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ABSTRACT

The distribution of the number of primary ion pairs is discussed for a gaseous
detector measuring ionization energy loss. This distribution also applies to the
number of photo-electrons emitted at the photo-cathode of a photo-multiplier.
After examining the general properties of the distribution, explicit formulas are
given for the Landau and Vavilov models of the energy loss. The numerical
evaluation of the distribution is fast enough to allow the fitting of experimental
data to yield the distribution parameters. The main parameter — called the
collection factor — is the number of primary ions (or photo-electrons) per unit
of deposited energy. It can be used for calibration purposes as well as to monitor

the detector performance.
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Particle identification becomes increasingly difficult as the energy of the par-
ticle goes up. Momentum determination is still feasible because of the progress
made in position resolution in drift chambers; however measurements of the par-
ticle velocity cannot be performed using time of flight techniques. There are two
methods currently applied in high energy physics: Cerenkov ring imaging devices
and energy loss measurement (3Z) in a thin detector. For particles heavier than
the electron, the average value of the energy deposited in a thin medium is asymp-
totically proportional to In~. It is therefore suited to the measurement of the
velocity of high energy particles. However the %‘g values are subjected to large
fluctuations and the estimation of the average requires several measurements.

Therefore a typical % detector consists of several cells.

In addition to the fluctuation of the energy deposited in the cells, one must
take into account the variations associated to the detection of the deposited
energy. If the medium is a gas (in a drift chamber for example), the ioniza-
tion energy deposited is directly measured by the number of ion or electron-hole
pairs induced in the medium. If the medium consists of a thin sheet of scintil-
lator, the deposited energy may be collected as light onto the photo-cathode of
a photo-multiplier tube. The number of primary ions (PI) or photo-electrons
(PE) generated is rather small (of the order of 100). The fluctuation of this
number can be modeled by a Poisson distribution for most practical purposes.
The average number of primary ions or that of primary electrons is often used as
a figure of merit of a detector; we will define instead an other parameter — the
collection factor — which is useful to describe and monitor the detector’s perfor-
mance. For both types of detectors, the fluctuations caused by the subsequent
amplification are negligible compared to these effects, due to the very large gain
involved, unless the average number of photo-electrons is very small (of the order
of 5 or less). Therefore the distribution of the number of primary ions or photo-
electrons, which we will call PI/PE for short, is a convolution of the ‘—fg with a
Poisson distribution. This paper points out the remarkable fact that, whereas

the ‘—fg distribution is quite difficult to compute, the PI/PE is much easier to
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calculate and a lot of its properties can be inferred without even knowing the

exact shape of the % distribution.

After a brief review of the %"—f— problem in the first section, the PI/PE distri-
bution is introduced in the second section and its properties are discussed in the
third section. The two next sections carry out some of the general formulas for
the Landau' and Vavilov' approximation of the %—‘:i distribution. The results

can be applied to the calibration and the monitoring of a %fi} detector.

1. Theory of ionization energy loss

Ionization energy loss occurs through collisions of an incident particle with
the atomic electrons of the medium used for detection. Let f(E,z,A) be the
probability for a particle of energy E going through a medium of thickness z to
lose a energy between A and A + dA. This probability function must then obey

the kinetic equation!’l

19‘f’g‘z’x—ﬂél=/'”(E'*'faf)f(E+e,:t:,A—e)de
i (L1)
— f (E,z,A) / w (E, €) de ,
0

which is a statement about conservation of particle flux and energy. In this
equation, w (E, €) is the probability per unit length for a particle of energy E to
lose an amount € of energy, €4, is the maximum kinetic energy transferred during
a single collision and b is equal to min (A, €maz). Usually, the incident particle’s
mass is large compared to that of the electron and the maximum energy transfer
may be written as:

2

o = 2me (v*-1) . (1.2)

€maz = 2m,

Since we are considering thin detectors, the energy lost by incident particles is

negligible compared to their kinetic energy; thus the explicit energy dependence



in f and w can be forgotten. Under these conditions, equation (1.1) can be

solved by introducing the Laplace transform of the probability density function
f defined by:

Fz,t)= [ f(z,0) e dA . (1.3)
0

Combined with boundary conditions, the Laplace transform of the energy loss

distribution satisfying equation (1.1) can be written as:

€max

o(t)=InF(z,t) = -z / w(e) (1 —e7*) de . (1.4)

Determining w (¢) allows one to calculate the distribution f (z,A). Of course,
carrying out the inverse Laplace transform is not always possible and a simple

analytical expression for the distribution cannot be obtained in most cases.

2. Generation of the PI/PE distribution

An energy loss detector measures A by detecting the amount of ionization
deposited in its active region. We define fi as the average number of primary ions
or photo-electrons. Let n be the proportionality constant between 72 and A the

amount of energy deposited in the cell. Thus by definition:
n=nA. (2.1)

We shall refer to n as the collection factor of the cell. For a gaseous or a thin
silicon detector, this is simply the average number of ions or electron-hole pairs
induced in the medium. per unit energy. For a detector with photo-multiplier
read-out, this factor takes into account how much light is collected by the light
guide and the quantum efficiency of the photo-cathode. Combining the energy
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loss and the Poisson distributions, the probability P, of detecting n PI/PE will
be given by:

P, = / (”r‘:)n e "8 f (z,A) dA . (2.2)
0

Because of the Poisson term, this probability can simply be expressed as a high

order derivative of the Laplace transform of the energy loss distribution:

(=n)" "F (z,t)
n! atr

P, = (2.3)

t=n
Thus, the inverse Laplace transformation does not need to be performed to cal-
culate the PI/PE distribution. As an example, this equation can be used to

calculate the inefficiency of the detector:
Py=F (z,n) , (2.4)

when the function F (z,t) is known. We will apply this technique to the Lan-
dau and Vavilov distributions. As we shall see, the computation of the PI/PE
distribution is overwhelmingly simplified. Before doing so, we will deduce some
general properties of the distribution using only the fact that f is a probability

density function (1.e. it is continuous, its integral is 1, ete...).

3. Distribution’s properties and numerical evaluation

A distribution obtained by the convolution of a probability function describ-
ing the occurrence of a primary event with a Poisson distribution is called a
contagious distribution because it was first introduced by Neyman'® to describe
the propagation of the larvae of some vegetable pest. However most contagious
distributions combine two discrete elementary processes!"sl whereas here the en-
ergy loss, which is described by a continuous distribution, is convoluted with a

discrete one, the collection of the primary ions or photo-electrons.



Asymptotic estimation.

Using (2.2), it is possible to obtain an upper limit for the probability of having
a signal exceeding the dynamic range of the apparatus. This is a parameter
particularly important in choosing the amplification gain of the electronics and
useful to retrieve information about particles whose energy loss falls above the

normal range of detection. By definition, we have:

Prob (n > N) = Z / df(”A) , (3.1)

n=N 0

where we have used the short hand notation df = f(z,A)dA. Permuting the
sum with the integral and using the formula to compute the remainder of a Taylor
series yields:

o0

Prob (n > N) = /df/(N1 e

df/(N_l)' 7df (3.2)

/d nA) /df,

0

IA
5 o\h

IA

where A is an arbitrary number which will be chosen so as to minimize the above

estimation. Now we know that:

[dfs/%df, (3.3)

0

where h (A) is any function monotonically increasing with A. In particular, using
h(A) = A gives:

Prob (n > N) < / df("sz + <j‘) , (3.4)
0

where (A) is the average energy loss. Using as upper limit to the first integral
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its end point value and minimizing over A, we get for large N:

Prob(n > N) S ne]flA> . (3.5)

Although this does not constitute a very tight upper bound, this formula allows
to quickly obtain some rough design parameters. A somewhat better estimate
will be obtained later when we will discuss energy loss according to the Landau

model.

Generating function.

Equation (2.3) shows that G (y) = F [z,n (1 — y)] is the generating function
of the PI1/PE distribution, 1.e.:

Gy) =) Pu". (3.6)

n=0

Using the property of the generating function, we must have:
F(z,0)=1, (3.7)

which is clearly satisfied by equation (1.4) for any function w, and:

R OF (z,t)
#—(n)——’? Tt:o’ (38)
9 .
s2=<n2>_(n>2=’72§__ﬁ;_t£2£’_ﬂt=o—u(p,—l)_

Higher order moments of the distribution can also be obtained in a similar way.
However the cumulants discussed in the next section provide a better method to

compute the moments of a distribution.
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Cumulant generating function.

The cumulant generating function is defined as:
¥(y) =G () , (3.9)

and the cumulants &, are defined by the series:

(y) =) nm%": : (3.10)

m=0
In case the function ¢ (t), defined at equation (1.4), can be developed in a power
series around the origin, we can obtain all the cumulants of the distribution.

Before showing this, we shall express all energies in units of €mnq; in order to

simplify the equations. Introducing the variable 2 = —¢€p,42t, and the function
z
u(z)=p |- , (3.11)
€maz

equation (2.3) becomes:

(nmaz) nogn eu(z)

n! dz"

P, = , (3.12)

Z2=—Nmaz

where Nz = N€maz. Then the cumulant generating function can be written as:
V(z) =Inu[nmes (e —1)] , (3.13)

If the function u (z) has a power series defined around the origin™ :

had k

u(z) = Zak% , (3.14)

k=1
it is very easy to show'® that the cumulants k,, of the distribution are given by:
m
Ko = ; {7 } or (nmas)" (3.15)

where the {',:‘} are the Stirling numbers of the second kind using the notation

* From equation (3.7): u(0) = 0.



of D. Knuth!” These numbers are discussed in the appendix. In particular, we
have:

B = K1 = &1Nmaz,
(3.16)
8§ =Ke = (al + aznmaz) Nmaz-

Since the detector read-out is a value a, = gn + p, where ¢ is an overall gain

and p the pedestal, the cumulants of a distribution are very convenient for the
quantities:

K

3

, form=3,4,... , (3.17)

Tm =

ans

K
are the same for both random variables o, and n.
Numerical evaluation.

Finally let us rewrite equation (3.6) using a complex variable varying on the

unit circle:
i P = F [z,n (1 - ew)] . (3.18)

From the estimation of equation (3.5), we know the above sum may be approxi-

mated by a finite number of terms, say M, and let:

27tk
J= .
then we have:
M-1 - ,
Z P,e¥"M ~ F [z,n (1 - ez’"ﬂ)] . (3.20)

n=0
This equation shows that the PI/PE probabilities are the discrete Fourier trans-
form of the series {F [:z:,n (1 - ez”’%)] , k=0,M — 1}. The numerical evalu-
ation of a discrete Fourier transformation is very fast so that the computation
overhead will be minimal. In addition, since the transformation maps a set of
complex numbers into a set of reals, looking at the magnitude of the imaginary
parts of the result provides a fair evaluation of the numerical error in the deter-

mination of the P,.



This method is applicable to the computation of any discrete distribution. If
the expression of the generating function is simpler than that of the distribution,
it is the fastest way to evaluate the probabilities. The application of this method
to the number of photo-electrons generated on the photo-cathode of a Cerenkov

detector is discussed in the appendix.

4. Application to the Landau case

In a classical paper!" Landau solves equation (1.4) by using the following
collision probability:
§
zw (€) = = (4.1)

where
_2nNg’qipz >.Z Dz ¢
- meﬂz EA - me ,32

In the definition of £, N is the Avogadro number, m, the mass of the electron and

¢

(4.2)

ge its charge, 8 is the velocity of the incident particle, ¢ its charge, p the medium
density and Z and A the atomic and mass numbers of the elements which the
medium is made of. In order to simplify the result, Landau let the upper limit of
the integral of equation (1.4) go to infinity, assuming highly relativistic particles.

His final solution is:
egnaz 2

where C = .577216... is the Euler constant. A distribution generated with
the above equations is shown in figure 1 together with the result of a simulation
program. Using the fast Fourier transform, the computation of 1024 points of
the distribution on a VAX 780 with floating point accelerator is performed in 600
milliseconds. In contrast, a program computing the inverse Laplace transform
of the above equation and performing the convolution of equation (2.2) required

nearly 3 hours of cpu time to obtain the same result.
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Landau also gave the formula for the asymptotic expansion of the % prob-

ability density function:

1
f(z,A) ~ m s (4.4)
for large A, where w (A) is defined by:
_a_ £
w+lnw—-g ln?. (4.5)

He also shows that:
7 1 1
A

Using this result back in equation (3.2) and using our previous estimation for the
first integral, the smallest bound is obtained by minimizing respective to w (A)
and we get:

1
née(N —1)°

which is a better bound than that of equation (3.5) for large values of the collec-

Prob(n > N) S (4.7)

tion factor.

However, the function ¢ (t) in equation (4.3) does not have a power series
expansion around the origin. From equations (3.8), one can see that, in the
Landau model, the PI/PE distribution does not have a finite mean nor a finite
variance. This comes mainly from the fact that extending the integral of equation
(1.4) to infinity allows a infinite energy transfer to the electrons of the medium
and therefore introduces (non-physical) infinite contributions. When convoluted
with the Poisson distribution, the weight of these overwhelms the average com-
putation. Therefore the average number of PI/PE in the Landau case is not a
meaningful quantity since it depends logarithmically upon the cut-off value. It

is much preferable to use the collection factor 7.
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5. Application to the Vavilov case

Revising the work of Landau in order to obtain a theory which would also
be valid for non-relativistic particles, Vavilov' uses the following collision prob-

ability:

zw(e):é(l—ﬂzee ) . (5.1)

maz

In order to subtract the non-essential singularity, equation (1.4) is rewritten as:

€masx

pt)=—-At—z / w(e) (1 — e —te) de (5.2)
0
where
A=z/ew(e)de=£(1+ln U ﬂ2> (5.3)

0
is the average collision energy loss as has been used by Vavilov. A detailed

discussion of this quantity is given by Fano' who describes many correction

terms to this expression.

Integrating by parts, one can rewrite the solution in the form:

2 €mazt

<p()=—€t 1 + In -maz maz ﬂz 1—e“"‘“t_<1+ ﬂz ) / l—e_ydy

€mazt €mazt y

(5.4)
where the integral is a regular function:

8

E(s) = / 1 "ye_ydy --y (;i)! (5.5)
0 n=1

which converges on the entire complex plane and diverges at infinity. Since one

can show:
E(s)~Ins+C, (5.6)
we see that, for large values of €p,zt, the Vavilov and Landau solutions are
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equivalent. A distribution generated with the above equations is shown in figure
2 together with the result of a simulation program. Because the evaluation of the
generating function requires the computation of an integral in the complex plane,
the calculation of 1024 points on a VAX takes 3.2 seconds which is significantly
more than in the Landau case. Using the variable z = —€p4,t and introducing
the Vavilov parameter £ = ;i—‘, the function u (z) defined in equation (3.11)

becomes:

bt 4
2 — eV
u(z) =« (1 +In-T22 m“z ﬂz) -+ (z— ﬂz)/ 1-e dy| . (5.7)
2 Yy
Using the power series expansion for the integral and the exponential yields:

[ s 2 n
= p (0o 5 (- 5) 5

- = (5.8)
—x Z(memaz_ﬂz)z+z 1 +1 2"
B I n—1 ~2/ nn!
L n=2
Using this expression in equations (3.16) gives:
= 2¢ (In 222 — %) n,
2 (5.9)

2 _ €m 2 1\n
S —26(111 Iaz-ﬂ)ﬂ'*'femaz(l'f'?)'—é—

The first equation is simply our definition of the collection factor. From the
expression of the average energy loss, the logarithmic divergence of the average
number of PI/PE in the Landau case is obvious. A more accurate formula for the
average energy loss can be found in reference 8 or in the Particle Data Book'”

Combining the previous equations we find that the following statistic:
s —u= (nz) (n) ((n) +1) = D& (* + 1) n? (5.10)

allows to compute the collection factor using particles of known type and mo-

mentum. Let us recall that ¢ is the charge of the incident particle and that D,
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defined in equation (4.2), characterizes the properties of the medium. In practice,
however, this equation cannot be used because the detector will not register large
amount of energy loss. The cause may be due to the limitation of the electronics
(e.g. saturation). The fundamental problem, however, is that a single collision
which causes the particle to lose a lot of energy (i.e. close to €m,z) gives rise to
electrons energetic enough to emerge as delta rays out of the detector cell. The
loss of large signals will strongly bias the determination of 1 and s? and the above

equation will not be correct for a truncated distribution.

6. Truncated distribution

The problem of signal cut-off is a difficult one. When delta rays are produced,
the energy loss will not be deposited into a single detector cell. An accurate
treatment of this phenomenon requires a theory of truncated distribution. Un-
fortunately, such a theory does not yet exist and only a few simple distributions

[8] [10—12)

can fully be treated analytically .

One can however make some reasonable assumption about the physical pro-
cess leading to a delta ray leaving the detector cell. The energy lost by the
particle in a single collision will not be deposited in the cell if it is larger than
the minimum energy, €.yt, which is needed for a delta ray to emerge from the
cell. The treatment here can no longer be exact because the delta ray will give
back part of its energy in the cell through regular %. In addition the presence
of delta rays emerging from a cell will perturb the measurement of the next cell.
In drift chambers the emerging delta ray can be separated after some distance
and the net effect is a loss of information in a few cells which can be identified
geometrically. Therefore €.y is a quantity which must be determined empirically
because it strongly depends on the detector type and configuration, as well as on
the property of the associated apparatus if the latter is needed to identify delta

rays.
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In case €.y can be defined in a reasonable way, it will replace €y, in equation
(1.4) since collisions yielding electrons with energies larger than €.y no longer
deposit energy in the detector cell. In the definition of A and w (€), €mqz is a
normalization factor and it will also be replaced by €.y since we now deal with
conditional probabilities. Thus, we can rewrite our results using €., instead of
€maz- However, the number of PI/PE is no longer proportional to the energy lost
by the particle crossing a detector cell, but to the amount of energy deposited in
the cell, these two quantities being different. One must be wary that, whereas
D is a parameter of the medium and n is a property of the detector cell, €.q; is
a function of the cell and the whole detector since it depends on how well delta
rays are separated. In particular, it may well be dependent on the reconstruction

algorithm. With this caveat equation (5.10) becomes:

Dzg* 4* +1

s - "= a —"72 6cu.t772
2m, ¥4 -1 (6.1)
Dzg¢?

"~

€cutn® for~y > 1.
2m,

Thus, for sufficiently energetic particles, the above statistic is independent of the

particle velocity.

7. Calibration and monitoring procedure

Because of the simplicity of equation (4.3), the numerical evaluation of the
PI/PE distribution in the Landau case is fast. The Vavilov case is not as favor-
able. Equation (5.4) still contains an integral and the function given in equation
(5.7) converges poorly, especially when, for a typical detector, z can be as large as
700. Some distribution shapes are plotted in figures 3a~c. However, for highly
relativistic particles, the Landau and Vavilov PI/PE distributions are practically
indistinguishable for n < 1000 as can be seen from figure 3c. It is thus possible
to fit a % spectrum of known particles using the Landau formula in order to

determine independently the collection factor n and the cut-off parameter €.y;.
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Once these parameters are known, the stability of the product e.,:n? can be
used to monitor the detector performance by selecting particles of sufficiently
high momentum to compute the statistic of equation (6.1). These particles could
be selected by determining the track curvature. The path length through the
cell, z, can then be calculated and combined with the % readout. One could
also use this statistic to flag particles having a charge different from one if they

have a sufficiently high momentum.

Programs to compute and fit the PI/PE distribution can be obtained from
the author.

8. Conclusions

This paper shows that, when taken into account, the fluctuations caused
by the Poisson statistic in detecting the primary ionization of an energy loss
signal simplify the probabilistic treatment of the phenomenon. We have given
analytical expressions for the generating functions of the primary ionization or
the photo-electron distribution, for the Landau and Vavilov theory of energy loss
and shown how one can use these expression for a fast numerical evaluation of

the probability distributions.

Because of this, an experimental spectrum can be fitted to determine the
detector parameters, in particular the collection factor which describes how well
the detector cell is performing. This can be done over a large data sample;
alternatively, with certain kinematic cuts, one can define subsamples to monitor
possible changes in time of the collection factor. Clearly such monitoring is useful
to diagnose any change (gas composition, ageing effects, etc.) that could be taking

place in a detector.
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APPENDIX

Application to Cerenkov counters signals

The first example of a contagious distribution is the compound Poisson dis-
tribution, which was studied by Neyman'" We will show that this distribution
describes the number of photo-electrons generated at the cathode of a photo-

multiplier of a Cerenkov counter.

The number of photons n, emitted in the radiator follows a Poisson distri-
bution given by:
”,"'1 e b

Pn., = n'y! ’ (Al)

where p is the average number of photons generated in the radiator given by:
 ~ 500sin’® 0, (A2)

for one centimeter of radiator (cf. reference 9 for the exact formula). Assuming a
collection factor n between the number of generated photons u and the number

of photo-electrons emitted by the cathode n. (i.e. {(n.) = nu), we have:

o0 n - -
_ (r’n’y) e [ "n’l ”n'le [
Fo. = Z n,! nyd (A3)

ny=0

The similarity with the equations for the PI/PE distributions is obvious. The

generating function of the P, is:
G (2) = exp (—p + pe 1%) (A4)

which is much easier to evaluate than the expression of equation (A3).
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If the average number of photo-electron is small (of the order of 5), the
fluctuations caused by the multiplication of the signal at the first dynode of the
photo-multiplier can no longer by ignored. Let n; be the number of electrons
emerging from the first dynode and let A be the average multiplication factor of

dynode. Then the probability must be computed as

An. ) e—Ane n My Ny~
(= ) bedTe S e g
ne=0 n,=0 Me: My
whereas the generating function expression is still quite simple:
G(z) = exp {—u + pexp (—17 + ne"\'*"\z) } , (A6)

Stirling numbers of the second kind

The Stirling number of the second kind are defined by the relation of recur-

n n—1 n—1
{k}"k{ k }+{k—1}’
and the initial values:

{g}=1, {g}=0and {nj_l}zo for n # 0.

The following table give the first of them

rence:

{3} | k=1 2 3 4 5 6 7 8 9 10
n=1 1

2 11

3 1 3 1

4 17 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1701 1050 266 28 1

9 1 255 3025 7770 6951 2646 462 36 1

10 1 511 9330 34105 42525 22827 5880 750 45 1
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FIGURE CAPTIONS

1. Simulated PI/PE distribution for a thin plastic scintillator (Pilot B) for
high relativistic particles. The solid line is the PI/PE distribution obtained
by computing the generating function with equation (4.3) and using a fast
Fourier transform as described in this paper. The value of the parameters
is indicated on the figure. The histogram was generated using the routines
pIsLAN"® and POISSN from the CERN computing library using the same

parameters. The curve was normalized to the same number of events. No

other adjustment was made.

2. Simulated PI/PE distribution for the same detector as figure 1 for non-
relativistic particles. The solid line is the PI/PE distribution obtained by
computing the generating function with equation (5.4) and using a fast
Fourier transform. The CERN library routine DISVAV"® was used instead
of DISLAN.

3. Comparison of the PI/PE distributions for the Landau and Vavilov models
for different particle velocity. When the two curves are discernable, the
distribution is plotted with a solid line for the Vavilov case and a dotted

line for the Landau case.
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Simulated PI/PE distribution (Landau case)
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Simulated PI/PE distribution (Vavilov case)
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PI/PE distribution (non—relativistic case)
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PI/PE distribution (relativistic case)
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PI/PE distribution (high relativistic case)
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