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Abstract

We consider a model of inflation based on dynamics of D3-brane located at the
boundary of an asymptotic AdS5 bulk. The matter on the brane is described by the
Dirac-Born-Infeld (DBI) Lagrangian. We solve numerically the system of dynamical
equations in case of the inverse cosh potential for different initial conditions. Ob-
servational parameters of inflation (ns and r) are calculated numerically. Obtained
results are compared to the results of the Planck 2018 mission.
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1 Introduction

The inflation theory has been accepted as the best approach to solving some problems in
the standard Big Bang cosmology (flatness problem, horizon problem, etc.). The theory
proposes a period of extremely rapid (exponential) expansion of the universe during the
early stage of evolution of the universe. It predicts that during inflation (which takes
about 10−34 s) the radius of the universe increased, about e60 ≈ 1026 times. Although
inflationary cosmology has successfully complemented the Standard Cosmological Model,
the process of inflation in particular its origin, is still largely unknown.

Recent years brought us a lot of evidence of CMB from WMAP and Planck observa-
tions [?, ?]. To test inflationary cosmological models we need to compare results computed
from a model to the measured values of the observational parameters, such as scalar spec-
tral index (ns) and tensor-to-scalar ratio (r).

The popular class of inflationary models is based on tachyon scalar field. Dynamics of
tachyon scalar field θ (with dimension of length) is determined by the DBI type Lagrangian
[?, ?, ?, ?]

L = −`−4V (θ/`)
√

1− gµνθ,µθ,ν , (1)

where V is a potential of a tachyon field with properties

V (0) = const,
dV

dθ
(θ > 0) = V,θ(θ > 0) < 0, V (|θ| → ∞)→ 0, (2)
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and ` is an appropriate length scale.
One among classes of possible inflationary models is derived from braneworld cosmol-

ogy. A braneworld universe is based on the scenario in which matter is confined on a
brane moving in the higher dimensional bulk with only gravity allowed to propagate in
the bulk. One of the simplest models is Randall-Sundrum (RS) model [?, ?]. Another
interesting class of extended gravity models analysed for cosmological inflation is based on
non-Riemannian spacetime volume-forms. The volume-forms define generally covariant
integration measures over differentiable manifolds M , which is not necessarily Riemannian
ones. In this case no metric is a priori needed (see [?], [?] and references therein).

The RS models are based on two branes with opposite tensions which are placed at
some distance in 5 dimensional space. In the original RS model an observer resides on the
brane with negative tension, distance to the second brane corresponds to the Netwonian
gravitational constant. In the second Randall-Sundrum model (RSII) an observer is placed
on the positive tension brane, and the second brane is pushed to infinity. It was shown that
a dynamics of inflaton field in the RSII model is closely related to the tachyon inflation
[?].

Among several classes of possible inflationary models we consider one derived from
braneworld cosmology. The holographic braneworld cosmology is based on the effective
four-dimensional Einstein equations on the holographic boundary in the framework of anti
de Sitter/conformal field theory (AdS/CFT) correspondence [?, ?]. The model is based on
the holographic braneworld scenario with an effective tachyon field on a D3-brane located
at the holographic boundary of an asymptotic AdS5 bulk. There are a variety of relevant
tachyonic potentials in this scenario. In this paper we study the inverse cosh potential in
the form V (θ) ∼ 1/cosh(θ).

The remainder of the paper is organized as follows. In the next section, Sec. 2, we
introduce the tachyon dynamics in the holographic braneworld. In Sec. 3 some observa-
tional cosmological parameters are studied for this model. The numerical calculation and
the results obtained for inverse cosh potential are presented in Sec. 4. In Sec. 5, we give
the concluding remarks.

2 Inflation in the holographic braneworld

The holographic Friedmann equations are derived from the effective four-dimensional
Einstein’s equations on the boundary of AdS5 bulk [?]

Rµν −
1

2
Rg(0)µν = 8πGN

(
〈TCFT

µν 〉+ Tµν
)
, (3)

where g
(0)
µν is a metric at the boundary, 〈TCFT

µν 〉 is the expectation value of the energy-
momentum tensor of the dual conformal theory and Tµν is the energy-momentum tensor
associated with matter on the brane. For a spatially flat FLRW boundary geometry with
the line element

ds2 = gµνdx
µdxν = dt2 − a2(t)(dr2 + r2dΩ2), (4)

the holographic Friedmann equations have the form [?]

h2 − 1

4
h4 =

κ2

3
`4ρ, (5)
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ḣ

(
1− 1

2
h2
)

= −κ
2

2
`3(p+ ρ), (6)

where ` is the AdS curvature radius, h ≡ `H is a dimensionless expansion rate and κ is
the fundamental dimensionless coupling [?]

κ2 =
8πGN

`2
. (7)

It is worth to notice that overdot denotes a derivative with respect to dimensionless time
variable τ = t/`. The solution of the first Friedmann equation, which describes the
evolution of the homogenous universe consistent with prediction of standard cosmology,
has the form

h2 = 2

(
1−

√
1− κ2

3
`4ρ

)
, (8)

which imposes the restriction to the range of the Hubble expansion rate 0 ≤ h2 ≤ 2 [?, ?].
The tachyon matter on the brane can be treated as an ideal fluid with the components

of the energy-momentum tensor

T µν = diag(ρ,−p,−p,−p). (9)

Pressure p and energy density ρ of the tachyon fluid are given by [?]

ρ ≡ L =
`−4V√
1− θ̇2

, p ≡ H = −`−4V
√

1− θ̇2, (10)

where H is the corresponding Hamiltonian. The dynamics of the model can be described
by two first order differential equations derived from the Hamilton equations

θ̇ =
η√

1 + η2
, (11)

η̇ = −3hη

`
− V,θ

V

(√
1 + η2 +

η2√
1 + η2

)
, (12)

where η is the new field
η = `−4V −1

√
gµνπµπν , (13)

related to the conjugate momentum πµ = ∂L/∂θ,µ.
In this paper we will focus our study to the potential

V (θ) =
V0

cosh(ωθ/`)
, (14)

where V0 and ω are free dimensionless parameters. This potential has already been dis-
cussed in the inflation models in the standard cosmology [?, ?]. In all equations the
parameter V0 appears only in the form of the product κ2V0 and it allows us to rescale the
constant κ in such a way to include the free parameter V0, i.e. κ2V0 → κ2. In this case
the potential can be written in a form with only one free parameter, i.e.

V (θ) =
1

cosh(ωθ/`)
. (15)
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3 The observational parameters

To be in position to study observational parameters of inlation and compare the computed
values of those parameters with observational constrains from the Planck collaboration
[?] it is useful to define the slow-roll parameters εi. It is the most convenient to introduce
the slow-roll parameters by the relation [?]

ε0 =
h∗
h
, εi+1 =

d ln |εi|
dN

, i ≥ 0, (16)

where h∗ is the Hubble expansion rate at some chosen time and N is the number of e-folds
defined by

N =

∫ tf

tCMB

hdt. (17)

The first three parameters are given by

ε1 ≡ −
ḣ

h2
, ε2 ≡

ε̇1
hε1

, ε3 ≡
ε̇2
hε2

. (18)

Inflation starts at time tCMB and ends at time tf , when any of εi exceeds one. Comparing
expressions for the slow-roll parameters for a general form of potential

ε1 '
4− h2

12h2(2− h2)

(
` V,θ
V

)2

, (19)

ε2 ' 2ε1

(
1− 2h2

(2− h2)(4− h2)

)
+

2`2

3h2

[(
V,θ
V

)2

− V,θθ
V

]
, (20)

it follows that ε2 ' 2ε1 [?].
Observational parameters, spectral index (ns) and tensor to scalar ratio (r), are given

by the expressions

ns − 1 =
d lnPS

d ln q
, (21)

r =
PT

PS

, (22)

where the power spectra of the scalar perturbations PS and the power spectra of tensor
perturbations PT are evaluated at the horizon crossing

qcs = ah, (23)

where q is the (comoving) wave number and cs is the adiabatic sound speed

c2s =
∂p

∂ρ

∣∣∣∣
θ

= 1− 4(2− h2)
3(4− h2)

ε1. (24)

In Ref. [?] an approximate expression for the scalar and the tensor power spectra in
holographic braneworld (in the slow roll approximation) is derived. The Lagrangian given
by equation (??) belongs to the class of k-essence inflation models [?]. By introducing
effective values of pressure and density and adapting the procedure from Ref. [?] for
calculation of the spectra in the models with a standard k-essence action, one gets the
expression for observational parameters.
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Another, more general approach for calculating the scalar and the tensor power spectra
is used in Ref. [?]. Based on that result, for the Lagrangian given by the expression (??),
observational parameters get the form

r = 16ε1

(
1 + Cε2 −

2(2− h2)
3(4− h2)

ε1

)
, (25)

ns = 1− 2ε1 − 2ε2 −
(

2− 8h2

3(4− h2)2

)
ε21 −

(
3 + 2C − 2(2− h2)

3(4− h2)

)
ε1ε2 − Cε2ε3, (26)

where C = −2 + ln 2 + γ ' 0.72 and γ is the Euler constant.

Figure 1: r versus nS diagram. r versus ns diagram with observational constraints from
Ref. [?]. The dots represent the theoretical predictions for observational parameters
obtained by solving the equations of motion (??) and (??) numerically for randomly
chosen N , ω and θ0 in the intervals 60 ≤ N ≤ 90, 0 < ω < 0.25 and 0 < θ0 < 20.

4 Numerical calculations and results

Following a similar procedure as in Ref. [?], the system of dynamical equations (??)
and (??) can be solved numerically for given initial conditions. In order to carry out
calculation the values of the function h and θ at initial time (t = 0) must be fixed. As
pointed out in Ref. [?], initial condition η̇i = 0 yields solutions consistent with slow-roll
regime, therefore, the solutions obtained using this condition are physically relevant for
inflation. In this case the value ηi can be obtained from the the expression

ηi = − (`V,θ/V )i√
9h2i − 4(`V,θ/V )2i + 3

√
9h4i − 4h2i (`V,θ/V )2i

, (27)

which follows from the equation (??).
It was shown in Ref. [?] that for the model with the exponential potential dependence

on the parameter κ can be eliminated. However, for the model with the potential (??) the
parameter κ cannot be eliminated. Therefore, in this model, the value of the parameter
κ must be set. It is appropriate to calculate the value of ηi using the equation (??) from
arbitrarily chosen values hi (with the restriction 0 ≤ h2i ≤ 2) and θi. Then, the parameter
κ can be fixed using expression

κ2 =
3

V (θi)
√

1 + η2i

(
1−

(
1− h2i

2

)2
)
, (28)

which can be derived from the equation (??).
In addition, the more natural approach to set the values of free parameters and initial

conditions is to fix the value of κ instead of θi. In this case, after substituting ηi from the
equation (??) to (??), one can numerically solve the equation (??) for θi.

The parameters are calculated using the procedure from the Ref. [?]. Equation (??)
can be rewritten in the form

Ṅ = h. (29)
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Figure 2: r versus nS diagram. r versus ns diagram with observational constraints from
Ref. [?]. As in Fig. ?? the dots represent the theoretical predictions of the values
of observational parameters for randomly chosen N , hi, ω and κ in the the following
intervals 60 ≤ N ≤ 90, 0 < ω < 0.25 and 0 < κ < 10.

The system of equations (??) and (??), supplemented by the equation (??) for chosen N ,
hi and κ, is solved. The values of the slow-roll parameters are found from the equation
(??) by numerical differentiation. We use the criteria for the end of inflation ε2(tf) = 1 to
determine the value of the field at the end of inflation. Due to the slow-roll approximation
the calculated value of e-folds will be smaller than its set value at the beginning of inflation.
Although the initial conditions are given for t = 0, due to the difference in the e-fold
number, this is not the time when inflation begins. The value of tCMB in equation (??) is
determined from

N(tf)−N(ti) = N. (30)

The calculated results for ns and r superimposed on the observational constraints taken
from the Planck Collaboration 2018 [?] are presented in Figures ?? - ?? for different sets
of the values of free parameters.

Figure 3: r versus nS diagram. r versus ns diagram with observational constraints from
Ref. [?]. As in previous figures the dots represent the theoretical predictions of the values
of the observational parameters for randomly chosen N , hi, ω and κ. All intervals for the
free parameters are the same as in Figure ??, except the parameter κ for which is now
restricted to the interval 0 < κ < 1.7.

To solve the system of equations (??) and (??) the values for θ0 were set as random
values in the given range and corresponding values of parameter κ were calculated from
the equation (??). In the Figure ?? the calculated values of parameters ns and r are
confronted with observational constrains from the Planck collaboration [?]. However, it
was already mentioned that it is more natural to set the value of free parameter κ as a
random value, and calculate the corresponding initial conditions for solving the system of
equations (??)-(??). The results in this case are shown in the Figure ??.

If we compare the results for calculated observational parameters r and ns defined by
equations (??) and (??) and shown in Figure ?? to those ones in Figure ?? it is easy to
notice that there is more dispersion in data points on the Figure ??. The higher density
of data points is present in the unsuitable part of the (ns, r) plane. However, in this case
we can limit the value of free parameter κ to lower and more suitable ranges. If we keep
all other parameters the same and limit random values of κ to the interval 0 < κ < 1.7,
the upper branch disappears and we get the results which are in a good agreement with
the observational constraints (Figure ??).

5 Conclusions

We considered a model of tachyon inflation based on a holographic braneworld scenario
with a brane located at the boundary of the AdS5 bulk and simulated observational
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parameters of inflation for the potential (??). The agreement of our model with the
Planck observational data is good, especially for a higher number of e-folds and lower
values of fundamental dimensionless coupling constant κ.

Preliminary results are promising ones and it represents good opportunity for further
(analytical) research of this and other similar tachyonic potentials.
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