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We study the classical stability of the Euclidean wormhole solution of dilaton-axion supergravity
based on string theory. We obtain the Einstein frame action from the bosonic action of type II
string theory through a scale transformation. We derive the Euclideanized action by using a du-
ality transformation and analytic continuation. From the O(d)-symmetric small fluctuation of the
wormhole solution obtained by considering the axion field as exotic matter supporting the neck, we
obtain two coupled equations of the metric and the dilaton. We find the stability condition for a
wormhole from the harmonic perturbation. This condition is expressed in terms of the dimension-
ality of space time, the coupling of the dilaton to the axion, the cosmological constant, and the
integration constant. As a concrete example, we consider the type II case where the coupling is
given by b =

√
(d− 2)/2 and show that the wormhole solution is unstable for all cases where the

solution is obtained as elementary functions.
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비표준형일반상대론에서의웜홀해
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끈이론에 근거한 딜라톤-액시온 초중력 이론의 유클리드 웜홀 해의 안정성을 살펴보았다. 유형 II
끈이론의보존 (boson) 영역을기술하는작용을척도변환을하여아인슈타인틀에서의작용을구하여이를
쌍대변환과 해석적 확장을 통해 유클리드 공간의 작용으로 나타내었다. 액시온을 웜홀의 목을 지탱하는

별난 물질장으로 보고 얻은 웜홀 해에 O(d)-대칭형 작은 요동을 고려하여 메트릭과 딜라톤에 관한 두
개의 결합된 방정식을 구하였다. 조화형 섭동을 고려하여 웜홀 해가 안정되기 위한 조건을 찾았다. 이

조건은 시공간의 차원, 딜라톤의 결합상수, 우주상수, 및 적분상수로 표현될 수 있다. 구체적인 예로

결합상수가 b =
√

(d− 2)/2인 유형 II이론에서 해가 기본함수로 구해지는 모든 경우 웜홀 해는 요동에
대해 불안정함을 보였다.
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I. 서론

일반상대론에서 웜홀 해는 원래 점근적으로 평평한 두

시공간들을 연결하는 아인슈타인 방정식의 해로 정의되었

다 [1]. 후에 웜홀 해는 점근적으로 평평한 시공간뿐만 아
니라 반-드시터 (anti-deSitter, AdS) 및 드시터 (deSitter)
시공간에도 적용되는 개념으로 확장되었다. 웜홀 해에서

하나의점근영역에서다른영역으로물질이이동할수있을

때 이를 통과가능한 웜홀 (traversable wormhole)이라 한
다 [2,3]. 사건 지평선 (event horizon)이 존재하면 양방향
이동이불가능하기때문에통과가능한웜홀해가되기위한

핵심요소중하나는지평선이없어야한다는것이다. 고전적

웜홀의 대표적인 예는 슈바르츠쉴드 블랙홀과 화이트홀을

연결한 아인슈타인-로젠 다리 (Einstein-Rosen bridge)를
들 수 있는데이는통과가능하지않다. 양의 에너지를 갖는

물질만 허용되는 표준형 중력이론에서는 통과가능한 웜홀

해는 존재하지 않는다. 에너지 조건을 깨뜨리는 물질장을

도입하면 지평선이 없는 통과가능한 웜홀 해를 만들 수 있

는데이러한물질들을별난물질 (exotic matter)이라한다.
일반상대론은 통상적으로 큰 축적 (large scale, IR영역)

을 기술하는 이론으로 작은 축척 (small scale, UV영역)
에서는 양자효과에 의해 수정되어야 한다. 일반상대론과

양자역학을결합한양자중력이론에서웜홀은우주론, 결합

상수의재규격화등다양한흥미로운현상에중요한역할을

한다. 4차원 이론에서는 웜홀의 목 (throat)을 지지하기
위해액시온 (axion)장 [4], 스칼라장 [5], SU(2) Yang-Mills
장 [6]등과같은물질장이도입된바있다. 끈이론에기초한
웜홀 해는 액시온과 질량이 없는 딜라톤을 도입하여 연구

되었는데 [7,8] 유한한 작용을 갖는 특이하지 않은 (non-
singular) 해의존재는딜라톤이액시온에어떻게결합하는
가에 의존한다.

양자중력에서 웜홀의 존재는 경로적분에 실수의 공헌

을 할 것으로 여겼었다. 그러나 Rubakov와 Shvedov는

Giddings와 Strominger의 웜홀 해 [4]의 준고전적 섭동에
서음의모드가존재함을보였다 [9]. 이는 웜홀이유클리드
적 함수 적분에 허수의 공헌을 하는 것을 의미하고 웜홀이

작은 우주를 방출함에 대한 큰 우주의 불안정성을 기술하

는 것으로 해석할 수 있다. 1990년대 끈이론의 획기적인
발전을 가져온 D-막의 발견 및 막우주론 등에 의한 기초한
다양한 고차원 초중력이론의 연구에도 웜홀은 중요하다

[10–14]. 본 논문에서 비표준형 d차원 웜홀 해의 작은 섭동

을 고려하여 웜홀의 안정성을 논의하고자 한다. 블랙홀의

안정성을 논의할 때와 유사하게 조화형 섭동 (harmonic
form of perturbation)을 고려하여 모드 (mode)의 부호가
시공간의 차원, 우주상수, 장들의 결합 상수 및 적분상수에

어떻게 의존하는지를 살펴 그 안정성을 논의할 것이다.

본 논문의 구성은 다음과 같다. II절에서 유형 II 끈이론
에 기초하여 딜라톤과 액시온을 갖는 초중력이론의 유클

리드 작용과 운동방정식을 구하였다. III절에서 시공간의
차원, 우주상수 및 적분상수에 대해 해를 구하는 과정에

대해설명하고해가존재하는경우그해를요약하였다. IV
절에서는 O(d)-대칭을 갖는 작은 섭동을 고려하여 섭동항
들의 결합된 방정식을 구하였다. 조화형 섭동을 가정하고

안정화되기 위한 조건을 살펴보았다. 마지막으로 V절에서
결과를 요약하고 앞으로 가능한 연구에 대해 논의하였다.

II. 액시온-딜라톤초중력이론

본 논문에서 다루고자 하는 액시온과 딜라톤이 결합된

d-차원 초중력이론은 끈이론에 그 기원을 두고 있다. 유형
II 끈이론의 보존 (boson) 영역을 기술하는 작용은 다음과
같이 나타낼 수 있다.

S =

∫
ddx

√
−g

[
e−2ϕ (R+ 4∇µϕ∇νϕ)− 1

2(d− 1)!
F 2
d−1 − V (ϕ)

]
(1)

여기서 Fd−1은 Ramond-Ramond (RR) (d − 1)-형태의
장세기 텐서, ϕ는 딜라톤, V (ϕ)는 딜라톤의 퍼텐셜을

나타낸다. 위의 작용은 끈 틀 (string frame)에서의
작용인데 아래와 같은 척도변환 (scale transformation)을
하면

gµν → e
4

d−4ϕgEµν ,√
8

d− 2
ϕ → ϕE (2)
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아인슈타인 틀 (Einstein frame)에서의 작용으로 나타낼 수 있다.

SE =

∫
ddx

√
−gE

[
R− 1

2
(∇ϕE)

2 − 1

2
e
√

d−2
2 ϕE

1

(d− 1)!
F 2
d−1 − VE(ϕE)

]
(3)

위의 작용은 쌍대 변환 (duality transformation) Fµ···ν =

ϵµ···νλe
−
√

(d−2)/2ϕE∂λχ을 통해 액시온 χ를 도입하고 표

기의 단순화를 위해 첨자 E를 생략하면 다음과 같이 표현

된다.

S =

∫
ddx

√
−g

[
R− 1

2
(∇ϕ)2 − 1

2
ebϕ(∇χ)2 − V (ϕ)

]
(4)

여기서 b ≡
√

(d− 2)/2이고 d = 10인 경우 b = 2이다.

Minkowski 부호를 취하는 식 (4)의 작용을 해석적 확장을
통해 유클리드 공간의 작용으로 나타내면 다음과 같다.

Seucl =

∫
ddx

√
g

[
R− 1

2
(∇ϕ)2 +

1

2
ebϕ(∇χ)2 − V (ϕ)

]
(5)

여기서액시온항의부호가바뀜은쌍대화 (dualization)와
유클리드 공간으로의 해석적 확장이 교환가능하지 (com-
mute) 않기 때문이다. 일반적으로 퍼텐셜 V (ϕ)는 끈이

론의 비섭동적 공헌을 포함하며 딜라톤 ϕ에 의존하나 본

논문에서는 V (ϕ) = Λ (상수)인경우만고려하여액시온 χ

를 웜홀의 목을 지탱하는 별난 물질장으로 보고 웜홀 해를

논의하고자 한다.

식 (5)에서 액시온에 관한 운동방정식은 다음과 같다.

∇µ(e
bϕ∇µχ) = 0 (6)

이식은딜라톤-액시온계가온곳 (global) U(1)변환에대해

불변이므로 jµ = ebϕ∇µχ가 보존됨을 나타낸다. 이는 RR

(d − 1)-형태의 장세기 텐서의 비앙키 (Bianchi) 항등식을
쌍대변환한것이다. 계량 (metric)에대해가장큰대칭성을
갖도록 O(d)-불변인 형태를 가정하고

ds2 = n2(r)dr2 + a2(r)dΩ2
d−1 (7)

ϕ와 χ가변수 r에만의존한다고가정하면 j0(r)만남는다.

식 (6)으로부터

√
gj0 = nad−1ebϕj0 = iq (8)

이 얻어진다. 여기서 i는 작용을 유클리드화할 때 χ → iχ

로 대체한 것을 반영한다. 식 (6)으로부터 액시온 χ를 계

량함수 n, a와 딜라톤 ϕ로 나타내면 다음과 같다.

∂rχ =
iqne−bϕ

ad−1
(9)

식 (7)로주어지는계량에대해 Ricci텐서의영아닌성분은
다음과 같다.

Rrr = −(d− 1)
na′′ − n′a′

na
(10)

Rij = −naa′′ − n′aa′ + (d− 2)na′2 − (d− 2)n3

n3
δij

(11)

여기서 ′은 변수 r에 대한 미분을 나타낸다. 식 (9)-(11)을
식 (5)에 대입하고 각변수에 대해 적분하면 다음과 같은 1
차원 유효작용을 얻는다.

Seucl = Vol(Sd−1)

∫
dr

[
(d− 1)(d− 2)

(
a′2ad−3

n
+ nad−3

)
− 1

2

ad−1

n
ϕ′2 − 1

2

q2e−bϕn

ad−1
− Λnad−1

]
(12)

여기서 Vol(Sd−1)은 (d − 1)-차원 단위구의 부피이다. 계
량과 딜라톤에 관한 운동방정식은 식 (5)의 변분으로 직접
구할수있지만위의유효작용은웜홀해의안정성을논의하

는데유용하다. 식 (12)로부터 ϕ, n, a에대한운동방정식을

구하면 다음과 같다.

∂r

(
ad−1

n
∂rϕ

)
+

bq2

2

n

ad−1
e−bϕ = 0 (13)
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−(d− 1)(d− 2)
(∂ra)

2ad−3

n2
+ (d− 1)(d− 2)ad−3 +

1

2

ad−1

n2
(∂rϕ)

2 − 1

2

q2e−bϕ

ad−1
− Λad−1 = 0 (14)

∂r

[
2(d− 2)

(∂ra)a
d−3

n

]
− (d− 2)(d− 3)

[
(∂ra)

2ad−4

n
+ nad−4

]
+

1

2

ad−2

n
(∂rϕ)

2 − 1

2

q2ne−bϕ

ad
− Λnad−2 = 0

(15)

III. 유클리드웜홀해

식 (13)-(15)로 주어지는 액시온-딜라톤 초중력 이론의
인스탄톤 (instanton)과웜홀해는 Gutperle과 Sabra에의
해논의된바있다 [10]. 본 논문의초점은웜홀해의안정성
에 관한 것이므로 IV절의 안정성 분석을 위해 필요한 웜홀
해에 대해 간단하게 요약한다. n = 1인 게이지를 택하고
[15] 식 (13)에 ad−1∂rϕ를 곱하여 적분하면 아래의 식을
얻는다.

(∂rϕ)
2 − q2

a2d−2
e−bϕ − c

a2d−2
= 0 (16)

여기서 c는 적분상수이다. 식 (16)을 이용하면 식 (14)로
부터 a에 관한 다음의 식을 얻는다.

1−(∂ra)
2+

c

2(d− 1)(d− 2)a2d−4
− Λ

(d− 1)(d− 2)
a2 = 0

(17)
n에 대한 변분으로 얻어진 식 (14)는 식 (15)와 중복되는
것으로식 (15)로부터도동일한식을얻을수있다. 식 (17)
로부터 a(r)를구하고이를이용하여식 (16)으로부터 ϕ를
구할 수 있고 마지막으로 식 (9)로부터 χ를 구할 수 있다.
해는 상수 Λ와 c에 의존하는데 Λ = 0, Λ < 0, Λ > 0는
각각 점근적으로 평평한 (flat), 반-드시터, 드시터인 경우
이다. c = 0은 초대칭성이 보존되는 경우로 인스탄톤 해에
[10] 해당되므로 고려하지 않는다.
웜홀 해가 가능한경우는계량함수 a(r)이 ∂ra(r) = 0의

조건을 만족하는 최솟값 a0를 가지는 것이다. 이 조건이
충족될 때 계량함수 a(r)은 식 (17)을 적분하여 얻을 수
있다.

±
∫ a

a0

da√
1 + c

2(d−1)(d−2)a2d−4 − Λ
(d−1)(d−2)a

2
= r (18)

딜라톤 ϕ는 식 (16)으로부터 아래의 식을 적분하여 얻을
수 있다.∫

dϕ√
q2e−bϕ + c

= ±
∫

da

ad−1
√

1 + c
2(d−1)(d−2)a2d−4 − Λ

(d−1)(d−2)a
2

(19)

최종적으로 액시온에 관한 해는 식 (9)로부터 다음과 같이
구할 수 있다.

χ(r)− χ0 = i

∫
dr

e−bϕ

ad−1
(20)

1. 점근적으로평평한경우 (Λ = 0)

c < 0인 경우 차원에 무관하게 웜홀 해가 존재하고 웜홀

의 목과 딜라톤 해는 다음과 같다.

a0 =

[
2(d− 1)(d− 2)

|c|

]− 1
2d−4

(21)

sin−1

(√
|c|
q2

e
b
2ϕ

)
− sin−1

(√
|c|
q2

e
b
2ϕ∞

)

= b

√
d− 1

2(d− 2)
sin−1

(√
|c|

2(d− 1)(d− 2)

1

ad−2

)
(22)

여기서 ϕ∞ = ϕ(r = ∞)이다.

2. 점근적으로반-드시터인경우 (Λ < 0)

c < 0인 경우 해가 가능하고 d = 3인 경우 웜홀의 목과

딜라톤 해는 다음과 같이 기본함수로 표현할 수 있다.

a20 =

√
1 + |Λc|

2 − 1

|Λ|
(23)

sin−1

(√
|c|
q2

e
b
2ϕ

)
− sin−1

(√
|c|
q2

e
b
2ϕ∞

)

= ± b

2
sin−1

 − |c|
2 + a2

a2(r)
√

1 + |cΛ|
2

 (24)

d = 4, 5인 경우에는 타원적분으로 표현할 수 있고, d > 5

인 경우 닫힌 형태의 해석적 해는 구하는 것은 불가능하다.
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3. 점근적으로드시터인경우 (Λ > 0)

이 경우 특이하지 않은 (non-singular) 해는 존재하지 않
는다.

IV. 웜홀해의안정성

웜홀해의안정성을논의하기위해위에서구한특이하지

않은 해 근처에서의 작은 요동을 고려하자. 유클리드 웜홀

의 주요 논점은 웜홀이 함수적분에 실수의 공헌을 하는지

허수의 공헌을 포함하는가에 있다. 이를 위해 각변수에

의존하지 않는 O(d)-대칭형 s-파 요동을 고려하자 [9].

n(r) = 1 +N(r) (25)

a(r) = a0 +A(r) (26)

ϕ(r) = ϕ0 +Φ(r) (27)

여기서 a0는식 (21)또는 (23)으로주어지는웜홀의목이고
ϕ0는목에서의딜라톤의값으로해석적해가가능한 Λ = 0

인 평형한 경우와 Λ < 0이고 d = 3인 반-드시트의 경우
각각 다음과 같다.

Λ = 0 : e
b
2ϕ0 =

√
q2

|c|
sin
[

sin−1

(√
|c|
q2

e
b
2ϕ∞

)
+

π

2
b

√
d− 1

2(d− 2)

]
(28)

Λ < 0, d = 3 : e
b
2ϕ0 =

√
q2

|c|
sin

sin−1

(√
|c|
q2

e
b
2ϕ∞

)
∓ b

2

{
π

2
+ sin−1

 1√
1 + |cΛ|

2

} (29)

게이지 조건 n = 1과의 일관성을 유지하기 위해 N(r) = 0로 택하고 식 (26)과 (27)을 식 (12)에 대입하여 A,Φ에 대해

이차항까지 구하면 다음과 같다.

Sbil = Vol(Sd−1)

∫
drad−1

0

[
C0A

′2A+ C1Φ
′2 + C2AΦ

′ + C3AΦ+ C4A
2 + C5Φ

2
]

(30)

여기서 C0, · · ·C5는 다음과 같다.

C0 =
(d− 1)(d− 2)

a20
(31)

C1 = −1

2
(32)

C2 = − (d− 1)

a0
ϕ′
0 (33)

C3 = − (d− 1)

2

bq2e−bϕ0

a2d−1
0

(34)

C4 =
(d− 1)(d− 2)(d− 3)(d− 4)

2a40
− d(d− 1)

4

q2e−bϕ0

a2d0
− (d− 1)(d− 2)

2

(
ϕ′2
0

2a20
+

Λ

a20

)
(35)

C5 = −1

4

b2q2e−bϕ0

a
2(d−1)
0

(36)

식 (30)에서 A,Φ에 대한 운동방정식을 구하면 다음과 같

다.

−A′′ +
C2

2C0
Φ′ +

C4

C0
A+

C3

2C0
Φ = 0 (37)

−Φ′′ + C0A
′ + C3A− 2C5Φ = 0 (38)

식 (37), (38)과같이요동 A,Φ에대해결합된선형 2차미
분방정식을 풀기 위해 다음과 같이 조화형 섭동 (harmonic
perturbation)을 고려하자.

A = A0e
iωr, Φ = Φ0e

iωr (39)

결합된방정식의기준방식 (normal mode)은아래의 2×2
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행렬방정식으로부터 구할 수 있다.(
ω2 + C4

C0

1
2C0

(C3 + iωC2)

−(C3 − iωC2) ω2 − 2C5

)(
A0

Φ0

)
= 0 (40)

위 행렬방정식이 뻔하지 않은 (non-trivial) 해를 가질 조건
으로부터 다음의 식을 얻는다.

ω4 + αω2 + β = 0 (41)

여기서 α, β는 아래와 같다.

α =
C4

C0
− 2C5 +

C2
2

2C0
, β =

C2
3 − 4C4C5

2C0
(42)

α, β는식 (31)-(36) 및 (16)을사용하면목에서의 a0 및 ϕ0

로 다음과 같이 표현된다.

α =
(d− 3)(d− 4)

2a20
+

1

4

d

d− 2

c

a
2(d−1)
0

+
b2

2
Q2 − Λ

2
(43)

β =
b2

2
Q2

{
(d− 3)(d− 4)

2a20
− 1

4

c

a
2(d−1)
0

− 1

4

d− 1

d− 2
Q2 − Λ

2

}
(44)

Q2 =
q2e−bϕ0

a
2(d−1)
0

(45)

요동에 대해 웜홀의 해가 안정되기 위한 조건은 식 (41)
의 ω가 모두 실수해를 가지는 것이다. 기준방식 ω에 존재

하는 허수부분은 eiωr항이 지수함수적으로 증가하는 것을

의미하고 이 경우 웜홀 해는 안정되지 못한다. ω가 순실수

해를 가질 조건은 식 (41)에서 ω2의 근이 모두 음이 아닌

실수를 갖는 것과 같고 이 조건은 다음과 같다.

α < 0, β > 0, α2 − 4β > 0 (46)

1. 점근적으로평평한경우 (Λ = 0)

안정된 해를 가질 조건은 식 (46)으로부터 다음과 같이

나타낼 수 있다.

−3(d− 3)

a20
+

b2

2
Q2 < 0 (47)

b2

2
Q2

(
d2 − 5d+ 7

a20
− 1

4

d− 1

d− 2
Q2

)
> 0 (48)

b2

2

(
b2

2
+

d− 1

d− 2

)
Q4 − b2

(2d2 − 7d+ 8)

a20
Q2 +

9(d− 2)2

a40
> 0 (49)

b =
√

(d− 2)/2인 유형 II의 경우 안정화될 조건은 다음과 같다.

d = 3 : Q2 <
2

a20
(50)

d = 4 : Q2 <
8

a20
(51)

d ≥ 5 : Q2 <
4(d− 2)

da20

[
2d2 − 7d+ 8−

√
(2d2 − 7d+ 8)2 − 9d2

]
(52)
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위의 조건은 식 (21), (22) 및 (45)로부터 다음과 같이 나타낼 수 있다.

d = 3 : sin
(

sin−1(

√
|c|
q2

e
b
2ϕ∞ +

√
2π

4

)
>

√
2 (53)

d = 4 : sin
(

sin−1(

√
|c|
q2

e
b
2ϕ∞ +

√
3π

4

)
>

√
3

2
(54)

d ≥ 5 : sin
(

sin−1(

√
|c|
q2

e
b
2ϕ∞ +

√
d− 1π

4

)
>

[
d− 1

18
(2d2 − 7d+ 8 +

√
(2d2 − 7d+ 8)2 − 9d2)

] 1
2

(55)

식 (55)의우변은항상 1보다크므로어떤경우에도식 (53)-
(55)를만족하는 c와 q는존재하지않는다. 그러므로 Λ = 0

인 웜홀 해는 모두 O(d)-대칭형 섭동에 대해 불안정하다고
결론내릴 수 있다.

2. 점근적으로반-드시트인경우 (Λ < 0)

이경우 c < 0일때웜홀해가존재하고 d = 3일때기본

함수로표현가능하다. d = 3인유형 II인경우 (b =
√
1/2)

만 고려하자. 이 경우 계수 α, β는 아래와 같이 구해진다.

α = − 3

a20
+

Q2

4
− |Λ|,

β =
1

4
Q2(

1

a20
− Q2

2
+ |Λ|) (56)

식 (56)의 α, β에 대해

α2 − 4β =

(
3

4
Q2 − 3

a20
− |Λ|

)2

+ 2
Q2

a20
(57)

이므로 조건 α2 − 4β > 0는 자동적으로 만족되므로 조건

α < 0 및 β > 0으로부터 아래의 식을 얻는다.

Q2 <
1

a20
+ |Λ| (58)

위조건은식 (23), (24) 및 (46)으로부터다음과같이표현

될 수 있다.

sin

sin−1

(√
|c|
q2

e
b
2ϕ∞

)
∓ 1

2
√
2

{
π

2
+ sin−1

 1√
1 + |cΛ|

2

} >

1 +
1√

1 + |cΛ|
2

 1
2

(59)

식 (59)의우변은항상 1보다크므로위의부등식은성립되
지않는다. 따라서이경우또한안정된웜홀해는존재하지

않는다.

V. 결론및제언

끈이론에근거한딜라톤-액시온초중력이론의유클리드
웜홀 해의 안정성을 살펴보았다. 웜홀 배경에 O(d)-대칭형
작은 요동을 고려하여 두 개의 결합된 이차 선형 방정식을

구하였다. 조화형 섭동을 고려하여 웜홀 해가 안정되기

위한 조건을 찾았다. 이 조건은 시공간의 차원 d, 딜라톤의

결합상수 b, 우주상수 Λ, 및 적분상수 c로 표현될 수 있다.

구체적인 예로 결합상수가 b =
√
(d− 2)/2인 유형 II이

론에서 해석적 해가 기본함수로 구해지는 모든 경우 웜홀

해는 요동에 대해 불안정함을 보였다.

최근 별난 물질을 도입하지 않고서도 웜홀 해가 존재할

수있다는연구가보고되고있다. Gauss-Bonnet 항과같은
높은 차수의 곡률을 작용에 포함시키는 이론을 대표적인

예로들수가있다 [16]. 중력의재규격화를위해응집물질물
리의 Lifshitz이론과유사하게시간좌표와공간에대해다른
변수비 (scaling)를 적용한 Ho�rava-Lifshitz 중력이론에서
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도 별난 물질을 도입하지 않고 웜홀 해가 가능한 것으로도

알려진 바 있다 [17,18]. 유클리드 웜홀의 안정성을 분석하
기 위해 본 논문에서 사용한 방법을 4차원 또는 고차원의
통과가능한 웜홀 해에 적용하는 것은 흥미로운 연구주제가

될 것으로 기대한다.
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