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Abstract—High Performance Computing-Quantum Computing
(HPCQC) integration presents a promising yet challenging op-
portunity, particularly in the area of quantum circuit compilation
and optimization, requiring further advancements in the field of
Quantum Computing (QC). To address this, we introduce the
Munich Quantum Compiler, a key component of the Munich
Quantum Software Stack (MQSS). This compiler employs a
heuristic-based approach to select a Pareto-optimal subset of
optimizations in the form of LLVM passes for quantum circuits
described in an LLVM-compliant Intermediate Representation
(IR).

Index Terms—Quantum Computing, Multi-objective Opti-
mization, Quantum Compilation, LLVM, QIR, MOEA, Genetic
Algorithm, NSGA-II

I. INTRODUCTION

In recent years, Quantum Computing (QC) has demon-
strated significant potential for achieving exponential per-
formance improvements over classical algorithms for certain
classes of computational problems [1]–[5]. In order to en-
able wider growth and development of the quantum poten-
tial, efforts towards High Performance Computing-Quantum
Computing (HPCQC) integration have been initiated [6], [7].
Reaching their goal of providing seamless cooperation be-
tween classical and quantum parts of the system would allow
to reach a new territory of research, mainly in the form of
hybrid algorithms.

However, to be able to achieve a hybrid software stack, it is
necessary to design highly sophisticated compilers capable of
both: 1) providing effective optimizations for quantum circuits,
such as reducing their size to allow execution before significant
coherence degradation, and 2) adapting the quantum circuits
to the unique capabilities and limitations of the available quan-
tum accelerators. Furthermore, a quantum compiler should
be able to support the common software stack for classical
and quantum applications. For that reason, we decided to
utilize Quantum Intermediate Representation (QIR) [8], an
LLVM-compliant Intermediate Representation (IR) supporting
interleaving quantum and classical instructions within a single
program [9], as a mid-level quantum circuit representation
in the Munich Quantum Compiler, a key component of the
Munich Quantum Software Stack (MQSS) [10]–[12]. This
approach allowed us to apply optimizations and other required

transformations to the circuit through the application of custom
LLVM passes. Nevertheless, employing compilation schemes
akin to the classical world, such as iteratively applying LLVM
optimization passes, introduces classical challenges into the
quantum domain, as we will elaborate.

The challenges associated with finding Pareto-optimal opti-
mization subsets [13] and the sequence in which to apply them
[14], also known as phase ordering, have been extensively
studied in the classical compilation field. These are well-
known NP-Hard problems [15]. The proposed solutions range
from utilizing Genetic Algorithms (GAs) [16]–[18], for years
deemed as state-of-the-art, through more modern approaches
based on, for example, Machine Learning (ML) [19] or
Reinforcement Learning (RL) [15], [20], [21].

Similarly, ML and RL are usually utilized regarding quan-
tum compilation [22]–[25], mainly due to their efficient ex-
ecution times. However, most of the proposed approaches
in the literature focus on optimizing a singular objective,
usually a complex figure of merit consisting of a weighted
sum of multiple different objectives, such as depth or number
of gates. Although the importance of some quantum metrics
is well-established, the development of effective quantum
performance metrics remains an active area of research [26].
To provide a change of metrics in a figure of merit in model-
based compilers, each time a tedious and time-consuming
model retraining is necessary.

The novelty of the quantum optimization approach proposed
in the Munich Quantum Compiler lies in providing a multi-
objective optimization through the utilization of a GA, more
specifically, a non-dominated sorting-based Multi-Objective
Evolutionary Algorithm (MOEA) called Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II). This approach yields a
set of solution candidates belonging to the Pareto frontier, none
of which is fully dominated by any other solution found. While
GAs have proven to be highly effective in the classical domain,
to the best of our knowledge, they have not yet been applied
to the quantum version of this problem.

II. METHODS

Optimization is a crucial component of mostly every com-
piler, making the development of effective pass selection
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Fig. 1: Target-Specific Optimization Stage of the Munich
Quantum Compiler.

strategies highly desirable. Although the number of strategies
implemented over the years in various quantum programming
frameworks, such as, for example, Qiskit [27], is constantly
growing, the Munich Quantum Compiler distinguishes itself
by utilizing a heuristic implemented in C++ to prioritize
performance and efficiency. Furthermore, unlike tools like
QIR Adaptor Tool (QAT) [28], which also apply a series of
LLVM passes to QIR for optimizations, our compiler aims for
seamless integration within HPCQC ecosystems.

The Munich Quantum Compiler aims to find a Pareto-
optimal combination of LLVM passes to optimize multiple
metrics simultaneously, such as the number of gates in the
circuit or its depth. Given the varying characteristics of
individual circuits and changing constraints throughout the
pipeline execution, the effectiveness of pass subsets can differ.
To address this problem, the Munich Quantum Compiler
provides a subset tailored for each submitted quantum circuit
by conducting a two-fold Design Space Exploration (DSE) to
derive a Pareto-optimal solution. The two key stages of this
process are the Target-Agnostic Optimization Stage and the
Target-Specific Optimization Stage:

Target-Agnostic Optimization Stage: This stage is inher-
ently simpler than the Target-Specific Optimization Stage, as
it does not conduct an exhaustive DSE. Instead, it allows for a
fully unconstrained exploration of the design space consisting
of all the available target-agnostic optimization passes. These
passes do not require any knowledge about the quantum
accelerator intended for executing the optimized quantum cir-
cuit. Some examples include passes merging rotations, passes
replacing specific sequences of gates, or passes removing pairs
of inverse gates (UU−1) as, for instance, two Pauli-X gates
acting on the same qubit:

|ψ⟩ X X ≡ |ψ⟩ I

Fig. 2: Applying two consecutive Pauli-X gates to a qubit is
equivalent to applying an identity operation [29].

The primary goal of this stage is to optimize the quantum
circuit to reduce its execution time in the subsequent, more
complex stages of the MQSS.

Target-Specific Optimization Stage: This stage is signif-
icantly more intricate than the Target-Agnostic Optimization
Stage, as it needs to not only provide optimizations but also
other types of transformations, enabling the quantum circuit to

be executed on the target quantum accelerator. The configura-
tion of passes we propose for this stage is presented in Fig. 1.
This stage begins with the mapping of the quantum circuit
qubits to the topology of the target accelerator. It is achieved
by applying a pass utilizing, for example, the Munich Quantum
Toolkit (MQT) QMAP [30] mapper, a tool capable of mapping
the provided quantum circuit to the topology of the target
architecture. Due to the expected potential overhead introduced
by the mapper, this pass is followed by another DSE of
optimization passes, including target-specific ones. Afterward,
the quantum circuit is transpiled to the native gate set of the
target quantum accelerator. Note that the above modifications
should be sufficient to submit the circuit to the target quantum
accelerator. However, we provide additional optimizations due
to the critical importance of maximizing the circuit’s quality
for successful execution. To protect the transpiled circuit
from introducing unsupported gates, these optimizations are
constrained to exclude decomposition passes.

Fig. 3 presents a simplified example of the process occurring
during the Target-Specific Optimization Stage. As shown, the
additional application of optimizations following mapping and
removal of unsupported gates allows us to maximally reduce
gate overhead without compromising the mapping or gate set
necessary for the successful execution of the circuit on the
selected quantum device. Furthermore, utilizing a heuristic for
DSE allows the application of a different decomposition, in
this case, to each SWAP gate, depending on what is on each
side for the maximal performance enhancement.

A. Multi-Objective Evolutionary Algorithm (MOEA)

To achieve high flexibility in objective selection, we opted
to use the MOEA known as NSGA-II. The parameters and op-
erators for NSGA-II detailed in the following were empirically
chosen to best suit the design space.

a) Encoding: Binary encoding proved ineffective, as it
can only encode whether a given pass should be applied,
without specifying the sequence or the number of applications
to the quantum circuit under optimization. In contrast, integer
encoding allowed for both the removal and repetition of passes.

b) Operators: We decided on using a swap mutation [31]
and two-point crossover [32] operators as, compared to other
operators we tested, they demonstrated better effectiveness in
improving the quality of the solutions.

c) Chromosome size: The most promising results were
observed with a chromosome size three times the number of
available passes.

B. Design Space

To introduce transformations to quantum circuits described
in QIR, a collection of custom LLVM passes was created.
The passes consist of both target-specific and target-agnostic
transformations, which can be further divided into commu-
tation, decomposition, reduction, and structural types. Each
pass introduces a specific modification, such as the inverse
gates removal shown in Fig. 2, contributing to enhancing the
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(a) The exemplary quantum circuit and the linear topology to which
it needs to be mapped.

q1 → Q1

q2 → Q2

q3 → Q3

(b) Mapping the quantum circuit to the given topology results in the
lack of a coupling mapping between q1 and q3, because of which it
is necessary to insert an additional SWAP gate in order to execute it
on the selected quantum accelerator.

q1 → Q1

q2 → Q2

q3 → Q3

(c) Assuming that SWAP gates are not part of the native gate set
of the target device, a target-specific optimization would apply a
decomposition.

q1 → Q1

q2 → Q2

q3 → Q3

(d) Target-agnostic optimization would then remove the consecutive
CNOT gates analogically as in Fig. 2 [29], bringing us to the opti-
mized quantum circuit that can be executed on the target accelerator
with minimized overhead.

Fig. 3: Circuit modifications occurring during the Target-
Specific Optimization Stage for an exemplary fragment of a
quantum circuit mapped to a linear topology Q1 − Q2 − Q3

of a quantum accelerator.

quantum circuit’s performance. To provide a possibly compre-
hensive optimization coverage, passes can overlap in the sets
of gates they act on or operate counterproductively, with their
actions negating each other. These mutually exclusive passes
necessitate addressing the NP-Hard subset selection problem.

III. EMPIRICAL FINDINGS

A. Experimental Setup

a) Design Space: The design space for our experimen-
tation consisted of 36 passes selected from those currently
available for the Munich Quantum Compiler. For an optimiza-
tion pass to be considered during the DSE, it had to meet the
following criteria: 1) the pass must be capable of functioning
autonomously, 2) it must be able to occupy any position in

the optimization pipeline, and 3) there must be no sequence
of passes where the application of this pass compromises the
integrity of the quantum circuit.

b) Benchmark Suite: To evaluate the effectiveness of our
approach, we used a benchmark suite of 175 quantum circuits
with up to 20 qubits, sourced from [33] and parsed into QIR.

c) Objectives: The performance of the Munich Quantum
Compiler was evaluated based on multiple objectives: 1) the
number of gates, 2) circuit depth, 3) entanglement ratio,
defined as the ratio of two-qubit interactions to the number
of all gate operations, 4) critical depth, defined as the ratio of
two-qubit interactions on the longest path that sets the circuit
depth to the number of all two-qubit interactions in the circuit,
and 5) parallelism, defined as:(ng

d
− 1

) 1

n− 1
(1)

where n is the number of qubits, ng the number of gates,
and d is the circuit depth [26]. All of these objectives were
minimized.

As research into metrics for quantifying quantum circuits
evolves, the objectives may change. Our approach, however,
can adapt to such changes instantly, without the need for
retraining, unlike, for example, ML-based solutions. Moreover,
in the future, we plan to extend the set of objectives to include
circuit fidelity and liveness [26].

B. Results

Table I presents the results of each objective averaged over
the benchmark suite. The number of gates and circuit depth are
expressed as ratios relative to the corresponding measurements
of the non-optimized circuits.

In a setup with all of the passes applied, the specific order
was determined through a series of trials, during which we
made strategic arrangements aiming to improve the perfor-
mance. However, as presented in (“All passes” in Table I),
this approach led to an increase in both the number of gates
and depth compared to the original circuits. This increase is
due to the introduction of unnecessary decompositions, which
negatively affect the overall circuit quality.

In another approach, only a subset of these passes is selected
(“Handpicked” in Table I). In this setup, the subset and the
order of passes were again determined through iterative tries
and based on prior knowledge, with each pass applied at most
once. Although this approach mitigates the issues seen in the
“All passes” setup, the improvements over the non-optimized
circuit are negligible.

In order to compare the effectiveness of the MOEA-based
approaches, from each set of solution candidates, a non-
dominated candidate resulting in the lowest number of gates
was chosen, as the number of gates is included in the calcu-
lations of most of the other objectives.

As one can observe, the application of NSGA-II with binary
encoding, which involves a fixed order of a subset of passes,
did not improve the average result, as shown in the row
“NSGA-II bin.”. Since the order of passes was fixed, the
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TABLE I: The averages of the results obtained for each type of
experimental setup. The numbers in bold highlight the lowest
value achieved for each objective.

Setup Gates
ratio

Depth
ratio

Ent.
ratio

Critical
depth Parallelism

Non-optimized 1 1 0.5821 0.2083 0.5419
All passes 2.9805 2.4356 0.2147 0.1972 0.6074
Handpicked 0.9195 0.9697 0.5011 0.3535 0.5524
NSGA-II bin. 0.9195 0.9697 0.5011 0.3535 0.5524
NSGA-II int. 0.055 0.1378 0.0038 0.0114 0.3368

TABLE II: Comparison of average execution times of different
NSGA-II setups for a single quantum circuit.

Setup Avg. execution time [s]

NSGA-II bin. 4.514
NSGA-II int. 9.903

results quickly converged to those of the “Handpicked” setup.
However, using integer encoding to determine the order of op-
timization passes and allowing for repetitions led to a notable
performance enhancement even in the simplest setup with a
population size of 8 individuals evolved over 8 generations.
Utilizing a more sophisticated setup with a population size
of 128 individuals evolved over 128 generations resulted in a
significant improvement shown in the row “NSGA-II int.” in
Table I.

Table II presents average execution times comparison for a
single quantum circuit of NSGA-II setups utilizing different
encodings. The ”NSGA-II bin.” row presents the result for
a setup with binary encoding with a population size of 32
individuals evolved over 32 generations. Analogically, the
”NSGA-II int.” row shows the execution time of a setup with
integer encoding ran with the same parameters.

IV. CONCLUSIONS

We propose the first multi-objective solution for quantum
circuit optimization which employs NSGA-II. Using an opti-
mized setup with integer encoding, allowing for repetitions of
optimization passes, significantly improves the average fitness
of the candidate solutions in a benchmarking suite compared
to manually chosen optimization sets, with the number of gates
improved by 94%, depth by 85.8%, entanglement ratio by
99.2%, critical depth by 96.8%, and parallelism by 39%. The
compiler is easily adaptable to different requirements, allowing
for the introduction of new objectives without the need to
modify the optimization algorithm.

A. Future Work

The main downside of using MOEAs is the long execution
time. As the future work on the Munich Quantum Compiler,
we plan to explore various approaches with the potential of
mitigating this issue:

a) Predictor: To prevent unnecessary execution time on
converged candidate solutions, we propose training a predictor
model, similar to the one introduced in [34], using the highly

optimized dataset generated by NSGA-II. This model can
then predict the optimized objective values for a circuit, and
reaching these values can serve as an additional stopping
condition in the heuristic.

b) Distributed Genetic Algorithm: One way to increase
efficiency would be to parallelize appropriate parts of the code,
such as the application of passes to solution candidates and
fitness evaluation. However, only certain parts of the code can
be parallelized, as candidate selections must still be performed
sequentially to ensure individuals are chosen from the entire
undivided pool.

c) Machine Learning: On the one hand, a MOEA-based
approach can generate Pareto-optimal candidate solutions but
likely requiring higher execution times than, for example, ML-
based techniques. On the other hand, ML-based approaches
can yield results significantly quicker than MOEAs, but
they tend to demand a substantial dataset of already highly
optimized circuits. Access to the diverse training datasets
generated from MOEA solutions can significantly improve
the efficiency of ML-based methodologies, leading to superior
results. That is, the results generated by the NSGA-II setup
applied across a comprehensive set of quantum circuits could
be utilized as a training dataset for a ML-based solutions.
Successful application of ML models to the phase-ordering
problem is well-documented in the literature [22], and it
could potentially enhance the time-efficiency of the Munich
Quantum Compiler.
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