachesRh. Since
q→mic in this limit, we infer that Eesc=mic

2. In contrast, a photon always has escape speed, even atRh, and is
therefore unbound. For such particles, the total energy at anyR is simply E= qc.

Consequently, equation (54)may also bewritten

m c E qc , 55g
2 2

esc
2 2( ) ( ) ( )º +

thoughEesc→ 0 for photons.With the definition in equations (54) and (55), photons are therefore assigned a
‘gravitationalmass’

m
q

c
, 56g ( )ºg

whilematter has the corresponding value

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

m m
q

c
. 57g i

m m 2
2 1 2

( ) ( )= +

Newton’s law of universal gravitation is valid only in the low-velocity limit, however, for which qc m ci
m 2 ,

and therefore

m m , 58g i
m m ( )

fully consistent with the Principle of Equivalence.
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Butwhat we have learned from equation (52) is that a photonmust also experience the force in equation (53)
in theNewtonian limit, albeit restricted to a direction perpendicular to its velocity. Newton’s equation ofmotion
for such a particle should therefore bewritten

m
d

dt

Gm M

r
r

r 2
, 59i

g g2

2 2
ˆ ( )= -g

g

implying that

m m 60i g ( )=g g

for the photon as well, to be consistent with equation (52). Not surprisingly, this is what we should have expected
from the Principle of Equivalence applied to all particles, not justmatter.Note, however, that unlike the inertial
mass ofmatter, mi

g does not carry a ‘rest energy’ because the photon is always unbound.As such, mi
g does not

appear in the photon’s total energy budget analogous to equation (54).

4. Conclusion

An important caveat for this work is thatmuch of our discussion hinges on the viability of general relativity as the
correct description of nature. In particular, all of the results we have discussed stemdirectly or indirectly from
the fact that the source of gravity in Einstein’s theory is the total energy of the system.No experimental test has
ever provided evidence against this feature.

A consideration of Einstein’s theory in theweak-field, static limit then yields aworkable interpretation of
Newton’smore empirical law of universal gravitation.We have shown in this paper that a direct comparison of
these two approaches provides uswith a possible explanation for the physical origin of gravitational and inertial
mass, and perhaps also for the origin of rest-mass energy within the framework of one of themost famous
solutions to Einstein’s equations, i.e. the Friedmann-Lemait̂re-Robertson-Walker (FLRW)metric [13].

This work has also highlighted a tantalizing result that we should have anticipated all along.We have had an
observational confirmation for several decades that astronomical sources of gravity bend null geodesics, fully
confirming an important prediction of Einstein’s theory. But the implied acceleration producing the deflection
isfinite, andwhen this is viewed in theweak-field, static limit (i.e. within aNewtonian framework), we cannot
avoid the conclusion that lightmust also have a non-zero ‘inertia’ associatedwith the acceleration perpendicular
to its velocity.

We shouldmention in passing that this notion of (at least some) particles possessing a velocity-dependent
(which in our case translates into a direction-dependent) inertia echoes thework of Lorentz and subsequent
workers initiated in 1899 [25]. The basis of his argument was the application of the nonrelativistic formula
p=mv in the relativistic domain, whichwe nowknow is incorrect. Nevertheless, his influence at the turn of the
century, prior to Einstein’s introduction of special relativity, was significant enough to attract attention from the
physics community to the broader question of themeaning ofmass. In fact, his 1904 paper ‘Electromagnetic
Phenomena in a SystemMovingWithAnyVelocity Less ThanThat of Light’ [26] introduced the ‘longitudinal’
and ‘transverse’ electromagneticmasses of the electron. This viewwas eventually supplanted by Einstein’s
moving observer’s inertia, γm, however, so the notion of a direction-dependent inertia eventually subsided,
though some of his concepts are still being considered today (see, e.g. [27]).

In this paper, we have demonstrated that a direction-dependent inertiamay not be out of the question after
all, at least for photons.Without question, these particles have no inertia in the longitudinal direction, but they
evidently do resist acceleration in the transverse direction. This inertia is apparently proportional (or even equal)
to the gravitationalmass inferred from the photon’s energy but, at this stage, we have no ideawhat produces it.
The speed of light is always c, however, so photons are always unboundwithin our gravitational horizon in the
context of FLRW.This ‘transverse’ inertia thus carries no energy, and is therefore absent from the expression
yielding the photon’s total energy budget.

In summary, then, we have argued that gravitationalmass,mg, is—in all cases—-a surrogate for the particle’s
total energywhich, in the context of Einstein’s theory, is the actual source of spacetime curvature. Inertia no
longer appears to be an intrinsic property but, rather, is an emergent feature due to several different
mechanisms. For particles exhibiting a resistance to acceleration in their longitudinal direction ofmotion, this
inertia appears to be proportional tomg. This conclusion is supported by the interpretation that rest-mass energy
is a binding energywithin our gravitational (orHubble) horizon in the context of the FLRWcosmic spacetime. A
consideration of particlemotion near this horizon shows that the particle’s energy approaches Eesc= qc, with a
momentum q=mic, andNewton’s law of universal gravitation in the low-velocity limit then shows that
mg→mi (where the equality ensues with an appropriate choice ofG). Photons exhibit an inertia transverse to
theirmotion, and the implied inertialmass equals their gravitationalmass, consistent with the Principle of
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Equivalence. But this inertia has no impact on their longitudinalmotion, so it does not affect their energy
budget, which is entirely kinetic.

Wemay have generatedmore questions than answers with this discussion, but hopefully in amanner that
encourages further attempts at uncovering the true, physical relationship between a particle’s inertial and
gravitationalmass(es).
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