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Abstract

Fundamental particles and their interactions are currently best described by the Standard

Model of particle physics. One of the predictions of this theory is the fact that charged leptons

(electron, muon, and tau) interact in the same way with other particles, notwithstanding the

Higgs interactions that give them different masses. This principle is known as lepton flavour

universality, and has been tested through a host of various measurements. One of these is the

ratio between the rates at which two beauty-meson decays, B+ → K+µ+µ− and B+ → K+e+e−,

occur. This ratio is known as RK, and its most precise measurement to date is the subject

of this thesis. The result is obtained using 9 fb−1 of proton-proton collision data, recorded

between the years 2011 and 2018 by the LHCb detector at CERN’s Large Hadron Collider.

The result is RK = 0.846 + 0.042
− 0.039

+ 0.013
− 0.012

, where the first uncertainty is statistical, and the second

systematic. This measurement is in tension with the Standard Model prediction at the level

of 3.1 σ. It therefore constitutes evidence for the violation of lepton flavour universality

in B+ → K+µ+µ− and B+ → K+e+e− decays. Subsequent measurements of RK and related

observables are expected to improve the global picture, potentially leading to the discovery

of physics currently beyond the Standard Model.
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Chapter 1

Introduction

The fundamental constituents of matter, and their interactions, are currently best described

by the Standard Model (SM). This theoretical framework is the result of decades of research,

during which it has withstood the test of experimental scrutiny time and time again.

Despite this, the SM is not complete. It cannot explain several effects, such as gravity, and so

the SM has to be expanded if it is to describe such phenomena. One way of identifying areas

where expansion is needed is by testing the validity of the assumptions made by the SM.

Lepton flavour universality (LFU) is one such assumption. It was tested in the past and

found to be valid in a number of processes, however more recent measurements have begun

to cast doubt on the scope of LFU. A number of observables that are sensitive to the violation

of LFU are showing signs of disagreement with their SM predictions. These quantities are

part of a class of measurements that are generally in tension with SM expectation, known

as the “flavour anomalies”. Physics beyond the SM does not necessarily obey LFU, so the

discrepancies between theory and experiment could be caused by LFU-violating physics

beyond the SM.

Individually, the flavour anomalies do not yet have the experimental precision required

to definitively rule out the SM. Collectively, however, they can provide complementary

information, and hence there are efforts to explain the flavour anomalies together. Such
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studies involve extending the SM theory to include New Physics (NP) that could explain the

anomalies. The results often prefer the NP hypothesis over the SM one. The onus is then the

improvement of experimental precision, until new physics can be definitively confirmed, or

rejected.

This is where the subject of this thesis comes in: the most precise measurement to date of

the LFU-sensitive observable RK. It provides the first evidence for the violation of LFU in

rare decays of beauty quarks. Hence, this measurement of RK represents a substantial leap

towards understanding the flavour anomalies, and any NP that could be behind it.

This thesis is divided into three parts. Part I contains two chapters that cover the physics

relevant to the measurement of RK. Chapter 2 describes the theoretical aspects, and Chapter 3

provides an overview of the experimental setup used to record the data. Emphasis is

placed on the subsystems that are key to the success of the measurement. Part II is the main

component of this thesis, where the experimental procedure used to measure RK is described.

All aspects of the analysis are covered in detail. Finally, Part III contains appendices. Each

chapter begins with a brief overview of the covered topics, and a statement on the originality

of the work presented therein.

Natural units, in which ~ = c = 1, are used throughout, with the exception of a few figures

where the units are explicitly stated. Charge conjugation is implied whenever a particle or

a decay is mentioned, unless otherwise specified.



Part I

Lepton flavour universality,

in theory and in practice
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Chapter 2

The physics of rare beauty-quark decays

This chapter covers the theoretical aspects most relevant to RK. Section 2.1 provides an

overview of the Standard Model, and then Section 2.2 focuses on the processes upon which

RK is built. They are examples of what are known as b→ sℓ+ℓ− transitions, and experimental

results on such processes are reviewed in Section 2.3. Section 2.4 builds upon this context, by

looking beyond the Standard Model. Finally, Section 2.5 introduces the observable RK. This

chapter uses Refs. [3–5] throughout.

30
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2.1 Particles and interactions of the Standard Model

In the SM framework, particles are excitations of quantised fields that interact with each

other through the electromagnetic, strong, and weak forces. This means that the SM is a

Quantum Field Theory (Qft), whose fields are characterised by several quantum numbers.

The electrical charges, Q, and the masses associated to the SM fields are listed in Table 2.1.

Depending on the intrinsic angular momentum, i.e. the spin, the particles in this table can

be classified as follows:

• Spin-1/2 particles: these fermions are the constituents of matter. They come in three

generations, each successive generation being characterised by larger masses than the

previous one. Depending on the way they interact, fermions are of two types: quarks

and leptons. Quarks are bound together in hadrons, most often in triplets or doublets.

In the former case, they form baryons, such as the proton and the neutron. In the latter

case, they form mesons, an example of which is the pion. Quarks come in six varieties

known as flavours. These are: up (u), down (d), charm (c), strange (s), top (t), and beauty

(b); the latter is also known as bottom. Similarly, the leptons also come in six varieties.

They are grouped into three pairs of a charged and a neutral particle, and each pair is

referred to as a lepton flavour. The charged leptons are the electron (e), the muon (µ),

and the tau (τ). Each of them has a corresponding neutrino, νℓ, where ℓ ∈ {e, µ, τ}.

For every charged fermion particle f , there exists an antiparticle, f , that has the same

quantum numbers, but the sign of the electric charge is flipped. It is unknown whether

neutrinos have antiparticles, or whether they are their own antiparticle. In addition,

fermions can be either “right-handed” or “left-handed”, depending on whether their

spin is parallel or anti-parallel with their momentum. This is known as helicity, and it is

important because only left-handed fermions and right-handed anti-fermions interact

through the weak force in the SM.

• Spin-1 particles: these are the vector bosons, whose exchanges between other particles

represent the fundamental forces in the SM. The photon (γ) carries the electromagnetic

force between charged particles, the gluon (g) mediates the exchange of the strong force
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between quarks, and the W± and Z0 bosons carry the weak force between quarks and

leptons.

• Spin-0 particle: the only fundamental boson in the SM that is a scalar, rather than a

vector, is the Higgs (H0). It plays a central role in the SM, because the Higgs couplings

to the other particles give rise to their masses [6–8].

Table 2.1: Constituent particles of the Standard Model. The mass of each particle is taken from Ref. [9],
and is indicated below its symbol. Table adapted from Ref. [10].

Fermions Bosons
generation 1 2 3 vector scalar

up-type quarks u c t
(Q = +2/3) 2.2 MeV 1.3 GeV 173 GeV

γ
0

H0

125 GeV

down-type quarks d s b
(Q = −1/3) 4.7 MeV 93 MeV 4.2 GeV

g
0

charged leptons e µ τ
(Q = −1) 511 keV 106 MeV 1.8 GeV

W±

80.4 GeV

neutrinos νe νµ ντ
(Q = 0) <0.8 eV <0.8 eV <0.8 eV

Z0

91.2 GeV

The dynamics of the fields present in the SM are described by a mathematical construct

known as the Lagrangian. To highlight some of the properties of the SM Lagrangian, it is

worth considering the simplified case where only the electromagnetic force is made manifest.

Such is the case of interactions between charged leptons, with photons as mediators. The

SM reduces to quantum electrodynamics (Qed), whose Lagrangian is:

LQed = −ieγµ∂µe −meee − 1

4
FµνFµν

︸                            ︷︷                            ︸

kinematics

−geeγ
µeAµ

︸      ︷︷      ︸

interactions

. (2.1)

In the above expression, e represents the electron field, me is the mass of the electron, andγµ are

the Dirac matrices. The electromagnetic field tensor is defined as Fµν = ∂µAν − ∂νAµ, where

Aµ represents the photon field. The first two terms on the right-hand side of Equation (2.1)

describe the kinematics of the electrons, as per the Dirac equation. Together with the third

term, which encodes the kinematics of the photon, they describe the behaviour of free (non-

interacting) electrons and photons. The fourth term is added to the Lagrangian to illustrate
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electromagnetic interactions. These involve the coupling of electrons to photons, and the

strength of this coupling is represented by ge.

The interaction term in the Lagrangian is used to derive observable quantities, such as the

rate at which a given process occurs. In general, an observable is the magnitude squared of

an amplitudeA, determined as:

A = 〈
f |S | i〉 . (2.2)

In the above expression, | i〉 and 〈 f | denote the initial and final states of the fields. The

operator S is known as the S-matrix, and it is a function of the interaction Lagrangian. In

order to fully describe the process i→ f , S must include the contributions from all possible

intermediary states i→ m1 → m2 → ...→ f . The contribution to the S-matrix of each of these

processes is known as the matrix element, typically denoted by M. One way to calculate

a matrix element is to represent the corresponding process pictorially, in what are known

as Feynman diagrams. Three Feynman diagrams that contribute to the annihilation of an

electron and a positron into a photon are shown in Figure 2.1. The main features of a Feynman

diagram are lines of particles and interaction vertices. By associating each line and vertex

with a particular term, and then multiplying the terms together, it is possible to derive the

matrix element associated with the Feynman diagram. The S-matrix is then the sum of the

matrix elements of all possible Feynman diagrams. The simplest allowed diagram is known

as the leading-order contribution. In the particular case of e+e− annihilation, it corresponds

to the left-most diagram in Figure 2.1, which leads to the interaction term in Equation (2.1).

The other two diagrams in Figure 2.1 contain additional vertices, each of which reduces

the contribution to the amplitude by a factor of ge ≃ 10−2. Loops of particles are formed

between the additional vertices, and so these diagrams are said to contribute at loop-level.

By contrast, the left-most diagram contributes at tree-level.
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e
−

e
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γ
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Figure 2.1: Feynman diagrams depicting the production of a photon from electron-positron annihi-
lation, in the presence of a magnetic field (not pictured). The horizontal and vertical axes represent
time and space, respectively. Photon (vector) trajectories are shown as wavy lines, whilst electron
(fermion) trajectories are represented by straight lines. Antiparticles are interpreted as particles mov-
ing backwards in time. The filled dots depict interaction vertices, and are omitted from the other
Feynman diagrams presented in this thesis. The leading-order contribution is shown on the left,
alongside higher-order diagrams that contain a virtual photon emission (middle) and an e+e− loop
(right).

2.1.1 Symmetries of the Standard Model

Another approach to making predictions using the SM is through its symmetries. This

is by virtue of Noether’s theorem, which states that for any differentiable symmetry of a

Lagrangian involving conservative forces, there exists a corresponding conserved quantity.

One example is the symmetry under translations in space, which leads to conservation of

linear momentum. Other examples include transformations that change individual terms of

the Lagrangian, without modifying the Lagrangian as a whole. These are known as gauge

symmetries, and the Qed Lagrangian in particular is invariant under the following pair of

simultaneous transformations:

e→ e exp [iθ(x)] , Aµ → Aµ −
1

ge
∂µθ(x) . (2.3)

The θ(x) term in these expressions represents a local phase shift of the electron field. Gauge

invariance is important because it dictates the form that interaction terms are allowed to

take in the Lagrangian. Moreover, physical observables do not depend on the phases of the

fields involved, and so gauge invariance ensures predictions are consistent across chosen

conventions for the phases.

The gauge transformations that leave a Lagrangian unchanged determine that Lagrangian’s

symmetry group. In the case of LQed, the symmetry group is U(1), also known as the circle
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group. Taking into account other interactions introduces additional symmetries, and there-

fore changes the symmetry group. For example, Qed is unified with the weak interaction

at and above energy scales corresponding to the mass of the W± boson, mW ≃ 80 GeV. This

process is known as electroweak unification [11–13], and it leads to a Lagrangian whose

symmetry group is U(1)×SU(2). The former is the circle group characteristic of Qed, and the

latter is the special unitary group of order 2; it is the symmetry group of the weak interaction.

Since the strong interaction is invariant under SU(3) gauge transformations, the symmetry

group of the SM is U(1) × SU(2) × SU(3).

Aside from the transformations discussed above, there are symmetries of the SM that are

not directly built into the Lagrangian. These are known as accidental symmetries, and they

typically emerge through properties of the fields present in the Lagrangian. For example, the

fact that neutrinos are massless in the SM leads to a diagonal neutrino mixing matrix. This

matrix relates the neutrino mass eigenstates to the flavour eigenstates. A diagonal mixing

matrix leads to a lack of terms in the SM Lagrangian that couple between lepton generations,

and therefore processes that change the lepton numbers Le, Lµ, and Lτ are forbidden. Each

lepton number is calculated by counting the number of leptons of the corresponding flavour,

and subtracting the number of antileptons. This set of conserved quantities forbids the

process µ− → e+e−e−, because the initial state has Le = 0 and Lµ = 1, whilst the final state has

Le = 1 and Lµ = 0. However, the decay µ− → e−νeνµ is allowed, because Le = 0 and Lµ = 1

in both the initial and final states. Experimentally, the latter has been observed to be the

process with the largest rate (nearly 100%), whereas the former’s rate is constrained to have

an upper limit of 10−12 at 90% confidence level [9].

Another accidental symmetry is related to the fact that in the SM Lagrangian, the different

lepton flavours couple identically to the vector bosons1. This symmetry is known as lepton

flavour universality (LFU), and there is no a priori motivation behind its presence in the SM.

Despite this, it leads to precise predictions on complementary processes, such as Z0 → µ+µ−

and Z0 → e+e−, that are identical up to the flavour of the leptons present in the final state. As

1The couplings to the Higgs are different, since they are proportional to the masses of the different charged
leptons. The distinction is therefore made between vector bosons (γ, g, W±, and Z0) and gauge bosons (includ-
ing both the vector bosons and the Higgs).
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a result, LFU was tested and found to hold in W± and Z0 decays [14,15], as well as in decays

of light mesons [16, 17] and of charmonium resonances [18].

2.2 Rare beauty-quark decays

The branch of particle physics where quark flavour plays a key role is known as flavour

physics. Among others, it covers the process that is central to the topic of this thesis: the

b → sℓ+ℓ− transition, whereby a b quark decays into an s quark, with the emission of a

charged lepton-antilepton pair. The quarks in the initial and final states have the same

electric charge, but different flavours. For this reason, b→ sℓ+ℓ− transitions are examples of

what are known as flavour-changing neutral currents (Fcncs). The fact that electric charge

is conserved at every vertex of a Feynman diagram prevents the W± bosons from mediating

this process at tree level. In addition, tree-level Fcncs cannot proceed via photon or gluon

emission, because the three down-type quarks all have the same gauge representations, and

therefore have the same gauge interactions. Moreover, the Z0 boson cannot allow Fcncs at

tree level either, by virtue of having universal couplings to up-type and (separately) down-

type quarks. This, combined with the fact that the Higgs’ Yukawa couplings are aligned

with the fermion mass matrices, means that Fcncs cannot proceed at tree-level in the SM.

Given that Fcncs are forbidden in the SM at tree-level, the leading-order SM Feynman

diagrams for b → sℓ+ℓ− decays involve loops. The examples for B+ → K+ℓ+ℓ−, where the

beauty and strange quarks are bound in a B+ and a K+ meson, respectively, are shown

in Figure 2.2. The loops introduce additional electroweak couplings that suppress the rate of

b→ sℓ+ℓ− transitions with respect to related processes that are not Fcncs, such as b→ cℓ−νℓ

decays. The Fcnc rates are further suppressed by the fact that the up-type quarks in the

loop introduce factors proportional to their quark masses in the matrix element. This leads

to what is known as the GIM suppression mechanism [19] of Fcncs. In the case of b→ sℓ+ℓ−

transitions, the suppression factors go as:

M ∼
m2

i

m2
W

VibVis. (2.4)
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ū,c̄,t̄

ℓ+

ℓ−

u u
W

γ/Z0

B+ K+

b̄ s̄

W

ℓ+

ℓ−

u u
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Figure 2.2: Lowest-order Feynman diagrams allowed in the SM for the B+ → K+ℓ+ℓ− decay. Since
Fcncs are forbidden at tree-level, these diagrams contain a loop. The diagrams with one W boson in
the loop (top) are examples of penguin diagrams, whereas the one with two W bosons (bottom) is an
example of a box diagram.

In the above expression, the index i runs over the up-type quarks, and Vib and Vis are ele-

ments of the quark mixing (Ckm) matrix that describes how quarks of different generations

mix [20, 21]. The top is the only quark that has mass larger than mW, and the product VibVis

is largest for i = t. As a result, the leading contribution to the b → sℓ+ℓ− rate comes from

loops containing top quarks. This makes b → sℓ+ℓ− transitions rare in the SM. In partic-

ular for B+ → K+ℓ+ℓ− decays, the expected relative decay rates, also known as branching

fractions (B), are O(10−6) [9].

The SM interactions that dictate B+ → K+ℓ+ℓ− decays are of two types. The first corresponds

to the electroweak effects that govern the b → sℓ+ℓ− transition, which are characterised by

energy scales ∼ mW ≃ 80 GeV. The second encompasses the strong interactions between

the quarks that constitute the B+ and K+ hadrons. Such effects have typical energy scales of

O(10−1 GeV). Given the separation over three orders of magnitude between short-distance

electroweak and long-distance strong effects, the two types of processes can be factorised.

Large energy scale effects in B+ → K+ℓ+ℓ− decays can then be described using an effective

field theory (Eft) [22]. In such a framework, long-distance (small energy scale) effects are

separated from short-distance (large energy scale) ones. This is reflected in the effective
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Lagrangian at a given mass scale µs [23]:

Leff =
4GF√

2
VtbV

∗
ts

g2
e

4π

∑

i

Ci(µs)Oi(µs) . (2.5)

This expression is analogous to the 4-point interaction of Fermi theory [24]. Fermi’s con-

stant is denoted by GF, ge is the electromagnetic coupling, and Vtb and V∗ts are elements of

the quark mixing matrix. Interactions at scales below µs are encompasses by the Wilson

operators Oi(µs), where the index i runs over a complete basis of operators. Similarly, effects

characterised by energy scales above µs are encoded by the Wilson coefficients Ci(µs). In the

case of b→ sℓ+ℓ− transitions, the most relevant Wilson operators are:

O7 =
mb

ge
sσµνbR Fµν , O′7 =

mb

ge
sσµνbL Fµν ,

O9 = sγµbL ℓγµℓ , O′9 = sγµbR ℓγµℓ ,

O10 = sγµbL ℓγµγ5ℓ , O′
10
= sγµbR ℓγµγ5ℓ .

(2.6)

In the above expressions, γµ and γ5 are the Dirac matrices, mb is the mass of the b quark, and

σµν = i
2

[
γµ, γν

]
. The L and R indices denote left and right helicities, respectively. Given that

W± bosons only couple to left-handed particles, the coefficients of the primed observables

are suppressed by O(ms/mb). The other Wilson coefficients have the following SM values at

µs = mb [23]:

CSM
7 = −0.3 , CSM

9 = +4.2 , CSM
10 = −4.2 . (2.7)

2.3 Experimental results on beauty-quark decays

Over the past few years, a pattern has been emerging between measurements of b-quark

decays [2, 25–64]. They are collectively referred to as the “flavour anomalies”, and they

manifest themselves as tensions between experimental results and their SM predictions.

Particularly for b → sℓ+ℓ− transitions, some of these tensions are above 2 σ. Such levels

of departure from the SM are not sufficiently large to rule out statistical fluctuations, and

so further studies are needed. The rest of this section presents some of the anomalous

observables, grouped according to their type.
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Figure 2.3: Examples of differential branching fraction measurements. Starting from the top left
and going clockwise, these are LHCb measurements of: B+ → K+µ+µ− [26], B0 → K∗0µ+µ− [27],
B0

s → φµ+µ− [28], and Λ0
b
→ Λµ+µ− [29]. The experimental results are depicted in black, whereas

the SM predictions are represented by the coloured regions. The gaps in the q2 spectra are due to
selection cuts that veto contributions from the J/ψ and ψ(2S) charmonium resonances.

2.3.1 Differential branching fractions

The SM predicts that decays of beauty hadrons that involve b → sℓ+ℓ− transitions are rare,

for reasons given in Section 2.2. To test this, the differential branching fractions of several such

b-hadron decays have been measured, as a function of the dilepton invariant mass squared (q2).

To date, the experimental precision is driven by the LHCb experiment [65, 66], which is de-

scribed in Chapter 3. Figure 2.3 shows, as examples, the most precise measurements of the

differential branching fractions of four decay modes that involve b → sµ+µ− transitions.

They are: B+ → K+µ+µ− [26], B0 → K∗0µ+µ− [27], B0
s → φµ+µ− [28], and Λ0

b
→ Λµ+µ− [29].

It can be seen that all experimental results at q2 < 8 GeV2 are consistently below the SM

predictions. However, theory and experiment are still compatible to within 2–3 standard

deviations, which means that one cannot rule out the SM hypothesis. The experimental

results are dominated by systematic uncertainties related to the normalisation channels and

theory parameters. Calculating the SM predictions themselves is made complicated by

strong-interaction effects that cannot be described using techniques such as perturbation
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theory, thus leading to what are known as hadronic uncertainties. An example is the internal

structure of the b hadron: it is encoded in parameters, known as form factors, that have to

be computed non-perturbatively. Another example consists of contributions from Feynman

diagrams that are higher-order than the ones depicted in Figure 2.2. Such contributions have

to be calculated non-perturbatively if they involve higher-order b → ccs processes, where

the cc pair forms a loop.

2.3.2 Angular observables

There are b→ sℓ+ℓ− observables whose SM predictions are more precise than the correspond-

ing differential branching fractions. This includes parameters that describe the distributions

of the angles between the particles involved in a b → sℓ+ℓ− transition. These are known as

angular observables, and they are computed from amplitudes that can be changed by NP

contributions in different ways. As a result, angular distributions provide discriminating

power between different types of NP. Angular observables have been measured by several

experiments in various decay modes [29, 31–42]. One example of an angular observable is

P′5, which is designed such that its hadronic uncertainties are small thanks to the form factors

cancelling out to first order [67]. The experimental precision on P′5 is driven by LHCb, whose

results from B0 → K∗0µ+µ− [41] and B+ → K∗+µ+µ− [42] data are shown in Figure 2.4. Like

with the differential branching fraction results, there are tensions of 2–3 standard deviations

between the data and the SM predictions [68–72]. The latter can be systematically biased,

because the theory community have not yet reached a consensus on the uncertainties in the

predictions caused by contributions from cc loops.

2.3.3 Purely leptonic Fcnc decays

The observables presented in Sections 2.3.1 and 2.3.2 are difficult to predict in the SM due

to the strong interaction. This diminishes the discriminating power between statistical ef-

fects and genuine physics beyond the SM. To address this, studies are conducted on Fcnc

observables for which the theory uncertainties are small. These are known as theoretically-

clean observables, two examples of which are the branching fractions of the B0
s → µ+µ−
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Figure 2.4: Experimental measurements of the angular observable P′
5
, as extracted from

B0 → K∗0µ+µ− [41] (left) and B+ → K∗+µ+µ− [42] (right) LHCb data. The SM predictions [68–72]
are depicted by the filled boxes. The gaps in the q2 spectra are due to selection cuts that veto
contributions from the J/ψ and ψ(2S) charmonium resonances.

and B0 → µ+µ− decays. The corresponding leading-order SM Feynman diagrams are topo-

logically identical to the ones presented in Figure 2.2, as exemplified on the left-hand side

of Figure 2.5. However, the fact that there are only leptons in the final state reduces the theory

uncertainty to O(1%) [73]. The branching fraction of the B0
s decay has been measured by the

ATLAS, CMS, and LHCb collaborations, who also set upper limits onB(B0 → µ+µ−) [43–45].

Combining the three sets of measurements leads to an average that is in tension with the SM

prediction at the level of 2.1 σ [46], as shown on the right-hand side of Figure 2.5. This is a

similar level to the one seen in the differential branching fractions and angular observables.

Like with other anomalies, decays of beauty hadrons with muons in the final state are found

to have branching fractions below the theoretical predictions. Since the combined result,

LHCb has updated their measurement [47, 48], which is in good agreement with both the

SM prediction and the result used in the combination with ATLAS and CMS.

Figure 2.5: (Left) Leading-order Feynman diagrams for B0
s → µ+µ−. (Right) Combined average

of ATLAS [43], CMS [44], and LHCb [45] results on the branching fractions of B0
s → µ+µ− and

B0 → µ+µ− [46]. The central value of the average is shown in black, alongside coloured contours
depicting 1–5 σ confidence regions. The SM prediction is shown in red.
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2.3.4 Ratios of branching fractions

Another way to reduce hadronic uncertainties on Fcncs is to consider the fact that leptons

are not affected at leading order by the strong interaction. This means that strong-force

effects are expected to be the same in processes that are identical up to the lepton flavour

involved. For this reason, theory uncertainties related to form factors and cc loops do not

impact at leading order the following class of observables:

RH ≡

∫ q2
max

q2
min

dB(Hb → Hℓ+
1
ℓ−

1
)

dq2
dq2

∫ q2
max

q2
min

dB(Hb → Hℓ+2 ℓ
−
2 )

dq2
dq2

. (2.8)

In this expression, RH is a ratio of differential branching fractions, integrated over values

of dilepton invariant mass squared q2 ∈ [q2
min, q2

max]. The particle denoted by Hb can be any

hadron with a valence b quark. The H in the final state can be either a particle, such as a K+,

or a system of particles like pK−. The final states in the numerator and the denominator differ

only by the flavour of the leptons ℓ±
1

and ℓ±2 . This makes SM predictions accurate, by virtue of

the LFU symmetry discussed in Section 2.1.1. Given that electrons and muons have masses

that are negligible compared to those of b hadrons, RH ratios involving electrons and muons

are predicted to have values close to 1, with O(1%) precision [71, 74–82]. Small deviations

from unity are expected as a result of effects such as Qed corrections, and minute phase

space differences arising from the different electron and muon masses. Larger deviations are

expected when taus are involved, since their mass is comparable to that of b hadrons.

An example of an RH ratio is the case where (Hb, H, ℓ1, ℓ2) =
(
B0, K∗0, µ, e

)
. This observable,

known as RK∗0 , has been measured by LHCb and found to be in tension with the SM [71,74–80]

at levels above 2 σ, as shown on the left-hand side of Figure 2.6 [49]. Ratios where H is a D or

a D∗, and ℓ1 and ℓ2 are taus and muons, have also been measured [50–58]. They are denoted

by RD and RD∗ , and are examples of b→ cℓ−νℓ transitions. Such processes can be mediated at

tree-level by W± bosons, which leads to enhanced branching fractions compared to Fcncs.

The combination of these results is shown on the right-hand side of Figure 2.6, alongside the

SM predictions [83, 84]. The average is in tension with the SM at the level of 3.1 σ [59].
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Figure 2.6: Measurements of the LFU-sensitive ratios RK∗0 [49] (left) and RD(∗) [50–58] (right). The RK∗0

LHCb measurement (black bins) is shown alongside SM predictions [71, 74–80] (coloured bins). The
RD and RD∗ results are shown together with their combined average [59] at 1 σ and 3 σ confidence
levels (filled and dotted red, respectively) and the SM predictions [83, 84] (black).

2.4 New Physics in b → sℓ+ℓ− transitions

It is shown in the previous section that the SM does not perfectly model experimental results

on several b-hadron decays, including observables that are theoretically clean. Even if the

discrepancies are caused by statistical fluctuations, there are several other observations that

the SM cannot yet describe. It does not incorporate gravity, and it does not provide an

explanation for effects attributed to so-called dark matter [85, 86]. Furthermore, the SM

does not fully account for the observed imbalance between matter and antimatter [87, 88].

It is therefore clear that the SM is incomplete, and would have to be extended in order

to incorporate such phenomena. One way of doing so is to search for new particles and

interactions, collectively referred to as New Physics (NP).

Investigating the b → sℓ+ℓ− processes described in Section 2.2 represents a potential av-

enue towards extending the SM, since NP doesn’t necessarily exhibit the same suppression

mechanisms as the SM. This is illustrated by the Feynman diagrams in Figure 2.7, where

the b→ sℓ+ℓ− process is mediated at tree-level by NP particles. If possible, such transitions

would be enhanced with respect to their loop-level SM counterparts. This would lead to

deviations of observed quantities away from their SM predictions, such as the ones seen in

the case of the flavour anomalies.

2Baryon number is equal to a third of the difference between the numbers of quarks and antiquarks.
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Figure 2.7: NP processes that could allow the b→ sℓ+ℓ− transition in a B+ → K+ℓ+ℓ− decay to proceed
at tree-level. On the left, the decay is mediated by a leptoquark (LQ) that breaks baryon2 and lepton
numbers individually, but conserves their difference. On the right, the mediator is a Z′ vector boson
with non-universal couplings to the second and third generation of quarks.

In the case of b → sℓ+ℓ− and b → cℓ−νℓ transitions, the mediators are virtual. As such, the

anomalies presented in Section 2.3 are examples of indirect searches. Direct searches such as

the ones presented in Refs. [89, 90], where NP particles are produced and then decay, have

also been conducted. No signal has been observed thus far, indicating that any NP is likely

characterised by energy scales above the ones accessible to direct searches; currently, these

are O(TeV). Indirect searches are able to access higher energy scales, since virtual particles

can contribute to the loop even if their physical mass is larger than the difference in mass

between the final- and initial-state particles. In the Eft context introduced in Section 2.2,

this means that at µs ∼ mb NP would manifest itself as a shift of the Wilson coefficients (Ci)

away from their SM predictions:

Ci = CSM
i + CNP

i . (2.9)

In the above expression, the Wilson coefficients are written as the sum of their expected SM

values — the CSM
i

introduced in Equation (2.7) — and NP contributions CNP
i

. This allows the

definition of two possible scenarios:

• H0 ≡ “the SM can describe the flavour anomalies”: CNP
i
= 0, ∀ i ; and

• H1 ≡ “NP is required to explain the flavour anomalies”: ∃ i such that CNP
i
, 0 .

These two hypotheses have been tested based on the observed flavour anomalies, in what

are referred to as global fits [72, 91–98]. Generally, this is done using a global likelihood
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function in the space of Wilson coefficients [99]. After allowing some or all CNP
i

of a given

complete basis to be nonzero, maximum-likelihood fits to experimental data are performed

to find the set of Wilson coefficients that best describes the observations. The significance of

H1 with respect to H0 is then obtained from the values of the likelihood at the SM and the

best-fit points.

Depending on the observables included in the fit, and on the assumptions made about the

NP contributions to the Wilson coefficients, global fits generally find that the NP hypothesis,

H1, is favoured over the SM hypothesis, H0, by more than 5 σ. Two global fits are given as

examples in Figure 2.8 [91]. They use the same data, but make two different assumptions

on the nature of possible NP. The fit on the left allows nonzero NP contributions to C9 and

C10 in the muon sector. The fit on the right considers cases where the C9 of all three lepton

flavours is universally shifted away from the SM value, and the C9 and C10 of muons are

further shifted by contributions that have the same magnitude, but opposite signs. Both

NP scenarios are significantly favoured over the SM. It can be seen that different anomalies

prefer complementary regions of parameter space, thus leading to preferred NP values that

are well constrained.

Global fits performed in an Eft framework, such as the ones shown in Figure 2.8, indicate

that the flavour anomalies could be explained coherently by NP that manifests itself through

the Wilson coefficients. This motivates the construction of complete theories that can explain

the flavour anomalies through new particles and interactions. Some of these new particles

could mediate b → sℓ+ℓ− transitions at tree-level, as shown in Figure 2.7, and could couple

differently to the three quark and lepton generations [100–139]. Different quark-flavour

couplings could explain why the anomalies are prevalent in b-quark decays, i.e. the heaviest

generation. Different lepton-flavour couplings would lead to the violation of LFU, which

could explain the anomalies presented in Section 2.3.4. Some NP models, such as those

presented in Refs. [140–146], provide explanations for both the flavour anomalies and the

recent measurement of the magnetic moment of the muon [147].
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Figure 2.8: Global fits to flavour anomalies [91]. Each plot shows three regions in parameter space
that are preferred by the data at 1 σ (dark colours) and 2 σ (light colours) confidence levels. The orange
regions are preferred by results on differential branching fractions [26,27,29,30] and angular observ-
ables [31, 41, 42]. The blue regions are preferred by the measured values of RK [2] and RK∗0 [49, 148],
as well as B(B0

s → µ+µ−) [46] and correlated observables [36]. The red regions are preferred by all
the aforementioned measurements combined. The fits consider NP scenarios that either only affect
muons (left), or that affect all lepton flavours universally, on top of a muon-specific contribution
(right). The SM lies at the origin of each plot. The fits are performed using the flavio software
package [79], alongside the global likelihood function provided by smelli [99].

2.5 The observable RK

Given the landscape of possible NP, further studies of the flavour anomalies are required

to make a definitive statement on whether the SM can fully describe these processes. Ob-

servables of the type defined in Equation (2.8) are particularly important, by virtue of their

precise SM predictions. This thesis presents the most precise measurement to date of one

such observable:

RK =

∫ q2
max

q2
min

dB(B+ → K+µ+µ−)

dq2
dq2

∫ q2
max

q2
min

dB(B+ → K+e+e−)

dq2
dq2

. (2.10)

The ratio RK had been measured previously by the BaBar [60], Belle [61,62], and LHCb [2,63]

collaborations. These results are summarised in Figure 2.9, where it can be seen that the
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Figure 2.9: Experimental status of RK prior to the result presented in this thesis. The most precise
measurement at the time [2] is shown in black. It was performed by the LHCb collaboration, and it
supersedes the previous result [63], which is depicted in grey. Shown in green and blue are the results
from the BaBar [60] and Belle [61] collaborations, respectively. The latter has since been updated [62].

experimental precision on RK is driven by the LHCb measurement3 that made use of data

collected up until the year 2016 [2]. This result is in tension with the SM prediction at the level

of 2.5 σ. The measurement presented in this thesis benefits from an approximate doubling

of the available dataset. As such, given that the uncertainty on RK is dominated by statistics,

the expected
√

2 factor gain in precision is crucial for the better understanding of the bigger

picture formed by the flavour anomalies.

The following chapter presents the experimental apparatus used for the presently described

measurement of RK. Subsequently, the experimental procedure itself is covered by Part II of

this thesis.

3The q2 range for this measurement is chosen to be different from the ones employed by other experiments,
for reasons discussed in Section 4.3.1.



Chapter 3

The LHCb experiment

This chapter describes the experimental setup used to produce the RK measurement that

represents the topic of this thesis. Section 3.1 describes the Large Hadron Collider, which is

used to accelerate and collide protons. These collisions produce B+ mesons, whose decays

are reconstructed by the LHCb detector and used to measure RK. Section 3.2 describes the

processes and techniques employed at LHCb to measure B+ decays. The flow of information

recorded by the LHCb detector is made manageable by means described in Section 3.3, and

the techniques used to simulate LHCb data are summarised in Section 3.4.

48
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3.1 The Large Hadron Collider

The currently-largest particle accelerator in the world is the Large Hadron Collider (LHC) [149]

at the European Organisation for Nuclear Research (CERN). It is a circular collider 27 km

in circumference, situated approximately 100 m below the region surrounding the Franco-

Swiss border near Geneva. The majority of LHC’s operation time is devoted to accelerating

protons to speeds close to the speed of light, and then colliding them in bunches at four

points along the circumference of the collider. At each of these interaction points lies a main

detector specialised in measuring the particles resulting from the collisions. Two of them,

ATLAS [150] and CMS [151], are designed to be general-purpose detectors. The other two,

ALICE [152] and LHCb [65,66], specialise in heavy ion collisions and heavy flavour physics,

respectively.

The rate at which pairs of beauty hadrons are produced by the proton-proton interactions at

the LHC is given by:

dN
dt
= L · σbb. (3.1)

In this expression, L represents the instantaneous luminosity, which is a measure of how

frequently protons collide. When integrated over time, it is referred to as the integrated

luminosity, and it corresponds to the amount of data collected in a given period of time.

The integrated luminosity recorded by the LHCb detector is presented in Section 3.1.1. The

σbb term represents the cross-section for the production of pairs of beauty hadrons in the

proton-proton collisions. This quantity depends on the centre-of-mass energy at which the

protons are collided,
√

s. At scales relevant to the LHC environment, the dependency is

found to be approximately linear [153]. Therefore, increasing
√

s also increases the number

of produced beauty hadrons by a similar amount.

Up until the time of writing, there have been two distinct periods devoted to data collection.

These are called Run 1 and Run 2. Run 1 started in 20111, and involved colliding proton

bunches at
√

s = 7 TeV, with a frequency of 20 MHz. The collision energy was raised

1Some data were recorded in 2010, however they are challenging to calibrate and their statistics are small.
They are therefore seldom used in analyses.
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to
√

s = 8 TeV during 2012, after which the LHC was turned off for nearly two years.

This period, known as Long Shutdown 1 (LS1), saw improvements to the detectors and the

accelerator complex, which ultimately allowed proton bunches to be collided at
√

s = 13 TeV,

with a frequency of 40 MHz. These conditions persisted throughout Run 2, which began in

2015 and ended in 2018.

3.1.1 LHCb data collection

The LHCb collaboration has collected approximately 9 fb−1 of integrated luminosity through-

out Run 1 and Run 2, as shown in Figure 3.1. The bb cross-section scales approximately

linearly with centre-of-mass energy, and so every unit of integrated luminosity from Run 2

contains roughly twice as many b hadrons as the same amount taken during Run 1. To

reflect this, four terms are used throughout this thesis to refer to four data-taking periods

with similar statistics:

1. “Run 1”: data taken during 2011 and 2012;

2. “Run 2.1”: data taken during 2015 and 2016;

3. “2017”: data taken during 2017;

4. “2018”: data taken during 2018.

The latter two years combined are referred to as “Run 2.2”. When taken together, Run 1 and

Run 2.1 are referred to as “previous data”, because they constitute the dataset used in the

preceding RK measurement at LHCb.

3.2 Particle detection at LHCb

The LHCb detector reconstructs an event, such as the decay of a B meson, by extracting

as much information as possible from the resulting particles. Different particle properties

are best obtained using different technologies, so the LHCb detector consists of several

subsystems that complement each other. A schematic of the LHCb detector, showing its
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Figure 3.1: Cumulative integrated luminosity recorded by the LHCb experiment from its inception
until LS2.

subdetectors, is shown in Figure 3.2. It corresponds to the projection in the (z, y) plane. The

z axis follows the direction of the LHC beam line, whereas the y axis points in the vertical

direction. The interaction point is located at z = 0, and going towards increasing values of z

is referred to as the “downstream” direction; the opposite direction is known as “upstream”.

Figure 3.2: Cross-section in the (z, y) plane of the LHCb detector. The various labelled subdetectors
are described in the main body. Diagram taken from Ref. [65].

In proton-proton collisions, heavy-flavour quarks tend to be produced at low angles with
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respect to the z axis [154]. Since heavy flavour physics represents the core of the LHCb physics

programme, the LHCb detector is designed to cover the very-forward longitudinal angle

region θ ∈ (10 mrad, 250 mrad). This corresponds to the pseudorapidity range η ∈ (2, 5),

where pseudorapidity is defined as η = − ln [tan (θ/2)].

3.2.1 Energy loss mechanisms

There are several ways in which incoming particles interact with the LHCb detector and lose

energy. The amount of lost energy depends on properties of both the detector material (e.g.

the atomic number), and the incoming particle (e.g. its speed). The rest of this subsection

discusses the energy loss mechanisms that dominate in the LHCb environment.

The quantity under discussion is the mass stopping power, defined as the average energy

loss per distance travelled through a medium. The mass stopping power as a function of

βγ is shown in Figure 3.3, alongside the kinematic regions that correspond to typical muons

and electrons at LHCb. In the case of charged particles with βγ approximately between

10−1 and 103, the dominant process for energy loss is the interaction with the electrons of

the medium. Incoming particles pass energy onto these electrons, which then either excite

or ionise the atoms. In this kinematic regime, the Bethe formula can be used to calculate

the mass stopping power with O(%) precision [9]. The resulting spectrum of mass stopping

power is characterised by a sharp drop at βγ < 1, followed by a wide minimum, and a

slow logarithmic rise. Particles around the minimum are known as minimum ionising

particles, and are typically capable of traversing considerable amounts of material before

being stopped.

At higher values of βγ, another mechanism leads to average energy losses larger than

those caused by ionisation and excitation. The underlying process for this mechanism is

the radiation of photons by the traversing particle, in the presence of the electromagnetic

potential of the nuclei2 in the medium. The resulting photons are highly collinear with

the passing particle, and are known as bremsstrahlung radiation. The dominant effect that

2The potential of the electrons may also cause radiative losses, but to a lesser extent.
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ionisation

Figure 3.3: Mass stopping power (average energy loss) in copper, as a function of the βγ of the
incident particle. Individual contributions from ionisation and radiative losses are shown by the
dashed purple and dotted orange lines, respectively. The solid line shows the total mass stopping
power, coloured to reflect the dominant contribution. Regions corresponding to muons and electrons
in the LHCb environment are shown in red and blue, respectively. Figure adapted from Ref. [9].

causes these photons to lose energy is the production of e+e− pairs, as a result of interactions

with the atoms in the traversed material. The resulting electrons and positrons produce

further bremsstrahlung radiation, which leads to additional e+e− pairs and so on, until the

kinetic energy of the initial particle becomes low enough that other energy-loss mechanisms

become dominant. This phenomenon is known as an electromagnetic shower.

In particular for the LHCb environment, it can be seen that muons are on the logarithmic rise

of the Bethe function, and therefore have small average energy losses. By contrast, electrons

lose large amounts of energy through bremsstrahlung radiation. This leads to significant

differences between the detection and reconstruction strategies of electrons and muons.

Hadrons such as pions and kaons are more massive than muons, which means they also lose

small amounts of energy through ionisation. However, they also interact through the strong

force with the detector material. As a result, hadrons produce showers that are qualitatively

similar to the electromagnetic showers produced by photons and electrons. They differ

through their composition (since they contain some hadrons such as pions) and through the

amount of material needed to initiate and contain such showers.
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3.2.2 Measuring particle energies

Given the differences between the way photons, electrons, muons, and hadrons interact with

matter, the LHCb detector uses different methods to reconstruct the energies of incoming

particles. In the case of electrons and photons, the energy is determined using the elec-

tromagnetic showers produced in the Ecal [155]. This subdetector, depicted by the light

blue rectangle in Figure 3.2, is able to measure shower energies (E) with a resolution of

1%⊕ 10%/
√

E (E in GeV) [65]. It consists of layers of active (detection) material, interleaved

with passive (absorption) layers. The latter are made of lead, whose density and high atomic

number facilitate the development of electromagnetic showers. The former are scintillation

plates, meaning that light is emitted when particles pass through the material. The light

is sent through wavelength-shifting fibres to photomultiplier tubes that generate an elec-

trical signal proportional to the amount of scintillation light, notwithstanding thresholds

and saturation levels. The energy contained in the electromagnetic shower that caused the

scintillation is therefore inferred based on the signal from the photomultiplier tubes.

The Ecal is aided by two pads of scintillator that are placed in front of it. These are called the

preshower (PS), and the scintillating pad detector (Spd). Their position relative to the Ecal

is depicted in Figure 3.4, alongside the locations of the showers produced by different types

of particles. Only charged particles are expected to initiate showers in the Spd, and therefore

this detector is useful in separating neutral and charged incoming particles. The PS facilitates

the formation of electromagnetic showers, thus making electrons and photons easier to stop

by the Ecal.

To reflect the different numbers of incoming particles at different angles, the scintillators

(referred to as cells) that form the Ecal, PS, and Spd active layers have different dimensions

in the (x, y) plane. As shown on the left-hand side of Figure 3.5, there are three different

regions. The outer region is farthest from the beam line, where the flux of incoming particles

is smallest. As a result, this is where the cells have the largest cross-sectional area (12.12 ×

12.12 cm2). The segmentation is finer in the middle region, where the cells are 6.06×6.06 cm2

wide. Closest to the beam line, in the inner region, the cells have an area of 4.04 × 4.04 cm2.
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Figure 3.4: Layout of the LHCb calorimeter system in the (z, y) plane. Showers initiated by incoming
photons, electrons, and hadrons are shown in white. The coloured rectangles depict the subdetectors
that make up the calorimeter system, whilst the black rectangle represents the lead absorption layer
placed between the Spd and the PS. Diagram taken from Ref. [10].

x

y

x

y

Figure 3.5: Segmentation of the detectors that form the calorimeter system. Shown on the left is the
configuration of the Ecal, Spd, and PS, and shown on the right is the layout of the Hcal. The
inner, middle, and outer regions are separated by the blue, purple, and red rectangles, respectively.
Diagrams adapted from Ref. [156].
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Given that hadrons are more difficult to stop than photons and electrons, the majority of

them are not expected to initiate showers in the Ecal. Instead, hadronic showers are mostly

contained by the Hcal. This subdetector, depicted by the dark blue rectangle in Figure 3.2,

has an energy resolution of (69 ± 5)%/
√

E ⊕ (9 ± 2)% [65], where E is the shower energy in

GeV. It is placed downstream of the Ecal, and employs the same strategy of interleaving

layers of detection and absorption material. Like the Ecal, the Hcal also consists of regions

with different scintillator sizes, as shown on the right-hand side of Figure 3.5. The difference

lies in the number of regions, and the areas of their corresponding cells. The inner region

contains cells 13.13 × 13.13 cm2 wide, whereas the cells in the outer region have an area of

26.26 × 26.26 cm2.

3.2.3 Muon detection

Five detection stations interleaved with iron absorbers are placed at the downstream end

of the LHCb detector. They are called the muon stations [157, 158], and are depicted by

the green rectangles in Figure 3.2. Most particles that are not muons are expected to stop

before they reach the muon stations, thus making this subsystem particularly useful in

discriminating muons from other particles. The first station, M1, is placed upstream of

the Spd, in order to improve measurements of muon transverse momentum (pT). The

other four stations, M2–M5, are situated downstream of the Hcal. Each station consists

of 276 chambers that detect incoming charged particles. As with the Ecal and Hcal,

the granularity is finer close to the beam line, where most incoming particles are expected

to traverse the detector. The 12 inner-most chambers of M1, where radiation damage is

expected to be largest, are gas electron multiplier detectors [159]. The other chambers are

multi-wire proportional chambers [160]. Both types of chambers are examples of gaseous

ionisation detectors, whereby charged particles are detected based on the ionisation they

produce as they traverse gas-filled chambers.
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3.2.4 Tracking

Aside from estimating the energy of incoming charged particles, ionisation is also used

to measure particle momenta. When passing through a magnetic field, a charged particle

is bent in a helix whose radius is proportional to the particle’s momentum. Therefore,

determining the trajectory of a charged particle in a magnetic field leads to a measurement

of its momentum. This is called tracking, and the subdetectors that perform this at LHCb

employ several techniques to locate the ionisation caused by incoming charged particles.

The technologies are chosen based on factors such as required momentum resolution and

radiation hardness, however they all rely on ionisation.

There are four tracking stations at LHCb. Three of them, denoted by T1, T2, and T3 in Fig-

ure 3.2, are placed downstream of the magnet. They are instrumented differently depending

on the proximity to the beam line, to reflect the larger number of tracks at small angles. The

large-angles region is known as the Outer Tracker [161, 162], and it consists of straw tube

detectors. The region close to the beam line is referred to as the Inner Tracker [163], and

it is instrumented with silicon microstrip sensors. The other tracking station is called the

Tracker Turicensis (TT in Figure 3.2) [164]. It is placed upstream of the magnet, and like

the inner tracker it features layers of silicon microstrip detectors. The overall momentum

resolution ranges from 0.5% at low momentum to 1.0% at 200 GeV [66].

The magnet [165] used to bend charged particles is a warm dipole that produces a predom-

inantly vertical magnetic field of up to 1.1 T. The integrated magnetic field along the path

of a traversing particle is approximately 4 Tm, leading to an average pT kick of approxi-

mately 1.2 GeV. During data taking, the direction of the magnetic field, also known as the

polarity, changes periodically between the positive and the negative y-axis direction. The

two configurations are referred to as “MagUp” and “MagDown”, respectively. Changing

the magnet polarity reduces systematic effects induced by positively-charged particles being

bent in opposite directions from negatively-charged particles.
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Figure 3.6: Cross-sections of the Velo. Shown at the top is the projection in the (z, x) plane, at
y = 0, during stable beam conditions. The front of the first module when the two halves are fully
closed and fully opened is shown on the bottom left and bottom right, respectively. Diagrams taken
from Ref. [65].

3.2.5 Vertexing

Tracking is complemented by a subdetector, known as the Vertex Locator (Velo) [166, 167],

designed specifically to determine the points at which particles produced at the interaction

point decay. This is important for the LHCb physics programme, because beauty and charm

hadrons travel a short distance before decaying, and can therefore be isolated from shorter-

lived particles. In particular, the Velo allows LHCb to measure decay times with a resolution

of approximately 45 fs for B0
s decays [66].

A schematic of the Velo is shown in Figure 3.6. Out of all LHCb subdetectors, it is located

closest to the interaction point. It contains 42 modules placed evenly on either side of the

beam line, along the z axis. Each module features two semi-circular sensors that have silicon

strips arranged along different trajectories. One of the sensors has radial strips, whilst the

other has semicircular strips. Therefore, the former sensor measures the polar angle, and

the latter determines the radial distance. During data taking, the modules are positioned

approximately 8 mm away from the beam line. To prevent damage from potentially unstable

beams, this distance is increased to around 3 cm when LHCb is not taking data.
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3.2.6 Particle identification

As discussed in Section 3.2.1, the calorimeters are able to distinguish between photons,

electrons, and hadrons, based on the locations of the particle showers they initiate. Similarly,

muons can be identified from the fact that they tend to be the only particles that are not

stopped before the muon stations. To further facilitate the identification of particle species,

LHCb also uses two ring-imaging Cherenkov (Rich) detectors [168, 169].

When a charged particle passes through a medium at a speed faster than light would have

in said medium, photons are emitted. This is called Cherenkov light, and the angle it forms

with respect to the particle’s trajectory (θc) depends on the speed of the particle (β) and the

refractive index (n) of the medium:

θc = arccos(1/nβ) . (3.2)

This means that the speed of an incoming particle can be determined by measuring the

Cherenkov angle θc. When used in conjunction with the momentum measured by the

tracking stations, this leads to an estimate of the mass:

β2 =

(
1

n cosθc

)2

=
p2

p2 +m2
(3.3)

⇒ m = p
√

(n cosθc)2 − 1 . (3.4)

In the Rich detectors at LHCb, Cherenkov light is focused by an optical system onto an

array of hybrid photon detectors. The optical system contains spherical mirrors that focus

the Cherenkov photons emitted by a given particle into a circle, called a Cherenkov ring. The

radius of a Cherenkov ring depends on the angle θc. The expected pattern under each mass

hypothesis is compared to the measured photons, and a likelihood is calculated. Particle

type is thus inferred using the likelihood ratio with respect to the pion mass hypothesis.

In order for a particle to produce Cherenkov radiation, it must have a minimum speed:

βmin = 1/n. The larger the refractive index, the lower the momentum threshold for Cherenkov

radiation. However, Equation (3.2) shows that larger refractive indices lead to larger
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Cherenkov angles, which require bigger detectors to reconstruct. To address this, two Rich

stations are used at LHCb, Rich1 and Rich2. They contain different gases, and so they

are optimised for complementary momentum ranges. The station closest to the interaction

point, Rich1, uses C4F10 gas3, which has a higher refractive index than the CF4 gas used by

the second station, Rich2. The proximity to the interaction point also allows Rich1 to cover

a larger acceptance than Rich2. As a result, Rich1 is optimal for low-momentum parti-

cles, whereas Rich2 performs best on high-momentum particles. The characteristics of each

Rich station are summarised in Table 3.1, and the particle identification (PID) performance

is illustrated in Figure 3.7. It can be seen that there are regions in the (p, θc) plane that are

populated by particles of certain species.

Table 3.1: Characteristics of the two Rich stations.

Station Refractive index
Optimal momentum

range [GeV]
Horizontal

acceptance [mrad]
Vertical

acceptance [mrad]
Rich1 1 + 1.4 × 10−3 [10, 60] [±25, ±300] [±25, ±250]
Rich2 1 + 4.8 × 10−4 [15, 100] [±15, ±120] [±15, ±100]

Figure 3.7: Angles at which Cherenkov light is produced in Rich1 by particles with various mo-
menta. The annotations indicate regions in the plane that are mostly populated by particles of the
corresponding species. Plot taken from Ref. [169].

3Aerogel was also used in the Rich1 during Run 1. It was removed to facilitate ring reconstruction.
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3.3 The flow of data at LHCb

Given that a full LHCb event has a size of around 100 kB, storing the information recorded by

the detector is made challenging by the 40 MHz rate at which particle bunches are collided

by the LHC. To address this, data are required to pass several filtering stages before they are

stored and made available for physics analyses.

The first filtering layer is the trigger [170], which consists of two stages. The first one is

hardware-based, and is called the L0 trigger. Its role is to reduce the flow of data to a rate

that allows the entire detector to be read out: from 40 MHz to 1 MHz. This imposes a

upper limit of 25 ns on the time window of each subdetector used by the L0 trigger. Hits in

the muon chambers are found to have a time resolution between 2.5 ns and 4.0 ns [171]. In

the calorimeters, the detected signal pulses are generally longer than the nominal read-out

window of. To take this into account, the signal is clipped to fit within 25 ns.

Events that pass the L0 trigger are reconstructed and further analysed by the HLT, which is

the next step in the trigger selection. It is software-based, and reduces the rate to 5 kHz in

Run 1, and 12.5 kHz in Run 2. This allows the events to be fully reconstructed offline and

stored. To ease the burden on computing resources, an additional filtering stage is executed

before the data is made available to analysts. It is called the stripping, and it consists of

loose cuts that improve the quality of selected candidates. By the end of 2020, LHCb data

and simulation amounted to 74.6 PB of tape storage, and 35.4 PB of disk storage [172]. The

former covers raw data, whilst the other contains simulated samples and processed data.

An additional data stream was introduced in Run 2 to allow more events to be stored. It

is called Turbo, and it involves directly saving the candidates reconstructed by the HLT

to disk. This means that Turbo events do not undergo full reconstruction, however the

HLT reconstruction during Run 2 is identical to the offline reconstruction. Since the offline

reconstruction stage is skipped, data can be collected at a higher rate, thus enabling the

Turbo stream to collect more events. However, only candidates reconstructed by the trigger

can be recorded, and therefore Turbo data cannot be used in cases where information about

the underlying event is necessary to the analysis.
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3.4 LHCb simulation

Simulated events undergo the same filtering stages described in Section 3.3 for the data.

Proton-proton collisions are generated using Pythia [173, 174] configured specifically for

the LHCb environment [175]. The resulting hadronic particles, as well as their decays, are

simulated by EvtGen [176]. Furthermore, Photos [177] is used to account for final-state

radiation. Finally, the interactions between the simulated particles and the LHCb detector

are modelled by the Geant4 [178] toolkit.

For analysis purposes, the distinction is made between two types of simulation samples.

When the final-state particles are not propagated through the detector and reconstructed,

the samples are referred to as generation-level simulation. This allows the study of detector

effects such as geometrical acceptance and reconstruction. If, instead, the final-state particles

are treated in the same way as data, the result is reconstruction-level simulation.
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Chapter 4

Measurement strategy

Following the theoretical overview of RK and the description of the LHCb detector in Part I,

the experimental procedure for measuring RK at LHCb is presented in Part II. It opens

with this chapter, which summarises the practical aspects that drive the measurement strat-

egy. Section 4.1 describes the final states relevant to the analysis. Then, Section 4.2 explains

how the definition of RK from Equation (2.10) is adapted to address certain experimental

challenges. Finally, Section 4.3 provides an overview of the selection employed to collect the

data used in the RK measurement.

The measurement strategy closely follows the one designed and implemented by Dr. Paula

Álvarez Cartelle and Dr. Thibaud Humair for the previous LHCb RK measurement [2].

Results that constitute original work are highlighted where appropriate.

64
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4.1 K+ℓ+ℓ− final states

The general principles employed by the LHCb experiment to process the data it records are

presented in Section 3.3. This section starts from this foundation and concentrates on the

specifics of the RK analysis.

Consider Equation (2.10), which expresses RK as the ratio between the branching fractions

of two B+ decays. The daughters from both decay types can be fully reconstructed by the

LHCb detector. This has two major implications: first, the RK analysis strategy revolves

around selecting data where the final state contains a charged kaon and either a pair of

oppositely-charged muons, or a pair of oppositely-charged electrons. Second, for a given

signal candidate, the invariant mass of the K+ℓ+ℓ− system, denoted by m(K+ℓ+ℓ−), is expected

to be approximately equal to the mass of the B+ meson, mB. This invariant mass is given by:

m(K+ℓ+ℓ−)2 =
∥
∥
∥pK + pℓ+ + pℓ−

∥
∥
∥

2
= (EK + Eℓ+ + Eℓ−)

2 −
∥
∥
∥~pK + ~pℓ+ + ~pℓ−

∥
∥
∥

2
, (4.1)

where pX is the 4-momentum of particle X, EX is its energy, and ~pX is its 3-momentum. Signal

candidates have m(K+ℓ+ℓ−) values close to mB, so the spectrum of m(K+ℓ+ℓ−) in data contains

an accumulation around m(K+ℓ+ℓ−) = mB that corresponds to signal events. This accumula-

tion, known as a peak, makes m(K+ℓ+ℓ−) crucial in separating signal from background.

The extent to which m(K+ℓ+ℓ−) provides separation power between signal and background

can be better appreciated by also taking into account the square of the invariant mass of the

two leptons, q2. This is portrayed in Figure 4.1, where the m(K+ℓ+ℓ−) and q2 distributions of

partially-selected data candidates reveal certain features:

• a vertical band centred around m(K+ℓ+ℓ−) = mB ≃ 5.28 GeV that stretches across q2.

This is the signal mode, B+ → K+ℓ+ℓ−, which has a branching fraction of O(10−6) [9];

• an accumulation at m(K+ℓ+ℓ−) ≃ 5.28 GeV and q2 = m2
J/ψ ≃ 9.6 GeV2. This corre-

sponds to the tree-level decay B+ → K+J/ψ, followed by the decay of the J/ψ into two

oppositely-charged leptons. The total branching fraction for this process is O(10−4) [9],
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making B+ → K+J/ψ(ℓ+ℓ−) events more abundant than thei B+ → K+ℓ+ℓ− counterparts

by a factor of O(100);

• another accumulation at m(K+ℓ+ℓ−) ≃ 5.28 GeV, but at q2 = m2
ψ(2S)
≃ 13.6 GeV2 instead.

This is another tree-level decay, B+ → K+ψ(2S), with the subsequent decay of the ψ(2S)

into two leptons;

• horizontal bands that have the same q2 as the two resonances described above, but

with different m(K+ℓ+ℓ−). The regions where m(K+ℓ+ℓ−) > 5.28 GeV are dominated

by combinations between a random J/ψ or ψ(2S) resonance, and a random kaon in

the event. These are called combinatorial events. By contrast, the regions where

m(K+ℓ+ℓ−) < 5.28 GeV are mostly populated by events where a beauty hadron has de-

cayed, but not all resulting particles were reconstructed. These are known as partially-

reconstructed events, and examples include B0 → K∗0J/ψ(ℓ+ℓ−) processes where the K∗0

decays into a kaon and a pion, and the latter escapes reconstruction; and

• diagonal bands that extend down to lower m(K+ℓ+ℓ−) and q2 from the two reso-

nances. Here, the B+ and/or one of its daughters emits one or several photons through

bremsstrahlung. These photons take some energy away from the final-state parti-

cles, hence the lower m(K+ℓ+ℓ−) and q2 values. Events where this happens are called

radiative events, and the diagonals themselves are referred to as radiative tails.

The features enumerated above are all noticeably blurred in the electron channel, compared

to their muon counterparts. The loss in resolution is related to the fundamental differences

between the ways muons and electrons interact with the LHCb detector. As explained

in Section 3.2.1, muons lose little to no energy — O(1 MeVcm2/g) — as they traverse the

detector. By contrast, electrons are expected to lose considerable fractions of their energy

due to bremsstrahlung radiation. The differences between electron and muon detection are

what drive most of the decisions taken by the RK measurement strategy.
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Figure 4.1: Distributions in m(K+ℓ+ℓ−) and q2 of events used in the RK analysis. These are muon
(left) and electron (right) signal candidates from all data-taking periods, to which a partial selection
has been applied in order to highlight the features discussed in Section 4.1. This partial selection is
formed by the requirements listed in Table 4.2. The vertical band corresponding to the B+ → K+e+e−

signal is not visible, for reasons discussed in the main body.

Electron energy loss is mitigated by the bremsstrahlung recovery process [179], whereby

photon clusters in the Ecal have their energies added to electrons whose trajectories before

the magnet match the locations of the clusters. Tracks are most affected by bremsstrahlung

radiation emitted before the magnet, i.e. before the curvature is measured by the tracking

stations. Bremsstrahlung radiation is approximately collinear to the electron track, making

energy losses negligible in the case of radiation once the track no longer changes direction.

For this reason, the algorithm focuses on the recovery of bremsstrahlung photons emitted

upstream of the magnet. To do so, the tangent to a given electron track is extrapolated to

the Ecal (x, y) plane, based on the origin vertex of the track and its intersection with the

TT. A 2 σ confidence area is then calculated, based on the precision of the extrapolation,

and the uncertainty on the position of a given photon cluster. Clusters with centres inside

this area that have pT > 75 MeV and satisfy loose photon identification requirements are

considered to have come from bremsstrahlung radiation emitted by the associated electron

track. The 4-momentum of the photon is calculated based on the cluster energy (assuming

the photon originates from the primary vertex and that its direction points to the barycentre

of the shower) and added to the 4-momentum of the electron.
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Even after the bremsstrahlung recovery process, the resolution of electrons is not on par

with that of muons. The following two sections describe how the RK analysis strategy is

designed to mitigate the impact of differences between electrons and muons. Section 4.2

presents a method that substantially diminishes systematic uncertainties induced by differ-

ences between electrons and muons. Then, Section 4.3 explains the event selection process,

highlighting steps taken to optimise the procedure for electrons.

4.2 RK as an experimental observable

In light of the differences between detecting muons and electrons at LHCb, it becomes clear

that the expression for RK given in Equation (2.10),

RK =

∫ q2
max

q2
min

dB(B+ → K+µ+µ−)

dq2
dq2

∫ q2
max

q2
min

dB(B+ → K+e+e−)

dq2
dq2

,

is susceptible to large systematic uncertainties. Measuring a muon process and an electron

process, and then comparing the two by taking the ratio, would lead to uncertainties related

to the differences between how muons and electrons are measured at LHCb. This would not

be the case if the definition of RK were adjusted to depend on ratios of two muon processes

and of two electron processes, instead of one of each. For this reason, one more muon process

and one more electron process are chosen to act as control channels, and RK is measured

relative to these two processes.

The chosen control channels are B+ → K+J/ψ(ℓ+ℓ−). Their branching fractions are larger than

those of the rare B+ → K+ℓ+ℓ− modes, owing to the b→ c transition that produces one of the

valence quarks of the J/ψ resonance. In addition, the flavour-changing W± boson preferen-

tially decays into the cs pair needed to create J/ψK+. Another advantage of this channel is that

the resonant J/ψ structure leads to the overwhelming majority of B+ → K+J/ψ(ℓ+ℓ−) events

to be characterised by a q2 around the square of the mass of the J/ψ. This, combined with

the fact that final-state particles from the two channels have similar kinematics, allows the
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selection strategies for the B+ → K+ℓ+ℓ− and B+ → K+J/ψ(ℓ+ℓ−) channels to be identical up

to the cuts on q2 and on m(K+ℓ+ℓ−). By introducing information from the B+ → K+J/ψ(ℓ+ℓ−)

modes, the definition of the experimental observable RK becomes:

RK =

∫ q2
max

q2
min

dB(B+ → K+µ+µ−)

dq2
dq2

∫ q2
max

q2
min

dB(B+ → K+e+e−)

dq2
dq2

·

∫

q2
ee

dB (
B+ → K+J/ψ(e+e−)

)

dq2
dq2

∫

q2
µµ

dB (
B+ → K+J/ψ(µ+µ−)

)

dq2
dq2

, (4.2)

where q2
ee and q2

µµ are the q2 selection regions for B+ → K+J/ψ(e+e−) and B+ → K+J/ψ(µ+µ−),

respectively; these ranges, alongside q2
min and q2

max, are listed in Table 4.1. The final step in

expressing RK as a function of experimental quantities is to write the branching fractions in

terms of yields and efficiencies. The yield of the final state X from a B+ decay, N(X), can be

expressed as a function of the branching fraction of the process, B(X):

N(X) = ε(X) · N(X) = ε(X) · B(X) ·N(B) . (4.3)

Here, ε(X) is the efficiency to select a candidate for process X, andN(X) is the total number

of times B+ mesons decayed into X during data taking. The total number of produced

B+ mesons, N(B), is a property that does not depend on the subsequent B+ decay. This means

that N(B) cancels out in the ratios on the right-hand side of Equation (4.2), and therefore

the branching fractions can be expressed in terms of their recorded yields and estimated

efficiencies. This leads to the double-ratio expression for RK:

RK =
N(K+µ+µ−)

ε(K+µ+µ−)
· ε(K+e+e−)

N(K+e+e−)
·
ε(K+J/ψ(µ+µ−))

N(K+J/ψ(µ+µ−))
·

N(K+J/ψ(e+e−))

ε(K+J/ψ(e+e−))
︸                                       ︷︷                                       ︸

rJ/ψ

. (4.4)

The yields are obtained through fits to the invariant mass of the final-state particles. These

are described in Chapter 5 and Chapter 9 for the control and signal modes, respectively. The

efficiencies are obtained based on simulated events, as described in Chapter 6. The terms

in Equation (4.2) that are obtained from the control channels are grouped into the single

ratio rJ/ψ. As detailed in Section 8.1, this observable is a stringent test of the experimental

procedure. A related check, which uses the ψ(2S) modes, is described in Section 8.2.
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4.3 Data selection

In total, six processes are central to the RK analysis: B+ → K+e+e−, B+ → K+J/ψ(e+e−), and

B+ → K+ψ(2S)(e+e−), together with their muon counterparts. Throughout, they are referred

to as the “signal”, “control”, and “ψ(2S)” modes, respectively. The signal data is kept

blind up until the full validation of the experimental procedure. Cuts are applied to select

candidate events that match the requirements imposed by each channel, and remove as

much background as possible. The selection strategy for this analysis is essentially identical

to the one developed by Dr. Thibaud Humair and Dr. Paula Álvarez Cartelle for the previous

measurement of RK. A few modifications were made when necessary, and are highlighted

where relevant.

The selection contains a number of criteria that target specific characteristics desirable of

signal candidates. These are listed in Tables 4.1, 4.2, 4.3, and 4.5, where they are grouped by

their purpose. For example, requirements that ensure particles are contained by the LHCb

detector acceptance are listed under “Fiducial cuts”. The following subsections provide

details on the selection requirements, according their roles.

4.3.1 Invariant-mass cuts

The signal, control, and ψ(2S) selections are identical, up to the cuts on q2 and the invariant

mass of all three final-state particles. These cuts are summarised in Table 4.1. The value of

q2 in control and ψ(2S) events peaks at m2
J/ψ and m2

ψ(2S)
, respectively. For this reason, the q2

windows for these channels are chosen to be around the values of the two masses quoted

in the PDG [9]. To account for bremsstrahlung radiation, the boundaries of a given window

are chosen such that their average is lower than the mass of the resonance. In addition, the

K+ℓ+ℓ− invariant-mass windows have different widths between electron and muon modes,

to take into account the different resolutions. It can be seen from projections of the fit to

B+ → K+ℓ+ℓ− data, such as the ones shown in Figures 11.3 to 11.5, that the resolutions of

m(K+µ+µ−) and m(K+e+e−) are approximately 20 MeV and 70 MeV, respectively.

The q2 selection for the rare modes is designed to reduce background contamination. On
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Table 4.1: The reconstructed q2 and mass ranges used to separate the six channels used in this analysis.
They are the only requirements that differ between the signal, control, and ψ(2S) modes.

q2 selections
Electron channel Muon channel

Bounds [GeV2] Bounds [GeV2]
signal (1.10, 6.00) (1.10, 6.00)
control (6.00, 12.96) (8.68, 10.09)
ψ(2S) (9.92, 16.40) (12.50, 14.20)

mass selections
Electron channel Muon channel

Quantity Bounds [GeV] Bounds [GeV]
signal m(K+ℓ+ℓ−) (4.88, 6.20) (5.18, 5.60)
control mJ/ψ(K+ℓ+ℓ−) (5.08, 5.68) (5.18, 5.60)
ψ(2S) mψ(2S)(K

+ℓ+ℓ−) (5.08, 5.68) (5.18, 5.60)

one hand, the lower bound of 1.1 GeV2 rejects contributions from low-mass resonances, such

as the φ(1020). On the other hand, the upper bound of 6.0 GeV2 is chosen to minimise the

background formed by B+ → K+J/ψ(ℓ+ℓ−) events in the low-mass tail of the resonance. It

is estimated, by means described in Chapter 6, that this q2 window contains approximately

25% of all B+ → K+ℓ+ℓ− events.

Following the same line of reasoning, the lower bounds of the invariant-mass windows

are chosen to reduce contributions from physics backgrounds situated at low m(K+ℓ+ℓ−),

whilst still being efficient at selecting the signal. The upper bound is chosen to enable a

good description of the contribution from combinatorial events, which are seen in Figure 4.1

to dominate the high-m(K+ℓ+ℓ−) region. In the resonant J/ψ and ψ(2S) modes, the K+ℓ+ℓ−

invariant-mass estimate is improved during reconstruction by constraining the dilepton

system to have mass equal to the PDG central values. This results in estimates, denoted by

mJ/ψ and mψ(2S) respectively, that have better resolutions than the unconstrained mass [180].

4.3.2 Ensuring the quality of the decay

Loose requirements are applied at the beginning of the selection chain to reject combina-

torial background events. These requirements ensure that the candidate has a topology

compatible with a B+ → K+ℓ+ℓ− process, which is depicted in Figure 4.2. The B+ is produced
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Table 4.2: Offline selection cuts applied to the electron (left) and muon (right) samples.

Event quality
χ2

FD
(B+) > 100
δ(B+) < arccos(0.995)

χ2
IP

(B+) < 25
χ2

DV
/ndof(B+) < 9
χ2

FD
(e+e−) > 16

χ2
DV
/ndof(e+e−) < 9

χ2
IP

(e±) > 9
χ2

IP
(K+) > 9

pT(K+) > 400 MeV
nSPDHits < 600 (Run 1)

< 450 (Run 2)
probghost(K

+, e±) < 0.3

Cascade & mis-ID vetoes
m(K+e−) > 1885 MeV

m(K+e−[→π−]) < m(D0) ± 40 MeV

Fiducial cuts
hasRich(K+, e±) = true

hasCalo(e±) = true

pT(e±) > 0.5 GeV
p(e±) > 3 GeV

|xEcal(e
±)| > 363.6 mm

or |yEcal(e
±)| > 282.6 mm

PID cuts
probNNK(K+) > 0.2
DLLe(K

+) < 0
DLLe(e

±) > 3

Event quality
χ2

FD
(B+) > 121
δ(B+) < arccos(0.9999)

χ2
IP

(B+) < 16
χ2

DV
/ndof(B+) < 8
χ2

FD
(µ+µ−) > 9

χ2
DV
/ndof(µ+µ−) < 12

χ2
IP

(µ±) > 9
χ2

IP
(K+) > 6

nSPDHits < 600 (Run 1)
< 450 (Run 2)

probghost(µ
±) < 0.3

Cascade & mis-ID vetoes
m(K+µ−) > 1885 MeV

m(K+µ−[→π−]) > 1885 MeV

m(K+[→µ+]µ−) < m(J/ψ) ± 60 MeV
m(K+[→µ+]µ−) < m(ψ(2S)) ± 60 MeV

Fiducial cuts
hasRich(K+, µ±) = true

inMuonAcc(K+, µ±) = true

pT(µ±) > 0.8 GeV

PID cuts
probNNK(K+) > 0.2
isMuon(K+) = false

DLLµ(µ±) > −3
isMuon(µ±) = true

δ

Figure 4.2: Schematic of a B+ decay. The annotations represent quantities relevant to the RK selection,
as explained in the main body. Diagram adapted from Ref. [10].
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at the primary vertex (PV) and decays at the decay vertex (DV). The distance between the

PV and the DV represents the flight distance (FD), and the angle between it and the recon-

structed B+ momentum is denoted by δ. Following the momentum direction and drawing

the perpendicular line that contains the PV is what defines the impact parameter (IP).

The B+ decay vertex is required to be of good quality, and to be well separated from the

primary vertex. The former requirement is ensured by imposing an upper limit on the χ2

per degrees of freedom obtained from the fit for the DV. The latter requirement is enforced

by selecting only events where the B+ travels a significant distance away from the PV before

decaying. In addition, since the true momentum of the B+ is collinear with the FD, requiring

the angle δ to be small ensures that the decay is well aligned. Finally, all final-state particles

are required to be inconsistent with being produced in a proton-proton collision, and so

tracks whose impact parameter with respect to any PV is not significant are rejected. Since

that is not the case for the B+, it is required to be compatible with having been produced

from a PV. The significance of the IP with respect to the PV is quantified by χ2
IP

.

The requirements thus far are applied during the stripping stage, which was mentioned

in Section 3.3. Two more cuts are applied after the stripping to further improve the purity

of the data samples. The first one rejects overly crowded events by placing an upper limit

on nSPDHits, which represents the number of hits in the Spd. The second one removes

candidates containing tracks that could be fictitious. These are called ghosts, and they arise

when the reconstruction algorithm uses hits produced either by noise, or by other particles.

The variable used to reject ghosts is denoted by probghost in Table 4.2. The nSPDHits and

probghost cuts, together with the q2 selection and the cuts discussed in Sections 4.3.5 and 4.3.6,

are collectively known as the preselection.

4.3.3 Trigger strategy

Data collected by the LHCb detector during Run 1 and Run 2 is required to pass a two-stage

trigger selection: the L0 and HLT that are introduced in Section 3.3. The trigger can fire on

particles in the candidate (the kaon and the two leptons considered to have originated from a
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B+ decay), on particles that are not part of the candidate, and on both. These three scenarios

are referred to as “TOS”, “TIS”, and “TOB” (trigger on signal, trigger independently of the

signal, and trigger on both, respectively). The rest of this subsection covers the specific

trigger strategies employed by the RK analysis.

Muon data is collected using an L0 trigger line that requires at least one track, with pT above

a threshold, whose trajectory is compatible with energy deposits in the muon stations. This

is known as the L0Muon line. A similar strategy is used to select electron data, through the

L0Electron line. It requires at least one track whose trajectory is compatible with energy

deposits, above a certain threshold, in the Ecal. This line is less efficient than L0Muon, by a

factor of approximately 2 – 3, as exemplified by the trigger efficiencies listed in Appendix D.

For this reason, two more L0 strategies are used to increase the electron-mode yields. The

first strategy requires at least one track whose trajectory is compatible with energy deposits

in the Hcal, and is thus called L0Hadron. The second strategy requires at least one of several

L0 lines to be TIS. Hence, this strategy is known as L0TIS.

Each of the four L0 strategies used in this analysis is illustrated in Figure 4.3. These trigger

lines use information from the calorimeters and muon stations to apply a fast reconstruction

algorithm. This results in rough estimates of transverse momenta and energy deposits1,

denoted by pL0
T

and EL0
T

, respectively. Although their resolution is not as good compared

to their fully-reconstructed counterparts, pT and ET, they are calculated more quickly and

therefore allow the L0 to make fast decisions. More specifically, L0Muon places a lower

threshold on the highest pL0
T

in the event, whilst L0Electron and L0Hadron use thresholds on

the highest EL0
T

in a given event. These thresholds are listed in the top three rows of Table 4.3.

During data taking, the thresholds fluctuate by a few percent to maintain consistent efficien-

cies in spite of effects such as changes to the collision environment and detector ageing. This

can cause disagreement with simulation, because the simulated samples corresponding to

one particular year and one particular magnet polarity are generated using only one trigger

configuration, due to computing constraints. The only exception is 2018, when data-taking

1The transverse component is calculated using the polar angle of the line joining the primary vertex and the
centre of the cells that make up a cluster [156].
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conditions were kept constant. To improve the agreement in the electron samples, events

at the threshold are rejected after the preselection, by applying fiducial cuts on the ET of

particles that fire L0Electron or L0Hadron. These fiducial cuts are listed in the bottom two

rows of Table 4.3. The values chosen for 2017 and 2018 data are based on studies that

constitute original work. The agreement in the muon samples is improved by means that

differ between data-taking periods. In 2017, the simulation is generated with the loosest

conditions used to take data, and so the agreement is improved by selecting the simulation

such that the L0 conditions are similar. In 2015 and 2016, some data is taken with conditions

looser than the ones used in the simulation. Therefore, only events collected with the L0Muon

configuration used to generate the simulated samples are kept. In Run 1, the fluctuations in

pL0
T

thresholds are small enough to not require alignment with the simulation.

Figure 4.3: Diagrams depicting the L0 trigger strategies employed in the RK analysis. The red-filled
ellipse in each diagram indicates the particle that fires the corresponding trigger. The example given
for L0TIS shows the line firing due to energy deposits in the muon station, however it can also be
triggered by the Ecal and Hcal. Diagrams created by Dr. Paula Álvarez Cartelle.
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Table 4.3: Requirements placed by the L0 selection, in the majority of data collected in each year. The
thresholds are imposed at the trigger-level, whilst the fiducial cuts are applied offline to improve the
agreement between data and simulation. All values are given in GeV.

2011 2012 2015 2016 2017 2018
L0Muon pL0

T
threshold 1.5 1.8 2.9 1.9 1.5 1.8

L0Electron EL0
T

threshold 2.5 2.7 2.7 2.4 2.1 2.4
L0Hadron EL0

T
threshold 3.5 3.6 3.6 3.7 3.5 3.8

L0Electron ET fiducial 3.0 3.0 2.7 2.7 2.9 3.2
L0Hadron ET fiducial 3.0 3.0 3.5 3.5 3.5 3.5

After this process of improving the agreement between data and simulation, muon-channel

events fall into what is referred to as the µTOS trigger category. This contains candidates

where L0Muon fires on at least one of the signal muons. The events in the electron samples fall

into one of three exclusive trigger selections. The dominant one, which accounts for roughly

two thirds of all B+ → K+e+e− data, is called eTOS. It contains events where L0Electron

fires on at least one of the signal electrons, and that electron has ET above the appropriate

fiducial cut. Candidates that are not eTOS fall into the hTOS! category if they contain a

kaon that triggers L0Hadron and has ET above the appropriate fiducial cut. This category

contains 15–20% of all B+ → K+e+e− data. The rest is found in the TIS! category, consisting of

events that are neither eTOS nor hTOS!, but where the L0 fires independently of the signal.

The exclamation marks at the end of hTOS! and TIS! indicate that the trigger strategies are

exclusive: an event can be assigned to only one of the three trigger categories, prioritising

eTOS and then hTOS!.

The next step in the trigger selection is the HLT, which is done in two stages: HLT1 and

HLT2. The former partially reconstructs tracks in the event, in order to make a fast decision

on whether the event is likely to contain interesting physics. Particularly for the RK analysis,

at least one of the three tracks in Run 1 events must have large enough pT and χ2
IP

estimates

to pass the HLT1 selection. In Run 2, the decision is made by a multivariate classifier, based

on information such as pT and χ2
IP

. Events that pass the HLT1 are sent to the HLT2, which

performs a full reconstruction of all tracks in the event. The lines used in the RK measurement

search for two- or three-track topologies compatible with originating from the decay of a

heavy object, such as a B+ meson [181].
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4.3.4 Particle identification requirements

The primary reconstruction object is a charged track, which could come from any charged

particle species. To reject background events where one or several tracks in the candidate are

misidentified as other particles, several requirements are placed on variables that distinguish

between different particle hypotheses. The selection in the RK measurement makes use

of three types of PID-discriminating variables. The first one uses information from the

Rich, calorimeters, and muon stations to construct the likelihood that a given track is of a

given species, relative to the pion hypothesis. This PID-discriminating variable is denoted

in Table 4.2 by DLLX, where X is the particle hypothesis to be compared to the pion one.

Following the same notation, the second variable is called probNNX. It is the subunitary

output of a neural network trained on information from several subdetectors to distinguish

between different particle species; this information includes the DLLX variables. The third

and final variable is the boolean isMuon decision, which uses information from the muon

stations to disentangle muons from other particle species.

As a result of the PID requirements, background events containing misidentified pions are

reduced to negligible levels. This is particularly important in LHCb analyses, given that

proton-proton collisions produce a considerable amount of pions. Contributions from the

Cabibbo-suppressed B+ → π+ℓ+ℓ− mode, where the pion is misidentified as a kaon, are

expected to amount to around 0.4% of the signal yield. This estimate is obtained based

on the branching fraction averages listed in the PDG [9], and the PID efficiencies obtained

from simulation. Given that the total B+ → K+ℓ+ℓ− signal yield is expected to be O(103),

this contribution is deemed negligible. Candidates originating from B+ → K+π+π− events,

where the pions are misidentified as leptons, are also expected to be negligible. Their levels

in muon and electron data are estimated to be 0.6% and 0.8%, respectively. These estimates

were obtained by Dr. Thibaud Humair during the previous RK measurement [10]. As part

of the current measurement, a cross-check of the expected B+ → K+π+π− contributions is

conducted and presented in Section 8.5.



78 Chapter 4. Measurement strategy

4.3.5 Fiducial cuts

In order to apply the PID and trigger requirements described in the previous two subsections,

all final-state particles in the K+ℓ+ℓ− candidate are required to be within the geometric

acceptance of the Rich detectors and the calorimeters. In the muon samples, the particles

are also required to be within the acceptance of the muon stations. The relevant variables are

denoted in Table 4.2 by hasRich, hasCalo, and inMuonAcc, respectively. In the electron data,

a portion of the inner Ecal is vetoed, because it contains cells that are not read out. This is

done by requiring the intersection of electron candidate tracks with the Ecal plane to have

(x, y) coordinates |xEcal| > 363.6 mm or |yEcal| > 282.6 mm. Furthermore, requirements are

applied on the momenta of electrons and muons, in order to align the selection with the one

employed to obtain the samples used to calibrate PID efficiencies, as described in Section 6.2.

4.3.6 Vetoes against specific backgrounds

One potential source of background events is the semileptonic decay of a D meson origi-

nating from a B+ that had also decayed semileptonically. These are referred to as cascade

backgrounds, and examples include B+ → D0(K+e−νe)e
+νe processes, where the neutrinos are

not detected. Cascade backgrounds are expected to accumulate at invariant masses below

the mass of the B+, as a result of the undetected energy carried away by the neutrinos.

However, the tails that could overlap with the signal are enhanced by the tree-level nature

of B+ → DX decays. For this reason, cuts that specifically target cascade backgrounds are

added to the selection. Their discrimination power comes from the fact that the invariant

mass of the kaon and the opposite-sign lepton in a candidate, m(K+ℓ−), cannot be larger than

the mass of the D0 in the case of cascade background events, notwithstanding resolution

effects. This mass is known with good precision to be ∼ 1865 MeV [9], therefore candidate

electron and muon events are required to have m(K+ℓ−) > 1885 MeV.

It can be seen on the left-hand side of Figure 4.4 that this cut reduces contamination from

B+ → D0(K+e−νe) e+νe events to a negligible level. The same is true for events where the B+

decays into a D0 and aπ+, the latter being misidentified as a signal electron; these are labelled
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as B+ → D0(K+e−νe)π+[→e+]. However, the application of the m(K+ℓ−) > 1885 MeV cut still

leaves behind a significant tail from events where the D0 decays hadronically into a K+ and

a π−. These are labelled as B+ → D0(K+π−[→e−]) e+νe, and are removed by computing m(K+e−)

under the assumption that the electron candidate is a pion. This leads to m(K+e−[→π−]),

whose distribution in simulated events is shown on the right-hand side of Figure 4.4. It can

be seen that B+ → D0(K+π−[→e−]) e+νe events peak in this mass around mD0 . Therefore, cutting

±40 MeV around mD0 is removes this background source, whilst retaining the vast majority

of signal events.

Figure 4.4: Simulated signal (orange) and background (red, green, blue) distributions of the invariant
mass of the kaon and the opposite-sign electron. The latter is reconstructed assuming an electron
(left) and a pion (right) mass hypothesis. The dotted lines show the locations of the mass vetoes
described in the main body.

In the case of muons, the vetoes are different for two reasons. First, cascade backgrounds

featuring pion decays in flight are more prevalent, and can lead to m(K+µ−) values below

mD0 . For this reason, all values of m(K+µ−[→π−]) below 1885 MeV are rejected, instead of

removing just the D0 peak as is done for electrons. Second, muons can be more kaon-like

than electrons, and so two additional cuts are applied to the muon samples. They reject J/ψ

and ψ(2S) decays into pairs of muons, where one of the muons is misidentified as a kaon.

This is done by reconstructing the invariant mass of the candidate kaon and opposite-sign

muon, under the assumption that the kaon is a muon. This mass is denoted by m(K+[→µ+]µ−)

in Table 4.2, and is expected to peak at the mass of either the J/ψ or the ψ(2S) resonance if it

corresponds to a background process of this kind. For this reason, candidate muon events

are required to not have m(K+[→µ+]µ−) values within 60 MeV of either resonance.
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4.3.7 Multivariate selection

Some combinatorial events are expected to pass the requirements presented so far. Therefore,

a dedicated selection is implemented to further suppress this background. Boosted decision

trees (BDTs) [182] are trained to distinguish between signal and combinatorial background.

This multivariate selection was designed and implemented by Dr. Paula Álvarez Cartelle and

Dr. Thibaud Humair during the previous RK measurement. For Run 2.2 data, the procedure

is repeated on the new samples by Dr. Konstantinos Petridis.

The BDTs are trained on the variables listed in Table 4.4. As discussed in Section 4.3.2, they

contain information about the decay topology. This makes them useful in rejecting events

containing tracks that are not formed by the decay products of a B+. Kinematic information

is kept to a minimum, and is provided only in the form of the pT of the particles. This ensures

that the BDT does not learn how to reconstruct invariant masses, such as q2 and m(K+ℓ+ℓ−);

that would lead to sculpting of these variables.

Table 4.4: List of variables used by the BDT classifiers.

B+ pT, logχ2
IP

, χ2
DV

, δ, χ2
FD

ℓ+ℓ− pT, logχ2
IP

K+ pT, logχ2
IP

ℓ± min,max(pT), min,max(logχ2
IP

)

The BDTs are trained separately for each data-taking period, and for electron and muon sam-

ples. Particularly for the electrons, BDTs are trained independently on samples from each

of the three trigger selection, as well as on the combined samples. The background training

sample is taken from data with m(K+ℓ+ℓ−) > 5.4 GeV. This is known as the upper sideband,

and it consists of purely combinatorial events; this is depicted by the horizontal bands in Fig-

ure 4.1. The signal training samples are fully selected and calibrated B+ → K+ℓ+ℓ− simulated

events, because the BDTs are designed to be optimal on the rare samples. To prevent sta-

tistical biases, the k-folding method [183] is employed during training and validation, with

k = 10 folds. Figure 4.5 showcases the BDT performance. The equivalent curves obtained

from other data-taking periods are similar, and are thus omitted.
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Figure 4.5: BDT background rejection rate, as a function of signal efficiency, as obtained from the
training and testing of a fold from the 2018 electron (left) and muon (right) samples. The optimised
working point has a signal efficiency of around 90%. Plots created by Dr. Konstantinos Petridis.

Each BDT is optimised separately, based on the expected significance:

S = S√
S + B

. (4.5)

In the above expression, S and B are the expected signal and background yields, respectively.

The former is obtained from the estimated efficiencies of the BDT and selection requirements

on the signal, normalised to the control mode:

S = εBDT
rare ·

εsel
rare

εsel
J/ψ

· B(B+ → K+ℓ+ℓ−)

B(B+ → K+J/ψ)B(J/ψ→ ℓ+ℓ−)
·Nsel

J/ψ . (4.6)

In this context, the selection refers to the application of the trigger and preselection re-

quirements. The branching fractions in the above equation are taken from the PDG. The

yields of the control modes, Nsel
J/ψ, are obtained from invariant-mass fits to partially-selected

B+ → K+J/ψ(ℓ+ℓ−) data. These fits are presented in Sections 5.2 and 5.5.

The background estimate is calculated differently for muon and electron BDTs. The higher

statistics of the former channel allow the parametrisation of the upper sideband as an expo-

nential function. As a result, B is estimated by extrapolating the best-fit exponential curve

down to the signal region and integrating the area underneath it. The statistics in the electron

sideband are too low to lead to an accurate parametrisation, so a proxy has to be used instead.

The proxy is a sample with higher statistics, and with shape that is expected to be similar
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to the one found in the signal sample. The chosen proxy consists of B+ → K+e+µ− events.

These are mostly combinatorial, owing to the PID and mass vetoes successfully removing

events from other background sources. The estimated background yield in the signal region

is then:

B = NSB
K+e+e− ·

NSR
K+e+µ−

NSB
K+e+µ−

, (4.7)

where NSB
K+e+e− is the yield of the K+e+e− sideband. The ratio between K+e+µ− yields in the

signal region (SR) and the sideband (SB) is obtained by integrating the exponential function

which best fits the K+e+µ− invariant-mass spectrum. The fit results are shown in Figure 4.6.

e μ

2017

e μ

2018

Figure 4.6: Exponential fit (red) to the K+e+µ− samples (black) used to extrapolate the number of
events from the sideband (m > 5400 MeV) to the signal region (m ∈ (5000 MeV, 5380 MeV)). To avoid
potential contributions from lepton flavour violating events, the region m ∈ (5100 MeV, 5350 MeV) is
blinded and excluded from the fit. Plots created by Dr. Konstantinos Petridis.

The expected significance, S, is computed for a series of cuts on the output of each BDT. The

working point of each classifier is chosen to correspond to the maximum significance. It is

found that eTOS reaches the optimal performance when using a BDT specifically trained on

eTOS samples. However, because hTOS! and TIS! have fewer events, BDTs trained on just

these samples tend to overfit. For this reason, the BDT trained on all electron data is used

in these trigger categories. The expected significance as a function of the working points

of the four BDTs used on 2018 data are presented in Figure 4.7. The results from the other

data-taking periods are similar, and thus omitted. The working points used in all data-

taking periods and trigger selections are listed in Table 4.5, alongside the estimated signal

and combinatorial yields in the signal window. It can be seen that the electron combinatorial

estimates based on B+ → K+e+µ− data are more precise than, and compatible with the results
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coming from only using the K+e+e− sideband.

The BDTs have one more purpose, other than the rejection of combinatorial events. As

shown in Table 4.6, a sub-percent fraction of selected events contain multiple candidates. It

is expected that only one candidate in an event is a genuine signal process. Therefore, in any

given event with multiple candidates, only the one with the highest BDT output is retained.

The BDT represents the final stage of the selection chain. Once the data are fully selected,

the next step in the analysis consists of understanding the control modes. This is presented

in the next chapter.

Table 4.5: Expected signal and combinatorial yields in the signal window. The optimal BDT cuts are
listed under “WP”, and found by means described in the main body. The estimates under “Comb. 2”
are calculated by extrapolating the number of events from the upper sideband to the signal region,
using an exponential fit to the distribution of m(K+ℓ+ℓ−). For electron samples, a more accurate
estimate, listed under “Comb. 1”, is derived using B+ → K+e+µ− data, as discussed in the main body.

WP Signal Comb. 1 Comb. 2
Run 1

eTOS 0.89 181 ± 2 56 ± 11 100 ± 50
hTOS! 0.79 58 ± 1 83 ± 17 76 ± 31
TIS! 0.87 64 ± 1 24 ± 9 30 ± 28
µTOS 0.81 989 ± 6 78 ± 17

Run 2.1
eTOS 0.86 294 ± 1 95 ± 14 80 ± 25
hTOS! 0.86 86 ± 2 40 ± 11 60 ± 40
TIS! 0.85 85 ± 2 40 ± 9 47 ± 20
µTOS 0.79 873 ± 5 59 ± 19

2017
eTOS 0.81 270 ± 2 85 ± 8 77 ± 23
hTOS! 0.80 74 ± 2 39 ± 8 22 ± 10
TIS! 0.80 78 ± 2 31 ± 6 59 ± 24
µTOS 0.65 942 ± 6 55 ± 17

2018
eTOS 0.78 377 ± 3 115 ± 10 110 ± 26
hTOS! 0.75 114 ± 1 80 ± 13 45 ± 14
TIS! 0.80 115 ± 1 45 ± 9 112 ± 44
µTOS 0.69 1150 ± 5 60 ± 15
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Figure 4.7: Expected significance in 2018 muon and electron data, as a function of the BDT working
point.

Table 4.6: Fraction of events for which more than one µTOS or eTOS candidate is reconstructed,
when the full selection chain is applied. The equivalents for hTOS! and TIS! are similar, and therefore
omitted.

simulation data
rare ee rare µµ control ee control µµ control ee control µµ

Run 1 0.30% 0.01% 0.20% 0.04% 0.10% 0.01%
Run 2.1 0.47% 0.03% 0.32% 0.03% 0.17% 0.03%
2017 0.51% 0.06% 0.35% 0.05% 0.34% 0.04%
2018 0.52% 0.04% 0.37% 0.04% 0.37% 0.03%



Chapter 5

Fits to the control modes

The B+ → K+J/ψ(ℓ+ℓ−) data is used in the definition of RK in Equation (4.4), and to calibrate

the simulation before the determination of efficiencies. This chapter describes the extraction

of information from the control channels. This is done using fits performed separately on

samples from each data-taking period and trigger selection.

The electron and muon fit strategies are described in Sections 5.1 and 5.4, respectively. The

validation of the fits is presented in Section 5.7. The fits are first conducted before the

application of the multivariate selection, in order to obtain a background-subtracted sample

from which the corrections in Chapter 6 are derived. The results from muon and electron data

are presented in Sections 5.2 and 5.5, respectively. Sections 5.3 and 5.6 present subsequent fits

performed on the fully-selected muon and electron samples to obtain the yields that serve

as inputs to RK.

The fit procedure was developed by Dr. Paula Álvarez Cartelle and Dr. Thibaud Humair

for the previous RK measurement. The Run 2.2 results presented throughout the chapter

constitute original work. They are obtained using the same fit procedure, with a few minor

adjustments that are highlighted where relevant. The results in Section 5.7 also constitute

original work.

85
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Throughout the RK analysis, fits are performed using the extended maximum likelihood

method [184], as implemented by the RooFit package [185]. The procedure involves the

optimisation of a likelihood, for which the Minuit algorithm [186] is used. The likelihood is

calculated by modelling the distribution of events in data as the sum of a signal and several

background components:

Prt(m) = Nrt
sigSrt(m) +

∑

i

Nrt
bkg,iBrt

i (m) . (5.1)

Here, Prt(m) is the model for the distribution of mass m in data taken during period r using

trigger t. The signal is modelled by Srt(m), and the background models (indexed by i) are

labelled Brt
i

(m). The yields of the signal and background components are Nrt
sig and {Nrt

bkg,i
},

respectively. The distributions Srt(m) and Brt
i

(m) are not identical between fits to muon data

and electron data, hence they are described separately in the following two sections.

5.1 Fit strategy for B+ → K+J/ψ(µ+µ−) data

The fits to B+ → K+J/ψ(µ+µ−) data are performed separately for Run 1, Run 2.1, 2017, and

2018 data from the µTOS trigger. The independent variable is the invariant mass of the

K+ℓ+ℓ− system, as obtained from a kinematic fit where the mass of the dilepton system has

been constrained to the literature value of the J/ψ mass [180]. This mass is denoted by

mJ/ψ(K+µ+µ−), and has better resolution than its unconstrained counterpart, m(K+µ+µ−).

The fit model consists of one signal component and two background components. The signal

is modelled using a Hypatia distribution [187], which has non-Gaussian tails that are able

to model the radiative tails of the signal. In fits to Run 2.2 data, a Gaussian distribution is

added to the signal model to improve the quality of the fit. It is shown in Appendix A.1

that the signal model accurately describes simulated B+ → K+J/ψ(µ+µ−) samples. Since the

effects that lead to the tails are well simulated, the Hypatia tail parameters are fixed to values

obtained from these fits to simulation. However, imperfections in the simulated momentum

calibration and detector resolution prevent the extraction of the mean and widths of the signal
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components from simulation. Instead, these quantities in data are reparametrised in terms

of the shift (∆µ) and, respectively, scale (sσ) with respect to their simulated counterparts:

µdata = µsim + ∆µ, σdata = sσ · σsim. (5.2)

Thus, the mean ∆µ and scale sσ are variables in the fit to data, and are shared by the Hypatia

and Gaussian components of the signal model.

The first background component accounts for B+ → π+J/ψ(µ+µ−) events where the pion is

incorrectly identified as a kaon. This is expected to peak approximately 50 MeV above

the signal, and to have non-Gaussian tails due to the incorrect mass hypothesis. For these

reasons, the B+ → π+J/ψ(µ+µ−) component is modelled using the sum of two Crystal Ball

(CB) distributions [188] that have the same mean and width, but exponential tails on opposite

sides. These tails are constrained using simulated B+ → π+J/ψ(µ+µ−) samples, following the

same ethos as the signal shape. The mean and width are parametrised in terms of the same

shift ∆µ and scale sσ that are used by the signal model. The B+ → π+J/ψ(µ+µ−) yield, Nmis−ID,

is constrained relative to the yield of the signal, Nsig, based on the branching fractions of the

two B+ decays, and estimated efficiencies. The constraint takes the form of a Gaussian with

mean given by:

Nmis−ID

Nsig
=
B(B+ → π+J/ψ(µ+µ−))

B(B+ → K+J/ψ(µ+µ−))
·
εJ/ψK

εJ/ψπ
, (5.3)

and width equal to 5% of the mean; this is driven by the uncertainty on the branching

fractions, which dominates the error on the efficiencies.

The final background component consists of random combinations of kaon and muon (com-

binatorial events). The shape of this background is modelled by an exponential function:

Brt
combi(m) ∝ e−λm. (5.4)
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5.2 Calibration fits to B+ → K+J/ψ(µ+µ−) data

This section presents the results of the first fits to B+ → K+J/ψ(µ+µ−) data, as outlined in the

introduction to this chapter. These fits are conducted before the multivariate and multiple-

candidate selections, and before any efficiency-correcting weights are applied. This is be-

cause said weights require the output of these fits: clean samples of control-mode data. These

samples are obtained by separating the signal component from the backgrounds using the

sWeight technique [189]. The fit results are presented in Figure 5.1. The pulls between the

data and the model distribution, Prt(m), are shown below each plot.
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Figure 5.1: Fits to the mJ/ψ(K+µ+µ−) distribution of B+ → K+J/ψ(µ+µ−) partially-selected candidates
in the samples corresponding to each data-taking period. The red solid line shows the fit model, the
dotted black line represents the signal, the blue-filled area shows misidentified B+ → π+J/ψ(µ+µ−)
events, and the orange-filled area depicts the combinatorial background. Shown below each plot are
the pulls between the data and the total fit model.
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5.3 Fits to fully-selected B+ → K+J/ψ(µ+µ−) data

After applying the rest of the selection to the B+ → K+J/ψ(µ+µ−) data samples, the fits

are performed once more to determine the yields N(K+J/ψ(µ+µ−)). The procedure is left

unchanged, however the result is different in two ways: first, the signal and misidentified

shape constraints are recomputed, because the corrections to the simulation samples can

now be used to improve the agreement with data. Second, the additional selection changes

the yields of the components. In particular, the multivariate selection considerably reduces

the combinatorial background, whilst leaving the other components almost untouched. As

explained in Section 4.3.7, this is the intended behaviour of the multivariate classifier.

The fits are shown in Figure 5.2, alongside the pulls between the fit model and the data. These

pulls are generally small, indicating that the fit suitably models the data. As expected, the

combinatorial background is greatly suppressed with respect to the fits to partially-selected

data. The signal yields are listed in Table 5.1, and the values of the fit parameters that are

found to maximise the likelihood are provided in Appendix A.3. It can be seen that Run 2.2

contains nearly the same amount of events as the sample used in the previous RK analysis,

with 2018 and Run 2.1 containing around 600 000 B+ → K+J/ψ(µ+µ−) events each, and 2017

and Run 1 having over 500 000 events each.

5.4 Fit strategy for B+ → K+J/ψ(e+e−) data

The procedure employed to fit B+ → K+J/ψ(e+e−) data is similar to the one used for muons,

with a few notable adaptations imposed by the different resolution of electrons. Both signal

and background distributions are wider, to the point where a non-negligible amount of

background events is expected to overlap with the signal. Such background events are

decay chains, started by a hadron, that produce a kaon, two oppositely-charged electrons,

and other particles. If the decay is reconstructed using the kaon and the electrons, but not the

other particles, the event can pass the selection even though it is not signal. These are called

partially-reconstructed events. Given that the decay products that escape reconstruction
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Figure 5.2: Fits to the mJ/ψ(K+µ+µ−) distribution of B+ → K+J/ψ(µ+µ−) fully-selected candidates in
the samples corresponding to each data-taking period. The red solid line shows the fit model, the
dotted black line represents the signal, the blue-filled area shows misidentified B+ → π+J/ψ(µ+µ−)
events and the orange-filled area depicts the combinatorial background. Shown below each plot are
the pulls between the data and the total fit model.

take away some of the initial-state energy, partially-reconstructed events are characterised

by K+ℓ+ℓ− invariant masses below the mass of the B+. The separation is sufficiently large

to disentangle these background events from the signal in the muon modes, however the

poorer resolution of the electron channels leads to overlap with the signal.

In the fits to B+ → K+J/ψ(e+e−) data, around 97% of all partially-reconstructed events consist

of Hb → Y(K+X)J/ψ processes, where a beauty hadron (Hb) decays into a pair of electrons

and a strange resonance (Y), such as the K∗0 or the φ meson. These resonances then decay

into a charged kaon, and other particles (X) that escape detection. Such events are referred to

as strange partially-reconstructed backgrounds. They are joined by decay chains containing

charmed hadrons (such as charmonium resonances) that also produce a pair of electrons,

a charged kaon, and other particles that escape detection. Such processes, which include
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B+ → ψ(2S)(J/ψπ0)K+ events where the π0 is not reconstructed, are referred to as charmed

partially-reconstructed backgrounds. Their mass distributions are different from those of

their strange counterparts, so the two backgrounds are included in the fit as separate com-

ponents. The shapes of these components are obtained from simulated events, using an

adaptive kernel density estimation method [190]. The same simulation samples are used

to apply a Gaussian constraint to the relative abundances of charm and strange partially-

reconstructed events. The central value of the constraint is the ratio between the numbers of

simulated events of each type that survive the selection. The width of the constraint is equal

to 15% of the central value.

Another consequence of the poor electron resolution is the necessity to use the bremsstrahlung

recovery process described in Section 4.1 to reclaim some of the lost energy. Since electrons

with associated bremsstrahlung radiation have different energies and resolutions compared

to electrons without recovered bremsstrahlung radiation, the invariant mass m(K+e+e−) —

and, by extension, mJ/ψ(K+e+e−) — is expected to have different distributions in events where

bremsstrahlung photons are found for either none, one, or both electrons. This is captured

in the fit through the splitting of the signal component into three distributions:

Srt(m) = f rt
0γSrt

0γ(m) + f rt
1γSrt

1γ(m) + (1 − f rt
0γ − f rt

1γ)Srt
2γ(m) . (5.5)

Here, Srt
0γ(m) is the distribution that models signal events (from data-taking period r and

trigger t) where none of the electrons have added bremsstrahlung clusters; these events fall

into the so-called 0γ photon category. The other photon categories, 1γ and 2γ, represent

events where one and, respectively, both electrons have added bremsstrahlung clusters.

Their distributions are modelled by Srt
1γ(m) and Srt

2γ(m), respectively. Each of the three

distributions that make up Srt(m) is the sum of two CB distributions of the same mean,

with exponential tails on separate sides of the central region. The low-mass tail models the

radiative energy losses below the signal peak, which are non-Gaussian in nature. The high-

mass tail takes into account the fact that the bremsstrahlung recovery algorithm sometimes

overestimates the amount of radiated energy, thus leading to a non-Gaussian contribution
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above the signal peak. Like with the muons, the simulation provides a suitable description

of the processes which lead to the tails, as exemplified in Appendix A.1. For this reason,

the tail parameters in the fits to data are fixed using simulated events. The simulation also

provides estimates of the fractions of 0γ and 1γ events, relative to the total. These fractions

are denoted in Equation (5.5) by f rt
0γ and f rt

1γ , respectively. In the fit, each of these parameters

is constrained to the simulated values, by means of a Gaussian distribution whose mean is

the estimated value from simulation, and whose width is equal to 1% of the mean.

Like in the muon case, the yield of the misidentified B+ → π+J/ψ(e+e−) component is con-

strained with respect to the signal, based on the known branching fractions and estimated

efficiencies. Again, the shape is modelled by two CB distributions with a shared mean

and exponential tails on opposite sides. The parameters of the tails are modelled using

B+ → K+J/ψ(e+e−) events, by virtue of a method that estimates the effect of the change be-

tween kaon and pion mass, mK and mπ:

m
J/ψ
mis−ID

=

√

(mJ/ψ(K+e+e−))2 +
EB+

EK+
· (m2

K+
−m2

π+) . (5.6)

In the above expression, EB+ and EK+ are the energies of the B+ and K+ candidates. This

departure from the muon fits is due to simulated B+ → π+J/ψ(e+e−) decays not being available

for all data-taking periods. Nevertheless, B+ → π+J/ψ(e+e−) and B+ → K+J/ψ(e+e−) have very

similar kinematics, making the distribution of m
J/ψ
mis−ID

in B+ → K+J/ψ(e+e−) events a good

approximation (up to small corrections induced by kaon-pion mass differences) to that of

mJ/ψ(K+e+e−) in misidentified B+ → π+J/ψ(e+e−) events. This technique was introduced and

validated by Dr. Thibaud Humair for the previous RK measurement.

Following the same procedure as in the muon fits, the means and widths of the signal and

misidentified data distributions are reparametrised in terms of the shift ∆µ and scale sσ with

respect to their values from simulation. Also following the example of the muons, the shape

formed by combinatorial events is modelled by an exponential function, with freely-floating

normalisation and exponent. In cases where the multivariate selection is highly efficient

at removing combinatorial events, the fit is performed without including this component.
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Checking this against a fit strategy that allowed the combinatorial yield to take negative

values found that the signal yield does not change significantly. This is the only departure

from the fitting strategy developed by Dr. Paula Álvarez Cartelle and Dr. Thibaud Humair

for the previous RK measurement. Note that in the fits to fully-selected Run 1 and Run 2.1

data, the typical number of combinatorial background events is compatible with 0.

5.5 Calibration fits to B+ → K+J/ψ(e+e−) data

Like with the muon channels, and for the same reasons, fits to B+ → K+J/ψ(e+e−) data are

first performed before the application of the multivariate and multiple-candidate selections.

The sWeight technique is employed to extract clean B+ → K+J/ψ(e+e−) samples used to correct

efficiencies and to optimise the multivariate selection. The result of the fits to eTOS data from

all data-taking periods is shown in Figure 5.3. The fit components are qualitatively similar

between the four samples, and the pulls depicted below each plot demonstrate that the fits

are of adequate quality for the use of the sWeight method.

5.6 Fits to fully-selected B+ → K+J/ψ(e+e−) data

Following the application of the full selection chain, the B+ → K+J/ψ(e+e−) fit is performed

once again to extract the yields. The fits to data taken with the most efficient electron trigger

strategy, eTOS, are shown in Figure 5.4. The results from the other triggers are presented

in Appendix A.2. The pulls between the data and the fit model are shown below each

plot, and indicate good fit quality. The signal yields from each data-taking period and

trigger selection are listed in Table 5.1, and the values of the fit parameters that maximise

the likelihood are presented in Appendix A.3. The Run 2.2 sample contains slightly more

events than the sample used in the previous RK analysis: around 275 000 events compared

to approximately 250 000. Combined with the fact that the muon yields are roughly equally

split between the Run 2.2 and the previous samples, this supports the expectation that adding

Run 2.2 effectively doubles the dataset.
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Figure 5.3: Fits to the mJ/ψ(K+e+e−) distribution of B+ → K+J/ψ(e+e−) partially-selected eTOS candi-
dates in the samples corresponding to each data-taking period. The red solid line represents the fit
model, the dotted black line is the signal component, the light-blue filled area represents misidenti-
fied B+ → π+J/ψ(e+e−) events, and the orange-filled area shows the combinatorial background. The
strange and charm partially-reconstructed backgrounds (referred to as “prc” in the legend) are repre-
sented by the filled areas filled with dark blue and red, respectively. Shown below each plot are the
pulls between the data and the total fit model.
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Figure 5.4: Fits to the mJ/ψ(K+e+e−) distribution of B+ → K+J/ψ(e+e−) fully-selected eTOS candi-
dates in the samples corresponding to each data-taking period. The red solid line represents the fit
model, the dotted black line is the signal component, the light-blue filled area represents misidenti-
fied B+ → π+J/ψ(e+e−) events, and the orange-filled area shows the combinatorial background. The
strange and charm partially-reconstructed backgrounds (referred to as “prc” in the legend) are repre-
sented by the filled areas filled with dark blue and red, respectively. Shown below each plot are the
pulls between the data and the total fit model.

Table 5.1: Control-mode yields in data from each data-taking period and trigger selection. The first
column corresponds to muon data, whilst the other three represent the electron samples taken using
the three trigger categories defined in Section 4.3.3. The uncertainties on the total yields represent the
addition in quadrature of the individual yields.

µTOS eTOS hTOS! TIS!
Run 1 618332 ± 796 90215 ± 309 15394 ± 127 30361 ± 178
Run 2.1 543457 ± 749 153363 ± 408 16961 ± 131 37810 ± 200
2017 507094 ± 722 126293 ± 367 17470 ± 136 37888 ± 199
2018 619616 ± 800 148885 ± 401 22767 ± 156 45855 ± 230
Total 2288499 ± 1535 518756 ± 747 72592 ± 276 151914 ± 405
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5.7 Validation of the fit

The estimates of signal yields (Nsig) obtained from the control-mode fits could be biased

with respect to the true ones. If these biases are not negligible, they might affect the correct

determination of RK. To assess the size of any potential biases, the fit results are used to

generate pseudoexperiments, also known as toys, that mimic the data samples. The shapes

of the fit components are kept identical, and their normalisation factors are allowed to float

according to their Poisson statistics, in order to ensure correct coverage of the fit parameters.

The fit procedure is repeated on each pseudoexperiment, and the extracted signal yield,

Nfit
sig

, is compared to the one used to generate the toy, N
gen

sig
. The difference between the two

is referred to as the residual, and its distribution across pseudoexperiments is expected to

tend towards a Gaussian of mean 0 if the fit is unbiased. The distribution of the residuals

obtained from pseudoexperiments generated to represent data collected during the year

2018 are shown in Figure 5.5. The other data-taking periods are also checked and found to

be qualitatively similar, and are therefore omitted. For each distribution, χ2 minimisation is

employed to determine the best-fit Gaussian, whose mean is interpreted as the bias of the

fit. All biases are found to be around 10–110 events, which represents a negligible amount

compared to the expected 104–105 yields.

5.8 Summary of control-mode fits

Understanding the B+ → K+J/ψ(ℓ+ℓ−) samples is an important step towards measuring RK.

The first round of fits, presented in Sections 5.2 and 5.5, are vital to the optimisation of the

multivariate selection, and to the calculating of efficiencies in Chapter 6. The subsequent fits,

which are covered by Sections 5.3 and 5.6, are needed to test the validity of the efficiencies,

by means described in Chapter 8. As shown in Section 5.7, the fit procedure is found to lead

to no significant biases in the signal yields. Once calculated, the efficiencies and yields are

incorporated in the likelihood used by the fit to the rare modes, from which RK is derived.

As expanded upon in Chapter 9, the model for the rare-mode data has several similarities

with the fits described in this chapter. This means that the B+ → K+J/ψ(ℓ+ℓ−) fits represent
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an important exercise towards understanding the B+ → K+ℓ+ℓ− data.
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Figure 5.5: Distributions of the residuals from 2018 B+ → K+J/ψ(ℓ+ℓ−) pseudoexperiments (black),
alongside the best-fit Gaussian distribution (red). The minimum χ2 from the Gaussian fit is presented
on the top left of each plot, alongside the best-fit parameters of the Gaussian.
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Calculation of efficiencies

Half of the factors in equation Equation (4.4), where the experimental observable RK is de-

fined, represent the efficiencies with which data are selected. Therefore, correctly determin-

ing efficiencies is vital to the RK measurement. This is done based on simulated samples that

are corrected to account for known imperfections of the simulation. This chapter presents

the methods used to calibrate simulated events, as well as the resulting efficiency estimates.

The procedure was developed by Dr. Paula Álvarez Cartelle and Dr. Thibaud Humair for

the previous RK measurement, with a few changes that are highlighted where relevant. As

such, Run 2.2 results are presented preferentially over their Run 1 and Run 2.1 counterparts.

98
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Data used to conduct the RK measurement is required to have passed multiple selection

criteria, each targeting specific properties that candidates must have. This means that the

total efficiency, εtot, depends on the performance of each part of the selection described

in Section 4.3. Since the simulation models these effects with different levels of accuracy and

precision, they need to be grouped to reflect the calibration methods employed to compute

the efficiency. To this end, the total efficiency is factorised as:

εtot = εgeom · εrec,strip · εpresel · εPID · εtrig · εBDT . (6.1)

In the expression above,

• εgeom is the geometric acceptance of the LHCb detector: all tracks are required to have

a polar angle between 10 mrad and 400 mrad;

• εrec,strip is the efficiency of the reconstruction and of the stripping selection (omitting

the PID cuts therein);

• εpresel is the efficiency of the preselection (defined in Section 4.3.2) and the q2 cut;

• εPID is the efficiency of all PID cuts;

• εtrig is the trigger efficiency; and

• εBDT is the efficiency of the BDT selection and the invariant-mass fit window cut.

Each term on the right-hand side of the above expression is computed on events that fulfil the

requirements imposed by the preceding terms. This means that, for example, εpresel should

strictly speaking be represented as ε(presel | geom, rec, strip). For brevity, the short-hand

notation in Equation (6.1) is used for the rest of this thesis.

In the case of the resonant modes, all events are produced at q2 equal to the square of the

mass of either the J/ψ or the ψ(2S). However, the true dilepton invariant mass squared, q2
true,

of B+ → K+ℓ+ℓ− events can take any values from 4m2
ℓ to (mB+ −mK+)

2. An additional term is

therefore calculated to take into account the fact that RK is not measured across the entire
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q2 spectrum. This factor, denoted by f q2
, appears in the following expression for the number

of selected B+ → K+ℓ+ℓ− events:

Nsel(B
+ → K+ℓ+ℓ−) = εtot(B

+ → K+ℓ+ℓ−) · Nall(B
+ → K+ℓ+ℓ−) (6.2)

= εtot(B
+ → K+ℓ+ℓ−) · Nin(B+ → K+ℓ+ℓ−) · 1

f q2
. (6.3)

Here, Nall is the total number of events across q2
true, and Nin is the number of events with

q2
true ∈ (1.1 GeV2, 6.0 GeV2). This leads to the following expression for the ratio between the

differential rare-mode branching fraction, averaged over q2
true ∈ (1.1 GeV2, 6.0 GeV2), and the

control-mode branching fraction:

Bin(B+ → K+ℓ+ℓ−)

B(B+ → K+J/ψ(ℓ+ℓ−))
=
Nin(B+ → K+ℓ+ℓ−)

N(B+ → K+J/ψ(ℓ+ℓ−))
(6.4)

=
Nall(B

+ → K+ℓ+ℓ−)

N(B+ → K+J/ψ(ℓ+ℓ−))
· f q2

(6.5)

=
Nsel(B

+ → K+ℓ+ℓ−)

εtot(B
+ → K+ℓ+ℓ−)

·
εtot(B

+ → K+J/ψ(ℓ+ℓ−))

Nsel(B
+ → K+J/ψ(ℓ+ℓ−))

· f q2

. (6.6)

The efficiencies are computed using simulated events that are weighted to correct known

imperfections in the simulation. In total, there are four sets of weights:

• wPID: these represent the product of the PID efficiencies of the final-state particles:

wPID = εPID(K+) · εPID(ℓ−) · εPID(ℓ+) , where εPID(K+) and εPID(ℓ±) are the PID efficiencies

of the kaon and leptons, respectively, in each candidate;

• wtrig: weights that calibrate the simulated trigger response;

• wrec
kin

: weights that correct the reconstructed kinematics of the B+; and

• w
gen

kin
: weights that adjust the generated kinematics of the B+.

Section 6.5 explains why two sets of kinematic weights are needed. The presence of weights

turns each efficiency in Equation (6.1) into a ratio between two sums of weights. The sum in

the numerator runs over simulated events that pass the relevant selection criterion, whereas

the sum in the denominator runs over the events that pass all requirements in the selection
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chain, up until the relevant criterion. The first two efficiencies, εgeom and εrec,strip, are treated

separately from the rest, because they require samples to which the reconstruction is not

applied. As outlined in Section 3.4, these are referred to as generation-level simulation

samples. There are only four sums that don’t cancel out in Equation (6.1), meaning that the

final expression for the total efficiency is:

εtot =

∑

rec

w
gen

kin

∑

gen

w
gen

kin

︸   ︷︷   ︸

εgeom·εrec,strip

·

∑

sel

wrec
kin · wPID · wtrig

∑

rec

wrec
kin

︸                   ︷︷                   ︸

εpresel·εPID·εtrig·εBDT

, (6.7)

where
∑

rec,
∑

gen, and
∑

sel run over all reconstructed, generated, and fully-selected events,

respectively. The fraction f q2
is calculated by taking the ratio between the sums of w

gen

kin
over

generation-level simulated events:

f q2

=

∑

sel q2
true

w
gen

kin

∑

all q2
true

w
gen

kin

. (6.8)

The sum in the numerator runs over events with q2
true ∈ (1.1 GeV2, 6.0 GeV2), and the sum

in the denominator covers all generated events. Note that the q2 value used here is prior

to any resolution effect, and also prior to radiation emitted by particles in the final state,

in the presence of the magnetic fields surrounding the decay. This is known as final-state

radiation, and is predominantly emitted by electrons due to their small mass. The effect on

kaons and muons is approximately 1o/oo [74], and so q2
true is taken to be equal to

∥
∥
∥ptrue

B+
− ptrue

K+

∥
∥
∥

2
.

As stated in Section 3.4, final-state radiation is described by Photos, which has been tested

and validated in Ref. [74].

The following section introduces what is known as the truth-matching algorithm, on which

the calculation of efficiencies relies. Subsequent sections describe each of the individual

corrections to the simulation. A summary of the corrected estimates of the efficiencies is

then provided in Section 6.7.
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6.1 Truth-matching and ghosts

The LHCb simulation software propagates all generated particles through the detector, and

runs the entire reconstruction chain to obtain simulated events that match the data as closely

as possible. An important feature provided by the simulation is the access to the “true”

parameters with which a reconstructed particle has been generated. This is called the truth-

matching algorithm, and it enables the study of effects such as detector resolution.

In some cases, the truth-matching algorithm does not successfully retrieve the generation-

level information for all particles in the candidate. This causes some signal events to be

mis-classified as ghosts. The rate at which this happens in simulated signal and control

samples is at the percent level, as shown in Table 6.1. Therefore, ghosts are taken into

account in the calculation of efficiencies, in order to avoid underestimating the efficiencies

by as much as a few percent. This opens up the possibility of a bias being introduced by

events classified as ghosts that are not signal. Such background events are suppressed in

three ways. First, only candidates with one track classified as a ghost are retained. Second,

the application of the probghost requirements listed in Table 4.2 suppresses most ghost events.

Third, the multivariate selection described in Section 4.3.7 removes combinatorial events

almost entirely. Since εBDT is the last term on the right-hand side of Equation (6.1), simulated

events classified as ghosts are used only when calculating the total efficiency. They are

excluded from the calculation of correction weights, because at that stage the samples still

contain non-negligible levels of combinatorial background events, which would lead to

potential biases.

Table 6.1: Relative fractions of simulated events being classified as ghosts in fully selected
B+ → K+ℓ+ℓ− and B+ → K+J/ψ(ℓ+ℓ−) events, not counting multiple candidates.

K+e+e− K+J/ψ(e+e−) K+µ+µ− K+J/ψ(µ+µ−)
Run 1 4.2% 3.7% 1.5% 1.6%
Run 2.1 4.9% 4.2% 2.0% 1.9%
2017 4.7% 4.0% 1.9% 1.8%
2018 4.9% 4.0% 2.0% 1.8%
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6.2 PID efficiencies

The PID techniques employed at LHCb make use of information from most subdetectors.

This makes the PID-discriminating variables particularly susceptible to imperfections in the

simulation of the LHCb detector and of the proton-proton collision environment. To prevent

such effects from influencing the evaluation of the PID performance, the efficiencies are

calibrated using data — rather than simulation — samples, where the species of final-state

particles are known unambiguously. The efficiency of a given PID selection can then be

obtained by applying it to the data, and using invariant-mass fits to obtain the yields before

and after the selection. Since the PID performance depends on the kinematics of the particle,

the fits are performed in several regions of phase space.

Depending on the particle species, one of two methods is used to calculate efficiencies. The

method outlined in Section 6.2.1 is employed to estimate the kaon and muon identification

efficiencies, as well as pion misidentification rates. The PID efficiency of electrons is estimated

using the method described in Section 6.2.2.

6.2.1 PID efficiency of kaons, muons, and pions

As part of the LHCb data-taking programme, dedicated PID calibration samples are recorded

and made available for all analyses [191]. All steps, from data selection to generation of PID

calibration tables, are executed centrally. The procedure uses J/ψ→ µ+µ− data to extract

muon PID efficiencies, and D∗+ → D0(K−π+)π+
slow

data to evaluate the performance of kaons

and pions. The former benefits from the excellent resolution of muons, which leads to a clean

peak at m(J/ψ) in the dimuon invariant-mass spectrum. In the latter, the small difference

between the mass of the D∗+ and that of the D0 leads the pion labelled as “slow” to have low

momentum. This allows its charge to uniquely determine the charge of the kaon and pion

from the D0 decay. Since the kaon’s charge is of opposite sign with respect to the charge

of the pions, samples of kaons and pions are obtained unambiguously. To further suppress

backgrounds, the two final-state particles in the J/ψ and D0 decays are treated as a “tag”

and a “probe”. PID efficiencies are evaluated on the probe, whilst a tight PID requirement is
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applied on the tag to ensure sample purity. To avoid biasing the efficiencies, the same fiducial

cuts applied to B+ → K+ℓ+ℓ− data, listed in Section 4.3.5, are applied to the PID calibration

data.

The dedicated samples are used to evaluate the efficiency of the kaon and muon PID cuts

listed in Table 4.2. The isMuon efficiency is better modelled by the simulation, and is therefore

treated separately from the DLL and probNN cuts. The ratio between isMuon efficiencies in

calibration and simulation samples is used to obtain weights that strengthen the agreement

between data and simulation. The PID efficiencies are also evaluated over pions, in order

to constrain the B+ → π+J/ψ(ℓ+ℓ−) components of the control-mode fits, and to conduct

the cross-checks covered by Section 8.5. Given their relatively limited usage, the pion

misidentification efficiencies are beyond the scope of this thesis.

The sWeight method [189] is employed to select signal events in the calibration data. The

PID efficiency of a given cut is then obtained by summing the sWeights of events before

and after the application of said cut. Several factors, such as data-taking conditions and

kinematics, are known to impact the PID efficiencies. For this reason, the data is separated

in bins of: data-taking period, magnet polarity, track momentum, and track pseudorapidity.

The efficiency is also expected to depend on the amount of particles in the event, known

as the occupancy. However, this quantity is known to be imperfectly modelled in the

simulation, as discussed in Section 6.4. For this reason, PID efficiencies are integrated over

the occupancy. The systematic uncertainty induced by the modelling of the occupancy is

evaluated in Section 7.4. The efficiency of a given PID cut, in a bin b, is given by:

ε(cut) =

∑

b, pass cut

sWeight

∑

b

sWeight
. (6.9)

The binning in momentum and pseudorapidity is optimised using a procedure adapted

from Ref. [192]. First, the (p, η) space is divided into 100 × 10 bins of approximately equal

populations, and efficiencies are computed. Then, the efficiencies are projected onto the

momentum and pseudorapidity separately. In each of the two projections, two adjacent bins
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are merged if their corresponding efficiency values are compatible within a certain threshold.

For the RK analysis, the threshold is chosen to be at 2.5 σ. The systematic uncertainty induced

by this choice is evaluated in Section 7.8, and found to be small.

The projections on momentum and pseudorapidity of the kaon and muon efficiencies, for

2018 MagUp data-taking conditions, are shown in Figure 6.1. Their equivalents for other

conditions are similar, and are therefore omitted.

6.2.2 PID efficiency of electrons

The performance of the DLLe > 3 requirement applied to electrons is evaluated using

B+ → K+J/ψ(e+e−) data. This calibration sample has additional selection cuts that improve

the signal purity, and so it is not identical to the one used throughout the rest of the analysis.

In particular, the tag electron is required to have high pT (above 1.5 GeV) and to be very

electron-like (DLLe > 5). In particular for Run 2.2 samples, the cut on electron χ2
IP

is slightly

tighter in the PID calibration samples than in the data used throughout the analysis. This

leads to a small systematic effect, evaluated in Section 7.8.

The electron PID efficiency tables are obtained separately for each data-taking period. They

are binned in three dimensions: momentum (p), pseudorapidity (η), and whether the probe

has a bremsstrahlung photon associated with it or not (hasBrem). The two magnet po-

larities are not treated separately because their corresponding electron PID efficiencies are

compatible within statistical uncertainty.

The electron PID calibration samples have higher levels of combinatorial background com-

pared to their kaon and muon counterparts. In addition, the poor resolution of electrons

causes the shape of the signal to be correlated with the variables in which the PID efficiency is

binned. The sWeight method is only valid when considering quantities that are not correlated

with the variable used to obtain the weights. Because of this, unbiased electron PID efficien-

cies cannot be obtained through the sWeight method. Therefore, the sWeights are only used

to determine the optimal binning in p and η, based on the algorithm outlined in Section 6.2.1.

The efficiencies are instead determined through fits to the distribution of the J/ψ-constrained
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Figure 6.1: Efficiencies of the PID cuts applied to kaons and muons, projected onto particle mo-
mentum (left) and pseudorapidity (right). The red bins show the effect of the binning optimisation
algorithm on the black bins. This algorithm is used to obtain the efficiencies used throughout the
measurement, and is described in the main body.
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Figure 6.2: Electron PID performance in 2017 (left) and 2018 (right) data-taking conditions, projected
onto particle momentum, pseudorapidity, and hasBrem. The values used are the ones obtained from
the fit & count technique (red), with the sWeight results (black) shown for comparison.

K+e+e− invariant mass in each kinematic bin, before and after the electron PID cut. This is

referred to as the “fit & count” method, and its result is presented in Figure 6.2. It can be seen

that using the sWeight technique to extract electron efficiencies would lead to overestimation

by a few percent.

6.2.3 Combination of PID efficiencies

The PID weight used to compute efficiencies is the product of the PID efficiencies of the three

final-state particles:

wPID = εPID(K+) · εPID(ℓ+) · εPID(ℓ−) . (6.10)
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Figure 6.3: Efficiencies of the PID cut applied to electrons in 2017 (left) and 2018 (right) simulated
control samples, projected onto particle momentum and evaluated on all preselected events (black),
events where both electrons satisfy the PID requirements (red), events that fire any trigger (blue), and
events where the trigger fires independently of the signal; this is labelled as TIS (purple).

Equation (6.10) assumes that the three efficiencies are independent of each other. This is

checked by choosing one particle at a time, and recomputing its PID efficiency based only on

events where the other two particles pass their PID requirements. If there are no correlations,

this leads to results that are compatible with the ones obtained by not placing any cuts on the

other two particles. It is also checked whether there are any effects induced by the trigger

selection. The kaon and muon efficiencies are found to be unbiased. However, a trigger

bias is found in the electron PID, as shown in Figure 6.3. The fact that the efficiencies with

and without cuts on the other electron agree with each other shows that the PID efficiencies

of the two electrons are independent. However, they disagree with the results obtained

by applying trigger requirements. This indicates that a trigger bias is present, and so a

systematic uncertainty is assigned by means described in Section 7.8.

6.3 Trigger calibration

The simulated efficiency of the L0 trigger is known to be at odds with the real performance.

The trigger has to accept or reject events at a high rate, and so it uses information that’s read

quickly by the detector. This information is simulated imperfectly, hence the performance

of the trigger is expected to disagree between data and simulation. Imperfections are also

caused by variations in running conditions: in any given year during which LHCb took data,
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the configuration of the trigger changes several times. These configurations apply different

cuts to the variables used by the L0, so some setups are by construction more efficient than

others. However, the simulation of any particular year and magnet polarity only uses one

configuration, and that leads to imperfect modelling of events close to trigger thresholds. It

is only during the year 2018 that the trigger conditions were kept constant.

The simulated trigger performance is corrected by assigning weights to simulated events.

These weights are determined based on how the efficiency changes in data and simulation

as a function of the variables relevant to the detector response, such as the muon pT for the

L0Muon trigger. This information is readily accessible in simulation, where events are stored

regardless of the output of the trigger. However, data that do not pass the trigger are not

stored and reconstructed, and so the efficiency of any trigger selection has to be evaluated

relative to another set of trigger requirements. This is done via what is referred to as the

“tag & probe” method, where the efficiency of the “probe” trigger selection is measured after

applying the “tag” requirements. The tags are validated by comparing their results with the

true simulated performance, and then used as proxies of the probe efficiency. Weights are

then computed and assigned to simulated events, based on how the efficiency of the probe

differs between data and simulation. The following subsections cover the specifics of how

each of the four triggers used in the RK analysis is calibrated.

6.3.1 Calibration of the L0Muon trigger

The probability of each muon track to fire the L0Muon trigger is estimated in simulated and

data B+ → K+J/ψ(µ+µ−) samples through the use of three tags. Events from all tags are

required to have passed the preselection and HLT requirements. The three tags, and the

additional requirements that distinguish them, are:

• µTIS tag: events where the L0Muon fires independently of the candidate;

• µ tag: events where L0Muon is triggered by the other muon in the candidate; and

• K tag: events where the L0Hadron fires on the kaon.
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Figure 6.4: Efficiency with which a muon from data (left) and simulation (right) fires theL0Muon trigger,
as a function of its reconstructed transverse momentum. The bins represent the tags described in the
main body, whilst the lines are the corresponding fits to the function defined in Equation (6.11). The
tag labelled as “nom.” is the one used to estimate the nominal efficiencies, the other tags being used
to evaluate systematic uncertainties. The dashed line corresponds to the pT > 800 MeV fiducial cut
applied to all muons. The fit does not extend below this threshold.

The µTIS tag is the one that has the highest statistics and hence the best precision. For this

reason, the nominal efficiency estimates come from the µTIS tag, whilst the other two tags

are used to evaluated the systematic effect induced by any biases present in the tags.

The L0Muon line makes a requirement on the highest transverse momentum among the muon

tracks in the event. Therefore, the L0Muon efficiency (εL0µ) is a step function in this variable.

However, this estimate of pT is only used at the trigger level, since the full reconstruction

makes an improved measurement of the event kinematics. In addition, the trigger-level

tracks are not matched with the reconstructed candidates, and there is no guarantee that a

given particle has the highest pT in the event at both trigger-level and reconstruction-level.

As a result, the L0Muon efficiency is a smeared function of fully-reconstructed transverse

momentum. This is shown by the bins in Figure 6.4, for both data and simulation samples.
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The latter also depicts the efficiency obtained without the use of any tag, demonstrating that

all three tags are unbiased and in good agreement.

To better interpolate between the bins used to correct the L0Muon efficiency, a function is used

to model the performance of each tag in data and simulation. The chosen model is the sum

of two sigmoids:

εL0µ(pT) = N

[(

1 + erf

(

pT − t

σ1

√
2

))

+ f

(

1 + erf

(

pT − t

σ2

√
2

))]

. (6.11)

In the above expression, t is the turn-on point of each sigmoid, and σ1,2 are their widths. The

normalisation is dictated by N and f . The muon pT resolution is better close to the beam

pipe, where the gas electron multiplier detectors are used, hence the use of two sigmoids

of different widths. The parameters that lead to the best description of each tag are found

through χ2 minimisation. The resulting functions are depicted in Figure 6.4 by solid lines of

the same colour as the bins they model.

The functions obtained from the fit lead to the determination of the L0Muon efficiency, εL0µ(µ±),

of a muon with a particular pT. Since each event contains two muons, the efficiency on an

event-by-event basis is equal to εL0µ(µ+) + εL0µ(µ−) − εL0µ(µ+)εL0µ(µ−). This leads to the

following expression for the weights assigned to each simulated muon-channel event to

correct the performance of the L0Muon trigger:

wµTOS =
εdata
L0µ (µ+) + εdata

L0µ (µ−) − εdata
L0µ (µ+)εdata

L0µ (µ−)

εsim
L0µ(µ+) + εsim

L0µ(µ−) − εsim
L0µ(µ+)εsim

L0µ(µ−)
. (6.12)

The above equation assumes that the performances of the two muons in a given candi-

date event are not correlated. This assumption allows the two muon efficiencies to be

factorised. Its validity is verified by studying the L0Muon performance of muons in simu-

lated B+ → K+J/ψ(µ+µ−) events, as a function of whether the other muon also fires L0Muon or

not. The result of this study is presented in Figure 6.5, where it can be seen that the efficiency

of a given muon in the event does not depend on the other’s performance.
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Figure 6.5: Efficiency with which a simulated muon fires the L0Muon trigger, calculated separately for
candidates where: the other muon in the event also fires the L0Muon line (blue), the other muon does
not fire L0Muon (red), and where no requirement is placed on the other muon (black).

6.3.2 Calibration of the L0Electron trigger

The L0Electron efficiency of electrons from B+ → K+J/ψ(e+e−) data and simulation is esti-

mated through the use of two tags. Events from both tags are required to have passed the

preselection and HLT requirements. The two tags are:

• eTIS tag: events where the L0Electron line fires independently of the candidate; and

• K tag: events where the L0Hadron line fires on the kaon.

The nominal values come from the eTIS tag, because it has higher statistics. The K tag is used

to evaluate the systematic uncertainty due to any tag bias, as described in Section 7.6.

Similarly to how the L0Muon line bases its decision on the transverse momentum of the

particle, L0Electronmakes use of the transverse energy deposited in the Ecal, EL0
T

. As such,

the L0Electron efficiency of an electron (εL0e) is a smeared step function of the electron’s

reconstructed ET. Given that cells in the three Ecal regions have different dimensions and

hence different ET resolutions, the amount of smearing depends on the Ecal region in which

the cluster is located. To account for this, the L0Electron efficiencies are estimated separately

for the inner, middle, and outer regions. The efficiency in the inner-most Ecal region is

presented in Figure 6.6, whilst the others are shown in Appendix B.1.
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Figure 6.6: Efficiency with which an electron traversing the inner Ecal region in data (left) and
simulation (right) fires the L0Electron trigger, as a function of the reconstructed transverse energy
deposited in the Ecal. The bins represent the tags described in the main body, whilst the lines are the
corresponding fits to the function defined in Equation (6.13). The tag labelled as “nom.” is the one
used to estimate the nominal efficiencies, the other tag being used to evaluate systematic uncertainties.
The dashed line corresponds to the fiducial cut applied to all electrons that fire L0Electron, in order
to improve the level of agreement between selected data and simulated events.

Like for the L0Muon line, the L0Electron efficiencies are modelled by the sum of two sigmoids:

εL0e(ET) = N

[(

1 + erf

(

ET − t

σ1

√
2

))

+ f

(

1 + erf

(

ET − t

σ2

√
2

))

+ a

]

. (6.13)

Equation (6.13) contains an additional parameter (a) that accounts for noise in the Ecal.

The best-fit functions are again obtained through χ2 minimisation, and are depicted by

solid lines in Figure 6.6. Following the same line of reasoning employed when calibrating

the L0Muon trigger, correction weights are computed on an event-by-event basis, using the

best-fit functions. These weights are given by:

weTOS =
εdata
L0e

(e+) + εdata
L0e

(e−) − εdata
L0e

(e+)εdata
L0e

(e−)

εsim
L0e

(e+) + εsim
L0e

(e−) − εsim
L0e

(e+)εsim
L0e

(e−)
. (6.14)
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Figure 6.7: Efficiency with which a simulated electron fires L0Electron, calculated separately for
candidates where: the other electron in the event also fires the L0Electron line (blue), the other
electron fires L0Electron and is well separated from the probed electron (purple), the other electron
does not fire L0Electron (red), and where no requirement is placed on the other electron (black).

This expression is functionally identical to the one defined in Equation (6.12). As a conse-

quence, it too assumes the efficiencies of the two leptons can be factorised. Like with the

muons, this assumption is tested by studying the L0Electron performance of simulated

electrons from B+ → K+J/ψ(e+e−) events, as a function of whether the other electron in the

reconstructed candidate also fires L0Electron. Although the efficiencies of the muons were

found to be factorisable, Figure 6.7 shows that the trigger performance of electrons depends

on whether the other electron in the event also fires L0Electron or not. This bias is found

to be smaller when the two electron clusters in the Ecal are separated by more than 1 m. If

that is not the case, i.e. if there is significant overlap between the two clusters, the Ecalwill

only save the one with higher EL0
T

and discard the other. This explains why candidates where

both electrons fire L0Electron are not as efficient as expected. A systematic uncertainty is

assigned to account for this dependence of the L0Electron efficiency on the distance between

the two electron Ecal clusters. This systematic effect is estimated in Section 7.6.

6.3.3 Calibration of the L0Hadron trigger

The performance of the L0Hadron line can be estimated from both B+ → K+J/ψ(µ+µ−) and

B+ → K+J/ψ(e+e−) samples. As a result, several tags are used on events that have passed the

preselection and HLT requirements. The tags are:
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• µTIS tag: B+ → K+J/ψ(µ+µ−) events where L0Muon fires independently of the candidate;

• eTIS tag: B+ → K+J/ψ(e+e−) events where L0Electron fires independently of the candi-

date;

• µ tag: B+ → K+J/ψ(µ+µ−) events where the other muon in the event fires L0Muon; and

• e tag: B+ → K+J/ψ(e+e−) events where the other electron in the event fires L0Electron.

Out of the four, the µ tag is found to have the best statistical precision, and is therefore used

to obtain the nominal efficiency estimates. The other tags are used to evaluate the systematic

effect induced by tag biases.

The L0Hadron trigger decision is based on the transverse energy deposited in the Hcal.

Hence, the performance of this trigger line is parametrised in terms of the reconstructed ET

deposited in the Hcal. Like with L0Electron, this dependence has the shape of a smeared

step function, and the amount of smearing depends on the Hcal region in which the cluster

is located. This is accounted for by computing the L0Hadron efficiencies separately for each

of the two Hcal regions. The result for the inner region is presented in Figure 6.8, with its

outer-region counterpart shown in Appendix B.2.

To improve the accuracy and precision of the L0Hadron calibration weights, the efficiency is

modelled by a sigmoid with normalisation N, turn-on point t, and width σ:

εL0h(ET) = N

[(

1 + erf

(

ET − t

σ
√

2

))

+ a

]

. (6.15)

As with L0Electron, the constant factor a is introduced to account for noise in the calorime-

ter. Similarly to the other trigger lines, χ2 minimisation is employed to obtain the best-fit

parameters for each tag. The resulting shapes are depicted as solid lines in Figure 6.8. These

curves are used to determine the L0Hadron efficiencies, in data and simulation, as a function

of hadron ET. Taking the ratio leads to weights that correct the L0Hadron performance:

whTOS =
εdata
L0h

(K+)

εsim
L0h

(K+)
. (6.16)
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Figure 6.8: Efficiency with which a kaon traversing the inner Hcal region in data (left) and simulation
(right) fires the L0Hadron trigger, as a function of the reconstructed transverse energy deposited in the
Hcal. The bins represent the tags described in the main body, whilst the lines are the corresponding
fits to the function defined in Equation (6.15). The tag labelled as “nom.” is the one used to estimate
the nominal efficiencies, the other tag being used to evaluate systematic uncertainties. The dashed
line corresponds to the ET > 3.5 GeV fiducial cut applied to all kaons that fire L0Hadron, in order to
improve the level of agreement between selected data and simulated events.

Since hTOS! is defined as an exclusive trigger category, its performance depends on that of

eTOS. However, the inclusive hTOS category is used to calibrate the trigger, owing to its

larger statistics. This means that an additional factor has to be introduced to account for the

different eTOS performance in data and simulation. The final expression for the weights that

correct the trigger efficiency of simulated hTOS! events is then:

whTOS! =
εdata
L0h

(K+)

εsim
L0h

(K+)
·

(

1 − εdata
L0e

(e+)
)

·
(

1 − εdata
L0e

(e−)
)

(

1 − εsim
L0e

(e+)
)

·
(

1 − εsim
L0e

(e−)
) . (6.17)
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6.3.4 Calibration of the L0TIS trigger

In general, when the L0 triggers independently of the signal, it fires on the other beauty

hadron in the event. Since the bb system is predominantly produced at low pT, the transverse

momenta of the two B mesons are correlated. As a result, the performance of L0TIS is highly

dependent on the pT of the signal B. For this reason, the previous RK measurement corrected

the efficiency of L0TIS based on its dependency on pT(B+). For Run 2.2, the procedure

is improved by taking into account the fact that some events are classified as TIS, but in

reality it is the signal that causes the trigger to fire. This happens, for example, when the

L0 fires on photons emitted by signal electrons as bremsstrahlung radiation. These are

referred to as “spurious TIS” events, and their trigger performance is qualitatively different

to that of events where the trigger genuinely fires independently of the signal. In practice,

L0TIS requires at least one of four L0 lines to fire independently of the signal. These are:

L0Electron, L0Photon, L0Hadron, and L0Muon. The former two are expected to be impacted

by spurious TIS events, and so are calibrated separately from the latter two. The two lines

with high contributions from spurious TIS are collectively referred to as eγTIS, and the other

two as hµTIS.

The efficiencies of eγTIS and hµTIS in B+ → K+J/ψ(ℓ+ℓ−) data and simulation are shown

in Figure 6.9 and in Figure 6.10, respectively. The eγTIS efficiency is computed as a function

of the maximum pT of the two leptons in the event, because the number of spurious TIS events

depends on the kinematics of the signal leptons. The tag used to obtain the eγTIS efficiency,

labelled “µTIS tag”, requires the L0Muon line to have fired independently of the signal. This

tag has a small bias, as evidenced by the direct efficiency extracted from B+ → K+J/ψ(e+e−)

simulation. The B+ → K+J/ψ(µ+µ−) counterpart is significantly lower, since muons don’t

emit as much bremsstrahlung radiation as electrons. Given that spurious TIS is expected

to have a negligible impact on hµTIS, its efficiency is parametrised in the pT of the B+. The

tag chosen to obtain the hµTIS efficiency, e tag, requires at least one of the electrons in

B+ → K+J/ψ(e+e−) preselected samples to fire L0Electron. The alternative µ tag requires

muons in B+ → K+J/ψ(µ+µ−) preselected samples to fire L0Muon, and is used to estimate the

systematic effect of tag biases. The expression for the weights changes between new and
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Figure 6.9: Efficiency with which the L0Electron and L0Photon lines fire independently of the signal,
in data (left) and simulation (right) samples. These two lines are collectively referred to as eγTIS,
and are expected to be impacted by spurious TIS events. The alternative binning scheme is used to
evaluate systematic uncertainties, as described in Section 7.6.

previous samples, as a result of the differences between the calibration histograms. In Run 1

and Run 2.1, the L0TIS efficiency is only parametrised in the pT of the B+, so the weight that

corrects the L0TIS performance is:

w
prev

L0TIS
=
εdata
L0TIS

(B+)

εsim
L0TIS

(B+)
. (6.18)

For Run 2.2 samples, Equation (6.18) is adjusted to take into account the different corrections

schemes for eγTIS and hµTIS:

wRun 2.2
L0TIS =

εL0TIS
data

(eγTIS) + εL0TIS
data

(hµTIS) − εL0TIS
data

(eγTIS) · εL0TIS
data

(hµTIS)

εL0TIS
sim

(eγTIS) + εL0TIS
sim

(hµTIS) − εL0TIS
sim

(eγTIS) · εL0TIS
sim

(hµTIS)
. (6.19)

Like hTOS!, TIS! is an exclusive category whose performance is corrected using the inclusive

variant owing to the better statistics. For this reason, two additional factors are introduced
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Figure 6.10: Efficiency with which the L0Hadron and L0Muon lines fire independently of the signal, in
data (left) and simulation (right) samples. These two lines are collectively referred to as hµTIS, and
are not expected to be impacted by fake TIS events.

to account for the different performances of the eTOS and hTOS! trigger strategies in data

compared to simulation. This leads to the following expression for the weights applied to

simulated TIS! events to correct their L0 trigger performance:

wTIS! = wL0TIS ·

(

1 − εdata
L0e

(e+)
)

·
(

1 − εdata
L0e

(e−)
)

(

1 − εsim
L0e

(e+)
)

·
(

1 − εsim
L0e

(e−)
) ·

1 − εdata
L0h

(K+)

1 − εsim
L0h

(K+)
. (6.20)

6.3.5 Calibration of the HLT

The simulated description of the high-level trigger in Run 2 conditions is found to be in good

agreement with the data. However, the Run 1 counterpart requires additional calibration

via weights. These were obtained by Dr. Thibaud Humair, and are outside the scope of this

thesis, since such weights are not required for Run 2.2 data-taking conditions.
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6.4 The underlying event occupancy

The proton-proton collision environment at the LHC is difficult to model, due to the non-

perturbative nature of the strong-interaction effects involved. As a consequence, there are

limitations to how well the underlying events at LHCb can be described by simulation. One

of these limitations is the improper modelling of the total number of particles in an event,

known as the occupancy.

Different quantities correlated with the occupancy are used to assess how busy an event

is. These are called occupancy proxies, and are known to be modelled improperly by

simulation. A study was performed by Dr. Thibaud Humair to evaluate the impact of

correcting occupancy proxies to match the data. It was found that making one proxy match

the data increases the discrepancies found in other proxies. For this reason, no corrections

to occupancy proxies are applied when evaluating efficiencies. This leads to a systematic

uncertainty that is evaluated in Section 7.4.

6.5 Corrections to B+ kinematics

Another known imperfection of the simulation lies in the kinematic variables with which the

B+ mesons are generated. The spectra of kinematic variables, such as transverse momentum

and pseudorapidity, are not reproduced perfectly by the simulation. This happens at the

stage where the B+ are generated, so the pT and η are different with respect to data both

before and after the reconstruction takes place.

Additional discrepancies arise after reconstruction between the simulated and actual distri-

butions of the χ2
IP

and χ2
DV

of the B+. These variables are related to the quality of the re-

constructed primary and decay vertices, respectively, and are thus sensitive to any tracking-

related effect that is not perfectly modelled by the simulation. An example of this is the

imperfect modelling of the underlying event occupancy, as mentioned in Section 6.4. The

occupancy is correlated with the total number of tracks in the event, and the more particles

there are, the more affected the tracking performance is. Another example is the imperfect
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modelling of the Velo, given its central role in tracking and vertexing.

The distributions of kinematic variables in data are obtained from the B+ → K+J/ψ(µ+µ−)

µTOS samples obtained by means described in Section 5.2. The statistics are high, and the

background is subtracted through the sWeight method. The resolution of the muons is also

better than that of the electrons, and, as expanded upon in Section 7.6 and Section 7.8, the

trigger and PID corrections to muon samples are under better control.

To correct the simulated B+ kinematics, two sets of weights are computed after the calibration

of the PID and trigger performances. The first set of weights address the imperfections in the

generated two-dimensional distribution of (pT(B+), η(B+)). These are the w
gen

kin
weights intro-

duced in Equation (6.7). The second set of weights correct the reconstructed (pT(B+), η(B+))

distribution, together with the spectra of χ2
IP

(B+) and χ2
DV

(B+). In Equation (6.7), these are

denoted by wrec
kin

.

Both w
gen

kin
and wrec

kin
are calculated through the following procedure:

1. data obtained via the sWeight method are used to populate histograms of kinematic

variables; the histogram for the (pT(B+), η(B+)) distribution has 20 bins along the pT

axis and 10 bins along the η axis, whilst the χ2
IP

and χ2
DV

histograms used for wrec
kin

have

150 bins each;

2. the previous step is repeated on simulated B+ → K+J/ψ(µ+µ−) µTOS generation- and

reconstruction-level samples; the comparison between generation-level simulation and

reconstructed data is possible thanks to the good muon resolution;

3. the histograms obtained in the first step are divided by the ones obtained in step 2.,

thus obtaining histograms of weights;

4. to account for correlations between weighted reconstruction-level variables, steps 1 to

3 are repeated three times to obtain the wrec
kin

weights.

The effect of the kinematic correction weights on muon samples is exemplified in Figure 6.11.

Each plot shows the simulated distribution, before and after the calibration of the kinematics,
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together with the spectrum in background-subtracted data. This includes both variables that

are corrected directly, e.g. pT(B+) and η(B+), and other kinematic variables, e.g. the opening

angle between the two signal leptons (αℓ+ℓ−). It can be seen that the kinematic weights lead

to near-perfect agreement between data and simulation. These plots correspond to 2018

data-taking conditions. Additional kinematic distributions, as well as equivalents from 2017

samples, are shown in Appendix C. The calibration is of the same quality in the two years.

Equivalent distributions in electron samples are presented in Figure 6.12. The calibration

improves the agreement between the data and simulation, however there are a few residual

discrepancies in some of the variables. This is because the weights are obtained from muon

samples and applied to the electron channels, where the kinematics are not identical. The

systematic effect induced by these residual differences is evaluated in Sections 7.2 and 7.7.

They are found to be sub-dominant on RK, thanks to cancellation in the double ratio. Ad-

ditional distributions in 2018 samples, together with their 2017 counterparts, are presented

in Appendix C. The calibration is of similar quality in the two years.

6.6 Momentum and q2 resolution calibration

The resolution of the dielectron invariant mass, m(e+e−), is found to be better in simulation

than in data. If left uncorrected, the efficiency of any selection that cuts in q2, or in any

other derived variable such as m(K+e+e−), would be overestimated. To prevent this, the

distribution of m(e+e−) in simulated control-mode events is modified to match its equivalent

from data. This process is called smearing. The calculation of efficiencies takes into account

this correction by using the smeared variables to evaluate the performance of the q2 and

invariant-mass cuts.

The mismatch in resolution was already hinted at in Chapter 5, where templates for peaking

components of the B+ → K+J/ψ(ℓ+ℓ−) fits could not be used immediately to determine the

resolution. Instead, the mean of the data peak has to be reparametrised in terms of a shift

from its simulated value, and the width is a scaled version of the one in simulation:

µdata = µsim + ∆µ , σdata = sσ · σsim . (6.21)
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Figure 6.11: Distributions of kinematic variables in B+ → K+J/ψ(µ+µ−) 2018 µTOS samples. The
black histograms show the distributions in data, whilst the red and blue bins depict the simulated
distributions before and after the kinematic calibration, respectively. The histograms are normalised
based on the bin that takes the highest value.
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Figure 6.12: Distributions of kinematic variables in B+ → K+J/ψ(e+e−) 2018 eTOS samples. The
black histograms show the distributions in data, whilst the red and blue bins depict the simulated
distributions before and after the kinematic calibration, respectively. The histograms are normalised
based on the bin that takes the highest value.
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Figure 6.13: Fits to the distribution of m(e+e−) in 2017 (left) and 2018 (right) B+ → K+J/ψ(e+e−) eTOS
data. The photon categories are fitted separately, and then combined to obtain these figures.

The shift∆µ and the scale sσ are used to perform the smearing. They are obtained from fits to

the distribution of m(e+e−) in B+ → K+J/ψ(e+e−) data and simulation. To minimise the impact

of any potential q2 dependency on the smearing factors, the B+ → K+J/ψ(e+e−) events are

selected with q2 ∈ (3.0 GeV2, 15.0 GeV2). In addition, the impact of partially-reconstructed

background events is reduced by tightening the selection on the J/ψ-constrained invariant

mass to mJ/ψ(K+e+e−) ∈ (5.20 GeV, 5.68 GeV). These fits are performed separately in each

data-taking period, electron trigger, and photon category. The latter division is motivated

by the fact that bremsstrahlung radiation affects both the mean and the resolution of the

mass peak. The simulated m(e+e−) distributions are modelled by two CB distributions with

opposite tails. The low-mass tail provides an accurate description of the radiative effects

that impact this region of m(e+e−). The high-mass tail is able to model events where the

bremsstrahlung recovery algorithm overestimates the energy that has to be added to the

electron. In general, both effects are suitably simulated, so the tail parameters are fixed to

the values extracted from simulation. The exceptions are the upper tails in the 1γ and 2γ

categories, which are allowed to float in the fit to data to improve the quality of the fit.

The results of the fits to eTOS data, in all three photon categories combined, are presented

in Figure 6.13. The pulls between the data and the fit model are shown below each plot. Most

of them are small, and there are no indications of any systematic deviations. This suggests

that the fits are of good quality. The scales and shifts obtained from all fits to data are listed

in Table 6.2. The values of sσ, ∆µ, and µsim are averaged across the three electron triggers,
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Table 6.2: Width scale factor and mean shift parameters extracted by fitting m(e+e−) in
B+ → K+J/ψ(e+e−) data. The values are obtained separately for each trigger and photon category.
The average among the three trigger categories is also listed. The error cited for the average corre-
sponds to the standard deviation between the three trigger categories.

0γ 1γ 2γ
Trigger sσ ∆µ [MeV] sσ ∆µ [MeV] sσ ∆µ [MeV]

Run 1
eTOS 1.055 ± 0.008 1.1 ± 0.5 1.092 ± 0.007 4.8 ± 0.4 1.098 ± 0.012 9.6 ± 0.7
hTOS! 1.106 ± 0.030 2.6 ± 1.5 1.136 ± 0.021 3.7 ± 1.5 1.140 ± 0.032 9.1 ± 2.1
TIS! 1.108 ± 0.017 2.8 ± 0.9 1.089 ± 0.012 2.3 ± 1.0 1.103 ± 0.021 10.4 ± 1.5
Average 1.068 ± 0.023 1.5 ± 0.7 1.094 ± 0.012 4.3 ± 0.9 1.103 ± 0.012 9.7 ± 0.4

Run 2.1
eTOS 1.112 ± 0.007 −1.7 ± 0.3 1.135 ± 0.007 −8.1 ± 0.2 1.215 ± 0.004 −8.8 ± 0.3
hTOS! 1.178 ± 0.031 −1.3 ± 1.6 1.110 ± 0.021 −15.1 ± 1.3 1.290 ± 0.050 −18.3 ± 2.4
TIS! 1.143 ± 0.020 −0.8 ± 0.9 1.178 ± 0.015 −13.8 ± 1.0 1.183 ± 0.024 −15.7 ± 1.4
Average 1.118 ± 0.016 −1.6 ± 0.3 1.140 ± 0.018 −8.5 ± 1.7 1.215 ± 0.008 −9.4 ± 2.0

2017
eTOS 1.082 ± 0.008 −3.0 ± 0.4 1.125 ± 0.007 −5.3 ± 0.4 1.121 ± 0.014 −6.4 ± 0.6
hTOS! 1.077 ± 0.032 −1.7 ± 1.4 1.152 ± 0.022 −10.0 ± 1.4 1.161 ± 0.034 −14.0 ± 2.0
TIS! 1.093 ± 0.016 −1.6 ± 0.8 1.160 ± 0.016 −10.6 ± 1.0 1.117 ± 0.023 −13.4 ± 1.4
Average 1.084 ± 0.003 −2.7 ± 0.5 1.132 ± 0.013 −6.2 ± 2.0 1.125 ± 0.014 −8.0 ± 3.0

2018
eTOS 1.098 ± 0.007 −2.1 ± 0.3 1.113 ± 0.007 −5.0 ± 0.3 1.153 ± 0.013 −2.7 ± 0.6
hTOS! 1.134 ± 0.031 −2.1 ± 1.3 1.172 ± 0.017 −7.1 ± 1.2 1.127 ± 0.029 −11.6 ± 1.5
TIS! 1.104 ± 0.018 −1.9 ± 0.9 1.169 ± 0.014 −8.0 ± 0.9 1.192 ± 0.022 −10.0 ± 1.2
Average 1.101 ± 0.007 −2.1 ± 0.1 1.129 ± 0.026 −5.5 ± 1.0 1.158 ± 0.020 −5.0 ± 4.0

for each photon category individually. These averages, denoted sσ, ∆µ, and µsim, are used to

obtain the smeared simulated dielectron mass:

msmeared = mtrue + sσ ·
(
m −mtrue) + ∆µ + (1 − sσ) · (µsim −mJ/ψ) . (6.22)

The true and reconstructed dilepton invariant masses, mtrue and m respectively, are computed

for each simulated event, whereas sσ, ∆µ, and µsim come from the fit to data. The mass of

the J/ψ resonance, mJ/ψ, comes from the PDG [9]. Equation (6.22) ensures that if m follows

a Gaussian distribution of width σ and mean µ, msmeared follows a Gaussian distribution of

width sσ ·σ and mean µ+∆µ. The impact of the smearing on the control samples is presented

in Figure 6.14. The procedure is found to successfully match the simulated distributions of

m(e+e−) and m(K+e+e−) to the ones in data. There is a small region in the upper-mass tail

where the smearing is not perfect, indicating the presence of one or more effects to which

the procedure is not sensitive. The systematic uncertainties induced by these effects are

estimated in Section 7.9, and found to have a negligible impact on RK.
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Figure 6.14: Effect of the q2 smearing procedure on the shapes of m(e+e−) (left) and m(K+e+e−) (right)
in 2017 (top) and 2018 (bottom) control samples. The black histograms show the distributions in data,
whilst the red and blue shapes depict the simulated distributions, before and after the resolution
calibration, respectively.

Table 6.3: Estimated number of B+ → K+e+e− events migrating in and out of the range
q2 ∈ (1.1 GeV2, 6.0 GeV2), expressed as a percentage of the total number of events in the true range
q2

true ∈ (1.1 GeV2, 6.0 GeV2). The columns corresponding to events whose q2 is in the allowed inter-
val, but whose q2

true is either above the maximum or below the minimum, are denoted by “up→in”
and “down→in”, respectively. Similarly, the columns corresponding to events whose q2

true is in the
allowed interval, but whose q2 is either above the maximum or below the minimum, are denoted by
“in→up” and “in→down”, respectively. The column denoted by “in→in” lists the percentages of
events where both q2 and q2

true fall into the allowed interval.

up→in [%] down→in [%] in→in [%] in→up [%] in→down [%]
Run 1

No smearing 8.00 ± 0.23 0.34 ± 0.05 96.94 ± 0.14 1.31 ± 0.10 1.75 ± 0.11
smearing 7.90 ± 0.23 0.43 ± 0.06 96.83 ± 0.15 1.53 ± 0.10 1.65 ± 0.11

Run 2.1
No smearing 7.77 ± 0.18 0.48 ± 0.05 96.86 ± 0.12 1.40 ± 0.08 1.74 ± 0.09
smearing 8.78 ± 0.20 0.36 ± 0.04 96.50 ± 0.13 1.39 ± 0.08 2.11 ± 0.10

2017
No smearing 8.62 ± 0.24 0.33 ± 0.05 96.60 ± 0.16 1.60 ± 0.11 1.81 ± 0.11
smearing 9.26 ± 0.25 0.32 ± 0.05 96.20 ± 0.17 1.66 ± 0.11 2.14 ± 0.12

2018
No smearing 7.60 ± 0.23 0.35 ± 0.05 96.57 ± 0.16 1.64 ± 0.11 1.79 ± 0.12
smearing 8.50 ± 0.25 0.31 ± 0.05 96.22 ± 0.17 1.73 ± 0.12 2.05 ± 0.13
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Table 6.4: Total rare, control, and ψ(2S) efficiencies, for each data-taking period and trigger category.
The right-most column lists the ratios of efficiencies between the rare and control channels. The rows
labelled as “µTOS” correspond to muon samples, with the other three labels representing the three
electron trigger strategies. The uncertainties are statistical only.

εrare [%] εcontrol [%] εψ(2S) [%] Ratio [%]
Run 1

µTOS 0.3165 ± 0.0016 1.3964 ± 0.0027 1.5066 ± 0.0035 22.7 ± 0.1
eTOS 0.0544 ± 0.0005 0.2167 ± 0.0009 0.2413 ± 0.0019 25.1 ± 0.2
hTOS! 0.0178 ± 0.0002 0.0350 ± 0.0003 0.0120 ± 0.0004 50.7 ± 0.8
TIS! 0.0193 ± 0.0003 0.0696 ± 0.0004 0.0614 ± 0.0009 27.7 ± 0.4

Run 2.1
µTOS 0.3236 ± 0.0015 1.4322 ± 0.0028 1.5038 ± 0.0034 22.6 ± 0.1
eTOS 0.1041 ± 0.0007 0.4188 ± 0.0013 0.4268 ± 0.0028 24.9 ± 0.2
hTOS! 0.0264 ± 0.0004 0.0466 ± 0.0003 0.0148 ± 0.0005 56.8 ± 0.9
TIS! 0.0316 ± 0.0004 0.1095 ± 0.0006 0.0933 ± 0.0013 28.9 ± 0.4

2017
µTOS 0.3452 ± 0.0017 1.6174 ± 0.0027 1.7400 ± 0.0040 21.4 ± 0.1
eTOS 0.0813 ± 0.0007 0.3957 ± 0.0009 0.4221 ± 0.0018 20.6 ± 0.2
hTOS! 0.0232 ± 0.0004 0.0528 ± 0.0003 0.0172 ± 0.0003 43.9 ± 0.7
TIS! 0.0288 ± 0.0004 0.1210 ± 0.0004 0.1039 ± 0.0008 23.8 ± 0.4

2018
µTOS 0.3300 ± 0.0017 1.5609 ± 0.0027 1.6768 ± 0.0029 21.1 ± 0.1
eTOS 0.0751 ± 0.0007 0.3719 ± 0.0009 0.4015 ± 0.0009 20.2 ± 0.2
hTOS! 0.0239 ± 0.0004 0.0542 ± 0.0003 0.0184 ± 0.0003 44.0 ± 0.7
TIS! 0.0255 ± 0.0004 0.1136 ± 0.0004 0.1016 ± 0.0006 22.5 ± 0.4

A direct consequence of the smearing is the migration of B+ → K+e+e− events into and out of

the q2 ∈ (1.1 GeV2, 6.0 GeV2) range. This migration is caused by the different resolution of

the reconstructed q2 compared to its true counterpart (q2
true). The fractions of events going in

and out of the rare-mode q2 window are listed in Table 6.3, before and after the application

of the smearing. It is found that the smearing has a small effect, of only around 1%.

6.7 Summary of efficiencies

The estimated efficiencies of the resonant and signal modes, based on the entire selection

and correction chain, are summarised in Table 6.4. The intermediary efficiencies in terms of

which the εtot are factorised are presented in Appendix D. The fractions f q2
of events that fall

into the signal window q2
true ∈ (1.1 GeV2, 6.0 GeV2) are listed in Table 6.5. Comparing them

with the ratios between signal and control efficiencies shows that most of the difference in
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Table 6.5: The fraction f q2
of generation-level signal events that have q2

true ∈ (1.1 GeV2, 6.0 GeV2). The
values corresponding to Run 2.2 data-taking conditions are slightly different as a result of an update
to the B+ → K+ℓ+ℓ− model used to generate the simulated samples.

f
q2

muons [%] f
q2

electrons
[%]

Run 1 26.75 ± 0.04 29.72 ± 0.05
Run 2.1 26.85 ± 0.04 29.67 ± 0.04
2017 25.19 ± 0.04 25.15 ± 0.04
2018 25.20 ± 0.04 25.18 ± 0.04
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Figure 6.15: Efficiencies estimated from signal and control events with q2 ∈ (8.0 GeV, 10.0 GeV). Each
group of three bins represents a particular data-taking period, which are from left to right: Run 1,
Run 2.1, 2017, and 2018. In each group, the three bins correspond to the three electron triggers (eTOS,
hTOS!, and TIS!).

efficiencies between the control mode and the signal mode stems from the q2 selection. This

can be examined further by evaluating the efficiency of simulated signal events with q2 close

to m2
J/ψ. The same efficiency calculation method is applied to simulated signal and control

electron events with q2 ∈ (8.0 GeV, 10.0 GeV). Here, the two channels are expected to give

compatible results, however due to the fact that the q2 distributions in this window are not

identical, the agreement is not expected to be perfect. Nevertheless, the result of this test,

as shown in Figure 6.15, indicates good agreement overall. This suggests that the efficiency

corrections, as obtained from the J/ψ modes, can be ported onto other channels.
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6.7.1 Estimate of the gain in precision

This is a study conducted before unblinding to estimate the expected gain in precision with

respect to the previous RK measurement, based on the control-mode yields and the rare and

resonant efficiencies. Starting from Equation (6.6), the number of selected rare-mode events

can be obtained as follows:

Bin(B+ → K+ℓ+ℓ−)

B(B+ → K+J/ψ(ℓ+ℓ−))
=

Nsel(B
+ → K+ℓ+ℓ−)

εtot(B
+ → K+ℓ+ℓ−)

·
εtot(B

+ → K+J/ψ(ℓ+ℓ−))

Nsel(B
+ → K+J/ψ(ℓ+ℓ−))

· f q2

⇒ Nsel(B
+ → K+ℓ+ℓ−) =

Bin(B+ → K+ℓ+ℓ−)

B(B+ → K+J/ψ(ℓ+ℓ−))
·

Nsel(B
+ → K+J/ψ(ℓ+ℓ−))

εtot(B
+ → K+J/ψ(ℓ+ℓ−))

· εtot(B
+ → K+ℓ+ℓ−)

f q2

=
Bin(B+ → K+ℓ+ℓ−)

B(B+ → K+J/ψ(ℓ+ℓ−))
· N(B+ → K+J/ψ(ℓ+ℓ−)) · εtot(B

+ → K+ℓ+ℓ−)

f q2
.

It can be seen that the rare-mode yield is the product between a component that does not

change with data-taking period — the fraction Bin(B+ → K+ℓ+ℓ−)/B(B+ → K+J/ψ(ℓ+ℓ−)) —

and a component that is expected to vary with run conditions:

κ ≡ N(B+ → K+J/ψ(ℓ+ℓ−)) · εtot(B
+ → K+ℓ+ℓ−)

f q2
. (6.23)

Therefore, computing κ for the various data-taking periods leads to an approximation for

how much the rare-mode yields are expected to increase with the addition of Run 2.2 data.

This is done in Table 6.6, where the estimated gain is the sum of the values of κ over all runs

and all trigger categories, divided by the sum over Run 1 and Run 2.1 only. The electron

dataset is expected to be approximately 2.1 times larger, whilst the statistics of the muon

dataset are expected to improve by a factor of nearly 2. This is in agreement with what

one would expect based on the increase in total integrated luminosity, and the improved

electron-mode efficiencies in Run 2 compared to Run 1.
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Table 6.6: Quantities used to estimate the expected gain in precision with respect to the previous
analysis, as explained in the main body, for every data-taking period and trigger selection. The
expected increase in electron and muon statistics is given in bold.

electron modes

κ × 10−5 N(B+ → K+J/ψ(ℓ+ℓ−)) εtot(B
+ → K+ℓ+ℓ−) f q2 εtot(B+ → K+ℓ+ℓ−)

f q2

Run 1 eTOS 0.762 4.166 × 107 0.544 × 10−3 0.2972 1.830 × 10−3

hTOS! 0.262 4.390 × 107 0.178 × 10−3 0.2972 0.597 × 10−3

TIS! 0.282 4.365 × 107 0.193 × 10−3 0.2972 0.647 × 10−3

Run 2.1 eTOS 1.265 3.606 × 107 1.041 × 10−3 0.2967 3.508 × 10−3

hTOS! 0.321 3.603 × 107 0.264 × 10−3 0.2967 0.891 × 10−3

TIS! 0.363 3.412 × 107 0.316 × 10−3 0.2967 1.065 × 10−3

Previous 3.258
2017 eTOS 1.033 3.195 × 107 0.813 × 10−3 0.2515 3.233 × 10−3

hTOS! 0.306 3.315 × 107 0.232 × 10−3 0.2515 0.922 × 10−3

TIS! 0.359 3.136 × 107 0.288 × 10−3 0.2515 1.145 × 10−3

2018 eTOS 1.194 4.003 × 107 0.751 × 10−3 0.2518 2.983 × 10−3

hTOS! 0.399 4.200 × 107 0.239 × 10−3 0.2518 0.949 × 10−3

TIS! 0.409 4.037 × 107 0.255 × 10−3 0.2518 1.013 × 10−3

Run 2.2 3.699
Est. gain 2.135

muon modes

κ × 10−5 N(B+ → K+J/ψ(ℓ+ℓ−)) εtot(B
+ → K+ℓ+ℓ−) f q2 εtot(B+ → K+ℓ+ℓ−)

f q2

Run 1 µTOS 5.272 4.456 × 107 3.165 × 10−3 0.2675 1.183 × 10−3

Run 2.1 µTOS 4.571 3.793 × 107 3.236 × 10−3 0.2685 1.205 × 10−3

Previous 9.844
2017 µTOS 4.296 3.135 × 107 3.452 × 10−3 0.2519 1.370 × 10−3

2018 µTOS 5.198 3.969 × 107 3.300 × 10−3 0.2520 1.311 × 10−3

Run 2.2 9.494
Est. gain 1.964



Chapter 7

Systematic uncertainties induced by

the calculation of efficiencies

Efficiencies can be calculated by means other than those presented in Chapter 6. For this

reason, systematic uncertainties have to be assigned whenever a particular method is cho-

sen over others. This chapter covers the systematic uncertainties related to the procedure

employed to calculate efficiencies. Section 7.1 provides an overview of the considered sys-

tematic effects, as well as their net contribution to the determination of RK. Subsequent

sections describe each systematic effect in detail, including the methods by which their

impact is estimated.

The procedure was developed by Dr. Paula Álvarez Cartelle and Dr. Thibaud Humair for

the previous RK analysis. The current measurement takes into account the same sources

of systematic uncertainty, with the addition of a new effect described in Section 7.8; this

is specific to Run 2.2. In order to take into account the correlations between data-taking

periods and trigger selections, the entire procedure is rerun with the addition of Run 2.2

data. Therefore, all results presented here constitute original work. The Run 2.1 results

are the same as in the previous measurement. Their Run 1 counterparts change by a few

permille, due to an update in the simulation of 2011 samples.
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Let ε be an efficiency estimate obtained by means described in Chapter 6. This represents the

“nominal” estimation of a true efficiency, ε. To assign a systematic uncertainty on ε, several

methods are used to derive n “alternative” estimates of ε, denoted by {εi}i=1,n . These values

are used to evaluate the variance on ε, and the square root of this variance is interpreted as

the systematic uncertainty:

σ =

√√

1

n

n∑

i=1

(εi − ε)2 . (7.1)

This exercise is performed on the rare and resonant modes. Two efficiencies that correspond

to the same channel, but not necessarily the same trigger and/or data-taking period, may

be correlated. To take this into account, efficiencies are calculated individually for each

data-taking period and trigger selection. The covariance between two such efficiencies, ε1

and ε2, is then given by:

V1,2 = V2,1 =
1

n

n∑

i=1

(εi
1 − ε1) · (εi

2 − ε2) . (7.2)

Similarly, the correlation factor between ε1 and ε2 is:

corr1,2 = corr2,1 =
V1,2

σ1σ2
. (7.3)

When considered together, the variances and the correlations encode information on how

particular choices of efficiency calculation methods affect the overall result. This information

is used in two places. The first is the combination of the rJ/ψ and Rψ(2S) ratios, as described

in Chapter 8. The second is the fit to the rare modes, as presented in Chapter 9.

In this thesis, systematic uncertainties on the ratios rJ/ψ, RK, and Rψ(2S) are presented through

fractional error matrices S, defined as:

S =





σ1/ε1 corr1,2 . . . corr1,n

corr2,1 σ2/ε2 . . . corr2,n

...
...

. . .
...

corrn,1 corrn,1 . . . σn/εn





. (7.4)
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Given that the RK measurement considers 4 distinct data-taking periods and 3 electron

triggers, S is a 12 × 12 matrix. Its diagonal contains fractional uncertainties, whilst the

off-diagonal terms represent correlations between different selections.

The following section presents the total systematic uncertainties on rJ/ψ, RK, and Rψ(2S),

together with the contributions from every considered effect. The rest of the chapter describes

how each individual systematic effect is assessed. The effects are presented in descending

order of their impact on the total uncertainty. They are: the kinematic calibration method;

the finite size of the calibration samples; the detector occupancy; the signal decay model; the

trigger calibration; the modelling of the material budget; the PID efficiency correction; and

the resolution of q2 and m(K+e+e−).

7.1 Summary of efficiency systematics

Covariance matrices are obtained individually for all considered sources of systematic uncer-

tainty on the efficiencies, and then added together into the total covariance matrices for rJ/ψ,

RK, and Rψ(2S). The total covariance matrix for RK is then used in the fit to B+ → K+ℓ+ℓ− data,

whereas the other two total covariance matrices lead to the combined rJ/ψ and Rψ(2S) estimates

presented in Chapter 8. The fractional error matrices that result from applying Equations (7.3)

and (7.4) to the total covariance matrices are presented in Table 7.1. Note that the effect of

the fit model is treated separately, in Section 10.2. As expected, rJ/ψ has the largest systematic

uncertainty, given that it does not benefit from the double-ratio cancellation inherent to RK

and Rψ(2S).

Table 7.2 lists all considered systematic effects on the ratios rJ/ψ, RK, and Rψ(2S). The total

systematic uncertainty on RK is found to be around 1.5%, which is predominantly due to the

B+ → K+ℓ+ℓ− fit model. Thanks to the double ratio, all systematic effects associated with the

calculation of efficiencies are reduced below the percent-level. This does not contradict the

values listed in Table 7.1, where the overall impact on each data-taking period and trigger

category is presented.
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Table 7.1: Total fractional error matrices for rJ/ψ, RK, and Rψ(2S), obtained by propagating all systematic
uncertainties related to the calculation of efficiencies. These matrices are symmetric, so the elements
below the main diagonal are omitted. All entries are listed as percentages.

rJ/ψ

Run 1 Run 2.1 2017 2018
eTOS hTOS! TIS! eTOS hTOS! TIS! eTOS hTOS! TIS! eTOS hTOS! TIS!

6.35 −9.87 −7.99 63.24 49.47 45.42 57.17 27.73 5.65 49.75 34.19 26.42
6.78 36.04 38.80 28.16 5.94 36.73 66.97 27.65 40.26 57.36 10.98

7.43 18.49 −7.55 49.45 26.69 18.09 38.39 27.57 2.41 24.24
6.08 25.98 14.56 72.80 45.65 26.50 74.08 37.63 23.20

8.85 59.16 21.81 55.50 22.47 13.56 64.73 42.59
8.33 21.55 25.49 35.33 11.18 24.34 51.38

4.67 68.53 11.52 96.63 60.08 13.69
6.72 10.29 68.10 90.18 12.57

3.17 6.88 −1.71 60.87
4.84 59.23 5.17

6.77 8.35
3.18

RK

Run 1 Run 2.1 2017 2018
eTOS hTOS! TIS! eTOS hTOS! TIS! eTOS hTOS! TIS! eTOS hTOS! TIS!

2.05 46.35 5.99 3.51 1.10 4.74 −6.26 3.97 14.24 3.72 15.21 4.23
3.35 9.24 −11.92 6.47 4.71 −23.12 6.65 5.70 −12.85 8.24 −2.00

1.92 0.02 −0.09 2.27 −3.69 −1.31 2.24 9.03 9.75 12.05
1.51 17.52 46.23 49.66 28.62 26.27 42.75 21.16 14.89

7.90 44.64 −0.59 3.20 −0.55 1.25 9.53 3.51
2.20 22.75 26.25 7.77 26.35 1.90 3.48

1.68 42.26 22.18 49.15 12.55 10.43
3.00 18.90 29.97 29.73 −2.21

2.41 28.23 16.61 27.18
1.51 34.83 29.70

2.72 31.11
2.23

Rψ(2S)

Run 1 Run 2.1 2017 2018
eTOS hTOS! TIS! eTOS hTOS! TIS! eTOS hTOS! TIS! eTOS hTOS! TIS!

1.49 20.28 48.99 36.42 1.99 42.25 44.64 16.05 27.31 32.46 23.84 24.30
4.21 29.40 2.64 31.98 37.82 24.78 39.63 32.76 3.75 30.53 26.42

3.10 19.34 −2.73 44.69 43.44 1.14 9.57 18.80 11.80 13.75
1.21 8.03 18.51 41.92 20.63 30.56 56.15 21.42 28.82

4.87 0.60 −2.43 22.31 19.20 9.88 32.34 19.44
2.36 41.30 24.53 25.02 28.64 13.73 17.25

1.14 11.48 35.17 57.98 3.67 21.55
3.67 57.54 16.31 49.03 37.25

2.26 37.60 38.50 49.20
0.96 19.27 38.23

2.83 39.45
1.86
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Table 7.2: Fractional systematic uncertainties on rJ/ψ, RK, and Rψ(2S). The contributions are sorted by
their effect on RK, in descending order. Indented entries are related to each other and given separately,
in addition to the combined effect above them. The total is not identical to the sum in quadrature of
the individual entries, since correlations are taken into account.

Source rJ/ψ [%] RK [%] Rψ(2S) [%]
1. Fit model — 1.00 —

1a. Signal — 0.70 —
1b. Background — 0.71 —

2. Kinematic corrections 1.57 0.59 0.52
3. Finite size 1.41 0.47 0.33
4. Occupancy 1.17 0.39 0.09
5. Decay model — 0.39 —
6. Trigger calibration 0.78 0.37 0.15

6a. eTOS 0.63 0.36 0.14
6b. hTOS! 0.39 0.07 0.03
6c. µTOS 0.28 0.04 0.06
6d. TIS! 0.40 0.03 0.01

7. Material and tracking — 0.29 0.08
8. PID calibration 0.80 0.25 0.07

8a. Electron PID 0.80 0.25 0.07
8b. Muon and kaon PID 0.03 0.01 0.01

9. q2 and mass resolution 0.53 0.19 0.57
9a. Parametrisation 0.43 0.14 0.44
9b. Trigger bias 0.30 0.10 0.14
9c. Upper mass tail 0.44 0.08 0.34

Total 2.18 1.51 0.87

7.2 Kinematic corrections

As described in Section 6.5, the simulated distributions of kinematic variables are cali-

brated through correction weights to match the data. These weights are derived using

B+ → K+J/ψ(µ+µ−) µTOS samples, and residual imperfections in the L0Muon calibration may

affect the kinematic weights. In addition, corrections are extracted from muon modes and

applied to electrons as well. This means that the calibration may not necessarily account for

effects such as electron bremsstrahlung emission in the Velo. As a result, the calibration of

the χ2
DV

and χ2
IP

of the B+ may not be perfect in the electron samples.

To evaluate the size of such systematic effects, the procedure described in Section 6.5 is

repeated to produce alternative sets of kinematic weights. These are then used to obtain

alternative efficiency estimates, which are compared to their nominal values to determine

the size of the systematic effect. In the muon modes, two sets of weights are compared:
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1. µTOS weights: these are the nominal weights; they come from B+ → K+J/ψ(µ+µ−)

samples obtained using the µTOS trigger strategy; and

2. µTIS weights: these are computed using B+ → K+J/ψ(µ+µ−) samples where the L0

trigger fires independently of the signal.

In the electron modes, there are five sets of weights:

1. µTOS weights: like for the muon samples, these are the nominal weights;

2. µTIS weights: these are obtained from the strategy used to derive the alternative

weights for the muon channels;

3. eTOS weights: these are computed using B+ → K+J/ψ(e+e−) eTOS samples;

4. eTIS weights: these also use B+ → K+J/ψ(e+e−) events, but from the inclusive TIS trigger

instead of the eTOS trigger; and

5. mixed weights: B+ → K+J/ψ(µ+µ−) µTOS samples are used to correct the pT, η and χ2
IP

of the B+, with χ2
DV

corrections coming from B+ → K+J/ψ(e+e−) eTOS samples.

To study the effect of the different calibration strategies, control-mode yields are computed in

bins of phase space. Then, they are divided by the efficiencies of each bin, as obtained using

each set of kinematic weights. This leads to efficiency-corrected yields, which are expected

to be uniform across phase space, provided the kinematics are calibrated correctly. Figure 7.1

shows efficiency-corrected 2018 yields, as a function of pT and χ2
DV

of the B+. It can be seen

that the nominal µTOS corrections lead to flat efficiency-corrected muon yields, however

χ2
DV

shows a trend in the electron sample. If mixed weights are used instead, the efficiency-

corrected electron yield becomes uniform in χ2
DV

. Therefore, the alternative calibration

strategies are expected to provide good coverage of the systematic effects related to the

kinematic corrections. The same conclusions are valid for the other data-taking periods,

because they yield qualitatively similar results; for this reason, they are omitted.

The systematic effect of the kinematic corrections is listed in row 2 of Table 7.2. The impact

on rJ/ψ is around 1.6%, which gets suppressed to approximately 0.5% in the double ratios.
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Figure 7.1: Efficiency-corrected yields of 2018 µTOS (top) and eTOS (bottom) data. The efficien-
cies used in the denominator are computed based on the different kinematic calibration strategies
described in the main body.

7.3 Finite size of simulation and calibration data

The B+ → K+J/ψ(ℓ+ℓ−) modes are used extensively to compute calibration weights. This

means that the efficiency corrections are correlated with the statistics of the control modes.

For this reason, the errors on the B+ → K+J/ψ(ℓ+ℓ−) yields are treated as systematic uncer-

tainties, and their correlations with the efficiencies are taken into account by employing a

bootstrap method [193]. This involves assigning each event in simulation and data a weight

drawn from a Poisson distribution of mean 1, and then repeating all selection and calibration

steps based on these Poisson weights. This is done 100 times, thus leading to 100 versions

of the efficiencies and control-mode yields. These are subsequently used in Equations (7.1)

and (7.2) to estimate the associated systematic uncertainty.

The net impact of the size of the simulation and calibration data is listed in row 3 of table Ta-

ble 7.2. It is smaller than the effect induced by the calibration of the B+ kinematics. The
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simulated Run 2.2 samples benefit from increased statistics, leading to a smaller systematic

effect than in the preceding RK measurement.

7.4 Occupancy proxies

For reasons outlined in Section 6.4, the event occupancy is simulated imperfectly, and cannot

be accessed directly. This effect cannot be mitigated through correction weights, because

strategies that make one occupancy proxy agree between data and simulation lead to dis-

agreements in other proxies. For this reason, no corrections are applied to the occupancy of

simulated events. Instead, a systematic uncertainty is assigned to account for imperfections

in the modelling of the occupancy. The procedure described in Section 6.5 is repeated after

the addition of three occupancy proxies, one at a time, to the kinematic calibration scheme.

This leads to three sets of alternative efficiencies, from which systematic uncertainties are

calculated using Equations (7.1) and (7.2). The three considered occupancy proxies are:

1. nSPDHits: the number of hits in the scintillating pad detector;

2. nTracks: the number of tracks in the event; and

3. nPVs: the number of primary vertices reconstructed in the Velo.

The procedure is hence similar to the one presented in Section 7.2, with an additional effect

that is taken into account. The performance of the TIS! trigger strategy depends on the

occupancy, so the calibration histograms presented in Section 6.3.4 are recomputed after

each occupancy proxy has been corrected. The efficiencies are then calculated using these

histograms, rather than the nominal kinematic corrections histograms.

The impact of the occupancy proxies is presented in row 4 of Table 7.2. The single ratio rJ/ψ

is affected by approximately 1%, whilst the double ratios are only impacted at the permille-

level, thanks to the in-built cancellation.



140 Chapter 7. Systematic uncertainties induced by the calculation of efficiencies

7.5 Signal decay model

The q2 distribution in simulated B+ → K+ℓ+ℓ− events depends on the theoretical model used

to describe these decays. This in turn has an effect on the efficiencies, so the systematic

effect of the model parameters has to be evaluated. Dr. Paula Álvarez Cartelle used the

flavio software package [79] to fluctuate these parameters according to their uncertainties

100 times, thus obtaining 100 alternative q2 distributions. The rest of the procedure, which

constitutes original work, involves correcting the simulated q2 distribution to match each of

the fluctuated distributions in turn. This leads to 100 alternative sets of efficiency estimations,

which are combined according to Equations (7.1) and (7.2) to evaluate the bias induced by the

uncertainties in the decay model. The alternative distributions are presented in Figure 7.2.

For q2 ∈ (1.1 GeV2, 6.0 GeV2), where RK is measured, the four data-taking periods lead to

similar results. However, there are differences at higher values of q2, as a result of the

different models used to simulate B+ → K+ℓ+ℓ− decays. This is reflected in the different

estimates of f q2
listed in Table 6.5. The overall impact on RK is presented in row 5 of Table 7.2.

The effect is found to be of a few permille.

7.6 Trigger calibration

The trigger calibration method has several aspects that could induce systematic uncertainties.

One of them is the choice of tag employed to compute efficiencies via the “tag & probe”

method described in Section 6.3. As shown in Figures 6.4, 6.6, 6.8, and 6.10, using the

nominal tags leads to simulated efficiencies that are in good agreement with those extracted

without the use of a tag (hence being labelled as “direct”). The other tagging strategies shown

in these figures are used to derive alternative trigger corrections, from which the systematic

effect is evaluated using Equations (7.1) and (7.2). In the case of eγTIS, which is shown

in Figure 6.9, no alternative unbiased tag is found. For this reason, the systematic effect it

induces is evaluated using an alternative binning scheme for the efficiency as a function of

the maximum electron pT.
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Figure 7.2: Simulated q2 distributions of generated B+ → K+e+e− (top two rows) and B+ → K+µ+µ−

(bottom two rows) events, before and after the application of weights derived using flavio. The
original distributions are shown in red, whilst the changes induced by applying the weights derived
using flavio are shown in blue. The predictions in the region of narrow charmonium resonances are
not meaningful.
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Another potential source of systematic uncertainty is the assumption that the trigger effi-

ciencies of the two leptons in the candidate are independent. The L0Muon and L0Electron

correction weights are computed based on this factorisation, which is shown in Figure 6.5

to hold. However, Figure 6.7 indicates that the electron trigger efficiency depends on how

well-separated the two candidate electrons are in the Ecal. To assess the impact of this

effect, L0Electron efficiencies are recalculated using an alternative binning scheme. Instead

of the nominal ET of each electron, this scheme uses the distance between the two Ecal

clusters, rcalo, and the maximum ET of the two candidate electrons. The efficiencies resulting

from this method are shown in Figure 7.3 for 2018 data and simulation. Their equivalents

for the other data-taking periods are similar, and therefore omitted.
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Figure 7.3: Efficiency with which the two electrons in B+ → K+J/ψ(e+e−) data (left) and simulation
(right) trigger the L0Electron line, as a function of their maximum ET and the distance between their
Ecal clusters. All efficiencies are computed using the nominal eTIS tag, described in Section 6.3.2.

The total systematic uncertainty induced by the trigger calibration is listed in row 6 of Ta-

ble 7.2. The individual contributions of each trigger selection are presented as indented

subpoints. The double ratio leads to good cancellation of these uncertainties, which are

mostly at the sub-permille level. The dominant effect is the eTOS factorisation, which has a

permille effect on RK.

7.7 Material and tracking

It can be seen in Figure 6.12 that the kinematic calibration weights do not fully account for

discrepancies between the distributions of electron pseudorapidity (η) in data and simulation.
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This is attributed to imperfections in the simulated material budget of the detector. If the

simulation underestimates the material budget as a function of η, the electron interaction

probability in the detector is also underestimated. This leads to an overestimated tracking

efficiency in those particular regions of η, because not as much bremsstrahlung radiation is

emitted. In other words, mismodelling of the electron pseudorapidity and tracking efficiency

is caused by imperfections in the simulated material budget of the detector.

A systematic uncertainty attributed to this mismatch is assigned using weights that calibrate

the distribution of simulated electron pseudorapidity to match the data. Alternative effi-

ciency estimates are obtained based on these weights, and then compared to the nominal

efficiencies that do not use the pseudorapidity calibration weights. The overall impact on

RK is then calculated using Equations (7.1) and (7.2).

The pseudorapidity calibration weights are calculated as data-over-simulation ratios of

two-dimensional
(
η(e+), η(e−)

)
distributions in B+ → K+J/ψ(e+e−) eTOS samples. The ra-

tios are computed separately for electrons that have or have not had a photon added by

the bremsstrahlung recovery procedure. Alternative binning schemes, which also take into

account the polarity of the magnet, are found to yield equivalent results. The calibration

weights for 2018 samples are illustrated in Figure 7.4. The results corresponding to the

other data-taking periods are qualitatively similar, and therefore omitted. The effect of the

weights is illustrated in Figure 7.5, where the simulated pseudorapidity distribution in con-

trol samples, after the application of corrections, is found to be similar to the one in data.

The distribution in the signal samples is not expected to be identical, due to the different

kinematics. However, the corrections are not expected to depend strongly on kinematics,

and so the pseudorapidity correction weights can be applied to the simulated signal samples.

Both the rapidity corrections, w(η(e+), η(e−)), and the electron tracking efficiencies, εtracking,

depend on the material budget. As a result, they can be related through an unknown

normalisation factor k:

w(η(e+), η(e−)) = k ·
εdata

tracking
(η(e+)) · εdata

tracking
(η(e−))

εsim
tracking

(η(e+)) · εsim
tracking

(η(e−))
. (7.5)
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Figure 7.4: Weights used to calibrate the simulated pseudorapidity distribution in simulated 2018
electron samples. The axis labels indicate whether the weights are applied to electrons that have
undergone bremsstrahlung recovery (1γ), or to electrons that have not (0γ).

))−e(η), +e(ηmin(
2 3 4 5

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1 Control-mode data

Control-mode simulation

Signal-mode simulation

))−e(η), +e(ηmax(
2 3 4 5

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

Figure 7.5: Minimum and maximum pseudorapidity of the two electrons in 2018 eTOS candidates. The
grey histograms show the distribution in background-subtracted B+ → K+J/ψ(e+e−) data. The red and
blue lines depict the distributions in fully-selected B+ → K+J/ψ(e+e−) and, respectively, B+ → K+e+e−

simulated events, to which the pseudorapidity calibration procedure is applied.
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The factor k depends on the statistics of the data and simulation samples in each data-taking

period, as well as on the global ratio of efficiencies. This has two implications: first, k is

expected to vary across data-taking periods; second, the pseudorapidity weights cannot

be used to compute the impact of electron tracking discrepancies on the total efficiency of

B+ → K+J/ψ(e+e−), and by extension on rJ/ψ. However, k cancels out in the ratio of electron

efficiencies which is built into RK and Rψ(2S). For this reason, the pseudorapidity correction

weights are used to assign a systematic uncertainty on the two double ratios, but not on rJ/ψ.

The result is presented in row 7 of Table 7.2. It is found to be at the permille level, thanks to

the cancellation of this effect in the double ratio. The size of the effect on the double ratios is

validated through an alternative method of assessing this systematic uncertainty, which is

presented in Section 8.4.

7.8 PID corrections

There are three effects that lead to systematic uncertainties in the calculation of the PID

efficiencies. The first one is induced by the chosen binning of the PID calibration tables. On

one hand, increasing the number of bins would in principle lead to more accurate efficiency

estimates. On the other hand, using fewer bins reduces the impact of random statistical

fluctuations. To assess how the efficiency histograms for kaon and muon PID are affected

by the binning, alternative calibration tables are produced by changing the final step in the

generation procedure. As outlined in Section 6.2.1, this step consists of merging adjacent bins

if their corresponding efficiencies are compatible within a certain threshold. This threshold

is nominally set to 2.5 σ, so alternative tables are generated by changing this threshold to

1.5, 2.0, 3.0, and 3.5 σ. For the electrons, the calibration samples are not statistically powerful

enough to allow the use of this method. As a consequence, only one alternative binning

scheme is used. The boundaries of the bins in this scheme correspond to the central values

of the nominal bins.

Another systematic effect is illustrated in Figure 6.3. It can be seen that changing the trigger

selection of the electron calibration samples leads to variations in the resulting efficiencies.
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To quantify this effect, alternative electron PID efficiencies are obtained based on samples

where the L0 fires independently of the signal.

The final systematic uncertainty is specific to the Run 2.2 electron calibration samples. As

mentioned in Section 6.2.2, their selection cuts harsher on the χ2
IP

of the electrons than the

selection used by the RK measurement. Nominally, the effect of this cut is accounted for using

correction factors, w
χ2

IP

i
, for the efficiencies obtained from data. These factors are calculated

on a bin-by-bin basis, using the simulated effect of the tighter χ2
IP

cut on the efficiencies. The

PID efficiency in each bin then becomes:

εi
PID 7→ εi

PID · w
χ2

IP

i
= εi

PID ·
εi

PID
(sim | loose cut)

εi
PID

(sim | tight cut)
, (7.6)

where the efficiencies in the ratio on the right-hand side are obtained from simulated

B+ → K+J/ψ(e+e−) events. The loose cut corresponds to the one in the RK selection, whilst the

latter is obtained by tightening the cut to the value used by the selection of the calibration

data. The expression above does not rely on the absolute efficiency values in the simulation,

which are known to be imperfect. Instead, the underlying assumption is that dependencies

of the PID efficiency on the χ2
IP

of electrons are modelled correctly. This assumption is tested

by generating alternative calibration histograms, using both data and simulated control

samples to which a tighter cut in χ2
IP

is applied. The correction factors w
χ2

IP

i
are adjusted to

take into account data and simulation differences in the modelling of the PID efficiency as a

function of χ2
IP

. The adjustment is done in two ways:

w
χ2

IP

i
7→ w

χ2
IP

i
·
εi

PID
(data | tight cut) / εi

PID
(data | tighter cut)

εi
PID

(sim | tight cut) / εi
PID

(sim | tighter cut)
, and (7.7)

w
χ2

IP

i
7→ w

χ2
IP

i
/
εi

PID
(data | tight cut) / εi

PID
(data | tighter cut)

εi
PID

(sim | tight cut) / εi
PID

(sim | tighter cut)
. (7.8)

Using both correction factors accounts for the fact that it is unknown in which direction the

simulated efficiency in the cut-out region disagrees with data. This is therefore a conservative

way of assessing this systematic effect.

The overall effect of the methods used to assess the PID performance is presented in row 8
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of Table 7.2. As shown by the indented sub-entries in the table, the electron PID is significantly

more impacted by systematic effects than the kaon and muon PID. Even so, these systematics

cancel almost entirely in the double ratio, so the net effect on RK is of a few permille.

7.9 Resolution of q2 and m(K+e+e−)

The smearing method described in Section 6.6 introduces three sources of systematic un-

certainty. The first one is attributed to the assumption that the disagreement between q2 in

data and simulation is uniform across phase space. Since candidate electrons have momenta

much larger than their mass, the J/ψ invariant mass can be written as:

m(e+e−) =
√

2 pe+ pe− (1 − cosαℓ+ℓ−) , (7.9)

where pe+ and pe− are the momenta of the electrons, and αℓ+ℓ− is the opening angle between

them. Depending on its magnitude, the momentum has a resolution of around 10%. Since

αℓ+ℓ− is found to have a resolution two orders of magnitude better than that of the momen-

tum, any q2-dependent smearing effects would be driven by momentum dependencies. To

assess the systematic effect of any such trends, the smearing factors are recomputed using

K+J/ψ(e+e−) data and simulation binned in minimum and maximum candidate electron mo-

mentum. The resulting factors are then used to obtain alternative efficiency estimates, which

are used in Equations (7.1) and (7.2) to evaluate the systematic effect. Projections of the ratios

between resolutions in data and in simulation are shown in Figure 7.6.

Another consideration is the fact that the smearing is done using the scales and shifts aver-

aged across trigger selections1. A systematic effect may be induced by the small fluctuations

present across samples taken using different trigger selections. To assess the size of the

effect, the efficiencies are recomputed using smearing factors fluctuated one standard de-

viation above and below their uncertainties. These uncertainties are the RMS between the

factors computed in the three trigger categories.

1These factors are presented in Table 6.2.
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Figure 7.6: Data-over-simulation ratio of the momentum resolution in B+ → K+J/ψ(e+e−) 2017 (left)
and 2018 (right) samples. Linear minimum χ2 fits are superimposed to highlight the momentum
dependency.

Another systematic effect is induced by the imperfect modelling of the upper mass tail of the

m(e+e−) distribution. This tail is dominated by events where the bremsstrahlung recovery

algorithm incorrectly adds too much energy back to the signal electrons. This can happen

when the added energy comes from an Ecal cluster corresponding to a stray photon in the

event. Since the number of stray photons changes with occupancy, the size of the upper

mass tail is also expected to depend on the occupancy. For this reason, the m(e+e−) fit used to

derive the smearing parameters is repeated by using three different signal templates. These

are obtained from simulated samples with small, medium, and large values of nSPDHits.

It can be seen in Figure 7.7 that the tails of the signal templates change with nSPDHits.

Taking this into account leads to better modelling of the upper mass tail in data, as shown

in Figure 7.8.

The total systematic uncertainties induced by the smearing procedure are reported in row 9

of Table 7.2. The subsequent indented entries show the contributions from the three consid-

ered effects, which are: the momentum dependence, trigger bias, and upper mass tail. Each

of them is found to impact RK only by approximately 0.1%.
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Figure 7.7: Shape templates for m(e+e−) in simulated Run 2.2 eTOS events from photon categories
1γ (left) and 2γ (right), shown separately for small, medium, and large values of nSPDHits. The
normalisation is such that the peaks have the same height.
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Figure 7.8: Distribution of m(e+e−) (left) and m(K+e+e−) (right) in Run 2.2 data and simulation. The
smearing is applied to the simulation through through two methods: the nominal one (blue), as
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shape (purple). The distribution in calibration data is shown in black, for comparison. The equivalent
results from the other data-taking periods are similar, and therefore omitted.



Chapter 8

Cross-checks

Understanding the efficiencies across phase space is vital to the measurement of RK. To this

end, several cross-checks are performed. Each of them tests the experimental prodecure

in different, complementary ways. This chapter covers the results of the most important

tests, starting in Section 8.1 with the single ratio rJ/ψ. This quantity is a stringent test of

the modelling of the efficiencies, which is further verified by the double ratio Rψ(2S) calcu-

lated in Section 8.2. In Section 8.3, a test of the robustness of the kinematic corrections is

presented. This is followed by Section 8.4, which covers the validation of the systematic un-

certainty assigned due to imperfections in the simulated material budget. Finally, Section 8.5

demonstrates that the selection suppresses particular backgrounds as expected.

The procedure employed to obtain the results from the first two sections was developed by

Dr. Paula Álvarez Cartelle and Dr. Thibaud Humair for the previous RK measurement. They

used it to obtain all Run 1 and Run 2.1 results presented in these sections. In addition, the

calculation of Rψ(2S) was conducted jointly with Davide Lancierini. Everything else in this

chapter represents original work.

150
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8.1 The single ratio rJ/ψ

By grouping the terms in Equation (4.4) based on whether they relate to the rare or the control

mode, RK can be expressed as:

RK =

(

N(K+µ+µ−)

ε(K+µ+µ−)
· ε(K+e+e−)

N(K+e+e−)

) /

rJ/ψ , (8.1)

where the parameter rJ/ψ is defined as:

rJ/ψ =
N(B+ → K+J/ψ(µ+µ−))

ε(B+ → K+J/ψ(µ+µ−))
·
ε(B+ → K+J/ψ(e+e−))

N(B+ → K+J/ψ(e+e−))
(8.2)

=
B(J/ψ→ µ+µ−)

B(J/ψ→ e+e−)
. (8.3)

Since this quantity can be obtained purely from the control channels, it is useful in verifying

efficiencies before unblinding RK. In addition, rJ/ψ is known to respect LFU down to a few

permille, as evidenced by the estimate obtained from the branching fractions listed in the

PDG [9]:

rPDG
J/ψ = 0.998 ± 0.008. (8.4)

Note that rJ/ψ is a single ratio, and hence it does not benefit from the same cancellation

of muon-electron detection differences that double ratios benefit from. This makes rJ/ψ a

stringent test of efficiencies: this quantity is measured accurately only if the electron-channel

efficiencies are under control with respect to their muon counterparts.

Estimates of rJ/ψ are computed separately for each data-taking period and electron trigger

selection in the analysis. To check the correlations between the different selections, these

individual rJ/ψ results are averaged in several ways, as described in Section 8.1.1. Then,

the modelling of the efficiency corrections across phase space is validated by recomputing

rJ/ψ in bins of variables relevant to the kinematics and detector response; this is covered

by Sections 8.1.2 and 8.1.3.
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8.1.1 Integrated value of rJ/ψ

Estimates of rJ/ψ are obtained using Equation (8.2) to combine B+ → K+J/ψ(ℓ+ℓ−) yields and

efficiencies. This is done separately for the 4 major data-taking periods, and for the 3

electron triggers, thus leading to 12 estimates in total. All individual results, alongside

any combinations that take into account correlations and uncertainties, are expected to

agree with rPDG
J/ψ . The combinations are weighted means of N individual values, where the

weights {wi}i=1,N are assigned based on the systematic uncertainties and correlations of the

rJ/ψ estimates. The weights are calculated using the covariance matrix V (derived by means

covered by Chapter 7) that quantifies the systematic effects induced by efficiencies:

wi =

N∑

j=1
V−1

i, j

N∑

i=1

N∑

j=1
V−1

i, j

. (8.5)

This means that a combination of N estimates of rJ/ψ has the central value:

rJ/ψ =

N∑

i=1

wiri
J/ψ =

N∑

i=1

N∑

j=1
V−1

i, j ri
J/ψ

N∑

i=1

N∑

j=1
V−1

i, j

, (8.6)

and the uncertainty:

σ(rJ/ψ) =

N∑

i=1

N∑

j=1

wiw jVi, j . (8.7)

The individual measurements of rJ/ψ, for each data-taking period and electron trigger, are

presented in the first column of Table 8.1. Alongside them, various combinations across

data-taking periods are also listed. In particular, the average value of all twelve individual

estimates is found to be:

rJ/ψ = 0.981 ± 0.020 . (8.8)

This value is in good agreement with rPDG
J/ψ . As shown in Table 8.1, the individual estimates,

as well as the combinations, are also compatible with the PDG value. This is good indication

that the efficiencies are well understood.
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Table 8.1: Integrated values of rJ/ψ and Rψ(2S), as obtained from the four data-taking periods and
the three electron strategies. Also listed are the results of several combinations. The error on rJ/ψ is
systematic, whereas for Rψ(2S) the first uncertainty is statistical, and the second is due to systematic

effects that also impact RK. The two Rψ(2S) columns correspond to the two q2 selections presented in
the main body.

rJ/ψ Rψ(2S) narrow Rψ(2S) wide
Run 1

eTOS 1.063 ± 0.064 0.999 ± 0.017 ± 0.016 1.011 ± 0.018 ± 0.016
hTOS! 1.008 ± 0.071 0.970 ± 0.066 ± 0.042 1.002 ± 0.070 ± 0.044
TIS! 1.015 ± 0.070 1.078 ± 0.035 ± 0.033 1.062 ± 0.035 ± 0.033

Run 1 combination
1.034 ± 0.038 1.004 ± 0.015 ± 0.016 1.016 ± 0.016 ± 0.016

Run 2.1
eTOS 1.052 ± 0.063 0.995 ± 0.013 ± 0.012 0.979 ± 0.014 ± 0.012
hTOS! 1.053 ± 0.090 0.932 ± 0.060 ± 0.045 0.974 ± 0.065 ± 0.048
TIS! 1.112 ± 0.092 0.992 ± 0.027 ± 0.023 0.982 ± 0.028 ± 0.023

Run 2.1 combination
1.066 ± 0.056 0.991 ± 0.012 ± 0.011 0.979 ± 0.012 ± 0.011

Run 1 + Run 2.1 combination
1.014 ± 0.036 0.995 ± 0.009 ± 0.011 0.989 ± 0.009 ± 0.011

2017
eTOS 0.981 ± 0.046 0.984 ± 0.013 ± 0.011 0.991 ± 0.014 ± 0.011
hTOS! 0.946 ± 0.064 0.958 ± 0.055 ± 0.035 1.037 ± 0.064 ± 0.038
TIS! 1.000 ± 0.032 1.020 ± 0.027 ± 0.023 1.031 ± 0.028 ± 0.023

2017 combination
0.994 ± 0.017 0.987 ± 0.012 ± 0.011 0.998 ± 0.012 ± 0.011

2018
eTOS 0.992 ± 0.048 0.991 ± 0.012 ± 0.010 1.003 ± 0.013 ± 0.010
hTOS! 0.946 ± 0.064 0.991 ± 0.050 ± 0.028 1.039 ± 0.054 ± 0.029
TIS! 0.983 ± 0.031 1.031 ± 0.024 ± 0.019 1.030 ± 0.024 ± 0.019

2018 combination
0.984 ± 0.027 0.997 ± 0.011 ± 0.009 1.008 ± 0.011 ± 0.009

Run 2.2 combination
0.994 ± 0.024 0.992 ± 0.008 ± 0.009 1.003 ± 0.008 ± 0.009

Total combination
0.981 ± 0.020 0.992 ± 0.006 ± 0.008 0.997 ± 0.006 ± 0.009

8.1.2 Single-variable dependencies in rJ/ψ

Although the rJ/ψ estimates in Table 8.1 indicate that efficiencies are well understood, they

are not sensitive to effects that cancel when integrated over phase space. Mismodelling can

occur, for example, if efficiencies of low-pT electron events are overestimated, whilst high-

pT electron efficiencies are underestimated in such a way that the effect cancels out when

integrated across the pT spectrum. Since some variables do not have the same distribution in
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signal and control samples, the cancellation that would happen at resonant q2 may not occur

in the signal region. This could then compromise the application of efficiency corrections

from the control channel to the signal modes.

Thanks to the high statistics of the B+ → K+J/ψ(ℓ+ℓ−) samples, the rJ/ψ test can be adapted

to check for such effects. This is done by splitting the range of a given variable into several

bins, and computing rJ/ψ in each bin individually1. In a given bin of index i, this is done

based on Equation (8.2) as follows:

1. the estimated B+ → K+J/ψ(ℓ+ℓ−) yield is obtained from a fit to the data in the bin;

2. the efficiency of control-mode events falling into that bin is evaluated using fully-

calibrated simulation;

3. steps 1 and 2 are repeated for each bin, using both electron and muon control samples,

thus obtaining the efficiency-corrected yieldsN e
i

andNµ

i
in each bin;

4. the resulting rJ/ψ estimate is then ri
J/ψ = N

µ

i
/N e

i
.

This is referred to as the “1D rJ/ψ” check. Ideal efficiency corrections would lead to identical

ri
J/ψ in each bin of the studied variable. In other words, rJ/ψ would be flat in that variable. Since

the corrections are not expected to be perfect, some deviations from flatness are expected. The

problematic cases are those where the double ratio does not guarantee perfect cancellation

between signal and control channels. This happens when the distribution of the binned

variable differs between signal and control samples, and deviations from flatness are due to

genuine mismodelling of the efficiency as a function of the studied variable. As a result, the

estimated signal efficiencies in the different bins may not necessarily reflect the actual yields.

Since ideally the ratio between the expected signal and control yields would be equal to the

ratio between their respective efficiencies, any deviations from unity of the quantity

dℓf =

∑

i
Nrare

i

∑

i
Ni

/
∑

i
εrare

i

∑

i
εi

(8.9)

1The binning scheme is optimised such that equivalent populations are expected in each bin.
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would point towards an effect that does not cancel in the double ratio. Here, Ni and εi are the

binned B+ → K+J/ψ(ℓ+ℓ−) yields and efficiencies obtained in steps 1 and 2, whilst Nrare
i

and

εrare
i

are their B+ → K+ℓ+ℓ− counterparts. Note that here the signal yield is an estimate based

on the control-mode, i.e. Nrare
i
= εrare

i
Ni. The quantity dℓ

f
can be computed for both electrons

and muons, leading to the definition of the following observable:

d f =





∑

i
εrare

i,µ · N
µ

i

∑

i
εi,µ · Nµ

i

·

∑

i
εi,µ

∑

i
εrare

i,µ





/




∑

i
εrare

i,e · N e
i

∑

i
εi,e · N e

i

·

∑

i
εi,e

∑

i
εrare

i,e




− 1 . (8.10)

This is called the flatness parameter. It encodes the impact on RK of rJ/ψ fluctuations across

bins, assuming these fluctuations are due to genuine mismodelling of the efficiencies in

terms of the binned variable. For every rJ/ψ test, this flatness parameter is required to be

comparable, if not smaller than, the expected systematic uncertainty on RK. If that is not the

case, it has to be taken into account as a separate systematic effect.

A selection of results from the 1D rJ/ψ check is presented in Figure 8.1. The binned variables

describe the decay kinematics, such as the transverse momenta of the leptons. This makes

the selected variables particularly important for the correct calibration of efficiencies. The

plots in Figure 8.1 use 2018 eTOS and µTOS events. The equivalent results with electron

samples from hTOS! and TIS! are presented in Appendix E. Also shown in this appendix are

the results from 2017 data, which are qualitatively similar to the 2018 ones. Note that this

test targets the flatness of rJ/ψ across bins, and hence the figure of merit is d f . The value to

which the bins average is not important, and so the bins in each check are normalised to the

average rJ/ψ value across phase space, denoted by rJ/ψ.

For the shown variables, the ratio rJ/ψ is found to exhibit little to no variation between bins.

This is a clear indication that the efficiency dependencies on these variables are modelled

correctly. However, trends are observed in two other places. The first place is in the χ2
DV

of

the B+, as shown in Figure 8.2. This is one of the variables whose simulated distributions

are calibrated using the kinematic corrections described in Section 6.5. The systematic effect

induced by the calibration method is evaluated in Section 7.2, using alternative correction
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Figure 8.1: Plots of rJ/ψ obtained from 2018 eTOS and µTOS data, as a function of variables relevant
to the detector response. The corresponding flatness parameters are displayed at the bottom of each
plot. The top of each rJ/ψ plot shows the kinematic distributions of the binned variable, in simulated
signal and control samples. The distributions in electron and muon control samples are depicted
in blue and red solid lines, respectively. Their signal-mode counterparts are shown in blue and red
dotted lines, respectively. The uncertainties shown are purely statistical.
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Figure 8.2: Plot of rJ/ψ as a function of the χ2
DV

of the B+ (left), obtained from 2018 eTOS and µTOS
data. The black bins show the result based on the nominal efficiency corrections. The coloured bins
represent the alternative schemes described in Section 7.2, which are used to assess the systematic
uncertainty due to calibration of the kinematics. The corresponding flatness parameters are displayed
at the bottom, in matching colours. The kinematic distributions of the binned variable, in simulated
samples, are shown on the right. The distributions in electron and muon control samples are depicted
in blue and red solid lines, respectively. Their signal-mode counterparts are shown in blue and red
dotted lines, respectively.

strategies. To check whether the trend in rJ/ψ is encompassed by the systematic uncertainty,

the binned exercise is repeated using the alternative kinematic correction strategies. The

results are represented as coloured bins in Figure 8.2. All flatness parameters are found

to be well below the permille-level, the smallest of them resulting from the strategy that

explicitly takes into account differences in χ2
DV

between muon samples and electron samples.

This means that the trend in rJ/ψ is covered by the systematic uncertainty assigned due to

kinematic calibration strategy.

The other place where trends are observed is in variables related to the pseudorapidity of

the leptons, as shown in Figure 8.3. As explained in Section 7.7, the material budget of

the detector is not expected to be modelled perfectly by the simulation. To check the effect

on RK of these imperfections, weights are derived to correct the simulated pseudorapidity

distributions of electrons, to match the data. The impact on RK is found to be small, thanks to

the cancellation inherent to the double ratio. Hence, the pseudorapidity corrections are not

used nominally when computing efficiencies. However, because the imperfect modelling of

the material budget affects electrons more than muons, the single ratio rJ/ψ is more susceptible

to the effect of these corrections. For this reason, the 1D rJ/ψ tests shown in Figure 8.3 are

conducted both with and without the η corrections. It is found that applying them improves

the values taken by d f . In particular, the flatness parameter associated to the angle between
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the two leptons, αℓ+ℓ− , drops from nearly 2% to a few permille after the application of

the η corrections. This reduction suggests that the effect is not a genuine mismodelling

of the efficiencies, but a reflection of the imperfections in the simulated pseudorapidity

distributions. Since the definition of d f assumes any deviation from flatness is due to

genuine mismodelling in the variable under study, the flatness parameter cannot be used

in this particular case to assess the effect on RK. The associated systematic uncertainty is

evaluated based on the η corrections, and validated via the check described in Section 8.4.

In summary, the modelling of efficiencies across phase space is tested by computing rJ/ψ as

a function of variables relevant to the detector response. The distribution of rJ/ψ in each of

these variables is generally found to be flat. The small departures from flatness are most

likely statistical in nature. If, instead, these deviations are assumed to stem from genuine

mismodelling of the efficiencies, the systematic effect on RK is evaluated through the flatness

parameter d f . All results for d f are found to be at the permille-level at most. The largest

effects are discussed in detail and found to be within the associated systematic uncertainties

assigned in Chapter 7. This gives confidence that the efficiencies are suitably modelled.

8.1.3 Double-variable dependencies in rJ/ψ

The 1D rJ/ψ test covered by the previous subsection is extended to two dimensions, in order

to validate the modelling of efficiency corrections in terms of variables — defined in the

detector reference frame — that describe a B+ → K+ℓ+ℓ− event. These variables are illustrated

in Figure 8.4. The momentum of the B+ is encoded by three parameters: its magnitude (pB+),

the polar angle (αB+), and the azimuthal angle (φB+). The decay of the B+ into a kaon and

a dilepton system can be fully described by three variables: the dilepton invariant mass

(q2) and polar angle (φℓ+ℓ−), along with the angle between the kaon and the dilepton (αK+).

Parametrising the individual leptons requires two further kinematic variables: the angle

between the two (αℓ+ℓ−), and the polar coordinate of one of the leptons (φℓ). In summary, a

B+ → K+ℓ+ℓ− event can be described using a set of 8 variables:

A0 =
{

pB+ , αB+ , φB+ , αK+ , φℓ+ℓ− , q2, αℓ+ℓ− , φℓ
}

. (8.11)
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Figure 8.3: Plot of rJ/ψ as a function of variables related to lepton pseudorapidity, obtained from 2018
eTOS and µTOS data. The black bins show the result based on the nominal efficiency corrections.
The red bins show how the result changes as a result of the weights derived in Section 7.7 to correct
the simulated distributions of electron pseudorapidity. The corresponding flatness parameters are
displayed at the bottom of each plot, in matching colours. At the top, the kinematic distributions of
the binned variable are shown. The distributions in electron and muon control samples are depicted
in blue and red solid lines, respectively. Their signal-mode counterparts are shown in blue and red
dotted lines, respectively.
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Figure 8.4: Illustration of variables used to parametrise a B+ → K+ℓ+ℓ− event.

The dilepton invariant mass is related to the momenta of the leptons and the angle between

their tracks: q2 = 2 pℓ+ pℓ− (1 − cosαℓ+ℓ−). This means that q2 and pB+ can be replaced in the

above list of variables with the maximum and minimum momenta of the two leptons, max pℓ

and min pℓ respectively. Furthermore, the distribution of αB+ is not related to the internal

structure of the decay, and the LHCb detector can be assumed to be polar symmetric in the

decay frame. This brings the list of variables describing a B+ → K+ℓ+ℓ− event down to four.

They form the set:

A =
{
max pℓ, min pℓ, αℓ+ℓ− , αK+

}
. (8.12)

In the particular case of resonant decays, q2 is constrained to the mass of the resonance

squared. This reduces the number of independent kinematic variables to three. Note that

q2 < A: although the rare and resonant modes are well separated in this variable, they exhibit

good overlap in the four kinematic variables contained by the set A. This is why grouping

these variables into pairs to form a two-dimensional phase space, and computing rJ/ψ in

regions of this space, provides a powerful check of the validity of the efficiency corrections.

This is called the “2D rJ/ψ” check, and it follows the same procedure as the one-dimensional

variant described in the previous subsection.

The four kinematic variables max pℓ, min pℓ, αℓ+ℓ− , and αK+ are grouped into six pairs, and

the rJ/ψ check is conducted in the phase space spanned by each combination. A 4 × 4 binning

scheme in each pair of variables is chosen such that the expected number of B+ → K+J/ψ(e+e−)

candidates in each bin is roughly similar. The estimated populations are determined using

simulated B+ → K+J/ψ(e+e−) events. Like for the one-dimensional check, B+ → K+J/ψ(ℓ+ℓ−)

yields and efficiencies are determined individually for each bin, and the flatness parameter d f

is computed to assess the systematic effect of deviations from flatness.



8.2. The double ratio Rψ(2S) 161

The results of the 2D rJ/ψ check, conducted on 2017 eTOS and µTOS data, is shown in Fig-

ure 8.5. The equivalents from 2018 data are similar, and are hence omitted. The samples from

the other electron triggers are not sufficiently high in statistics to lead to conclusive results.

Since this check is interested in the flatness of rJ/ψ, rather than the average, the normalisation

is not important. For convenience, the rJ/ψ values are normalised to the average across phase

space. All flatness parameters are generally found to be at most at the permille-level, with

the exception of those where the dilepton angle, αℓ+ℓ− , is one of the variables. As discussed

in the previous subsection, this is not an effect of mismodelling in αℓ+ℓ− . Instead, it is due to

imperfections in the simulated electron pseudorapidity. If these are corrected using calibra-

tion weights, the corresponding flatness parameters decrease below the permille-level, thus

indicating that the systematic uncertainty calculated in Section 7.7 covers the trend in αℓ+ℓ− .

To summarise, the modelling of efficiencies is further tested by computing rJ/ψ in two di-

mensions. Like in the 1D variant of this check, all flatness parameters are found to be at the

permille-level at most, notwithstanding the already-discussed effect onαℓ+ℓ− of imperfections

in the simulation of η. This strengthens the confidence in the modelling of the efficiencies.

8.2 The double ratio Rψ(2S)

The tests conducted on rJ/ψ prove that both muon and electron efficiencies are well un-

derstood across phase space. Although q2 separates the signal and resonant channels, the

detector performance itself depends on other kinematic variables, such as those that make

up the set A defined in Equation (8.12). In other words, q2 is not a variable on which efficien-

cies depend directly, and since the different modes overlap well in variables relevant to the

detector response, the efficiencies derived from the B+ → K+J/ψ(ℓ+ℓ−) modes are expected

to be modelled accurately across phase space, including across q2.

The portability of efficiency corrections across q2 cannot be tested using selected B+ → K+ℓ+ℓ−

candidates before unblinding RK. The rare-mode efficiencies could in principle be cross-

checked using control-mode events in the corresponding q2 ranges, as is done in Figure 6.15.

However, a more powerful test of the modelling of efficiencies across q2 is possible at the
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ℓ

ℓ

ℓ ℓ

Figure 8.5: The ratio rJ/ψ computed in two-dimensional bins of kinematic variables, normalised to the

average value across phase space. The uncertainties are purely statistical. The 0th bin corresponds to
the normalisation and is hence 1 by definition. The binning scheme is shown at the top of each plot,
alongside distributions of simulated B+ → K+e+e− (red) and B+ → K+J/ψ(e+e−) (blue) events. The
flatness parameters from each test are shown at the bottom of the plots. Where one of the variables is
the dilepton angle, αℓ+ℓ− , the exercise is repeated with the addition of the η corrections discussed in
the main body; this is shown in purple.
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ψ(2S) resonance. For this reason, an observable similar to RK is constructed using the

same procedure, with the exception that the q2 and m(K+ℓ+ℓ−) selection ranges are differ-

ent. This amounts to replacing the B+ → K+ℓ+ℓ− numerator in the definition of RK with its

B+ → K+ψ(2S)(ℓ+ℓ−) equivalent. The resulting observable is:

Rψ(2S) =
B(B+ → K+ψ(2S)(µ+µ−))

B(B+ → K+ψ(2S)(e+e−))

/ B(B+ → K+J/ψ(µ+µ−))

B(B+ → K+J/ψ(e+e−))
(8.13)

=
N(B+ → K+ψ(2S)(µ+µ−))

ε(B+ → K+ψ(2S)(µ+µ−))
·
ε(B+ → K+ψ(2S)(e+e−))

N(B+ → K+ψ(2S)(e+e−))

·
ε(B+ → K+J/ψ(µ+µ−))

N(B+ → K+J/ψ(µ+µ−))
·

N(B+ → K+J/ψ(e+e−))

ε(B+ → K+J/ψ(e+e−))
. (8.14)

This is designed to check the portability of the efficiency corrections into q2 ranges other

than those corresponding to the control-mode windows. For this reason, only systematic

effects that are relevant to RK efficiencies are assessed for Rψ(2S). Their cancellation is checked

through the fact that Rψ(2S) is a double ratio.

The B+ → K+ψ(2S)(ℓ+ℓ−) yields are obtained from fits to data, for each data-taking period

and trigger selection separately. These fits were performed by Davide Lancierini, who also

improved the background model with respect to the previous RK analysis. The results are

shown in Appendix F. The efficiencies are calculated using B+ → K+ψ(2S)(ℓ+ℓ−) simulated

events, after applying the full calibration chain. Estimates of Rψ(2S) are obtained based on

B+ → K+ψ(2S)(e+e−) candidates selected in the “wide” range q2 ∈ (9.92 GeV2, 16.40 GeV2).

The q2 cut is expected to affect some fit components more than others, and so the background

model is validated by recomputing Rψ(2S) after tightening the selection to the “narrow”

range q2 ∈ (11.22 GeV2, 16.40 GeV2). The results are presented in Table 8.1. Like with rJ/ψ,

estimates of Rψ(2S) are obtained separately for each data-taking period and electron trigger,

and then combined in several ways. All Run 2.2 results represent original work, the only

external contributions being the B+ → K+ψ(2S)(ℓ+ℓ−) yields obtained by Davide Lancierini.

Conversely, all combinations from Table 8.1 that include estimates for Run 2.2 also constitute

original work. The combinations are based on the Rψ(2S) covariance matrix VRψ(2S) , obtained

by means described in Chapter 7, together with the statistical uncertainties arising from
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the fits. More specifically, the matrix CRψ(2S) used to assign weights to the values in a given

combination,

wi =

N∑

j=1

(

C
Rψ(2S)

i, j

)−1

N∑

i=1

N∑

j=1

(

C
Rψ(2S)

i, j

)−1
, (8.15)

is given by:

CRψ(2S) = VRψ(2S) + diag(δ2
i ) . (8.16)

Here, δi is the uncertainty induced by the fits to data on the i th Rψ(2S) estimate used in the

combination. In particular, when averaging over the entire data set, the resulting Rψ(2S)

values from the “wide” and “narrow” q2 ranges are:

Rwide
ψ(2S) = 0.997 ± 0.006 ± 0.009 , (8.17)

Rnarrow
ψ(2S) = 0.992 ± 0.006 ± 0.008 . (8.18)

The first uncertainty is statistical, and the second is due to systematic effects relevant to

the measurement of RK. These averages, together with the individual results and the other

combinations, are compatible with the PDG average, RPDG
ψ(2S)

= 0.991 ± 0.078 [9]. Given this

excellent agreement, the efficiency corrections extracted from the control modes are found

to be valid in q2 regions other than around the J/ψ.

8.3 Calibrating B+ kinematics via scaling

The disagreement between data and simulation concerning the distributions of the χ2
IP

and

χ2
DV

of the reconstructed B+ may be caused by imperfectly simulated resolutions. If that is the

case, an alternative calibration method, different from the one described in Section 6.5, might

be better motivated. This method involves scaling simulated variables, instead of assigning

weights on an event-by-event basis, and is expected to lead to corrections equivalent to

the nominal ones. Hence, it is used as an additional check of the validity of the kinematic

weights employed to correct the efficiencies corresponding to Run 2.2 data.
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The scaling method relies on the principle of inverse transform sampling, in which the

cumulative density function (CDF) of a variable k = g(x1) is identical to the CDF of another

variable, x2. In the present situation, x1 is the observable in simulation, x2 is its counterpart

in data, and g(x1) is the transformation function that maps x1 onto a scaled variable, xscaled,

whose distribution matches the one of x2. This can be represented as:

∫ x

−∞
dxPdata(x)

︸             ︷︷             ︸

Fdata(x)

=

∫ x

−∞
dxPsim(g(x))

︸                ︷︷                ︸

Fsim(g(x))

, (8.19)

where x ∈ {χ2
IP

(B+), χ2
DV

(B+)}, Pdata(x) represents the distribution of x in data, and Psim(g(x))

(equivalent to Psim(xscaled)) is the distribution of the scaled variable in simulation. Their

cumulative density functions are denoted by Fdata(x) and Fsim(g(x)), respectively. The scaling

function is therefore given by:

g(x) = F−1
sim(Fdata(x)) . (8.20)

Note that the stripping selection involves cuts on both χ2
IP

(B+) and χ2
DV

(B+), which are listed

in Table 4.2. Because of this, Pdata and Psim are parametrised using two analytic functions

that are extrapolated into the region removed by the stripping. These functions are chosen

based on how well they are able to capture the features of the distributions they model. The

chosen parametrisations of χ2
IP

(B+) and χ2
DV

(B+) are:

Pχ2
IP

(B+) = C
(

e−k1x + qe−k2x
)

, and, respectively (8.21)

Pχ2
DV

(B+) = Cxn
[

e−k1x + q
(

e−k2x + re−k3x
)]

. (8.22)

The parameters C, n, q, r, k1, k2, and k3 are obtained from χ2-minimisation fits conducted

individually on Run 2.2 eTOS and µTOS data and simulation. The fits, together with the

cumulative distributions, are shown in Figure 8.6. The distributions of the scaled variables,

compared to the data and to the unscaled variables, are illustrated in Figure 8.7.

To quantify the effect of the scaling, the efficiencies of the rare and resonant modes are

computed in two different ways. The first method uses kinematic weights to correct pT(B+)
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and η(B+), as well as χ2
IP

(B+) and χ2
DV

(B+). The second method calibrates only pT(B+) and

η(B+) using kinematic weights, whilst χ2
IP

(B+) and χ2
DV

(B+) are scaled as described above. The

fractional differences between the efficiency estimates derived using the two methods are

listed in Table 8.2. The scaling-based estimates are found to be compatible at the permille level

with the results obtained from the nominal reweighting method. Moreover, the variation

between the two sets of efficiencies is covered by the systematic uncertainty assigned to

the kinematic calibration method. Note that this is a cross-check and not an evaluation

of systematic uncertainty, since the effect induced by the kinematic calibration method is

already estimated via the method described in Section 7.2. For this reason, the results of this

cross-check are not included in the evaluation of the total systematic uncertainties.

Table 8.2: Fractional differences, expressed as percentages, between computing rJ/ψ, RK, and Rψ(2S)

with and without scaling the simulated distributions of χ2
IP

(B+) and χ2
DV

(B+) to match the data.

2017 2018
eTOS hTOS! TIS! eTOS hTOS! TIS!

rJ/ψ 1.30 0.86 0.71 0.58 0.49 0.45
RK 0.11 0.13 0.48 0.23 0.49 0.31
Rψ(2S) 0.14 0.31 0.01 0.12 0.14 0.11

8.4 Validation of the material and tracking corrections

As mentioned in Section 7.7, the tracking performance of electrons is modelled imperfectly

by the simulation. However, electron tracks are expected to be similar between the signal

and control channels, leading to cancellation of tracking effects in the double ratio. In the RK

measurement, this cancellation is tested by calibrating the pseudorapidity distributions of

simulated electrons to match the control data. This ensures that the amount of material elec-

trons interact with, as a function of pseudorapidity, is accurately described by the simulation.

Since the electron tracking performance depends on the amount of radiated bremsstrahlung

energy, which in turn depends on the material budget, the pseudorapidity is a suitable proxy

for assessing the impact of tracking-related discrepancies between data and simulation. As

presented in Section 7.7, effects due to material and tracking are found to cancel well in the

double ratio. This subsection presents an additional test of this cancellation.
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Figure 8.6: Distributions of χ2
IP

(B+) (top two rows) and χ2
DV

(B+) (bottom two rows) in 2018 µTOS and

eTOS data (left) and simulation (right). The red curves represent the Pχ2
IP

(B+), as obtained from fits to

the distributions in black. The blue lines show the cumulative distributions of Pχ2
IP

(B+).
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Figure 8.7: Comparison between 2018 B+ → K+J/ψ(ℓ+ℓ−) data (black) and simulation before (red) and
after (blue) scaling the χ2

IP
and χ2

DV
of the reconstructed B+.
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Table 8.3: Fractional differences, expressed as percentages, between computing rJ/ψ, RK, and Rψ(2S)

with and without tracking corrections.

Run 1 Run 2.1 2017 2018
eTOS hTOS! TIS! eTOS hTOS! TIS! eTOS hTOS! TIS! eTOS hTOS! TIS!

rJ/ψ 1.98 2.67 2.73 2.08 2.10 2.21 1.36 1.68 1.82 2.22 2.19 2.23
RK 0.12 0.47 0.14 0.01 0.65 0.33 0.16 0.21 0.19 0.01 0.64 0.22
Rψ(2S) 0.11 0.78 0.48 0.01 0.14 0.22 0.21 0.21 0.15 0.03 0.29 0.21

This study employs a data-driven method [194] to measure the tracking and reconstruction

efficiency of electrons, in both data and simulation. This information leads to calibration

of simulated samples through correction weights assigned on an event-by-event basis. The

effect of these weights on efficiencies, and by extension on the ratios rJ/ψ, Rψ(2S), and RK, is

studied following the procedure described in Chapter 7. The ratios are calculated using

tracking corrections, and are compared with the nominal results (for which the tracking

is not calibrated). The fractional differences are presented in Table 8.3, where cancellation

down to the permille-level is observed in the double ratios. Therefore, the impact on RK of

tracking effects is well covered by the systematic uncertainties calculated in Section 7.7.

The details of this data-driven method were yet to be finalised when the RK measurement

was ready to unblind. In particular, it was not possible to align the selection of the calibration

samples to that used by the RK analysis. For this reason, the correction weights derived here

are not part of the nominal efficiency calibration, being used only to check the coverage of

the systematic effect calculated using the corrections to the pseudorapidity distributions.

8.5 Contamination due to double misidentification

The cuts presented in Sections 4.3.1, 4.3.4, and 4.3.6 reduce misidentified backgrounds to

negligible levels. In the case of double misidentification, where both signal leptons are in

fact pions, the estimated efficiencies and the branching fractions listed in the PDG [9] indicate

that the contamination is expected to be at the level of only a few permille. The branching

fraction used for the B+ → K+π+π− estimate is B(B+ → K+π+π−) =
(

1.63 + 0.21
− 0.15

)

× 10−5, which

corresponds to the non-resonant component. This is motivated by the fact that the mass

vetoes and the q2 selection are expected to reject resonant B+ → K+π+π− events. Since
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contamination levels are similar in the muon and the electron channels, the overall impact

of B+ → K+π+π− events on RK is expected to be negligible. This is further tested through

several checks, presented in this section. The first one was conducted in collaboration with

Dr. Konstantinos Petridis, and the second represents original work.

The first test validates the branching fraction value used to calculate the estimated con-

tamination. The differential B+ → K+π+π− branching fraction, integrated over the phase

space region relevant to the RK measurement, is obtained from the model employed by

the B+ → K+π+π− simulation. This is referred to as the effective branching fraction, and

the result is Beff(B+ → K+π+π−) = (3.83 ± 0.42) × 10−6. This is compared to the value ob-

tained using the amplitude measurement from the BaBar collaboration [195], as imple-

mented in Laura++ [196]. This data-driven method finds the effective branching fraction to

be Beff(B+ → K+π+π−) = (3.26 ± 0.15) × 10−6. The values from the simulated and the data-

driven models are found to be compatible, the former being larger by a few percent. Since

this is the one used for the contamination estimate, it is not expected to lead to an underes-

timation of the B+ → K+π+π− background levels.

The second test targets the size of the effect in the electron sample, where the contamination

is expected to be larger than in the muons. The fully-selected B+ → K+e+e− candidates are

reconstructed by changing the mass hypothesis of each electron to that of the pion; this

is only possible after unblinding. The new mass hypothesis leads to the invariant mass

m(K+e+
[→π+]

e−
[→π−]

), whose shape in data is compared to the expectation from simulation. To

do this, simulated B+ → K+e+e−, B+ → K+π+π−, and B0 → K∗0e+e− events are used to obtain

the expected shapes, which are scaled to their estimated contributions as determined from

their yields and efficiencies. It is checked whether the simulated model is able to suitably

describe the data, with or without the estimated contribution from B+ → K+π+π− events. To

facillitate the comparison, combinatorial events are also taken into account. Their level is

estimated based on a fit to the upper m(K+e+
[→π+]

e−
[→π−]

) sideband, using an exponential model.

The left-hand plot in Figure 8.8 shows the distribution in data, alongside the simulated model

with and without the estimated B+ → K+π+π− contamination. Both models are compatible
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Figure 8.8: Distributions of the m(K+e+
[→π+]

e−
[→π−]

) invariant mass. The black corresponds to data,

whereas the blue contains the expected contributions from B+ → K+e+e−, B0 → K∗0e+e−, and com-
binatorial events, as predicted based on simulation and data. The estimated contribution from
B+ → K+π+π− events is shown in red, stacked on top of the blue. The exercise is performed af-
ter the nominal selection (left), and then repeated after additioally requiring both electrons to have
ProbNNpi > 0.2 (right).

with the data in the region of interest, i.e. around the mass of the B+. The exercise is repeated

after applying a cut at ProbNNpi > 0.2 on the electrons, in order to enhance any potential

B+ → K+π+π− contamination. The resulting distribution is presented on the right-hand side

of Figure 8.8. No significant excess is observed.

Note that both tests presented in this section result in upper limits on the size of the potential

impact of misidentified B+ → K+π+π− events. This, combined with the fact that the second

test is only possible after unblinding, means that the double misidentification studies should

not be used to assign a systematic uncertainty.

In summary, several tests are performed to verify that B+ → K+π+π− events where both

pions are misidentified as leptons are suppressed as expected by the PID requirements, the

q2 window, and the mass vetoes. As shown in this section, the test results are compatible

with the expectation that the levels of B+ → K+π+π− events are sufficiently low to not warrant

explicit modelling in the fit to B+ → K+ℓ+ℓ− data, which is the subject of the next chapter.



Chapter 9

The fit to the rare modes

Once the efficiencies and their uncertainties are well understood, the next step towards

measuring RK is the fit to B+ → K+ℓ+ℓ− data. As outlined in Chapter 5, the fit is based on the

extended maximum likelihood method [184] implemented in the RooFit package [185]. The

expression for the likelihood is presented in Section 9.1, and then the distributions that model

the signal and background in each B+ → K+ℓ+ℓ− data sample are described in Section 9.2.

Next, Section 9.3 describes the constraints that enter the likelihood, in order to improve the

result on RK. A summary is provided in Section 9.4.

The B+ → K+ℓ+ℓ− fit procedure is designed and implemented by Dr. Paula Álvarez Cartelle.

The results that constitute original work are: the constraints presented in Tables 9.1 to 9.4,

and the shape templates that enter the likelihood as described in Section 9.1. This includes

the high-m(Kπ) weights illustrated in Figures 9.2 and 9.3, which represent an improvement

with respect to the previous RK analysis.

172
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9.1 Description of the likelihood surface

The selected B+ → K+µ+µ− and B+ → K+e+e− data are fitted simultaneously, by maximising

a likelihood built upon models used to describe the data. This is equivalent to minimising

the negative of the logarithm of the likelihood, referred to as the NLL and used throughout

this thesis for convenience. This section shows how the NLL is constructed step by step.

For the muon and electron samples, respectively, the NLLs are:

− logLr
µ = −

∑

i

logPr
µ(mi

r|Nr
Kµµ) , and (9.1)

− logLrt
e = −

∑

i

logPrt
e (mi

rt|Nrt
Kee) . (9.2)

In the above expressions, the index i runs over all selected events, r runs over the four

data-taking periods, and t runs over the three electron trigger selections. The independent

variable is the K+ℓ+ℓ− invariant mass, m, whose distribution in each mode, period, and

trigger category is modelled independently by Pr,t
e, µ. The yields Nrt

Kµµ and Nrt
Kee depend on RK

by virtue of Equation (4.4). At this stage, these yields are the only unknown quantities in the

expression for RK, meaning that it can be written as:

Rrt
K =

Nr
Kµµ

Nrt
Kee

·
Nrt

J/ψee

Nr
J/ψµµ

·
εrt

Kee

εr
Kµµ

·
εr

J/ψµµ

εrt
J/ψee

=
Nr

Kµµ

Nrt
Kee

· crt
K . (9.3)

In the above expression, the efficiencies, together with the control-mode yields, are grouped

into the crt
K factors. They allow the likelihood to be reparametrised such that RK is obtained

as one of the fit’s parameters of interest. The sum of muon and electron NLLs is then:

− logL = −
∑

r

∑

i

logPr
µ(mrt

i |Nr
Kµµ) −

∑

rt

∑

i

logPrt
e

(

mrt
i

∣
∣
∣Nr

Kµµ · crt
K/RK

)

. (9.4)

The models for Prt
e and Prt

µ are described in Section 9.2. To improve the fit procedure,

constraints on various parameters of the fit are added to the NLL. These constraints take the

form of multi-dimensional Gaussian distributions
{

G j(~x j|~µ j,Σ j)
}

, where the index j runs over

the different constraints. The means and widths of the constraints are denoted by ~µ j and Σ j,
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respectively. The NLL to be minimised by the fit can then be written as:

− logL = −
∑

r

∑

i

logPr
µ(mrt

i |Nr
Kµµ) −

∑

rt

∑

i

logPrt
e

(

mrt
i

∣
∣
∣Nr

Kµµ · crt
K/RK

)

−
∑

j

logG j(~x j|~µ j,Σ j) .

(9.5)

Based on the type of parameter they target, theG j in the formula above can be classified into

constraints on shapes, and constraints on yields. The former are described in Section 9.2,

together with the Pr,t
e, µ used in the model. The latter are covered by Section 9.3.

9.2 Models for the fit components

The model used to describe B+ → K+ℓ+ℓ− data has several parallels with the one presented

in Chapter 5, which is used for B+ → K+J/ψ(ℓ+ℓ−) data. The signal is expected to have a

peaking structure, with tails that are non-Gaussian due to effects such as bremsstrahlung

energy loss. Combinatorial events, consisting of random combinations of tracks in the

candidate, follow a distribution that can be accurately modelled by an exponential function.

The excellent resolution of the muon channels allows the lower limit of the invariant mass to

be chosen such that the signal and the combinatorial are the only components in the muon

data. In the B+ → K+e+e− samples, the poorer mass resolution caused by radiative losses

leads to contributions from two additional backgrounds. The first one consists of partially-

reconstructed events, such as B+ → K∗0(K+π−)e+e− decays, where at least one particle (in

this case the π−) escapes detection. The second one represents B+ → K+J/ψ(e+e−) decays

whose reconstructed q2 falls into the q2 ∈ (1.1 GeV2, 6.0 GeV2) interval, due to failures in

the bremsstrahlung recovery process. In summary, the model for B+ → K+µ+µ− data has

two components: the peaking signal and the exponential combinatorial background. The

B+ → K+e+e− data also has signal and combinatorial components, but there are two additional

background sources: partially-reconstructed events, and leakage from the J/ψ.

In B+ → K+µ+µ− data, the signal is modelled by the sum of two Crystal Ball (CB) distribu-

tions [188]. They share the same mean, and their power-law tails are on opposite sides of

the peak, in order to account for radiative effects. Like in the control mode, the tail param-
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eters are obtained from fits to simulated samples, however the mean and the width of the

peak are expected to be different in data. For this reason, they are reparametrised into the

shift ∆µ and the scale sσ introduced in Equation (5.2). Their values are obtained from fits to

the unconstrained m(K+µ+µ−) invariant-mass distribution in B+ → K+J/ψ(µ+µ−) data. This

is motivated by the larger statistics of the control modes, and by the fact that ∆µ and sσ are

not expected to vary across q2. These fits are performed by Dr. Paula Álvarez Cartelle, and

are outside the scope of this thesis.

As pointed out in Section 5.4, the resolution of electrons depends on whether they contain

added energy from the bremsstrahlung recovery process. This motivates the splitting of

electron data into photon categories, which are modelled independently as shown in Equa-

tion (5.5). In the case of no bremsstrahlung recovery, i.e. in 0γ data, the lower tail is compar-

atively larger, due to the missing energy carried away by bremsstrahlung photons. This is

showcased in Figure 9.1, where simulated signal shapes in the three photon categories are

plotted together. The success of the bremsstrahlung recovery algorithm leads to reduced

low-mass tails and more accurate peak locations. However, the high-mass tails become more

populated, due to candidates where the bremsstrahlung recovery algorithm has overesti-

mated the energy loss of the signal electrons. Like in the B+ → K+µ+µ− data, the 0γ signal is

modelled by the sum of two CBs that share the same mean, and whose power-law tails lie on

opposite sides of the peak. The same process is repeated on the 1γ and 2γ samples, noting

that the addition of energy from bremsstrahlung radiation broadens the peak and reduces

the size of the low-mass tail. To better capture this behaviour, a Gaussian distribution is

added to the pair of CBs in each photon category. The Gaussian shares the same mean shift

∆µ and width scale sσ as the CBs.

The shape of the J/ψ leakage in the electron window is taken from simulated B+ → K+J/ψ(e+e−)

events that pass the signal selection. It is modelled using an adaptive kernel density esti-

mation method [190]. The same technique is used to describe the partially-reconstructed

component, where simulated B0 → K∗0e+e− events are used. These samples only contain

the P-wave contribution, which corresponds to the peak at the K∗0 resonance in the dis-

tribution of the invariant mass of the kaon and pion, m(Kπ). This peak is shown on the
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Figure 9.1: Shape templates for the signal in the 2018 eTOS sample, shown separately for the three
bremsstrahlung categories. The vertical line shows the m(K+e+e−) values corresponding to mB. The
range of the horizontal axis coincides with the fit window.
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left-hand side of Figure 9.2. However, events at higher m(Kπ) are expected to contribute

to the shape in data, although with kinematic suppression induced by the q2 selection. To

account for this, weights are assigned to the B0 → K∗0e+e− simulation such that the m(Kπ)

spectrum matches the one measured in data [39]. This is shown on the right-hand side plot

of Figure 9.2. Figure 9.3 shows the effect of these weights on the expected invariant-mass

distribution of partially-reconstructed events. It can be seen that the high-m(Kπ) weights

lead to larger populations at very low m(K+e+e−). This is expected, since the missing pion

makes it likely for events with large m(Kπ) to have low m(K+e+e−). In addition, the template

that includes the weights drops off at lower m(K+e+e−), indicating that not accounting for

high-m(Kπ) states could have lead to overestimation of the overlap between the models for

the signal and the partially-reconstructed background.

9.3 Constraints on component yields

The accuracy of RK is improved by increasing the amount of information available to the

fit. For example, the crt
K terms introduced in Equation (9.3) are predicted using the mea-

sured yields of the control data, along with the estimated efficiencies. The crt
K factors are

anti-correlated with RK, so constraining the fit to prefer values close to their expectations en-

courages it to change RK, until it finds the value that minimises the NLL. This is how adding

constraints as opposed to freely floating parameters improves the accuracy of the result.

In total, there are four multidimensional Gaussian constraints G j that enter Equation (9.5) to

constrain the relative yields of the fit components. The first constraint is on the crt
K parameters.

The central values, ~µ, are the estimates obtained from the nominal efficiencies and control-

mode yields; they are listed in Table 9.1. The width of the constraint, Σ, is dictated by the

total covariance matrix V obtained in Chapter 7.

The second constraint is on the normalisation of the partially-reconstructed background

relative to the signal. This component is dominated by B0 → K∗0e+e− events, which are similar

to B+ → K+e+e− decays. For this reason, the partially-reconstructed yields with respect to the
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signal can be estimated from simulation, through the following ratios:

rrt
prc =

Nrt
prc/N

r0
prc

Nrt
sig
/Nr0

sig

=
εrt

trig,mass,BDT
(B0 → K∗0e+e−)/εr0

trig,mass,BDT
(B0 → K∗0e+e−)

εrt
trig,mass,BDT

(B+ → K+e+e−)/εr0
trig,mass,BDT

(B+ → K+e+e−)
. (9.6)

These terms express the ratio between partially-reconstructed and signal yields in each data

sample, Nrt
prc and Nrt

sig respectively, as a function of the eTOS yields from each data-taking

period (Nr0
prc and Nr0

sig
). Thanks to the similar kinematics of B+ → K+e+e− and B0 → K∗0e+e−

decays, most efficiencies are expected to cancel in the ratio. The exception is the efficiency of

the trigger, mass, and multivariate selection, denoted by εtrig,mass,BDT in the above expression.

In the fit to B+ → K+ℓ+ℓ− data, the rrt
prc factors are constrained via a multi-dimensional Gaus-

sian to the efficiency ratios estimated from simulation. The central values of these con-

straints, which represent the mean of the Gaussian, are listed in Table 9.2. They are obtained

through Equation (9.6), using efficiency estimates derived from fully-calibrated B+ → K+e+e−

and B0 → K∗0e+e− samples. To determine the width of the constraint, estimates of rrt
prc are

recalculated based on B+ → K∗+e+e− simulation instead of B0 → K∗0e+e−. The contributions

from the two decay modes are expected to have similar shapes, however their normalisation

relative to the signal could be different due to systematic effects induced by the neutral pion

coming from the K∗+ decay (these would not cancel in the efficiency ratio). In addition, the

B+ → K∗+e+e− simulation samples have lower statistics than their B0 → K∗0e+e−, leading to

relative uncertainties of up to 20% on the efficiency estimates. For this reason, the uncer-

tainties on the efficiencies calculated using B+ → K∗+e+e− samples are explicitly taken into

account when calculating the diagonal elements of the rrt
prc covariance matrix. This repre-

sents a change with respect to the previous RK measurement, where the width of the rrt
prc

constraint did not take into account the statistics of the B+ → K∗+e+e− simulation. In addition,

the only sample available at the time corresponded to Run 1 data-taking conditions, and so

the constraint on Run 2.1 values was taken to be fully correlated to its Run 1 counterpart.

The ith element on the diagonal of the rrt
prc covariance matrix is given by:

V
rrt

prc

i,i =
(
ξ(B+ → K∗+e+e−) − ξ(B0 → K∗0e+e−)

)2
+ (δξ)2 , (9.7)
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where ξ(X) ≡ εrt
trig,mass,BDT

(X)/εr0
trig,mass,BDT

(X), and δξ is the uncertainty on ξ(B+ → K∗+e+e−).

Equations (7.3) and (7.4) are then used to convert the covariance matrix into the fractional

error matrix, which is presented in Table 9.3.

Table 9.1: Central values of the constraint on the crt
K

terms that enter the fit for RK.

crt

K

eTOS hTOS! TIS!
Run 1 0.1436 0.0509 0.0548
Run 2.1 0.2809 0.0710 0.0806
2017 0.2403 0.0709 0.0835
2018 0.2296 0.7652 0.0788

Table 9.2: Central values of the constraint on the rrt
prc terms that enter the fit for RK.

rrt
prc

hTOS! TIS!
Run 1 0.936916 1.06515
Run 2.1 0.840481 0.907575
2017 0.852263 0.938888
2018 0.884121 0.995914

Table 9.3: Fractional error matrix that determines how tightly the rrt
prc terms are constrained to their

central values in the fit for RK.

rrt
prc

Run 1 Run 2.1 2017 2018
hTOS!
eTOS

TIS!
eTOS

hTOS!
eTOS

TIS!
eTOS

hTOS!
eTOS

TIS!
eTOS

hTOS!
eTOS

TIS!
eTOS

27.48 −0.01 0.74 −34.58 −13.95 −0.91 26.93 −32.27
24.16 −0.00 0.02 0.01 0.00 −0.01 0.02

−0.20 9.55 3.85 0.25 −7.44 8.91
16.75 −1.50 −0.60 −0.04 1.17 −1.40

22.21 28.28 1.84 −54.61 65.44
−2.10 −0.14 4.05 −4.85
18.97 0.74 −22.03 26.40

15.88 −1.44 1.72
−47.42 56.83

34.40 −50.97
17.22
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The third constraint is on the normalisation of the background component corresponding to

leakage from the J/ψ, denoted by Nleak. The efficiencies of the rare and resonant q2 selections

are determined from simulated B+ → K+J/ψ(e+e−) events. The ratio of the two efficiencies,

fleak, is expected to be equal to the ratio between the leakage yield in the B+ → K+e+e− fit, and

the yield of the control mode as obtained in Section 5.6. Therefore, the normalisation of the

J/ψ leakage background, in each data-taking period and trigger selection, is constrained to:

Nrt
leak = fleak ·Nrt

J/ψee . (9.8)

The central values of these constraints are listed in Table 9.4, alongside their uncertainties.

They are driven by the statistics of the simulated B+ → K+J/ψ(e+e−) samples in the q2 region

corresponding to the rare mode, and are used as the widths of the constraints. The individual

constraints are treated as uncorrelated, following an investigation conducted by Dr. Thibaud

Humair during the previous RK analysis.

Table 9.4: Central values of the constraint on the J/ψ leakage normalisation. The width of the
constraint is dictated by the uncertainties, which are dominated by the statistics of the simulated
B+ → K+J/ψ(e+e−) sample. All data-taking periods and trigger selections are treated as uncorrelated.

Nrt

leak

eTOS hTOS! TIS!
Run 1 4.5 ± 2.1 4.0 ± 1.9 2.8 ± 2.0
Run 2.1 12.1 ± 3.1 8.0 ± 2.7 6.4 ± 2.4
2017 12.1 ± 2.2 2.4 ± 1.0 3.8 ± 1.1
2018 12.0 ± 2.4 3.3 ± 1.4 5.7 ± 1.8

The fourth and final constraint is on the fractions of signal candidates in each photon category,

denoted by f0γ, f1γ, and f2γ. It is checked with control-mode simulation and data that these

fractions are simulated accurately. As a result, the central values of the constraint, which are

presented in Table 9.4, come from B+ → K+e+e− simulation. Each dimension of the constraint

is treated as uncorrelated with the others, and has an assigned width of 1% of its central

value. This is a conservative uncertainty that covers the statistical precision offered by the

simulation samples.
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Table 9.5: The central value of the constraints on the fractions of events falling in each photon category.
The uncertainties shown are statistical. Each individual constraint is assumed to be uncorrelated with
the rest.

f0γ

eTOS hTOS! TIS!
Run 1 0.2383 ± 0.0015 0.1558 ± 0.0030 0.2052 ± 0.0024
Run 2.1 0.2509 ± 0.0005 0.1356 ± 0.0011 0.1724 ± 0.0008
2017 0.2498 ± 0.0009 0.1434 ± 0.0019 0.1692 ± 0.0014
2018 0.2520 ± 0.0010 0.1460 ± 0.0020 0.1692 ± 0.0015

f1γ

eTOS hTOS! TIS!
Run 1 0.4962 ± 0.0018 0.4982 ± 0.0043 0.4957 ± 0.0030
Run 2.1 0.5008 ± 0.0005 0.5018 ± 0.0016 0.5000 ± 0.0010
2017 0.5020 ± 0.0010 0.4990 ± 0.0027 0.5013 ± 0.0019
2018 0.5028 ± 0.0011 0.5007 ± 0.0029 0.4957 ± 0.0020

f2γ

eTOS hTOS! TIS!
Run 1 0.2655 ± 0.0016 0.3460 ± 0.0042 0.2991 ± 0.0027
Run 2.1 0.2483 ± 0.0005 0.3626 ± 0.0016 0.3276 ± 0.0010
2017 0.2482 ± 0.0009 0.3576 ± 0.0026 0.3295 ± 0.0018
2018 0.2452 ± 0.0010 0.3532 ± 0.0028 0.3350 ± 0.0019

9.4 Outcome of the fit

The result of the fit is the value of RK found to minimise the NLL, Rfit
K

. The uncertainty on this

estimate, σ(RK), is determined by minimising the NLL for a range of RK values around the

minimum; this is referred to as profiling. Based on Wilks’ theorem [197], the 68% confidence

interval is assigned to be the range of RK values for which − log
(

L(RK)/L(Rfit
K

)
)

< 0.5.

The resulting confidence interval covers the statistical uncertainty of the B+ → K+ℓ+ℓ− data,

as well as the systematic uncertainty induced by the crt
K constraints. To finalise the RK

measurement, two further effects are incorporated into the profiled NLL. These effects are:

the bias induced on Rfit
K

by the fit procedure, and the systematic uncertainty induced by the

fit model. They are covered by the following chapter.
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Validation of the fit to signal data

The previous chapter describes the fit employed to describe the signal data, and thus infer RK.

This chapter presents the tests conducted to validate the fit procedure. First, in Section 10.1,

the bias on RK as extracted from the fit is evaluated. This leads to a correction of the central

value of the RK measurement. Second, Section 10.2 evaluates the systematic effect due to the

chosen model for the data. Third, Section 10.3 presents a host of checks designed to verify

that the fit is able to model variations between subsamples of the data.

The tests presented here are performed in collaboration with Dr. Paula Álvarez Cartelle, who

designed the procedure during the previous RK measurement. In this chapter, results that

constitute original work are found in Section 10.2.2 and Section 10.3.
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10.1 Bias on the RK estimate from the fit

It is possible that the fit is biased, meaning that it prefers values of RK that are not identical

to the true value. To assess the size of this bias, 10 000 simulated samples are generated

based on the expected fit parameters (including RK) and shapes. These pseudoexperiments,

also referred to as toys, use samples that are statistically representative of the expected data

to probe the behaviour of the fit. The toys are generated by fluctuating the expected yields

according to their Poisson errors. In addition, the parameters that are constrained in the fit

are resampled according to the widths of their constraints. The shape templates are kept

constant, with the exception of the total B+ → K+e+e− signal shape that changes according

to the sampled constraints on f0γ, f1γ, and f2γ. The fit is then performed on each generated

pseudoexperiment, and its behaviour is inferred by comparing the outcome to the model

used to generate the toys. The bias and coverage are then obtained from the distribution

across toys of the pull between the value of RK obtained from the fits, Rfit
K

, and the value used

to generate the toys, R
gen

K
. The pull is defined as:

pull =
Rfit

K
− R

gen

K

σ(RK)
, (10.1)

where σ(RK) is the uncertainty on the RK estimate coming from the fit. If the fit is unbiased,

the average value across the toys of Rfit
K

is equal to R
gen

K
by definition. This means that, in

the limit of infinitely-many generated toys, the distribution of the pull has a mean of 0.

In addition, the standard deviation of the pull distribution is equal to 1 if the statistical

fluctuations of Rfit
K

with respect to R
gen

K
are successfully captured by the precision σ(RK). In

other words, the pulls of RK from fits to toy datasets are expected to be distributed according

to a standard normal distribution. The mean of the pull distribution represents the bias on

Rfit
K

, relative to the uncertainty σ(RK).

The validation procedure is performed twice. The first iteration is conducted before unblind-

ing, to ensure the fit bias on RK is kept within a few percent relative to the uncertainty coming

from the fit. The yields and shapes corresponding to the fit components in the previous data

are generated based on the fit result from the previous RK measurement. Their Run 2.2
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Figure 10.1: Distribution across pseudoexperiments of the pull on RK (black), alongside the best-fit
Gaussian distribution (red). The minimum χ2 from the fit for the Gaussian is presented on the top
right, alongside the best-fit parameters.

equivalents are blinded at this stage of the procedure, so they are estimated by scaling the

Run 2.1 yields from the previous measurement by the expected gain in luminosity. This

iteration found the fit to be biased by around 5.7% of σ(RK). In addition, the width of the

pull distribution is found to be compatible with 1, indicating good coverage.

The second iteration of the validation procedure takes place after unblinding, thus allow-

ing the toys to be generated using the central values extracted directly from the fit. The

distribution of the resulting pulls is shown in Figure 10.1. The estimated bias is obtained

from the Gaussian distribution that is found — through χ2 minimisation — to best model

the pull distribution. The mean of this Gaussian is (−0.98 ± 1.03)% · σ(RK), showing that the

fit bias is small. In addition, the width of the pull distribution is compatible with 1, thus

demonstrating good coverage of the precision on RK. As agreed with the internal review

committee, the central value of RK is corrected according to the estimated bias, and the sum

in quadrature of half of the size of the bias and the bias’ uncertainty is treated as an additional

systematic uncertainty on RK.

10.2 Systematic effects related to the fit procedure

There are models equally valid to those described in Section 9.2 that can be used to describe

the signal and background contributions to the invariant-mass distributions in data. The
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choice of which model to use can induce a systematic uncertainty on the extracted value of

RK. Such effects are negligible, except when they are due to:

1. the modelling of the B+ → K+e+e− signal shape;

2. partially-reconstructed Kπ states with high m(Kπ) invariant masses; and

3. partially-reconstructed events originating from higher-order K∗ resonances.

The following subsections go through each of the above three effects in turn. The results are

summarised in Table 10.1. The total systematic uncertainty is the sum in quadrature over

the three effects. It is found to be 1%, making it the dominant systematic effect on RK.

Table 10.1: Systematic uncertainties on RK, in percent, arising from variations of the fit model.

Source Uncertainty (%)
Signal model 0.70
High-m(Kπ) states 0.67
Additional resonances 0.23
Total 1.00

10.2.1 Validation of the signal model

It is checked whether the B+ → K+e+e− data in the three photon categories can be accurately

described by the chosen models. As detailed in Section 9.2, the sum of two CBs is used

to model the signal in the 0γ data, whereas the 1γ and 2γ signals are described by the

combination of two CBs and a Gaussian distribution. Pseudoexperiments are generated

based on these parametrisations and the expected yields. Then, two fits are performed

on each toy. The first fit uses the nominal signal model described so far. The second fit

uses alternative models for the B+ → K+e+e− signal. These consist of: a single CB in the 0γ

data, and the sum of three Gaussian distributions in each of the other photon categories.

The two fits lead to two estimates, Rnom
K

and Ralt
K

. The mean across pseudoexperiments of
(

Ralt
K
− Rnom

K

)/

R
gen

K
represents the assigned systematic uncertainty.
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10.2.2 Impact of high-m(Kπ) states

The m(Kπ) spectrum in simulated B0 → K∗0e+e− events is calibrated, using weights, to match

the one measured in data [39]. The m(Kπ) spectra are shown in Figure 9.2, and the effect of the

calibration procedure is exemplified by Figure 9.3. The statistical uncertainty on the weights

induces a systematic effect on RK. This is evaluated using toys with bootstrapped partially-

reconstructed templates. The fractional shift in RK is taken to be the systematic uncertainty.

Because this calibration was not conducted for the previous RK measurement, it is checked

whether the result from Ref. [2] changes as expected after the introduction of the m(Kπ)

correction weights. Pseudoexperiments are generated based on the known Run 1 and

Run 2.1 yields and shapes, taking into account high-m(Kπ) states. Two fits are performed

on each pseudoexperiment, and on the Run 1 and Run 2.1 data. One of the fits is in the

configuration used by the previous RK measurement, and the other is adjusted to take into

account the effect of the m(Kπ) calibration. The difference between the values of RK obtained

from the two fit configurations, R
prev

K
and R

new

K
, respectively, is used as the test statistic. The

distribution of R
new

K
−R

prev

K
in pseudoexperiments is shown in Figure 10.2, alongside vertical

lines depicting several confidence intervals. It is agreed with the internal review committee

that if the value of R
new

K
− R

prev

K
obtained by running the check over data falls in the 2.5 σ

confidence interval of the distribution from toys, the test is considered a success. The results

of the two fits to data are:

R
new

K
= 0.843 + 0.062

− 0.055 , and (10.2)

R
prev

K
= 0.848 + 0.061

− 0.055 . (10.3)

This means that the calibration of the m(Kπ) distribution in partially-reconstructed back-

ground events induces a shift of −0.005 in the previous RK result. This is compatible with

the expectation from pseudoexperiments. Note that the two fit configurations are assumed

to have the same bias, leading to its cancellation in the difference. For this reason, the bias of

the fit is not evaluated for the results above. This is why the result in Equation (10.3) is not

identical to the previous RK result.
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Figure 10.2: Expected shift in the value of RK, based on Run 1 and Run 2.1 data, induced by the
calibration of the distribution of m(Kπ) in partially-reconstructed background events. The distribution
of the shift is shown in blue, whilst several confidence intervals are delimited by vertical lines in shades
of purple.

10.2.3 Effect induced by additional resonances

To further test the robustness of the model used to describe partially-reconstructed contribu-

tions to the m(K+e+e−) data, the mass-shape templates are recomputed to include contribu-

tions from additional K∗ resonances that decay into a K+ and two pions, the latter of which

escape detection. An example is the process B+ → K+
1

(K+π+π−)e+e−. The contributions are

normalised assuming the hadronic system in the rare channel is the same in the J/ψ channel.

For the example above, this means that N(K+
1

e+e−) = N(K+e+e−) ·N(K+
1

J/ψ)/N(K+J/ψ), where

N(X) is the yield of mode X. The new templates are used as an alternative model for the

partially-reconstructed background component of the data. Pseudoexperiments are gener-

ated based on this model, and then two fits are performed on each toy. One of the fits is

in the nominal configuration, whereas the other uses the alternative partially-reconstructed

background templates. Like with the effect of the signal modelling, the mean across pseu-

doexperiments of the RK estimates from the two fits represents the assigned systematic

uncertainty.
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10.3 Compatibility checks

The cross-checks presented in Chapter 8 reinforce the robustness of the efficiencies in a

number of different ways. The results on rJ/ψ show that the electron and muon channels

are in agreement, and that the efficiencies are parametrised correctly. The Rψ(2S) check

demonstrates the portability of efficiency corrections across q2. The particularities of some

corrections are tested in further detail through the scaling and tracking cross-checks. The

tests presented in this section go a step further, by targeting the fit procedure in addition to

the efficiencies. This is done by verifying that variations between data samples, induced by

factors such as trigger strategies and data-taking conditions, are suitably taken into account

by the fit.

For example, it is shown in Chapter 6 that the eTOS electron trigger selection is more efficient

than the TIS! selection. However, the measured value of RK must not depend on whether

one uses eTOS or TIS! data. The same argument applies to individual data-taking periods:

RK is not expected to vary with time, and the efficiencies are required to capture changes in

data-taking conditions. This is what motivates the investigation of the compatibility between

subsets of the data used to measure RK.

This study comprises several checks of whether distinct subsets of the data prefer signifi-

cantly different values of RK. Given the invariant nature of RK, each subset should lead to

approximately the same value of RK, regardless of the criteria used to split the total sample

into subsets. If that is the case, the fit does not gain much from the liberty of choosing sepa-

rate estimates of RK for each subset. For this reason, the compatibility checks are performed

by changing the nominal configuration of the fit to accommodate distinct values of RK in dif-

ferent partitions of the data. If the addition of these RK values does not substantially improve

the fit, then the subsets under scrutiny are compatible. By contrast, if the fit benefits from

the freedom of multiple RK values, then the subsets under question may not be compatible

with each other.

The checks are conducted before unblinding RK, therefore a test statistic is chosen to quantify

the compatibility between the fits. The outcome of each check is obtained from the p-value
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of the test statistic from data. The following subsection describes how this p-value is deter-

mined, alongside the general aspects of the procedure. Then, the main results are presented

in Section 10.3.2, followed by complementary checks given in Section 10.3.3.

10.3.1 General procedure

The final objective of each compatibility check is to determine if distinct partitions of the

data prefer different values of RK, without inspecting the resulting values. To this end, a test

statistic is chosen for each check, and its distribution is obtained by running the check on toy

datasets. Once this is done, the check is run on data to obtain the corresponding value of the

test statistic. This is used to calculate a p-value, based on the distribution obtained from the

fits to toy data. If this p-value corresponds to a significance below 2.5 σ, the data partitions

are considered compatible, thus passing the check successfully. This 2.5 σ threshold, together

with the partitioning scheme for the checks, was chosen a priori through discussion with the

internal review committee.

An inherent risk of the assessment based on the test statistic is the possibility that a small

p-value from data arises from statistical fluctuations, rather than from a flaw of the fit.

Given the 2.5 σ threshold, this is unlikely to happen when considering one individual check.

However, the number of data partitions for which compatibility is assessed increases, the

more likely false negatives become. To keep the probability of this scenario below 10%,

a partitioning scheme consisting of three checks is agreed upon with the internal review

committee. The data is required to pass these three checks before unblinding, whilst tests

involving other partitions are only considered in case of unusual results, such as a potential

false negative. The three checks are:

1. “polarity”: compatibility between data taken with the two magnet configurations;

2. “window”: compatibility between the nominal fit, and a fit that excludes electron

candidates with m(K+e+e−) < 5 GeV; and

3. “selection”: compatibility between data-taking periods and trigger categories.
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The polarity test is motivated by the fact that the configuration of the LHCb magnet is not

expected to have a noticeable impact on RK. The window check studies the effect of reducing

the contamination from partially-reconstructed events, at the cost of signal precision. Finally,

the selection test probes whether the electron trigger strategies, alongside any effects that

are expected to change between data-taking periods, are modelled correctly. The probability

of at least one false negative in any of these checks is estimated by running the checks over

the same toy datasets (in order to account for correlations) and found to be around 6%.

Adding the checks presented in Section 10.3.3 would have increased this to approximately

11%, which was deemed too high. As such, these checks are only performed to provide

additional information in case of failure.

To summarise, the compatibility checks are conducted as follows: 10 000 pseudoexperiments

are generated using the blinded result of the fit to data. Each compatibility check is performed

on the toys by fitting the data twice with different configurations. Every check’s test statistic

is obtained for each toy dataset, by comparing the outcomes of the two fits involved. Finally,

the checks are run on the data, and whether the data passes or fails the test is determined

based on the distribution of the test statistic in toys. Dr. Paula Álvarez Cartelle generated

the toys and performed the fit to data, whilst the fits to toys and the determination of the test

statistics’ distributions represent original work.

10.3.2 Results of the compatibility checks

This subsection presents the outcome of the polarity, window, and selection compatibility

checks. In the first two checks, the chosen test statistic is the absolute difference between the

RK values from the two fits, weighted by their uncertainties:

tstat =
‖RK1 − RK2‖
√

σ2
1
+ σ2

2

. (10.4)

Here, RK1,2 are the values of RK obtained from the two fits, and σ1,2 are their respective

uncertainties. This test statistic accounts for the fact that the two fits in each check are

performed on different sets of candidates. The distributions of tstat, as obtained by running the
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Figure 10.3: Outcome of the polarity (left) and window (right) compatibility checks. The correspond-
ing test statistic is defined in Equation (10.4). Its distribution from fits to toy datasets (light blue) is
used to set the maximum allowed value for a success (red). The result obtained from the data (purple)
is within the region for success in both checks.

polarity and window checks over toy datasets, are shown in Figure 10.3. The corresponding

p-values for data are listed in Table 10.2. In both checks, the result obtained from running

over the data lies in the region corresponding to good compatibility. This implies that data

taken with the two magnet configurations are compatible, and that no mismodelling of the

partially-reconstructed background is found.

The selection check considers three data-division schemes, with the fit being allowed to

prefer an independent value of RK for each subset. This is then compared to the nominal

fit, which only allows one value of RK. Scheme (a) splits the samples by data-taking period,

leading to 4 separate RK values for: Run 1, Run 2.1, 2017, and 2018. Scheme (b) distinguishes

between the 3 electron trigger selection (eTOS, hTOS!, and TIS!). Finally, scheme (c) divides

the data both by data-taking period and electron trigger, resulting in a fit with 12 independent

RK values.

In a given scheme, the only difference between the alternative and nominal fits is the number

of degrees of freedom, since the two fits differ only in the number of independent RK values.

Due to the different numbers of dimensions between nominal and alternative fits, the test

statistic used for the polarity and window checks is not appropriate. This leads to the choice

of the following test statistic:

tstat = min(logLalt) −min(logLnom) , (10.5)
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Figure 10.4: Outcome of the selection compatibility check, which involves splitting the data by
data-taking periods (top left), electron trigger strategies (top right), and by both period and trigger
(bottom). The corresponding test statistic is defined in Equation (10.5). Its distribution from fits to
toy datasets (light blue) is used to set the maximum allowed value for a success (red). In the limit of
infinitely-many toys, the test statistic is expected to follow a χ2 distribution (orange) whose number
of degrees of freedom depends on the number of RK values in the fits. The result obtained from the
data (purple) is within the region for success in all three splittings.

where min(logLnom) is the minimum value of the log-likelihood, as found by the nominal

fit (with one RK estimate), and min(logLalt) is its counterpart from the alternative fit (with

multiple values of RK). This test statistic is the difference between two log-likelihoods

constructed from the same data. This means that, in the limit of infinitely-many toys,

2tstat follows a χ2 distribution with number of degrees of freedom equal to the difference

between the number of variables each likelihood has. This is equal to the difference between

the number of RK values each fit is allowed to find, so for example the test statistic for the

scheme that splits by electron trigger follows a χ2 distribution of 3−1 = 2 degrees of freedom.

The result of the selection check is presented in Figure 10.4. Running each of the three

considered splitting schemes over the data leads to significances that lie comfortably in the

region for success. This demonstrates that the different data-taking periods and electron

trigger strategies produce datasets that are compatible with each other.
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Table 10.2: Results obtained from running the compatibility checks over the data. The table lists
the values of the corresponding test statistic, its p-value, and the significance in number of standard
deviations. The final three entries correspond to the three splitting schemes that make up the selection
check, i.e. by data-taking period, by trigger, and by both.

tstat p-value Z [σ]
Polarity test, 0.2863 0.8481 0.19
Window test, 0.2767 0.4057 0.83
Selection test, scheme (a) 1.5086 0.3949 0.79
Selection test, scheme (b) 1.1501 0.3416 0.95
Selection test, scheme (c) 7.4811 0.2048 1.26

A summary of the compatibility checks is provided in Table 10.2. It shows that running the

checks over the data results in tstat values that are compatible with expectation from toys.

This demonstrates that effects induced by changing data-taking conditions and selection

strategies are suitably taken into account by the fit.

10.3.3 Additional compatibility checks

The conclusions drawn from conducting the checks presented in the previous subsection are

reinforced by considering additional ways of splitting the data into subsets. These checks

are functionally identical to the selection test: tstat is defined in the same way, and the same

three splitting schemes are used for each check. The difference lies in how the data-taking

periods are defined. The five additional compatibility checks are:

1. “Run 1 vs. Run 2.1”: compatibility between data taken during Run 1 and the subset of

Run 2 data that was used in the previous RK measurement;

2. “2017 vs. 2018”: compatibility between data taken during the years 2017 and 2018;

3. “Run 2.1 vs. Run 2.2”: compatibility between the Run 2 data that were and were not

used in the previous RK measurement;

4. “Run 1 vs. Run 2”: compatibility between data taken during Run 1 and Run 2; and

5. “old vs. new”: compatibility between the data that was and was not used in the

previous RK measurement.
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Table 10.3: Outcome of running the additional compatibility checks over the data. The table lists the
values of the corresponding test statistic, its p-value, and the significance in number of sigmas. The
schemes correspond to splitting the data by (a) data-taking period, (b) trigger, and (c) both.

Check Scheme tstat p-value Z [σ]
Run 1 (a) 1.5005 0.0863 1.72

vs (b) 0.2769 0.7711 0.29
Run 2.1 (c) 2.8204 0.3666 0.90

2017 (a) 0.0001 0.9871 0.02
vs (b) 3.6903 0.0306 2.16

2018 (c) 4.6669 0.1048 1.62
Run 2.1 (a) 0.2341 0.4940 0.68

vs (b) 2.9128 0.0608 1.87
Run 2.2 (c) 4.1763 0.1548 1.42
Run 1 (a) 1.2749 0.1165 1.57

vs (b) 1.1500 0.3429 0.95
Run 2 (c) 5.2308 0.0780 1.76

old (a) 0.0017 0.9529 0.06
vs (b) 1.1501 0.3416 0.95

new (c) 3.9591 0.1817 1.33

As a consequence of the different ways in which data-taking periods are defined, scheme (a)

uses two separate RK values, as opposed to the four used by the selection test. In addition, that

the number of free RK parameters in scheme (c) is six instead of twelve. Checks 1, 2, and 3

differ from selection also in the fact that they are not run over the entire data.

The results of these checks are summarised in Table 10.3, which lists the values of tstat obtained

by running the tests over the data, alongside the corresponding p-values and significances.

The distributions of tstat obtained from toys are presented in Appendix G. All tests show good

compatibility between the studied partitions of the data. This further demonstrates that the

B+ → K+ℓ+ℓ− fit successfully takes into account effects induced by changing data-taking

conditions and selection strategies.
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Results

The compatibility checks presented in Section 10.3 conclude the validation of the RK measure-

ment strategy. The next and final step is the calculation of the final RK estimate, as presented

in this chapter. The initial three sections cover the unblinding process. First, Section 11.1 de-

scribes how the differential branching fraction of B+ → K+µ+µ− is estimated from the muon

data. Second, Section 11.2 covers the unblinding of the Run 2.2 data and the resulting RK

estimate. Third, in Section 11.3, all data are unblinded, and RK is obtained from the fit. As

explained in Section 10.1, the resulting value has a small fit bias, and does not yet include all

systematic effects. Section 11.4 contains the final result, obtained after the fit bias is corrected,

and after adding the systematic uncertainties attributed to the fit model. Then, Section 11.5

presents a measurement of the differential branching fraction of B+ → K+e+e−, for which the

RK result is combined with the B+ → K+µ+µ− result from Ref. [26]. The rest of the chapter

is devoted to a few additional results: the effect of turning off all efficiency corrections is

presented in Section 11.6, and the RK estimates obtained during the blinded compatibility

checks are listed in Section 11.7. This is followed by Section 11.8, which puts the updated

RK result into the context of the global Eft fits introduced in Section 2.4. The results in this

chapter that constitute original work are found in Sections 11.1, 11.6, and 11.8, the rest being

obtained by Dr. Paula Álvarez Cartelle.

195
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11.1 Differential branching fraction of B+ → K+µ+µ−

A cautious step undertaken at the beginning of the unblinding procedure is looking at

just the K+µ+µ− data. The muon samples are expected to be better modelled and cleaner

than their electron counterparts, so potential issues with the modelling of the K+e+e− data

could be pre-emptively identified by checking B+ → K+µ+µ− candidates. For this test, the

differential branching fraction of B+ → K+µ+µ− is estimated using each data-taking period

separately. The procedure was developed and used by Dr. Thibaud Humair to obtain the

Run 1 and Run 2.1 results, which are presented together with the original Run 2.2 results

for comparison. Starting from the efficiency-corrected yield of K+J/ψ(µ+µ−) control-mode

events, one can estimate the total number of produced B+ mesons:

NB+ =
N(K+J/ψ(µ+µ−))

ε(K+J/ψ(µ+µ−))

/

[B(B+ → K+J/ψ) · B(J/ψ→ µ+µ−)
]
. (11.1)

Multiplying this expression by the differential branching fraction of B+ → K+µ+µ−, averaged

over a given q2 interval of length∆q2, leads to an estimate of the total number of B+ → K+µ+µ−

decays in that given q2 interval:

NK+µ+µ− =
N(K+J/ψ(µ+µ−))

ε(K+J/ψ(µ+µ−))
·

dB(B+ → K+µ+µ−)/dq2 · ∆q2

B(B+ → K+J/ψ) · B(J/ψ→ µ+µ−)
. (11.2)

This same estimate can also be obtained by efficiency-correcting the measured B+ → K+µ+µ−

yield, taking into account the fraction f q2
of events in the chosen q2 interval:

NK+µ+µ− =
N(K+µ+µ−)

ε(K+µ+µ−)
· f q2

. (11.3)

This leads to the following expression for the differential branching fraction of B+ → K+µ+µ−,

averaged over a given q2 interval:

dB
dq2
=

N(K+µ+µ−)

ε(K+µ+µ−)
·
ε(K+J/ψ(µ+µ−))

N(K+J/ψ(µ+µ−))
· f q2

∆q2
· B(B+ → K+J/ψ) · B(J/ψ→ µ+µ−) . (11.4)
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Therefore, the quantities needed to compute the branching fraction are:

• the control-mode yields and efficiencies, as listed in Tables 5.1 and 6.4, respectively;

• the rare-mode efficiencies, also presented in Table 6.4;

• the branching fractions B(B+ → K+J/ψ) and B(J/ψ→ µ+µ−), as listed in the PDG [9];

• the fraction of events in the chosen q2 range, f q2
, which is computed based on the true

q2 =
∥
∥
∥p(µ+) + p(µ−)

∥
∥
∥

2
of simulated events. This allows the results of this check to be

compared to the ones from LHCb’s Run 1 measurement [26], where the q2 was also

defined in terms of the muons’ 4-momenta. However, the values listed in Table 6.5 are

calculated by defining q2 as q2 =
∥
∥
∥p(B+) − p(K−)

∥
∥
∥

2
, so the f q2

estimates used to calculate

B(B+ → K+µ+µ−) are expected to be slightly different.

The first part of the check uses the nominal q2 interval, q2 ∈ (1.1 GeV2, 6.0 GeV2). The fits to

signal candidates in this window are shown in Figure 11.1. The resulting yields, together with

the corresponding estimates for dB/dq2, are listed in Table 11.1. The results are encouraging:

not only are the branching fraction estimates in good agreement with each other, and with

Ref. [26], but the yields demonstrate that, as expected, the muon dataset doubles in statistics

with respect to the previous RK measurement.

Table 11.1: Results of the check on B+ → K+µ+µ− data with q2 ∈ (1.1 GeV2, 6.0 GeV2), for each data-
taking period. The uncertainties are statistical only. The entry at the top of the table corresponds to
the result of Ref. [26], with the first uncertainty being statistical, and the second systematic.

dB(B+ → K+µ+µ−)/dq2 N(B+ → K+µ+µ−)
Ref. [26] (24.2 ± 0.7 ± 1.2) × 10−9

Run 1 (24.5 ± 0.9) × 10−9 1024 ± 35
Run 2.1 (24.9 ± 0.9) × 10−9 914 ± 34
2017 (24.7 ± 1.0) × 10−9 850 ± 33
2018 (25.3 ± 0.9) × 10−9 1050 ± 36

The second part of the check repeats the procedure, after splitting the nominal q2 range

into five bins. The fits are conducted separately in each bin, and Equation (11.4) is used

to obtain the differential branching fraction of B+ → K+µ+µ−, averaged over each bin. As

presented in Figure 11.2, the results are found to be in good agreement with each other, and

with Ref. [26].
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Figure 11.1: Fit to the m(K+µ+µ−) distribution of B+ → K+µ+µ− selected candidates in the four data
samples. The red solid line shows the fit model, the black dotted line is the signal component, and
the orange band depicts the combinatorial background.
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Figure 11.2: Differential branching fraction of B+ → K+µ+µ−, averaged over several q2 intervals. The
coloured bins depict the results from the four data-taking periods. Only the statistical uncertainties
are shown. The entry labelled “LHCb result” corresponds to Ref. [26].
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Figure 11.3: Projections of the fit to the m(K+ℓ+ℓ−) invariant-mass distribution of selected rare-mode
events in 2017 (left) and 2018 (right) data. The distributions in the muon data are shown on the top
row, and the subsequent rows present the electron data from each trigger selection.
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11.2 Result of the fit to Run 2.2 data

The second step in the unblinding procedure is performing the fit on Run 2.2 alone. This is

done to ensure the new data samples are free of any issues that may have gone undetected

by the cross-checks. The projections of the fit are depicted in Figure 11.3. All pulls between

the data and the fit model are found to be small, and are therefore omitted. This indicates

that the fit is of good quality. The value of RK preferred by the fit is:

RRun 2.2
K = 0.849 + 0.062

− 0.059
, (11.5)

where the uncertainty includes statistical and systematic effects, with the exception of the

uncertainty due to the fit model. The central value is not yet corrected to account for the fit

bias, however this effect is expected to be of a few permille of the uncertainty from the fit. The

precision on this estimate of RK is comparable to the one from the previous measurement, as

expected from the estimated gain in statistics.

11.3 Result of the fit to all data

With the validation of the Run 2.2 samples complete, RK is determined using the entire set

of available data. The fit is performed simultaneously on the candidates from each data-

taking period and trigger selection, and the projections are merged together for illustration

purposes. The projections for new and previous data from each trigger selection are shown

in Figure 11.4, whilst the projections of the fit across all B+ → K+µ+µ− and B+ → K+e+e−

candidates are presented in Figure 11.5.

Based on the estimated gains listed in Table 6.6 and the yields from the previous analysis,

1 631 and 3 816 signal events are expected in the electron and muon samples, respectively.

From the fit, they are found to be 1 640 ± 73 and 3 845 ± 69, respectively. Note that these

quantities are derived from parameters of interest, meaning that their central values and

uncertainties are not extracted directly from the fit. Nevertheless, they are in very good

agreement with the expected gain estimated in Section 6.7.1. Note that the total muon yield

is not expected to be identical to the sum of the individual yields in Table 11.1. This is because



11.3. Result of the fit to all data 201

]2c [MeV/)−µ+µ+m(K
5200 5300 5400 5500 5600

)
2

c
C

an
d

id
at

es
 /

 (
7

 M
eV

/

0

50

100

150

200

250

300
-1Data 5 fb

Total fit
−µ+µ+ K→+B

Combinatorial

LHCb

µTOS

]2c [MeV/)−µ+µ+m(K
5200 5300 5400 5500 5600

)
2

c
C

an
d

id
at

es
 /

 (
7

 M
eV

/

0

50

100

150

200

250

300
-1Data 4 fb

Total fit
−µ+µ+ K→+B

Combinatorial

LHCb

µTOS

]2c [MeV/)−e+e+m(K
5000 5500 6000

)
2

c
C

an
d

id
at

es
 /

 (
2

4
 M

eV
/

0

10

20

30

40

50

60

70
-1Data 5 fb

Total fit
−e+e+ K→+B

+)K−e+(eψ J/→+B

Part. Reco.

Combinatorial

LHCb

eTOS

]2c [MeV/)−e+e+m(K
5000 5500 6000

)
2

c
C

an
d

id
at

es
 /

 (
2

4
 M

eV
/

0

10

20

30

40

50

60

70

80 -1Data 4 fb

Total fit
−e+e+ K→+B

+)K−e+(eψ J/→+B

Part. Reco.

Combinatorial

LHCb

eTOS

]2c [MeV/)−e+e+m(K
5000 5500 6000

)
2

c
C

an
d

id
at

es
 /

 (
2

4
 M

eV
/

0

5

10

15

20

25

30

35 -1Data 5 fb

Total fit
−e+e+ K→+B

+)K−e+(eψ J/→+B

Part. Reco.

Combinatorial

LHCb

hTOS!

]2c [MeV/)−e+e+m(K
5000 5500 6000

)
2

c
C

an
d

id
at

es
 /

 (
2

4
 M

eV
/

0

5

10

15

20

25

30

35

40

-1Data 4 fb

Total fit
−e+e+ K→+B

+)K−e+(eψ J/→+B

Part. Reco.

Combinatorial

LHCb

hTOS!

]2c [MeV/)−e+e+m(K
5000 5500 6000

)
2

c
C

an
d

id
at

es
 /

 (
2

4
 M

eV
/

0

5

10

15

20

25

30

35
-1Data 5 fb

Total fit
−e+e+ K→+B

+)K−e+(eψ J/→+B

Part. Reco.

Combinatorial

LHCb

TIS!

]2c [MeV/)−e+e+m(K
5000 5500 6000

)
2

c
C

an
d

id
at

es
 /

 (
2

4
 M

eV
/

0

5

10

15

20

25

30 -1Data 4 fb

Total fit
−e+e+ K→+B

+)K−e+(eψ J/→+B

Part. Reco.

Combinatorial

LHCb

TIS!

Figure 11.4: Projections of the fit to the m(K+ℓ+ℓ−) invariant-mass distribution of selected rare-mode
events in previous (left) and new (right) data. The distributions in the muon data are shown on the
top row, and the subsequent rows present the electron data for each trigger selection.
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B+ → K+µ+µ− (left) and B+ → K+e+e− (right) data.
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Figure 11.6: Pulls between the values of crt
K

(left), rrt
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(right) at the point where the

likelihood reaches its maximum, and the central values of the constraints on said parameters. The
index r runs from 0 to 3 to represent, in order, Run 1, Run 2.1, 2017, and 2018 data. Similarly, the
index t is 0 for eTOS, 1 for hTOS!, and 2 for TIS!.

in the latter case the NLL to be minimised only contains the model for each individual muon

sample, rather than the full expression given in Equation (9.5).

It is also checked a posteriori how much, if at all, the parameters presented in Section 9.3

deviate from the central values of their constraints. It can be seen in Figure 11.6 that all crt
K ,

rrt
prc, and Nrt

leak
parameters show close to no shift from the central values of their constraints

to the values that maximise the likelihood. This further demonstrates that the simulation

accurately describes the data, and that, as a consequence, the fit prefers to adjust RK as it

converges onto the point in parameter space where the likelihood is maximal.
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11.4 Measured value of RK

The fit induces a small bias on the extracted value of RK. This bias is evaluated using the

procedure described in Section 10.1, and found to be (−0.98± 1.03)% of the uncertainty from

the fit. This means that RK is slightly underestimated by the fit, and the central value is

corrected accordingly.

The final step towards the RK result is the inclusion of the systematic effects induced by the

fit model, presented in Section 10.2. These uncertainties are combined with those from the fit

by convolving the profiled likelihood with a Gaussian distribution, whose width is equal to

the size of the systematic effects. This smeares the profiled likelihood to reflect the impact of

the systematic uncertainty induced by the fit. Figure 11.7 shows the final NLL profiled in RK,

together with the SM expectation. The departure from a symmetric distribution arises from

the definition of RK. The denominator is affected by larger statistical uncertainties than the

numerator, owing to the different efficiencies of the muon and electron channels. However,

the intervals of the likelihood distribution are found to be identical when estimated with

1/RK as the fit parameter.
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The result is obtained from the point that maximises the likelihood, and is found to be:

RK = 0.846 + 0.044
− 0.041

, (11.6)

where the uncertainties combine statistical and systematic effects. To disentangle the statis-

tical component of the total uncertainty, the NLL minimisation is repeated after fixing the

crt
K parameters to their values at the minimum. All systematic effects are hence turned off,

resulting in an RK estimate whose uncertainty is purely statistical. This leads to the final

result on RK, with separated statistical and systematic uncertainties:

RK = 0.846 + 0.042
− 0.039

+ 0.013
− 0.012

. (11.7)

The statistical precision on this result is approximately 5%. This represents an improvement

by a factor of 1.4 with respect to the previous measurement, as expected from the doubling

of statistics. The measurement is dominated by the statistical uncertainty, given that the

systematic uncertainty of 1.5% is much smaller.

The level of compatibility with the SM is evaluated using the profiled NLL. The SM prediction

is expected to vary by 1% as a result of possible imperfections in the Qed corrections

generated by Photos [71,74–82]. This is taken into account by reparametrising the likelihood

in terms of the SM prediction, RSM
K

, and the distance∆RK between the experimental result and

RSM
K

. The likelihood is multiplied by a Gaussian constraint on RSM
K

, of mean 1 and standard

deviation 1%. The profile of this likelihood in ∆RK is interpreted as the posterior PDF of

∆RK, for which a uniform prior is assumed. The p-value of the SM hypothesis is computed

by integrating this posterior PDF above ∆RK = 0, and found to be equal to 10−3. The

corresponding significance in terms of standard deviations is calculated using the inverse

Gaussian cumulative distribution function for a one-sided conversion. The RK measurement

is found to be 3.1 σ away from the SM prediction, giving evidence for the violation of lepton

flavour universality in B+ → K+ℓ+ℓ− decays.
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11.5 Differential branching fraction of B+ → K+e+e−

Combining the value of RK with the measurement in q2 ∈ (1.1 GeV2, 6.0 GeV2) from Ref. [26],

dB(B+ → K+µ+µ−)

dq2
= (24.2 ± 0.7 (stat.) ± 1.2 (syst.)) × 10−9 GeV−2 , (11.8)

the differential branching fraction of B+ → K+e+e− is measured over q2 ∈ (1.1 GeV2, 6.0 GeV2).

The uncertainties incorporated by this combination are summarised in Table 11.2. Assuming

that the Run 1 B+ → K+µ+µ− sample in the RK analysis overlaps entirely with the sample

used in Ref. [26], the correlation between the statistical uncertainty of B(B+ → K+µ+µ−)

and RK is estimated to be 21%. The dominant systematic effect in B (B+ → K+µ+µ−) is the

uncertainty on the branching fraction of the B+ → K+J/ψ(µ+µ−) normalisation channel. It

is not correlated with RK, and found to be approximately 4.2%. The remaining systematic

effects, associated with imperfections in the simulation and the physics model, are assumed

to be fully correlated with the equivalent systematics in RK.

Table 11.2: Uncertainties on RK and B(B+ → K+µ+µ−) that are relevant to the calculation of
B(B+ → K+e+e−). All values are percentages.

dB(B+ → K+µ+µ−)/dq2 RK

Statistical 2.9 +5.0
−4.6

Efficiencies 2.6 +1.2
−1.0

RK fit model & bias - 1.0
B (B+ → K+J/ψ(µ+µ−)) 4.2 -
Total 5.7 +5.2

−4.8

The result for dB(B+ → K+e+e−)/dq2, averaged over the q2 range used in the RK analysis, is:

dB(B+ → K+e+e−)

dq2
=

(

28.6 +1.5
−1.4 ± 1.3

)

× 10−9 GeV−2 , (11.9)

where the first uncertainty is statistical, and the second systematic. This measurement is

depicted in Figure 11.8, alongside results from the muon modes [26] and the SM predic-

tions [198, 199]. The electron data is found to be in better agreement with the SM than the

muon data.
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11.6 Effect of turning off the efficiency corrections

A significant portion of the RK analysis is devoted to understanding and correctly measuring

the efficiencies. As expanded upon in Chapter 6, some aspects of the data are not reproduced

by the simulation perfectly, hence the need for efficiency corrections. This section describes

an exercise that quantifies the effect these corrections have on RK.

In Equation (9.3), it is shown that information from the efficiencies is encoded into the fit

(and hence into RK) through the crt
K parameters. For this reason, the effect of the corrections

is evaluated by fitting the B+ → K+ℓ+ℓ− data using crt
K values obtained without applying any

corrections to the simulation. This is then compared to the outcome of a fit that’s given the

nominal crt
K values. In both cases, the crt

K are fixed to their estimates from simulation, in order

to isolate the effect of the efficiency calibration. The quantity of interest is the shift in RK

induced by not applying the corrections to simulation.

The crt
K parameters are recalculated using Equation (9.3) by turning off the efficiency correc-

tions, and by rerunning the fits to the control data using signal and background models that

are not adjusted by the calibration weights. These templates are found to be similar to their
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Table 11.3: The crt
K

factors used to evaluate the impact of efficiency corrections on RK. The values
in the left-most column take into account the corrections, so are identical to the central values of
the constraints used in the nominal fit. The middle column shows how these parameters change by
turning off the efficiency corrections. The changes listed in the right-most column are defined as the
differences between the values without and with corrections, relative to the corrected ones.

crt

K

Data-taking
period

With
corrections

Without
corrections

Change [%]

Run 1
eTOS 0.1436 0.1399 −2.58
hTOS! 0.0509 0.0478 −6.09
TIS! 0.0548 0.0530 −3.28

Run 2.1
eTOS 0.2809 0.2773 −1.28
hTOS! 0.0710 0.0697 −1.83
TIS! 0.0806 0.0772 −4.22

2017
eTOS 0.2403 0.2335 −2.83
hTOS! 0.0709 0.0675 −4.80
TIS! 0.0835 0.0785 −5.99

2018
eTOS 0.2296 0.2200 −4.18
hTOS! 0.0765 0.0771 0.78
TIS! 0.0788 0.0748 −5.08

nominal, corrected counterparts, so the impact on the B+ → K+J/ψ(ℓ+ℓ−) yields is negligible.

However, the efficiencies change by a few percent, as reflected in the resulting crt
K estimates.

They are presented in Table 11.3 together with the nominal values. The dominant trigger

category, eTOS, shows downwards changes of around 3%, so it is expected that RK would

shift by a similar amount. Indeed, the RK values obtained from the two fits,

Rcorr.
K = 0.848+0.042

−0.039 , and (11.10)

Runcorr.
K = 0.823+0.041

−0.038 , (11.11)

differ by 3.1%. This is comparable to the overall uncertainty on RK, and the estimate that

ignores corrections, Runcorr.
K

, has a smaller value than the one which does take into account

corrections, Rcorr.
K

. This means that the efficiency corrections are necessary to avoid a result

that’s biased away from the SM expectation by an amount comparable to the overall precision.

The effect on rJ/ψ is found to be larger: 15% – 40%, depending on the data-taking period and

trigger selection. This further demonstrates the power of the double ratio to suppress

systematic biases that affect resonant and control data similarly.
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11.7 Unblinded compatibility checks

With the unblinding of the final result on RK, it is possible to inspect the values resulting from

the compatibility checks presented in Section 10.3. The agreement between these values was

assessed while they were still blinded, using suitable test statistics whose distributions were

obtained from statistically-representative pseudoexperiments. No significant tension was

found in any of the tests performed, and so it was decided to move forward to the unblinding

procedure. The values of RK preferred by the fit configurations described in Section 10.3.1 are

summarised in Figure 11.9. Additional compatibility checks were conducted and presented

in Section 10.3.3.

Two noteworthy results are the large p-values for compatibility between 2017 and 2018

data, and between these two samples combined (Run 2.2) and the previous dataset. Before

unblinding, this suggested that the addition of Run 2.2 data would not change the central

value by a substantial amount. However, it could not completely rule out unusual features

of the likelihood, such as multiple minima or correlations in the fit that would be able to

accommodate several RK estimates. Even so, Figure 11.9 shows that the 2017 and 2018 data

prefers nearly the same value of RK, which is almost identical to the one obtained from the

fit to the entire dataset. This explains why the result presented in Equation (11.7) is very

close to the one given in Equation (10.3), thus providing a remarkable demonstration of the

robustness of the RK measurement.
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Figure 11.9: Unblinded values of RK obtained from the three compatibility checks presented in Sec-
tion 10.3. The uncertainties do not contain systematic effects induced by the fit procedure, and the
central values are not corrected to account for fit biases. The dashed vertical line represents the
combined results, and its uncertainty is depicted by the grey band.
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11.8 Impact on the landscape of anomalies

As a result of the approximate doubling of statistics with respect to the previous analysis,

the tension between the measured value of RK and the SM prediction increases from 2.5 σ

to 3.1 σ. This subsection covers an additional study of how impactful the improvement in

precision is. The study represents original work, and is performed in the context of the Eft

framework introduced in Section 2.4. Likelihood surfaces that depend on Wilson coefficients

are calculated using the RK measurements before and after the addition of Run 2.2 data. The

contours of the likelihood surfaces are then compared, in order to put the increased statistical

power into the context of global fits to Wilson coefficients.

Like the fits presented in Figure 2.8, the study in this section is performed using the flavio

software package [79]. The SM nuisance parameters are set in their default configuration, and

NP is assumed to only impact certain Wilson coefficients. At leading order, the observable RK

is only sensitive to theC9 andC10 coefficients in the electron and muon sectors. In the context

of the results presented in Figure 11.8, B+ → K+e+e− is assumed to be SM-like. Therefore, this

study only considers NP contributions to the muonic coefficients, denoted byCbsµµ
9

andCbsµµ
10

.

Figure 11.10 shows the likelihood surface as a function of the two NP contributions to

the Wilson coefficients, before and after the addition of Run 2.2 data. It can be seen that

the increased statistics reduce the 1 σ and 3 σ confidence regions, leading to the SM being

disfavoured by more than 3 σ. This is compatible with the 3.1 σ tension obtained from the

likelihood shown in Figure 11.7. The best-fit points from both RK results are compatible, and

are situated close to theCbsµµ
9
= −Cbsµµ

10
line. This is consistent with a V−A NP interaction1. To

test this hypothesis against the SM, the likelihood is recalculated after fixing NP contributions

to C10 to have equal magnitudes and opposite signs to C9 contributions. The result is

shown in Figure 11.11. The minimum from the current 9 fb−1 RK result is found to be at

Cbsµµ
9
= −0.32± 0.10, with the 5 fb−1 equivalent at Cbsµµ

9
= −0.30± 0.13. The uncertainty scales

by a factor of approximately
√

2, notwithstanding the effect of the theory uncertainties. The

updated and previous RK results prefers the Cbsµµ
9
= −Cbsµµ

10
NP hypothesis over the SM

1In this context, V −A stands for “vector minus axial-vector”. An example of a V −A interaction in the SM
is the charged-current weak interaction.
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hypothesis by approximately 3.5 and 2.3 standard deviations, respectively. These tensions

are higher than in the case where both Wilson coefficients are left freely floating, due to the

reduction by one degree of freedom. This is another example of the power provided by the

doubling of statistics compared to the previous measurement, whilst also showing that the

SM is even more disfavoured by the data.
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1
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RK 9 fb−1 (1 σ, 3 σ)
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Figure 11.10: The 1 σ and 3 σ contours obtained from the current and previous RK measurements by
allowing NP contributions to the muonic C9 and C10 Wilson coefficients. The circle and the cross
depict the best-fit points to the current and previous LHCb RK measurements, respectively.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

C
bsµµ
9

= −C
bsµµ
10

0

10

20

30

40

−
2
∆
lo
g
L

RK 9 fb−1

RK 5 fb−1

Figure 11.11: Likelihood scan of equal but opposite-sign NP contributions to C9 and C10 , using the
current and previous LHCb RK results.
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Conclusion

This thesis gives the first evidence for the violation of lepton flavour universality, in beauty-

quark decays [1]. The ratio of branching fractions RK is measured using 9 fb−1 of proton-

proton collision data recorded by the LHCb experiment at CERN. The result is:

RK = 0.846 + 0.042
− 0.039

+ 0.013
− 0.012

, (12.1)

which is in tension with the Standard Model prediction at the level of 3.1 σ. Using Eft at

scales close to mb to test the SM null hypothesis against certain NP scenarios, it is found that

the RK measurement prefers NP by over 3 σ. Such Eft fits provide useful information when

building complete NP models that could explain RK and other flavour anomalies, such as

leptoquarks or Z′ vector bosons.

Verification from other experiments of the LHCb RK measurement is expected in the near

future. The Belle II collaboration [200, 201] begun taking data shortly after LHCb’s Run 2

ended. As the successor of the Belle collaboration that provided some of the results dis-

cussed in Section 2.3, Belle II is expected to have a significant impact on the landscape of

flavour anomalies, and beyond. Furthermore, the CMS collaboration has collected samples of

b-hadron decays [202], which could be used to measure LFU ratios such as RK and RD∗ .

By the time other experiments will have measured the anomalous flavour observables, LHCb

212
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is expected to have conducted additional studies of the anomalies. Measuring RK in other q2

regions, such as q2 > m2
ψ(2S)

, would provide complementary information to the measurement

at q2 ∈ (1.1 GeV2, 6.0 GeV2). Such high-q2 regions are expected to feature background sources

that are different to the ones present in the measurement described by this thesis. Therefore,

measuring RK at high-q2 would provide important complementary information in the study

of LFU. In addition, the current LHCb measurement of RK∗0 only uses Run 1 data, therefore

a result approximately twice as precise is expected in the near future. Since RK∗0 is sensitive

to violation of LFU, an updated result is expected to heavily influence the landscape of the

flavour anomalies. Another ratio to consider is RpK, which has been measured by LHCb [64]

using Run 1 and 2016 data. Given that it involves baryons in the final state, RpK provides

complementary information to the other ratios, at the cost of reduced precision.

Data collection by the LHCb collaboration is expected to restart at the beginning of 2022,

when Run 3 is scheduled to begin. As a result of the upgraded trigger [203], LHCb is expected

to collect data at higher rates, leading to as much as 23 fb−1 of total integrated luminosity.

This is estimated to increase to 50 fb−1 during Run 4, when the LHC is scheduled to be

upgraded to run at higher instantaneous luminosities. After Run 4, it is projected that the

LHCb collaboration could be able to collect as much as 300 fb−1 of proton-proton collision

data [204]. Since results on Fcnc RH ratios are dominated by statistical uncertainties, such

increases to the amount of available data are important to the understanding of the flavour

anomalies. This is reflected in the reduction of uncertainties on the already-measured ratios,

as well as in the enabling of RH tests based on other hadronic systems H. In particular,

b→ dℓ+ℓ− observables, such as Rπ, where the b decays into the first quark generation rather

than the second, would be able to provide complementary constraints on the current NP

models that attempt to explain the anomalies. Such a measurement is currently challenging

at LHCb, because B+ → π+ℓ+ℓ−modes are suppressed with respect to their kaon counterparts

by a factor of approximately 25. However, it can be seen in Table 12.1 that several RH ratios,

including Rπ, are expected to have statistical precision of a few percent with 300 fb−1 of data.

In particular, RK and RK∗0 are expected to only become systematically-dominated after Run 4.

Note that since the RK result presented in this thesis has a statistical uncertainty of 5%, it
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Table 12.1: Extrapolation, based on Run 1 results, of statistical uncertainties on RH ratios and corre-

sponding expected electron-mode yields. The bb production cross-section is assumed to scale linearly
with centre-of-mass energy, and the detector performance is assumed to be unchanged with respect
to Run 1. The extrapolated B+ → K+e+e− yield at 9 fb−1 differs from the yield given in Section 11.3.
This is attributed to the different central values of RK, alongside the better detector performance in
Run 2 compared to Run 1. Table adapted from Ref. [204].

surpasses the extrapolated precision of 6% presented in Table 12.1.

Another strategy not yet fully exploited by LHCb is to measure ratios of Fcnc branching

fractions involving taus. If NP couples preferentially to both the heaviest quark and the

heaviest lepton generations, it is expected that the largest deviations from the SM are to

be found in flavour anomalies containing taus in the final state, such as the R(∗)
D

anomalies

discussed in Section 2.3.4. However, the tau decays into at least one neutrino, which typically

escapes detection. This results in experimental challenges that are qualitatively different

from the ones faced by, for example, the electron modes. Nevertheless, once experimental

techniques are developed to address these difficulties, tauonic Fcncs are expected to lead

to an increased understanding of potential NP in beauty-quark decays.

Flavour physics is at a notable point in its history. Through the measurement presented in

this thesis, evidence has been provided for the first time for the violation of lepton flavour

universality, in decays of beauty quarks. This result is related to other observations, and

the global picture points towards possible particles and interactions that are not currently

accounted for in the Standard Model of particle physics. The situation is not yet conclusive,

however studies in the near future are expected to make considerable contributions to our

understanding of the flavour anomalies. These are certainly exciting times.
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Appendix A

Additional information on the fits to

resonant data

This appendix is divided into three sections. Appendix A.1 shows fits to simulated

B+ → K+J/ψ(ℓ+ℓ−) samples, which are used to constrain signal and background shapes in

data. Appendix A.2 contains fits to B+ → K+J/ψ(e+e−) hTOS! and TIS! data. Appendix A.3

lists the fit parameters that maximise the likelihood in each fit to fully-selected data.

A.1 Fits to simulated control-mode samples
Fits to simulated B+ → K+J/ψ(ℓ+ℓ−) 2018 samples are shown in Figures A.1 and A.2. The

results from other data-taking conditions are similar, and are thus omitted. The pulls indicate

that the models suitably describe the signal shapes.

A.2 Fits to hTOS! and TIS! data
The fits to hTOS! and TIS! data are presented in Figure A.3. Shown below each plot are the

pulls between the data and the total fit model. The pulls are generally small, indicating good

agreement between the data and the model.
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Figure A.1: Fits to the mJ/ψ(K+ℓ+ℓ−) distribution of simulated B+ → K+J/ψ(ℓ+ℓ−) events that pass the
entire selection chain. The pulls between the simulation samples (black) and the models (red) are
shown at the bottom of each plot. The components of the signal shape, viz. a Hypatia and a Gaussian
for muons and two Crystal Ball distributions for electrons, are shown in blue and purple. Shown
below each plot are the pulls between the data and the total fit model.
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Figure A.2: Continued from the previous page.
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Figure A.3: Fits to the mJ/ψ(K+e+e−) distribution of B+ → K+J/ψ(e+e−) fully-selected hTOS! and TIS!
candidates in the samples corresponding to each data-taking period. The red solid line represents the
fit model, the dotted black line is the signal component, the light-blue filled area represents misiden-
tified B+ → π+J/ψ(e+e−) events, and the orange-filled area shows the combinatorial background. The
strange and charm partially-reconstructed backgrounds (referred to as “prc” in the legend) are repre-
sented by the filled areas filled with dark blue and red, respectively. Shown below each plot are the
pulls between the data and the total fit model.
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A.3 Best-fit parameters
Table A.1 lists the parameters that maximise the likelihood in the fits to fully-selected

B+ → K+J/ψ(µ+µ−) data from each data-taking period. Their equivalents from the electron

data, from each of the three trigger categories, are given in Tables A.2 to A.4.

Table A.1: Results of the final fits to B+ → K+J/ψ(µ+µ−) data taken during the four data-taking periods.
The notation is explained in Section 5.1.

Run 1
Nsig = 618300 ± 800

Ncombi = 2280 ± 140
Nmis−ID/Nsig = 0.00288 ± 0.00011

λ = 0.0057 ± 0.0004
∆µ = 1.219 ± 0.013

sσ = 1.1600 ± 0.0014

Run 2.1
Nsig = 543500 ± 700

Ncombi = 2970 ± 140
Nmis−ID/Nsig = 0.00473 ± 0.00016

λ = 0.00565 ± 0.00030
∆µ = −0.215 ± 0.014

sσ = 1.1531 ± 0.0016

2017

Nsig = 507100 ± 700
Ncombi = 3170 ± 130

Nmis−ID/Nsig = 0.00523 ± 0.00017
λ = 0.00623 ± 0.00027
∆µ = −0.275 ± 0.014

sσ = 1.1239 ± 0.0016

2018

Nsig = 619600 ± 800
Ncombi = 3780 ± 150

Nmis−ID/Nsig = 0.00562 ± 0.00018
λ = 0.00603 ± 0.00025
∆µ = −0.078 ± 0.013

sσ = 1.1231 ± 0.0014

Table A.2: Results of the final fits to B+ → K+J/ψ(e+e−) data taken during the four data-taking periods,
using the eTOS trigger strategy. The notation is explained in Sections 5.1 and 5.4.

Run 1
Nsig = 90220 ± 310
Nprc = 7680 ± 280

Ncharm/Nstrange = 0.027 ± 0.004
Nmis−ID/NK = 0.0047 ± 0.0005

∆µ = 1.32 ± 0.06
sσ = 1.112 ± 0.006
f0γ = 0.2397 ± 0.0024
f1γ = 0.492 ± 0.005

Ncombi = 470 ± 250
λ = 0.038 ± 0.011

Run 2.1
Nsig = 153400 ± 400
Nprc = 13500 ± 400

Ncharm/Nstrange = 0.028 ± 0.004
Nmis−ID/NK = 0.0052 ± 0.0005

∆µ = −0.20 ± 0.05
sσ = 1.124 ± 0.005
f0γ = 0.2507 ± 0.0025
f1γ = 0.497 ± 0.005

Ncombi = 300 ± 400
λ = 0.036 ± 0.022

2017

Nsig = 126300 ± 400
Nprc = 11640 ± 120

Ncharm/Nstrange = 0.029 ± 0.004
Nmis−ID/NK = 0.0059 ± 0.0006

∆µ = −0.11 ± 0.05
sσ = 1.105 ± 0.005
f0γ = 0.2511 ± 0.0025
f1γ = 0.502 ± 0.005

2018

Nsig = 148900 ± 400
Nprc = 13670 ± 140

Ncharm/Nstrange = 0.037 ± 0.006
Nmis−ID/NK = 0.0062 ± 0.0006

∆µ = 0.02 ± 0.05
sσ = 1.108 ± 0.005
f0γ = 0.2541 ± 0.0025
f1γ = 0.500 ± 0.005
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Table A.3: Results of the final fits to B+ → K+J/ψ(e+e−) data taken during the four data-taking periods,
using the hTOS! trigger strategy. The notation is explained in Sections 5.1 and 5.4.

Run 1
Nsig = 15390 ± 130
Nprc = 1260 ± 50

Ncharm/Nstrange = 0.035 ± 0.005
Nmis−ID/NK = 0.0119 ± 0.0012

∆µ = 1.03 ± 0.19
sσ = 1.081 ± 0.014
f0γ = 0.1569 ± 0.0012
f1γ = 0.500 ± 0.005

Ncombi = −13 ± 20
λ = 0.078 ± 0.099

Run 2.1
Nsig = 16960 ± 130
Nprc = 1360 ± 40

Ncharm/Nstrange = 0.032 ± 0.003
Nmis−ID/NK = 0.0133 ± 0.0009

∆µ = −0.30 ± 0.13
sσ = 1.140 ± 0.014
f0γ = 0.1341 ± 0.0013
f1γ = 0.501 ± 0.005

Ncombi = −10 ± 260
λ = 0.00 ± 0.08

2017

Nsig = 17470 ± 140
Nprc = 1380 ± 60

Ncharm/Nstrange = 0.032 ± 0.005
Nmis−ID/NK = 0.0138 ± 0.0013

∆µ = −0.67 ± 0.19
sσ = 1.152 ± 0.014
f0γ = 0.1424 ± 0.0014
f1γ = 0.496 ± 0.005

2018

Nsig = 22770 ± 160
Nprc = 1820 ± 50

Ncharm/Nstrange = 0.033 ± 0.005
Nmis−ID/NK = 0.0140 ± 0.0014

∆µ = −0.28 ± 0.16
sσ = 1.118 ± 0.012
f0γ = 0.1490 ± 0.0014
f1γ = 0.500 ± 0.005

Table A.4: Results of the final fits to B+ → K+J/ψ(e+e−) data taken during the four data-taking periods,
using the TIS! trigger strategy. The notation is explained in Sections 5.1 and 5.4.

Run 1
Nsig = 30360 ± 180
Nprc = 2820 ± 60

Ncharm/Nstrange = 0.041 ± 0.006
Nmis−ID/NK = 0.00312 ± 0.00031

∆µ = 1.36 ± 0.12
sσ = 1.0728 ± 0.0098
f0γ = 0.1920 ± 0.0019
f1γ = 0.498 ± 0.005

Ncombi = −17 ± 18
λ = 0.007 ± 0.009

Run 2.1
Nsig = 37810 ± 200
Nprc = 3490 ± 260

Ncharm/Nstrange = 0.042 ± 0.006
Nmis−ID/NK = 0.00299 ± 0.00030

∆µ = −0.03 ± 0.11
sσ = 1.127 ± 0.009
f0γ = 0.1697 ± 0.0017
f1γ = 0.499 ± 0.005

Ncombi = 210 ± 250
λ = 0.030 ± 0.017

2017

Nsig = 37890 ± 200
Nprc = 3790 ± 80

Ncharm/Nstrange = 0.044 ± 0.007
Nmis−ID/NK = 0.00305 ± 0.00031

∆µ = −0.19 ± 0.11
sσ = 1.101 ± 0.009
f0γ = 0.1722 ± 0.0017
f1γ = 0.502 ± 0.005

Ncombi = −14 ± 22
λ = 0.08 ± 0.17

2018

Nsig = 45860 ± 230
Nprc = 4590 ± 80

Ncharm/Nstrange = 0.039 ± 0.006
Nmis−ID/NK = 0.00329 ± 0.00033

∆µ = 0.03 ± 0.10
sσ = 1.115 ± 0.009
f0γ = 0.1737 ± 0.0017
f1γ = 0.496 ± 0.005

Ncombi = 30 ± 80
λ = 0.004 ± 0.015



Appendix B

Additional trigger calibration tables

This appendix contains additional material used to calibrate the performance of the L0 trigger

lines employed in the RK analysis. The calibration procedure is described in Section 6.3.

B.1 Calibration of L0Electron in the other Ecal regions

The main body of the thesis presents in Figure 6.6 the L0Electron performance of electrons

passing through the inner-most region of the Ecal. The corresponding tables for elec-

trons which traverse the outer and middle regions are listed in Figure B.1 and Figure B.2,

respectively.

B.2 Calibration of L0Hadron in the other Hcal regions

The main body of the thesis presents in Figure 6.8 the L0Hadron performance of electrons

passing through the inner region of the Hcal. The corresponding tables for kaons which

traverse the outer region are listed in Figure B.3.
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Figure B.1: Efficiency with which an electron traversing the outer Ecal region in data (left) and sim-
ulation (right) fires the L0Electron trigger, as a function of its reconstructed transverse momentum.
The bins represent the tags described in the main body, whilst the lines are the corresponding fits to
the function defined in Equation (6.13). The tag labelled as “nom.” is the one used to estimate the
nominal efficiencies, the other tag being used to evaluate systematic uncertainties. The dashed line
corresponds to the fiducial cut applied to all electrons that fire L0Electron, in order to improve the
level of agreement between selected data and simulated events.
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Figure B.2: Efficiency with which an electron traversing the middle Ecal region in data (left) and
simulation (right) fires the L0Electron trigger, as a function of its reconstructed transverse momen-
tum. The bins represent the tags described in the main body, whilst the lines are the corresponding
fits to the function defined in Equation (6.13). The tag labelled as “nom.” is the one used to estimate
the nominal efficiencies, the other tag being used to evaluate systematic uncertainties. The dashed
line corresponds to the fiducial cut applied to all electrons that fire L0Electron, in order to improve
the level of agreement between selected data and simulated events.
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Figure B.3: Efficiency with which a kaon traversing the outer Hcal region in data (left) and simulation
(right) fires the L0Hadron trigger, as a function of the reconstructed transverse energy deposited in the
Hcal. The bins represent the tags described in the main body, whilst the lines are the corresponding
fits to the function defined in Equation (6.15). The tag labelled as “nom.” is the one used to estimate
the nominal efficiencies, the other tag being used to evaluate systematic uncertainties. The dashed
line corresponds to the ET > 3.5 GeV fiducial cut applied to all kaons that fire L0Hadron, in order to
improve the level of agreement between selected data and simulated events.



Appendix C

Supplementary kinematic distributions

The main body of the thesis discusses in Section 6.5 the calibration of the simulated B+

kinematics. Its effect on the distributions of several variables in muon and electron samples

in 2018 data-taking conditions is exemplified in Figures 6.11 and 6.12, respectively. This

appendix presents in Figures C.1 and C.2 the distributions of additional variables in the

2018 muon and electron samples, respectively. The equivalent spectra obtained from 2017

samples are shown in Figures C.3 to C.6.
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Figure C.1: Supplementary distributions of kinematic variables in B+ → K+J/ψ(µ+µ−) 2018 µTOS
samples. The black histograms show the distributions in data, whilst the red and blue bins depict the
simulated distributions before and after the kinematic calibration, respectively.



240 Chapter C. Supplementary kinematic distributions

]V) [Me+B(miss

T
p

0 500 1000 1500

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

)+K(η
1 2 3 4 5 6

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

]V) [MeψJ/(
T

p
0 5000 10000 15000

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

]V) [Me+K(
T

p
0 2000 4000 6000 8000 10000

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)
0

0.2

0.4

0.6

0.8

1

+e+K
α

0 0.1 0.2 0.3 0.4

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

−e+K
α

0 0.1 0.2 0.3 0.4

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

))−e(
IP

2χ), +e(
IP

2χmax(
0 200 400 600 800 1000

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0.2

0.4

0.6

0.8

1

))−e(
IP

2χ), +e(
IP

2χmin(
0 200 400 600 800 1000

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

]V)) [Me−e(TE), +e(TEmax(
0 5000 10000 15000 20000

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

]V)) [Me−e(TE), +e(TEmin(
0 2000 4000 6000 8000 10000

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

Figure C.2: Supplementary distributions of kinematic variables in B+ → K+J/ψ(e+e−) 2018 eTOS
samples. The black histograms show the distributions in data, whilst the red and blue bins depict the
simulated distributions before and after the kinematic calibration, respectively.
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Figure C.3: Distributions of kinematic variables in B+ → K+J/ψ(µ+µ−) 2017 µTOS samples. The
black histograms show the distributions in data, whilst the red and blue bins depict the simulated
distributions before and after the kinematic calibration, respectively.
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Figure C.4: Distributions of kinematic variables in B+ → K+J/ψ(e+e−) 2017 eTOS samples. The black
histograms show the distributions in data, whilst the red and blue bins depict the simulated distri-
butions before and after the kinematic calibration, respectively.
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Figure C.5: Supplementary distributions of kinematic variables in B+ → K+J/ψ(µ+µ−) 2017 µTOS
samples. The black histograms show the distributions in data, whilst the red and blue bins depict the
simulated distributions before and after the kinematic calibration, respectively.
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Figure C.6: Supplementary distributions of kinematic variables in B+ → K+J/ψ(e+e−) 2017 eTOS
samples. The black histograms show the distributions in data, whilst the red and blue bins depict the
simulated distributions before and after the kinematic calibration, respectively.



Appendix D

Tables of intermediary efficiencies

The total efficiencies listed in Table 6.4 are factorised in several terms, as per Equation (6.1).

These intermediary efficiencies are listed in Tables D.1 and D.2. The largest discrepancy in

rare and control efficiencies lies in εpresel. This is the one that includes the q2 cut efficiency, and

so it reflects the fact that several B+ → K+ℓ+ℓ− events lie outside the q2 ∈ (1.1 GeV2, 6.0 GeV2)

window. Other smaller differences can be found in εℓTOS, due to the slightly different

kinematics, and in εBDT, as a result of the mass cuts.
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Table D.1: Individual efficiencies of the resonant and signal µTOS and eTOS events. The total
efficiency is listed as a percentage.

εrare εcontrol εψ(2S) εrare εcontrol εψ(2S)

Run 1 µTOS Run 1 eTOS
εgeom 0.1646 ± 0.0003 0.1617 ± 0.0003 0.1668 ± 0.0003 0.1635 ± 0.0003 0.1609 ± 0.0003 0.1668 ± 0.0003
εrec,strip 0.2346 ± 0.0003 0.2386 ± 0.0001 0.2398 ± 0.0002 0.1268 ± 0.0002 0.1312 ± 0.0002 0.1346 ± 0.0004
εpresel 0.1452 ± 0.0005 0.6001 ± 0.0003 0.6225 ± 0.0004 0.2618 ± 0.0007 0.7546 ± 0.0006 0.6688 ± 0.0014
εPID 0.9061 ± 0.0014 0.9132 ± 0.0003 0.9127 ± 0.0004 0.7661 ± 0.0017 0.7649 ± 0.0008 0.7719 ± 0.0019
εtrig 0.7159 ± 0.0018 0.7543 ± 0.0004 0.7925 ± 0.0004 0.1663 ± 0.0011 0.1991 ± 0.0006 0.2386 ± 0.0015
εBDT 0.8702 ± 0.0016 0.8758 ± 0.0004 0.8367 ± 0.0004 0.7869 ± 0.0031 0.8933 ± 0.0011 0.8722 ± 0.0024
εtot [%] 0.3165 ± 0.0016 1.3964 ± 0.0027 1.5066 ± 0.0035 0.0544 ± 0.0005 0.2167 ± 0.0009 0.2413 ± 0.0019

Run 2.1 µTOS Run 2.1 eTOS
εgeom 0.1794 ± 0.0003 0.1766 ± 0.0003 0.1756 ± 0.0003 0.1787 ± 0.0003 0.1758 ± 0.0003 0.1756 ± 0.0003
εrec,strip 0.2270 ± 0.0003 0.2332 ± 0.0001 0.2345 ± 0.0002 0.1317 ± 0.0002 0.1366 ± 0.0002 0.1440 ± 0.0004
εpresel 0.1437 ± 0.0005 0.5939 ± 0.0003 0.6154 ± 0.0004 0.2646 ± 0.0008 0.7299 ± 0.0005 0.6234 ± 0.0014
εPID 0.9281 ± 0.0011 0.9318 ± 0.0003 0.9316 ± 0.0004 0.7746 ± 0.0017 0.7739 ± 0.0007 0.7779 ± 0.0019
εtrig 0.6552 ± 0.0016 0.6900 ± 0.0004 0.7325 ± 0.0005 0.2783 ± 0.0015 0.3430 ± 0.0006 0.3994 ± 0.0018
εBDT 0.9094 ± 0.0013 0.9112 ± 0.0003 0.8696 ± 0.0005 0.7755 ± 0.0026 0.9001 ± 0.0007 0.8717 ± 0.0020
εtot [%] 0.3236 ± 0.0015 1.4322 ± 0.0028 1.5038 ± 0.0034 0.1041 ± 0.0007 0.4188 ± 0.0013 0.4268 ± 0.0028

2017 µTOS 2017 eTOS
εgeom 0.1789 ± 0.0002 0.1761 ± 0.0002 0.1792 ± 0.0002 0.1779 ± 0.0003 0.1754 ± 0.0002 0.1793 ± 0.0004
εrec,strip 0.2626 ± 0.0003 0.2705 ± 0.0001 0.2707 ± 0.0002 0.1332 ± 0.0002 0.1382 ± 0.0001 0.1438 ± 0.0002
εpresel 0.1196 ± 0.0004 0.5184 ± 0.0003 0.5421 ± 0.0005 0.2264 ± 0.0008 0.7301 ± 0.0004 0.6266 ± 0.0009
εPID 0.9427 ± 0.0012 0.9480 ± 0.0003 0.9491 ± 0.0004 0.7466 ± 0.0021 0.7440 ± 0.0005 0.7477 ± 0.0012
εtrig 0.7300 ± 0.0018 0.7627 ± 0.0004 0.7913 ± 0.0006 0.2682 ± 0.0018 0.3286 ± 0.0005 0.3841 ± 0.0011
εBDT 0.8927 ± 0.0015 0.9058 ± 0.0003 0.8815 ± 0.0005 0.7569 ± 0.0033 0.9147 ± 0.0005 0.9100 ± 0.0010
εtot [%] 0.3452 ± 0.0017 1.6174 ± 0.0027 1.7400 ± 0.0040 0.0813 ± 0.0007 0.3957 ± 0.0009 0.4221 ± 0.0018

2018 µTOS 2018 eTOS
εgeom 0.1791 ± 0.0003 0.1764 ± 0.0002 0.1794 ± 0.0002 0.1782 ± 0.0003 0.1756 ± 0.0002 0.1798 ± 0.0004
εrec,strip 0.2622 ± 0.0003 0.2699 ± 0.0001 0.2691 ± 0.0002 0.1328 ± 0.0002 0.1384 ± 0.0001 0.1441 ± 0.0002
εpresel 0.1191 ± 0.0004 0.5197 ± 0.0003 0.5437 ± 0.0003 0.2268 ± 0.0008 0.7325 ± 0.0004 0.6284 ± 0.0007
εPID 0.9460 ± 0.0012 0.9519 ± 0.0002 0.9529 ± 0.0003 0.7435 ± 0.0021 0.7413 ± 0.0005 0.7444 ± 0.0009
εtrig 0.7087 ± 0.0019 0.7485 ± 0.0004 0.7850 ± 0.0004 0.2452 ± 0.0017 0.3026 ± 0.0004 0.3574 ± 0.0009
εBDT 0.8799 ± 0.0016 0.8855 ± 0.0003 0.8541 ± 0.0004 0.7672 ± 0.0034 0.9312 ± 0.0005 0.9274 ± 0.0008
εtot [%] 0.3300 ± 0.0017 1.5609 ± 0.0027 1.6768 ± 0.0029 0.0751 ± 0.0007 0.3719 ± 0.0009 0.4015 ± 0.0009
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Table D.2: Individual efficiencies of the resonant and signal hTOS! and TIS! events. The total efficiency
is listed as a percentage.

εrare εcontrol εψ(2S) εrare εcontrol εψ(2S)

Run 1 hTOS! Run 1 TIS!
εgeom 0.1635 ± 0.0003 0.1609 ± 0.0003 0.1668 ± 0.0003 0.1635 ± 0.0003 0.1609 ± 0.0003 0.1668 ± 0.0003
εrec,strip 0.1268 ± 0.0002 0.1312 ± 0.0002 0.1346 ± 0.0004 0.1268 ± 0.0002 0.1312 ± 0.0002 0.1346 ± 0.0004
εpresel 0.2618 ± 0.0007 0.7546 ± 0.0006 0.6688 ± 0.0014 0.2618 ± 0.0007 0.7546 ± 0.0006 0.6688 ± 0.0014
εPID 0.7499 ± 0.0017 0.7671 ± 0.0008 0.7858 ± 0.0019 0.7652 ± 0.0016 0.7761 ± 0.0008 0.7787 ± 0.0019
εtrig 0.0520 ± 0.0006 0.0288 ± 0.0002 0.0099 ± 0.0003 0.0639 ± 0.0007 0.0658 ± 0.0004 0.0611 ± 0.0008
εBDT 0.8380 ± 0.0050 0.9962 ± 0.0004 1.0220 ± 0.0050 0.7260 ± 0.0050 0.8555 ± 0.0019 0.8590 ± 0.0050
εtot [%] 0.0178 ± 0.0002 0.0350 ± 0.0003 0.0120 ± 0.0004 0.0193 ± 0.0003 0.0696 ± 0.0004 0.0614 ± 0.0009

Run 2.1 hTOS! Run 2.1 TIS!
εgeom 0.1787 ± 0.0003 0.1758 ± 0.0003 0.1756 ± 0.0003 0.1787 ± 0.0003 0.1758 ± 0.0003 0.1756 ± 0.0003
εrec,strip 0.1317 ± 0.0002 0.1366 ± 0.0002 0.1440 ± 0.0004 0.1317 ± 0.0002 0.1366 ± 0.0002 0.1440 ± 0.0004
εpresel 0.2646 ± 0.0008 0.7299 ± 0.0005 0.6234 ± 0.0014 0.2646 ± 0.0008 0.7299 ± 0.0005 0.6234 ± 0.0014
εPID 0.7696 ± 0.0017 0.7807 ± 0.0007 0.7879 ± 0.0018 0.7765 ± 0.0017 0.7853 ± 0.0007 0.7876 ± 0.0018
εtrig 0.0771 ± 0.0008 0.0365 ± 0.0002 0.0127 ± 0.0004 0.0900 ± 0.0010 0.0875 ± 0.0004 0.0824 ± 0.0010
εBDT 0.7160 ± 0.0050 0.9319 ± 0.0018 0.941 ± 0.00805 0.7270 ± 0.0050 0.9091 ± 0.0014 0.9120 ± 0.0040
εtot [%] 0.0264 ± 0.0004 0.0466 ± 0.0003 0.0148 ± 0.0005 0.0316 ± 0.0004 0.1095 ± 0.0006 0.0933 ± 0.0013

2017 hTOS! 2017 TIS!
εgeom 0.1779 ± 0.0003 0.1754 ± 0.0002 0.1793 ± 0.0004 0.1779 ± 0.0003 0.1754 ± 0.0002 0.1793 ± 0.0004
εrec,strip 0.1332 ± 0.0002 0.1382 ± 0.0001 0.1438 ± 0.0002 0.1332 ± 0.0002 0.1382 ± 0.0001 0.1438 ± 0.0002
εpresel 0.2264 ± 0.0008 0.7301 ± 0.0004 0.6266 ± 0.0009 0.2264 ± 0.0008 0.7301 ± 0.0004 0.6266 ± 0.0009
εPID 0.7459 ± 0.0021 0.7528 ± 0.0005 0.7637 ± 0.0011 0.7536 ± 0.0021 0.7585 ± 0.0005 0.7596 ± 0.0012
εtrig 0.0845 ± 0.0011 0.0431 ± 0.0002 0.0146 ± 0.0002 0.1019 ± 0.0012 0.1006 ± 0.0002 0.0932 ± 0.0006
εBDT 0.6850 ± 0.0060 0.9199 ± 0.0013 0.9550 ± 0.0040 0.6990 ± 0.0060 0.8962 ± 0.0010 0.9089 ± 0.0020
εtot [%] 0.0232 ± 0.0004 0.0528 ± 0.0003 0.0172 ± 0.0003 0.0288 ± 0.0004 0.1210 ± 0.0004 0.1039 ± 0.0008

2018 hTOS! 2018 TIS!
εgeom 0.1782 ± 0.0003 0.1756 ± 0.0002 0.1798 ± 0.0004 0.1782 ± 0.0003 0.1756 ± 0.0002 0.1798 ± 0.0004
εrec,strip 0.1328 ± 0.0002 0.1384 ± 0.0001 0.1441 ± 0.0002 0.1328 ± 0.0002 0.1384 ± 0.0001 0.1441 ± 0.0002
εpresel 0.2268 ± 0.0008 0.7325 ± 0.0004 0.6284 ± 0.0007 0.2268 ± 0.0008 0.7325 ± 0.0004 0.6284 ± 0.0007
εPID 0.7370 ± 0.0021 0.7463 ± 0.0005 0.7577 ± 0.0009 0.7458 ± 0.0021 0.7516 ± 0.0005 0.7533 ± 0.0009
εtrig 0.0827 ± 0.0011 0.0428 ± 0.0002 0.0152 ± 0.0002 0.0939 ± 0.0011 0.0958 ± 0.0003 0.0912 ± 0.0005
εBDT 0.7300 ± 0.0060 0.9540 ± 0.0011 0.9819 ± 0.0024 0.6800 ± 0.0060 0.8861 ± 0.0010 0.9095 ± 0.0018
εtot [%] 0.0239 ± 0.0004 0.0542 ± 0.0003 0.0184 ± 0.0003 0.0255 ± 0.0004 0.1136 ± 0.0004 0.1016 ± 0.0006



Appendix E

Additional 1D rJ/ψ tests

This appendix contains results from the 1D rJ/ψ check described in Section 8.1.2. The main

body shows the outcome from 2018 eTOS data, whereas their equivalents from hTOS! and

TIS! data are presented in Figures E.1 and E.2, respectively. The results from 2017 eTOS,

hTOS!, and TIS! data are shown in Figures E.3, E.4, and E.5, respectively.
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Figure E.1: Plots of rJ/ψ obtained from 2018 hTOS! and µTOS data, as a function of variables relevant
to the detector response. The flatness parameters d f are displayed at the bottom of each plot. The
top of each rJ/ψ plot shows the kinematic distributions of the binned variable, in simulated signal and
control-mode samples. The uncertainties shown are purely statistical.
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Figure E.2: Plots of rJ/ψ obtained from 2018 TIS! and µTOS data, as a function of variables relevant to
the detector response. The flatness parameters d f are displayed at the bottom of each plot. The top
of each rJ/ψ plot shows the kinematic distributions of the binned variable, in simulated signal and
control-mode samples. The uncertainties shown are purely statistical.
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Figure E.3: Plots of rJ/ψ obtained from 2017 eTOS and µTOS data, as a function of variables relevant
to the detector response. The flatness parameters d f are displayed at the bottom of each plot. The
top of each rJ/ψ plot shows the kinematic distributions of the binned variable, in simulated signal and
control-mode samples. The uncertainties shown are purely statistical.



252 Chapter E. Additional 1D rJ/ψ tests

]V) [Me+B(
T

p
0 5000 10000 15000

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n

it
s)

0

0.2

0.4

0.6

0.8

1

1.2

]V) [Me+K(
T

p
2000 4000 6000 8000

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n

it
s)

0

0.2

0.4

0.6

0.8

1

1.2

]V) [Me+B(
T

p
0 5000 10000 15000

ψ
J/r

 /
 

ψ
J/r

0.7

0.8

0.9

1

1.1

1.2

1.3

 -0.52% = fd

]V) [Me+K(
T

p
2000 4000 6000 8000

ψ
J/r

 /
 

ψ
J/r

0.7

0.8

0.9

1

1.1

1.2

1.3

 0.7% = fd

]V [Me
T

pMinimum lepton 
1000 2000 3000 4000 5000

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

1.2

]V [Me
T

pMaximum lepton 
2000 4000 6000 8000 10000

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

1.2

]V [Me
T

pMinimum lepton 
1000 2000 3000 4000 5000

ψ
J/r

 /
 

ψ
J/r

0.7

0.8

0.9

1

1.1

1.2

1.3

 -0.57% = fd

]V [Me
T

pMaximum lepton 
2000 4000 6000 8000 10000

ψ
J/r

 /
 

ψ
J/r

0.7

0.8

0.9

1

1.1

1.2

1.3

 -2.6% = fd

Angle between kaon and other-sign lepton [rad]
0 0.1 0.2 0.3 0.4 0.5

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

1.2

Angle between kaon and same-sign lepton [rad]
0 0.1 0.2 0.3 0.4 0.5

C
an

d
id

at
es

 (
ar

b
it

ra
ry

 u
n
it

s)

0

0.2

0.4

0.6

0.8

1

1.2

Angle between kaon and other-sign lepton [rad]
0 0.1 0.2 0.3 0.4 0.5

ψ
J/r

 /
 

ψ
J/r

0.7

0.8

0.9

1

1.1

1.2

1.3

 -0.43% = fd

Angle between kaon and same-sign lepton [rad]
0 0.1 0.2 0.3 0.4 0.5

ψ
J/r

 /
 

ψ
J/r

0.7

0.8

0.9

1

1.1

1.2

1.3

 0.32% = fd

Figure E.4: Plots of rJ/ψ obtained from 2017 hTOS! and µTOS data, as a function of variables relevant
to the detector response. The flatness parameters d f are displayed at the bottom of each plot. The
top of each rJ/ψ plot shows the kinematic distributions of the binned variable, in simulated signal and
control-mode samples. The uncertainties shown are purely statistical.
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Figure E.5: Plots of rJ/ψ obtained from 2017 TIS! and µTOS data, as a function of variables relevant to
the detector response. The flatness parameters d f are displayed at the bottom of each plot. The top
of each rJ/ψ plot shows the kinematic distributions of the binned variable, in simulated signal and
control-mode samples. The uncertainties shown are purely statistical.



Appendix F

Fits to B+ → K+ψ(2S)(ℓ+ℓ−) data

This appendix presents in Figure F.1 the fits to B+ → K+ψ(2S)(ℓ+ℓ−) data, which were per-

formed by Davide Lancierini. Similarly to the J/ψ modes, the independent variable is cal-

culated by constraining the dilepton system to have an invariant mass compatible with the

mass of the ψ(2S) resonance. The fits are used to extract the yields of the B+ → K+ψ(2S)(ℓ+ℓ−)

modes, which are used to calculate Rψ(2S) by virtue of Equation (8.14).
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Figure F.1: Invariant-mass distributions of fully-selected B+ → K+ψ(2S)(ℓ+ℓ−) candidates, shown
separately for previous (left) and Run 2.2 (right) data, and for each trigger category. The red solid
line shows the fit model, the dotted black line represents the signal component, and the orange-filled
distribution depicts the combinatorial background model. Additional backgrounds are present in the
electron samples, and are represented by components filled in various colours, as listed in the legend.



Appendix G

Additional compatibility checks

This appendix presents in Figures G.1 to G.5 the results of the compatibility checks presented

in Section 10.3.3. They are presented in the following order: “Run 1 vs. Run 2.1”, “17 vs. 18”,

“Run 2.1 vs. Run 2.2”, “Run 1 vs. Run 2”, and “old vs. new”.
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Figure G.1: Outcome of the “Run 1 vs. Run 2.1” compatibility check, which involves splitting the
data by data-taking periods (top left), electron trigger strategies (top right), and by both period and
trigger (bottom). The test statistic for this check is defined in Equation (10.5). Its distribution from
fits to toy datasets (light blue) is used to set the maximum allowed value for a success (red). In the
limit of infinitely-many toys, the test statistic is expected to follow a χ2 distribution (orange) whose
number of degrees of freedom depends on the number of RK values in the fits. The result obtained
from the data (purple) is within the region for success in all three splittings.
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Figure G.2: Outcome of the “17 vs. 18” compatibility check, which involves splitting the data by
data-taking periods (top left), electron trigger strategies (top right), and by both period and trigger
(bottom). The test statistic for this check is defined in Equation (10.5). Its distribution from fits to
toy datasets (light blue) is used to set the maximum allowed value for a success (red). In the limit of
infinitely-many toys, the test statistic is expected to follow a χ2 distribution (orange) whose number
of degrees of freedom depends on the number of RK values in the fits. The result obtained from the
data (purple) is within the region for success in all three splittings.
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Figure G.3: Outcome of the “Run 2.1 vs. Run 2.2” compatibility check, which involves splitting the
data by data-taking periods (top left), electron trigger strategies (top right), and by both period and
trigger (bottom). The test statistic for this check is defined in Equation (10.5). Its distribution from
fits to toy datasets (light blue) is used to set the maximum allowed value for a success (red). In the
limit of infinitely-many toys, the test statistic is expected to follow a χ2 distribution (orange) whose
number of degrees of freedom depends on the number of RK values in the fits. The result obtained
from the data (purple) is within the region for success in all three splittings.
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Figure G.4: Outcome of the “Run 1 vs. Run 2” compatibility check, which involves splitting the data
by data-taking periods (top left), electron trigger strategies (top right), and by both period and trigger
(bottom). The test statistic for this check is defined in Equation (10.5). Its distribution from fits to
toy datasets (light blue) is used to set the maximum allowed value for a success (red). In the limit of
infinitely-many toys, the test statistic is expected to follow a χ2 distribution (orange) whose number
of degrees of freedom depends on the number of RK values in the fits. The result obtained from the
data (purple) is within the region for success in all three splittings.
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Figure G.5: Outcome of the “old vs. new” compatibility check, which involves splitting the data by
data-taking periods (top left), electron trigger strategies (top right), and by both period and trigger
(bottom). The test statistic for this check is defined in Equation (10.5). Its distribution from fits to
toy datasets (light blue) is used to set the maximum allowed value for a success (red). In the limit of
infinitely-many toys, the test statistic is expected to follow a χ2 distribution (orange) whose number
of degrees of freedom depends on the number of RK values in the fits. The result obtained from the
data (purple) is within the region for success in all three splittings.
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