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Abstract

This master thesis reviews DVV matrix string theory and it is IR limit Sy orbifold sigma
model by stuying the scattering amplitudes it defines. The conjectured correspondence
between second quantized Type ITA string theory and IR Matrix string theory in the large
N limit is discussed and some evidence through explicit calculation of scattering amplitudes
in three level is mentioned. General discussion of symmetric product spaces and elliptic
genus is included for a clear understanding of orbifold CFT model and is linked to one loop
amplitude of string theory. Merely, the outermost aim of this work is calculating the one loop
amplitudes in DVV matrix string theory, hence to check if this perturbative picture really
matches with the string theory calculations. Some difficulties in this calculation is identified,
even though final formula is not achieved the equations are analyzed and simplified for further

studies.



Introduction

Since the first idea of string theory appeared in the context of dual models, it has attracted
lots of attention because of it’s simplicity and geometrical beauty. Also it can be said that it
is the most promising theory of unification of fundamental forces. At least now that is what
we have as the best explanation till somebody comes up with a simpler and more beautiful
theory of quantum gravity. We believe string theory still worth studying.

Since the it apperared the techniques including supersymmetry and geometry was con-
structed in diverse ways and physicists discovered with five consistent superstring theories
in 10D namely Type I, Type IIA [Type IIB, Heterotic Es x Eg and heterotic SO(32). In
90s physics community got puzzled of having five different theories of a so called unified
theory. Taking into account the fact that this theories are connected by duality symmetries
in 1995 Horava and Witten proposed a new idea, that is to say they claimed that five theories
were the perturbative limits of a unifying 11 dimensional theory: M-theory. By definition
M-theory corresponds to the non-perturbative theory of typellA string theory up on com-
pactification of the 11th dimension. From another point of view M-theory is believed to give
11D SUGRA as a low energy limit, which is equivalent to typellIA SUGRA up on compactifi-
cation on a circle. The puzzle is to find a non-perturbative theory of type IIA strings on the
other side of the square 2] On the other hand Polchinski, the same year, proposed theory of
D-branes, where strings start and end. The low energy interactions of D-branes is explained
by 10D N =1 SYM and 10D SYM is believed to be the non-perturbative theory of typellA
strings. In order to recognize the correspondence one should reduce the theory to 2D to
obtain N/ = 8 SYM. However, the correspondence is not manifest, one has to investigate
the strong coupling limit of this theory to obtain a perturbative string theory. The story of
DVV matrix theory starts here.

In 1996 Banks-Fishler-Seiberg and Suskind proposed a model with D-particle degrees of
freedom represented with the matrices of rank N. This theory is believed to be equivalent
to light-front gauge formulation of the M-theory. By compactifying the M(atrix) theory on
a circle in the 9th direction then using T-duality and last fliping 11th and 9th dimensions
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one can obrain 2D SYM action in the Hamiltonian formulation. This is supposed to be
the non-perturbative formulation of the type IIA string theory. In 1997 Dijkgraff Verlinde
and Verlinde conjectured that there is an IR fixed point where theory becomes 2D free
CFT on SyR?® orbifold target space. The coordinates of the eigenvalues of the matrices in
2D SYM was identified with the components of the second quantized type IIA strings in
Green-Schwarz lightcone formulation. Moreover they proposed that this theory is equivalent
to interacting type IIA string theory in the large N limit, by constructing a least irrelevat
SUSY and SO(8) invariant vertex that creates different worldsheet topologies.

After DVV conjecture there has been lots of work in various part of this problem. One
of them is problem of showing that these two theoris define the same amplitudes, namely
the scattering amplitudes of the physical particles are the same for both theories. In the
same lines it has been already shown that in three level the amplitudes of the Sy orbifold
perturbation theory coincide with the string theory amplitudes by Arutyunov and Frolov.
It is also an intersting problem to show this correspondence in loop level. Loop amplitudes
constitute very important information about the nature of the string theory such as modulo
invariance, we believe this will be enlightening.

Our interest in this thesis lies in the lines of showing the correspondence of IR physics of
the 2D SYM and string theory via calculating the one loop partition function and check the
modulo invariance. Unfortunately the methods we used turned out to give a very complicated
picture even for the simplest loop amplitude. Throughout the thesis the orbifold CFT
methods constructed by Dixon et all. is used. This so called Stress Energy Tensor (SET)
method provide us with a tool to calculate the CFT correlators on the orbifolds by using the
analytical properties. In this respect the DVV vertex effectively acts as joining and splitting
three vertex of strings, and this was provided by changing the analytical properties of the
world-sheet locally by twist fields. We will mention how one can construct a string theory by
using the twist fields formulation. Calculating the loop amplitudes is still an open problem.
Merely we tried to analyze the amplitudes in the context of SET method and simplified the
picture. We hope this work will shed light on the quest for a final formula.
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Chapter 1

String Perturbation Theory and
Scattering Amplitudes

1.1 Introduction

In the following chapter we will try to present the string perturbation theory techniques in
order to give some flavour of superstring theory amplitudes. We will start with Polyakov
path integral, for it’s geometrical manifestation of quantum levels and calculational appro-
priateness. However, we will also point out the equvalence of the lightcone and Polyakov
pictures by the end of the chapter in the context of Riemann Surface theory. Throughout the
chapter our main emphasis will be on scattering amplitudes of closed (super)string theory,
since DVV matrix model in the strong coupling limit only gives rise to second quantized
closed strings[14]. We are going to restate some crucial facts about the tree and one loop
amplitudes of bosonic and superstring theories. As reader can evaluate, we can’t go into
details of superstring theory in this thesis. However, one can consult references [1]-[6] for
more detailed background material.

The simplest string theory is the theory of bosonic D=26 free strings on flat background(
a theory that can be interpreted as of pure gravity without matter), non-realistic though, for
its negative mass square ground state, the tachyons. Generically the theory is anomalous and
anomaly cacelation leads to D = 26.In the meanwhile, it manifests lorentz covariance after
fixing the conformal gauge[2]. We will use this theory for building up general techniques.
On the other hand there are several string theories with matter couplings (fermions), and
with spacetime supersymmetry such as Type-I, Type-II and Heterotic string Theories. One
can calculate amplitudes of these theories paying a little bit more effort using the techniques

constructed for bosonic strings.



1.2 Bosonic Closed String Perturbation Theory

Bosonic string theory is simply an embedding of two dimensional world-sheet to 26-dim
space-time. In this respect, it is completely geometrical and this embedding can be realized
in many inequivalent ways. The physical content of the theory begins with the idea that
this embedding must obey some action principle. In complete analogy with relativistic
point particle case Nambu and Goto proposed that this must be a minimal area principle
(an analog of minimal action principle): area swept by the propagating string must be
minimized to obtain classical solution. This works very well for classical case, nevertheless
the quantization is intricate. On the other hand, the NG action is shown to be equivalent
to an action proposed by Polyakov by using a metric on world-sheet. This action gives back

NG action by implementing the equation of motion for worl-sheet metric v ([1]-[6])

Sp[X, 7] = /M drdo(—)"*4"0,X"9, X, (1.2.1)

ab

where M denotes the world-sheet manifold, v** is world-sheet metric and ~ denotes

Det(y®). One can observe that this action has following symmetries:

1- D dimensional Poincaré Invariance:

X™(r,0) = A*X*(1,0) + a*,

Vab(T,0) = Yab(T, 0) (1.2.2)

2- Diffeomorphism Invariance:

XM, o") = XH(r,0),

0,0"0y0" N (T, 0") = Y (T, 0) (1.2.3)

for new coordinates o’*(T, o)

3- Two-dimensional Weyl invariance (conformal symmetry)

X*™(7' 0"y = X" (1,0),



V(1 0) = exp(2w(T, o)) Var (T, 0) (1.2.4)

The conformal symmetry is rather special for string theory (generally for conformal field
theories)and mostly missing in higher dimensional extended object actions. The symmetry
implies that conformally equivalent metrics corresponds to same embedding in space-time,
merely this means physical parameters of the theory is ignorant to the length scale of the
strings.

There are two basic facts we want to emphasize at this point. First of all, one can discuss

possible extension of this action by the Gauss-Bonnet term:

1

X = Z/Mdea(—y)éR (1.2.5)

This term satisfies the symmetries up to a boundary term:

(—7)2R = (—7)3 (R — 2V*w)

the variation is a total derivative, because (—7)2V,0* = d((—7)z0?), for any v*. How-
ever, this topological term will turn out to be essential when we discuss the string pertur-
bation theory,since it constitutes the grading parameter of perturbation levels. For the time
being we just add this term to the action.

The second possible discussion can be made on which boundary condition one can possibly

choose. The variation of action with respect to X* is :

o0 1 o=/
/ dr(—v)26X"0° X, (1.2.6)

o=0

1
47

1
Ve

58, =

[eS) l
/ dr / do(—7)26X"V?X, —
—00 0

— 0o
vanishing of first term gives the equation of motion V2X* = (. Second term is a boundary
term which vanishes under different circumstances. One of this gives rise to open string, this

is so called Neuman boundary conditions:

97 X" (r,0) = 8 X" (r, () = 0. (1.2.7)

Another possibility is periodic (closed string) boundary conditions:



07 XH(1,0) = 0° XH(1,0) (1.2.8)

X*(1,0) = X*(1,0) (1.2.9)

Yab(T: 0) = Yap (7, 0) (1.2.10)

This is the boundary conditions we are going to use from now on for bosonic strings
otherwise the contrary stated, since often we deal with the closed strings in this thesis.

Last two local symmetries above give rise to the gauge degrees of freedom, which one
must fix to obtain a physically relevant theory. We will discuss the intricate problem of
gauge fixing in the context of Polyakov path integral and Faddev-Popov determinant. We
will emphasize the geometrical interpretation in terms of Conformal Killing Vectors (CKV)
using complex geometry. Thus, we will use Wick rotated form of (7 — i7)the 7 coordinate in
order to obtain Euclidean signatured metric in Polyakov action. This is extremely essential in
String Perturbation Theory since 2-dim compact connected manifolds are perfectly classified
by their genus. ( There is no proof of the fact that Lorenzian and Euclidean theories of
quantum string has a correspondence a full theory. Nevertheless, it has been shown by
explicit calculations that they define same amplitudes[2].)

After giving an introduction to classical string action we deal with the quantum strinf
theory. As mentioned there are many ways to attain a physically relevant quantization but
may be the most effective one, Polyakov path integral, will be our main concern. The path
integral merely is the statistics of random paths weighted by a function of the action. In
our context we want to sum up all distinct embedding of the worldsheet to spacetime. The
perturbation parameter here is genus such that every order in genus contribute less and less
to the perturbative expansion (Observe that this is because of Gauss-Bonnet term x coupled
to Polyakov action by gs). This naive expectation will be discussed later when we start
the intricate theory of defining an appropriate measure for the path integral i.e. moduli

parameters and loop amplitudes in sections (1.3) and (1.4).



A typical amplitude can be written in the following form

A= Z (relevant physical objects) exp(—Seassicat(geometry))

over—all—histories

This clumsy way of explaining the general picture will be clarified in context later. How-
ever, no matter what the theory at hand is meaning of ”over all histories” and ” geometry”
is not very clear. Indeed, if we only consider the smooth manifolds ones by restricting scalar

fields X to be an embedding to the target space with an arbitrary worldsheet metric

X* 1 2-D World-sheet — 26-D Target Space

then this is a well behaved connected metrizable surface. Well known examples are the
sphere and torus for oriented case, and all other compact connected oriented surfaces of
genus-0 and genus-1 are homeomorphic to these respectively. Since we require our fields
to be embedding than the surfaces we are dealing with must be diffeomorphic. One can
immediately see why we are looking for a diffeomorphism invariance in the action, namely
having a diffeomorphism invariant theory provides us with the luxury of specifying our
perturbation expansion by genus. On the other hand this symmetry should be factored out
from the measure by a choice of the gauge. This was explained by a form of very familiar
Faddeev-Popov theory, which appears in the path integrals with gauge symmetries [2-5].

In two dimensions the action manifests Weyl invariance, as well as diffemorphism invari-
ance, so this symmetry also must be factored out from the measure. The a proper amplitude

is given by the following integral, for bosonic string theory

XD 1 A
Z / [DXD1] << Verter >> emp(/ dea(—v)l/Z(ﬁvabﬁaX“abX,nLER))

V T
topologies Diffeox Weyl M

(1.2.11)

At this point we have to emphasize that this path integral is not well defined because

of the Lorentzian signature of worldsheet metric. It can be overcome by Wick rotation
7 — —i7. This trick provides us with Euclidean path integral which is in perfect Gaussian
form. Only intricate job is definition of the measure for integral to be well behaved and finite

in an appropriate measure. (From now on we denote the Euclidean metric by 7 g.".)



We haven’t yet specified what ”vertex” refers to. In fact we replaced it with the expression
"physically relevant objects”. We will see in details in the following pages that ”vertex”
is an analog of the vertex operators in quantum field theory. It is a source of any kind of
physical excitations. This is hard to imagine without referring to ” Hilbert Space Techniques”
i.e. second quantized formalism of the creation and annihilation of particles by applying
the oscillator modes to ground state. It won’t be discussed here, reader can consult the
introductory text [1] at this point. However, we will try to justify the idea of vertex in the
context of Polyakov path integral.

A general form of a vertex operator can be written as:

Vievden = H/d20'i(g(0'i))1/2V[k1, s knyon, o (1.2.12)
i=1

where all local operators are normal ordered.
It is integrated on the world-sheet to obtain a diffeomorphism invariant theory. This
creates particles through the oscillatory modes of the string. Using this form, a general

amplitude can be expressed as follows:

Akl...kn: Z / @X@g €$p<_SP_X>H/dzai(g(ai))l/2v[kla'-'7kn§0'1>-'-7(7n]
i=1

%
topologies Diffeox Weyl

(1.2.13)
the diffeomorphism and Lorentz invariant vertex operator of first ground state particles,

tachyons with m? = —k% = —2 is given by

VolK] :g/hl/zdza et X (1.2.14)

where ”::” denotes the normal ordering and the vertex operator for massless states,

namely graviton, photon and dilaton (scalar field)is

Vilk,S,..] =g / Bog?{g™S,,[: 0. X 0 X X 1] + 26R][: X 1]} (1.2.15)

this are the two vertices that we will use throughout the thesis. We will define more

vertex operators in bosonic string theory if necessary later.



1.3 Gauge Fixing and Moduli Spaces

In this section we will explain how to fix the gauge and define a well behaved path integral.
The fact that dif f x Weyl has infinite volume causes enormous over-counting, which makes
integral ill-defined. However, after fixing the gauge the integral will make sense math-
ematically. We need to divide the measure by the volume of gauge group by which one can

regularize the integral:

Z:/Mexp(—é') (1.3.1)

‘/gauge

we will realize the required adjustment to integral by gauge fixing and integrating with
respect to one gauge slice that only cuts the gauge group ones. We will obtain an appropri-
ate choice by using Faddeev-Popov method. It will be shown explicitly that one cannot fix
all the degrees of freedom by choosing a gauge i.e. holomorphic(anti-holomorphic) transfor-
mations are still a symmetry of three level amplitudes (amplitudes defined on sphere). (in
Canonical Quantization, this gives rise to Virasoro algebra and one should be factored out
the corresponding descendent states from the Hilbert space). This additional symmetry will
be represented as an integral over two Grassman fields b.; and ¢?. This is a very crucial
point to be discussed in detail since has a deep geometrical meaning.

We will denote the gauge choice (sometimes called fiducial metric) as gq,. A very appro-

priate gauge is flat Euclidean metric:

Gab = Oap (1.3.2)

One can only use the diffemorphism degree of freedoms to bring the metric in the following

form:

Jap = €xp(2w(0))dap (1.3.3)

This form of the metric manifests the holomorphic (anti-holomorphic) symmetry. It is
convenient here to introduce complex parameters z = o + ¢7 such that by the holomorphic

transformation z — f(z) metric transforms as:



ds”? = exp(2w)|0, f| 2dz'd?Z’ (1.3.4)

making the choice w = In|d, f| leaves the metric invariant. This extra symmetry does not
conflict with the Previous counting of degrees of freedom since it has zero volume compared
to dif f x Weyl

One can discuss the fate of Gauss-Bonnet term as well. The variation with respect to

Weyl transformations is

(—7)2R = (—7)2(R — 2V?w) (1.3.5)
To set R’ = 0 one must choose w as the solution of 2V%w = R. This is always possible

at least locally.

Now think of a variation of metric and the fields with following inner products:

16]] = / 0 /56™ 65 gucS g (13.6)

X4 = /\/gaxwxu (1.3.7)

observe that this norms are not Weyl invariant. This means that in the quantum theory
generically Weyl factor will couple to the fields.

The variation of the metric under infinitesimal diffemorphisms and Weyl rescaling can

be decomposed into

0gab = Vals + Vb + 20gap = (PE)ap + 2Aga (1.3.8)

where we redefine P and A as:

PE=V,& + Vs — gV, (1.3.9)

~

A = gu(2A + V°,) (1.3.10)

New integration measure can be written as

@g—@ﬁ@]\—@gm‘%( (1.3.11)



where the jacobian is

d(P¢,A) P 0 —
> | = P| = PPt 1.3.12
‘3(6,/\) ] (det o \detP| = \/det| PP| (1.3.12)

The Weyl anomaly is cancelled when we set dimension to D=26. This is critical dimension
for the Bosonic string. Assuming that the operator PP has no zero modes (which will be

investigated separately), the path integral can be written as:

2= Y /@X“\/det\lf’PHexp( — 5,(4,X) — Ax(g)) (1.3.13)

topologies

a problem arise when PP has zero modes. Those reparametrizations satisfying

Per =0 (1.3.14)

are called conformal Killing vector. This is an extra symmetry of the action which cannot
be gauged away by fixing the metric since it leaves the metric invariant. This should be fixed
separately.

On the other hand another ambiguity arise when :

(PYt*), = -2Vt = (1.3.15)

where 7, is a symmetric traceless rank two tensor. This corresponds to the deformations

of metric which cannot be compensated by reparametrizations or Weyl rescalings. This

space is called Teichmuller space or moduli space and parameter spanning it is Teichmuller
parameter or modulus .

The choice done to fix the extra diffeomorphism symmetry does not effect this metric

deformations since we have them transversal to each other:

(&, PTt") = (P&, t") =0 (1.3.16)
There is a well known relation between dimension of the Teichmuller space and number

of the CKVs. This is given by following relation:

%(dim(Kerp) — dim(KerP") =3(g—1) (1.3.17)



Figure 1.1: The torus is a cotiant of C and lattice L, C/L.

A

which is a special case of famous Riemann-Roch Theorem. LHS is divided to 2 since we

consider complex parameters here, this result can be explicitly stated by the following table:

Table 1.
Genus | number of zeros of P | number of zeros of Pt
0 3 0
1 1 1
> 2 0 3g-3

The Teichmuller parameter spanning the metric deformations that cannot be compen-
sated by dif f x weyl has an automorphism group in general. This is the group of area
preserving automorphisms. To avoid over counting, we should factor out the automorphism

group from moduli space. The domain of moduli parameter is called fundamental region

denoted by Fj:

= Ly (1.3.18)
Ho = Giff x Weyl i

where I'y is space of all metrics.

It is useful at this point to investigate the moduli one loop amplitudes for future purposes.
Any kind of one loop diagram is diffemorphic to torus with punctures which correspondes to
external states. The torus can be represented by a lattice as in[I.I} On the other hand this

representation is far from being unique. First of all, the lattice is translation invariant, we

10



Figure 1.2: The moduli space of the string one loop amplitude.

can choose origin at an arbitrary point (corrsponding to CKV of loop amplitudes). Second,
it is invariant under PSL(2,Z) transformations (modulo invariance). We should mode out

this transformations from upper half plane to avoid over-counting. The fundamental domain

H/PSL(2,7) is

1 1
Fy = |:TI:T1+iTQSTQ>O,—§§T1§§,|T|=1

it looks as in figure [1.2]

1.4 Tree and One Loop Amplitudes of Bosonic Strings

The tree amplitudes are amplitudes on the sphere. Sphere has three holomorphic CKV which
spans the automorphism group SL(2,C) and 3 anti-holomorphic CKV which spans SL(2,C),
as well (by modding out discreet symmetry z — —z one gets PSL(2,C) = SL(2,C)/+1).
This means we are free to set three of our points to 0,1,00, which is the convention used in
[1]-[6]. Consequently one, two and three point functions are just constants and irrelevant for
our purposes.( We just remark that two point function vanishes so the cosmological constant

at tree level is vanishing.)First nontrivial amplitude is four point amplitude so we will assume

11



the number of vertices n > 4.

A general metric is conformally equivalent to the standard metric on the sphere i.e.

25ab
1+ 2|2
this is the result of the fact that the moduli space is trivial i.e. all degrees of freedom of

metric is canceled by dif f x Weyl (Check Table-1).

GJab = (141)

For instance a general n-point three amplitude for tachyonic vertices can be given without

considering conventions above as follows

2 n
<< V(k1).. V(ky) >>= (27)28 (Fuor) H/dej eg;p Zki_kjg(zi,zj) (1.4.2)

i,j:l

However, there is another subtlety here: the zero modes of the fields X* are making the
integral divergent. We integrated out this modes. As a result we got a J-function in
[L.4.2 which takes care of the conservation of momentum. This is the case since total on-shell
momentum must be zero. We should consider the propagator equation by excluding the zero

modes as follows

V3G(2.2) = 4nd(2,7) — 4n.C (1.4.3)

one can check that the right propagator can be given as

|z = 2|
(T4 [2[2) (1 + |2'?)

up on using this in (1.33) and considering k? = 2 the general tachyonic amplitude becomes

G(z,2')=—In

(1.4.4)

n

<< V(ky).. V(k,) >>= (2m)*6(k H / 2d°z; H |zi — zj|2ki'kje$p[ — Z G(z, zl)] (1.4.5)

i<j i=1

the singulary that arises from the coinciding points should be regularized by PSL(2, C)invariant
way. This requires setting G(z;, ;) to a constant A independent of z;. The remaining am-
plitude is PSL(2,C) invariant and thus divergent due to the infinite volume of KerP. If
we fix three points and cancel the volume arising from CKV, we can get a well defined tree

amplitude

12



< V(kp)..V(ky) >= c(2m)*5(k H/sz] |2 — 25| 2iki (1.4.6)

1<i<j<n—1

by setting n=4 we obtain well known Virasoro-Shapiro amplitude

< V() Vo)V (es)V(la) >= e(2m)255(k) / ]|k 1 — o2y (1.4.7)

The one loop case is completely different since there is only one CKV (i.e.translations)
and one moduli which is PSL(2,Z) invariant(it is the largest area preserving diffeomrophism
group of torus). As discussed in previous section by moding out PSL(2,7Z) we obtain

fundamental region

-1 1
FOZ|:TZ:T1—|—7:7'227'2>0,7§7'1§§7|7—|:1] (1.4.8)

n-point one loop scattering amplitude is given by the following integral in [6]:

d2r 1
< V(ky) / \/dtPTP —det (V)| << V(k1).. V(kn) >> ——
(1) n T2 [ } (). V(kn) Vol(KerP)

(1.4.9)

the determinants are evaluated in [6] and given by
det(P'P) = det(2V3) = det(v2) (1.4.10)
det(Vg) = 2n(7)|* (1.4.11)

where Dedekind eta function 7 is defined in appendix A. Moreover one finds the Vol (K erp) =

27y, so that the Weyl-Peterson measure is

1 A>T 1
Vol(KerP) 81212 (4n%my)1?

d2
Aty = - det(PtP) [

2

472

T2

det(V2)| @I (14.12)

with the help of transformation law of 1 function it is easy to check that this measure is
PSL(2,7) invariant.
The propagator on torus is a logarithm of doubly periodic function which has simple

zero. It shown in [6] that it has the following form:

13



01(z, 25 7) 2 T B f o
— | — —(z—z—Z+ 1.4.13
671(0;7) ‘ 279 (z—2-2+7) ( )

G(z,2;71) = —ln‘

The one loop amplitude is then

< V(1) V (k) >— 5(@/ %@m(f)wn/d%H;r(zi,zj)ki.kj (1.4.14)

Fo i<j

where function F is given as

exp(l(z —z—2+ 2’)2> (1.4.15)

91(27 Z/; 7-) ‘2
27’2

01(0;7)

We pay special attention to vacuum amplitude indeed since during research the calcu-

F(zi,25) = ‘

lation of 4-p loop amplitudes turned out to be technically complicated we will focus on
calculation of one loop vacuum amplitude in the third chapter. The scalar partition function
can be derived from the path integral just given by the argument in Weyl-Petersen measure.
However, we will follow approach of [2], for technical reasons. The following calculation gives
a special case of elliptic genus, which is discussed in the second chapter.

The partition function is defined as follows

<1>p2 (1) = 2(7) = Trlexp2min P — 2n,H] (1.4.16)

here physical reasoning is that we have two first class constraints that govern the sym-
metry of the theory, namely level matching condition P = Ly, — Ly generating rigid o
transformations and hamiltonian H = Lo + Ly — 5;(c + ¢) generating world-sheet time 7
(don’t mix it up with modulus 7) translations. We basically identify the ends which leads to
taking the trace. Such a trace weighted by the free energy of the system is called partition

function as in statistical mechanics.

Z(1) = (qq)"*"trlg "] (1.4.17)

with ¢ = exp (2im7)( this is the 7 of complex structure.) and g is complex conjugate.
The trace breaks up into sums over occupation numbers N, and N,un in the zero spin

sector of string spectrum and integral over k,. The partition function is then given by
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d°k -
Z(7) :‘/d(q(.I)_d/M/_eXp(—WTQCYIkQ)H Z gV g un (1.4.18)

2T <
BT Ny Npn
here V; the volume of the space-time and basically comes from the normalization of the

momentum integral V;(27)¢ [ d?k. The various sums are geometric,

- 1
d V= (1.4.19)
1—qn
N=0
so we obtain
Z(1) = iV Zx(1)* (1.4.20)
where
Zx = (4n2%a'm) V3 n(1)|? (1.4.21)
with
n(r) =g T]1-a" (1.4.22)
n=1

one can immediately observe that this is SL(2, Z) invariant.
By considering CF'T of the ghost states on torus the gauge fixed vacuum amplitude is

given by d = (D — 2) = 24.

1.5 Fermionic Strings and Supersymmetry

In this section we will try to present some crucial aspects of the Superstrings and Heterotic
Strings. As stated before DVV matrix theory gives rise to only closed strings so we will
especially focus on the theories with closed strings such as Typell. Furthermore, we will
try to do the same treatment, as in section 3, to discuss amplitudes and moduli space of
superstrings.

Following is the generalization of bosonic Polyakov action to a supersymmetric action, via

introduction of ”vielbein” g*’elel = n® (with Greek curved incices and Latin flat indices)in
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order to define world-sheet spinors:

1
4o

S =

T - N i _
/d206 (gaﬁaaX“aﬂXu + 20" p*0athy — ZXaPBP (Os Xy — ZXB¢#) (1.5.1)

We denoted the determinant of "vielbein” by e. Metric g®? is function of vielbein e2
and p® are gamma matrices in two dimensions.This action has five local symmetries i.e.
local supersymmetry, Weyl invariance, Super-Weyl invariance, local Lorentz symmetry, local
diffeomorphisms [1-6]. We have a similar situation as bosonic strings: one has to choose
a gauge to avoid over-counting. By an appropriate choice of gauge, superconformal gauge,

e? = e?5% and Yo = paA supersymmetric action simplifies to following CFT action:

1

Ve

S = /ﬁ%(%x%%xp+%wwﬂawg (1.5.2)

with corresponding equation of motion for X* and y*

Ba0° X" =0 (1.5.3)

PO " =0 (1.5.4)

for closed strings this corresponds to right and left moving solutions X* = X/ (z)+ X" (z)

and YH = P (z) + Yt (z) and we are left with two conformal killing equations
(PE)os = 0 (15.5)
[(e)g = p*ppOac =0 (1.5.6)

where € is a local two dimensional Majorana spinor (real spinor in other words).
The zero modes of the adjoint of this operators corresponds to metric degrees of freedom

that cannot be removed by reparametrization+Weyl.

(P'7)as =0 (1.5.7)

(I1'0)0s = 0 (1.5.8)
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which are moduli and supermoduli respectively.

This theory has an symmetry algebra that is analogous to Virasoro algebra which takes
care of ruling out unphysical states. The constraints that govern the algebra is T,,5 = 0
and G, = 0, stress energy tensor generating reparametrizations £(z) and and supercurrent
generating supersymmetry transformations €(z) respectively. The cancellation of the Weyl
anomaly in super Virasoro algebra requires to set D = 10 and a = % of quantum superstrings.

Moreover Lorentz invariance allows following boundary conditions for closed superstrings:
Y (e72) = gt (2) (1.5.9)

Y (e E) = M (2) (1.5.10)
We will use the standard terminology

e Periodic boundary conditions which gives rise to space time fermions are called ”Ra-

mond” denoted by R

e Anti-periodic boundary conditions which gives rise to spacetime bosons are called

”Neveu-Schwarz” denoted by NS.

The above construction considers world-sheet supersymmetry, on the other hand it is
proved by Green and Schwarz that this corresponds to space-time supersymmetry in light-
cone gauge. This can be shown by bosonization and re-fermionization of the spinors of
SO(8) thanks to the triality symmetry of irrediucible representations such as 8,, 8, and 8,
[1]. Moreover, the full supersymmetric action cannot have arbitrary number of susy’s. The
most number one gets is ' = 2 to restore k symmetry (which is a local susy). One can than
get actions with N' = 1 supersymmetry by letting one of spinors 6 to be zero. A general

superstring action is then [1]

1 1 _ _ _ _
Ssusy =~ 5~ / 2oV hh®T T+~ / d*{—i€0, X" (O TH0y0" — 0T+ 0,0°) +€0' T+ 0,0%0° T+ 0, 0%}
T T
(1.5.11)
where the canonical derivative term is IT, = 9, X* —i04I'*0,6* with two Majorana-Weyl

spinors in 10D, #! and #?. This action has the following simplified form in light cone gauge:
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1 . . _
SLC _ _2_/d20(aaXzaaXz o isapaaasa) (1512)
™

where /pT04 — S42, which is the symbol chosen for the eight surviving components after
the gauge choice, that is to say S is a spinor of SO(8)group in either 8, or 8, representation.

By considering variety of supercharges and boundary conditions one can construct differ-
ent theories, namely Typel, Typell and Heterotic strings with different chiral symmetries.
Space-time superstring theory is shown to be equivalent to world-sheet theory by a simple
transformation of the algebras. Similar to its world-sheet cousin, we have anomalous di-
mension D=10 for space-time superstring theory. Reader is directed to [1]-[6] for further
discussions.

In D=10 theories with open string are called Typel and irrelevant since our purposes
for MST construction is only formulated for closed string theories. The closed superstring
theories with opposite chirality of fermionic coordinates is called TypellA and the one with
the same chirality is TypellB. However, the choice of two different theories for two chiralities
opens the path for Heterotic strings, which is merely consist of a chiral typell theory and a
bosonic string theory of opposite chirality.

We will only present the TypellA theory in details in chepter 2 while discussing the
symmetric productas and strings since in the original paper [12], DVV conjeture states that
the "IR limit of 2d SYM action’ is equivalent to ’second quantized LC typellA string theory’.
Type ITA theory has 16 supercharges with 8 leftgoing and 8 rightgoing. The eqautions of

motion for the fields in light-cone gauge are:

0,0-X"=0 (1.5.13)
9.5 =0 (1.5.14)
0_8*=0 (1.5.15)

where i ,a and & are indices of 8,, 85 and 8, respectively (the spin(8) gamma matrices

are discussed in Appendix E).
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1.6 Tree and One Loop Amplitudes of Superstrings

This section is devoted to amplitudes of Type ITA strings and discuss their relevance to our

approach.

The four point tree amplitude of the type II theory is calculated in [6] as
< V(er, k) V (€2, ko) V (es, ka)V (en, ke) >= (27)1°5(k)g" / @22 d05) 212 )2 — 1]t

D(—s/2)T(—t/2)T(—u/2)

e e Ky Kosg 1.6.1
(1+3/2)F(1-1—25/2)11(14—u/2)‘E €€ e 1234 1331 ( )

= 7r(27r)105(k:)g4F

where Ko34s are kinematical factors given as

K934 = (Stnisnea — sunianas — tunianss) — S(k‘fkg?,??zzx + kSkyms — kikings — k§k§n14)

+ t(kykims + k3kinos — kykinsg — kykima) — w(kikines + k3kyma — kik3nsa — kikyme) (1.6.2)

by superconformal invariance the zero, one and two point functions of superstring all
vanish [6].

On the other hand, the one loop four point amplitude is given by as follows [6]

< V(Gl, kl)...V(q, k4) >= g45(k’)A1 X 611622633641K1234K1§34 (163)

where reduced amplitude is given by

d*r 1
Al = / T /d221d222d22’3d2z4 X |F12F34‘_S/2‘F23F14’_t/2‘F13F24’_u/2 (164)
o

1 2T22 (T2>4
where F is defined before for bosonic case, this will be investigated for superstrings in

the Appendix .

The zero point loop amplitude of the type ITA string is given by [5]:
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\/7_27777 o - i -
where 0[¢] defined in Appendix A. It is not hard to prove that this function is modulo

invariant.

1.7 Riemann Surfaces and Light-cone Perturbation The-
ory

In this section we will introduce the light-cone string perturbation theory, from the perspec-
tive of branched coverings of Riemann surfaces.

Historically there have been two functional integral approaches developed to treat the
loop expansion in string theory. The interacting string picture[1], which was developed first,
is closely related to the physical picture of strings propagating in spacetime and undergoing
occasional interactions. In contrast, the Polyakov approach [2] involves a sum over geo-
metrical surfaces and hence the physical picture of string propagation is more obscured. A
long-standing question has been whether these two formalisms are in fact equivalent.

Basically the amplitudes in both approaches are consist of integrals of a measure over
some finite-dim space. Hence equality is established if we (a)demonstrate the equivalence
of the integration regions (b)demonstrate the equivalence of the integration measures. This
issue was fully treated in [7]

A typical amplitude in Polyakov approach is in the form

—13

det’A) < V..V, > (1.7.1)

det < ,ua,qbg >
A, = / dm det' P P)'/?
14 M%[ ] det(¢a7¢ﬁ) ( 1 1) (

which is calculated by Polyakov action 1 [, d?0v/hh®0,X#9,X,, In the interacting string

picture the analogous amplitude is

Vol
which is calculated by light-cone action 3 [ d?0[(9,X")? + (8,X")?]

Al(l,...,n):/[ds]<2—detA> oww, s (1.7.2)
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The equivalence lies within the Abelian differentials that completely fixes the topology
of the string propagation on Riemann surfaces. One can say the above equivalence is an
equivalence of Mandelstam diagrams and Riemann surfaces, via a simple cut and paste
operation of the Riemann sheets one can construct any the Riemann surfaces corresponding
the genus expansion of amplitudes.

In [7] the equivalence of the measures was demonstrated. We will try to give a physical
account of the light-cone diagrams. First of all the Abelian differential dX ™ has bunch of
zeros and poles. The zeros corresponds to the interaction points and poles are external string
states

Assume a local coordinate w
dXt =dw ~ (2 — 20)dz — (w —wy) ~ (2 — 2)* (1.7.3)
and the poles are in the form

dz

zZ— Z;

dw ~ p; — (0 —w;) ~ plog(z — z) (1.7.4)

higher order zeros corresponds to higher order interactions and length of the external
states is given by light-cone momentum p;".

The story of matrix strings starts over here since this picture is in complete analogy with
the string ’bit’construction of symmetric products, which has various lengths of external
states labelled by the number of the 'bits’( nothing but of p; on each cycle (i)) and there
are internal local fixed points where interactions occur. The next chapter is about this
construction of string theory in terms of symmetric products and and topology changing

vertex.
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Chapter 2

DVYV Matrix String theory

In this chapter we provide a brief introduction to Matrix String Theory and DVV conjecture
of string interactions and orbifold CFT. We will first review the derivation of the 2D SYM
action by reduction of 10D SYM. Afterwards, we will present some crucial issues of the
DVV matrix string theory. The matrix theory construction lies within the orbifold CFT
techniques, so we will also review the orbifold CFT. By the end of the chapter we will talk
about symmetric product orbifolds and second quantized strings.

The investigation for matrix model of string theory is related to quest for a consistent
string limit of M-theory, which is considered as ultimate unifying theory of all the forces in the
nature. The five consistent superstring theories, which are related by duality transformations
are believed to be different limits of M-theory corresponding different sectors in perturbation
theory. The low energy limit of M-theory is believed to be 11 dimensional SUGRA leads
to Type ITA SUGRA up on compactification on a circle in the light cone frame. Still
mysterious, M-theory attracts lots of attention and the main idea of DVV matrix theory can
be embedded in this quest for a consistent and practical interpretation of M-theory in the

context of M(atrix) theories.

2.1 An introduction to Matrix Theories

To comlete the M-theory picture given in the figure 2| there proposed a dimensional reduction
scheme. The low-energy physics of N Dirichlet p-branes living in flat space is described in
static gauge by the dimensional reduction to p + 1 dimensions of A/ = 1 SYM in 10D. This
constitutes the basis for the BFSS theory( the reduction to 0+1 SYM theory of N x N
matices which was copnjectured to give light front formulation of the M-theory). However
we will not discuss BFSS theory here, on the other hand we will review the reduction from

10D to 2D which eventually gives the super Yang-Mills action with 16 supercharges. In
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other words this section will be devoted to fill in some of the details of this theory in ten
dimensions, and describe explicitly the dimensionally reduced theory in the case of 1-branes,

or strings. The ten-dimensional U(N) super Yang-Mills theory has the action [28]

S = / d10§< - iTrFWFW n %TT@EF“DN@b) (2.1.1)

where the field strength is

Fo = 0,4, — 0,A, —igyu|A,, A (2.1.2)

is the curvature of a U(N) hermitian gauge field A,. The fields A, and 1 are both in the
adjoint representation of U(N) and carry adjoint indices which we will generally suppress.

The covariant derivative D,, of ¢ is given by

(9Mw — igYM[Au,w] (213)

where gy is the Yang-Mills coupling constant. ¢ is a 16-component Majorana-Weyl
spinor of SO(9,1).

The action [2.1.1]is invariant under the supersymmettry transformations

SA, = %gr,ﬂ/; (2.1.4)
5y = —iFWF‘“’e (2.1.5)

where € is a majorana-Weyl spinor. Thus the theory has 16 independent charges. There
are 8 bosonic and 8 fermionic degrees of freedom after imposing the Dirac equation.

It is always possible to rescale the fields of SYM action so that coupling constant only
appears as an overall multiplicative constant. We find the following action up on absorbing
the coupling to ¢ and A,

1
S

1 i
— 410 (- STrE, F* 4 LTrgI"D ) 2.1.6
4912/]\4/ 5 4 r 122 + 2) Tw P«w ( )

where the covariant derivative is given by
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D, =0, —iA, (2.1.7)

The ten-dimensional super Yang-Mills theory described can be used to construct a super
Yang-Mills theory in p+1 dimensions with 16 supercharges by the simple process of dimen-
sional reduction. This is done by assuming that all fields are independent of coordinates p
+1,. .. ,9. After dimensional reduction, the 10D field A, decomposes into a (p + 1)-
dimensional gauge field and 9 - p adjoint scalar fields X and we have also fermionic degrees
of freedom ©“ which transforms. The action of the dimensionally reduced theory takes the

form

1

B 4g§YM

S

/ e Tr( — FypF® — 2(Dy X + [X, XY? + ©7T,D'0 + 07T/ X', @])
(2.1.8)

As discussed in [28] this is precisely the action describing the low energy dynamics of
N coincident Dirichlet p-branes in static gauge (although there the fields X and A, are
normalized by the factor X — X/(2ma’). The field A, is the gauge field on the D-brane
world-volume, and the fields X describe transverse fluctuations of the D-branes.

The classical vacuum corresponds to a static solution of the equations of motion where
the potential energy of the system is minimized. This occurs when the curvature F,3 and the
fermion fields vanish, and in addition the fields X* are covariantly constant and commute
with one another. When the fields X all commute with one another at each point in the (p
+ 1)-dimensional world-volume of the branes, the fields can be simultaneously diagonalized

by a gauge transformation, so that we have

X =diag(xy, ..., z%) (2.1.9)

In such a configuration, the N diagonal elements of the matrix X* can be associated
with the positions of the N distinct D-branes in the a-th transverse direction [28]. In accord
with this identification, one can easily verify that the masses of the fields corresponding to
off-diagonal matrix elements are precisely given by the distances between the corresponding
branes. From this discussion, we see that the moduli space of classical vacua for the (p+1)-

dimensional field theory arising from dimensional reduction of 10D SYM is given by
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(R
SN

The factors of R correspond to positions of the N D-branes in the (9 - p)- dimensional

(2.1.10)

transverse space. The symmetry group Sy is the residual Weyl symmetry of the gauge
group. In the D-brane language this corresponds to a permutation symmetry acting on the
D-branes, indicating that the D-branes should be treated as indistinguishable objects.
After a general discussion of the reduction procedure and its physical relevance lets we
emphasize that the action up on rescaling the bosonic and fermionic degrees of freedom

and identifying the gsy s with g we obtain the following action:

1 . . 1 o .
Sevm = 5- /d2aTr((DuX’)2 +0e'T;D'e + ?ij — @°[X7, X2+ g0T (X, 0)]) (2.1.11)

this is the starting point of the matrix string theory. In fact this action also can be
derived from M(atrix) theory Hamiltonian via compactification on S with radious Ry. This
is also another way to approach the fact that up on compactification on a circle M-theory

must give a non-perturbative theory of strings.

2.2 Matrix String Theory and Sy Orbifold CFT

Simply, DVV matrix theory is a super-Yang-Mills theory with 16 supercharges in 141 di-

mensions, whose dynamics is governed by the following action [12]:

st pv

1 ) ) 1 ) . 1 )
Ssvm = 5- /d2O'T7‘((DNXZ)2 +0'T, D'+ g’ F?, — E[X’,XJ]Q + —0Ty[X",0]) (2.2.1)

s s

here 8 bosonic fields X¢ are N x N matrices, as are the 8 fermionic fields ©¢ and ©%. The
fields X%, ©% and ©% transform respectively in 8, vector, and 8, and 8, spinor representa-
tions of SO(8) R-symmetry group of transversal rotations. The two dimensional world-sheet
is taken to be a cylinder and parameterized by coordinates (o, 7) with o is on circle. Fermi-
ons are taken in Ramond sector and there is no specific projection on particular fermion

number[12-13].
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Figure 2.1: )
The spectral flow of eigenvalues. The cycles of length (3) and (5) are

indicated by the red squares.

|
-~

3
I
A

The eigenvalues of the matrix coordinates X* are identified as the coordinates of TypelIA
string theory. The action has an IR fixed point and as theory flows to that point it
recovers the complete string spectrum of TypellA theory. Correspondence based on equiv-
alence between second-quantized string theory and Sy orbifold sigma-model, which we will
investigate in details in the following pages.

The commutator terms in dominates the action as g5 goes to 0 (or equivalently
g — o0), which means there is no dynamical term left. For having a non-trivial dynamics
one has to assume that the bracket terms vanish. On the other hand gauge field strength
F decouples in the IR limit, since the gauge field is boken to T = U(1)*, with k number of

strings[16]. The degrees of freedom is given by the solution to Laplace equation on torus:

g°A(A) =0 (2.2.2)

this must be identically zero as ¢ — oo which means we are only left with quantum
mechanics of finite degrees of freedom in strong coupling limit so as the term S = g% J(Ew)?
vanishes in the strong coupling limit.

The argument above justifies the fact that the conformal field theory that describes the
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IR limit is the A/ = 8 SCFT on the orbifold target space

SYR = (R*)N/Sy (2.2.3)

In g; = 0 limit the fields X and © commute. Consequently, one can diagonalize both

fields simultaneously. One can then write X matrix coordinates as

X' =U(0)r'U (o) (2.2.4)

with U € U(N) and z' is a diagonal matrix with eigen values z}, ...., x%,. That is to say
2" takes values in the Cartan sub-algebra of U(N). The only gauge freedom left is Weyl
group which is isomorphic to symmetric group Sy, which describes the model with Green-
Schwarz light cone coordinates z%, 0¢,6¢ with I = 1,2....N. The theory that corresponds
to N — oo is described by these eigenvalues which includes twisted sector because of the
different orientation of the full gauge group U(N) at 0 = 0 and o = 27. This two different
groups are isomorphic up to a Weyl group element. By using the fact that matrix X is

periodic we have following identification:

Ulo +2m)2' (2m)U o + 27) = U(o + 2r)g2' (0)g U (o + 27)

z'(0 +27) = gr'(o)g ™" (2.2.5)

with g € Weyl group of U(N), the symmetric group Sy. It is illustrated in the figure

In full propagation picture the figure is interpreted as a snapshot of the string propa-
gation at fixed 7. The action of Sy provides us with the cycles consists of different numbers
of subset of N objects,(NN,,)(where n is the length of the cycle and NV, stands for the number
of repetitions of this cycle), at each value of 7 where there is no coincidence. These cycles
establishes the many free string picture (second quantized TypellA string theory). On the
other hand, the coinciding fields in this diagram is very important since those will constitute
the interaction of strings. For the time being we only consider the free string picture and
try to understand the Hilbert space structure.

The Hilbert space of the Sy orbifold SFT is compsed into twisted sectors:
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HS"R) = P  Hpy (2.2.6)

partitions{Nn}

Here we note that conjugacy classes characterize the structure of the Hilbert space. An
overall conjugation in terms of an arbitrary element of Sy leaves picture the same. So what
we really need here separate conjugacy classes consists of cycles of (n) with IV, copies of the

same cycle (Appendix C).

> N, =N (2.2.7)

A general conjugacy class [g] is decomposed as

lg] = ()™M (2)™..(s)™ (2.2.8)

In each twisted sector one must keep only the states invariant under the centralizer

subgroup C, of g

Cy =[] Sn. x 23" (2.2.9)

n=1

where each Sy, permutes N, identical cycles while Z, acts within one cycle. The

corresponding Hilbert space is

Hn,y = Q) SV H, (2.2.10)

where

SVH=(H®..oH) (2.2.11)

The space H, denotes the single string Hilbert space on R® x S' space with winding
number n. This model can be explained by a sigma model of coordinate fields z% with

following boundary conditions in Z,, invariant sector

(o +2m) =%, () mod(n), I e (1,..n) (2.2.12)

we can construct a string by gluing together these fields, defined on interval 0 < o < 2nr.

To define whole theory on the [0, 27] interval we transform o — nyo in each Z,, invariant
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twisted sector. In terms of canonically normalized single string L, operator the total L* is

given as

Li
Lyt=> =2 (2.2.13)
P
one can see this from Lo — Ly = #- transforms as L — Ly = -2
We normalize the total light-cone momentum p*?* = 1 and the fraction of the momentum

for each cycle is

plot = % (2.2.14)

The heuristic philosophy of the theory ”only long strings of Sy orbifold sigma model
survive in the N — oo limit” can be seen here since only states that corresponds to the
finite fraction of the total momentum survives. Another crucial point is no winding modes
are allowed in this limit since non-zero winding modes become infinitely massive. This can
be also understood as interpreting N — oo flow as the world-sheet radius R goes to infinity,
since in the mass term contribution of is proportional to Rm;, mode m; must vanish. In
this respect the level matching condition L§ — L = ngm; — 0 implies that the mass shell

condition is
p = NLY (2.2.15)
and one can recover the mass-shell condition for individual string as

NI

n;

i

p_

(2.2.16)

combining this with (2.13) gives p’ p’, = L, considering all strings have the same string

tension o’=1.

2.3 DVYV Interaction Vertex

The free theory above does not have any interesting dynamics since there is no terms gov-

erning the joining-splitting process. The first irrelevant operator correction around IR fixed
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Figure 2.2:
& The cycles join or split by transposition of the elements. The string

interaction vertex.

point constitutes such a vertex. This is a non-conformal perturbative correction for small
value of gs. This vertex must be SO(8) and Susy invariant. On the other hand it should
couple to the free action by a power of g, = giL that will make overall correction scales as %

with h; conformal dimension of V.

Spvv = Sscrr + g2 > / d*oV; (2.3.1)

As mentioned above the fundamental structure that forms the strings are cycles in the
symmetric group. We need an effective operator that breaks a big cycles into two small ones
or combine two small cycles into a big one as in figure 2.2l The mechanism lies beneath the
recovering of the U(2) symmetry at the coincidence points of the eigenvalues of matrix X,
where fixed points of the orbifold lyes. Around the the point the symmetry U(1); x U(1);
recovered as U(2);;, which is broken to the Weyl group Z, at large N limit. Observe that in
a cycle of exchange of two object breaks the cycle and exchange of two objects from
two small cycles fuse the cycles.(Check Appendix C for the properties of symmetric group.)

The least irrelevant mighty vertex conjectured by Dijkgraaf, Verlinde and Verlinde in [12]

18

Vit = Z/d%«(riz@' ® 7% )1y (2.3.2)
1<J
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where 7 and ¥ are excited twist fields given by the relations

7' (2).0(0) ~ z727(0) (2.3.3)
0% (2).51(0) ~ 2~ 2~%. $%(0) (2.3.4)
6% (2).2%(0) ~ 272+, 57(0) (2.3.5)

the SO(8) is satisfied by space-time contractions and SUSY invariance is satisfied because

variation is a full derivative

(G2, 7Y = 0.(0%%) (2.3.6)

2

from the relations [2.3.3] [2.3.4] and [2.3.5| one can check that the conformal dimension of

the single twist fields 7 and o are 1 and % and consequently the conformal weight of the
full Vj,,; is (%, %) Corresponding conformal dimension of the coupling constant is -1, hence

interaction will scale linear in g5 as required.[13]

2.4 Orbifold Conformal Field Theory

In this section we will review the CF'T on orbifold backgrounds developed by Dixon et all.
[21]. The main discussion will follow Dixon et all.[21] and Arutyunov and Frolov [22]. We
will first explain the operator product expansions (OPE)of twist fields and the geometry of
orbifolds. Then we will show the simplest loop calculation, the correlator of four Z, operator
on sphere, by using stress energy tensor method. With some remarks about the bosonization
and cocyles of the fermionic twist fields, we will finish the section.

Orbifold is defined as quotient of a smooth manifold M and action of discrete group S.

QO =M/S (2.4.1)

which has a set of fixed points. A fixed point is simply S x {p} — {p}. In our case the
orbifold geometry is given by the embedding
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X : 2-d World Sheet — orbifold space-time (2.4.2)

For most of our purposes we will just have a quotient of Euclidean space R¢/S. This
construction will be reviewed in due paragraphs.

The main elements of conformal field theory of orbifolds are twist fields. Twist fields
are located on the fixed point set of the orbifold which merely acts as a brunch cut on the
world-sheet where in the vicinity, the field X (z, Z) is multi-valued. A full rotation around
the fixed points changes the Riemann sheet the string propagates.

Twist basically can be perceived as an analogue of spin field of fermions. For instance,
in the Ramond sector chiral field 1(e?*™z) = —(z) is generated by a spin field S which is

merely fermionic vertex operator.

¥(2)8(0) ~ 27125(0) (2.4.3)

with S is excited spin field located at zero. The conformal dimension is hy = 1/16.

For bosonic CFT which are consist of Id. operator,the complex scalar field X and its
exponential e?X and anti-holomorphic piece, twisting of the field in the vicinity of a certain
point w is given by the following OPE for the simplest twist field analogue of the above

equation

0X o(w, @) ~ (z —w) 7 (w, o) (2.4.4)

the action of this twist field is just reflection with respect to the origin. The field 7 is
the excited twist field which has holomorphic conformal dimension h, = h, + 1/2 where
antiholomorphic dimension did not change.

The simplest orbifold geometry is the identification X ~ X 4 27 R and X ~ —X, which
has the fixed points X=0 and X = wR. Basically there is two twist fields, one on each
fixed point of the orbifold. The classical ground state is basically a static oscillating string
attached to either fixed points.

The complex field X behaves around a fixed point of above kind, Z, twist field, as

X(62m2’, e—27ri2) _ GMX(Z, 2) — _X(Z72) (245)
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Figure 2.3: The orbifold S'/Z,.

in general in the vicinity of the twist fields this relation is

X (2, e 2miz) = 627Tik/NX(Z, Z) (2.4.6)

which is just corresponding action of the Zy twist field. This can be summarized in the

operator formalism with more concrete terms as follows

X (2)o(w, @) ~ (z —w) YN (w, ) + ...

X ()04 (w, @) ~ (z — @) N7 (w, @) + ...

0X ()04 (w, @) ~ (2 — w)*NF (w, @) + ...

OX (Qoy(w, @) ~ (2 —w) " T¥N7 (w, @) + ... (2.4.7)

and similar equations for o_. The power is determined by the phase condition (2.24)
and the integer power is determined by the fact that twisted vacuum is the highest weight
state. One can give the oscillator mode expansion of the holomorphic and anti holomorphic
twisted fields but in fact this is practically useless, because the twist fields generically does

not have a mode expansion.

0X(z) = Z gy 2 "R (2.4.8)

m=—00
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0X(2)= > Qmognz "N (2.4.9)

the first excited states are
Oélfk/N’(T > (2410)
gy o > (2.4.11)

This is a bit tricky for the fermionic theory since it includes issues such as bosonization
and cocyles. Let’s start with we have a free fermion theory in 2d, with Majorana fermions.
One can define two chiral theories which is equivalent to full theory: ¢ = ¢ 4 i), and
1 = 1y — i1hy where we used just the components of Majorana spinor. The bosonization of

the fermionic theory can be defined,for the equivalence of these two chiral theories,as

Yip = 2i0H (2.4.12)
\/giw = exp(iH) (2.4.13)

1 -
\/;w — cxp(—iH) (2.4.14)
The Z, spin fields are simply Sy = exp(£kH/N) with the conformal dimension hy =
%(%)2 This transformations gives the right OPEs up to cocyles and non-singular terms
which is relevant for conformal field theories.
Turning back to the main scope of this section we will spend few words on orbifold CFT

correlation functions. Our ultimate goal is to calculate the correlation functions in a CFT,

so we will consider the correlation function of twist fields

F(z1, . 2n) =< 0(21)...0(2) > (2.4.15)

this correlation function cannot be calculated by conventional methods since one cannot
use Wick’s theorem since the twist fields are not expressed in terms of oscillator modes. To

avoid this complication, we will use a method called stress-energy tensor (SET) method,
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which is nothing but using the Ward identities to extract the information about the correla-
tion function around the twist field locations. Main element of the method is the following

correlator:

_% < 0X(2)0X (w)o(21)....0(zn) >

= 2.4.16
9(z,w) <o(z)...0(z,) > ( )
from this we obtain
<< T(2) >>= lim [—% < 0X(2)0X (w)o(z1)....0(zp) > B 1 (2.417)
Y < o(z1)....0(zn) > (z — w)? o
then considering the Ward identity
& hi 0;
< T(2)F (21, ..., .2) >= Z[<Z T —] < F(a ) > (2.4.18)
j=1 J !
consequently
Res,, << T(z) >>= 0;ln(< F >) (2.4.19)

if one can calculate LHS of independently 2.43 provides a system of differential

equations

Oiln(< F(z1, .oy .2n) >) =121, ..., . 20) (2.4.20)

for j = 1,....,n. For the calculation of LHS arguments of analytic properties of the
correlation function i.e. action of local twist fields and global monodromy conditions will be
enough as discussed in Appendix B.

The correlation function 77?7 is only non-zero when the total action of twist fields is
trivial. This is a selection rule analogous to fermion selection rule i.e. odd number off fermions
has vanishing correlation function. This selection rule has more concrete implication, when
travelled around a closed loops that encircles zero effective twist the integral of the dX

vanishes

0=AcXp = f{ dz0X +7§ dz0X (2.4.21)
Cr Cr
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Figure 2.4: The torus is represented by a lattice.

this constitutes the missing information to calculate the Green function from the analytic
properties. The demonstration of the method is given in the following pages, the calculation
of four Z5 twist correlator.

-Four Z2 correlator calculation.

For the sake of concreteness we apply SET method to the simplest nontrivial correlator,
four Z, field. First version is a restatement of the calculation in Dixon et.all.[21] and second
version is a simple application of the method given in Arutyunov and Frolov[22], just slightly

different but more useful for our construction and will be given in the 3rd apter.

< 0'2(21)0'2(22)0'2(23)0'2<Z4) > (2422)

by using SL(2,Z) invariance we can transform three of the points to 0,1 and oo and only

moduli left is cross ratio .

Z(x) = lim |200|"* < 02(200)02(1)0a(2)02(0) > (2.4.23)

Zoo —00

by using the uniformization technique such that

0Xy = lim |20|"* < 0X(2)02(200 )02 (1)0a(2) 02 (0) >

const
Tz z2)z =)z —2)2]1 2 (2.4.24)

the differential equation dt = dz 0X defines a classical elliptic function , the Weierstrass

function p(t)

2(t) = % (2.4.25)
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T (2.4.26)
€2 — €1

where e; +es+e3 = 0. Elliptic functions are defined on the torus which can be represented
by the following parallelogram with the fixed point locations.
On the other hand the modulus of the torus is given by

r= (28)4 (2.4.27)

Full Green’s function on torus is parity odd X (—t) = —X(¢), so that holomorphic field

0X is invariant under reflection (sheet interchange). The Green function

9ot 1) = g(1,¥) + g(t, 1) (2.4.28)
1
g(t,t') = —5 < 0X 4 (1)0X 4 (t') > (2.4.29)
we will also need
_ 1 _
h(t,t') = —5 < 0X 4 (£)0X 4 (t') > (2.4.30)

The full Green’s function has vanishing integrals around the closed loops, on z-plane:
AcXg, = 0, which corresponds to the fundamental cycles on torus. Applied to above

definitions we obtain the following conditions:
1 I
0:/ dtg(t,t’)—l—/ dth(t,t')
0 0

0:/ dtg(t,t’)+/ dth(t,t") (2.4.31)
0 0

by implementing this conditions one obtains the Green’s function

(tt) = 1 (t—t')—l/ldt O — (2.4.32)
P =3P 2 Jo v 2Imt o

where
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! 1 = nu”
1= [ dt p(t) = (2mi)?| £ -2 } 2.4.33
ot = i35 -2 50 (2433
stress energy tensor on the torus is then
T(t) = lim[g(¢,t') — L1 ] (2.4.34)

However, we need stress energy tensor on the sphere so one should use the following

transformation rule

dz\2 1 /2" 3 /2"\2
o= ()10 35
®) dt (2) + 12\ T2\ (24.35)
by using the appropriate transformation rules for Weierstrass p function (appendix-A)one

can easily obtain

<T(2) >= (e;—(t?)? [p(Qt) . %] (2.4.36)

by expanding this around z=x

11 1 (1,1 1 [—2(ex — €1)x —2e; — I — w(ImT)71]
<T(z2) >= — {— - }
(2) 16(2—:5)2+z—x 8(x+:v—1) 4(eg —ey)x(z — 1)
(2.4.37)
and observing that
1 B 1 _1lodr
4leg —epz(x —1)  4(n)2x03  4midx
one can derive the promised differential equation for the correlation function.
1 /1 1 1 m™ 1dr
CNTPRRE L ST U B U VA [ 2 435
4 24 x+x—1 4ri +Im7‘ dx ( )
which integrates to
Zgu(z) = const.|z(1 — )| 2(Im7) = ?|u| /2 H 11— o2 (2.4.39)
n=1

where u = exp(2miT).

kRl Rk k% _Fermionic correlators
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2.5 Symmetric Products, Elliptic Genera and String
Theory

The symmetric orbifolds constitute the main object of the matrix string theory. We gave
an introduction to the orbifoldization via identifying the symmetric copies of the manifold
X in section 2.2 for a special case of R®. In the meanwhile, the general theory of symmetric
product orbifolds, elliptic genus and relation to second quantized strings is worthwhile to
present since we believe this will help to better understand the quantization of the Sy orbifold
theories and the corresponding perturbation theory.

In [14], Dijkgraaf et all. proved the conjectured explicit form of the elliptic genus,namely
partition function of Hilbert space structure, first using modular forms then expressed in
terms of Hecke operators, where they calculated free energy of second quantized string theory
in the hamiltonian picture. We will try to get the same result from the Lagrangian picture
by using SET method and DVV matrix theory in the 3rd chapter. The equivalence of this
two pictures is discussed in [16] in details.

The single string picture of loop amplitudes given in the sections 1.3 and 1.6, provides
some insight to approach the many string problem. On the other hand, in Lagrangian
construction the trace operation of Hamiltonian picture is naturally given by boundary
conditions via matching the incoming and outgoing strings and modulus is given by the
invariant cross ratio of the twist field locations. Our actual goal is to calculate partition
function of the single string propagating on symmetric product orbifold and compare it with
the partition function of second quantized DLCQ string theory.

Let X be a smooth manifold, a symmetric orbifold is, as defined for a special case in

section (2.1),

SyX = (X)N/Sy (2.5.1)

where Sy acts as permutation of N chosen points on product manifold X x ... x X. This

is trivial symmetrization operation on vector spaces to construct symmetric tensors.

1
Sym(T) = E[Tabc.. + permutation of indices] (2.5.2)
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the main claim in [16] is the equivalence of symmetric orbifold and DLCQ theories, can

be summarized in the following theorem

Theorem 1. Theorem:The discreet light cone quantization of a free scalar field on space-
time M = (R x SY) x X with total longitudinal momentum p™ = N is given by the quantum

mechanics on the orbifold symmetric product SN X,

HOPT(X) = HOY(SX) (2.5.3)
Furthermore the lightcone Hamiltonian p~ s identified by the non-relativistic quantum

mechanics Hamiltonian H.

This result can be extended to susy version [16].Moreover the result can be possibly inter-
preted as a string theory by just identifying the cycles in the symmetric group as coordinates

of the strings i.e.

quantum mechanics on SX — quantum field theory on X

conformal field theory onSX — second quantized string theory on X

in more specific terms we want to identify the DLCQ string theory on (R x S') x X with
SCFT on SX.

Following [16], as a concrete example we present Typell superstring in lightcone gauge.
We make the lightcone decomposition of coordinates (z, 27, 2"). The physical degrees of

freedom are then

r:Y — R (2.5.4)

The model has 16 supercharges (8 left and 8 right moving) and carries spin(8) R-
symmetry. With the fields x and 6 action of the first quantized sigma model is simply
following CF'T

S= / d%(%axiaf 950" + GO0 (2.5.5)

the model has Hilbert space that is of the form
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H=LR)VeF®F (2.5.6)

we recognize the familiar components here: the zero modes L?*(R®) describes quantum
mechanics of the center of mass. The fermionic zero modes gives 16 x 16 dimensional vector

space of ground states

V=V®S ) ((V,®ST) (2.5.7)

this space forms the representation of Clifford algebra Clif f(ST)®@ Clif f(S™) generated

by the fermion zero modes. Finally, the Fock space F of non-zero-modes is given by

F=Q (NS @Smv) (2.5.8)

n>0 qn

with a similar expression for F'.

In the lightcone gauge the coordinate x is given by

v (o,7)=p'r (2.5.9)

for fixed longitudional momentum p* > 0, whereas x~ is determined by the constraints

_ 1 -

_—i z)? = —(0z)?
(0x)", 0 p+(8) (2.5.10)

_p+

The Hilbert space of physical states of a single string with longitudinal momentum p™*

oz

is given by the CFT Hilbert space H restricted to states with zero world sheet momentum,

the level matching condition

P=Ly—Ly=0 (2.5.11)

the light-cone energy is determined by the mass-shell relation

_ 1 - 1
pT = E(Lo + Lo) = p—+H (2.5.12)
One can also compactify the null coordinate = by identifying = ~ 2~ 4+ 27 R. This has

two consequences. First, the light cone momentum is not free anymore but constrained with
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pT =n/R for n € Z-o to keep zero mode wave function single valued. Second, string will
decompose in different sectors according to number of wrapping around the compact null

direction, namely winding number is given by

wo = /dx_ =2mmR, meZ. (2.5.13)

However, using the constraints [2.5.10| we obtain

2m - 2R -

So, in order m to be an integer, we see that the CFT Hilbert space must now be restricted

to H™ consisting of all states that satisfied the modified level-matching condition

P = Ly— Ly = 0(mod n) (2.5.15)

This is exactly equivalent to the Z,, invariant sectors of symmetric orbifold Hilbert space,
where we have Lj — Li = n;m; as well. This motivates the correspondence between free

second quantized type IIA string spectrum and Sy CFT defined on :

SNR® = R¥N /Sy (2.5.16)

Indeed, in this correspondence we have:

p+:N, p_:H:Lo—i—Eo, ’U),:P:LO—I/O (2517)

This gives the following form for the second quantized Fock space

F,=(X) Sy H™ (2.5.18)

this is both the Hilbert space of the free string theory and of the sigma model on S, R®.

So we can identify their partition functions:

Z*" (R p,q,q) = 27T (SR 4, ), (25.19)

Elliptic Genus
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The above correspondence is realized in Dijkgraaf et all.[14] by demonstrating the equiva-
lence between one loop amplitudes of SUSY sigma model on Sy and second quantized string
theory on M x S*. Consequently we will review the proof of the identity and its stringy

interpretation

DA AR RN || ! (2.5.20)

_ mnamal\e(nm,l
N=0 n>0,m>0,l <1 p=q y) ( )

where the coefficient ¢(m, () is given via the expansion

X(Xiq,9) =Y clm, g™y (2.5.21)

m>0,l

proof of this result lies within standard results of orbifold conformal field theory of Dixon
et all.[21] and generalizes the orbifold Euler number. The central idea behind the proof
of the above identity is that partition function of single string on S™X decomposes into
several distinct topological sectors, corresponding to various ways one string wounds around
SNX x S! can be disentangled into different separate strings that wind one or more times
around X x S'. This realizes the correspondence. It is useful to think a single string on
symmetric orbifold S¥ X x S' as a map that associates to each point on the S' N points in
X. By following the trace of this N points as we go around the S* we obtain a collection of
strings on M x S! with total winding number N. Since all permutations of N points on X
corresponds to the same points on SV X string can reconnect in different ways corresponding
the conjugacy classes of g € Syy. The decomposition of [g] into irreducible cycles of length (n)
corresponds to decomposition with several strings of winding number n. The combinatorial
description of conjugacy classes as well as the appropriate symmetrizations of the wave
functions, are both naturally accounted for second quantized string theory.[14]

Elliptic genus of SV X can now be computed in Hamiltonian picture by taking the trace
over Hilbert space in various twisted sectors. We introduce following notation for the parti-

tion function:

X(H; q,y) = Try((=1)Ty™ ™) (2.5.22)
for every sub-Hilbert space H of supersymmetric sigma model. We note the following

rules :
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X(HoH') = x(H) + x(H')

YHOH) = x(H).x(H) (2.5.23)

The elliptic genus of the twisted sector is H,, is given by

X(Hasq,y) = x(Hiq""y) = Y c(m, g™y’ (2.5.24)

m>0,l

this is the left moving partition sum of the single string with winding n on X x S!. This
can be related to the string with winding number n by rescaling ¢ — ¢'/™

The projection on the Z,, invariant sub-space is

X(HE g, y) = ) clnm, g™y (2.5.25)

m>0,l

the following result is given in [14], if x(H;q,y) has the expansion

x(H; q; ) Zd m,l)q (2.5.26)

then we have the following expansion for the partition function of symmetrized product

of Hilbert spaces

> VxS Hiq,m) =] ] ( ! — (2.5.27)

_ 1Yd(
= g (L= pg™y!)
the proof of the main identity follows from combination of the two main results above.

The Hilbert space of symmetric orbifold is decomposed as

b QsVHi (2.5.28)

ST nNy,=N n>0

with this form of Hilbert space H(S™ X), we find for the partition function

oMY Xiqy) =D 0N D TSN H gy =T D x(SYH ¢ )

N>0 N>0 S nN,=Nn>0 n N>0
(2.5.29)
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by applying the result 0.00 we obtain the desired identity

> xSV Xiqy) =[] : (2.5.30)

_ pnma,l\d(mn,l)
N20 n>0;m>0,1 (1 =p"gmy')
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Chapter 3

Tree and Loop Amplitudes in Matrix
String Theory

In this chapter, we will apply the methods presented in the second chapter to a concrete
example, namely calculation of four point scattering amplitudes by using SET method. The
amplitudes are first calculated and showed to be equal to Virasoro amplitude of Bosonic
strings and Veniziano amplitude of type ITA string theory by Arutyunov and Frolov [22-
23].Later this work was extended to all physical particles in [24] . This result is a strong
evidence for the conjectured correspondence of Sy orbifold sigma models corrected by DVV
vertex and second quantized interacting string theory. Our main goal is to understand and
calculate the possible loop amplitudes from the former and show that it is equivalent to

later.

3.1 Sy Orbifold CFT and Perturbation Theory

In this section we will present the main results of DVV construction in details and try
to construct a recipe to calculate the string amplitudes of wanted order in terms of the
perturbation theory around IR fixed point. As first irrelevant term in the expansion around
the fixed point Sy Orbifold CFT is corrected by DVV vertex as stated in the section (2.2.2).
Coupling constant g, scales as inverse length so as R — oo we recover second quantized
string theory as conjectured and justified by Dijkgraff,Verlinde and Verlinde in [12], also
demonstrated in [13]. The main elements of a perturbation theory, namely Hilbert space and
perturbative expansion with respect to coupling constant will be main concern of this section.
We will use the Lagrangian approach mentioned throughout sections section (2.2.1)-(2.2.4).
To give the flavour of the DVV theory we start with bosonic model with 24 dimensions and

bosonic twist fields.
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The action of bosonic RB?* sigma model is

:27T

where 0 < o < 27, i=1,...,D; I=1,2....,N and the fields take values in S RP = (RP)N /Sy

=L / drdo (0, X0, Xt — 0,X10,X%) (3.1.1)

with the boundary conditions

X0+ 2m)a,(0) = gX'(0)0,(0) (3.1.2)

where g belongs to permutation group Sy. The Hilbert space is consist of sectors corre-

sponding to conjugacy classes [g].

H(SYR®) = P Hyy (3.1.3)
9]

where the conjugacy classes are consist of partitions {/V,,}, can be represented as

lg] = ()™M (2)™..(s)™ (3.1.4)

where (1) is a cycle in [g] and N, is the repetition number of a cycle of the same length.

The centralizer group of any element in [g] is isomorphic to

Cy =[] 5~ x z) (3.1.5)

n=1
where Sy, permutates identical n, cycles and Z¥"n acts within a cycle of length (n).

The Hilbert space decomposes into

s

Hy, = Q) S""H, (3.1.6)

n=1

where the Z,, invariant subsector H, is spanned by the following conformal fields con-
structed by gluing the fields in a Z,, invariant sector. This expression is periodic around a
circle of length 27:
1

Y (0,7) = 7 Xi(o,7) (3.1.7)

€ (na)

Considering the fields
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X (2e*™ ze7 ™) = h™'g.h X (2, 2) (3.1.8)

with g. € [g] we define the following field which have trivial monodromy

Y, [h(o,7) = % Y (hX)i(o,7) (3.1.9)

Ie(na)

Consequently an Sy invariant twist vertex is defined as follows:

U[g][{k } 2, Z Nl Z e rzz kLYS Jh—lgch(z,i) (3.1.10)
heSn

the conformal dimension of the twist fields are given by

An

< 0n|T(2)|on >= — (3.1.11)
2

in [22] the dimension for Z, twist fields were calculated and given as A, = & (n — 1).

Consequently the conformal dimension of a Z,, invariant vertex is

ot — = - 3.1.12
+871 24( )+8n ( )

so with the help of formula A, =>"" | N,,A(, given in [21], one finds

S

Ak = (N =Y Ty 3 e (3.1.13)

n &n
n=1 « «

One can also check that this vertex is invariant under exchange of momenta k, corre-
sponding the cycles of (n,) of same length.

The DVV interaction vertex [13] is simply corresponds to transposition of the elements I
and J by the action of group element g;; =1— E;;— E;;+ E;;+ Ej;, where Er; are matrix
unities.

The twist fields o, have following OPE

_ 1
g, (2,2) = 04,(0) = S, T, (€992 50 0, (0) + C2% 50 (0) + .o (3.1.14)
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here we have two leading terms since there are two different ways to trace the path
around z and 0. It is clear that g;g» and g.g; belongs to same conjugacy class and hence,
Agi g, = Agagr.

Therefore the twist field o7, acting on the highest weight state ¢,(0)|0 > creates the
states 0,,,,(0)|0 > and o,4,,,|0 >. An arbitrary element g has decomposition (ny)(nz)...(ny)
and describes a configuration with k strings. Joining and spliting operations of the strings
by the action of g;; is given by the properties of the symmetric group, stated in Appendix-C,

and can be summarized as follows, without loss of generality:

(1) (). () (n1) P (n1)®(ng)...(ng) if Tand J € (ny):SPLITTING
1) (ng)...(ng (n1 + ng)...(ng) if I e(ny) and J €(ny):JOINING

consequently the Lorentz invariant bosonic DVV vertex can be written in the following

form
AN
Vit = —gg/d%wau(z,z) (3.1.15)
with the Z, twist field defined by the action above with conformal dimension (2,2) and

a running coupling constant A\ which scales with characteristic length as {=!. This term in
principle breaks the conformal invariance of the action and defines an expansion around the
IR fixed point.

The perturbation theory to a desired order is easy to define now, since the action of Z,
fields constitute the tool to change the topology of world-sheet and provide the corresponding
levels in perturbation theory as in Polyakov picture. Issues about the moduli space of the

matrix string will be discussed separately and left to the 4th chapter.

3.2 Three Amplitudes from Sy Orbifold Sigma Models

In this section we will cover a concrete application of the SET method by applying it in
calculation of the tree amplitudes of the bosonic Sy R?** orbifold sigma model. We will not
go into details most of the section is review of [22]. Throughout the calculation of the bosonic

tree amplitude one has to calculate following type of correlators, where go = (n9)(N — ng),
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Joo = (Noo) (N —no) and the full vertex is as defined in equation [3.1.10| The g;; and g, are

vertices that transpose the elements IJ and KL.

G(u,u) =< o, [k1, k2] (00)or(1)okr(x)04,(0)[ks, ks] > (3.2.1)

The main difficulty is one cant apply Wick’s theorem to this correlator since we have a
Riemann surface of nontrivial topology with local and global monodromies. Only way to use
Wick’s theorem is to uniformize the background on which the string propagates. This acts
technically as considering a mapping from a Riemann surface R to original surface with cuts
S that contains all the local information so that topology is made manifest. For calculation

of the following propagator (by using the SET construction to extract G(u, ) from |3.2.1))

ij B (0X1,(2)0X%(8) o0 k1, ko] (00)a 15 (1) ok, ()00 (0) K3, Kea])
Clas(zw) = (Tl Fal(00) 71 (D @)70(0) s, ] (3.22)

The indices M and S refers to the correlators defined in different pieces of the Riemann
sphere (for tecnicalities consult [23]) and ij is the space index. This function is multivalued
on original z-sphere. One uses the unique holomorphic map from z-sphere with twist fields

to t-sphere manifesting the nontrivial monodromies around oo, 1, u, 0.

0 £t — o)V (b — tog) VT
z = n
(t = o)V B0 (0 — )00

the uniqueness is guarantied by the unique representation theorem of meromorphic func-

(3.2.3)

tions (Appendix A). After using this trick the Wick theorem is applicable as long as one
chooses the definite Riemann surface, namely one of the N roots of the |3.2.3] The parame-
trization of the t-sphere with the only modulus namely the Z5 twist field location z is as

follows

to=a—1 (3.2.4)
(N —ny)x
too =T — 3.2.5
v (N — no)l’ + ng ( )
N —ne —ng  nox N(N — ny)x
b _ 3.2.6
! Noo + Noo  MNoo((N —ng)x + ng) ( )

and the reparametrization of the map in terms of the t, = x is
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7 N—ng_n
Moo s N — ma \ N—noo /T + 20—\ N T — 2 =0-noo N _ng—ne
_ _ . (n()_noo)noo ( 0 ) ( N*TL()) < N—ng
u=u(r)=(ny— Noo — | —_—) X |
() = (ng ) ny® \N — ne r—1 x
l’ _——————
Ny — Neo
(3.2.7)

this map has 2(N — ng) solutions which is the same as the number of the distinct corre-

lators in calculation of [22]. Then the corresponding Green’s function is

i _ sy tu@tsw) g Kkt (=)t (w)
Gt = = o) — tsCl 2, ) - Matstw) — ) O2%)

where the total momentum is conserved ki + ko + k3 + k4 = 0 and €24 corresponds to

the twist locations on t-sphere namely 0o, t., tg, 0. This function simplifies by using the fact
that 23 = 0o term vanishes.

one can obtain the stress energy tensor by implementing it to the formula

T(z) = —% Z Z (8X}(z)8X}(w) + %) (3.2.9)

i=1 I=1 z—w)

and obtain

(e =Y 2 (@l)y L iley s Kl G) (3:2.10)

12\, T2 0,0 T e T () — () — )

by investigating the short distance behavior around the twist field one can get the differ-

ential equation for correlator [3.2.1] solution is easily obtained by direct integration

< G >= Res, <T(z) > (3.2.11)

the homogeneous solution is given by with an undetermined multiplicative constant
C(9go,9oo)- Rest of the calculation is technicality. For the solution and the matching of
the constant in different regions check original papers [22-24]. We dint go into technical
details, however we note that the Virasoro amplitude of bosonic strings was reproduced by

the techniques mentioned above.
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Figure 3.1: N times covering of z-sphere by t-sphere.
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3.3 Calculation of Loop Amplitudes by SET method

In this section we will tried to justify that one loop amplitude calculated from Sy orbifold
theory is corresponds to the string vacuum amplitude to correspond the conjectured equiv-
alence between MST and typellA strings. This calculation was not demonstrated before so
it will be original part of this thesis. The first part is even independently formulated is a
result mentioned in [20], we justify this result here by using Rieamnn-Hurwitz formula.
The crucial part of the calculation lies within the theory of Riemann surfaces i.e. uni-
formization theory, which is stated in the Appendix A. We will not prove the mathematical
results here but direct the reader to references [27],[32] and [33]. In papers by Arutyunov
and Frolov [22-24] we see the simplest version of the uniformization, a z-sphere is mapped to
t-sphere to make the correlation function single valued in order to use Wick’s theorem.
The idea is that correlation function shows right short distance behavior according to the
twist field action. The topology of the complicated Riemann surface is than made manifest
via uniformization. We can consider the original surface as N Riemann sheets connected by
certain branch points, which are the fixed points of the orbifold model in another words,
corresponding the twist field locations. The Riemann surface of the previous chapter has

the following structure on z-sphere:
1. there are two strings at infinity corresponding to branch points of order n,, and N —n,

2. there are two strings at zero corresponding to branch points of order ny and N_n0
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3. there are two branch points of order two that corresponds to interaction points: at

z=zandat z =1

Fields X* are maps from worldsheet to orbifold geometry, where they manifest the above
multi-valued behavior in the vicinity of the branch points. In the construction of previous
section world-sheet is z-sphere and components of the holomorphic one form dX* are holo-
morphic functions on the surface parametrized with z-coordinate. On the orbifold geometry,
with certain fixed points located at oo, 1, 0 and z of the type mentioned above. The question
is then, can we possibly make this fields single valued mapping the orbifold to another sur-
face. This is possible in our case since global monodromy is trivial on the orbifold we defined
by the Sy invariant fields, that is to say the . X* is single valued on the circle surrounding all
the twist field locations[21]. We denote the uniformization function of order N (unremified

covering map) as m:

7:8 — S (3.3.1)

and let ¢’ and g denote the genus of the surfaces S’ and S respectively. According to

Riemann-Hurwitz formula [32], we have the following identity:

(d—1%=Nw—4J+%B (3.3.2)

where B is the ramification number simply defined by total number of the missing solu-
tions of the mapping 7(z) = z’. On a branch point this is just (order of branch point-1). We

calculate below the B number for the map z(t) in the previous section:

By =(N—=nee = 1)+ (Nec — 1)+ (N=ng—1)+(no—1)+(2-1)+(2-1)
=2(N —1)

by using this in (3.2.2) and using g’=0 we obtain that ¢’ — 1 = N(—1) + (N — 1) which
implies g’=0. This means topology of the orbifold is equivalent to a sphere. This is the
reason we call the amplitude given by a 'tree amplitude’.

We propose the following construction as a 'loop amplitude’ of the Sy orbifold o-model:
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Figure 3.2: Mapping from torus to sphere in < g9050905 > calculation.
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I- The external strings at 0 and oo has the following behavior on surface S’ in terms of

coordinates t defined on the surface:

m(t) ~ & x (t — ) (3.3.3)
Lot — gy, (3.3.4)
7(t) J J e

we will see that according to theorem {4 of appendix A this completely fixes the func-
tion up to multiplicative constants. On the other hand, it is very complicated to parameterize
the surfaces with genus more than 1, we will give explicit map only for genus one case. The
construction is still valid given the parametrization of the surface.

II- We must get internally the interaction points from this map which looks like

m(t) — w(ty) ~ (t — t1)? (3.3.5)

III- The only way to create a genus is two adjacent Zs twist fields which will divide
the incoming string into two and reconnect at a different location. This is very crucial and
non-trivial point since the fundamental cycles of the surface S’ must corresponds to some
cycles on the z-sphere that surrounds the twist fields. This is what happens in the four Z,
calculation. The first cycle corresponds to .4 and the other one corresponds to B cycles on
the torus:

the corresponding map is :
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p(t) — e

1) =
z(t) p—

(3.3.6)

In the meanwhile a generic map (which corresponds to a map between z-sphere and t-
sphere) for tree amplitude of Sy model with arbitrary number of incoming and outgoing

strings is given uniquely up to a constant considering the condition I above by:

I3, (¢ — 9
N (3.3.7)
where N = 37 n) = 3. n%° and f(§) = 0 ,f(6s) = 00,f(&1) = 1 which correspond to

f(t) (to t007€07£oo:’51)

three points on z-sphere fixed by projective transformations.
The function that corresponds to ’loop amplitude’ is given similarly by theta functions

(appendix A)instead:

[, 00— )"
[L= 00— )7

this is a map from t-torus to z-sphere. One can calculate possible numbers of the Z, points

ft) = O[], 1560, 600, &1) (3.3.8)

by using Riemann-Hurwitz formula for one incoming and one outgoing string of length N

which is conjectured to correspond to vacuum loop amplitude of (bosonic)string theory :

B=N-1+N-1+ny

0=—N+2N —2+n,

so we get ny = 2 if two locations are distinct. There can possibly be a Zs point instead.
This is very crucial since Zs corresponds to the resolution of the case when two Zs coincide
on the same Riemann sheet. This will be discussed separately in the last chapter. One can
ask why we don’t have situations like one twist location surrounding the other? This is not
allowed in the same integral since we have a well defined radial ordering on the z-sphere.
This can be problematic if one tries to define the Z, fields on torus instead. This is left
to the discussion of the two loop amplitudes by considering two Z, field correlations on a

twisted torus[29).
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The above function for the one string case

z(t) = (90((;__?0))>N<89(f;:tt:))>N (3.3.9)

uniformizes the following correlation function in Sy orbifold model:

(0Xi(2)0X;(2)on(o0)ors(1)okr(x)on(0))
(on(00)ars(1)oxkr(z)on(0))

G(Z, w)i,j =

we can reduce the the sum by using n cyclic symmetry of the each asymptotic twists:

G = ((0X:(2)0X;(2)on (00)o1s(1)ors(x)on (0)) (3.3.10)

each of N different correlators corresponds to a root of the the map z= (%)N So
by uniformizing this correlation function and using the fact that the correlation function <
OX'(t(2)0X (t(w)! >= m we obtain the following Green’s function on the universal
covering of the torus C (note that we suppress the index M and S which labels the roots

t(2))

t'(2)t (w)
(t(2) = t(w))?

to find the full Green’s function on the torus we use image method mentioned in [30].

G(z,w) = =" (3.3.11)

Basic idea of the construction is identifying the points t ~ t + w on the universal cover C by

summing up the Green’s functions:

) = t'(2)t (w) B t'(2)t (w)
Grle) == 2, G —tw) =P o)~ )P 3312

this Green’s function satisfies the required monodromy conditions in the vicinity of the

branch points. On the other hand one can add holomorphic differentials without effecting
the local analytical properties. The holomorphic differentials are constants on the torus and

on the sphere it is C' x %dz so we obtain the following form of the Green’s function

Gr(z,w) = —t'(2)t'(w)p(t(z) — t(w)) + A(T) x ' (2)t'(w) (3.3.13)

for four Z; calculation this is very simple. The global monodromy conditions corresponds

to integration on the fundamental cycles of the torus. if one considers the condition 4.2.2
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Fi 3.3:
1BHre The pull back of the cycles on the sphere are homotopic to the closed

lines on torus in the figure.

_ L e
/“\‘-ﬁ /M y

"~

b Y
-

Fa
t-torus

jil dzt'(2)p(t(z) — ty) + ]{Cl dz t'(2) A+ ]{ dzt'(z)B =0 (3.3.14)

7{; dzt'(2)p(t(2) — tw) +j€ dz t'(z)A —i-?{ dzt'(z)B =0 (3.3.15)

Cy
where C) corresponds to [0,7] and Cy corresponds to [0, 1] cycles so by changing the

variables dz t'(z) = dt we obtain the same condition as [2.4.31]
/ dto(t —ty) +/ dtA +/ dtB =0 (3.3.16)
0 0 0

1 1 i
/ dto(t — ) + / A+ / diB = 0 (3.3.17)
0 0 0
this two equation s give the right holomorphic differentials as in [2.4.36{and by considering

1" " 2 . .
the Schwarzian derivative term {¢,z} = %c(’;—/ — %(%) ) with ¢ = <e;,_(f)1> one obtains

€y — €1
¢'(t)

this simply shows that our method works for the simplest case. However, things are not

™

)2 [p(?t) iy —] (3.3.18)

Imr

<T(z)>:(

that smooth for the generic case N > 2. First of all the cycles that corresponds to global
monodromy on the sphere does not corresponds to the fundamental cycles of the torus (figure

. On the other hand one can show that the integrals give constants A and B as zero
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order in N for each root t);. This is good news since in the expansion of the {t, z} around
x we obtain terms of order N. This means that terms will dominate in the large N and we

don’t need to find the holomorphic differentials explicitly. Now we extract that terms from

c t/// 3 t// 2
(-3
=5 7 3% (3.3.19)

Before that we remind the map and its derivative:

0=+ - (=0)" (G —ox (U)" s
0(t)?

i1 ( (t) )Nl
dz  NC\O(t —ty) 0'(t — t0)0(t) — 0" (1)0(t — o)
for simpicity we chose to write W = (0'(t — t9)8(t) — 0'(t — t9)0(¢)) and by direct difer-

(3.3.21)

entiation one can easily derive that

t? el () )<_9(t6_(—t)to))n * (‘e@Q—(_t)to)>N_126(t)9/(t)¥/2_ Wle(t)g) (3:3:22)

what we need is Res,t,z = ﬁ fcx dz(%(%) this is equal to the integral on the torus
2+m‘ f% dt% (%) One has to be carefull here remember we supressed the indices of the
functions t(z) the transformation can be done only for a specific root t/(z) since in fact
z(t) is multivalued and z(t)s)) is single valued. Onother remark is one does not need to
expand all terms in . What we need is the coefficient of the terms of type (t — t5)~!
and the highest order term in N. We remind the reader that Wt, = 0 which corresponds

to the location of the second order branch point or twist field location on sphere x = z(t5).

Using this fact and up on inspection the term is given by

, t" 1 o(t) \N 1 N
l —ooResy =) ~ | =—=(N —1)(N = 2)( ———— — W ~ —=
HTIN =00 1HES <t’> (NC( ) )<9(t - t0)> 0000 — 1) >|t2 i
(3.3.23)
where Z(z) = (% - 9,,—[(09(15)) |lt,- By a very similar inspection of the following term

C—/,/)? 1 <(n_1)2<%>w+(%YNJ(Q@@)Q'@)MI;M_W/g(t)2)2>
(3.3.24)
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one can easily derive that we obtain the same term as|3.3.26| from [3.3.24] Eventually the

Schwarzian derivative term reduces to the following around z in the large N limit:

limy_—ooRes {t, z} ~ %E(x) (3.3.25)

by taking into account that we have N terms corresponding to each root t,(z) so what

we obtain is

limy_oRes, <T(z) >~ —Z(2) (3.3.26)

3.4 Loop Amplitudes From Other Methods

In this section we will move out of track and talk about another method of showing the
correspondence between DVV theory and string theory. It was first proposed by Grignani,
Orland, Pniak and Semenoff that in the null compactification of the string theory one can
show that the moduli sapce of the string theory is equivalent to the DVV theory defined on
a torus. We will just report the approach in a heuristic way for the information of the reader
and don’t go into technical details.

This approach mainly based on Riemann surface theory proposes a way to represent the
string world-sheets of arbitrary genus by a branched coverings of a torus.

5, LT (3.4.1)

g

they studied the situation where the target space has two compact dimensions. Both
world-sheet and space-time has taken to be Euclidean theories. First starting with light-

cone compactification

(X%, X% ~ (X°+V2miR, X — V2rR) (3.4.2)

where factor ¢ in the first compact direction is discussed to define the correct partition

function for arbitrary genus. Then a second compactification is considered

(X% X%) ~ (X°+3,X) (3.4.3)
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First compactification was discussed to leave GSO projection invariant. However the
second compactification was mentioned to introduce a temperature 7' = ﬁ by modifying
the GSO projection in a way that makes the space-time fermions anti-periodic.

Beginning with a parametrization of the surface of arbitrary genus in terms of Abelian one
forms and defining the expansion of the dX in terms of holomorphic and anti-holomorphic
abelian differentials one obtain g constraints. Next the authors discusses a way of parametriz-
ing the action in terms of the period matrix of the surface 3,4, and eventually compactification
leads to a constraint in the period matrix such that the number of moduli is reduced from
(3g-3) to (2g-3). Whenever the compact dimension are decompactified in the limit to oo the
full moduli is recovered.

Basically claim of this work is that Riemann surfaces establish that moduli space of
infinite momentum-frame superstring world-sheets are identical to those of branched-cover
instantons in the matrix-theory conjectured to describe M-theory. In more concrete words
the proposed model is a correspondence between string theory considered on M x St x S!
target space and DVV theory defined on T? embedded to target space SyM. This theory
was able to reproduce zero point amplitude (so called thermodynamic partition function) of
string theory perfectly.

The main difference here is We we have two compact parameters instead of one. We
have to regarg both boundary conditions as twisted (and also the spin structures enter in
the picture for each cycle of the toeus for details check [29],[31]and [35])i.e. only considering

bosonic theory:

X' (o1 + 27, 09) = PX"(01,09) P! (3.4.4)
Xi(01702+2ﬂ'> = QXi(O'l,O'Q)Qil (345)

where P and () are two commuting elements in Sy group, QP = P(Q) definitely required
for consistency.
Nevertheless one can reproduce the DLCQ one loop zero amplitude as discussed in [35].

The DLCQ amplitude given by

1 . 1 [6s(0,7)
E=——H[e P/IV2R] 4 - 3.4.6
V2Rp ‘ I (e R M 340
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the factor in front is the ration of volumes of R® and RY x S! with compact light-cone.

The action of Hecke operator H[p] on a function ¢(7,7) is defined by

oY +s 17+
(H)[p]*qb(r,f):];%(kr; )¢(”k ) (3.4.7)

3.5 Symmetric Product on Torus and Two Loop Am-
plitudes

This section is about a recent result published in June 2007 by Szabo,Kadar and Cove [35]
in the lines of the construction mentioned in the previous section. This paper proposes a
way of calculating two loop stringtheory amplitudes in the null compactification from DVV

theory defined on a torus.
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Chapter 4

Appendix

4.1 Appendix-A:Theory of Riemann Surfaces and El-
liptic Functions

We obtain complex structure by using stereographic map and identifying the two coordinates

(z1+ix2)

with complex ones (z1, zy, x3) — T

. The holomorphic and anti-holomorphic coordi-
nates on the Riemann sphere are defined as follows: The projections of the north pole
patch S — (0,0,—1) and south pole patch S — (0,0,1) to R? is holomorphic and anti-
holomorphic coordinates respectively. In short p,(z) = “”ff—;ﬁ? and p_(x) = xllf—;ﬁ? are

related by the following transformation

_xptiry 14wy 143

1 xl—ixg
()]t = = —
()] 1+ 23 Ty +izy 2+ 2l

X (21 = ixg) = = [p+ (@)

1— 25

we denote holomorphic coordinates by z and anti-holomorphic coordinates by (z). A
holomorphic function on the Riemann sphere S is defined as f(z) which is function of only
z and regular around z = oc.

A Riemann surface is defined as a topological surface with a complex structure and
complex structure is given by holomorphic and anti-holomorphic charts on patches. Simply
the complex structure says that the surface looks like a disc D in C(or C) locally. We
say f (comlex valued function) is a holomorphic function at p € R if there exist a chart
¢ : U — D with p e U, such that the composition fo¢~! is holomorphic at ¢(p). it is said to
be holomorphic on R if holomorphic at every point p of R. Similarly a meromorphic function

is either holomorphic or has singularities of the type i at a point p on R, where n is

1
Z*Zp)"
called degree of the pole at p. A complex function f is said to be meromorphic on R if it

is meromorphic at every point of R. We state the following facts without proof, for proofs
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Figure 4.1: The holomorphic map f beetween compact connected Riemann surfaces

consult [32]

I- A meromorphic function on sphere P! (projective plane) has rational form:

P(z)
Q(z)

where P and () are polinomials of certain degree. The total number of zeros and poles

f(z) =

(4.1.1)

of this function is equal (Ny = Ny).

IT- A meromorphic function on complex torus is doubly periodic function f(z + 2w;) =
f(z 4+ 2wy) = f(2) where wy and wy are generators of the two dimensional lattice L. This
function cannot have a pole of order 1. The simplest elliptic function is Weierstrass-P

function () with order 2 pole at t=0, given by

plt) = %2 2 ((t —12w)2 B 43)2) (4.1.2)

well

where w = aw; + bws with a # 0 # b. We will turn to elliptic functions after stating some
facts about the topology of Riemann surfaces.

Let f: R — S be a holomorphic function between compact Riemann surfaces R and S.
We say f has a valency number v (v € N)at point p if f locally looks like z — z¥ around point
p. The degree of the map f is defined then by the total valency number of preimage f~'(s)
of point s on S. We emphasize the fact that this does not depend on the chosen point s.

deg(f) =D vlf) (4.1.3)

pef~1(s)

at almost all points f looks like 2z — 2z except some special points where some solutions
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coincide or crudely missing. The total number of missing solutions is called as total branching

index (or remification number)

B = Z Z (vp(r) —1) = Z[deg(f) — (total number of preimages)] (4.1.4)

seS ref—1(s) seS
this two numbers are related by famous Riemann-Hurwitz formula, which relates the

topologies of the two surfaces R and S:

g~ 1= deg(f)(gs — 1) + 3 B (115)
where g denotes the genus of the Riemann surface.

One should remember that oriented compact 2dim surfaces are perfectly classified by
their genus, namely all genus zero and genus one surfaces are homeomorphic to sphere and
torus and so on. In the case f is a rational function from R to sphere,then R is supposed to
be a sphere as well, as one can observe from the formula [£.1.5] This is conluded by unique
representation theorem of the maps between speheres. A meromorphic function with certain

number of zeros n and poles m (repetations is ignored)is represented globally on a sphere as:

T 119

where k; and k; degree of the zeros and poles respectively, and total numbers of the zeros

z(t) = const x

and poles are equal (Ny = N,,). This can also be considered in a similer manner for the
functions on a torus with certain numbers of zeros and poles. For that we have to make use
of a function with a simple zero on torus which is called 6 function. The definition of the
theta function can be related to weierrstrass g function but we prefer the following product

expansion:

0(u,w) = uexp(—mu?/2w;) H [(1 — %) exp(g + u—)} (4.1.7)

well

the w is defined as half periods as in ??Pfunc) and 7, = % ff;l pdu. The meromorphic

function given on the torus defined by the lattice I has the following form:

(4.1.8)

64



Figure 4.2: The uniformization of a function

Singlevalued
R Gp=Geoz
”(r)l
S———C
G
Multivalued

this form is used to uniformize the multivalued functions on a sphere. Before we mention
some crucial properties of the elliptic functions (functions defined on the torus) lets say
something about the procedure. Let S be a Riemann sphere and Gg be a multivalued
complex function on the sphere. There exist a a surface R and a map f : R — S such that
function Ggr = Gg o F is single valued .

The physical procedure the functions of the form used in the text uis diverse so
we give here the most important properties of the theta function. First we note that the

function has also two different representations :

O(v, ) = Z exp(min®T + 2minv) (4.1.9)
0(v,7) = [J(1—¢™) A +2g" )1+ 27" g7 (4.1.10)
m=1
with ¢ = exp(2miT) and z = exp(2miv). It is also useful to define theta function with
characteristic
0¢](v, ) = exp(mia*t+2mia(v+b)) O(v+ar+b,7) = Z exp(mi(n+ta)*r+2mi(n+a)(v+b))

(4.1.11)

We call the theta function we defined #,. It has following transformation properties
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O(v+1,7)=061(v,7)
(4.1.12)
O(v+7,7) = exp(—miT — 2miv)0y (v, T)
There are three other f-functions defined by the translation of the argument by half

periods (we use here 2w; = 1 and 2wy = 7):

1
82(”77—) = 91(1) + 577—>

1
Bs(v,7) = 212430, (v + S+ %’7.) (4.1.13)

04(1}7 T) = i21/2q1/891 (U + %7 T)

The series expansion forms of this functions are:

o0

O2(v,7) = Z ann2/2

n=—oo
[e.9]

O3(v,7) = Y 2 2gnt 2R (4.1.14)

n=—oo

Ou(o,7) = D0 (—1)ag

n=—00
these functions have a simple zero in the fundamental parallelogram.

We note that in < Zy,75,7575 > calculation following facts are useful.

o) =1/ + [0 28] = (1724 7/2) + [ O] = oty + [ O
(4.1.15)
where we use the convention p(1/2) = ey, p(1/2 + 7/2) = ey and p(7/2) = e3. We also
note the relation e; + ey + e3 = 0.[33]

Another useful elliptic function is Dedekind n-function defined in the following form:

_ g H (1—q" [a 912(7? T)]1/3 (4.1.16)
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4.2 Appendix-B:Geometry of Orbifolds and CFT

-Global Monodromy and Holomorphicity

The green’s function g(z,w), required to satisfy local monodromy conditions, is unique up
to addition of the bi-linear combination of the n. holomorphic fields X ™ (z; 2;),satisfying
classical equation of motion and local monodromy conditions. In other words one can add

n? terms to g(z,w; z;)

ApnOX ™ (2 2)0X ™ (w; 2;) (4.2.1)

to determine the constant we need to impose global monodromy conditions.i.e we need
to specify what happens when X (z, z) transported around the closed loop C which encircles
two or more twist fields. The vertex can be thought as puncture,so the circles enclosing twist
fields are topologically nontrivial. Twist fields provide local boundary conditions, moreover
they also provide global information to fix g(z,w). To get this global information we need to
know something about the background geometry of orbifolds.

A typical orbifold is © = R?/S under the discrete group action X — 60X + v on an
embedding X* : World-sheet — Space-time, with #: rotations and v:translations.

The most useful fact for our purposes is, when tracing contour enclosing all the twist

fields the scalar field stays single valued. So the following integral vanishes

0=Ac,Xpu = j{ dz0X + jf dz0X (4.2.2)
Cr Cr

this is simply because the quantum piece of the correlation function transforms homoge-

nously under the discreet group action

Xy — 0 Xy (4.2.3)

for our purposes what happens to classical piece is irrelevant since we omit the discon-
nected piece in the correlators and more important than that we work in the large N sector,
namely the radius of fundamental string goes to infinity.

Each twist field corresponds to a conjugacy class of the orbifold space group.
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4.3 Appendix-C: A Note on Bosonization

The simplest example of the cocycle appears in the compact scalar field theory. The sepa-

ration of the chiral theories gives nontrivial commutation relations and OPEs

[z1,p1] = xR, pR] = i (4.3.1)
the field decomposed into X = X (z) + Xg(2z) and has following OPEs

X1(21) X1 (22) ~ _Taln(zm) (4.3.2)
Xp(2)Xr(%) ~ %azn@m) (4.3.3)
X X~ 0 (4.3.4)

the vertex operator corresponding to state |0; kz, kg > is

Viphn (21, 2") =2 exp(ikp X1, + ikpXp) : (4.3.5)

with the following OPE

_ _ o'krkl /2 _o'krk'y/2 _
Vipka (21, 21)Vig 1 (22, 22) ~ 215 L/ e R Viktky, (k4k) 5 (22, Z2) (4.3.6)
one tour of z; around z, brings the phase exp(mia/(kpk} — krk’y)) by considering the

2wR

al

allowed momentum states of the compact scalar(k;, —kgr = and kp+kr = %") we conclude
that the phase exp(2mi(wn'+nw')) = 1. On the other hand, exchanging z; <> 2o and k < &
we obtain the phase exp(in % (kz — kg) (k) + ki) — (k7 — k) (kr + kg)) = exp(im(nw' —wn'))
in the RHS of the eq.2.36, although LHS symmetric. The vertex defined in the following
way satisfies our inquiry for the symmetric LHS:

/

_ e . .
Vipkr (21, 21) = exp(mz(k:’L — ky)(pr +pr)) : explik, X1 + ikrXRr) : (4.3.7)
Now the representation is Bosonic for even and Fermionic for odd values of the constant

(nw’ —wn). The extra term in front of the vertex operator is called cocyle. More generally,

we define the proper vertex operator of bosonized fermionic theory as
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VkLkR(Zb 51) = Ck((){)g : 633p(ik‘L.HL + ikR.HR) : (438)

for now we assume that k, is basis of a lattice I' = n,k, where we expand zero mode
operators in terms of the basis of the lattice vectors: oy = agk,. Soon we will clarify the
fact that I' just corresponds to the weight lattice of the algebra in context. The cocyle is

merely

Cr(og) = exp(im Z naogks © kg) (4.3.9)

a>p0

when kok is even the vertex 2.38 is commuting with any vertices and if it is odd the vertex
is anti-commuting with other vertices having odd k products. An example, bosonization of
Spin(8) algebra, will be given in the 3rd chapter while calculating the three amplitudes of
DVV matrix string theory.

SU(4) x U(1) formalism and bosonization of SO(8) algebra

4.4 Appendix-D: Symmetric Group

We will list some crucial properties of the Symmetric group and give some concrete examples
of cycle decomposition, breaking or combining of cycles up on transposition of two elements.

A cycle of length n of group element g ¢ Sy is defined by the action on the set of N elements.

eLgrd .  Lgla L (4.4.1)

we demonstrate the fact that the conjugacy class of the elment g defined by the [g] =:
{hgh™' : for ¥ h ¢ Sy} has a unique cycle decomposition. We can demonstrate this by
considering the cycles of the hgh™! one finds the same structure as [4.4.1}

he % ghe 2 ... % ¢ tha S« (4.4.2)

which means the decomposition

lg] = (W™ @)™M .. ()™ (4.4.3)
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Figure 4.3: Following the lines one can find the cycles in the diagram

defines an equivalence relation so we have the same decomposition for any element in the
conjugacy class. This is simply because N; different orbits of the group g € Sy as in 4.4.1|is
also has the same number of different orbits in the hgh~!.

Moreover this cycles are broken when two elements in a cycle is transposed and two cycle
is combined when two elements in different cycles are transposed. We can prove this fact by
looking at the diagram . Assume we transpose the elements z and ¢’z in the cycle. First
start with ¢/ applying g we get gz and so on and eventually g(¢’ ')z = ¢’x, which defines
a cycle of length (5 — 1). This is the same for x, starting from x and one gets g(z) = ¢’*lx

and eventually g(¢"™!) = x and this defines a cycle of length (n-j+1).

9. g 9. n-1. 9
rLgtle L L gl Ly
i 9 g 9. -1 9. j
Jr=gr = ... > ¢ v g

this can be illustrated by the diagram and [£.4] for a simple permutation of the 6
elements.

Following the lines that closes we obtain the cycles of length (1) and (5), namely (5)(12346)
.By transposition of two elements 2 and 4 the cycle of length (5)is broken into two cycles of

length (3) and (2). This can also be thought vice verse.
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Figure 4.4: The big cycle is broken up on transposition of the elements

e

4.5 Spin(8) Clifford Algebra

The description of Dirac matrices for spin(8) requires a Clifford algebra with eight anticom-
muting matrices. This is important in understanding the structure of LC type II A theory
and Sy R® model so we present it here explicitly.

The Dirac algebra of SO(8) requires 16-dimensional matrices corresponding to reducible

8s+8. representation of spin(8). These matrices can be written in block form

A 0
v = , Jai (4.5.1)
T

where ~’. is transpose of 7% . T he equation {7,177} = 26% is satisfied if

Vaa Yy + VaaVep = 2690 1,5 =1,...,8 (4.5.2)
and similarly with dotted and undotted indices interchanged. A specific set of matrices

that satisfies the equation is

V=cReRe V=107 Q¢
’}/321@)7'3@6 ’)/4:7'1@6@1
’}/5:7'3®€®1 76:6®1®7'1

V=elen Y¥=1911

where € = imy and 7; are Pauli matrices. We define

P o
Yab = 5 (Yaa Ve — VaaVav) (4.5.3)
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and similarly for the F;]b
The ten dimensional Majorana has 32 real components but the Weyl I''* A = \ condition
eliminates halve of them. In terms of the transverse subgroup SO(8) of SO(9,1), the surviving

16 components are given by 8; + 8..Dirac matrices can be expressed in this basis in terms

1 0
of eight matrices 7; defined above. The 77 = A!..4% = . Also note that Dirac
0 —1
equation Majorana-Weyl spinors (A%, \%) decomposes into left and right going components:
DAL + L. 00 =0 (4.5.4)
DN+ 74,00 =0 (4.5.5)

4.6 Appendix-F:Four graviton scattering amplitude

This is a calculation done by Arutyunov and Frolov we just review the main lines of the
calculation here. The details can be

As stated in the section 2.6 Sy orbifold sigma model corrected by the DVV vertex is
a well defined perturbation theory. A general amplitude of order ¢ with straightforward

definitions of asymptotic states (or highest weight states in CFT jargon)

< f1S]i >~ /Hd%l < fIV(21)...V (z0)]i > (4.6.1)

the four point amplitude we wish to calculate is then

)\N

<f|S|z>— 5 (27T

f|/d2z1d222|21|]21|T( Vint (21, 21) Vine (22, Z2) ) |7 > (4.6.2)

where T means time ordering: |z1| > |22|]. Where DVV interaction vertex V;,; defined in

?7?

znt Z‘/IJ Z Z (463)

I<J
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The asymptotic states are created by the Sy invariant vertex where k; and &; stands for

the momentum and polarization vectors respectively.

|Z >= Oo‘/[go][lﬁ, (1 ks, CQ](O, 0)|0 > (464)
< fl=0Cx lim_ 200 22% < 0|}y k2, Co; K3, (3] (2005 Zoo) (4.6.5)

The decomposition of the group elements g;, 1, and gy is
go =10(N —ng),  goo = Noo(IN — N ), (4.6.6)

and the normalization constants of the asymptotic states are

N! N!
Co=|———, Cx=}|——— 4.6.7
0 no(N —ng)’ Neo(N — N ( )
We introduce the light-cone momenta of the initial and final states as:
+_ Mo +:N—n0 L M +:_N—noo
kl - Na k2 N ) kS N: k:4 N (468)

which satisfies the mass shell condition k&, — k,k, = 0 for each a=1,...4. According to

23] the S-matrix elements can be expressed as:

< fIS|i >= —i20\°N?6(ky +ky + ks + k)M (4.6.9)

where delta function indicates the conservation of the total length of strings and the

matrix element M is given by

M = /d2u|u|F(u,u) (4.6.10)

here we introduce the notation

F(u’ﬂ) =< f|T(V;nt(1v 1)‘/;nt(u> ﬂ))ll >=

CoCx Z < 0[Vigoo k3, G35 K, Ca] (00) T (Vs (1, 1) Ve (w0, @) ) Vigo) K1, C1; 2, €2 (0, 0)|0 >

I<J;K<L
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In what follows it is assumed that |u| < 1. The vertices includes sum over the conjugacy
classes and we can express the function F' as following form by using the global properties

of the Sy orbifold.

C %
F(u, @) = =2

SN < Vs (00)Visr (1, 1) Vier (u, @)V, (0,0) > . (4.6.11)

hoo €SN I<J; K<L

by using the symmetries of the action i.e. world-sheet parity symmetry and space reflec-

tion symmetry one can simplify this expression.

h 9oohoogrigrrgo = 1= hi goohoo = g5 gxcL91s (4.6.12)
<Viztguon ViaVi Vg, >=< VgUgKLg 1V1JVKL‘790—1 > (4.6.13)

<ViidgunVidVirVeg >=<Vy o Vi Vi Vo > (4.6.14)
< tholgoohoov}‘]VKLv >=< ‘/QI’J/QK’L’Q 1‘/I’J’VK’L’V 1 > (4615)

one can also show that correlation function F'(u,u) is real by considering the complex

conjugate of the following correlator.

Voo lk2, Co; k3, G3](00) T(Viy (1, 1) Vi, (w, @) ) Vo [k1, Cis ko, €2](0,0) >*= (4.6.16)

lim  lim |z | T8tk kb | o] 4800 HR1k2} g =65 (4.6.17)

Zoo—00 29—0

1 1 11 1 1
< 0|Vgo—1[—k1,CU —ka, G](— )T(VKL(Eu E)VU(L 1))‘/9;01 [—ks, C1; _k4’<2](2_0’ 2_0)|0 >

Zo0o Zinfty

Due to the SO(8) invariance we can make the replacement -k, — k, and after performing

the transformation z — % we obtain
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(Vy[{ha) () = 22800, [k () (46.18)

< Vgoo [k'Qa CQ; k37 <3](OO)T(VIJ<17 1)VKL(U> a))‘/go [klv Cl; k27 C2](O7 0) > =
< Vozr[ka, Gos ks, G3](00) T (Vi (1, 1) Vi (u, w)) V=1 [k, Cus 2, G2](0,0) >=
< ‘/g{,o [k27 C2; k3> CS](OO)T(‘/I’J’(L 1)VK’L’(U7 ﬂ))‘/go [kla gl; k2, CQ](Oa O) >=

where h e Sy is the solution of hgy'h = gy and

hlgh =gy, B lguh=gry, h'grLh =g (4.6.19)

now we apply this result to find the complex conjugate of F'(u, (u))

C C'oo — *
(u7 ﬂ)* = (])V' Z Z < tholgoohoo(oo)VIJ(L 1)VKL(U7 u)Vgo >

hoo €SN I<J; K<L

!

CoCx _
= 3\“ Z Z < Vh’ozlgooh’oo(oo)vf’cf’<17 1>VK’L’(U7U)VQO >

hoo €SN I<J; K<L

CoCoo =
3\“ YD < Vi 00V (1, 1)Vier (u, @)V, >

hi, eSn I'<J; K<L’

= F(u,u))

so F(u,u) is real. On the other hand by using Sy invariance of the model one can

express F'(u, @) in the following form

Fu,a) = 2N\ kR R (D2 < Vit (00) Vi e (1, 1) Voo (1, @)V (0,0) >
I=1
N—ne

+ Y < Vo ((00) Vi rima (1, 1) Vg (1, ) Vi, (0, 0) >
I=1

+ Y < Vo ((00)Vag s (1, ) Vi v (1, 1)V (0,0) >

J=nop+1
N
Y < V)00 Vaous (L DVagsn (1 0V (0,0) > )
J=ng+neco+1

(4.6.20)
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As a result we are left with finding the following type of correlation functions

G[JKL(U,I_L) =< ‘/goo (OO)V}J(L 1)VKL<U777/>‘/90 > (4621)

Note that one can obtain the same result for |u| > 1 by exchanging (u,u < (1,1))

CORRELATION FUNCTION

=\ YRR 1 L2 3 - fd
GIJKL(uvu)—GIJKL 1 62 63 64 (4.6.22)

where

Gl —< g, [k /2, k2] (00) 7 (L)They () [ /2, i /2)(0) >< DB (00) (1) S, () S (0) >
(4.6.23)
to calculate this correlator we use a map from t-sphere to z-sphere to uniformize the
correlator on the t-sphere so that the twist fields are identity operators and we can safely

use Wick’s theorem. The map is given by

. (%n> (=0 )N"° = tW)N"w = u(t) (4.6.24)

t1 — to t— 1o

with an implicit parametrization of the map with respect to branch point x on the sphere

to =x—1
b (N —neo)z ’
(N — no)SL’ + no
N —Ne — g NoT N(N —ngy)x
t = +
Neoo Noo  Moo((N — ng)x + ng)

this reparametrization can be seen as a 2(IN — ng)-fold covering of the u-sphere by the z
sphere. Since the number of the nontrivial correlation function are also equal to 2(N — ng),
t-sphere can be represented as union of 2(N — ng) domain and each domain is denoted by
ViskL.

The overall phase of the correlation function Gk (u) cannot be determined and depend

on I[LJ.K,L.. By using the symmetries of the theory one can show correlation function of te
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holomorphic theory is complex conjugate of the anti-holomorphic correlator such that the

phases cancel. We have to take into account the symmetry of twist fields:

oglk/2] < G,1[k/2] and Tb - Sg,l (4.6.25)

We obtain the equality

< 0| Vigue k3, G35 K, CaJ(00) Vs (1) Vi (1) Vigg) (R, Ci; 2, G2](0)]0 >
=< O|V[g(;ol][/~€3, N 54](00)‘71J<1>VKL<U)V[90—1][/;717 (i3 ko, ) (0)[0 >

than complex conjugating one obtains the equation

< 0|V, (3, Ca: ke, Ca) (OO)VIJ(l)VKL(U)V[ggl] [k, CL; kea, G2)(0)]0 >

= lim lim z;oz
Zoo—00 29—0
_ ~ o~ -~ ~ 1 1 - 1 1. - _ ~ ~ ~ 1
< O|Vgal[—k17C1; —ka, Go)(—, —— ) Vir( Wi (L 1)V —i[=ks, G5 —ka, G

1
—y Ty T
Zinfty u U Z0 <o

A —2A k1,k _
[{kf””“‘*”zo g0 {1 2}]|u 3’ %

)0 >

By SO(8) invariance of the theory we can make the transformation —k — k,( — ( and

after using conformal transformation z — % we obtain

< 0|V lks, G35 K, Ca] (00) Vig (1) Ve L (w) Vigoy (R, C1; o, C2](0)]0 >
=< OH_/[goo} [k?n C3a k4? <4](OO)‘7IJ(1)VKL(U) _[go][kla Cl; k27 C2](O>’0 >

Now we represent the solution for the correlation function, for the details of the calcula-

tion one can consult original papers [22-24] Gk .

el - Dz + i) (@ — oo ties ) (g — B0c)
< 7Ty > (u) = =0 (o — noo) (T — 1) 2(z — ap)

+ < TiT; >k (4626)

no

(04 2)  (r— Nomoney 1
< T >k:_< njz ki + nN : k§+N—n0k2> X
j i, Moo — T o j
— )k + 2k - K)
(o= DK+ + g P o= K
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where the corelation function G752/ is equal to

. [ 3
G fiatisi () — 1/2 iR (”oo”o(N - no))1/2 ("oo - 710)31’“1’“3 (@~ o)
IJKL 26(no — o) (N — ng) N —ng N —ng u32(x — al)?(x — a?)?
y (x(m — —N;\?E;:Oo)>l+}lklk‘4 ((IB —1)(z+ Ni0n0)>1+}1k3k4TI/l}I/.l(2lll/l3ﬂ4 (w)
(I - noni)N> (JI - noni)N)
where T11#2304 (4 is defined in the SU(4) x U(1) basis according to
d d n d N—ng—noo \d n d
TA1A2A3A4A5A6(U) — C(g g ) X Z O(x - 1) 1(&: + N—Ono) Q(CE - NEno ) S(CE o n0—(7)7/oo) *
iich ol (e —al)(z — a))%
(4.6.27)
the coefficients are given by
do = p1pa + pep1 + pep4,  di = pep3 + pepa + p3p4,
dy = p1p2 + pep1 + pep2, d3z = pep2 + Peps + P23,
dy = p1pe + pep3 + P1p3,  ds = pspe,
d¢ = p1ps + p3ps + p1p3 — Papb,
and the structure constants are
n:"lPSnI;gps (N _ noo)mpﬁ (noo _ n0>d4*d5
1C (g0, goo)| = = (4.6.28)

(N — ng)ds
Computation of the fermionic correlators < %3/ (c0)%} J(l)E%l(u)EggﬂQ(O) > was done
by bosonization of the fermions [23] in the fracmework of SU(4) x U(1) formalism which is
concisely presented in Appendix D.
Before we revies the calculation of the scattering amplitude it is useful to observe the

following fact.

< Ty >p= 0 =< 7,7 >y (4.6.29)

The scattering amplitude was calculated by using the relations mentioned above.

THE SCATTERING AMPLITUDE
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Until now we considered the correlation function as defined on the disc |u| < 1. The

correlation function for |u| > 1 is also given in the same form [4.6.22 so we can ignore the

time ordering. Consequently from [4.6.20] 4.6.21] and |4.6.22] we obtain

M = 2N\l kS ki ) / dulul GRRAEH Gy (@) B (4.6.30)

1JKL

Substituting the holomorphic correlator Gk (u,u) and its complex conjugate we get

rid of the phase ambiguity and end up with the expression

B R® (nonoo(N—noo)>2<noo —n0>§k1k3
28/kkfkikf \ NN —ng) N —mng
y /dz d_uﬁw(x — Ngpasnee) ks (2 — 1) (2 + 5225 | dhoka
XY TR (W) TR (u) ¢ e gy g
IJKL
where we introduced the notation
T (u) =< mry > T (w) (4.6.31)

recall that under the transformation ©u — x the u sphere is mapped on the domain V; k.

Taking this into account and performing the transformations

r(r — N—ng—neo o .
i N b e . (f‘;o a1)(z — az) (4.6.32)
o (e Ko (T — o -)?
N—no(z no,nmfty) no NO—Tin fty
we express M in the form
M= R® <n0noo(N — noo))2
28k kS kTN NN —no)
% /d2 ) ‘ |Z|1k1k4|1 Z|%k3k4Tﬂ1ﬂ2ﬂ3ﬂ4(Z)Tylygu3y4(E)C{hmcélguzggsuscihm
The limit R — oo expression of S-matrix is
[T, 1) (ki)
< fIS)i >= —iX22732N 6, +mytmatma.00 Zk: 5P Zk \/ il k+ 1(¢ k)
z 1™
(4.6.33)
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where we define

. _ nonoo( _noo - —e(f1; —e(v;
f((%f)—( NN ) > 11 () (i) (4.6.34)

x/d2z

_x ’ ‘Z| 5 k‘lk4 | 1 Zl %k3k4Tﬂ1ﬂ2ﬂ3[L4 (Z)TI/1V2V3I/4 (2) C:{/fl'/l CélQVQ C§13V3C£«4V4

(4.6.35)

k+

zlz

J2%3 . 5(1/1')
< fIS]i >= —iX26P( Zk’“ \/Hl 1 (ki) 27°1(C5 k)

By using the reduction formula to extract the scattering amplitude from the S-matrix

(Nz e(vi)
< fIS]i >= —igP+? Zk“ \/H’ L (ki) A(1,2,3,4) (4.6.36)
z 1 1
where
A(1,2,3,4) = 275\ 1((s k) (4.6.37)

in the superstring theory

I(C k) = K(C E)K(CK)O (s, t,u), (4.6.38)

where

Cls. ) = —q LS/OT (/BT (—u/8)
o (14 s/8)I'(1+t/8)'(1+u/8)

the problem is reduced to calculations of factor I((;k).Reader can find the necessary

(4.6.39)

information about so called kinematical factors in original paper[24]. Where the calculation
of the kinematical factors of all physical particles are performed which simply means the
calculation above wa extended to all physical particles. As conclusion this constitutes an

evidence for the DVV conjecture in three level.
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