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Abstract

This manuscript presents some results that concern supersymmetric theories

with eight supercharges and moduli spaces of instantons. The latter are attacked

from two fronts. Firstly we study the quantum-corrected Coulomb branch of

three-dimensional N = 4 quiver theories which are encoded in the over-extended

Dynkin diagram of a group G. Studying the ring of gauge invariant operators

on the Coulomb branch for these theories by means of a generalised monopole

formula yields precisely the Hilbert series for the moduli space of G-instantons.

We provide results for any G, including non-simply-laced and exceptional

groups.

In the second part of the thesis we analyse the Higgs branch of some five-

dimensional N = 1 supersymmetric gauge theories. We provide a description

of the quantum-corrected Higgs branch in terms of instanton operators, the

glueball superfield and mesons. In particular, a classical nilpotent relation

is found to be corrected by bilinears in instanton operators. The analysis

depends on a decomposition of the Hilbert series for the moduli space of ENf+1

instantons into SO(2Nf ) instantons, which are the known Higgs branch at

infinite and finite coupling respectively. The dressing of instanton operators in

terms of finite coupling fields is also analysed.

In passing, we also present an interesting phenomenon where the Higgs

branch of a given family of gauge theories with eight supercharges and classical

gauge and global symmetry groups is not a single hyperKähler cone but rather

the union of two such cones with nontrivial intersection.
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Chapter 1

Introduction

One of the most fruitful ideas in modern scientific thought is that of gauge the-
ories: not only are they beautiful constructions with far reaching consequences
in various abstract Mathematics fields, but, most strikingly, the underlying
structure of fundamental particles. Gauge theory has proved itself as the correct
formalism describing the interplay of forces and matter and for this reason
continues to be a remarkable field of study.

Laboratories have verified the theoretical predictions made through gauge
theories, particles have been discovered, constants of nature have been measured
to high precision. In a sense, it is as if Nature has been decoded entirely in
the description offered by gauge theory. As for any complex idea, issues have
sprung up throughout the years and in turn resolutions have been uncovered .
A paradigm shift where gauge theories have fallen from grace has not occurred.
If anything, new ideas that do not resemble gauge theory in some limit have
come under intense scrutiny.

Gauge theories are based on a simple idea: that nature at its fundamental
level respects and embodies symmetry. It is no wonder that, once the only
other allowed symmetry of spacetime, supersymmetry, was discovered, a new,
upgraded, version of gauge theory had to emerge. Quickly enough, supersym-
metric gauge theories were given a secure footing and since then they have
never left the centre stage of theoretical physics.

Extensive and, in some cases, comprehensive studies of supersymmetric gauge
theories have been pursued. Indeed, such theories have properties that make
them amenable to more precise computations than their non supersymmetric
counterparts, analogously to the difference between real and complex analysis.

There is as of yet no experimental evidence for supersymmetric gauge theories
despite intensive searches for their possible phenomenological manifestations.
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Nonetheless they offer so much insight that, were their role solely a mathematical
simplification of gauge theory without supersymmetry, they would still play a
most prominent part.

So much for praising their virtues. Gauge theories, with or without supersym-
metry, are difficult mathematical beasts. There are both topological effects and
complicated dynamical mechanisms that can only be studied in approximate
manners. Chief among the many issues is that perturbation theory is often
unable to describe the dominant physics. For example, some gauge theories
become strongly coupled at low energies, leading to phenomena like quark
confinement. Excluding the often unreachable oasis of lattice field theory, the
analytical land looks quite desolate in these regions. Moreover, contrary to
some misconceptions, it is not just the strong coupling regime that perturbation
theory cannot access. Perturbation theory is also blind to effects analogous
to tunnelling in quantum mechanics which are essential to characterise the
low energy limit of a gauge theory. Whilst these effects can sometimes be
computed in non-supersymmetric theories, it is in the supersymmetric versions
of gauge theories that they have yielded the most powerful results. In 1994,
Seiberg and Witten [4, 5] succeeded in describing the low energy regime of a
supersymmetric gauge theory. Whilst their result was found indirectly using
remarkable geometrical arguments, a general understanding of the low energy
regime requires knowledge of two key concepts: instanton contributions and
the moduli space of vacua.

Instantons are field configurations that minimise the Euclidean action. Such
field configurations are the leading non-perturbative contribution to the path
integral when the coupling constant is small. They are non-perturbative in the
sense that they do not appear in the usual perturbative loop expansion. Even
so, as minima of the action, they are valid contributions to the weak coupling
expansion. If one wishes for such an expansion, known as a semiclassical
approximation, to hold throughout a range of energy scales, the coupling, which
is typically non-constant upon quantum corrections, should not be allowed to
become too large in the infrared.

In theories that display symmetry breaking, the Higgs field vacuum expecta-
tion value acts as an infrared regulator: it freezes the running of the coupling at
a given energy scale. For these theories, instanton configurations must be taken
into account to fully control the low energy physics. It should be clear then why
the physics of instantons occupies such a huge portion of gauge theory analysis.
A physics of instantons cannot but foretell a mathematics of instantons. Indeed
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their formal mathematical characterisation has led to unexpected advances in
differential and algebraic geometry. For now, it suffices to mention that instan-
ton field configurations, known as moduli spaces of instantons, form beautiful
geometric spaces with highly constrained properties known as hyperKähler
varieties (a subclass of the celebrated Calabi Yau spaces of string theory). The
interest in moduli spaces of instantons lies in their simplicity and ubiquity:
they are to fundamental physics as the regular n-sided polygons are to plane
geometry. We will soon explain how they relate to the present work.

The second key idea to introduce is that of moduli spaces of vacua. In
any field theory, (scalar) field configurations that minimise the energy play a
distinguished role. For supersymmetric field theories such field configurations
are numerous and continuously connected: one often talks of a space of vacuum
solutions or a moduli space of vacua. Such spaces have rich algebro-geometric
properties such as canonical metrics or complicated singularity structures. A
given point on the moduli space corresponds to fields taking particular values:
physical quantities, like massless and massive particle excitations or topological
states, ostensibly depend on which point of the moduli space is being probed.
The spectrum is thus dependent on a continuum of vacua – in other words,
though they have the same energy, these vacua are inequivalent. Analagously
to the effect that spin-orbit coupling has on the hydrogen atom energy levels,
we expect quantum corrections to separate field configurations with the same
vacuum energy – quantum corrections lift degeneracy. Moduli spaces are no
different: an entire space of vacuum solutions should lift up and leave behind
a true quantum vacuum point or none at all. For a supersymmetric theory
however, such a lifting does not happen generically. The moduli space might
be modified but their structure often survives quantum corrections. It thus
remains a meaningful object to study both classically and quantum-mechanically
[6, 7, 8, 9].

However, it is outside this purely field theoretic context that one must
recognise a striking feature of supersymmetric gauge theories: they can often
be embedded in string theory. A ‘70’s field theorist with no knowledge of the
developments in the ‘90’s would be astonished to learn that field theories can
quite simply be drawn on a piece of paper and non-trivial physical information
extracted from such sketches. Whilst string theory’s claim to fame is as a
candidate theory of everything – a statement which might very well be true
but that has created more enemies than friends – one of its, only at first sight,
less dramatic powers lies in its ability to shed light on the hidden structure of
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field theory.
Starting from the trend-setting paper of Polchinski, [10], this point of view

has returned many new results. In that work – one of a handful marking the
beginning of the so called second superstring revolution – a generalisation of
Maxwell electrodynamics, the gauge theory par excellence, was identified as
underlying the basic objects of string theory, Dp-branes. These are hypersurfaces
extended in p+1 spacetime dimensions and are none other than the carriers
of the supersymmetric gauge theories that live in the universe. Such an
understanding has allowed many gauge theory quantities and phenomena to
be translated to effects in brane dynamics, in what has been termed geometric
engineering.

One of the first gauge phenomena to be brane engineered is that of instantons.
In [11] Witten showed that the moduli space of k instantons on SO(32) could
be identified with the moduli space of vacua of k coincident D5-branes in Type
I string theory. In particular, the parameters arising from this string embedding
precisely match that of the ADHM construction [12] for instantons of classical
groups. Soon after, it was realised in [13] that any Dp/D(p-4)-brane system
where the lighter brane is entirely lying on the worldvolume of the heavier
one gives rise to a supersymmetric gauge theory whose moduli space of vacua
corresponds to the moduli space of instantons.

For the sake of readers lacking expertise in this area, let us dwell on this
example. Dp-branes can be employed to geometrically engineer supersymmetric
gauge theories. The parameters of such string embeddings must reproduce the
parameters of the gauge theory: moduli spaces of systems of branes realise
moduli spaces of supersymmetric gauge theories. Now comes the crux: the
moduli spaces of some given supersymmetric gauge theories are themselves
isomorphic to moduli spaces of instantons. So we conclude that moduli spaces
of instantons are realised by the brane systems that reproduce those gauge
theories. The raison d’être for such flashy stringy realisations of field theory
phenomena is that string theory displays complex webs of dualities: exploiting
these allows for effortless motion in between seemingly different gauge theories.

A textbook example is the embedding of 3d mirror symmetry [14, 15]. This
is a well tested field theory conjecture of the infrared equivalence of pairs of
supersymmetric gauge theories in three dimensions which have very different
Lagrangian descriptions in the ultraviolet. Whilst such an equivalence could
seem at first sight purely academic, it became clear that it was actually a
manifestation of a string duality known as S-duality. This interpretation was
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provided by the work of [16] where a Type IIB string embedding for three
dimensional supersymmetric gauge theories involving D3-branes, D5-branes
and NS5-branes was introduced. The power of the formalism presented in
that work lies in the fact that many more examples can be constructed and
generalisations developed. It is now routine to construct mirror pairs thanks to
simple rules based on drawing the brane picture for the starting gauge theory
and performing a number of moves to obtain its dual.

In three dimensions supersymmetric gauge theories with eight supercharges
have moduli spaces that are locally the product of two hyperKähler manifolds
[17]. One factor, the Higgs branch, is protected from quantum corrections,
whilst the other, the Coulomb branch, is not. For a given theory, mirror
symmetry predicts the existence of another theory where the role of the two
branches is swapped. Such a conjecture has been tested in a number of ways
starting with the work in [18, 19, 20] and culminating with calculations of
indices and partition functions [21, 22, 23, 24, 25, 26, 27, 28, 29]: riding on
the wave of field-theoretic proofs of mirror symmetry, quantum corrections to
the moduli space are better controlled than ever before. In the context of the
work we present, this is what is of interest to us. Indeed, in one chapter of this
thesis we construct brane systems that engineer Coulomb branches that are
isomorphic to moduli spaces of instantons and study them by generalising the
results of [30].

Another example of a string embedding is that of five-dimensional minimally
supersymmetric gauge theories. These were introduced in [31] and further
explored in [32, 33, 34, 35]. The field theoretic properties of SU(2) gauge
theories with up to sevenNf flavours are beautifully encoded as the worldvolume
theory of one D4-brane probing a background of D8-branes constrained to be
living on an interval. Through such a construction the existence of certain
5d ultraviolet fixed points has been identified and the enhancement of global
symmetries given a precise description.

A new brane construction involving NS5, D5 and D7 branes was proposed
in [36, 37] which, once generalised, offered yet more insight [38, 39] into the
dynamics of gauge theories. Though these constructions are tangentially relevant
to the computations presented in this thesis, they provide a bridge to the recent
developments in exact calculations of field theory quantities in five dimensions
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. For us, the classic results of
[31] are already rich enough: in there it was recognised that the moduli space
of the low energy gauge theory, which is isomorphic to the moduli space of
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SO(2Nf ) instantons, grows extra moduli and enhances to the moduli space of
ENf+1 instantons. In contrast to 3d where the interesting quantum effects take
place in the infrared, in 5d it is the ultraviolet fixed points that have surprises
in store.

There are many other instances of gauge theory/string embeddings that have
led to dramatic new developments in field theory but we will not touch on them
in this thesis. Here we hope to offer some insight on two canonical examples
that are connected to moduli spaces of instantons. The author will endeavour
to do so in a clear and pedagogical manner.

1.1 Outline of the thesis

This manuscript has been organised in the following way:

• In the interest of pedagogy, a discussion of the essential background for
the work in this thesis is provided in chapter 2. Here we take care to
explain how moduli spaces arise in supersymmetric gauge theories and
why they are algebraic varieties. We specialise in gauge theories which
have eight supercharges, which in four dimensions means they have two
copies of supersymmetry. Their global symmetry structure is summarised
and classic results concerning the moduli spaces of vacua of SU(nc) theory
with U(Nf ) flavour symmetry are presented. Much effort has been made
to recast the original arguments in the language adopted throughout this
thesis. Indeed it is here that the basics of the computational tools we
need are introduced, namely the ideas of partition functions that count
operators and describe the variety in terms of representation theory.

• The techniques introduced in the background chapter are then straight-
forwardly applied in chapter 3 to analyse the classical moduli spaces of
theories with flavour groups SU(Nf ), SO(Nf ) and USp(2Nf ). Some
results have partially appeared in the literature but we reveal an inter-
esting phenomenon that has not been discussed in the necessary detail.
Theories with Sp(n) gauge symmetry and 2n flavours have a moduli space
that is not a simple hyperKähler cone but rather the union of two such
cones with a nontrivial intersection. We characterise the two cones and
their intersection explicitly in terms of chiral operators satisfying defining
equations.
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1.1. Outline of the thesis 21

• After the warm up of chapter 3 we switch gears and in chapter 4 we
study three-dimensional supersymmetric gauge theories whose quantum
corrected Coulomb branch is isomorphic to the moduli space of instan-
tons. The construction presented here offers a representation theoretic
description of the moduli space for any instanton number and any gauge
group, including exceptional and non-simply laced ones. The analysis
follows that of [30] and generalises the results therein. Furthermore,
since the work in this chapter provides an independent calculation for the
Coulomb branch which does not depend on knowledge of the Higgs branch
of the dual theory, our results provide a non-trivial check for the mirror
symmetry of [14]. A discussion of the properties of dressed monopole
operators as generators of the moduli space of instantons is provided.

• In chapter 5 we switch dimensions and branch. We move to five dimen-
sional minimally supersymmetric gauge theories and analyse the Higgs
branch. Theories with SU(2) gauge group and Nf < 8 flavours have a
modified Higgs branch with global symmetry enhancement at infinite
bare coupling. We propose that the mechanism for the enhancement
of symmetry on the Higgs branch stems from a correction of the finite
coupling relations by means of instanton operators. In order for these
corrections to reproduce the classical Higgs branch when the coupling
is restored to be finite, the glueball operator must be included in the
description of the chiral ring. We elucidate all of these points and perform
the computations for the quantum corrected moduli space for this class
as well as a few others.

• Chapter 6 will summarise the discussion and provide the concluding
remarks. Some calculations are relegated to the appendices.



Chapter 2

Essential Background

2.1 Supersymmetry

Since most of the work carried out in this thesis relates to theories with eight
supercharges, it is appropriate to give some background to such supersymmetric
theories. Much of our discussion leans on many articles and reviews ([4, 5, 8, 9])
written in the last twenty years (for a recent review on N = 2 see [53]). Here
we focus on the essential features needed to fully understand the author’s work.

For concreteness let us start with the 4d N = 2 SU(nc) Lagrangian with
Nf flavours1.The crucial feature of an N = 2 theory is the presence of a global
SU(2)R symmetry which arises as an automorphism of the supersymmetry
algebra and under which the various fields transform. The full R-symmetry
also has an abelian factor U(1)r, but this is irrelevant in our discussion.

The fields entering the Lagrangian live in vector multiplets and hypermulti-
plets. These N = 2 multiplets can be decomposed in terms of N = 1 multiplets.
The N = 2 vector superfield contains an N = 1 vector multiplet V and an
N = 1 chiral multiplet Φ, both in the adjoint of SU(nc). A hypermultiplet
H contains an N = 1 chiral multiplet Q in the fundamental representation of
U(Nf ) and antifundamental of SU(nc) and an N = 1 antichiral multiplet Q̃†

in the same gauge and flavour representation. The field content is summarised
in Table 2.1.

The scalars in the hypermultiplet, q and q̃†, transform as a doublet of SU(2)R,
whilst the complex scalar in the vector multiplet is a singlet under SU(2)R.

The N = 2 Lagrangian can then be written as a sum of two contributions,

1In this thesis, theories with eight supercharges will always be assumed on-shell and no
attempt will be made to discuss off-shell formulations. Working on-shell guarantees that
N = 2 superfields can be recast in terms of their N = 1 components without issues.
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N = 2 N = 1 SU(2)R

V-plet Φ
v-plet V Aµ, λα

 λα

ξα

→ [1]

χ-plet, Φ φ, ξα

H-plet H
χ-plet, Q q, ψα

 q

q̃†

→ [1]

anti χ-plet, Q̃† q̃†, ψ̃†α̇

Table 2.1: The field content for an N = 2 gauge theory and the transformation
properties of the nontrivial component fields under the SU(2)R global symmetry.

one coming from the vector multiplet sector and one from the hypermultiplet
sector. The former is given by

LN=2
Vplet

=
1

4π
Im

[
τ

∫
d4θTr

(
Φ†eV Φ

)
+ τ

∫
d2θ

1

2
TrW 2

]
(2.1.1)

where τ is the gauge coupling constant, τ = 4πi
g2 + θ

2π , W
2 = WαW

α and Wα

is the field strength superfield. This term can be elegantly written in terms
of N = 2 superspace. Introducing an extra set of Grassmann coordinates θ̃α
and an N = 2 superfield Φ, the vector multiplet contribution becomes an
integration over chiral N = 2 superspace

LN=2
Vplet

=
1

4π
Im Tr

∫
d2θ d2θ̃F (Φ) (2.1.2)

=
1

4π
Im Tr

∫
d2θ d2θ̃

1

2
τΦ2, (2.1.3)

where F (Φ) is the prepotential which, though in this UV description is just a
quadratic function, can be any holomorphic function of the N = 2 superfield.

The N = 2 hypermultiplets contribution to the Lagrangian is given by2

LN=2
Hplet

=
1

4π
Im

[
τ

∫
d4θ tr

(
Q†ie

VQi + Q̃ie
V Q̃i†

)
+ τ

∫
d2θW

]
. (2.1.4)

W is the N = 2 superpotential and it is constrained to be

W =
√

2Qi · Φ · Q̃i , (2.1.5)

2We denote the trace in the adjoint representation as Tr · and the trace in fundamental
representation as tr ·.
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where · signifies a gauge index contraction to make W gauge invariant. We do
not consider theories with massive hypermultiplets and as such the only UV
parameter is the complex gauge coupling τ .

Expanding the full Lagrangian, (2.1.1) + (2.1.4), and keeping terms involving
only the scalar fields gives

Lscalars ∼
1

g2
Tr[∂µφ∂

µφ†] + tr[∂µq
i∂µq†i ] + tr[∂µq̃i†∂µq̃i]− VUV (φ, qi, q̃i, φ

†, q†i , q̃
i†)

(2.1.6)

The potential term for the scalars is given by a sum of the squares of the
D-terms and the F-terms

VUV (φ, qi, q̃i, φ
†, q†i , q̃

i†) =
1

2g2
DADA +

∑
{ϕ}

∣∣FR(ϕ)

∣∣2 (2.1.7)

where the D-terms and F-terms are, in general, given by

DA =
∑
{ϕ}

Trace
(
ϕ†(TAR)ϕ

)
(2.1.8)

FR(ϕ) =
∂W
∂ϕ

, (2.1.9)

with ϕ the various scalars in the theory, R the representation they carry, Trace(·)
the trace in the representation R, and A an adjoint index.

For SU(nc) with Nf flavours (2.1.8) and (2.1.9) become

DA = −g[φ, φ†]A − tr
(
qi(TAfun)q†i − q̃

†i(TAfun)q̃i

)
(2.1.10)

FR(φ) =
∂W
∂φ

, FR(q) =
∂W
∂q

, FR(q̃) =
∂W
∂q̃

(2.1.11)

where the adjoint index is A = 1, . . . , N2
c − 1 and we have suppressed both

flavour and gauge indices in the F -terms. We will make these explicit shortly.
The existence of solutions to the F -terms and the D-terms determines the

existence of a supersymmetric vacuum. In fact, supersymmetry allows for entire
spaces worth of inequivalent vacua, as we proceed to explain.
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2.2 Moduli spaces

At low energies the theory with ultraviolet (UV) Lagrangian (2.1.1) + (2.1.4)
becomes an effective theory and can be written as a supersymmetric non-linear
sigma model, the scalar part of which is given by3

Leff ∼ KIJ(ϕ,ϕ†)∂µϕ
I∂µϕ†J − V (ϕ,ϕ†) (2.2.1)

where I, J = 1, . . . label the various scalar fields {ϕ} that have survived in
the infrared (IR), I, J = 1, . . . their complex conjugates {ϕ†}, whilst V is a
nonnegative function of these scalar fields and KIJ is the target space metric.

A minimum energy configuration is achieved by setting the scalar fields
constant over spacetime and setting the potential to zero. For supersymmetric
field theories, the set of constant scalar fields parametrises a Hermitian (hence
the bar notation on the indices) manifold M(0) which satisfies some further
geometric conditions dependent on the amount of supersymmetry: for theories
with four superchargesM(0) is Kähler [54]. Extended supersymmetry imposes
extra constraints [55, 56, 57]; in particular 4d supersymmetric sigma models
where N = 2 is preserved require thatM(0) be hyperKähler.

This space of constant fields must be restricted by imposing that the scalar
potential be zero and that field configurations related by gauge transformations
be counted only once. Hence the actual scalar manifold is given by

M≡M(0)/{V (ϕ,ϕ) = 0}/G (2.2.2)

The space of constant scalar field configurations subject to the vanishing of the
potential and modulo gauge transformations is called the moduli space of
vacua of the theory.

Supersymmetric field theories typically admit flat directions in the potential.
This means that, unlike their non-supersymmetric counterparts where solutions
to V (ϕ,ϕ) usually consist of isolated points, there are continuous solutions
(directions) to the above equation. We refer to these solutions as VEVs or
moduli.

The definition of M as given by (2.2.2) is a known as a Kähler quotient
construction. The most important consequence of such a construction is
that M ⊂ M(0) still retains its Kähler properties (or hyperKähler if N = 2

3The effective Lagrangian in the form of (2.2.1) is generic for any group G and for any
representation R of the matter fields.
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supersymmetry is preserved by the sigma model) [57].

2.2.1 Higgs branch and Coulomb branch

For supersymmetric theories KIJ is a Kähler metric which means that locally
it can be written as the second derivative of a function K

KIJ(ϕ,ϕ) =
∂K(ϕ,ϕ)

∂ϕIϕJ
. (2.2.3)

K is known as the Kähler potential.
For a theory with N = 2 supersymmetry the set of scalar fields of the theory

is split into those coming from the vector multiplets, {φa}, with a ranging over
the number of abelian vector multiplets, and those residing in hypermultiplets,
{qi, q̃†i}, with i labelling the various hypermultiplets4. In principle the Kähler
potential is a generic function of all the scalars and their complex conjugates
K = K(φa, qi, q̃i, φ†a, q†i, q̃†i). However, kinetic terms which involve cross-
terms of the vector multiplet scalars and the hypermultiplets scalars, such as
∂µq

i∂µφ†a, are not compatible with N = 2 supersymmetry5 so the terms in
the metric ∂qi∂φ†aK must vanish. It follows that the Kähler potential can be
written as a sum of two separate contributions

K = KH(qi, q̃i, q†i, q̃†i) +KC(φa, φ†a) (2.2.4)

Here comes an important point to stress. The two nonlinear supersymmetric
sigma models manifest a profound difference. Indeed the low energy effective
theory of scalars coming from hypermultiplets still possesses N = 2 supersym-
metry and so the target space with potential KH is a hyperKähler manifold.
On the other hand, scalars in the N = 2 vector multiplet originate from only
one N = 1 chiral multiplet6: the nonlinear sigma model for the scalars in the
vector multiplet can only have N = 1 supersymmetry. The target space with
potential KC is thus only Kähler7.

4For 4d N = 2 SU(nc) with Nf flavours i = 1, . . . Nf and a = 1, . . . , nc. However
tracelessness of the su(n) Lie algebra generators implies there are nc − 1 independent vector
multiplet scalars.

5Invariance of the action under SU(2)R and N = 1 supersymmetry cannot be simultane-
ously satisfied.

6The second set of supersymmetry is imposed between the chiral multiplet and the N = 1
vector mulitplet as we know.

7In reality there is still a remnant of the fact that the UV theory had N = 2 and the
geometry is actually special Kähler. Here it is only relevant that the manifold does not posses
a hyperKähler structure unlike KH .
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The fact that the Kähler potential (2.2.4) gives rise to a product target space
implies an important property for the space of vacua: it means that the latter
can also be locally factorised into

M =MH ×MC , (2.2.5)

the first factor obtained by setting to zero the VEVs of the vector multiplet
scalars and leaving the hypermultiplets scalars as the only moduli whilst the
second factor obtained in the opposite limit. MH is known as the Higgs
branch and MC as the Coulomb branch. It is helpful to think of the
moduli space as the so-called mixed branch, where some vector multiplet
scalars and some hypermultiplet scalars take nonzero VEVs, and to consider its
limiting submanifolds as the Coulomb branch and the Higgs branch. Thanks
to the factorisation, the mixed branch remains, at least locally, a product of a
Higgs branch submanifold and a Coulomb branch submanifold. In the following
discussion mixed branches will not make an appearance and so we do not
discuss them any further. Note, furthermore, that the Higgs branch inherits a
hyperKähler structure from the target space and the Coulomb branch inherits
a Kähler structure.

As a first approach, we can construct Higgs branches and Coulomb branches
from the UV Lagrangian description rather than an effective Lagrangian. Indeed
(2.1.6) is a sigma model with a canonical metric for both the scalars in the
vector multiplet and the ones in the hypermultiplet, since the kinetic terms can
be written as

L ∼ 1

g2
Tr[∂µφ∂

µφ†] + δij tr[∂µq
i∂µqj†] + δij tr[∂µq̃i†∂µq̃

j ] . (2.2.6)

The target space then locally factorises as

M(0)
class = C(n2

c−1) × C2Nfnc . (2.2.7)

The full moduli space, namely the product space of the Higgs branch and
Coulomb branch, appears by taking a quotient of each target space factor with
the potential restricted to that branch. Such a restriction simply consists of
setting to zero the scalars in the other branch. Once we mod out by gauge
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equivalence we have

Mclass =MH,class ×MC,class

=
(
C(n2

c−1)/{V = 0}C/G
)
×
(
C2Nfnc/{V = 0}H/G

)
, (2.2.8)

where {V = 0}C is the surviving set of constraints after the scalars in the
hypermultiplet have been set to zero, and {V = 0}H the set of constraints after
the scalars in the vector multiplet have instead been set to zero. These quotient
spaces are referred to as the classical Coulomb branch and Higgs branch.

Non renormalisation
The classical branches give a coarse indication of the structure of vacua at low
energies: quantum mechanical corrections that enter the effective description
can in principle modify the moduli spaces. However it is common lore that the
Higgs branch is actually not modified by quantum corrections.

The fact that the Higgs branch is unmodified even when taking into account
quantum corrections goes by the name of non renormalisation. The argument
presented in [9] is very simple. Since the gauge coupling constant τ appears in
the prepotential (2.1.3), it can be considered as a background N = 2 vector
superfield. After quantum corrections the gauge coupling depends on the
dynamically generated scale, τ ∼ log Λ. In turn, therefore, Λ is constrained to
be a background vector superfield itself. The metric on the Higgs branch does
not depend on scalars in vector superfields, hence it cannot receive quantum
corrections. The Higgs branch at all scales is thus given by the classical Higgs
branch. Later on in this thesis we will argue that this statement does not hold
in the context of five-dimensional theories. For the purposes of the present
discussion, however, it suffices to recognise that classical computations of the
moduli space of hypermultiplet scalars are exact.

Classical moduli space
Since the scalar potential (2.1.7) is a sum of squares, setting it to zero re-
quires that the D-terms and the F-terms vanish independently. With a little
rearrangement these conditions become

1

g2
[φ, φ†] = 0, (2.2.9)

q†bi q
i
a − q̃ b

i q̃
†i
a = νδba (2.2.10)
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q̃ b
i q

i
a = ηδba, φabq̃

b
i = 0, qibφ

b
a = 0 , (2.2.11)

where ν and η are a real and a complex number that enforce the tracelessness
of the SU(nc) generators. We can thus identify the conditions dictated by the
classical potential restricted on the Coulomb branch,

{V = 0}C ≡ {qi = 0, q̃i = 0, φ 6= 0 | [φ, φ†] = 0} , (2.2.12)

and Higgs branch,

{V = 0}H ≡ {φ = 0, qi 6= 0, q̃i 6= 0 | q†bi q
i
a − q̃ b

i q̃
†i
a = νδba , q̃

b
i q

i
a = ηδba} .

(2.2.13)

Coulomb branch
The classical Coulomb branch (2.2.12) is described by a set of complex scalar
fields taking values in the adjoint of su(n) such that their Lie algebra commutator
vanishes. This is precisely the definition of scalars taking values in the Cartan
subalgebra of su(n), that is one can take

φ = diag(φ1, . . . , φnc), with

nc∑
a=1

φa = 0 , (2.2.14)

leaving (nc−1) independent moduli. There is also a residual discrete symmetry
acting on the scalars: Snc , the Weyl group of SU(nc), acts on the scalars φa by
permutation. This means that the classical Coulomb branch can be identified
with C(nc−1)/Snc . More generally for a gauge group G we have

MC,class = Cr/W , (2.2.15)

where r is the rank of G and W its Weyl group. A generic point on the
classical Coulomb branch is one such that all φa’s take nonzero VEV. This is
the Higgs mechanism in full spring: the gauge group is maximally broken to
its Cartan subalgebra G→ U(1)r. For G the special unitary group, we have
SU(nc)→ U(1)nc−1, so that only (nc − 1) photons remain massless.

As we have already mentioned, the Coulomb branch receives quantum correc-
tions and so this classical analysis is not sufficient. In [4], the authors exploited
the extra constraints imposed by N = 2 supersymmetry on the geometry of
the Coulomb branch, namely that the manifold has to be rigid special Kähler,
to solve for the effective theory at low energy. This seminal work gave rise to
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what is now known as Seiberg-Witten theory and led to myriad publications
in the field. Despite its outstanding beauty, this aspect of the theory is of no
concern to us in this thesis.

Higgs branch
The classical analysis is most useful on the Higgs branch since it provides the
exact result at all energy scales. We could study this branch in an analogous
fashion to how we proceeded for the Coulomb branch, namely by examining
the D-terms and the F-terms as given by (2.2.13). However there is another
avenue which turns out to be particularly relevant to us and makes use of a
nice result for moduli spaces of supersymmetric gauge theories. In order to
understand this description, we must take a pleasant detour. We will return to
the Higgs branch in section 2.4.3.

2.3 Moduli spaces as algebraic varieties

The description of the moduli space in terms of vanishing D-terms and F-terms
is somewhat redundant. In general it is unnecessary to deal with the constraints
set from the vanishing of the D-terms. Despite the simplicity of the result, there
are subtleties hidden in its precise mathematical formulation – we will gloss over
these issues. It is nonetheless a crucial outcome of supersymmetry so we present
a streamlined version of what appears in [58] (but see also [59, 60, 61, 62]).

For the time being, let us concentrate on supersymmetric theories with no
superpotential - so that only N = 1 supersymmetry is preserved.

A supersymmetric gauge theory is manifestly invariant under a supergauge
transformation that acts on N = 1 chiral and vector superfields as

Φ→ g · Φ , (2.3.1)

eV → g−1 · eV · g . (2.3.2)

To maintain chirality of Φ and reality of V , the group element, g ≡ eiΩ, is the
exponentiation of a chiral superfield parameter Ω. Since the scalar field in a
chiral superfield is complex, Ω takes value in the complexified Lie algebra gc so
that g is an element of the complexified gauge group GC .

To avoid the complications of non-abelian transformations, let us consider an
abelian vector superfield V (x, θ, θ) (in the conventions of [63]). Its expansion
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in θ and θ is

V (x, θ, θ) = C(x) + iθχ(x)− iθχ(x)

+
i

2
θθ [M(x) + iN(x)]− i

2
θθ [M(x)− iN(x)]

− θσµθAµ(x) + iθθθ

[
λ(x) +

i

2
σµ∂µχ(x)

]
− iθθθ

[
λ(x) +

i

2
σµ∂µχ(x)

]
+

1

2
θθθθ

[
D(x) +

1

2
2C(x)

]
(2.3.3)

Under a supergauge transformation V → V +Ω+Ω†, where the chiral superfield
has components Ω = (ω, ψ, F ), the vector superfield components transform as

C → C + ω + ω∗ (2.3.4)

χ→ χ− i
√

2ψ (2.3.5)

M + iN →M + iN − 2iF (2.3.6)

Aµ → Aµ − i∂µ(ω − ω∗) (2.3.7)

λ→ λ (2.3.8)

D → D . (2.3.9)

Notice that both the real and imaginary parts of the scalar field ω appear in
the transformations, in C and Aµ respectively, preserving the complexified
gauge variation. Typically one chooses the Wess-Zumino (WZ) gauge where
C,χ,M,N are all set to zero. In such a gauge the only component transforming
nontrivially under the supergauge transformation is Aµ. It is well known that
the WZ gauge breaks supersymmetry. In fact, it also breaks the complexified
gauge symmetry leaving the theory invariant under only the usual gauge
transformation with real parameter i(ω − ω∗).

Let us choose a different gauge such that C 6= 0 and return to the general
possibly nonabelian case. For a vector superfield taking values in the adjoint
representation of a group G, we have

V A = CA − θσµθAAµ + iθθθλ
A − iθθθλA +

1

2
θθθθDA (2.3.10)

= CA + V r
WZr (2.3.11)

With such a choice, complexified gauge invariance is unbroken. In this gauge, the
D-terms for a set of scalar fields {ϕ ∈ Φ} transforming in some representation
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of G with generators TAR are given by

∂

∂CA

(
ϕ†eCϕ

)
= 0 . (2.3.12)

Consider a field ϕ that satisfies this D-flatness condition. For such a ϕ we have

ϕ†eCTAϕ = (eC/2ϕ)†TA(eC/2ϕ) = ϕ̂†TAϕ̂ = 0 , (2.3.13)

where we have defined the GC-equivalent field ϕ̂ ≡ eC/2ϕ. The condition
(2.3.13) can be rewritten as

∂

∂ĈA

(
ϕ̂†eĈϕ̂

)∣∣∣
Ĉ=0

= 0 , (2.3.14)

that is (2.3.13) is just a D-term in WZ gauge (since for C = 0, V = VWZ). The
last equation, (2.3.14), can be recast in terms of the GC variation of a gauge
invariant quantity. Indeed we can write

∂

∂ĈA
ν
(
eĈϕ̂

)∣∣∣
Ĉ=0

= 0 , (2.3.15)

where ν(a) = a†a. Equation (2.3.15) has the following meaning. The G-
invariant quantity ν takes a constant value upon GC gauge variation. Fields ϕ̂
that satisfy this condition lie on specific G-orbits which are named D-orbits. In
other words, a D-orbit is defined as the set {ϕ̂} that obey the WZ D-flatness
condition. We also define a GC-orbit as the set of fields that are equivalent
under the action of GC : ϕ̂2 = g · ϕ̂1 =⇒ ϕ̂2 ∼ ϕ̂1.

Let us fix the superpotential of the theory to be zero for now. The following
theorem then holds.

Theorem 2.1. Every constant field configuration ϕ0 is GC-equivalent to a
solution ϕ̂ of the WZ-gauge D-terms.

We provide a graphical representation of Theorem 2.1 in Figure 2.1. The
theorem can be further refined by showing that for every ϕ0 the associated
GC-orbit contains exactly one D-orbit with representative ϕ̂. It then holds
that the set of scalars obeying the WZ D-terms is equivalent to the set of ϕ0

modded out by GC and thus the classical moduli space of a theory with no
superpotential is given by

M≡M(0)/GC (2.3.16)
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Figure 2.1: A D-orbit, the black circle, contained in a GC-orbit, the sphere.

where M(0) is the space of constant scalar fields and the quotient identifies
GC-equivalent scalars. M(0) has the structure of an affine variety (since it is
just given by Cn, where n is the number of scalars).

In the presence of a superpotential W one has to consider the F -terms in the
scalar potential as well as the D-terms. In this case, instead of starting from
the space of unconstrained constant scalar fields, it is appropriate to restrict
the latter to the subset of scalars that obey

F(R) ≡
∂W(ϕ)

∂ϕ(R)
= 0 , (2.3.17)

which is a set of dim(R) algebraic equations. The set of constant scalar fields
{ϕ0} that obey (2.3.17) is referred to as the F -flat variety and denoted F .
Then,

F ≡ M(0)

/{
∂W
∂ϕ(R)

= 0

}
. (2.3.18)

The moduli space is then obtained by “applying the D-terms” in the way we
have constructed, namely by taking a quotient by the complexified gauge group
GC , so that finally one has

M = F/GC . (2.3.19)

Crucially, in [58], the following theorem is demonstrated.

Theorem 2.2. For an algebraic variety A acted upon by a group GC , the
quotient A/GC is in bijection with the variety given by the subring RG of
G-invariant elements contained in the ring associated to A.
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In other words the quotient F/GC can be identified with the ring of gauge
invariant polynomials constructed out of the fields ϕ with the restriction that
(2.3.17) is satisfied. Theorem (2.2) is at the heart of all the calculations in this
thesis as it allows tools from algebraic geometry to be used to study moduli
spaces of supersymmetric theories. Before proceeding to study the Coulomb
and Higgs branches using this result, our discussion can be further refined.

2.3.1 The chiral ring

The reader should at this point put aside the discussion on moduli spaces and
ask what any well-trained quantum field theorist would wonder. What about
the good old correlation functions of operators? Let the reader be in no doubt:
the general answer to such a question is well above the reaches of our humble
work. Nonetheless, let us make a few comments.

The scalar fields in the chiral superfields we have encountered so far belong
to the set of what are called chiral operators. In general, the lowest component
of any chiral superfield is a chiral operator. A chiral operator is an operator O
for which [

Qα̇,O
]

= 0 , (2.3.20)

that is O is annihilated by one set of the supercharges8. It is clear that a
product of chiral operators is itself chiral. Importantly the dependence on
spacetime position for a chiral operator is

∂

∂xµ
O(x) = [Pµ,O(x)] =

{
Qα̇, [Qα,O]

}
, (2.3.21)

where we have used the supersymmetry algebra
{
Qα,Qα̇

}
∼ Pµ, the super

Jacobi identity and the chirality condition (2.3.20). The spacetime dependence
for the VEV of O(x) is then

∂

∂xµ
〈O(x)〉 = 〈 ∂

∂xµ
O(x)〉 = 〈0|{Qα̇, [Qα,O]}|0〉 = 0 , (2.3.22)

since the vacuum is invariant under supersymmetry transformations, that is
Qα|0〉 = 0 and Qα̇|0〉 = 0. In general the expectation value of a product of

8We remind the reader that in this part of the thesis we are in 4d.
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chiral operators is independent of each of their positions

∂

∂xk
〈
∏
i

Oi(x)〉 = 0 . (2.3.23)

As such, it can be factorised with impunity and the spacetime dependence
dropped entirely so that

〈
∏
i

Oi(x)〉 = 〈O1〉 . . . 〈On〉 . (2.3.24)

Thanks to this, correlation functions of chiral operators are greatly simplified
and are amenable to detailed study. Firstly it is clear that the quantity {Qα̇, . . .}
plays no role in the VEVs of such operators, hence one can define equivalence
classes of operators, O1(x) ∼ O2(x), when

O1(x) = O2(x) + {Qα̇, X α̇(x)} (2.3.25)

for some X α̇. The set of equivalence classes of chiral operators forms a ring
known as the chiral ring [64].

If the chiral operators considered are gauge invariant then it becomes clear at
once why the chiral ring is relevant to our discussion. It is indeed precisely the
ring of gauge invariant holomorphic functions that describe the moduli space of
vacua. The equivalence works both ways of course: studying the moduli space
of vacua via the rings of gauge invariant polynomials gives access to correlation
functions of chiral operators.

Later in this thesis we also talk about the chiral ring in situations where the
definitions above do not apply. For example, in 5d minimally supersymmetric
theories (8 supercharges) there are no sub-superalgebras with 4 supercharges
and as such one cannot define chirality. Nonetheless the ring of holomorphic
functions can still be analysed in order to characterise the moduli space of
vacua. We will be loose in our language and still refer to this as the chiral ring.

2.4 Counting operators

In light of the correspondence between moduli spaces of vacua and rings of
gauge invariant holomorphic functions, powerful yet simple techniques have
been developed starting with the work in [65, 66, 67, 68, 69, 70, 71]. These
will be in use throughout this thesis and so we summarise the premise and the
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computational tools there introduced.
The polynomial ring in the scalar fields is denoted R = C[ϕ1, . . . , ϕn]. The

F -terms (2.3.17) furnish an ideal of the polynomial ring

I = 〈{F(Ri) = 0}ni=1〉 , (2.4.1)

where there is an equation F(Ri) = 0 for each scalar field ϕi generating the
polynomial ring. The F-flat variety (2.3.18) is then in bijection with the
quotient ring R/I

F ←→ C[ϕ1, . . . , ϕn]
/
〈{F(Ri) = 0}ni=1〉 . (2.4.2)

Application of the D-terms is done by further taking the quotient (2.3.19)
which, by Theorem 2.2, is equivalent to considering a subring of gauge invariant
polynomials. Let there be a basis set of n′ gauge invariant objects,

Oj = Oj({ϕi}ni=1) , (2.4.3)

constructed from the fields {ϕi}ni=1 which satisfy the F -terms constraints. Let
O be the set of such operators O = {Oj}n

′
j=1 and regard it as a map from

F = R/I to the ring C[O1, . . . ,On′ ]. The image of this map gives rise to an
affine variety,

M' Im
(
C[ϕ1, . . . , ϕn]

/
〈{F(Ri) = 0}ni=1〉 → C[O1, . . . ,On′ ]

)
, (2.4.4)

corresponding to the moduli space of vacua.

2.4.1 Hilbert Series

Studying the vacuum variety as defined by Equation (2.4.4) can be done in
different ways. Here we exploit the power of a generating function that can be
associated to a ring. Such a generating function is known as Hilbert series.

For a ring R over C with a grading R = R0 +R1 + . . . under addition, the
Hilbert function,

Hf(R, i) = dimCRi for i ∈ N , (2.4.5)

counts the elements in each subspace Ri. In a polynomial ring these are simply
the number of homogeneous polynomials at ith degree. By the Hilbert Basis
Theorem the ring is finitely generated. Let us take R = C[O1, . . . ,On′ ] so that
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{Oj}n
′
j=1 is a generating set. Let the degree of each generator be deg(Oj) = dj .

The Hilbert series is then defined as

H(R, t) =

∞∑
i=0

Hf(R, i)ti . (2.4.6)

By the Hilbert syzygy theorem there exists a closed form rational function for
the power series given by

H(R, t) =
P (R, t)∏n′

j=1(1− tdj )
, (2.4.7)

where P (R, t) is a polynomial in t with integer coefficients.

Lemma 2.1. The dimension d of the affine variety associated to R is given by
the limit

lim
t→1

(1− t)dH(R, t) , (2.4.8)

when such a limit is finite and nonzero.

From now on we will drop the redundant argument R and write H(t) instead
of H(R, t). We will refer to the parameter t as a fugacity.

Refinement
We can refine the Hilbert series by incorporating further gradings. The Hilbert
series simply generalises to

H(R, t1, . . . , tk) =
∑
α∈Nk

dimCRαt
α , (2.4.9)

where t = (t1, . . . , tk) and α is a multi-index α = (α1, . . . , αk). A ring which
admits a multi-grading is associated to a variety which admits as many C∗

actions as there are gradings. For example, when R = C[x1, . . . xl], the Hilbert
series is

H(t) =

∞∑
i=0

(
i+ l − 1

i

)
ti =

1

(1− t)l
. (2.4.10)

We can interpret this as counting all possible homogeneous monomials at degree
i without distinguishing which xi’s make them up. If instead we make explicit
the (C∗)l action on Cl, the grading on the ring of polynomials is captured by a
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set of fugacities {t1, . . . , tl} so that the refined Hilbert series is

H(t1, . . . , tl) =
∞∑
i1=0

· · ·
∞∑
il=0

ti11 · · · t
il
l =

l∏
i=1

1

(1− ti)
, (2.4.11)

Conversely, starting from a refined Hilbert series, setting all ti = t, the unrefined
Hilbert (2.4.10) series is obtained.

When appropriately manipulated, refined Hilbert series can capture the
isometry of the space at hand. In the previous example the map

t1 = x1t, t2 =
x2

x1
t, · · · , tl−1 =

xl−1

xl−2
t, tl−1 =

1

xl−1
t (2.4.12)

allows for the Hilbert series to be rewritten as

H(x1, . . . , xl−1, t) =
∑
i1=0

χ[i, 0, . . . , 0]SU(l)t
i (2.4.13)

=
1

(1− x1t)

1

(1− x2
x1
t)
· · · 1

(1− xl−1

xl−2
t)

1

(1− 1
xl−1

t)
, (2.4.14)

where χ[i, 0, . . . , 0]SU(l) denotes the character for the representation of SU(l)

with Dynkin label [i, 0, . . . , 0]. The isometry group U(l) acting on Cl has been
made explicit by a careful choice of fugacities. By comparing with (2.4.7) we
notice that the Hilbert series spells out once again that the generators all have
degree 1 in the main grading, as expected.

Computations
Vacuum varieties in supersymmetric gauge theories lend themselves very natu-
rally to calculations of Hilbert series. The procedure for calculating the Hilbert
series in such a setting is:

• Identify global and gauge symmetries and their Abelian subalgebras.

• Identify the transformation properties of the (gauge variant) scalar fields
under the global and gauge symmetries ϕ

(RGl ×RG)
.

• For the SU(2)R symmetry, identify the U(1) subalgebra which selects the
highest weight of SU(2) representations. This provides the main grading
to the ring.

• Assign the U(1) global, gauge and R charges to the scalar fields.
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This procedure leads to a replacement

ϕ
(RGl ×RG)

→ χ[RGl](y)× χ[RG](x)× td , (2.4.15)

where χ[R](z) signifies the character of the representation R in the variables z
and d is the highest weight of the SU(2)R representation.

For simplicity, let us restrict for now to a theory without F -terms and consider
the affine variety without taking the D-terms into account yet. The ring of
gauge variant operators, C[ϕ1, . . . , ϕn], contains all the unordered k-tuples in
the fields {ϕ}ni - the generators of the ring. Such a ring can be obtained by
constructing at each degree all possible symmetric monomials in the fields. The
kth graded piece is thus

Rk = {hk(ϕ1, . . . , ϕn)} , (2.4.16)

where hk(ϕ1, . . . , ϕn) is a sum of all distinct products of degree k in a subset of
the variables ϕi. Symmetrisation manifestly plays a prominent role in the chiral
ring. On the Hilbert series’ side, this is captured by a function which counts
symmetric products of its argument, known as Plethystic Exponential (PE).

Definition 2.1. For a multivariate function f(t1, . . . , tn) with f(0, . . . , 0) = 0,
we define

PE[f(t1, . . . , tn)] := exp

( ∞∑
r=1

f(tr1, . . . , t
r
n)

r

)
. (2.4.17)

Example 2.1. For f(t) = t, the PE is

PE[t] = exp

( ∞∑
r=1

tr

r

)
= exp (− ln(1− t)) =

1

1− t
. (2.4.18)

Two properties of the PE are noteworthy. Firstly, PE[−αt] = (1− t)α when α
is a positive constant. Secondly, PE[f1 + f2] = PE[f1]PE[f2]. Consequently,
for a power series in t with positive coefficients, g(t) =

∑
n ant

n, the PE is

PE

[∑
n

ant
n

]
=

1∏
n(1− tn)an

. (2.4.19)

Here, the reader should recall the above discussion on the Hilbert series: the
PE is intimately related to it. Indeed by considering the ring R = C[ϕ1, . . . ϕn],
identifying the symmetry group acting on it, U(n), and the charges of the
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generators {ϕi} as {x1t,
x2
x1
t, · · · , xl−1

xl−2
t, 1
xl−1

t}, the Hilbert series associated to
the ring is given by

H(x1, . . . , xl−1, t) = PE

[(
x1t+

x2

x1
t+ · · ·+ xl−1

xl−2
t+

1

xl−1
t

)]
= PE

[
χ[1, 0, . . . , 0]SU(n)t

]
, (2.4.20)

which, upon using (2.4.19), recovers precisely (2.4.14).

F -flat Hilbert series
For a quotient ring R/I like (2.4.2), a mere symmetrisation of the generators
of R is not sufficient since the ideal provides equations that set to zero some
elements in R. In general the Hilbert series for such a quotient can be evaluated
using standard computational algebraic geometry packages like Macaulay2
[72] by providing the fundamental fields and the relations between them as
determined by (2.4.1). However there is a remarkably useful simplification for
supersymmetric gauge theories which can be fully Higgsed. For such theories the
F -flat variety F is a so-called complete intersection. A complete intersection
(CI) is a variety such that its dimension is given by

dim(CI) = n−m , (2.4.21)

where n is the degree of the embedding space and m is the number of vanishing
polynomials forming the ideal I. Let R be the ring of gauge variant scalar fields
R = C[ϕ1, . . . , ϕn] and {ei}mi=1 the degrees of the m relations arising from the
F -terms. The unrefined Hilbert series for such a CI is

H(F , t) =

∏m
j=1(1− tej )∏n
i=1(1− tdi)

= PE

 n∑
i=1

tdi −
m∑
j=1

tej

 . (2.4.22)

Upon replacing the gauge variant F -terms by characters,

FRG
→ χ[RG](x)× tej , (2.4.23)
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the refined Hilbert series for F is given by

H(F ,x,y, t) = PE

[
n∑
i

χ[RGl(ϕi)](y) χ[RG(ϕi)](x) tdi

−
m∑
j

χ[RG(Fj)](x) tej

 , (2.4.24)

where x and y are the fugacities for the Cartan subalgebra of the gauge group
and flavour group respectively.

The discussion so far has only provided a Hilbert series for F but this is not
sufficient as it does not take into account the D-terms. As has been discussed
at length, imposing the D-terms amounts to taking the quotient of F by the
complexified gauge group GC . The resulting variety is in correspondence with
the subring of F where only gauge invariant elements, that is singlets, are
allowed. As far as the Hilbert series is concerned, this means that gauge variant
polynomials must be removed from the series. Projecting onto gauge singlets
is done by means of the Molien-Weyl integration formula so that the Hilbert
series for the ring associated to the moduli space is given by

H(M,y, t) =

∫
G
dµG(x)H(F ,x,y, t) (2.4.25)

where dµG is the Haar measure for the group G as provided in [73],∫
G
dµG =

∮
· · ·
∮

dx1

x1
· · · dxr

xr

∏
α∈{∆+}

(
1−

r∏
l=1

xαl

)
, (2.4.26)

with α ∈ {∆+} the positive roots in the Lie algebra g of rank r. Upon evaluation
of the Molien integral, the surjection (2.4.4) has been implemented at the level
of the Hilbert series. To summarise, the last set of steps to evaluate the Hilbert
series for moduli spaces of vacua is as follows.

• Identify the transformation properties of the F-terms under the gauge
symmetry.

• Assign the U(1) global, gauge and R charges to the F-terms and as such
replace them by characters.

• Compute the Hilbert series for the F -flat variety in terms of a plethystic
exponential.

• Project onto the gauge invariant sector by computing the Molien integral
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of the F -flat Hilbert series.

It is important to stress that in general after projecting onto the gauge invariants,
the variety is no longer a complete intersection. In particular it does not have
the structure of a plethystic exponential.

A useful tool after computation of (2.4.25) is the so-called Plethystic
Logarithm (PL). The Hilbert series (2.4.25) can be obtained either as a
rational function or as a Taylor series in t (depending on how computationally
feasible the integral is). In both cases, a surprising amount of information about
the variety is contained in the first few terms of the expansion in t. Furthermore,
the inverse function of the PE brings to light the generators and the relations
of the ring of gauge invariant operators. Such an inverse is the aforementioned
plethystic logarithm, which, for a multi-variate function f(x1, . . . , xn) such that
f(0, . . . , 0) = 1, is defined as

PL[f(x1, . . . , xn)] =
∞∑
k=1

1

k
µ(k) log f(xk1, . . . , x

k
n) .

If the space is a complete intersection after projecting onto the gauge invariant
sector, the PL is a finite polynomial of terms with positive and negative signs,
the former encoding the generators and the latter the relations. If the space is
not a complete intersection, the PL does not terminate and it is less helpful:
higher syzygies enter the infinite series and make reading off generators and
relations a delicate task.

2.4.2 Highest weight generating function

The structure of the moduli space can be captured in a more succinct form
through the so-called highest weight generating function (HWG), which was first
introduced in [74]. The HWG summarises the full character of a representation
using its highest weight and takes on a deep geometrical meaning since, under
appropriate and consistent manipulations, it allows for movement in the space
of theories. As such it should be considered on a par with the superpotential,
partition functions and indices appearing in the literature on spaces of vacua.

A typical Hilbert series which counts holomorphic functions on a given N = 2

vacuum variety has the form

HS(y1, . . . , ys; t) =
∑
k

fk(x1, . . . , xs)t
k , (2.4.27)
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where each fk(x1, .., xs) is a sum of characters for irreducible representations of
the global symmetry group coming from evaluation of the Molien integral.

To obtain a HWG, one notices that the character, χ[n1,...,ns](x1, . . . , xs), for
a given representation can be encoded by the set of coefficients appearing in the
corresponding Dynkin label [n1, . . . , ns]. Choosing a set of fugacities {µi}si=1

to keep track of such coefficients, the map

χ[n1,...,ns](x1, . . . , xs) 7→ µn1
1 · · ·µ

ns
r (2.4.28)

can be applied to (2.4.27) to obtain a generating function in terms of highest
weights,

HWG(µ1, . . . , µs; t) =
∑
k

(µn1
1 · · ·µ

ns
r )k t

k (2.4.29)

The series can then be resummed as a rational function.
Interestingly, it is often the case that the HWG can be rewritten in the

form of a plethystic exponential, even when the Hilbert series cannot. This
means that the variety associated to the ring of highest weights is a complete
intersection unlike the variety associated to the ring of all weights. The coarse
graining implemented by the HWG throws away information on the one hand,
but reveals some nice properties that are invisible to the fine graining provided
by the Hilbert series.

2.4.3 The Higgs branch as an algebraic variety

In light of the techniques introduced in this section, we can proceed to eval-
uate the Hilbert series associated to the ring of holomorphic functions which
parametrises the Higgs branch of SU(nc) with Nf flavours.

The first check relates to the dimension of the moduli space. There are
2 × Nfnc complex scalars {qia, q̃ai } subject to n2

c − 1 real equations coming
from the D-terms, (2.2.10), and n2

c − 1 complex equations coming from the
F -terms, (2.2.11). For the latter there are n2

c − 1 redundant equations due
to the gauge invariance of the superpotential. Hence the Higgs branch has
complex dimension 2Nfnc − 2(n2

c − 1). Reflecting the hyperKähler structure of
the Higgs branch, the complex dimension is, as expected, even. The literature
usually gives the quaternionic dimension, namely Nfnc − (n2

c − 1). To simplify
the discussion we have here assumed the case of Nf ≥ nc.

The ring of gauge variant scalar fields is R = C[qia, q̃
a
i ] whilst the ideal
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provided by the F -terms is the last equation in (2.2.13)

I = 〈q̃ai qib − ηδab = 0〉 (2.4.30)

The gauge and global symmetry is SU(nc)× SU(Nf )× U(1)B. Let

qia → [1, 0, . . . , 0]SU(nc)(x)× [0, . . . , 0, 1]SU(Nf )(y)× u−1 × t

q̃ai → [0, 0, . . . , 1]SU(nc)(x)× [1, 0, . . . , 0]SU(Nf )(y)× u× t ,

where u is the fugacity for the U(1)B baryon number and [r1, . . . , rNf−1] now
stands for the character of the representation, that is we have suppressed the
χ in front of the Dynkin label. The ideal transforms in the adjoint of SU(nc)

and has highest weight 2 under SU(2)R. The F -flat variety F is

H(F ,x,y, t) = PE
[
[1, 0, . . . , 0]SU(nc)(x)[0, . . . , 0, 1]SU(Nf )(y)u−1t

+ [0, 0, . . . , 1]SU(nc)(x)[1, 0, . . . , 0]SU(Nf )(y)ut

−[0, 0, . . . , 1]SU(nc)(x)t2
]

(2.4.31)

Projecting onto the singlet sector, the Hilbert series can be written as a sum
of characters of SU(Nf ) in the fugacities y, namely H(MH ,y, t). Converting
the series into a HWG with highest weight fugacities {µi}

Nf−1
i=1 we obtain

HWG(µ1, . . . , µNf−1, t) = PE

[
t2 +

n−1∑
i=1

µiµN−it
2i + (µnu+ µN−nu

−1)tn

]
.

(2.4.32)

Equation (2.4.32) is valid for Nf ≥ 2nc, to which we further restrict from
now on for simplicity.

Let us analyse the chiral ring. We look for gauge invariant generators and the
relations they satisfy. We construct the gauge invariant generators from first
principles but keep the Hilbert series as an aid. In a sense we are reversing our
previous rationale: starting from a Hilbert series and its Plethystic Logarithm
we extract generators and relations9. This procedure is quite subtle as higher
syzygies can ruin the delicate balance of plus and minus signs appearing in the
PL.

9Despite the variety not being a complete intersection, taking an expansion of the HS up
to some order and consequently the PL up to that order, the generators and relations can be
extracted.
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Generators
The HS and the PL both have terms

t2 ([1, 0, . . . , 0, 1] + 1) (2.4.33)

tnc

(
unc [0, . . . , 0, 1

nth
c

, 0, . . . , 0] + u−nc [0, . . . , 0, 1
(Nf−nc)th

, 0, . . . , 0]

)
, (2.4.34)

where of course these are SU(Nf ) characters as the gauge group has been
integrated over. The presence of these terms tells us that there are four
generators. Let us denote the SU(Nf ) fundamental indices i, j, . . . = 1, . . . , Nf .
The appearing representations dictate that the four generators are: M i

j , η at
t2 and B[i1...in], B̃[i1...in] at tnc .

In this case, however, we can rely on the previous knowledge of the ring
of gauge variant elements R = C[qia, q̃

a
i ] and can precisely construct what

the gauge invariant operators are. From the Lagrangian fields we can indeed
construct two types of basic gauge invariant operators: firstly the mesons,
separated into the traceless part and the trace, both quadratic in the squarks
and hence SU(2)R spin-1 operators, and secondly two kinds of baryons, made
up of nc squarks and hence SU(2)R spin-nc2 . They are constructed as

M i
j = qiaq̃

a
j −

1

Nf
qkaq̃

a
kδ
i
j (2.4.35)

η =
1

nc
q̃akq

k
a (2.4.36)

Bi1...inc =
1

nc!
qi1a1
· · · qincanc ε

a1...anc (2.4.37)

B̃i1...inc =
1

nc!
q̃a1
i1
· · · q̃ancinc

εa1...anc . (2.4.38)

The meson M i
j is constructed so as to be traceless. The trace of its traceful

version, namely the object qiaq̃aj , is proportional to η. This can be seen by
taking a contraction of the F -terms (2.4.30), which yields ncη = q̃ai q

i
a.

A compact notation, as introduced in [9], is henceforth rather convenient.
We define a dot for contraction between one upper and one lower SU(Nf ) index
and a Hodge star for an epsilon contraction of SU(Nf ) indices so that, for
example,

M ·M ≡M i
jM

j
k

∗Bi1···iNf−nc ≡ εi1···iNf−ncj1···jncB
j1···jnc .
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We will often suppress the indices as well as identity matrices whenever there
is no room for confusion.

Relations
The relations between the generators occur at different powers of t: they appear
at t4, tnc+2 and t2nc . From the HS and the PL, we learn that they transform in
some representations of SU(Nf )× U(1)B obeying clear patterns of behaviour
which we summarise in Appendix D. From the relations in terms of characters
of representations, the chiral ring can be reconstructed in terms of defining
equations in the basic gauge invariant operators up to numerical factors. As
mentioned just above, knowledge of the ring of gauge variant operators – the
squarks and the F -terms – can be exploited to write down the precise relations,
including the numerical factors. This is however circumstantial; in the spirit
of the Hilbert series techniques we will rely only on the representations of
the gauge invariant operators as they appear in Appendix D. The chiral ring
is then as summarised in Table 2.2 which is carefully constructed from the
representations appearing in Table D.1.

−t4 M ·M ∝ TrM2

TrM2 ∝ η2

−tnc+2 unc ∗B ·M ∝ η ∗B

M ·B ∝ ηB

−tnc+2 u−nc M · ∗B̃ ∝ η ∗ B̃

B̃ ·M ∝ ηB̃

−t2ncu2nc B · ∗B = 0

−t2ncu−2nc ∗B̃ · B̃ = 0

−t2nc Bi1i2i3B̃j1j2j3 ∝M [i1
j1M

i2
j2M

i3]
j3

Table 2.2: Chiral ring of 4d N = 2 SU(nc) with Nf flavours.
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2.4.4 The classical Coulomb branch revisited

The Coulomb branch was examined without the help of Theorem (2.2) but it
is instructive to apply it on this branch too. The scalar fields on the Coulomb
branch are the set {φA} where A is an index labelling the adjoint representation
of the group G. Thus, for a parametrisation of the Coulomb branch, Theorem
(2.2) instructs us to find gauge invariant polynomials in the scalars φA. In
other words the singlet contribution has to be extracted from tensor products
of the adjoint representation. In general invariant tensors intertwine between
singlets and tensor product representations. For tensor products of the adjoint
representations the relevant invariant tensors are in one-to-one correspondence
with Casimir operators.

Casimir operators of a Lie algebra g are of the form

C(k) =

|g|∑
a1,...,ak=1

sa1...akT
a1 · · ·T ak , (2.4.39)

for sa1...ak a symmetric tensor. In particular sa1...ak is constructed by taking
symmetrised traces

sa1...ak =
1

k!

∑
perm

Tr (T a1 · · ·T ak) . (2.4.40)

For a field φ = φATA, we can then define monomials

Trφk ≡ sa1...akφ
a1 · · ·φak . (2.4.41)

For the algebra sl(n), there are n−1 independent Casimir invariants, {Trφk}nk=2,
the first being the quadratic Casimir operator which is given by the Killing
form and the others being referred to as the higher Casimirs.

The ring of polynomials in these traces parametrises a variety which is simply
Cn−1. Notice though that, by construction, the symmetric group Sn has a
residual action on the variables. As such, the classical Coulomb branch for a
theory with gauge group SU(nc) is given by

MC,class = C(nc−1)/Snc (2.4.42)

which, once generalised to any (semi)simple Lie group G, recovers (2.2.15).
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2.5 Three-dimensional N = 4 theories

Going from four to higher dimensions may seem exotic and fun – fancy super-
string theory exists in D = 10 after all. But why go down to lower than four
dimensions? And why to three? There are many reasons but in the context of
this thesis the answer is that the moduli space of vacua becomes particularly
rich and holds some unexpected surprises. In preparation for chapter 4 we in-
troduce the basic features of three-dimensional theories with eight supercharges
and their moduli spaces.

In three dimensions the spinor is a two-component object; to have eight
supercharges requires four copies of such a spinor, hence the notation 3d N = 4.
A 3d N = 4 theory is best understood as the compactification of a 6d N = 1

theory [17]: six is the maximum number of dimensions for non-gravitational
theories with eight supercharges.

Upon dimensional reduction of a 6d spacetime R1,5 to R1,2, the rotation
symmetry in the three compactified directions acts as an R-symmetry for the
theory in 3d. The double cover of this is denoted SU(2)L. There is of course
also an SU(2)R symmetry rotating the supercharges as in 6d, so that the full
R-symmetry is SU(2)L × SU(2)R.

The three real scalar fields arising from the dimensional reduction of the
6d vector multiplet transform as a vector of the rotation group acting on the
compactified space, hence they are in a triplet of SU(2)L: we denote them φi,
where i = 1, 2, 3.

Again, it makes sense to choose an N = 2 sub-superalgebra (analogously
to when we choose N = 1 in 4d) to describe the field content. The vector
multiplet of 3d N = 4 can be recognised as a sum of a 3d N = 2 vector
multiplet V containing one gauge field, one real scalar, and a Dirac spinor plus
a chiral multiplet Φ containing a complex scalar and a Dirac spinor. This is
summarised in Table 2.3. When such a description in terms of N = 2 multiplets
is adopted, the only visible subgroup of SU(2)L is the Cartan U(1)L under
which the chiral multiplet Φ has charge 2. We will discuss what happens with
the hypermultiplets later on.
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3d N = 4 Vector Multiplet

N = 4 N = 2 Field Label SU(2)L × SU(2)R

V-plet

V-plet V

gauge aµ

 λα

ξα

→ [1; 1]

Dirac spinor λα

real scalar σ


Reϕ

Imϕ

σ

→ [2; 0]
χ-plet Φ

complex scalar ϕ

Dirac spinor ξα

Table 2.3: The Lagrangian field content of a 3d N = 4 vector multiplet.

2.5.1 The classical Coulomb branch

The action for an N = 4 vector multiplet in the adjoint of a gauge group G
with rank(G) = r can be obtained by dimensionally reducing the action for a
6d N = 1 vector multiplet. The bosonic sector is then schematically given by

Tr

∫
6d
F ∧ ∗F dim red−−−−−→∼ 1

e2
Tr

∫
d3xFµνF

µν + |Dµφ
i|2 + |[φi, φj ]|2 , (2.5.1)

where we have suppressed the gauge index A = 1, . . . , |G| and i = 1, 2, 3.
The scalar potential is again the square of a commutator and it vanishes for
the scalars taking values in the U(1)r Cartan subalgebra of G: the choice
φi = diag(φ

(i)
1 , . . . , φ

(i)
r ) guarantees a supersymmetric vacuum. For a generic

choice of the 3r VEVs of the scalars, the adjoint Higgs mechanism ensures
that the gauge group is fully broken G −→ U(1)r so that there are r massless
photons left in the low energy effective theory.

In three dimensions, abelian gauge fields a(j)
µ can be dualised to scalar fields

γ(j) via

f (j)
µν = ∂µa

(j)
ν − ∂νa(j)

µ = εµνρ∂
ργ(j) . (2.5.2)

The gauge invariance of a(j)
µ implies that the scalars γ(j) are compact, namely

γ(j) ∼ γ(j) + 2π . (2.5.3)

Thus a generic point on the Coulomb branch is parametrised by generic VEVs



Chapter 2. Essential Background

for all the scalar fields including the dual photons, the latter taking values
in S1. Altogether thus, these scalars parametrise a classical Coulomb branch
which is

MC,class = (R3 × S1)r/W , (2.5.4)

where we have again taken into account the residual action of the Weyl group,
as explained in the 4d case (2.2.15). The quaternionic dimension of this space
is dimQ = r and the complex dimension twice that, dimC = 2r.

The coupling constant e has positive mass dimension in 3d and the theory is
free in the ultraviolet. In the infrared it is believed to flow to a superconformal
fixed point. Here the effective field theory description is in terms of a super-
symmetric non-linear sigma model. Supersymmetry imposes that the target
space be hyperKähler since the abelian vector multiplet can be dualised to a
chiral multiplet. This should be contrasted with the Coulomb branch in 4d
which was previously argued to possess only a (special) Kähler structure. The
quaternionic dimension of the hyperKähler Coulomb branch is r, as obtained
from the counting of the scalar fields.

Another feature of three dimensions with an abelian gauge group is the
presence of a current which is topologically conserved. Indeed, taking

jµ =
1

4π
εµνρfµν , (2.5.5)

one immediately notices that jµ is conserved by virtue of Bianchi identities.
The global symmetry associated to the conserved current is denoted U(1)J .
Due to the origin of the U(1)J , its associated charge is called topological. Thus
a theory with r abelian vector multiplets possesses a global U(1)rJ symmetry
which is not visible in the Lagrangian: UV fields are U(1)J neutral.

As previously explained, the Coulomb branch receives quantum corrections
and a classical description does not suffice to characterise its chiral ring. In
chapter 4 we review a recent breakthrough which allows for a description of the
quantum corrected chiral ring. This description bypasses the dualisation of the
gauge field since this is not a clear procedure for nonabelian fields occurring
at points of symmetry enhancement on the moduli space (for example at the
origin where all the VEVs are set to zero and the gauge symmetry is unbroken).
We postpone a discussion of the quantum corrected Coulomb branch and the
associated references to chapter 4.
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2.5.2 The Higgs branch and 3d mirror symmetry

Dimensional reduction of a hypermultiplet is less interesting: scalars go to
scalars and no extra constraints arise from the action in the reduced coordinates.
Furthermore, the Higgs branch is classically exact, therefore it is independent
of whether it is formulated in dimensions from 3 to 6. The upshot is that the
Higgs branch of 3d N = 4 theories is precisely the Higgs branch of the 4d
N = 2 theories that we studied in section 2.2.

The peculiar phenomena of 3d N = 4 theories are a by-product of the global
R-symmetry; recall that in the 4d case, the R-symmetry is U(1)× SU(2)R and
the nonabelian factor acts non-trivially on the Higgs branch. The appearance
of an SU(2)L in 3d, which acts non-trivially on the Coulomb branch, hints at
a symmetry between the Coulomb branch and the Higgs branch. In fact such a
symmetry, known as 3d mirror symmetry, was originally conjectured on the
basis of matching symmetries and dimensions of the moduli spaces [14].

Mirror symmetry predicts the infrared equivalence of two theories whose
Lagrangian description is very different. Since three-dimensional theories are
free in the ultraviolet but flow to interacting superconformal fixed points in the
the infrared, it is useful to think about such an equivalence from the opposite
point of view: a superconformal fixed point with some manifest global symmetry
can be reached as the RG flow of two different Lagrangian theories.

Crucially, the Higgs branch of one theory arises as the Coulomb branch of the
other theory and viceversa, namely the duality swaps the SU(2)L and SU(2)R:
it is here that the “mirror effect” is visible. The remarkable property of such
a duality should be clear at once: the Coulomb branch, which is quantum
corrected, can be obtained classically as the Higgs branch of another theory.

Fixing the desired superconformal fixed point symmetry, the theory whose
Coulomb branch enjoys such a symmetry, does not manifestly display it in the
ultraviolet. There is a so called enhancement of symmetry from the UV to
the IR which is quantum mechanically generated by non-Lagrangian operators
known as monopole operators. We will review this phenomenon in chapter 4.

In this thesis, mirror symmetry plays a marginal role. In fact the techniques
developed to study the quantum corrected Coulomb branch, which are described
and generalised in chapter 4, allow for testing the duality, rather than using it
as a working assumption.
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2.6 Five-dimensional N = 1 theories

Five-dimensional QFTs are at first sight doomed from the start. They are
indeed non-renormalisable. From the free Lagrangian for a gauge field,

−1

4

∫
d5xFµνF

µν , (2.6.1)

the canonical mass dimension of Aµ in 5d is 3/2, from which it follows that
the gauge coupling constant [g2] has mass dimension −1. Gauge theories in 5d
should then be seen as theories with a cutoff Λ, where the energy scale m at
which the theory is effective is set by the inverse coupling constant,

m ∼ 1

g2
. (2.6.2)

Nonetheless, for certain classes of 5d supersymmetric field theories, arguments
have been put forward [31] that there exist UV fixed points from which these
gauge theories flow. In particular a UV fixed point means that the coupling
constant is taken to infinity,

1

g2
→ 0 . (2.6.3)

At infinite coupling the mass scale is thus lost: the theory is in fact superconfor-
mal. The kinetic term for the gauge field, g−2F ∧ ∗F , can thus be considered
a relevant deformation of the SCFT. The superconformal fixed point enjoys
a larger symmetry than the gauge theory obtained by deforming it: such a
field-theoretic effect can be understood via string-theoretic arguments. We will
follow [31] to provide the reader with the necessary background.

2.6.1 Field theory

The basic features of the 5d supersymmetry algebra stem from the properties
of the four-dimensional spinor representation of SO(4, 1). The antisymmetrised
tensor product of two such spinors contains a singlet and a vector. The former
means that the spinor is pseudoreal and the latter that the anticommutator
of two identical supercharges, being a symmetric product, cannot yield the
momentum operator, a vector representation. The introduction of an extra
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index is necessary10, hence the supersymmetry algebra schematically looks like

{QB, QA} ∼ δBAPµγµ + . . . , (2.6.4)

where the . . . signifies various central charges and A,B = 1, 2 are the extended
symmetry index. There are thus 8 supercharges and since this is the minimal
supersymmetry in 5d it is denoted by N = 1. It is related via dimensional
reduction to the other quantum field theories with 8 supercharges as the
following sequence shows,

6d N = (1, 0)→ 5d N = 1→ 4d N = 2→ 3d N = 4 (2.6.5)

The extended supersymmetry implies the presence of an R-symmetry SU(2)R

under which the supercharges QA transform as a doublet.
As usual for theories with 8 supercharges the massless representations of such

an algebra are the vector multiplet and the hypermultiplet. In five dimensions,
the field content of such multiplets is

V-plet Φ : vector Aµ + real scalar φ+ spinor

H-plet : 4 real scalars + spinor

Coulomb branch
The Coulomb branch of theories with eight supercharges has been discussed in
subsections 2.2.1 and 2.4.4, though in the context of four-dimensional theories.
Everything applies analogously here, except for the fact that the scalar in the
vector multiplet is real so that the moduli take values over the real rather than
the complex numbers.

The VEV of the scalar φ in the Cartan subalgebra of a gauge group G gives
rise to a moduli space which is isomorphic to

C ∼=
Rr

W
, (2.6.6)

where r is the rank of the gauge group G and W is the Weyl group of G as
previously mentioned. At a generic point on the Coulomb branch the gauge

10Alternatively one should recall that in 4+1d, whilst the usual Majorana condition cannot
be self-consistently imposed on one Dirac spinor, a symplectic Majorana spinor can nonetheless
be constructed: one introduces a pair of Dirac spinors and imposes a self-consistent reality
condition that mixes them by means of an antisymmetric matrix. Doubling the spinors and
then “halving" them through the reality condition implies the same counting of eight real
degrees of freedom.
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symmetry is U(1)r. For G = U(1), no Weyl group is present hence the moduli
space is simply CU(1) = R, whilst for G = SU(2) the moduli are arranged as(

φ 0

0 −φ

)
, (2.6.7)

with an explicit Z2 action such that the moduli space is CSU(2) = R/Z2.

Prepotential and BPS spectrum
As in (2.1.3) the action for the vector multiplets can be written in terms of
superfields Φi by means of a holomorphic function F

(
Φi
)
. In five dimensions

this function is constrained to be at most cubic in the superfields [31, 34]

F (Φ) =
1

2g
Tr Φ2 +

c

6
Tr Φ3 , (2.6.8)

where 1
2g is the classical gauge coupling and c the classical Chern Simons

coefficient. The constant and linear terms are not present since they do not
enter the Lagrangian.

For an effective theory of U(1)r abelian vector multiplets and Nf matter
multiplets in representations rf with masses mf , the quantum effects produce
extra cubic contributions at one loop and result in an exact prepotential which,
in terms of the scalar fields, looks like

F =
1

2g
hijφ

iφj +
c

6
dijkφ

iφjφk +
1

12

∑
R

|R · φ|3 −
∑
f

∑
Wf

|Wf · φ+mf |3
 ,

(2.6.9)

where hij and dijk are the second and third Casimir operators of g, R denotes
a root of g, and Wf a weight in the representation rf . Notice that the terms in
brackets have arisen as quantum corrections, so in general, even if the theory
has a vanishing Chern Simons term, it will nonetheless be generated at one
loop.

For example, for an effective theory with one vector multiplet – which can be
obtained from a classical theory with U(1) gauge symmetry or from a Higgsed
SU(2) theory – the effective prepotential is

F (φ) =
1

2g
φ2 +

c

6
φ3 , (2.6.10)
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for g and c real. The c term is zero in the classical theory as the groups have
no third Casimirs but a cubic contribution is generated as quantum corrections
are taken into account. Notice however that for a U(1) theory with no flavours
the classical prepotential is exact whilst an SU(2) theory, which has a root
system, this is not the case.

The prepotential encodes the key properties of the theory. By taking deriva-
tives, the dual (magnetic) variables, the effective gauge coupling, and the metric
on the Coulomb branch can be extracted as

φD =
∂F
∂φ

(φ) =
1

g
φ+

c

2
φ2 (2.6.11)

(g−2
eff )ij = ∂i∂jF (2.6.12)

ds2 = (g−2
eff )ijdφidφj (2.6.13)

The dual scalar is part of the tensor multiplet dual to the vector multiplet.
Indeed, in 5d we have that ∗F (2) = H(3), a 3-form field strength associated to
a 2-form gauge field B(2). The objects which are charged under the gauge field
and its dual are respectively

d ∗ F (2) = qeδ
(4) → electric particle (2.6.14)

dF (2) = qmδ
(3) → magnetic monopole string . (2.6.15)

These objects belong to the BPS spectrum of the theory. As such they have
masses and tensions proportional to the central charges of the N = 1 supersym-
metry algebra (for a review see [75]), the electric particle having mass given by
the electric central charge and the string having tension given by the magnetic
central charge.

In the low energy theory, these central charges are dependent on where in
the moduli space the objects are. The electric central charge and hence the
mass of the electric BPS particle is simply given by the VEV of the scalar φ
times the charge qe, whilst the magnetic central charge is given by the VEV of
dual scalar φD, as given in (2.6.11), times the magnetic charge qm.

There are other non-perturbative objects that enrich the theory. Their
presence stems from a peculiarity of 5d field theories.
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Global U(1) symmetry
In five dimensions the one form defined by

j(1) =
1

8π2
Tr ∗ (F ∧ F ) , (2.6.16)

or in index notation jµ ∝ εµνρστ Tr(FνρFστ ), is topologically conserved by
virtue of the Bianchi identity. Hence it is a conserved current. The associated
symmetry is denoted U(1)I and the corresponding charge qI .

Consider gauging this symmetry by coupling the conserved current to a
background vector superfield. The latter has a scalar component which has
positive mass dimension; it is nothing but the inverse gauge coupling 1

g2 , since
this is the mass scale of the theory.

There are BPS objects I, charged under the current, which are particle-like
and have a mass which is, as usual, proportional to the expectation value of
the scalar in the background vector superfield. As we have specified, this is the
inverse coupling: mI ∼ 1

g2 . Hence the BPS spectrum includes the basic objects
as summarised in Table 2.4.

electric W-bosons mW ∝ 〈φ〉

magnetic strings mm ∝ 〈φD〉

particles I mI ∝ 〈 1
g2 〉

Table 2.4: Basic objects in the 5d N = 1 BPS spectrum.

To understand what these U(1)I charged particle-like objects are, it is instructive
to look at the conserved charge,

qI ≡
∫

d4xj0 ∝
∫

d4xε0νρστ Tr(FνρFστ )

=

∫
d4xFijF

ij , (2.6.17)

which is precisely the integral that yields the instanton number of 4d Euclidean
gauge field configurations. Objects that carry nonzero U(1)I charge must
have nonzero instanton number: they are thus instanton-like solitons. Since
instantons are co-dimension 4 objects, in 5d this means they are 1-dimensional
objects, that is, particles.
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Dynamics
Let us focus on effective theories with one abelian vector multiplet. They arise
in the low energy limit of a theory with Nf flavours and U(1) or SU(2) gauge
symmetry. Such “high energy” classical theories are of course defined with a
cutoff Λ since they are not renormalisable. The Coulomb branch for each theory
is summarised in Table 2.5, where we put angle brackets around the scalar fields
to emphasise that we are talking about the moduli. The prepotential is given
by (2.6.10), though for the U(1) theory there is a discrete global symmetry
(acting as x→ −x and φ→ −φ) which requires that we take absolute values
of the modulus. A 1-loop computation in each of the two theories gives the
expression for c again tabulated in Table 2.5.

U(1) with Nf electrons SU(2) with Nf quarks

C = {〈φ〉 ∈ R} C = {〈φ〉 ∈ R/Z2 = R+}

F (φ) = 1
2g |φ|

2 + c
6 |φ|

3 F (φ) = 1
2gφ

2 + c
6φ

3

c = −Nf c = 2(8−Nf )

Table 2.5: Coulomb branch of 5d effective theories with one vector multiplet.

The effective couplings for the U(1) and SU(2) theories are then(
1

g2
eff

)
U(1)

=
1

g2
−Nf |φ| (2.6.18)(

1

g2
eff

)
SU(2)

=
1

g2
+ 2(8−Nf )φ (2.6.19)

The effective coupling is dramatically affected by the sign of the quantum
correction. In the U(1) case, the correction is negative for any number of
flavours. Taking g to be a finite fixed value, there are singularities in the moduli
space at the two points 〈φ〉 = ∓ 1

Nfg2 . Similar singularities emerge also in the
SU(2) theory when Nf > 8. On the other hand, the SU(2) theory with Nf < 8

has no such singularities in the moduli space. Moreover nothing dangerous
happens when the bare coupling is taken to infinity. Indeed, as g → ∞, the
effective coupling stays finite everywhere (except at the origin): the field theory
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still makes sense despite the loss of a gauge description.

2.6.2 String Embedding

Engineering these supersymmetric gauge theories in string theory provides a
deeper understanding of what is at work here. Consider first Type I string
theory. It has 16 supercharges, giving N = 1 supersymmetry in D=10 spacetime
dimensions. At low energy it consists of a supergravity theory coupled to a
Yang-Mills theory with gauge group SO(32). The RR-field content of the theory
allows for the presence of D9, D5 and D1-branes besides of course the NS-NS
sector with the string F1 and the NS5-brane. Most commonly Type I string
theory is obtained by a projection of Type IIB: the worldsheet orientation is
gauged so that in perturbation theory the worldsheet is unoriented. One should
think of this as an orientifold projection enacted by an O9− plane. Such an
orientifold plane is charged under the D9-brane potential and has charge -16
in units where the D9-brane has charge +1. In the presence of an O9− plane,
16 D9-branes must be present to ensure invariance of the action under gauge
transformation. The orientation reversal induced by the O9− plane can be
accounted for by placing 16 D9 images. Strings stretching between the branes
and their images give rise to light modes which form an SO(32) gauge field.

Now consider compactification of Type I on a S1. The resulting theory is
known as Type I′. A subsequent T-duality on the circle is the last step to
engineer the required background, namely Type I′ on the interval S1

1/R/Z2.
Figure 2.2 is a duality diagram relating Type IIA, Type IIB, Type I, Type I′

and Heterotic SO(32).

IIA IIB Type I Het SO(32)

IIB on S1
RB

IIA on S1
RA

RB = l2s/RA

Type I on S1
RI

Type I′ on [0, πRI′ ]
RI′ = l2s/RI

S1
RA

Ω

projection

S1
RB

S-duality

S1
RI

Ω & Z2

projection

Figure 2.2: A duality diagram showing the Type I/Type I′/Heterotic SO(32).
The circular loops denote T-duality. The dashed line represents S-duality.

The effect on the Type I branes D1, D5, D9 wrapping the S1 is as follows.
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A D1-brane becomes a point particle, that is a D0-brane whilst a D5-brane
becomes a D4-brane. The D9-branes become D8-branes on the interval S1

1/R/Z2.
The wrapped O9− plane appears as one O8− plane at the two ends of the
interval [0, πR′], with R′ = 1

R . The background in 8+1 dimensions is as sketched
in Figure 2.3

O8−

0 θ1 θ2 θ15 θ16

16 D8-branes O8−

πR′

D4

Figure 2.3: Type I′ background: the compactified direction is x9 and the Z2

projection results in an interval [0, πR′]. The position of the 16 D8-branes
along the interval are labelled θi. A D4-brane probes the background.

The spacetime moduli of the Type I′ background are provided by the size of
the S1/Z2 and the locations of the D8-branes or equivalently the 16 Wilson
lines and the size of the S1 in the Type I picture.

The D4-brane acts as a probe for this background. Its U(1) gauge field is
enhanced in the neighbourhood of the orientifold plane: here the light stringy
states form an SU(2) gauge field. The gauge symmetry provided by the heavy
D8-branes becomes a flavour symmetry for an observer on the D4-brane. Hence
the string embedding engineers an SU(2) gauge theory coupled to Nf = 16

hypermultiplets. There are two very special points probed by the D4-brane.

• When Nf of the D8-branes are located at θ = 0, that is they coincide
with the orientifold, the theory for the D4-brane is SU(2) with SO(2Nf )

flavour symmetry.

• If all the D8-branes are located at some θ 6= 0, away from the orientifold,
the theory for the D4-brane is U(1) with SU(Nf ) flavour symmetry.

Starting from a configuration where Nf of the D8-branes coincide with the O8−

plane, one physical D8-brane can be pulled away, leaving a SO(2Nf −2) flavour
symmetry. The procedure can be repeated until there are no more branes and
a pure SU(2) gauge theory is left on the worldvolume of the D4-brane.

The Yang-Mills coupling constant for a gauge theory on a Dp-brane is given
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in terms of the brane tension and the string length ls: g−2
YM ∼ l4sTDp. The

tension for a Dp-brane is given by

TDp ∼ (gsl
p+1
s )−1 , (2.6.20)

where gs is the string coupling. Hence for the D4-brane in the Type I′ with
string coupling constant gI′ (

1

gYM

)2

∼ 1

lsgI′
. (2.6.21)

Since the string coupling is determined dynamically via the VEV for the dilaton,
gI′ ∼ e〈ΦD〉, information about the gauge coupling for the theory on the D4
probe can be gained through a study of the behaviour of the dilaton in the
Type I′ background.

Heuristically, the D8-branes fill the R1,8 and they act as a spacetime boundary
with a discontinuity in their “electric” field. It results in the dilaton not being
constant but having to satisfy(

1

gI′

)′′
= −

∑
qiδ(θ − θi) , (2.6.22)

where the double dash signifies differentiation with respect to θ. The solution
is a piecewise linear function as sketched in Figure 2.4 and explicitly given by

1

gI′
(θ) =

1

g0
+ 4|θ| − 1

2

16∑
i=1

|θ − θi|+ 4|θ − πR′| − 4πR′ +
1

2

16∑
i=1

θi (2.6.23)
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O8− θ1 θ2 θ15 θ16 O8−

E+ E−
∆E = q1

Figure 2.4: Type I′ dilaton profile. The discontinuity in the derivative is due to
the presence of the D8-branes which act as domain walls along the θ direction.

Consider now the behaviour of the dilaton near the left orientifold when
nL < 8 D8-branes are on top of it whilst nR > 8 D8-branes are away from it,
say for simplicity at θ = πR. A D4-brane probing the background near the left
orientifold will be far away from the nR D8-branes and will not feel their effect.
On the other hand, it will be sensitive to the nL branes: they will provide an
SO(2nL) flavour symmetry to its SU(2) gauge theory. Let φ ≡ θ near θ = 0.
The dilaton behaviour is then

1

gI′
(φ) =

1

g0
+ (8− nL)φ , (2.6.24)

which reproduces (2.6.19) up to a factor of 2. It is now evident that the
field theoretic behaviour of the 5d super-Yang-Mills effective coupling has a
spacetime interpretation in terms of the dilaton profile in Type I′ string theory.

The string embedding provides an answer as to what type of field theory one
obtains when 1

g0
diverges. The reasoning, again provided in [31], heavily relies

on string theory dualities.
Recall that the Type I′ construction also includes D0-branes, that is spacetime

particles. They act as instantons in the gauge theory on the D4-brane [13].
The mass of these particles is, using (2.6.20),

m ∼ 1

gI′ ls
, (2.6.25)

which is equivalent to the inverse coupling constant squared for the Yang-
Mills theory on the D4-brane, (2.6.21). The D0-branes are thus precisely the
instantonic particles described in the field theory! In the field theory these
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particles carry non zero integer charge under a U(1) global symmetry. The
next question is: what is the spacetime description of such a U(1)?

U(1) global symmetry in the string embedding
The Yang-Mills gauge coupling (2.6.21) was given in terms of the Type I′

coupling constant gI′ . Since Type I and Type I′ are T-duality related11(
1

gYM

)2

∼ 1

lsgI′
∼ RI
l2sgI

, (2.6.26)

where gI is the Type I string coupling. Returning to the Type I description is
essential to exploit another duality: Type I is in fact S-dual to the Heterotic
string theory with gauge group SO(32) [76, 77, 78, 79]. In particular the
D1-brane in Type I is S-dual to the F1 string in the Heterotic theory. The
D0-brane in Type I′ is T-dual to a D1-brane wrapping S1

RI
. Consequently we

can regard the D0-brane as an heterotic string wrapping S1
RI

. Indeed, looking
at the righthand side of (2.6.26) we recognise the mass of a winding state. The
winding number of the wrapped heterotic string gives an integer which we
identify as the U(1) global charge.

Gauge enhancement
When compactifying the Type I SO(32) theory, Wilson lines on the S1 can be
turned on, giving rise to gauge symmetry breaking. For example when, in the
Type I′ language, eight D8-branes are at one orientifold plane and eight are at
the other, the original SO(32) gauge group is broken to SO(16)× SO(16) as
we have mentioned. For other choices of the Wilson lines, different patterns
of symmetry breaking emerge. In particular when nl < 8 branes are on one
orientifold and 16− nl are on the other, the corresponding Type I/Heterotic
SO(32) symmetry breaking is to SO(2nl)×SO(32−2nl) [80]. However there is
also a U(1)×U(1) symmetry associated to the KK momentum and the winding
number of the compactified heterotic string. Hence the unbroken symmetry is
really SO(2nl)× SO(32− 2nl)×U(1)2. Importantly when the heterotic radius
of compactification RH is at a critical value there is a further enhancement of
SO(2nl)×U(1)) to Enl+1 . This happens because at that radius heterotic string

11Recall the classic T-duality between Type IIA and IIB which works as follows. The
string length is the same in both theories ls = lA = lB whilst the radii of compactification
are related by RA = l−2

s RB . It leads to the string couplings obeying g2
AR
−1
A = g2

BR
−1
B and

thus for a D4-brane gYM = (lsgA)−1 = RB(l2sgA)−1.
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winding states with winding number ±112 become massless and conspire to
enlarge the symmetry. Since string winding states are the heterotic description
of D0-branes in the Type I′, when such objects become massless we expect,
through the chain of dualities, the same enhancement pattern.

The upshot of the string embedding should by now be clear: SU(2) gauge
theories with Nf < 8 flavours have a UV completion at infinite bare coupling
consisting of a SCFT with global symmetry ENf+1 where E5 = SO(10),
E4 = SU(5), E3 = SU(3)× SU(2), E2 = SU(2)× U(1) and E1 = SU(2).13

We can regard the 5d fixed point with global symmetry E8 as the starting
theory and trigger various RG flows by either turning on a mass for one of the
quarks (pulling away a D9-brane) or by turning on a mass for the D0-brane. In
the former case we land on the E7 theory, whilst in the latter we engineer an
effective SO(14)× U(1)I gauge theory. Continuing the procedure we reach the
various strongly coupled fixed points or the gauge theories with fewer flavours.

12For nl = 6, 7 winding states with ±2 are also massless.
13In chapter 5, two extra theories are discussed. They are limiting cases of this sequence.



Chapter 3

Classical Moduli Spaces

This chapter is a warm up to the more advanced techniques introduced in
the two subsequent chapters. Here we make use of the tools discussed in the
previous chapter to study classical Higgs branches. The theories we study yield
some interesting results and highlight the interplay between supersymmetric
theories, representation theory and geometry.

3.1 Motivation

In this section, we aim to draw attention on a phenomenon which concerns
Sp(N) gauge theories with 2N flavours. Amusingly, the Higgs branch of such
theories is not a single hyperKähler cone but rather the union of two such cones
with a non trivial intersection. Examples of such a phenomenon are known in
theories with less supersymmetry, for example in the XY Z model, but are very
rare in N = 2 theories. It was actually first observed in the context of Seiberg
Witten theory with matter [5] for the case of SU(2) with Nf = 2 flavours and
its generalisation mentioned in [81] and briefly discussed in [82].

Here we aim to give an explicit description of the two cones and their
intersection. In order to perform such an analysis we rely on the machinery of
the Hilbert series and its associated highest weight generating function.

The outline of this chapter as follows. In section 3.2 we recall the description
of [5] for the case of SU(2) with 2 flavours and recast their calculations in the
language we will use to check for higher rank cases. In section 3.3 we provide
the chiral ring partition functions for N = 2 theories with classical gauge
groups and matter in the bifundamental representations. These expressions
are straightforward applications of the usual hyperKähler quotient which gives
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rise to the Higgs branch. Their form is very suggestive from the point of
view of representation theory, in the sense that one can deduce special cases
without much effort. In section 3.4 we specialise to the case of Sp(n) with 2n

flavours and we provide evidence for the statement that the Higgs branch of
such theories splits into two cones. In Appendix C we provide the 3d mirror
dual.

3.2 SU(2) with 2 flavours

In this section we will briefly review the description of the Higgs branch of an
N = 2 theory with gauge group SU(2) and 2 hypermultiplets in the fundamental
representation. The vector multiplet contains a gauge field, one Dirac fermion
and a complex scalar all in the adjoint representation of SU(2). The fields
are arranged into an N = 1 vector multiplet and an N = 1 chiral multiplet
Φ. Each one of the two hypermultiplets contains two N = 1 chiral superfields
Qia and Q̃ia where i = 1, 2 is the flavour index and a = 1, 2 is the gauge index.
The flavour symmetry is locally SO(4)× SU(2)R × U(1)R

1.
Let us analyse the chiral ring on the Higgs branch of this theory as follows.

We consider the polynomial ring generated by all the fields Qra, with a = 1, 2,
r = 1, .., 4, where we now choose to make explicit the SO(4) symmetry acting
on the hypermultiplets when they are massless. The ideal of this ring is
generated by taking the F-terms on the Higgs branch, namely by writing the
superpotential

W = Qraε
abΦbcε

cdQsdδrs , (3.2.1)

minimising it with respect to the fields and choosing the branch where the
quarks expectation value doesn’t vanish. The procedure yields three equations:

I = 〈{Fab ≡
∂W
∂Φab

= 0}〉

= 〈{QraQrb = 0}〉 (3.2.2)

From this ideal, one can evaluate the Hilbert series associated to the quo-
tient C[Qra]/I, using standard mathematical packages2. The rational function

1The global symmetry is actually O(4), but this subtlety is not important in our discussion.
2It is worth to stress that in this instance, Hilbert series techniques are not necessary:

the vacuum variety can be analysed simply by studying the basic chiral operators as done in
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obtained Fb(t, z, x1, x2), where t and z are fugacities for the SU(2)R spin and
the SU(2) gauge group spin respectively3 and x1 , x2 are the fugacities for the
SO(4) flavour symmetry, is then integrated over the gauge group SU(2) to
project onto the singlet sector and thus yield only gauge invariant contributions.

HS(t;x1, x2) =

∫
dµSU(2)Fb(t, z, x1, x2) (3.2.3)

The resulting rational function we obtain is:

HS(t;x1, x2) =
1− t4

(1− t2)(1− x2
1t

2)(1− x−2
1 t2)

+
1− t4

(1− t2)(1− x2
2t

2)(1− x−2
2 t2)

− 1

(3.2.4)

= HS
(
C2/Z2; t, x1

)
+ HS

(
C2/Z2; t, x2

)
− 1 (3.2.5)

The last equality shows explicitly that the Higgs branch of SU(2) with 2 flavours
is the union of two hyperKähler cones C2/Z2, which intersect at the origin.
From the Hilbert series the plethystic logarithm, as introduced in the previous
chapter, can be evaluated straightforwardly as an expansion in t. The first few
terms in such an expansion encode the generators and the relations between
them, a set of equations which define the chiral ring on the moduli space.
In the plethystic logarithm the first terms with positive sign are generators,
whilst the subsequent negative contributions are relations. Evaluating the PL
of HS(t;x1, x2), gives the expansion:

PL(t;x1, x2) = ([2; 0] + [0; 2])t2 − ([2; 2] + 2[0; 0])t4 + ... (3.2.6)

where [m;n] are characters of the corresponding representation of SO(4). At t2

we notice the reducible adjoint representation ([2; 0] + [0; 2]) which corresponds
to the operator V rs = QraQ

s
bε
ab, which is antisymmetric in r, s and has highest

weight 2 under SU(2)R. At t4 there is a reducible relation transforming in
the [2, 2] + [0, 0]: it is quadratic in the generators since it has highest weight 4
under SU(2)R. Such an operator can be constructed by squaring the matrix
V rs; the relation sets it to zero

V rtV ts = 0 (3.2.7)

[5]. However we proceed with this technique as it is most suitably generalised to higher rank
cases.

3More appropriately, t is a fugacity that keeps track of the highest weight for a SU(2)R
representation whilst z is a fugacity for the weights of the SU(2) gauge group representations.
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where the singlet relation corresponds to the trace of the full relation. However
there is another singlet relation at t4; using the epsilon tensor, it is construct
as:

εrstuV
rsV tu = 0 (3.2.8)

The two singlet relations correspond to the vanishing of the two quadratic
Casimir operators of SO(4). Using (3.2.7) and (3.2.8), the Higgs branch can
be concisely written as a variety:

H (
Sp(1) SO(4)

) =
{
V ∈ C4×4 | V = −V T , V 2 = 0, rank(V ) ≤ 2

}
(3.2.9)

Crucially for our discussion, the quadratic generator V rs is in a reducible
representation. In particular it can be decomposed into a self-dual and anti-
self-dual part. Let’s write these as

V L
αβ = γrsαβV

rs (3.2.10)

V R
α̇β̇

= γrs
α̇β̇
V rs (3.2.11)

where we have introduced SO(4) gamma matrices (γr)αα̇ and their antisym-
metric product γrsαβ = γ

[r
αα̇γ

s]

ββ̇
εα̇β̇ and γrs

α̇β̇
= γ

[r
αα̇γ

s]

ββ̇
εαβ. Since γrsαβ is (α , β)

symmetric, Vαβ transforms precisely as the [2, 0] and similarly Vα̇β̇ as the [0, 2].
The relations can now be identified as follows. The [2, 2] component of (3.2.7)

is quadratic in the V ’s and mixes the self-dual and antiself-dual parts thus,
when rewritten, it implies that:

V L
αβV

R
α̇β̇

= 0 (3.2.12)

which means that the varieties generated by the two operators are “orthogonal",
namely they intersect only at the origin of the Higgs branch.

The two singlet relations at t4 can now be interpreted as the vanishing of
the trace of these two operators:

V L
αβV

L
ργε

βρεαγ = 0 (3.2.13)

V R
α̇β̇
V R
ρ̇γ̇ε

β̇ρ̇εα̇γ̇ = 0 (3.2.14)

which correspond to V L
11V

L
22 = (V L

12)2 and V R
11V

R
22 = (V R

12)2, namely the defining
equations for two C2/Z2 as already discussed in [5]. Hence the Higgs branch is
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realised as a union of two cones meeting at the origin.
In the case of (3.2.4), the rational functions can each be expanded in a

series, the characters of the two SU(2) replaced by fugacities keeping track of
the highest weight associated to the representations and the new series finally
resummed. In so doing we precisely construct the highest weight generating
function (HWG) [74] for this theory.

After simple manipulations, the resulting HWG is:

HWG(t;µ1, µ2) = PE
[
(µ2

1 + µ2
2)t2 − µ2

1µ
2
2t

4
]

(3.2.15)

where µ1, µ2 are the fugacities for the highest weight of SU(2)×SU(2) ∼= SO(4),
so that, e.g., µ2

1 represents the [2, 0], µ2
2 represents the [0, 2] and µ2

1µ
2
2 the [2, 2].

When proceeding to higher rank cases, it is precisely the form of (3.2.15)
that turns out to be the most useful for generalised statements about the Higgs
branch of the theories at hand.

3.3 N = 2 theories with classical gauge groups and
fundamental flavours

Using the standard techniques in computations of the HS we can obtain the
highest weight generating function of U(k), Sp(k) and O(k) gauge theories with
fundamental flavours. The flavour symmetry is SU(N), SO(N) and Sp(N)

respectively.
The quivers, HWG functions and the condition between the rank of the

group and the number of flavours are given in Table 3.1.
The restriction on the ranks of the gauge group in Table 3.1 is determined

just by considering when the representations “degenerate" as follows.
For the theories with SU(N) flavour group, the addends in the plethystic

exponential are the highest weights corresponding to the following pattern of
SU(N) representations: [1, 0, ..., 0, 1], [0, 1, 0, ..., 0, 1, 0], [0, 0, 1, 0, ..., 0, 1, 0, 0],
etc. The sequence terminates when the numbers of representations equals the
rank of the gauge group k. In order for such a sequence to exist it is necessary
that the number of flavours be at least twice the rank of the gauge group. This
is precisely the rank condition appearing in the third column of the first row.

For the theories with Sp(N) flavour group, the summation in the plethystic
exponential starts with the highest weight corresponding to the adjoint repre-
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Quiver HWG (t; µ1, ..., µN )
Rank
condition

Variety

U(k) SU(N)

PE

[
k∑
i=1

µiµN−it
2i

]
N ≥ 2k

{MN×N |TrM = 0,
M2 = 0, rk(M) ≤ k

}
O(k) Sp(N)

PE

[
k∑
i=1

µ2
i t

2i

]
N ≥ k

{
M2N×2N |M = MT ,
M2 = 0, rk(M) ≤ k

}
Sp(k) SO(N)

PE

[
k∑
i=1

µ2it
2i

]
N ≥ 4k + 3

{
MN×N |M = −MT ,
M2 = 0, rk(M) ≤ 2k

}
Table 3.1: HWG for rank k classical gauge groups with fundamental flavours.
A fugacity µi labels the ith fundamental weight of the flavour group, whilst t is
a fugacity that tracks the SU(2)R highest weight.

sentation [2, 0, .., 0]. Subsequent representations are obtained by pushing the
2 onto the next Dynkin label, k times. The rank condition is straightforward:
the pattern is exhausted with the last Dynkin label of Sp(N).

For SO(N) flavour group, again the addends follow a pattern that starts
with the highest weight for the adjoint representation [0, 1, 0, ..., 0], which is also
the 2nd-rank antisymmetric representation. Subsequent terms in the plethystic
are even-rank antisymmetric representations. The condition here is more subtle
than in previous cases. One needs to take into account that the last, or last
two, Dynkin labels (depending on whether N is odd or even) are spinorial
labels. For N = 2n + 1 the nth Dynkin label is spinorial, thus 2k ≤ n − 1;
for N = 2n the nth and (n − 1)th labels are spinorial, hence 2k ≤ n − 2.
Combining these two inequalities for general N , the rank condition in the last
row of Table 3.1 is obtained. For example, for Sp(2) with N = 10, the condition
is not satisfied because the 4th rank antisymmetric representation of SO(10)

is the [0,0,0,1,1]. The corresponding highest weight generating function gets
modified to HWGSp(2),SO(10)(t; µ1, ..., µ5) = PE

[
µ2t

2 + µ4µ5t
4
]
.

3.3.1 Low rank exceptions

For theories with SU(N) and Sp(N) flavour group the rank condition in
Table 3.1 is exhaustive: representation theory for such groups does not allow
for exceptions. On the contrary, for the case of theories with SO(N) flavour
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symmetry, the rank condition does not exhaust all the cases. There are three
exceptions that, whilst violating the rank condition as stated in Table 3.1,
possess nonetheless a simple expression for the associated Hilbert series.

Sp(k) SO(N)

Rank Condition HWG (t; µ1, ..., µN )

N ≥ 4k + 3 PE

[
k∑
i=1

µ2it
2i

]
N = 4k + 2 PE

[
k−1∑
i=1

µ2it
2i + µ2kµ2k+1t

2k

]
N = 4k + 1 PE

[
k−1∑
i=1

µ2it
2i + µ2

2kt
2k

]
N = 4k PE

[
k−1∑
i=1

µ2it
2i + (µ2

2k−1 + µ2
2k)t

2k − µ2
2k−1µ

2
2kt

4k

]

Table 3.2: Exhaustive list of rank condition for theories with orthogonal group
as flavour symmetry and associated highest weight generating function. The
HWG appearing in the fourth row is discussed extensively in section 3.4.

3.4 A special family

3.4.1 Preamble

Here we look in more detail into the case of Sp(k) theories with 2n flavours, i.e
the one associated to the quiver

Sp(k) SO(4n)

By setting N = 4n in the first column of Table 3.2 one can notice that, for
fixed k, the theory can fall in two classes only: n ≥ k + 1, which has the HWG
as given in the first line of the table, or n = k, which has the HWG as in the
last line of the table.

In both cases, the Higgs branch variety can explicitly be written as the space
generated by a 4n× 4n antisymmetric matrix Mab, with a, b = 1, ..., 4n, with
spin-1 under SU(2)R, subject to:
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Ma1a2Ma2a3 = 0 (3.4.1)

εa1···a4nM
a1a2 · · ·Ma2k−1a2kMa2k+1a2k+2 = 0 , (3.4.2)

the first equation expressing a nilpotency of degree 2 for the matrix M whilst
the second equation simply restricting the rank of the matrix: rank(M) ≤ 2k.
(3.4.1) and (3.4.2) are direct consequences of the F-terms.

For the case n ≥ k+1, the space has dimension k(4n−2k−1) and is a single
hyperKähler cone. This ceases to be the case when one flavour is removed:
for theories where n = k, an interesting phenomenon occurs which we discuss
below.

3.4.2 Sp(n) with 2n flavours

This subfamily of theories is very special. Ignoring the violation of the bound and
following the prescription that the terms in the HWG summation for orthogonal
flavour group - last row in Table 3.1 - are the highest weights for even-rank
antisymmetric representations, we expect the (2n)th rank antisymmetric of
SO(4n) to appear. This one, however, is a reducible representation:

∧2n[1, 0, ..., 0, 0]SO(4n) = [0, ..., 0, 2, 0] + [0, ..., 0, 0, 2] (3.4.3)

Remarkably, it is this splitting of the (2n)th rank antisymmetric representation
that lies at the heart of the geometric splitting of the Higgs branch into two
hyperKähler cones, as anticipated in the introduction.

Thus, at the very least, the last summand appearing in the HWG should be
modified and account for this splitting. In fact, after a hyperKähler quotient
calculation we obtain that:

HWGSp(n),SO(4n) = PE

[
n−1∑
i=1

µ2it
2i + (µ2

2n−1 + µ2
2n)t2n − µ2

2n−1µ
2
2nt

4n

]
(3.4.4)

The term inside the round brackets corresponds indeed to the reducible (2n)th
antisymmetric representation of SO(4n) but there is also an extra negative
contribution.

The unrefined Hilbert series that can be extracted from the HWG generating
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function in (3.4.4) has the general form:

HSSp(n),SO(4n)(t) =
N2n(2n−1)+2(t)

(1− t2)2n(2n−1)
(3.4.5)

where N2n(2n−1)+2(t) is a polynomial in t of degree 2n(2n − 1) + 2 whose
coefficients are not all positive integers. We will return to the form of this HS
shortly and comment on this observation.

The algebraic variety associated to this theory is given by (3.4.1) and (3.4.2),
with k = n, i.e. the matrix of generators, M , is degree 2 nilpotent and has rank
less than or equal to 2n.

After manipulation, (3.4.4) can be written as a sum of plethystic exponentials:

HWGSp(n),SO(4n) =PE

[
n−1∑
i=1

µ2it
2i + µ2

2n−1t
2n

]
+ PE

[
n−1∑
i=1

µ2it
2i + µ2

2nt
2n

]

− PE

[
n−1∑
i=1

µ2it
2i

]
(3.4.6)

Such a simplified form is of crucial importance: it allows to identify the Higgs
branch of these theories as a union of two hyperKähler cones (the two positive
terms) with a non trivial intersection (the negative term). This is a remarkable
and rare phenomenon on which we aim to draw attention.

The intersection variety is straightforwardly recognisable as the Higgs branch
of Sp(n− 1) with SO(4n) flavour symmetry as can be evinced by comparing
the negative term of (3.4.6) and the last row of Table 3.1. The variety is defined
by the equations in (3.4.1) and (3.4.2), where k = n− 1.

The structure of the two intersecting cones is also straightforward to extract.
Indeed, when n = k, (3.4.2) sets the (2n + 2)th-rank of M to zero. The
4n × 4n antisymmetric matrix has thus rank at most 2n and in particular
the tensor εa1···a4nM

a1a2 · · ·Ma2n−1a2n , which transforms in the (2n)th-rank
representation, is non-vanishing. Being a reducible representation, its two
components can be written:

Ma1a2 · · ·Ma2n−1a2n(γa1···a2n)αβ (3.4.7)

Ma1a2 · · ·Ma2n−1a2n(γa1···a2n)α̇β̇ (3.4.8)
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where we have defined the multi-index gamma matrices as

γa1···a2n
α1α2n

≡ γ[a1
α1α̇1
· · · γa2n]

α2nα̇2n
ηα̇1α̇2 · · · ηα̇2n−1α̇2nηα2α3 · · · ηα2n−2α2n−1 ,

(3.4.9)

with ηα̇β̇ = εα̇β̇ and ηαβ = εαβ if n = 1 mod 2 whilst ηα̇β̇ = δα̇β̇ and ηαβ = δαβ

if n = 0 mod 2, due to the fact that in the former case the spinor representation
is symplectic and in the latter it is orthogonal. The matrix γa1···a2n

α̇β̇ is defined
analogously to the undotted case.

The two cones can be constructed by setting one of these two components
to zero, whilst keeping the other non-vanishing and vice versa. Then the first
cone is generated by the same 4n× 4n matrix Mab as before, subject to:

Ma1a2Ma2a3 = 0 (3.4.10)

Ma1a2 · · ·Ma2n−1a2n(γa1···a2n)α̇β̇ = 0 , (3.4.11)

whilst the second cone is again generated by Mab and the variety is defined by:

Ma1a2Ma2a3 = 0 (3.4.12)

Ma1a2 · · ·Ma2n−1a2n(γa1···a2n)αβ = 0 . (3.4.13)

3.4.3 Discussion

At first sight the most puzzling element of the discussion so far is the fact
that the Hilbert series in (3.4.5) has a numerator with negative coefficients. In
particular this means that in this instance the ring of holomorphic functions
defined by the F-terms ideal is not Cohen-Macaulay. Indeed the following
theorem [83] holds.

Theorem 3.1 (Macaulay). The Hilbert series of a Cohen-Macaulay graded
ring R, where all generators have degree 1, has the form

HS(R, t) =
P (R, t)

(1− t)d
(3.4.14)

where P (R, t) is a polynomial in t with P (R, 1) 6= 0 and such that P (R, t) has
positive integer coefficients.

Why then is the Higgs branch of Sp(n) with 2n flavours not a Cohen-Macaulay
ring?
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To clarify the situation, it is helpful to look at the (identical) contribution
to the unrefined Hilbert series from each cone. It is a rational function of t in
the form:

HS1−cone(t) =
N2n(2n−1)

(1− t2)2n(2n−1)
(3.4.15)

with the numerator having positive coefficients. This subvariety is thus Cohen-
Macaulay4. This implies that each cone is a normal variety, by Serre’s criterion
[84]. However singular (HK) cones whose generators have all degree one are
classified by the (closure of) nilpotent orbits of a semisimple Lie algebra [85].
With this statement at hand and comparing with theorems in [86] it is easy to
recognise that the Higgs branch of Sp(n) with 2n flavours is in fact isomorphic
to the nilpotent cone associated to the very even partition ρ = {22n} of SO(4n).
The non-normality of the variety is thus expected, as the theory just falls in
the class of the very even nilpotent orbits of special orthogonal groups.

4Moreover the singular locus has codim ≥ 2
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Chapter 4

Coulomb Branch and the
Moduli Space of Instantons

4.1 Introduction

Instantons were first introduced as Euclidean finite action solutions of the self-
dual pure Yang-Mills equations [87, 88]. The space of such solutions, graded
by an integer number k, the Pontryagin number (or charge) of the instanton, is
known as the moduli space of instantons. An algebraic prescription to construct
instanton solutions for classical gauge groups SU(N), SO(N), USp(2N) on
R4 was developed by Atiyah, Drinfeld, Hitchin and Manin in [12]. With the
advent of D-branes as dynamical objects, the ADHM construction was given
geometric light by means of a brane realization [11, 13]: Dp-branes inside
D(p+ 4)-branes are codimension 4 objects, which dissolve into instantons for
the worldvolume gauge fields of the D(p + 4)-branes. For the gauge theory
living on the Dp-brane, which has 8 supercharges, the Higgs branch of the
moduli space therefore corresponds to the moduli space of instantons of the
D(p+ 4) gauge group.

In order to compute moduli spaces of instantons for classical gauge groups,
one avenue is thus analyzing the Higgs branch of the ADHM quiver gauge
theory. This is done by considering the constraints given by the F and D terms
in the supersymmetric gauge theory and modding out by the gauge group.
The Higgs branch for theories with 8 supercharges is classically exact [9] and
therefore identical when formulated in dimensions between 3 and 6. Another
avenue for computing moduli spaces of instantons, where no such simplification
is available, is through the Coulomb branch of certain 3d gauge theories with
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eight supercharges and gauge group G whose details we specify below. These
two routes, via the Higgs branch and the Coulomb branch, are independent
of each other, though calculating exact quantities on both sides can furnish a
test of mirror symmetry and relate one to the other [14]. In this section we
will exclusively study theories whose Coulomb branch is the moduli space of
instantons, without resorting to mirror symmetry.

The stringy realization of moduli spaces of instantons through brane construc-
tions has led to new insights. Indeed the ADHM construction exists only for
classical gauge groups and, until recently, the instanton partition functions for
exceptional gauge groups were only possible by means of superconformal indices
[21, 22, 29] of theories obtained by wrapping M5-branes on punctured Riemann
surfaces [89] as in [90] for E6,7,8 instantons or by extrapolating the blow-up
equations of [91, 92] as in [93]. Here we focus our attention on supersymmetric
gauge theories with 8 supercharges whose moduli spaces include moduli spaces
of instantons and study their associated Hilbert series [69, 70, 71].

As it has been explained in chapter 2, the HS provides useful exact information
about the moduli space: we can extract the group theoretic properties of the
generators of the moduli space and of the relations between them. Salient
features of the theories, such as the enhancement of global symmetries, are
also neatly exposed by this treatment. For moduli spaces of k pure Yang-Mills
instantons, the Hilbert series is also the five-dimensional (or K-theoretic) k
instanton partition function of [94], as discussed also in [70, 91, 92, 95].

In [71] the Hilbert series for instantons of charge k = 2 were approached
from the Higgs branch point of view, the calculations being a generalization
of [69] with an increased level of difficulty. Here we attack the problem from
the Coulomb branch perspective in the wake of the new developments of [30],
where a simple formula for the Hilbert series of the Coulomb branch of d = 3

N = 4 good or ugly [81] superconformal field theories was introduced. The
methods introduced in [30] have already given fruitful results [96, 97]. Here
we continue to exploit the techniques to analyze the moduli spaces of higher k
G-instantons, where G is any simple Lie group. Our results include instantons
for gauge groups whose Dynkin diagrams are non-simply laced, which have
escaped the Coulomb construction so far.

The Coulomb branch of three-dimensional theories with 8 supercharges
receives quantum corrections and it is precisely this which begets the non-trivial
structure of the space. As we will review in section 4.3, the chiral operators
which parametrize the Coulomb branch are gauge invariant combinations of
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supersymmetric ’t Hooft monopole operators Vm [98] labeled by a magnetic
charge m, which break the gauge group G to a subgroup Hm by the adjoint
Higgs mechanism, and of the classical complex scalar fields φm in the adjoint
representation of the residual gauge group Hm. The HS of the Coulomb branch
counts gauge invariant either bare (i.e. built out of Vm only) or dressed (i.e.
built out of Vm and φm) supersymmetric monopole operators according to their
quantum numbers, namely the topological charges J and the R-charge under
the U(1)C Cartan subgroup of the SU(2)C R-symmetry which acts on the
Coulomb branch.

Since we want to study moduli spaces of instantons we must make precise
which theories, whose Coulomb branch we will investigate, are of interest to us.
We extend the correspondence between the Coulomb branch of ADE quivers
[99, 100] and the moduli space of ADE instantons, first pointed out for one
instanton in [14] and then generalized to higher instanton number in [15, 101].
We claim that the moduli spaces of instantons for any simple gauge group can be
obtained as the Coulomb branch of quivers constructed using the over-extension
of the Dynkin diagrams for the associated finite Lie algebras. Whilst this has
already been expounded using Hilbert series in [30, 97] for ADE quivers, here
we complete the treatment by generalizing the previous formula to non-simply
laced quivers. The crucial formula that prescribes how to deal with multiple
laces is (4.3.3).

Some remarks are in order on the relation of Coulomb branch Hilbert series to
superconformal indices. It was recently realized [102] that the Coulomb branch
Hilbert series of d = 3 N = 4 “good" or “ugly" theories with a Lagrangian
description [30] is also captured by a limit of the superconformal index of the
theory. (The derivation of this limit in [102] is for a U(N) gauge group, but it
can be easily generalized to any gauge group and matter content.)

Some of the theories of our interest – those associated to the ADE quivers –
have a Lagrangian description, and the standard formula [23, 28, 103, 104] for
the superconformal index can be written down. Involving an infinite sum over
magnetic charges of integrals over the gauge group, this formula is not of simple
evaluation and to our knowledge it has not been computed for the over-extended
ADE quivers. Our focus here is on the moduli spaces of instantons, which arise
as Coulomb branches of such quiver gauge theories. So we are interested in
computing the Hilbert series of the Coulomb branch rather than the whole
superconformal index, which also receives contributions from chiral operators
in the hypermultiplet moduli space as well as non-chiral operators. In contrast
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to the standard formula for the superconformal index, the monopole formula of
[30] for the Coulomb branch Hilbert series does not involve integrals and can
be more easily evaluated.

On the other hand, the theories whose Coulomb branches are moduli spaces
of instantons of non-simply laced gauge groups have no known Lagrangian
description and the standard formula for the superconformal index is not even
available. Our proposal for dealing with multiple laces in the monopole formula
is a natural generalization of the formula obtained in [30] for Lagrangian
theories. It allows us to study in a uniform way the moduli spaces of instantons
of all simple Lie groups. It is at present unclear how to extend this to the full
superconformal index.

The plan for the rest of this chapter is as follows. Section 4.2 is a brief
summary of a particular type of brane construction that realizes instanton
moduli spaces in string theory both from the Higgs branch and the Coulomb
branch point of view. From the brane picture we are able to motivate the
quiver theories that we use to compute the Hilbert series of moduli spaces of
instantons. In section 4.3 we review the monopole formula for the Hilbert series
of Coulomb branches and we show how to modify the expression to account for
generalized quivers built from non-simply laced Dynkin diagrams. In section 4.4
we provide a step-by-step calculation for the moduli space of k G2 instantons
and give the explicit result for the Hilbert series associated to the moduli space
of 3 G2 instantons. In sections 4.5, 4.6, 4.7 we display formulae for the Hilbert
series of SO(2N + 1), USp(2N) and F4 instantons. In section 4.8 we sketch
some of the group theoretic features of the moduli space of instantons as an
algebraic variety, providing the transformation laws of the generators and the
first relations.

4.2 Brane realization of instantons

In this section we summarize various brane constructions for moduli spaces of
instantons of classical gauge groups [13, 11, 105, 106, 107, 108]. String dualities
which realize mirror symmetry relate the Higgs branch and the Coulomb branch
brane picture. However we stress that the Coulomb branch construction that
will be used later on does not require mirror symmetry.

An instanton is a solitonic object of codimension 4. Dp-branes insideD(p+4)-
branes, with or without O(p+ 4)-planes, provide a realization of instantons for
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classical gauge groups. To realize the kind of three-dimensional theory that
we are interested in, we consider D2-branes in the background of D6-branes.
The D6-branes provide the gauge group whilst k D2-branes, when lying on
top of the D6-branes, give rise to instanton configurations of charge k on C2.
The classical gauge group on the worldvolume of the D6-branes depends on
which type of orientifold O6-plane is added to the construction. In particular
N parallel D6-branes provide a U(N) low energy effective theory, as sketched
in Table 4.1. With the addition of k D2-branes, the system living on the latter
becomes that of a quiver theory with gauge group U(k) and SU(N) flavor
symmetry, since the U(1) factor inside U(N) is gauged.

In order to realize SO(2N + 1) instantons we construct a background with
N parallel D6-branes on top of an orientifold plane Õ6−. The orientifold allows
for strings to end on it, thus reproducing the BN root system. The quiver for
such a construction is given by a gauge group USp(2k) with matter in the
antisymmetric representation and 2N + 1 fundamental half-hypermultiplets
with flavor symmetry SO(2N + 1).1

For USp(2N)-instantons, the brane construction involves N D6-branes on
top of an O6+ or Õ6+ plane. k half D2-branes in such a background give
rise to a quiver gauge theory with O(k) gauge group, matter in the symmetric
representation and 2N fundamental half-hypermultiplets with flavor symmetry
USp(2N).

Lastly, in presence of k D2-branes, N D6-branes and an orientifold O6−,
the DN root system is realized, allowing for a quiver with USp(2k) gauge
symmetry, matter in the antisymmetric representation and 2N fundamental
half-hypermultiplets with flavor symmetry SO(2N).

The Higgs branch of these theories is achieved when the D2-branes are
inside the D6-branes; the Coulomb branch is realized when the D2-branes are
away from the D6-branes. Thus it is the Higgs branch of these quiver gauge
theories that reproduces the moduli space of G-instantons, where G is the
flavor symmetry group of the quiver. We show the brane constructions and the
corresponding quivers in Table 4.1.

For exceptional groups we do not have a perturbative open string description
on the Higgs branch. However progress can be made appealing to mirror

1We have glossed over a subtlety: the Õ6− plane requires the presence of a Romans
mass. This D8-brane charge translates into a Chern-Simons coupling in the parity anomalous
gauge theory on D2-branes, which reduces supersymmetry and lifts the Coulomb branch.
The moduli space of BN instantons is the subvariety of the total moduli space of vacua of
the supersymmetric Chern-Simons theory with vanishing expectation values for monopole
operators.
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G
Brane configurations from which

Higgs branch can be realized
ADHM quiver

AN−1

N D6

k D2
U(k) SU(N)

Adj

BN

N D6

Õ6−

N D6 images

k D2k D2 images

USp′(2k) SO(2N + 1)

A

CN

N D6

O6+

N D6 images

k D2k D2 images

O(2k) USp(2N)

S

CN

N D6

Õ6+

N D6 images

k D2k D2 images

O(2k + 1) USp′(2N)

S

DN

N D6

O6−

N D6 images

k D2k D2 images

USp(2k) SO(2N)

A

Table 4.1: Brane constructions and quiver diagrams whose Higgs branch corre-
spond to k G-instantons on C2. To describe the moduli space of instantons, all
D2 branes are dissolved on coincident D6 branes and orientifold planes. In the
pictures the D6 branes are separated from each other and the orientifold for
clarity. Note that there exist constructions of the moduli space of E-instantons
in terms of M5-branes on a sphere with punctures. However it is unknown how
to realize such moduli spaces as perturbative open string backgrounds.
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symmetry and generalizing the lessons learned for classical groups. We can
implement this symmetry on the previous constructions by performing T -duality
to Type IIB, and then S-duality to realize mirror symmetry. Under T-duality
along a direction transverse to the D2-branes and parallel to the D6-branes, the
D2-brane becomes a D3-brane on S1 and the D6-brane becomes a D5-brane.2

After S-duality, the D3-brane is unchanged whilst the D5-brane turns into a
NS5-brane. In the absence of orientifolds, i.e. for the case of G = AN−1 in
Table 4.3, the application of these dualities results in a necklace quiver gauge
theory with N U(k) gauge nodes.

Moreover, and crucially, since mirror symmetry exchanges Higgs branches
with Coulomb branches, it is now the Coulomb branch of this new dual theory
which corresponds to the moduli space of instantons.

The action of mirror symmetry on the four orientifold planes we considered is
illustrated in Table 4.2. Note in particular that T -duality results in a restriction
to an interval defined by two separated O5 planes and that S-duality turns an
O5 into an ON orientifold.

Orientifold T -duality S-duality

Õ6
−

O5− & Õ5− ON− & ÕN
−

O6+ O5+ & O5+ ON+ & ON+

O6− O5− & O5− ON− & ON−

Õ6+ Õ5+ & O5+ ÕN+ & ON+

Table 4.2: The effect of T - and S-dualities on orientifold planes.

The effect of mirror symmetry, through action on branes and orientifolds, on
the brane constructions in Table 4.1 is summarized in Table 4.3. For example
consider the brane realization on the Higgs branch of one CN instanton (i.e with
k = 1 D2-branes). The O6+ background is turned into an interval bounded
by ON+ on the left and an ON+ on the right. The N parallel NS5-branes lie
within this interval.

As befits a magnetically charged object, the D3-brane is to be viewed as
a root of the Langlands dual algebra, here BN . When stretching onto the
ON+, the D3-brane reproduces a short root: it ends on the ON+. Finally, one

2More precisely, we view C2 = R4 as an “A0” hyperKähler space, namely a circle fibration
over R3 with a fixed point, and perform T -duality along the fiber. The fixed point of the
circle action is dualized to an NS5-brane. We will return to this point in the following.
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balances the number of D3-branes stretching between neighboring NS5, in this
case one. The result is sketched in Figure 4.1.

After engineering the dual brane construction, we can associate to it a quiver.
The rank of each node in the quiver is read off from the number of D-branes:
since we have one D3-brane between each neighboring NS5, the gauge groups
are all U(1).

To account for the different length of the last root on the left and on the
right, we use the double lace notation of Dynkin diagrams. In the next section
we will specify how to deal with multiple laces. The quiver we end up with is
the Dynkin diagram of the untwisted affine algebra C(1)

N , with the dual Coxeter
labels (or Kac labels/comarks) a∨i , i = 0, . . . , r = rk(G), providing the rank
of the gauge groups. For instanton number k the ranks of the unitary gauge
groups are given by ka∨i .

ON+

•
D5

ON+

D3

NS5

N − 1 intervals

Figure 4.1: Brane construction for the CN affine Dynkin diagram with the
attached U(1) node. Each type of brane is indicated in the diagram. Here there
is one D3-brane per interval. The red and black segments indicate D3-branes
in correspondence with the simple roots of the B-type algebra, which is dual to
the C-type algebra associated with ON+. The blue dot in the leftmost interval
indicates the D5-brane corresponding to the over-extended U(1) node.

In a completely analogous fashion to this example, the quivers that we
analyze for the moduli space of G-instantons are precisely the Dynkin diagrams
for the untwisted affine algebras of G type, with the crucial addition of an extra
node, the nature of which we explain below.3

3We have chosen to use the untwisted affine Dynkin diagrams associated to electric
objects, rather than the Langlands dual Dynkin diagrams associated to magnetic objects,
which are obtained by reversing the arrows. The prescription that we will provide for the HS
of instanton moduli spaces from the Coulomb branch can be phrased equally well in terms of
dual diagrams.
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4.2.1 Over-extended node

The quiver gauge theories constructed from the affine Dynkin diagrams are not
sufficient to obtain the moduli spaces of instantons. In particular, for k > 1

instanton number, the parametrization of the instanton solution on C2 mixes
nontrivially with the parametrization of the instanton in the gauge group G.

For k = 1, i.e. a single D3 brane stretching on a circle, the fugacity associated
with C2 factorizes:

g1,G(t, x,u) =
1

(1− tx)(1− tx−1)
g̃1,G(t,u) . (4.2.1)

Here u are the fugacities associated to G,4 x is the fugacity associated to
SU(2) rotations of C2, and t the fugacity for the highest weight of the SU(2)

R-symmetry. After factoring out the center of mass degree of freedom, we are
left with the Hilbert series g̃1,G of the reduced moduli space of 1 G-instanton,
which does not depend on x.

For k > 1 one can similarly extract the center of mass mode,

gk,G(t, x,u) =
1

(1− tx)(1− tx−1)
g̃k,G(t, x,u) , (4.2.2)

but the Hilbert series g̃k,G of the reduced moduli space of k G-instantons
depends on the SU(2) fugacity x for k > 1. In fact, as we will explain in section
4.8.6, for k > 1 there are two different global SU(2) symmetries, one acting on
the center of mass and the other on the reduced moduli space of instantons.

In order to see the centre of mass of the instantons and the SU(2)x rotation
symmetry of C2 in the Type IIB brane construction, we need to follow the
chain of dualities more carefully (see footnote 2).

The T -duality from Type IIA to Type IIB is done along a circle direction
with a fixed point: this results in an extra NS5 brane in Type IIB, in addition
to the D5-branes and O5-planes discussed above. The NS5-brane ensures that
the matter fields in the 2-index tensor representation of the ADHM quiver gauge
groups transform as denoted in Table 4.1 rather than the adjoint representation.
S-duality maps this NS5-brane into a D5-brane, which fixes the origin of C2.
The D5-brane U(1) symmetry acts as a flavor group for the worldvolume theory
on the D3-branes: it attaches a square node to the extended node of the affine
Dynkin diagram, as in [15, 101, 105].

Even though this U(1) node appears naturally as a flavor node in the brane

4We use simple roots fugacities u instead of highest weight fugacities y for convenience.
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construction, it is useful to treat it on the same footing as the other gauge
nodes, and then ungauge an overall diagonal U(1) gauge symmetry under which
no matter fields are charged. The relevant quivers for the moduli space of
instantons on C2 are then the so-called over-extended Dynkin diagrams [109],
with a rank 1 over-extended node connected to the extended (or affine) node.
The gauge fixing of the decoupled U(1) gauge symmetry can be done at any
node of the quiver: fixing the U(1) of the over-extended node reduces it to a
flavor node as is natural in the brane construction; fixing a U(1) inside a U(N)

gauge factor leaves an SU(N)/ZN gauge group. In section 4.3 we explain how
to implement this gauge fixing and how to identify the global symmetries acting
on the instanton moduli space in the Coulomb branch Hilbert series.

G L Coulomb branch quivers

E6 Y ◦
1
− •
k
− ◦

2k
−

◦ k
|
◦ 2k
|
◦
3k
− ◦

2k
− ◦
k

E7 Y ◦
1
− •
k
− ◦

2k
− ◦

3k
−
◦ 2k
|
◦
4k
− ◦

3k
− ◦

2k
− ◦
k

E8 Y ◦
1
− •
k
− ◦

2k
− ◦

3k
− ◦

4k
− ◦

5k
−
◦ 3k
|
◦
6k
− ◦

4k
− ◦

2k

F4 N ◦
1
− •
k
− ◦

2k
− ◦

3k
⇒ ◦

2k
− ◦
k

G2 N ◦
1
− •
k
− ◦

2k
V ◦

k

Table 4.4: Quiver diagrams from which the Hilbert series of the moduli space of
k instantons in exceptional gauge groups can be computed using the monopole
formula for the Coulomb branch. For these cases there is no known brane
construction analogous to Table 4.3.

4.3 The Hilbert series for the moduli space of k G-
instantons

The purpose of this section is to review the essential tools for the computation
of the Hilbert series for the quantum corrected Coulomb branch of 3d N = 4

quiver gauge theories where the gauge group is a product of U(N) factors.
As we have detailed in the previous section, for suitable generalized quivers,
possibly including non-simple laces, this method provides the Hilbert series of
the moduli space of instantons.

Three-dimensionalN = 4 theories are described by vector multiplets in the ad-

84



4.3. The Hilbert series for the moduli space of k G-instantons 85

G L Coulomb branch quivers Brane set-up

AN Y −−
− ◦k −−−

◦
k
− ◦
k
· · · − •

k
− ◦

1

NS5

k k k
k

D3

k k

•
D5

N intervals

BN N ◦
1
− •
k
−
◦ k
|
◦
2k
− ◦

2k
− · · · − ◦

2k︸ ︷︷ ︸
N−3 nodes

⇒ ◦
k

ON−

•
D5

ÕN−

k

k

2k

D3

2k

NS5

2k

k

N − 2 intervals

CN N ◦
1
− •
k
⇒ ◦

k
− · · · − ◦

k︸ ︷︷ ︸
N−1 nodes

⇐ ◦
k

ON+

•
D5

ON+

k
k

k

D3

k

NS5

k

k

N − 1 intervals

DN Y ◦
k
−
◦ k
|
◦
2k
− ◦

2k
− · · · − ◦

2k︸ ︷︷ ︸
N−5 nodes

−
◦ k
|
◦
2k
− •
k
−◦

1

ON−

•
D5

ON−

k

k

2k

D3

2k

NS5

k

k

N − 3 intervals

Table 4.3: Quiver diagrams from which the Hilbert series of the moduli space
of k instanton in classical gauge groups can be computed using the monopole
formula for the Coulomb branch. The corresponding brane configuration is
depicted next to each quiver. Note that the configurations associated with the
left boundary condition for BN and the left and right boundary conditions for
DN involve an ON− plane and an NS5 brane, whose combination is usually
called ON0 [107]; this type of configuration was pointed out in [110, 106]. The
second column indicates whether a Lagrangian is available or not.



Chapter 4. Coulomb Branch and the Moduli Space of Instantons

joint representation and matter fields (hypermultiplets or half-hypermultiplets)
transforming in some representation of the gauge group. At a generic point
on the Coulomb branch the scalars in the vector multiplet acquire non-zero
VEV, breaking the gauge group G of rank r to U(1)r, its maximal torus; matter
fields and W-bosons acquire mass and are integrated out, while the r massless
gauge fields, the photons, can be dualized to scalars. So at low energies on the
Coulomb branch, what is left is an effective theory of r abelian vector multiplets
which, by virtue of the gauge field dualization to a scalar, can be themselves
dualized to twisted hypermultiplets.

The previous description breaks down at subvarieties of the Coulomb branch
where the residual gauge group is non-abelian. In particular it fails to describe
the origin of the Coulomb branch, which flows to a SCFT in the IR. The
dualization of a non-abelian vector multiplet is not understood. Instead, a more
fruitful exposition takes advantage of special disorder operators, which can be
defined directly at the infrared fixed point [98] and which are not polynomial in
the microscopic degrees of freedom: they are called ’t Hooft monopole operators
and are defined by prescribing a Dirac monopole singularity at an insertion
point in the Euclidean path integral [111]. Monopole operators are classified
by embedding U(1) ↪→ G, and are labeled by magnetic charges which, by a
generalized Dirac quantization [112], take value in the weight lattice ΓG∨ of the
GNO or Langlands dual group G∨ [113, 114]. The monopole flux breaks the
gauge group G to a residual gauge group Hm by the adjoint Higgs mechanism.
Restricting to gauge invariant monopole operators is achieved by modding out
by the Weyl symmetry group, thus restricting m ∈ ΓG∨/WG .

In a three-dimensional N = 2 theory one can define half-BPS monopole
operators which sit in chiral multiplets. Crucially, there exists a unique BPS
monopole operator Vm for each choice of magnetic charge m [19]. If the theory
has N = 4 supersymmetry, the N = 4 vector multiplet decomposes into an
N = 2 vector multiplet V and a chiral multiplet Φ in the adjoint representation.
To describe the Coulomb branch, V is replaced by monopole operators Vm,
which now can be dressed by the classical complex scalar φ inside Φ. This
dressing preserves the same supersymmetry of a chiral multiplet [20] if and only
if φ is restricted to φm, a constant element of the Lie algebra of the residual
gauge group Hm [30]. The monopole operators which parametrise the Coulomb
branch of an N = 4 field theory are thus polynomials of Vm and φm, which are
made gauge invariant by averaging over the action of the Weyl group [30].

For us the gauge group G will mostly be be a product of U(Ni) unitary groups,
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which are self-dual. For U(N) monopole operators Vm, with magnetic charge
m = diag(m1, ...,mN ), the weight lattice of the dual group is given by ΓU(N) =

ZN = {mi ∈ Z, i = 1, .., N}. Modding out by the Weyl group SN restricts the
lattice to the Weyl chamber ΓU(N)/SN =

{
m ∈ ZN |m1 ≥ m2 ≥ ... ≥ mN

}
.

For U(N) gauge groups, which are not simply connected, the center Z(G∨) =

U(1) engenders a topological U(1)J symmetry group. Classically, monopole
operators are only charged under this symmetry. To each such U(Ni) gauge
group, we associate a fugacity zi for the topological U(1)Ji symmetry with
conserved current ∗TrFi, where Fi is the field strength of the i-th gauge group.
Other charges are acquired quantum-mechanically: in particular, monopole
operators become charged under the Cartan U(1)C of the SU(2)C R-symmetry
acting on the Coulomb branch. For a Lagrangian N = 4 gauge theory, this
charge is given by the formula

∆(m) = −
∑
α∈∆+

|α(m)|+ 1

2

n∑
i=1

∑
ρi∈Ri

|ρi(m)| , (4.3.1)

where the first contribution, arising from vector multiplets, is a sum over the
positive roots of the gauge group, while the second contribution is a sum over
the weights of the gauge group representations of the hypermultiplets. The
fugacity for this R-symmetry is called t2 in the following. The dimension
formula (4.3.1) was conjectured in [81] based on a weak coupling computation
in [19], and later proven exactly in [115, 116]. For the theories that we will
be studying, which are good or ugly in the sense of [81], (4.3.1) is believed to
equal the scaling dimension in the IR CFT.

For gauge theories described by (possibly non-simply laced) Dynkin dia-
grams, we propose the following prescription for computing the R-charge of a
monopole operator, generalizing the Lagrangian formula (4.3.1). Each diagram
is constructed from two basic building blocks: a node and a line. A U(N) node,
with magnetic charge m, contributes to the Coulomb branch Hilbert series as
follows:

U(N)

∆vec(m) = −
∑

1≤i<j≤N
|mi −mj | . (4.3.2)

A line connecting the nodes U(N1) and U(N2) can be either a single bond (−),
a double bond (⇒) or a triple bond (V), which we take to be oriented from
node 1 to node 2. Let us assign magnetic charges m(1) and m(2) to U(N1) and



Chapter 4. Coulomb Branch and the Moduli Space of Instantons

U(N2) respectively. We propose that the contribution from a line is:

U(N1) U(N2)

∆hyp(m(1),m(2)) =
1

2

N1∑
j=1

N2∑
k=1

∣∣∣λm(1)
j −m

(2)
k

∣∣∣ (4.3.3)

where λ = 1 for a single bond, λ = 2 for a double bond and λ = 3 for a triple
bond. If λ > 1, (4.3.3) does not arise from matter fields transforming in a
genuine representation of U(N1)× U(N2).5

We stress that formula (4.3.3) is the crucial ingredient that will allow us to
compute the Hilbert series of instanton moduli spaces for any simple Lie group.
We will successfully test our proposal by comparing with known results and by
studying general properties of the Hilbert series that can be extracted from the
Coulomb branch formula.

The dimension formula, given by the sum of the two contributions, (4.3.2)
for each node and (4.3.3) for each line, makes the quivers associated to the
affine Dynkin diagrams (i.e. before adding the over-extended node) balanced in
the sense of [81]: each unitary gauge group has an effective number of flavors
equal to twice the number of colors.6

Once we have classified gauge invariant chiral operators (classical operators,
bare and dressed monopole operators) on the Coulomb branch of non-simply
laced quivers by their quantum number Ji and ∆, we enumerate them by means
of a generating function that grades them by their charges. The Hilbert series
of the Coulomb branch of a d = 3 N = 4 good or ugly superconformal field
theory is then given by [30]

HS(t, z) =
∑

m∈ΓG∨/WG

zJ(m) t2∆(m)PG(t;m) , (4.3.4)

where zJ(m) =
∏
i z
Ji(m)
i . The sum is over GNO magnetic sectors [113],

restricted to a Weyl chamber to impose invariance under the gauge group
G. There is one bare monopole operator per magnetic charge sector [19].
The factors zJ(m) t2∆(m) account for the topological charges and conformal

5Conceivably, this prescription could be derived from a Lagrangian quiver gauge theory
associated to an unfolded simply laced quiver, further orbifolded by an outer automorphism
group of the quiver. We will not pursue this possibility here. We thank Jan Troost for
discussions on this point.

6The effective number of flavors for a gauge group is obtained by adding up the ranks of
all the gauge groups connected to it by an edge, appropriately weighted by λ. For instance,
for F4 node 2 has 3k colors and 2k + 2(2k) = 6k effective flavors, while node 3 has 2k colors
and 3k + k = 4k flavors.
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dimension of bare monopole operators of magnetic chargem. Finally, the factor
PG(t;m) reflects the dressing of a bare monopole operator Vm by polynomials
of the classical adjoint scalar φm ∈ hm which are gauge invariant under the
residual gauge group Hm left unbroken by the monopole flux. The contribution
of this dressing factor to the Hilbert series is given by the generating function
of Hm Casimir invariants

PG(t;m) =

rk(G)∏
i=1

1

1− t2di(m)
(4.3.5)

where di(m) are the degrees of the Casimir invariants of Hm.7 We refer the
readers to Appendix A of [30] for more details on these classical dressing factors.

In the next sections we will apply formula (4.3.4) to the non-simply laced
quivers discussed in section 4.2 and compute exactly the Hilbert series of the
corresponding three instanton moduli spaces. To make contact with moduli
spaces of G-instantons, we first need to specify how the fugacities z of the
topological symmetry are related to the fugacities x and u of the global
SU(2)x ×Gu symmetry acting on G-instantons.

4.3.1 Refinement

Consider a generalized quiver gauge theory corresponding to an over-extended
affine Dynkin diagram from Tables 4.3 and 4.4. We label the nodes as follows:
i = 1, . . . , r = rk(G) for the nodes of the Dynkin diagram of the finite Lie
algebra Lie(G), i = 0 for the affine node corresponding to the null root, and
i = −1 for the over-extended node attached to the i = 0 node. The ranks Ni

of the associated unitary groups are given by N−1 = 1 for the over-extended
node and by Ni = ka∨i , i = 0, . . . , r, for the nodes of the affine Dynkin diagram.
Each unitary gauge group has a topological symmetry U(1)Ji with fugacity zi.

When all the nodes are treated as gauge groups, an overall diagonal U(1) is
decoupled and needs to be factored out. This decoupled U(1) corresponds to
the shift symmetry

m−1 → m−1 + c , mi → mi + c
ai
a∨i

1ka∨i
(i = 0, . . . r) , c ∈ Z

(4.3.6)

7(4.3.5) assumes that the ring of Casimir invariants is freely generated, as is the case for
semisimple Lie groups. The assumption could fail if the gauge group contains extra discrete
factors, in which case (4.3.5) is to be replaced by the appropriate Molien formula. We will
not encounter this subtlety in this thesis.
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in the dimension formula, where 1n denotes the n× n unit matrix, ai are the
Coxeter labels and a∨i are the dual Coxeter labels of the untwisted affine algebra
(in particular a0 = a∨0 = 1). Note that for the untwisted affine algebras the
ratio ai/a∨i is an integer. The decoupled U(1) is factored out by fixing the
shift symmetry (4.3.6), multiplying the Coulomb branch Hilbert series by its
inverse classical factor (1− t2), and setting to 1 the fugacity of the associated
topological symmetry:

z−1

( r∏
i=0

zaii

)k
= 1 . (4.3.7)

The constraint (4.3.7) on the fugacities ensures that the shift (4.3.6) does
not affect the Hilbert series and determines z−1 in terms of the remaining
r + 1 fugacities zi, i = 0, . . . , r, associated to the nodes of the untwisted affine
Dynkin diagram. The fugacities zi, i = 1, . . . , r, associated to the nodes of the
Dynkin diagram of Lie(G) are simple root fugacities for the global symmetry
G, therefore in (4.2.2) we can identify

ui = zi , i = 1, . . . , r . (4.3.8)

The fugacity x for the SU(2) rotational symmetry is determined by identifying
the two unique monopole operators of dimension ∆ = 1

2 , which generate
the C2 moduli space of the center of mass of the instantons. The tower of
monopole operators obtained by rescaling these magnetic fluxes by an integer
then reconstructs the prefactor in (4.2.2). Let us focus on a monopole operator
which generates a C subspace of the C2 moduli space of the center of mass,
and assign to it weight tx in the Hilbert series for definiteness.8 Up to the
shift (4.3.6), the magnetic charge of this monopole operator (written in matrix
notation) can be taken to be9

m−1 = 0 , mi = diag(1, 0k−1)⊗ ai
a∨i

1a∨i
, i = 0, . . . , r . (4.3.9)

It is straightforward to see that the monopole operator with magnetic charge
(4.3.9) has dimension ∆ = 1

2 : because the contributions to ∆ coming from
the untwisted affine Dynkin diagram cancel out, while the contribution of the
edge connecting the extended node to the over-extended node is 1

2 . From the

8The monopole operator with weight weight tx−1 is obtained by flipping sign to the
magnetic flux and acting with the Weyl group to bring the resulting flux to the positive Weyl
chamber.

9We use the shorthand notation (rs) = (r, · · · , r︸ ︷︷ ︸
s times

).
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topological charge of the monopole operator of magnetic charge (4.3.9) we read
off the fugacity for the SU(2)x rotational symmetry,

x =
r∏
i=0

zaii = z0

r∏
i=1

uaii . (4.3.10)

In the last equality we have used a0 = 1 and the identification (4.3.8). (4.3.10)
can be used to express z0 in terms of x and u. The constraint (4.3.7) from the
removal of the decoupled U(1) then determines z−1 as

z−1 = x−k . (4.3.11)

4.4 k G2 instantons

The theory whose Coulomb branch is the moduli space of k G2 instantons on
C2 is described by the quiver diagram

◦
1
− •

k
− ◦

2k
V ◦

k
(4.4.1)

where each number denotes the rank of each unitary gauge group and an overall
U(1) symmetry is factored out.

The dimension formula for k G2 instantons can be extracted from this quiver
using the prescription of Section 4.3:

∆k,G2(m,n, s) =

k∑
i=1

|mi|+
k∑
i=1

2k∑
j=1

|mi − nj |+
2k∑
j=1

k∑
`=1

|3nj − s`|

− 2

 ∑
1≤i<i′≤k

|mi −mi′ |+
∑

1≤j<j′≤2k

|nj − nj′ |+
∑

1≤`<`′≤k
|s` − s`′ |

 ,

(4.4.2)

where m = (m1, ...,mk), n = (n1, ..., n2k) and s = (s1, ..., sk). Note the factor
of 3 in front of nj for the triply laced bifundamental contribution. Here we
have gauge fixed the decoupled U(1) by setting the monopole flux of the
over-extended node (indicated in blue) to zero.

The Hilbert series for the moduli space of k G2 instantons can thus be
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computed as follows:

gk,G2(t; z) =
∑

m1≥···≥mk>−∞

∑
n1≥···≥n2k>−∞

∑
s1≥···≥sk>−∞

t∆k,G2
(m,n,s)

PU(k)(t;m)PU(2k)(t;n)PU(k)(t; s)× z
∑k
i=1 mi

0 z
∑2k
j=1 nj

1 z
∑k
`=1 s`

2 ,

(4.4.3)

where the fugacities z are associated to the topological symmetry.
For k = 1, the result of (4.4.3) can be written as

g1,G2(t; z) =
1

(1− tx)(1− tx−1)

∞∑
p=0

χG2

[p,0](u1, u2)t2p , (4.4.4)

where [1, 0] is the adjoint representation of G2 and

x = z0z
2
1z

3
2 , u1 = z1, u2 = z2 . (4.4.5)

This agrees with (5.46) of [69].
It is worth mentioning that, for k ≥ 2, the Hilbert series (4.4.3) can alterna-

tively be computed using the Hall-Littlewood formula and the gluing technique
discussed in [96, 97]. Indeed quiver (4.4.1) can be constructed by gluing the
following two basic building blocks

T(k,k−1,1)(SU(2k)) : (1)− (k)− [2k] , T(k,k)(SU(2k)) : [2k]− (k) ,

(4.4.6)

once the edge [2k]− (k) in the second building block is converted to [2k]V (k)

by tripling the value of the background magnetic charges in the Coulomb branch
Hilbert series of T(k,k)(SU(2k)). The two building blocks are glued by gauging
the common flavor symmetry U(2k)/U(1). The final expression of the Hilbert
series in question is given by

gk,G2(t;a, b) =
∑

n1≥n2≥...≥n2k−1≥n2k=0

t−2δU(2k)(n)(1− t2)PU(2k)(t;n1, . . . , n2k)×

H[T(k,k−1,1)(SU(2k))](t; a1, a2, a3;n1, . . . , n2k)×

H[T(k,k)(SU(2k))](t; b1, b2, b3; 3n1, . . . , 3n2k) .

(4.4.7)

The Hall-Littlewood formulae for the Coulomb branch HS of (4.4.6) are given
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by

H[T(k,k−1,1)(SU(2k))](t; a1, a2, a3;n)

= tδU(2k)(n)(1− t2)2kK(k,k−1,1)(t; a1, a2, a3)ΨnU(2k)(v(k,k−1,1); t) ,
(4.4.8)

H[T(k,k)(SU(2k))](t; b1, b2;n)

= tδU(2k)(n)(1− t2)2kK(k,k)(t; b1, b2)ΨnU(2k)(v(k,k); t) ,
(4.4.9)

where the Hall-Littlewood polynomial is defined as

ΨnU(N)(x1, . . . , xN ; t) =
∑
σ∈SN

xn1

σ(1) . . . x
nN
σ(N)

∏
1≤i<j≤N

1− tx−1
σ(i)xσ(j)

1− x−1
σ(i)xσ(j)

, (4.4.10)

and the parameters and prefactors are given by

δU(2k)(n) =
∑

1≤i<j≤2k

(ni − nj) , (4.4.11)

v(k,k−1,1) =
(
tk−1a1, t

k−3a1, . . . , t
−(k−3)a1, t

−(k−1)a1,

tk−3a2, t
k−5a2, . . . , t

−(k−5)a2, t
−(k−3)a2, a3

)
, (4.4.12)

v(k,k) =
(
tk−1b1, t

k−3b1, . . . , t
−(k−3)b1, t

−(k−1)b1,

tk−1b2, t
k−3b2, . . . , t

−(k−3)b2, t
−(k−1)b2

)
, (4.4.13)

K(k,k−1,1)(t;a) = PE

[
(t2 + t2k) + 2

k−1∑
m=1

t2m

+ (a2a
−1
3 + a−1

2 a3)tk + (a1a
−1
3 + a−1

1 a3)tk+1

+ (2 + a1a
−1
2 + a2a

−1
1 )

k∑
m=1

t2m−1

]
,

K(k,k)(t; b) = PE

[(
2 + b1b

−1
2 + b−1

1 b2
) k∑
m=1

t2m

]
.

The fugacities can be set as follows:

ak1a
k−1
2 a3 = 1 , bk1b

k
2 = 1 . (4.4.14)

The relations between the fugacities a and b to the topological fugacity of each
node in quiver (4.4.1) are given by (see (3.13) of [96])

z−1 = a3a
−1
2 , z0 = a2a

−1
1 , z1 = a1b

3
1, z2 = b2b

−1
1 , (4.4.15)
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and by factoring out the overall U(1) we have the following condition (cf. (3.3)
of [97]):

z−1(z0z
2
1z

3
2)k = 1 . (4.4.16)

From (4.3.8) and (4.3.11), we find that the relations between a, b and the
fugacities x associated with SU(2) and u1, u2 associated with G2 are

x = z0z
2
1z

3
2 = a1a2(b1b2)3 ,

z1 = a1b
3
1 , z2 = b2b

−1
1 . (4.4.17)

For k = 2 we recover the Hilbert series (9.3) and (9.5)10 of [71]. For k = 3 let
us report only the result with zi being set to unity; the unrefined Hilbert series
of the reduced three G2 instanton moduli space is

g̃3,G2(t) =
1− t

(1− t2)7(1− t3)9(1− t4)7

(
1 + t+ 11t2 + 34t3 + 124t4 + 352t5

+ 1055t6 + 2657t7 + 6584t8 + 14635t9 + 31194t10 + 61229t11

+ 114367t12 + 198932t13 + 329172t14 + 511194t15 + 755093t16

+ 1051845t17 + 1394817t18 + 1749632t19 + 2091341t20 + 2368619t21

+ 2557449t22 + 2619060t23 + 2557449t24 + palindrome up to t46
)
.

(4.4.18)

4.5 k BN instantons

The theory whose Coulomb branch is the moduli space of k SO(2N + 1)

instantons on C2 is described by the quiver diagram

◦
1
− •

k
−
◦ k
|
◦
2k
− ◦

2k
− · · · − ◦

2k︸ ︷︷ ︸
N−3 nodes

⇒ ◦
k

(4.5.1)

where each number denotes the rank of a unitary gauge group and the decoupled
overall U(1) symmetry is removed. For k = 2 we recover the results given in
Section 5 of [71].

10There is a typo in Eq. (9.5) of [71]: the power of (1 + t+ t2) in the denominator should
be 7.
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The unrefined Hilbert series of the reduced 3 SO(7) instanton moduli space
is

g̃3,SO(7)(t) =
(1− t)2

(1− t2)9 (1− t3)12 (1− t4)9

(
1 + 2t+ 18t2 + 68t3 + 292t4 + 1024t5

+ 3565t6 + 11012t7 + 32587t8 + 88764t9 + 229405t10 + 554642t11

+ 1271439t12 + 2749154t13 + 5648717t14 + 11006976t15 + 20431264t16

+ 36104898t17 + 60918929t18 + 98135686t19 + 151245678t20

+ 10417596422t40 + 315153966t22 + 426792414t23 + 554536028t24

+ 691345362t25 + 827700194t26 + 951603050t27 + 1051256831t28

+ 1115766454t29 + 1138239548t30 + 1115766454t31

+ palindrome up to t60
)
. (4.5.2)

4.6 k CN instantons

The theory whose Coulomb branch is the moduli space of k USp(2N) instantons
on C2 is described by the quiver diagram

◦
1
− •

k
⇒ ◦

k
− · · · − ◦

k︸ ︷︷ ︸
N−1 nodes

⇐ ◦
k

(4.6.1)

where each number denotes the rank of a unitary gauge group and an overall
U(1) symmetry decouples. For k = 2 we recover the results given in Section
4.2 of [71]. Below we present the unrefined Hilbert series for 3 instantons and
small values of N .

The unrefined Hilbert series of the reduced 3 USp(4) instanton moduli space
is

g̃3,USp(4)(t) =
1

(1− t2)5(1− t3)6(1− t4)5

(
1 + 8t2 + 18t3 + 61t4 + 142t5

+ 388t6 + 792t7 + 1691t8 + 2996t9 + 5255t10 + 7994t11 + 11713t12

+ 15134t13 + 18773t14 + 20796t15 + 21980t16 + 20796t17 + 18773t18

+ palindrome up to t32
)
.

(4.6.2)
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The unrefined Hilbert series of the reduced 3 USp(6) instanton moduli space is

g̃3,USp(6)(t) =
1

(1− t2)7(1− t3)8(1− t4)7

(
1 + 17t2 + 38t3 + 209t4 + 644t5

+ 2260t6 + 6382t7 + 17808t8 + 43106t9 + 99660t10 + 206484t11

+ 404244t12 + 724452t13 + 1224332t14 + 1917162t15 + 2834175t16

+ 3909874t17 + 5102043t18 + 6239722t19 + 7227435t20 + 7864776t21

+ 8110736t22 + 7864776t23 + palindrome up to t44
)
.

(4.6.3)

The unrefined Hilbert series of the reduced 3 USp(8) instanton moduli space is

g̃3,USp(8)(t) =
1

(1− t2)9(1− t3)10(1− t4)9

(
1 + 30t2 + 66t3 + 564t4 + 1978t5

+ 8986t6 + 31320t7 + 108588t8 + 327552t9 + 938028t10 + 2428438t11

+ 5923950t12 + 13333518t13 + 28288029t14 + 56057448t15

+ 105000098t16 + 185111036t17 + 309423948t18 + 489269266t19

+ 735494922t20 + 1049537386t21 + 1426754090t22 + 1845578580t23

+ 2277688217t24 + 2678999920t25 + 3009187465t26 + 3224258916t27

+ 3300770520t28 + 3224258916t29 + 3009187465t30

+ palindrome up to t56
)
. (4.6.4)

The unrefined Hilbert series of the reduced 3 USp(10) instanton moduli space
is

g̃3,USp(10)(t) =
(1− t)2

(1− t2)13(1− t3)12(1− t4)11

(
1 + 2t+ 48t2 + 196t3 + 1533t4

+ 7458t5 + 39083t6 + 173746t7 + 729193t8 + 2753342t9 + 9659061t10

+ 31142740t11 + 93620178t12 + 262065600t13 + 688287079t14

+ 1698315214t15 + 3955023058t16 + 8708306700t17 + 18185341012t18

+ 36076921166t19 + 68144856266t20 + 122727426896t21

+ 211098608616t22 + 347187234006t23 + 546680541199t24

+ 824886510488t25 + 1193911094540t26 + 1658736457996t27

+ 2213773962229t28 + 2839692757258t29 + 3502903178369t30

+ 4156849878890t31 + 4747242880506t32 + 5218604879584t33
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+ 5523278387053t34 + 5628609146268t35 + 5523278387053t36

+ palindrome up to t70
)
. (4.6.5)

For higher number of instantons, the Hilbert series can be computed more easily
from the Higgs branch of the ADHM quiver. We demonstrate this computation
in Appendix A.1. Let us report here the unrefined Hilbert series (i.e. x = 1

and zi = 1 for all i) for k = 5 and small values of N :

g̃5,USp(2)(t) =
1

(1− t2)4(1− t3)4(1− t4)3(1− t5)4(1− t6)3
×(

1 + 2t2 + 6t3 + 14t4 + 26t5 + 59t6 + 108t7 + 216t8 + 382t9 + 669t10

+ 1090t11 + 1788t12 + 2718t13 + 4080t14 + 5844t15 + 8166t16

+ 10902t17 + 14271t18 + 17886t19 + 21899t20 + 25824t21 + 29701t22

+ 32898t23 + 35621t24 + 37152t25 + 37792t26 + 37152t27

+ palindrome up to t52
)
. (4.6.6)

g̃5,USp(4)(t) =
1

(1− t2)5(1− t3)6(1− t4)6(1− t5)6(1− t6)5
×(

1 + 8t2 + 18t3 + 65t4 + 184t5 + 568t6 + 1486t7 + 4068t8 + 10202t9

+ 25294t10 + 59530t11 + 136840t12 + 301276t13 + 645420t14

+ 1332274t15 + 2669897t16 + 5173382t17 + 9731196t18 + 17732334t19

+ 31384129t20 + 53895904t21 + 89958111t22 + 145882550t23

+ 230128561t24 + 353099760t25 + 527468664t26 + 767161840t27

+ 1087152304t28 + 1501274126t29 + 2021417792t30 + 2654217372t31

+ 3400290035t32 + 4250584996t33 + 5186895160t34 + 6179265798t35

+ 7189118462t36 + 8168673774t37 + 9067212695t38 + 9832235886t39

+ 10417596422t40 + 10784743772t41 + 10910252456t42

+ 10784743772t43 + palindrome up to t84
)
. (4.6.7)
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4.7 k F4 instantons

The theory whose Coulomb branch is the moduli space of k F4 instantons on
C2 is described by the quiver diagram

◦
1
− •

k
− ◦

2k
− ◦

3k
⇒ ◦

2k
− ◦

k
(4.7.1)

where each number denotes the rank of a unitary gauge group and an overall
U(1) symmetry is factored out.

The Hilbert series of k F4 instantons can be computed using the monopole
formula given by (4.3.4). For k ≥ 2, (4.3.4) is more easily calculated using the
gluing technique discussed in [97]. Indeed quiver (4.7.1) can be constructed
from the building blocks

T(k,k,k−1,1)(SU(3k)) : (1)− (k)− (2k)− [3k] ,

T(k,k,k)(SU(3k)) : [3k]− (2k)− (k) ,
(4.7.2)

once the edge [3k]−(2k) in the second building block is converted to [3k]⇒ (2k)

by doubling the value of the background magnetic charges in the Coulomb
branch Hilbert series of T(k,k,k)(SU(3k)). The two building blocks are glued by
gauging the common flavor symmetry U(3k)/U(1).

The final expression of the Hilbert series in question is given by

gk,F4(t;a, b) =
∑

m1≥m2≥...≥m3k=0

t−2δU(3k)(m)(1− t2)PU(3k)(t;m1, . . . ,m3k)×

H[T(k,k,k−1,1)(SU(3k))](t; a1, a2, a3, a4;m1, . . . ,m3k)×

H[T(k,k,k)(SU(3k))](t; b1, b2, b3; 2m1, . . . , 2m3k) .

(4.7.3)

The Coulomb branch Hilbert series of T(k,k,k−1,1)(SU(3k)) is given by

H[T(k,k,k−1,1)(SU(2k))](t; a1, a2, a3, a4;n)

= tδU(3k)(n)(1− t2)3kK(k,k,k−1,1)(t; a1, a2, a3, a4)ΨnU(3k)(v(k,k,k−1,1); t) ,

(4.7.4)

with

δU(3k)(n) =
∑

1≤i<j≤3k

(ni − nj) , (4.7.5)
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v(k,k,k−1,1) =
(
tk−1a1, t

k−3a1, . . . , t
−(k−3)a1, t

−(k−1)a1,

tk−1a2, t
k−3a2, . . . , t

−(k−3)a2, t
−(k−1)a2 ,

tk−2a3, t
k−4a3, . . . , t

−(k−4)a3, t
−(k−2)a3, a4

)
, (4.7.6)

K(k,k,k−1,1)(t;a)

= PE

[
(t2 + t2k) +

k−1∑
m=1

t2m + (a3a
−1
4 + a−1

4 a3)tk

+ (a1a
−1
4 + a−1

1 a4 + a2a
−1
4 + a−1

2 a4)tk+1

+ (a1a
−1
3 + a−1

1 a3 + a2a
−1
3 + a−1

2 a3)

k∑
m=1

t2m−1

+ (2 + a1a
−1
2 + a2a

−1
1 )

k∑
m=1

t2m

]
. (4.7.7)

On the other hand, the Coulomb branch Hilbert series of T(k,k,k)(SU(3k)) is

H[T(k,k,k)(SU(2k))](t; b1, b2, b3;n)

= tδU(3k)(n)(1− t2)3kK(k,k,k)(t; b1, b2, b3)ΨnU(3k)(v(k,k,k); t) ,
(4.7.8)

with

v(k,k,k) =
(
tk−1b1, t

k−3b1, . . . , t
−(k−3)b1, t

−(k−1)b1,

tk−1b2, t
k−3b2, . . . , t

−(k−3)b2, t
−(k−1)b2 ,

tk−1b3, t
k−3b3, . . . , t

−(k−3)b3, t
−(k−1)b3

)
, (4.7.9)

K(k,k,k)(t; b) = PE

 ∑
1≤i,j≤3

bib
−1
j

 k∑
m=1

t2m

 . (4.7.10)

The fugacities can be set as follows:

ak1a
k
2a
k−1
3 a4 = 1 , bk1b

k
2b
k
3 = 1 . (4.7.11)

The relations between the fugacities a and b to the topological fugacity of
each node in quiver (4.7.1) are given by (see (3.13) of [96])

z−1 = a4a
−1
3 , z0 = a3a

−1
2 , z1 = a2a

−1
1 ,

z2 = a1b
2
1, z3 = b2b

−1
1 , z4 = b3b

−1
2 ,

(4.7.12)
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and by factoring out the overall U(1) we have the following condition (cf. (3.3)
of [97]):

z−1(z0z
2
1z

3
2z

4
3z

2
4)k = 1 . (4.7.13)

From (4.3.8) and (4.3.11), we find that the relations between a, b and the
fugacities x associated with SU(2) and u1, u2, u3, u4 associated with F4 are

x = z0z
2
1z

3
2z

4
3z

2
4 = a1a2a3(b1b2b3)2 ,

u1 = a2a
−1
1 , u2 = a1b

2
1 , u3 = b2b

−1
1 , u4 = b3b

−1
2 .

(4.7.14)

For k = 2 we recover the results given in (10.2) and (10.4) of [71].

4.8 The moduli space of instantons as an algebraic
variety

4.8.1 One instanton

The reduced moduli space of one G instanton is the orbit of the highest root
vector in the complexification of the Lie algebra of G [117, 118, 119], also
known as minimal nilpotent orbit. The space of holomorphic functions on
such a reduced moduli space was studied in [69].11 The Hilbert series can be
obtained as

H(t,u) =

∞∑
p=0

χGp·Adj(u)t2p , (4.8.1)

where p ·Adj denotes the irreducible representation of G whose highest weight
is p times that of the adjoint representation. The plethystic logarithm of this
Hilbert series reads

PL [H(t,u)] = χGAdj(u)t2 −
(
χG

Sym2Adj
(u)− χG2·Adj(u)

)
t4 + . . . . (4.8.2)

The meaning of the plethystic logarithm is as follows.
The generator M of the reduced moduli space is of order 2 and transforms

in the adjoint representation of G. There are relations at order 4 transforming

11See [120, 121] for a mathematical perspective on this type of varieties, independent of
instantons.
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in the representation Sym2Adj − 2 ·Adj, where the minus sign means that
the irreducible representation 2 ·Adj is removed from the decomposition of
Sym2Adj. These are known as the Joseph relations [122] (see also [123]).

For the case of G = SU(N), Sym2Adj decomposes as

Sym2Adj = Sym2[1, 0, . . . , 0, 1]

= [2, 0, . . . , 0, 2] + [1, 0, . . . , 0, 1] + [0, . . . , 0] + [0, 1, 0, . . . , 0, 1, 0] .

(4.8.3)

Thus,

Sym2Adj− 2 ·Adj = [1, 0, . . . , 0, 1] + [0, . . . , 0] + [0, 1, 0, . . . , 0, 1, 0] . (4.8.4)

In this case, the generator M of the reduced moduli space is an N ×N traceless
matrix, and the Joseph relations can be explicitly written as

Ma1
a2
Ma2

a3
= (M2)a1

a3
= 0 , εb1...bN εa1...aNM

a1
b1
Ma2

b2
= 0 , (4.8.5)

where the indices a1, a2, . . . , aN , b1, . . . , bN = 1, . . . , N are the fundamental
indices of SU(N). Note that the first relations, which indicate that M is a
nilpotent matrix, transform in the representation [1, 0, . . . , 0, 1] + [0, . . . , 0] of
SU(N). The second relations transform in the representation [0, 1, 0, . . . , 0, 1, 0]

of SU(N).

4.8.2 Two instantons

The generators of the reduced moduli space of two G instantons on C2 transform
under the global symmetry SU(2)×G as stated in Table 4.5.

Order Representation of SU(2)×G

2 [2; 0]+[0; Adj]

3 [1; Adj]

Table 4.5: Generators of the reduced moduli space of two G instantons on C2

and how they transform under the global symmetry SU(2)×G.

There is one relation at order 4 in the representation [0; 0] of SU(2) × G.



Chapter 4. Coulomb Branch and the Moduli Space of Instantons

Explicitly, this relation can be written as

detX + cTr(M2) = 0 , (4.8.6)

where X and M are the generators at order 2 in the representation [2; 0] and
[0; Adj] of SU(2)×G respectively; the determinant corresponds to the SU(2)

group and Tr denotes the trace in the adjoint representation of G; the constant
c depends on the group G.

There are also relations at order 5 in the representation [1; Adj]+[1; Sym2Adj−
2 ·Adj], where the notation Sym2Adj− 2 ·Adj is as before. This result agrees
with the plethystic logarithm of the expression (3.11) in [93].

4.8.3 Three instantons

The generators of the reduced moduli space of three G instantons on C2

transform under the global symmetry SU(2)×G as stated in Table 4.6.

Order Representation of SU(2)×G

2 [2; 0]+ [0; Adj]

3 [3; 0]+ [1; Adj]

4 [2; Adj]

Table 4.6: Generators of the reduced moduli space of three G instantons on C2

and how they transform under the global symmetry SU(2)×G.

There is a set of relations at order 5 in the representation [1; 0] of SU(2)×G.
Explicitly, this relation can be written as

MaG
α
a = 0 , (4.8.7)

whereMa are the generators of the moduli space at order 2 in the representation
[0; Adj] and Gαa are the generators at order 3 in the representation [1; Adj].
Here a = 1, . . . ,dim G is an adjoint index of G and α = 1, 2 is an SU(2)

fundamental index.

Analytical properties of Hilbert series for three instantons
As discussed around (2.4) of [71], the Hilbert series of three G instantons on
C2 shares certain analytical properties with the third symmetric power of the
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Hilbert series of one G instanton on C2, namely

lim
x→a

(1− t2x−2)(1− t3x−3)g̃Sym3M1,G
(t;x;u)

= lim
x→a

(1− t2x−2)(1− t3x−3)g̃3,G(t;x;u) , with a = ±t, e±2πi/3t ,
(4.8.8)

where a tilde denotes the Hilbert series of a reduced instanton moduli space, x
is the fugacity of SU(2), and u denote the fugacities of the group G, and the
third symmetric power is given by

g̃Sym3M1,G
(t, x,u) =

1

6

[
1

(1− tx±1)2
g̃1,G(t,u)3 + 3

1

1− t2x±2
g̃1,G(t,u)g̃1,G(t2,u2)

+ 2
1− tx±1

1− t3x±3
g̃1,G(t3,u3)

]
.

(4.8.9)

Explicitly, (4.8.8) can be rewritten as follows:

lim
x→t

(1− t2x−2)(1− t3x−3)g̃3,G(t;x;u) =
g̃1,G(t,u)3

(1− t2)2
,

lim
x→−t

(1− t2x−2)(1− t3x−3)g̃3,G(t;x;u) =
g̃1,G(t,u)g̃1,G(t2,u2)

1− t4
,

lim
x→ωt

(1− t2x−2)(1− t3x−3)g̃3,G(t;x;u) =
1− ωt2

1− t6
g̃1,G(t3,u3) , ω = e±

2πi
3 .

(4.8.10)

The properties (4.8.10) together with the fact that the numerator of the
unrefined Hilbert series g̃3,G(t;x = 1;u = 1) is palindromic can be used to
check our results on the Hilbert series of three instantons.

Let us demonstrate this for the case of 3 G2 instantons. The numerator of
the unrefined Hilbert series (4.4.18) is palindromic. In order to make use of
(4.8.10), one needs to compute a refined Hilbert series at least with respect to
x. To keep the presentation brief, let us report the result for 3 G2 instantons
up to order t9:

g̃3,G2(t;x;u = 1)

= 1 + t2
(
x2 +

1

x2
+ 15

)
+ t3

(
x3 +

1

x3
+ 15x+

15

x

)
+ t4

(
x4 +

1

x4
+ 29x2 +

29

x2
+ 135

)
+ t5

(
x5 +

1

x5
+ 30x3 +

30

x3
+ 240x+

240

x

)
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+ t6
(

2x6 +
2

x6
+ 44x4 +

44

x4
+ 437x2 +

437

x2
+ 1102

)
+ t7

(
x7 +

1

x7
+ 44x5 +

44

x5
+ 542x3 +

542

x3
+ 2292x+

2292

x

)
+ t8

(
2x8 +

2

x8
+ 59x6 +

59

x6
+ 739x4 +

739

x4
+ 4232x2 +

4232

x2
+ 7964

)
+ t9

(
2x9 +

2

x9
+ 59x7 +

59

x7
+ 844x5 +

844

x5
+ 5962x3 +

5962

x3
+ 17057x+

17057

x

)
+ . . . , (4.8.11)

and for 1 G2 instanton we have

g̃1,G2(t;u = 1) =
∞∑
p=0

dimG2 [p, 0]t2p

= 1 + 14t2 + 77t4 + 273t6 + 748t8 + 1729t10 + . . . . (4.8.12)

These can be substituted in (4.8.10) and the agreement on each equality can
be obtained perturbatively up to order t4.

4.8.4 Higher instanton numbers

Explicit computations reveal that the generators of the reduced moduli space
of five G instantons on C2 transform under the global symmetry SU(2)×G as
stated in Table 4.7.

Order Representation of SU(2)×G

2 [2; 0]+ [0; Adj]

3 [3; 0]+[1; Adj]

4 [4; 0]+[2; Adj]

5 [5; 0]+[3; Adj]

6 [4; Adj]

Table 4.7: Generators of the reduced moduli space of five G instantons on C2

and how they transform under the global symmetry SU(2)×G.
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4.8.5 Generators of the reduced instanton moduli spaces

The data gathered in the previous subsection leads us to conjecture that the
reduced moduli space of k G instantons on C2 is generated by two sets of
holomorphic functions transforming in:

1. representations [p; 0] of SU(2)×G at order p, for all 2 ≤ p ≤ k;

2. representations [p; Adj] of SU(2)×G at order p+ 2, for all 0 ≤ p ≤ k− 1.

These two sets of generators can be systematically understood from the Coulomb
branch viewpoint, as we now explain.

The generators transforming in the representation [p; 0] are all monopole
operators. To describe them, it is useful to introduce a class of monopole
operators that are obtained by embedding U(k) monopoles into the

∏r
i=0 U(ka∨i )

gauge group of the quiver. Let M = diag(m1,m2, . . . ,mk) be a U(k) magnetic
charge and consider the monopole operators of magnetic charge

m−1 = 0 , mi = M ⊗ ai
a∨i

1a∨i
, i = 0, . . . , r , (4.8.13)

generalizing (4.3.9). The dimension of these monopole operators can be easily
computed: the contributions of nodes and edges of the affine Dynkin diagram
cancel out because the quiver is balanced, while the edge attached to the
over-extended node yields ∆ = 1

2

∑k
i=1 |mi|.12 Taking into account the charge

under the topological symmetry group, the monopole operators (4.8.13) appear
in the HS with weight x

∑
imit

∑
i |mi|.

Next, let
σp,` ≡ diag(1p−`, (−1)`) , ` = 0, 1, . . . , p (4.8.14)

be a p × p diagonal matrix with entries equal to ±1, which may be thought
of as a collection of spins ±1

2 for an abstract SU(2). This abstract SU(2) is
identified with the SU(2)x global symmetry of the instanton moduli space by
specializing the matrix M in (4.8.13) to

M = diag(σp,`, 0
k−p) (4.8.15)

up to Weyl reflections, where p = 1, 2, . . . , k so that the p× p matrix σp,` fits
in the k × k matrix M . The case p = 1 gives the generators of the center of

12For instance, for F4 we compute

∆ = 1
2

∑
i

|mi| − 1
2

∑
i,j

|mi−mj |(2 + 6 + 12 + 4)−
∑
i<j

|mi−mj |(1 + 4 + 9 + 8 + 2) = 1
2

∑
i

|mi| .
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the instanton, that was discussed in (4.3.9). The cases p = 2, . . . , k yield the
generators of the reduced instanton moduli space in the representations [p; 0]

of SU(2) × G. Indeed the monopole operators of magnetic charge (4.8.13),
(4.8.15) appear in the HS with weights xp−2`tp. As ` = 0, 1, . . . , p at fixed p,
they span the representation [p; 0] of SU(2)×G.

One can similarly identify the generators at order p + 2 transforming in
the representation [p; Adj], where p = 0, 1, . . . , k − 1. Let us first restrict to
the positive roots α of G, keeping all weights of SU(2) representations. The
generators are monopole operators of magnetic charges

m−1 = 0 , mi = diag

(
R

(α)
i , σp,` ⊗

ai
a∨i
1a∨i

, 0
ai
a∨
i

(k−1−p)
)
, i = 0, . . . , r ,

(4.8.16)
where R(α)

i is an a∨i × a∨i diagonal matrix whose elements are tabulated in
Appendix A.2 for non-simply laced groups and can be found in [124] for simply-
laced groups. R(α)

0 is always zero. Note that p necessarily runs from 0 to k− 1.
The contribution of R(α)

i to the topological charge of the monopole operator
reproduces the positive root α of G, whereas σp,` is responsible for the SU(2)

weight p− 2` as above. For negative roots of G, R(α)
i is replaced by its negative.

For the Cartan elements of G, R(α)
i are set to zero and the monopole operators

are dressed by the classical field at the i-th node of the Dynkin diagram of G.

4.8.6 Monopole operators and global symmetries

The global symmetry group acting on the Coulomb branch of a 3d N = 4

superconformal field theory takes the form SU(2)C × GJ . SU(2)C is an R-
symmetry which rotates the triplet of complex structures of the hyperKähler
manifold. The holomorphic functions with respect to a fixed complex structure
that are counted by the HS are highest weights of SU(2)C representations.
The associated fugacity is t. On the other hand, GJ commutes with the
supercharges. A subgroup of GJ is manifest in the UV Lagrangian of the
gauge theory: it consists of the topological symmetry group which is generated
by the topologically conserved currents Ji = ∗TrFi, where Fi are the field
strength 2-forms of the i-th U(Ni) gauge group. More generally, the topological
symmetry is the center Z(G∨) of the dual of the gauge group. The topological
symmetry group, which is U(1)r+1 for the theories here considered, acts on
monopole operators. The associated fugacities are zi.

At the IR fixed point of a three-dimensional gauge theory, the manifest
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topological symmetry group can enhance to a non-abelian symmetry group GJ .
The conserved currents of the hidden symmetry are monopole operators. In
a 3d N = 4 superconformal field theory, conserved currents sit in the same
multiplet as dimension ∆ = 1 chiral operators [81] (see also [116, 124]). Thus
the non-R global symmetry can be deduced from the Hilbert series: the order
t2 term gives the adjoint representation of GJ .

Applying this strategy to the quivers whose Coulomb branches are the moduli
spaces of instantons, one can see that the global non-R symmetry enhances from
U(1)r+1 to GJ = SU(2)×G for k = 1 instanton and to GJ = SU(2)×SU(2)×G
for k > 1 instantons, as we now explain.

The maximal torus U(1)r of G is the manifest topological symmetry associ-
ated to the nodes of the Dynkin diagram of G in the quiver. The ∆ = 1 states
counted by the Hilbert series are Tr Φi, i = 1, . . . , r, where Φi is the adjoint
chiral multiplet in the N = 4 vector multiplet of the i-th gauge group. The
global symmetry enhancement is due to dimension 1 monopole operators in
one-to-one correspondence with the roots of G. For positive roots α, these
dimension 1 monopole operators take the form

m−1 = 0 , mi = diag

(
R

(α)
i , 0

ai
a∨
i

(k−1)
)
, i = 0, . . . , r , (4.8.17)

where R(α)
i is an a∨i × a∨i diagonal matrix whose elements are tabulated in

Appendix A.2 for non-simply laced groups and can be found in [124] for simply-
laced groups. Note that R(α)

0 is always zero. The topological charge TrR
(α)
i of

the monopole operator is the component of the positive root α of G along the
i-th simple root of G. For instance, for G = SU(N + 1), the positive roots are
αij =

∑j−1
p=i γp, with γp the simple roots and 1 ≤ i < j ≤ N . Then R(αij)

p = (1)

if i ≤ p < j and R(αij)
p = (0) otherwise. The negative roots of G are obtained

by flipping sign to the magnetic charges (4.8.17).
Next we explain the SU(2) groups. The SU(2) symmetry that is present

for any instanton number k acts on the two complex variables parametrizing
the center of the instanton configuration, namely the monopole operators of
magnetic charges ±1 times (4.3.9). The squares of those monopole generators,
corresponding to magnetic charges ±2 times (4.3.9), provide the roots of SU(2);
the classical field

∑r
i=0

ai
a∨i

Tr Φi associated to the remaining U(1) topological
symmetry provides the Cartan element of SU(2).

For instanton number k > 1 there is an additional SU(2) which acts on the
reduced moduli space of instantons. The adjoint representation of this additional
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SU(2) is spanned by monopole operators of the form (4.8.13), (4.8.15), where
p = 2 in (4.8.14).

Note that the characters of the adjoint representations of the two SU(2)

factors that appear in the HS at order t2 involve the same fugacity x for the
diagonal SU(2) defined in (4.3.10). Since the symmetry is SU(2)× SU(2), it
should be possible to further refine the Hilbert series of the instanton moduli
space and distinguish the two SU(2) factors. However, for one of the SU(2)

groups, not even the Cartan subalgebra is manifest, but rather it is generated
by a monopole operator. This difficulty can be circumvented because the center
of the instanton is factored in the Hilbert series and is represented by a free
twisted hypermultiplet. One can always a posteriori assign different fugacities
to the two SU(2) factors (cf. (3.3) of [90]), modifying (4.2.2) as follows:

gk,G(t, x1, x2,u) =
1

(1− tx1)(1− tx−1
1 )

g̃k,G(t, x2,u) . (4.8.18)
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Chapter 5

Instanton Operators and the
Higgs Branch at Infinite
Coupling

5.1 Introduction

In Chapter 2, the interesting features of minimally supersymmetric five di-
mensional supersymmetric gauge theories were presented. Let us recall that,
despite looking nonrenormalisable from the Lagrangian perspective, a number
of such field theories can be considered as flowing from certain non-trivial
superconformal field theories in the ultraviolet (UV) [31, 32, 33, 34]. The UV
fixed points at infinite gauge coupling may furthermore exhibit an enhancement
of the global symmetry. In particular, in the seminal work [31], it was pointed
out that the UV fixed point of 5d N = 1 SU(2) gauge theory with Nf ≤ 7

flavours exhibits ENf+1 flavour symmetry, which enhances from the global
symmetry SO(2Nf )× U(1) apparent in the Lagrangian at finite coupling.

Since then a large class of five-dimensional supersymmetric field theories have
been constructed using webs of five-branes [36, 37, 38] and the enhancement of
the global symmetry of these theories has been studied using various approaches,
including superconformal indices [42, 125, 44, 126, 127, 46, 47, 48, 128, 50, 129,
130], Nekrasov partition functions and (refined) topological string partition
functions [41, 43, 131, 45, 132, 133, 134, 135, 136].

As previously explained, the source of enhancement can be ascribed to
instanton-like particles that are charged under the the U(1)I global symmetry
associated with the topological conserved current J = 1

8π2 Tr ∗(F ∧ F ). In the
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UV superconformal field theory, the instanton particles are created by local
operators known as instanton operators, that insert a topological defect at a
spacetime point and impose certain singular boundary conditions on the fields
[51, 52, 49]. These operators play an important role in enhancing the global
symmetry of the theory. For 5d N = 1 field theories at infinite coupling, it was
argued that instanton operators with charge I = ±1, form a multiplet under
the supersymmetry and flavour symmetry [49]. In 5d N = 2 Yang-Mills theory
with simply laced gauge group, it is believed that the instanton operators
constitute the Kaluza-Klein tower that enhances the Poincaré symmetry and
provides the UV completion by uplifting this five-dimensional theory to the 6d

N = (2, 0) CFT [137, 138, 51].
Standard lore says that the Higgs branch of theories with 8 supercharges in

dimensions 3 to 6 are classically exact, and do not receive quantum corrections.
In 5 dimensions, this statement turns out to be imprecise, and should be
corrected. In fact, one of the main points in this part of the thesis, is that there
are three different regimes, given by 0, finite, and infinite gauge coupling. The
hypermultiplet moduli space, which we always refer to as the Higgs branch,
turns out to be different in each of these regimes, and hence our analysis corrects
and sharpens the standard lore. The main goal of this chapter is to understand
how, at infinite coupling, instanton operators correct the chiral ring relations
satisfied by the classical fields at finite coupling.

In order to perform such an analysis we start from the known Higgs branch at
infinite coupling and write the Hilbert series of such a moduli space for various 5d
N = 1 theories. We mostly focus on the SU(2) gauge theories with Nf flavours,
for which string theory arguments show that the Higgs branch at infinite
coupling is the reduced moduli space of one ENf+1 instanton on C2 [31, 37].
The Hilbert series counts the holomorphic functions that parametrise the Higgs
branch, graded with respect to the Cartan subalgebra of the (enhanced) flavour
symmetry and the highest weight of the SU(2) R-symmetry of the theory:

H(t, y) = TrH

(
t2RyHAA

)
, (5.1.1)

where H is the Hilbert space of chiral operators of the SCFT, R the SU(2)R

isospin and HA the Cartan generators of the enhanced global symmetry.
Such a Hilbert series can then be expressed in terms of the global symmetry

of the theory at finite coupling — the latter is a subgroup of the enhanced
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symmetry at infinite coupling:

H(t, y(x, q)) = TrH

(
t2RqIxHaa

)
, (5.1.2)

where I is the topological charge and Ha the Cartan generators of the SO(2Nf )

flavour symmetry. This decomposition allows us to extract the contributions of
the classical fields and the instanton operators to the Higgs branch chiral ring
and explicitly write down the relations they satisfy.

This chapter is organised as follows. In section 5.2 we study the Higgs branch
of SU(2) gauge theories with Nf ≤ 7 flavours, spell out the relations in the
chiral ring in terms of mesons, glueball and instanton operators, and discuss
the dressing of instanton operators. We generalise the analysis to pure USp(2k)

Yang-Mills theories with an antisymmetric hypermultiplet in sections 5.3 and
5.4, and to pure SU(N) Yang-Mills in section 5.5. Several technical results are
relegated to Appendix B

5.2 SU(2) with Nf flavours: one ENf+1 instanton on
C2

The dynamics of 5d N = 1 SU(2) gauge theory with Nf ≤ 7 flavours
was studied in detail in [31]. In there it was argued that, despite being
power counting non-renormalisable, these theories possess strongly interacting
UV fixed points. Moreover a classification was proposed where the global
symmetry, which at finite coupling is SO(2Nf )× U(1)I , with U(1)I the global
symmetry associated with a topologically conserved current, enhances to ENf+1,
where Ẽ1 = U(1), E1 = SU(2), E2 = SU(2) × U(1), E3 = SU(3) × SU(2),
E4 = SU(5), E5 = SO(10) and E6, E7, E8 are the usual exceptional symmetries.

The analysis presented in this chapter focuses on how the Higgs branch of
these 5d theories changes along the RG flow. In particular we take care in
distinguishing three different regimes for these theories, the operators that
contribute to the chiral ring on the Higgs branch1 and the defining equations
that these operators satisfy:

1Even though we discuss theories with minimal N = 1 supersymmetry (that is 8 Poincaré
supercharges) in 5 dimensions, we are interested in the chiral ring as defined in terms of a
subsuperalgebra with 4 supercharges, and the Higgs branch as a complex algebraic variety. We
therefore use 4d N = 1 notation and terminology throughout this chapter. Even though this
formalism is not consistent with Poincaré supersymmetry in five dimensions, it is necessary
to discuss chiral operators and holomorphic functions on the Higgs branch.
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• In the classical regime, where fermions are neglected, these 5d theories
have the usual Higgs branch which is just given by M̃1,SO(2Nf ), the
centred (or reduced) moduli space of one SO(2Nf ) instanton. The gauge
invariant operators that generate this space are mesons Mab, constructed
out of chiral matter superfields in the bifundamental of the SU(2) gauge
group and SO(2Nf ) flavour group. The relations that these generators
satisfy on the moduli space can be extrapolated from its description as
the minimal nilpotent orbit of SO(2Nf ) [117]. They are the usual Joseph
relations [122] and their transformation properties can be read off from
the decomposition of the second symmetric product of the adjoint, the
representation in which the generator transforms. Let V (θ) denote the
adjoint representation. The decomposition

Sym2V (θ) = V (2θ) + I2 (5.2.1)

prescribes that the relations transform in the representation I2.

For SO(2Nf )

I2 = Sym2[1, 0, ...] + ∧4[1, 0, ...] . (5.2.2)

We can construct these representations from the adjoint mesons Mab as
follows. TakeM to be an antisymmetric 2Nf×2Nf matrix,Mab = −M ba,
a, b = 1, .., 2Nf . Then the two terms of (5.2.2) correspond respectively to:

M2 = 0 (5.2.3)

M [abM cd] = 0 . (5.2.4)

We call the last equation the rank 2 condition.

• When the coupling is finite, one needs to take into account the contribution
from the gaugino sector. In particular, the glueball superfield S, which is
a chiral superfield bilinear in the gaugino superfield W, is now no longer
suppressed and will de jure appear in the chiral ring. This operator
satisfies a classical relation in the chiral ring as in four dimensions [64],
namely

S2 = 0 , (5.2.5)
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hence S is the only extra operator that one needs to consider at finite
coupling. At first sight it might seem counterintuitive that S contributes
to the Higgs branch as it is a bilinear in the vector multiplet. In fact in
5d the Higgs branch is the only complex branch of the full moduli space.
As such, any chiral operator, and in particular the glueball superfield S,
belongs to the class of Higgs operators. This will become even clearer
later, when we recover the finite coupling Higgs branch from the one at
infinite coupling.

Geometrically we interpret the operator S as generating a 2-point space,
which by a slight abuse of notation we denote by Z2. Algebraically the
Hilbert series for this space is simply written as

HS(Z2; t) = 1 + t2 (5.2.6)

where 1 signifies the identity operator and the t2 term is associated to the
quadratic operator S. The fugacity t grades operators by their SU(2)R

representation and the normalisation is chosen so that the power is twice
the isospin. The meson Mab and the glueball superfield S obey the chiral
ring relation [64, 139]

SMab = 0 . (5.2.7)

This signifies that the spaces M̃1,SO(2Nf ) and Z2 intersect only at the
origin.

From an algebraic perspective, when two moduli spaces X and Y intersect,
the Hilbert series of their union is given by the surgery formula

HX∪Y = HX +HY −HX∩Y , (5.2.8)

where the subtraction is done to avoid double counting [140]. Thus, when
Z2 is glued to M̃1,SO(2Nf ), the net effect on the Hilbert series is simply
that of adding a t2 to the Hilbert series of M̃1,SO(2Nf ).

The plethystic logarithm of this newly obtained expression is interesting:
it shows that at order t4 there are two extra relations compared to the
classical regime, one transforming in the singlet and one transforming in
the adjoint of SO(2Nf ). The singlet relation is (5.2.5). For the adjoint
relation the only possible extra operator that one can construct in such a
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representation is SMab. The adjoint relation is then precisely (5.2.7).

• At infinite coupling, the moduli space is a different space altogether.
Instanton operators, carrying charge under U(1)I , contribute to the chiral
ring and are responsible for prompting symmetry enhancement: the Higgs
branch in this regime becomes isomorphic to the reduced moduli space
M̃1,ENf+1

of one ENf+1 instanton on C2 [31]. In order for this to happen
a crucial event on the chiral ring takes place: instanton and anti-instanton
operators I and Ĩ of U(1)I charge ±1 correct the relation (5.2.5).2

This is the most dramatic dynamical mechanism happening at infinite
coupling: the operator S is no longer a nilpotent bilinear in the vector
multiplet and it becomes, for all intents and purposes, a chiral bosonic
operator on the Higgs branch. The contribution of S to the chiral ring
will no longer amount to (5.2.6), but instead an infinite tower of operators
will appear generating a factor (1− t2)−1 in the Hilbert series.

The purpose of the work presented in this chapter is to explore these state-
ments quantitatively for known cases of UV-IR pairs of theories. We do this
as follows. We start from the UV theory at infinite gauge coupling, which
has ENf+1 symmetry acting on the hypermultiplet moduli space. As soon as
the dimensionful gauge coupling becomes finite, a term is added to the scalar
potential which is proportional to the norm squared of the moment maps of the
broken symmetries in the breaking ENf+1 → SO(2Nf )× U(1)I . Consequently,
the broken moment maps must vanish on the Higgs branch of the theory at
finite coupling. In terms of the chiral ring, this sets to zero the instanton
operators I and Ĩ.3

Computationally, one starts with the Hilbert series of the reduced one ENf+1

instanton moduli space written in terms of representations of ENf+1 [69] and
decomposes them into representations of SO(2Nf )× U(1)I . For all theories of
our interest, the Hilbert series after this decomposition admits a very simple
expression in terms of the highest weight generating function [74]. This allows
us to analyse the generators of the moduli space in terms of instanton operators
and classical fields, and in many cases the relations between such generators
are sufficiently simple to be written down explicitly.

2We call the instanton operator Ĩ of topological charge −1 “anti-instanton operator”, even
though it is mutually BPS with the positively charged instanton operator I.

3Although this argument applies to most of the theories we study here, it is in general
not useful for theories where instanton operators have SU(2)R spin higher than 1, e.g. as in
section 5.5.
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5.2.1 E0

The E0 theory is the trivial case. There is no hypermultiplet moduli space.
Consequently the Hilbert series for this theory is just given by 1, corresponding
to the identity operator. The theory has no RG flow. Its interest lies in it being
the limiting case of all the theories we consider in this section since none of the
operators (M ,S,I, Ĩ) makes an appearance.

5.2.2 Nf = 0

A pure SU(2) SYM theory with N = 1 supersymmetry in 5d can be obtained
by flowing from two UV fixed points which have different global symmetry.
The existence of these two theories is dictated by a discrete θ parameter taking
value in π4(Sp(1)) = Z2 [33]. For the non-trivial element the global symmetry
at infinite coupling is Ẽ1 = U(1) whilst for the identity element the global
symmetry is E1 = SU(2).

The Ẽ1 theory
For the theory with θ = π no enhancement of the global symmetry occurs:

the global symmetry at finite and infinite coupling is the instanton charge
symmetry U(1)I . Here instanton operators are absent and the generator of the
moduli space is just S obeying S2 = 0, both at infinite and finite coupling. The
moduli space generated by this operator is simply Z2. Classically the moduli
space is trivial.

The E1 theory
For the theory associated to the trivial element of the Z2 valued θ parameter

the U(1)I topological symmetry is enhanced to SU(2) by instanton operators
at infinite coupling. In this regime the Higgs branch of the theory is isomorphic
to the reduced moduli space of one-SU(2) instanton M̃1,SU(2), which is the
orbifold C2/Z2. This theory is the prototypical example of the class we study.
Since there is no flavour symmetry, we can understand the three regimes by
means of simple physical arguments.

As we flow away from the UV fixed point, the Higgs branch is lifted and
its only remnant is a discrete Z2 space generated by S. Classically, even this
contribution can be neglected and the Higgs branch is completely absent. This
is a remarkable effect whereby from no Higgs branch in the classical regime a
full Higgs branch opens up at infinite coupling.
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Algebraically we start from the Hilbert series for C2/Z2 and decompose it in
representations of U(1)I so that we can identify the contribution from instanton
operators, as well as the finite coupling chiral operators, and their relations.

The Hilbert series for C2/Z2 can be written as

H[M̃1,SU(2)](t;x) =
∞∑
n=0

[2n]xt
2n =

1− t4

(1− t2x2)(1− t2)(1− t2x−2)
, (5.2.9)

where t is the fugacity for the SU(2)R symmetry, x is the fugacity for the
SU(2) global symmetry acting on C2/Z2, and [2n]x stands for the character,
as a function of x, of the representation of SU(2) with such a Dynkin label.
Identifying the Cartan subalgebra of the SU(2) symmetry with U(1)I , we
obtain

H[M̃1,SU(2)](t; q
1/2) =

1− t4

(1− t2q)(1− t2)(1− t2q−1)

=
1

1− t2
∞∑

j=−∞
t2|j|qj .

(5.2.10)

The generators and their relations
Eq. (5.2.10) has a natural interpretation in terms of operators at infinite

coupling:

• Each term in the sum t2|j|qj corresponds to an instanton operator I+|j|

for j > 0 and an anti-instanton operator I−|j| for j < 0 that is the highest
weight state of the SU(2)R representation with highest weight 2|j|.4 q is
the fugacity for the instanton number U(1)I . The plethystic logarithm of
the Hilbert series shows that the instanton operator I+|j| is generated by
the charge 1 operator I+1 ≡ I through the relation I+|j| = (I)j . Similarly
I−|j| = (Ĩ)j where Ĩ ≡ I−1.

• The tower of operators generated by S can be identified with the factor
(1 − t2)−1. This enhancement in the number of operators constructed
from powers of S is crucial: at infinite coupling S is a full-on operator
on the Higgs branch and, together with the instanton and anti-instanton
operators I, Ĩ, forms a triplet of the SU(2) that generates C2/Z2.

4Notice how the SU(2)R spin of an instanton operator of charge ±j is |j|. Whilst we can
easily extract the SU(2)R spin as a function of instanton number, it is not clear how to do so
for the representation under the global symmetry, as will be seen for the cases with higher
number of flavours.
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From this form of the Hilbert series we can also give another interpretation to
the Higgs branch at infinite coupling. Instanton operators on the Higgs branch
in 5d N = 1 theories play a similar role to monopole operators in 3d N = 4

[30] and N = 2 theories [141, 142]: in this sense (5.2.10) can be interpreted as
the space of dressed instanton operators, where the factor 1

1−t2 is the dressing
from the operator S and it is freely generated.

The numerator in the rational function of (5.2.10) signifies a relation quadratic
in the operators which can only be given by

S2 = IĨ , (5.2.11)

the defining equation for C2/Z2.
At finite coupling, where I, Ĩ = 0, we recover the known chiral ring relation

(5.2.5), i.e. the nilpotency of the operator S. As we have explained, the only
remnant of C2/Z2 is a residual Z2 generated precisely by S.

Classically, we can set S = 0 and lift the Higgs branch entirely.

5.2.3 Nf = 1

For Nf = 1 and Nf = 2 the infinite coupling Higgs branch is the moduli space
of one instanton for a product gauge group. In such cases the moduli space is
given by the union of the one instanton moduli space for each factor. For the
case of Nf = 1, i.e E2 = SU(2)×U(1), the Higgs branch at infinite coupling is
thus the union of the one SU(2) and the one U(1) instanton moduli spaces.

For the U(1) instanton moduli space, there are two possible ADHM construc-
tions that one may consider: (1) USp(2) gauge theory with one flavour, and
(2) U(1) gauge theory with one flavour. As analysed below, the Higgs branch
of the former is Z2 whereas the Higgs branch of the latter is a point. A priori
it might not be apparent which option is the correct one but consistency with
the finite coupling regime points out that the right choice is the former. We
provide an independent argument below.

Let us begin with the first option. The Higgs branch of the ADHM gauge
theory given by USp(2) with one flavour describes the moduli space of one
SO(2) instanton.5 There is only one operator in the chiral ring, P , subject
to a quadratic nilpotency relation, P 2 = 0. The moduli space of one SO(2)

5To be precise, the flavour symmetry of the quiver gauge theory is O(2), not SO(2). (We
thank the referee for raising this point.) However the moduli space of instantons in question
is insensitive to the difference between the two groups.
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instanton is thus Z2.6

On the other hand, one may consider a U(1) gauge theory with one flavour,
whose Higgs branch is often referred to as “the moduli space of one U(1)

instanton”. The gauge invariant quantity is QQ̃ but is set to zero by the
F-terms. The moduli space is thus trivial: it consists of one point only rather
than two.

The reduced moduli space M̃1,E2 of one E2 instanton is thus either isomorphic
to the space C2/Z2 ∪ Z2 or to C2/Z2 ∪ {1}, depending on which of the above
options is correct.

With the first option, the Hilbert series of M̃1,E2 can be written using (5.2.8)
as:

H[M̃1,E2 ](t;x) = H[M̃1,SU(2)] +H[Z2]− 1

=
1− t4

(1− x2t2)(1− t2)(1− x−2t2)
+ t2

(5.2.12)

where H[Z2] = 1 + t2 is generated by P .
With the second option, the Hilbert series of M̃1,E2 is

H[M̃1,E2 ](t;x) = H[M̃1,SU(2)]

=
1− t4

(1− x2t2)(1− t2)(1− x−2t2)
.

(5.2.13)

The generator of the C2/Z2 factor is Φij , i = 1, 2, with Φij = Φji and it
obeys the quadratic nilpotency:

ΦijεjkΦ
kl = 0 (5.2.14)

where εij is defined by its antisymmetry property and ε12 = 1.
The extra generator, P , is there only in the case of a union of C2/Z2 with a

two point moduli space. In its presence, beside (5.2.14), two further relations
hold:

P 2 = 0

PΦij = 0
(5.2.15)

(5.2.14) is the usual Joseph relation for the SU(2) minimal nilpotent orbit
C2/Z2. The last equation encodes the fact that the two spaces, C2/Z2 and Z2,

6Note that as rings C[P ]/〈P 2〉 6= C[P ]/〈P 〉.
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only intersect at one point, the origin of the moduli space.
Let us proceed without making any assumption on whether M̃1,E2 is given by

C2/Z2 ∪ Z2 or C2/Z2 ∪ {1}. In the next subsection, we show that consistency
with the finite coupling result tells us that the correct choice is the former.

The generators and their relations
The theory at finite coupling has a Higgs branch which is isomorphic to

the union of M̃1,SO(2) with Z2, the former generated by a meson, M , subject
to a quadratic nilpotency and the latter by the glueball superfield S, itself
quadratically nilpotent. The finite coupling chiral ring is thus defined by:

M2 = S2 = SM = 0 (5.2.16)

where the last equation signifies that the two spaces, M̃1,SO(2) generated by
M and Z2 generated by S, are orthogonal to each other and intersect only at
the origin. Moreover since M̃1,SO(2)

∼= Z2, the Higgs branch at finite coupling
is given by Z2 ∪ Z2.

The goal is to reproduce the set of equations (5.2.16) from the ones at infinite
coupling by setting the instanton operators appearing there to zero. This can
be achieved as follows. Decompose the generators Φij of M̃1,E2 by letting

Φ11 = I (5.2.17)

Φ12 = M (5.2.18)

Φ22 = −Ĩ (5.2.19)

where M is the SO(2) mesonic operator and I, Ĩ are the instanton and anti-
instanton operators respectively. The relation (5.2.14) can be rewritten as

M2 = IĨ . (5.2.20)

It is clear that, by setting the instanton operators to zero, only one of the three
equations in (5.2.16) can be recovered for the finite coupling limit. However,
if the extra operator P and the extra relations in (5.2.15) are also taken into
account, the classical regime can be precisely recovered. To this avail, let P be
decomposed as:

P = S −M , (5.2.21)
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i.e. a linear combination of the meson M and the glueball S. Then (5.2.14)
and (5.2.15) together can be rewritten as:

M2 = ĨI (5.2.22)

S2 = ĨI (5.2.23)

SM = ĨI (5.2.24)

MI = SI (5.2.25)

ĨM = ĨS . (5.2.26)

This time, setting I, Ĩ = 0, the finite coupling relations (5.2.16) are finally
recovered.

In the classical regime, where we neglect the contribution from S, we recover
the space Z2, the reduced moduli space of one SO(2) instanton generated by
M , such that M2 = 0.

This is the required consistency that we mentioned above: M̃1,E2 is indeed
C2/Z2 ∪ Z2, the latter being given by the ADHM construction of USp(2) with
1 flavour.

Let us provide a complementary argument based on symmetries that supports
the identification of M̃1,E2 with C2/Z2 ∪ Z2. The ADHM construction for U(1)

with Nf flavours provides the moduli space of U(Nf )/U(1) instantons, which
for Nf = 1 corresponds to an empty symmetry group and thus a trivial moduli
space. Furthermore, in the presence of a flavour symmetry, an SU(2)R spin-1
operator is a necessary requirement for the existence of a linear hypermultiplet
containing the conserved current. For a U(1) gauge theory with 1 flavour, there
is no flavour symmetry and hence no associated generator. Identifying M̃1,E2

with C2/Z2 ∪ {1}, there would be only three generators transforming in the
adjoint representation of SU(2) associated with C2/Z2 but no extra generator
associated with the aforementioned U(1) symmetry, as in (5.2.13). On the
other hand, for a USp(2) gauge theory with 1 flavour, there is an SO(2) ∼= U(1)

flavour symmetry; hence there is a generator at order t2 associated with this
symmetry. We see that only when we identify M̃1,E2 with C2/Z2 ∪ Z2 there
are four generators transforming in the adjoint representation of the global
symmetry SU(2)× U(1) ∼= E2 as one can see explicitly in (5.2.12).
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Expansion in the instanton fugacity
It is instructive to rewrite (5.2.12) as an expansion in q, the U(1)I fugacity.

Replacing x, the fugacity for SU(2), by q1/2 we have that:

H[M̃1,E2 ](t; y, q1/2) =
1

(1− t2)

∞∑
n=−∞

qnt|2n| + t2 . (5.2.27)

Hence a bare instanton operator with U(1)I charge n is the highest weight
state of the spin |n| representation of the SU(2)R symmetry. For n 6= 0, the
tower of states originating from the glueball (1− t2)−1, i.e the space C, acts as
a dressing for the instanton operators. For n = 0, the dressing is a different
space, due to the presence of an extra piece of the moduli space unaffected
by instantons. It is in fact the space generated by S and M , subject to the
relations SM = 0 and M2 = 0, i.e C ∪ Z2.

5.2.4 Nf = 2

The reduced moduli space of one E3 = SU(3)×SU(2)A instanton7 is isomorphic
to the union of two hyperKähler cones, the reduced moduli space of one SU(3)

instanton, M̃1,SU(3), and the reduced moduli space of one SU(2)A instanton
M̃1,SU(2)A , meeting at a point. As an algebraic variety it is generated by
operators transforming in the reducible adjoint representation subject to the
Joseph relations, which can be extracted from (5.2.1). The Hilbert series can
again be written using the surgery formula (5.2.8) as

H[M̃1,E3 ](t;x, y) = H[M̃1,SU(3)](t;x) +H[M̃1,SU(2)A ](t; y)− 1

=

∞∑
m1=0

[m1,m1]
SU(3)
x t2m1 +

∞∑
m2=0

[2m2]SU(2)A
y t2m2 − 1 ,

(5.2.28)

where x = (x1, x2) are the fugacities for SU(3) and y is the fugacity for SU(2)A.
The SU(3) factor of the enhanced global symmetry E3 is broken to SU(2)B×

U(1)I when one flows away from the fixed point. The U(1) factor is identified
with the topological symmetry U(1)I , up to a normalisation of charges that is
explained below. The SU(2)B factor instead combines with the SU(2)A factor
in E3, which acts as a spectator for the breaking, and together they form a

7The subscript A is used to differentiate from SU(2)B which is defined in the next
paragraph.
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global symmetry SO(4). Hence, we decompose the representations of SU(3) in
(5.2.28), whilst keeping the representations of SU(2)A, i.e we break:

SU(3)× SU(2)A ⊃ SU(2)B × SU(2)A × U(1)I ∼= SO(4)× U(1)I (5.2.29)

A possible projection matrix that maps the weights of SU(3) to SU(2)B×U(1)

is given by

PSU(3)→SU(2)B×U(1) =

0 1

2 1

 , (5.2.30)

Let x = (x1, x2) be the fugacities of SU(3); z and w be those of SU(2)B and
U(1) respectively (the fugacity w for the U(1) factor will be related to the
fugacity q for U(1)I shortly). Under the action of this matrix, the weights of
the fundamental representation of SU(3) are mapped as follows:

(1, 0)→ (0, 2) , (−1, 1)→ (1,−1) . (5.2.31)

In other words, we have

x1 = w2 , x2x
−1
1 = zw−1 ⇔ x1 = w2 , x2 = zw . (5.2.32)

The character of the fundamental representation of SU(3) is mapped to that
of SU(2)B × U(1) as

[1, 0] = x1 + x2x
−1
1 + x−1

2 = w2 + zw−1 + z−1w−1 = [02] + [1−1] , (5.2.33)

while the adjoint representation decomposes as

[1, 1]→ [00] + [20] + [13] + [1−3] . (5.2.34)

The U(1) charge is a multiple of 3 for states in the root lattice. To obtain
integer instanton numbers I ∈ Z, we set w3 = q, where q is the fugacity for
U(1)I .

Under this map, the Hilbert series of the reduced moduli space of one SU(3)
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instanton becomes

H[M̃1,SU(3)](t; z, q) =

∞∑
m=0

m∑
n1=0

m∑
n2=0

[n1 + n2]zq
n1−n2t2m , (5.2.35)

where z is the SU(2)B fugacity and q is the U(1)I fugacity.
The highest weight generating function8 [74] associated to this Hilbert series

is

G[M̃1,SU(3)](t;µ, q) = PE
[
(1 + µq + µq−1 + µ2)t2 − µ2t4

]
, (5.2.37)

where µ is the fugacity for the highest weight of SU(2)B.
Thus, the highest weight generating function for (5.2.28) becomes

G[M̃1,E3 ](t;µ, ν, q) = PE
[
(1 + µq + µq−1 + µ2)t2 − µ2t4

]
+ PE[ν2t2]− 1 ,

(5.2.38)

where µ and ν are the fugacities corresponding to the highest weights of
SO(4) ∼= SU(2)A × SU(2)B.

The highest weight generating function (5.2.38) provides five dominant
representations that generate the highest weight lattice in a simple way. The
information can be read as follows. Inside the first PE we can identify the
SU(2)R spin-1 generators: the singlet S, the instanton operator µq which
we denote by I ≡ I1, the anti-instanton operator µq−1 which we denote by
Ĩ ≡ I−1, and the meson transforming in the adjoint of SU(2)B, µ2, which we
denote by Tαβ and is subject to the traceless condition Tαβεαβ = 0. We also
identify a relation quadratic in the generators and transforming in the adjoint
representation of SU(2)B, the term −µ2t4. The second PE is the contribution
from the spectator SU(2)A, with the only representation ν2, the inert meson
that we denote by T̃ α̇β̇ .

Eq. (5.2.38) is an expression that carries information about the representation
theory more concisely than the Hilbert series and furthermore the lattice it
encodes is a complete intersection. However in order to write the relations
between the operators on the chiral ring explicitly, we consider what the Joseph

8The highest weight generating function for group of rank r is defined as follows:

G(t;µi) =
∑
ni,k

bn1,...,nr,k µ
n1
1 ...µnr

r tk (5.2.36)

where {µi}ri=1 are highest weight fugacities s.t. [n1, ..., nr] 7→ µn1
1 ...µnr

r and {bn1,...,nr,k} are
the series coefficients.
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relations for M̃1,E3 imply.

The generators and their relations
For the M̃1,E3 case, the generators are Φi

j , with i = 1, 2, 3 and Φi
i = 0,

transforming in the [1, 1; 0] of SU(3) × SU(2)A, and T̃ α̇β̇ with T̃ α̇β̇εα̇β̇ = 0,
transforming in the [0, 0; 2] of SU(3)× SU(2)A. The relations can be read off
from (5.2.1):

Sym2([1, 1; 0] + [0, 0; 2]) = Sym2[1, 1; 0] + Sym2[0, 0; 2] + [1, 1; 2] where

Sym2([1, 1; 0]) = [2, 2; 0] + [1, 1; 0] + [0, 0; 0]

Sym2([0, 0; 2]) = [0, 0; 4] + [0, 0; 0]

(5.2.39)

Hence the generator Φi
j obeys a quadratic relation transforming in the reducible

representation [1, 1; 0] + [0, 0; 0] whilst T̃ α̇β̇ obeys a singlet relation. This is to
be expected, since the minimal nilpotent orbit of traceless 2× 2 matrix is the
subset of matrices with zero determinant. There is also a quadratic relation
mixing Φi

j and T̃ α̇β̇ transforming in the [1, 1; 2]. We can write these relations
as follows:9

[1, 1; 0] + [0, 0; 0] : Φi
jΦ

j
k = 0

[0, 0; 0] : Tr(T̃ 2) ≡ T̃ α̇β̇εα̇σ̇εβ̇ρ̇T̃
ρ̇σ̇ = 0

[1, 1; 2] : Φi
j T̃

α̇β̇ = 0 ,

(5.2.40)

where the indices of T̃ are contracted by the epsilon tensor, e.g. (T̃ 2)α̇σ̇ =

T̃ α̇β̇εβ̇ρ̇T̃
ρ̇σ̇ .

The glueball operator, the instanton and anti-instanton operators and the
meson are embedded into the generator Φi

j since this is the one transforming
nontrivially under the SU(3) factor that breaks into SU(2)B×U(1). We choose

9For T̃ a symmetric 2×2 matrix, i.e. T̃ α̇β̇εα̇β̇ = 0, the following statements are equivalent:
T̃ 2 = 0, det T̃ = 0 and Tr T̃ 2 = 0.
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the following embedding:

Φα
β = Tαγεγβ − 1

2Sδ
α
β α, β = 1, 2

Φα
3 = Iα

Φ3
α = εαβ Ĩ

β

Φ3
3 = S

(5.2.41)

where Tαβ is a traceless 2× 2 matrix, Tαβεαβ = 0. Notice that the choice of
Φα

β ensures that Φi
j is traceless since Φi

i = Φα
α + Φ3

3 = 0.
The aim is to decompose the relations in the first and third equations of

(5.2.40). Under SU(3)× SU(2)A ⊃ SU(2)B × U(1)I × SU(2)A the representa-
tions decompose as

[1, 1; 0] + [0, 0; 0] → [20; 0] + [11, 0] + [1−1, 0] + 2[00, 0]

[1, 1; 2] → [20; 2] + [11; 2] + [1−1; 2] + [00; 2] .
(5.2.42)

Thus the relations in the first equation of (5.2.40) decompose into the five
relations

[20; 0] : STαβ = −IαĨβ + 1
2(Iρερσ Ĩ

σ)εαβ

[11, 0] : IβεβγT
γα = 1

2I
αS

[1−1, 0] : ĨβεβγT
γα = −1

2 Ĩ
αS

2[00, 0] : S2 = ĨαεαβI
β = 2 Tr(T 2) .

(5.2.43)

The relations in the second line of (5.2.42) can be explicitly written as:

[20; 2] : TαβT̃ α̇β̇ = 0

[11; 2] : IαT̃ α̇β̇ = 0

[1−1; 2] : ĨαT̃ α̇β̇ = 0

[00; 2] : ST̃ α̇β̇ = 0 .

(5.2.44)
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Recall also from (5.2.40) that

[00; 0] : Tr(T̃ 2) = 0 . (5.2.45)

In total there are thus 10 equations, namely (5.2.43), (5.2.44) and (5.2.45).10

The finite coupling result that S be nilpotent is obtained by virtue of the
last equation of (5.2.43) when we set I, Ĩ = 0. Consequently we also restore
the condition Tr(T 2) = 0, which, for a traceless 2× 2 matrix, is equivalent to
T 2 = 0, the classical relation. Moreover (5.2.7) is also recovered.

Another approach to see these 10 relations between the operators at infinite
coupling is to rewrite (5.2.28) in terms of characters of representations of
SO(4)× U(1) and compute its plethystic logarithm. For reference, we present
such a Hilbert series up to order t4 as follows:

H[E3](t;x1, x2, q) = 1 +
(

1 + [2, 0] + [0, 2] + (q + q−1)[1, 0]
)
t2+ (5.2.46)

+
(

1 + [2, 0] + [4, 0] + [0, 4] + (q + q−1)([1, 0] + [3, 0]) + (q2 + q−2)[2, 0]
)
t4 + . . . .

The plethystic logarithm of this Hilbert series is

PL [H[E3](t;x1, x2, q)] =
(

1 + [2, 0] + [0, 2] + (q + q−1)[1, 0]
)
t2+

−
(

3 + [2, 0] + [0, 2] + [2, 2] + (q + q−1)([1, 2] + [1, 0])
)
t4 + . . . .

(5.2.47)

Indeed, the 10 relations listed in (5.2.43), (5.2.44) and (5.2.45) are in corre-
spondence with the terms at order t4 in (5.2.47). We emphasise here that the
computation of the plethystic logarithm provides an efficient way to write down
the relations that are crucial to describe the moduli space. This method is
applied for the cases of higher Nf in subsequent sections.

We can rewrite these relations in terms of a 4× 4 adjoint matrix Mab, with

10Notice that the meson T̃ α̇β̇ , the generator for the spectator SU(2)A, is made up of the
same fundamental fields (quarks) as the meson Tαβ . Before considering gauge invariant
combinations, the quarks Qαα̇a, with α, α̇ = 1, 2 and a = 1, 2, transform in the vector
representation of the global symmetry SO(4) ∼= SU(2)A × SU(2)B and in the fundamental
representation of the gauge group SU(2). Out of these quarks the following gauge invariant
mesons can be constructed: Tαβ = Qαα̇aQ

ββ̇
bε

abεα̇β̇ and T̃ α̇β̇ = Qαα̇aQ
ββ̇

bε
abεαβ . The

difference between these two mesons is in the relations they satisfy at infinite coupling, one
being quantum corrected whilst the other being unaffected: Tr(T̃ 2) = 0 vs 2 Tr(T 2) = S2 =

I · Ĩ.

126



5.2. SU(2) with Nf flavours: one ENf+1 instanton on C2 127

a, b, c, d = 1, . . . , 4 vector indices of SO(4), such that

Mab = −M ba , (5.2.48)

as follows:

[2, 2] + [0, 0] : MabM bc = (εαβI
αĨβ)δac (5.2.49)

[0, 0] : εabcdM
abM cd = εαβI

αĨβ (5.2.50)

[0, 0] : S2 = εαβI
αĨβ (5.2.51)

[2, 0] : SMab(γab)αβ = Ĩ(αIβ) (5.2.52)

[0, 2] : SMab(γab)α̇β̇ = 0 (5.2.53)

q([1, 2] + [1, 0]) : MabIβ(γb)βα̇ = SIβ(γa)βα̇ (5.2.54)

q−1([1, 2] + [1, 0]) : MabĨβ(γb)βα̇ = SĨβ(γa)βα̇ . (5.2.55)

The gamma matrices γa for SO(4) take the following index form:

(γa)αα̇ (5.2.56)

and the product of two gamma matrices is defined as:

(γab)αβ ≡ (γ[a)αα̇(γb])ββ̇ε
α̇β̇ and (γab)α̇β̇ ≡ (γ[a)αα̇(γb])ββ̇ε

αβ ; (5.2.57)

where the spinor indices are raised and lowered with the epsilon tensor.

Expansion in the instanton fugacity
It is useful to rewrite (5.2.38) in terms of an expansion in q:

G[M̃1,E3 ](t;µ, ν, q) =
1

(1− t2)(1− t2µ2)

∞∑
n=−∞

qnt2|n|µ|n| +
1

1− ν2t2
− 1

(5.2.58)

From here, we can extract the transformation properties of instanton operators
of charge n under the U(1)I . They transform as spin |n| highest weight states
for SU(2)R and as spin |n|/2 representations of SU(2)B.

The classical dressing for each qn instanton operator, the factor outside
the sum, is, for n 6= 0, a space generated by the SU(2)B adjoint meson
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Tαβ = Mab(γab)αβ and the glueball operator S obeying the relation:

Tr(T 2) = S2 (5.2.59)

For n = 0 there is a contribution coming from the SU(2)A, the second term
in (5.2.58), which modifies the classical dressing entirely. The latter is in fact,
for this charge zero sector, generated by Mab and S subject to the following
relations:

[2, 2] + [0, 0] : MabM bc = S2δac (5.2.60)

[0, 0] : εabcdM
abM cd = S2 (5.2.61)

[0, 2] : SMab(γab)α̇β̇ = 0 (5.2.62)

These relations are a subset of (5.2.49) - (5.2.55) constructed in the following
way: we take the first two equations and we substitute the instanton bilinear on
the right hand side with the glueball operator by means of (5.2.51). Moreover
we keep (5.2.53) as it is a relation not corrected by instanton operators.

5.2.5 Nf = 3

The moduli space of the reduced one E4 = SU(5) instanton, M̃1,E4=SU(5),
is the nilpotent orbit generated by the adjoint representation of SU(5). Its
associated Hilbert series can thus be written as

H[M̃1,SU(5)](t;x) =

∞∑
n=0

[n, 0, 0, n]xt
2n , (5.2.63)

where [1, 0, 0, 1]x is the character of the adjoint representation of SU(5) with
fugacities x = (x1, x2, x3, x4). In order to proceed with a decomposition from
weights of SU(5) representations to those of SO(6) × U(1), we choose the
projection matrix

PA4→D3×U(1) =



0 0 1 0

0 0 0 1

0 1 0 0

4 3 2 1


, (5.2.64)
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which gives the fugacity map

x1 = w4 , x2x
−1
1 = y3w

−1 , x3x
−1
2 = y1y

−1
3 w−1 , x4x

−1
3 = y−1

1 y2w
−1 ,

⇔ x1 = w4 , x2 = y3w
3 , x3 = y1w

2 , x4 = y2w .

(5.2.65)

States in the root lattice carry a charge multiple of 5 for the U(1) associated to
the fugacity w, hence we set w5 = q in the following, where q is the fugacity for
the integer quantized instanton number U(1)I . Then (5.2.63) can be written in
terms of the character expansion of SO(6)× U(1) ⊃ SU(5) as

H[M̃1,SU(5)](t;y, q) =
∞∑
n=0

n∑
n1=0

n∑
n2=0

[0, n1, n2]yq
n1−n2t2n , (5.2.66)

where [p1, p2, p3]y is the character of a representation of SO(6) as a function
of fugacities y = (y1, y2, y3). The information contained in this equation can
be carried compactly by means of the associated highest weight generating
function

G[M̃1,SU(5)](t;µ2, µ3; q) = PE
[
t2(1 + µ2q + µ3q

−1 + µ2µ3)− t4µ2µ3

]
(5.2.67)

where at t2 we can again recognise the contribution of S, a singlet of SO(6), the
instanton and the anti-instanton operators in the spinor [0, 1, 0] and cospinor
[0, 0, 1] representations, and the meson in the adjoint representation [0, 1, 1],
while at order t4 is the basic relation between the operators. Notice that (5.2.67)
is a generating function for a lattice with conifold structure.

The generators and their relations
The generators and the relations can be extracted from the plethystic loga-

rithm of the Hilbert series. The Hilbert series of the reduced moduli space of
1 E4 instanton can be written in terms of characters of SO(6) × U(1) up to
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O(t4) as:

H[E4](t;x, q) = 1 + (1 + [0, 1, 1] + q−1[0, 0, 1] + q[0, 1, 0])t2+

+
(

1 + [0, 1, 1] + [0, 2, 2] + q−1([0, 0, 1] + [0, 1, 2])+

+ q([0, 1, 0] + [0, 2, 1]) + q−2[0, 0, 2] + q2[0, 2, 0]
)
t4 + . . . .

(5.2.68)

The plethystic logarithm of this Hilbert series is

PL [H[E4](t;x, q)]

= (1 + [0, 1, 1] + q−1[0, 0, 1] + q[0, 1, 0])t2 −
(

2 + 2[0, 1, 1] + [2, 0, 0]+

+ q([1, 0, 1] + [0, 1, 0]) + q−1([1, 1, 0] + [0, 0, 1])
)
t4 + . . . .

(5.2.69)

Below we write down the generators corresponding to the terms at t2 and the
explicit relations corresponding to the terms at order t4 of (5.2.69).

For SO(6), we use a, b, c, d = 1, . . . , 6 to denote vector indices and use
α, β, ρ, σ = 1, . . . , 4 to denote spinor indices. Note that the spinor representation
of SO(6) is complex. The delta symbol carries has one upper and one lower
index:

δαβ . (5.2.70)

The gamma matrices γa can take the following forms:

(γa)αβ and (γb)αβ , (5.2.71)

where the α, β indices are antisymmetric. The product of two gamma matrices
has one lower spinor index and one upper spinor index:

(γab)αρ ≡ (γ[a)αβ(γb])βρ . (5.2.72)

From (5.2.69) the generators of the moduli space areMab, a 6×6 antisymmetric
matrix, the instanton operators Iα and Ĩα and the gaugino bilinear S. The
relations corresponding to the terms at order t4 of (5.2.69) can be written as
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follows:

[2, 0, 0] + [0, 0, 0] : MabM bc = (IαĨα)δac (5.2.73)

[0, 1, 1] : εabcdefM cdM ef = Ĩβ(γab)βαI
α (5.2.74)

[0, 0, 0] : S2 = IαĨα (5.2.75)

[0, 1, 1] : SMab = Ĩβ(γab)βαI
α (5.2.76)

q([1, 0, 1] + [0, 1, 0]) : MabIα(γb)αβ = SIα(γa)αβ (5.2.77)

q−1([1, 1, 0] + [0, 0, 1]) : MabĨα(γb)αβ = SĨα(γa)αβ . (5.2.78)

As can be seen, the classical relations are corrected by instanton bilinears and
this is a recurrent feature for all number of flavours. These relations can also
be rewritten in terms of an SU(4) matrix Mα

β using the following relation

Mab = Mα
β(γab)βα . (5.2.79)

Expansion in the instanton fugacity
We rewrite (5.2.67) as an expansion in q as follows:

G[M̃1,SU(5)](t;µ2, µ3, q) =
1

(1− t2)(1− t2µ2µ3)

(∑
n≥0

qn(t2µ2)n +
∑
n<0

qn(t2µ3)−n
)
.

(5.2.80)

Two very interesting features emerge from the q expansion. Firstly, an
instanton operator of charge n has SU(2)R spin |n| and it transforms as an
|n|-spinor — a representation with |n| on a spinor Dynkin label — of the global
flavour group SO(6). Whilst in [49] it was found that this result holds for
n = 1, here we find a prediction for all n.

Secondly the instanton operators are dressed by a factor, the one in front of
the sum, which is generated by S and Mab, subject to the following relations:

[2, 0, 0] + [0, 0, 0] : MabM bc = S2δac (5.2.81)

[0, 1, 1] : εabcdefM cdM ef = SMab . (5.2.82)

Interestingly, such relations can be extracted directly from (5.2.73) - (5.2.78) by
keeping only those relations that are not corrected by the instanton operators.
This feature is a recurrent theme for higher number of flavours.
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5.2.6 Nf = 4

The Higgs branch at infinite coupling for an SU(2) theory with Nf = 4 flavours
is isomorphic to the reduced moduli space of one E5 = SO(10) instanton
M̃1,E5=SO(10), which is given by the minimal nilpotent orbit of SO(10). Its
Hilbert series is

H[M̃1,SO(10)](t;x) =

∞∑
n=0

[0, n, 0, 0, 0]xt
2n , (5.2.83)

where [0, 1, 0, 0, 0]x is the character of the adjoint representation of SO(10).
At finite coupling the theory has a global symmetry SO(8)× U(1). Hence

we rewrite this Hilbert series in terms of an SO(8)× U(1) character expansion
as

H[M̃1,SO(10)](t;y, q) =
1

1− t2
∑

n1,n2,n3≥0

[0, n1, 0, n2 + n3]yq
n2−n3t2n1+2n2+2n3 ,

(5.2.84)

where we decompose representations of SO(8)× U(1) ⊂ SO(10) using a pro-
jection matrix that maps the weights of SO(10) representations to those of
SO(8)× U(1) as follows

PD5→D4×U(1) =



0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

−2 −2 −2 −1 −1


. (5.2.85)

Under the action of this matrix, the fugacities x of SO(10) are mapped to the
fugacities y of SO(8) and w of U(1) as follows:

(x1, x2x
−1
1 , x3x

−1
2 , x4x5x

−1
3 , x5x

−1
4 ) =

(
w−2, y4, y2y

−1
4 , y1y

−1
2 y3, y1y

−1
3

)
⇔ (x1, x2, x3, x4, x5) =

(
1

w2
,
y4

w2
,
y2

w2
,
y3

w
,
y1

w

)
.

(5.2.86)

In (5.2.84) we set w2 = q to have integer instanton numbers, rather than even.

132



5.2. SU(2) with Nf flavours: one ENf+1 instanton on C2 133

The corresponding highest weight generating function is

G[M̃1,SO(10)](t;µ2, µ4; q) = PE
[
t2(1 + µ2 + µ4q + µ4q

−1)
]

(5.2.87)

where we recognise the usual SU(2)R spin-2 generators: the glueball superfield
S, a singlet of SO(8), the instanton operators Iα and Ĩα associated to µ4q

and µ4q
−1, both transforming in the same spinor representation of SO(8) with

opposite U(1) charge, as well as the meson Mab, associated to µ2. The highest
weight lattice is freely, generated as we see from the lack of relations at order
t4.

The generators and their relations
The expansion of (5.2.84) up to order t4 is given by

H[E5](t;x, q) = 1 +
(

1 + [0, 1, 0, 0] + (q + q−1)[0, 0, 0, 1]
)
t2+

+
(

1 + [0, 1, 0, 0] + [0, 0, 0, 2] + [0, 2, 0, 0]+

+ (q + q−1)([0, 0, 0, 1] + [0, 1, 0, 1]) + (q2 + q−2)[0, 0, 0, 2]
)
t4 + . . . .

(5.2.88)

The plethystic logarithm of this Hilbert series is

PL [H[E5](t;x, q)] =
(

1 + [0, 1, 0, 0] + (q + q−1)[0, 0, 0, 1]
)
t2+

−
(

2 + [2, 0, 0, 0] + [0, 1, 0, 0] + [0, 0, 2, 0] + [0, 0, 0, 2]+

+ (q + q−1)([1, 0, 1, 0] + [0, 0, 0, 1]) + (q2 + q−2)
)
t4 + . . . .

(5.2.89)

From this collection of representations we can write the defining equations for
the Higgs branch at infinite coupling by constructing the relevant operators.
For SO(8), we use a, b, c, d = 1, . . . , 8 to denote the vector indices, α, β, ρ, σ =

1, . . . , 8 to denote those in the spinor representation [0, 0, 0, 1] and α̇, β̇, ρ̇, σ̇ =

1, . . . , 8 to denote those in the conjugate spinor representation [0, 0, 1, 0]. The
delta symbol has the following forms:

δαβ or δαβ or δα̇β̇ or δα̇β̇ . (5.2.90)
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The gamma matrices γa can take the following forms:

(γa)αα̇ or (γa)αα̇ . (5.2.91)

The product of two gamma matrices has the following forms:

(γab)αβ ≡ (γ[a)αβ̇(γb])ββ̇ and (γab)α̇β̇ ≡ (γ[a)αα̇(γb])αβ̇ (5.2.92)

and similarly for both upper indices; the indices α, β and α̇, β̇ are antisymmetric.
The product of four gamma matrices has the following forms:

(γabcd)αβ ≡ (γ[a)αβ̇(γb)ρβ̇(γc)ρσ̇(γd])βσ̇

(γabcd)α̇β̇ ≡ (γ[a)αα̇(γb)αρ̇(γ
c)ρρ̇(γ

d])ρβ̇

(5.2.93)

and similarly for both upper indices; the indices α, β and α̇, β̇ are symmetric.
The generators of the moduli space are Mab, which is a 8× 8 antisymmetric

matrix; the instanton operators Iα and Ĩα; and the glueball superfield S.
The relations corresponding to terms at order t4 of (5.2.89) can be written as

[2, 0, 0, 0] + [0, 0, 0, 0] : MabM bc = (IαĨα)δac (5.2.94)

[0, 0, 2, 0] : MabM cd(γabcd)α̇β̇ = 0 (5.2.95)

[0, 0, 0, 2] : MabM cd(γabcd)αβ = I(αĨβ) −
1

8
(IρĨρ)δαβ

(5.2.96)

[0, 0, 0, 0] : S2 = IαĨβδ
αβ (5.2.97)

[0, 1, 0, 0] : SMab = IαĨβ(γab)αβ (5.2.98)

q([1, 0, 1, 0] + [0, 0, 0, 1]) : MabIβ(γb)βα̇ = SIβ(γa)βα̇ (5.2.99)

q−1([1, 0, 1, 0] + [0, 0, 0, 1]) : MabĨβ(γb)βα̇ = SĨβ(γa)βα̇ (5.2.100)

(q2 + q−2)[0, 0, 0, 0] : IαIβδαβ = ĨαĨβδαβ = 0 . (5.2.101)

Expansion in the instanton fugacity
In terms of an expansion in q, (5.2.87) can be written as

G[M̃1,SO(10)](t;µ2, µ4; q) =
1

(1− t2)(1− µ2t2)(1− µ2
4t

4)

∞∑
n=−∞

qnµ
|n|
4 t2|n| .

(5.2.102)
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Here again we find that instanton operators of charge n are spin |n| of SU(2)R

and transform in |n|-spinor representations of SO(8).
However the interpretation of the classical dressing is more subtle than in

previous cases. The prefactor in the q expansion signifies a space which is
algebraically determined by some of the conditions that define the moduli space
of one SO(8) instanton; in particular it is a space generated by two operators,
Mab, in the adjoint representation [0, 1, 0, 0] of SO(8), and S, in the singlet
[0, 0, 0, 0], subject to relations that transform in the representations [2, 0, 0, 0],
[0, 0, 0, 0] and [0, 0, 2, 0]. Explicitly these relations are:

[2, 0, 0, 0] + [0, 0, 0, 0] : MabM bc = S2δac (5.2.103)

[0, 0, 2, 0] : MabM cd(γabcd)α̇β̇ = 0 . (5.2.104)

The following features can be observed. Whilst the classical moduli space of
one SO(8) instanton is generated by (5.2.3) and (5.2.4), here the anti-self-dual
4th rank antisymmetric representation is missing11. Such a space has complex
dimension 13 and, by adding the dimension originating from the sum over
the instanton number, the correct 14 dimensional moduli space of one SO(10)

instanton is recovered. Again, the classical dressing can be guessed from the
set of equations in (5.2.94)-(5.2.101) by keeping only the relations that are not
corrected by the instanton operators.

5.2.7 Nf = 5

The Hilbert series of M̃1,E6 can be written as

H[M̃1,E6 ](t;x) =

∞∑
n=0

 n

0 0 0 0 0


x

t2n . (5.2.105)

11Recall that for SO(8), ∧4[1, 0, 0, 0] = [0, 0, 2, 0] + [0, 0, 0, 2] is a reducible representation.
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A projection matrix that maps the weights of E6 to those of D5×U(1) is given
by

PE6→D5×U(1) =



0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

−4 −3 −5 −6 −4 −2


. (5.2.106)

Under the action of this matrix, the fugacities of x of E6 are mapped to the
fugacities y of SO(10) and w of U(1) as follows:

(x1, x1x
−1
2 , x1x

−1
3 , x2x

−1
6 , x3x

−1
5 , x3x

−1
4 ) =

(
1

w4
,

1

wy5
,
w

y4
,
y5

wy1
,
y4

wy2
,
wy4

y3

)
⇔ (x1, x2, x3, x4, x5, x6) =

(
1

w4
,
y5

w3
,
y4

w5
,
y3

w6
,
y2

w4
,
y1

w2

)
.

(5.2.107)

The fugacity of U(1)I is q = w3. Thus, the Hilbert series H[M̃1,E6 ] can be
written in terms of characters of representations of SO(10)× U(1)I as

H[M̃1,E6 ](t;y, q) =
1

1− t2
∑

n1,n2,n3≥0

[0, n1, 0, n2, n3]yq
n2−n3t2n1+2n2+2n3 ,

(5.2.108)

The corresponding highest weight generating function is

G[M̃1,E6 ](t;µ2, µ4; q) = PE
[
t2(1 + µ2 + µ4q + µ5q

−1)
]
. (5.2.109)
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The generators and their relations
The expansion of (5.2.108) up to order t4 is given by

H[E6](t;x, q) = 1 + (1 + [0, 1, 0, 0, 0] + q−1[0, 0, 0, 0, 1] + q[0, 0, 0, 1, 0])t2+

+
(

1 + [0, 1, 0, 0, 0] + [0, 2, 0, 0, 0] + [0, 0, 0, 1, 1]+

+ q−1([0, 0, 0, 0, 1] + [0, 1, 0, 0, 1]) + q([0, 0, 0, 1, 0] + [0, 1, 0, 1, 0])+

+ q−2[0, 0, 0, 0, 2] + q2[0, 0, 0, 2, 0]
)
t4 + . . . .

(5.2.110)

The plethystic logarithm of this Hilbert series is

PL [H[E6](t;x, q)] = (1 + [0, 1, 0, 0, 0] + q−1[0, 0, 0, 0, 1] + q[0, 0, 0, 1, 0])t2+

−
(

2 + [0, 1, 0, 0, 0] + [2, 0, 0, 0, 0] + [0, 0, 0, 1, 1]+

+ q([1, 0, 0, 0, 1] + [0, 0, 0, 1, 0]) + q−1([1, 0, 0, 1, 0] + [0, 0, 0, 0, 1])+

+ (q2 + q−2)[1, 0, 0, 0, 0]
)
t4 + . . . .

(5.2.111)

For SO(10), we use a, b, c, d = 1, . . . , 10 to denote vector indices and
α, β, ρ, σ = 1, . . . , 16 to denote spinor indices. Note that the spinor repre-
sentation of SO(10) is complex. The delta symbol has the following form:

δαβ . (5.2.112)

The gamma matrices γa can take the following forms:

(γa)αβ and (γa)αβ , (5.2.113)

where the α, β indices are symmetric. The product of two gamma matrices has
the following form:

(γab)αρ ≡ (γ[a)αβ(γb])βρ . (5.2.114)

The product of four gamma matrices has the following form:

(γabcd)αβ ≡ (γ[a)ασ1(γb)σ1σ2(γc)σ2σ3(γd])σ3β . (5.2.115)

The generators of the moduli space areMab, which is a 10×10 antisymmetric
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matrix; the instanton operators Iα and Ĩα; and the gaugino superfield S.
The relations appearing in the plethystic logarithm (5.2.111) are as follows:

[2, 0, 0, 0, 0] + [0, 0, 0, 0, 0] : MabM bc = (IαĨα)δac , (5.2.116)

[0, 0, 0, 1, 1] : M [a1a2Ma3a4] = Ĩβ(γa1···a4)βαI
α ,

(5.2.117)

[0, 0, 0, 0, 0] : S2 = IαĨα , (5.2.118)

[0, 1, 0, 0, 0] : SMab = Ĩβ(γab)βαI
α , (5.2.119)

q([1, 0, 0, 0, 1] + [0, 0, 0, 1, 0]) : MabIα(γb)βα = SIα(γa)βα , (5.2.120)

q−1([1, 0, 0, 0, 1] + [0, 0, 0, 1, 0]) : MabĨβ(γb)βα = SĨβ(γa)βα , (5.2.121)

(q2 + q−2)[1, 0, 0, 0, 0] : IαIβ(γa)αβ = ĨαĨβ(γa)αβ = 0 .

(5.2.122)

Expansion in the instanton fugacity
The highest weight generating function (5.2.109) can be expanded in the

instanton number fugacity q as

G[M̃1,E6 ](t;µ2, µ4, , µ5; q) =
1

(1− t2)(1− t2µ2)(1− t4µ4µ5)
×(∑

n≥0

qn(t2µ4)n +
∑
n<0

qn(t2µ5)−n
)
.

(5.2.123)

From this formula we see that the instanton operators of charge n are spin |n|
highest weight states under SU(2)R and transform in the n-spinor representation
[0, 0, 0, n, 0] of SO(10) for n > 0 and the conjugate |n|-spinor representation
[0, 0, 0, 0, |n|] for n < 0.

The dressing factor has the features previously encountered in that is gener-
ated by the classical operators Mab and S, subject to the relations

[2, 0, 0, 0, 0] + [0, 0, 0, 0, 0] : MabM bc = S2δac . (5.2.124)

Comparing this space to the moduli space of one SO(10) instanton given by
(5.2.3) and (5.2.4), it is clear that here the rank-2 condition (5.2.4) is missing
altogether. As we have explained in the previous case, this can be at once read
off from the relations (5.2.116)-(5.2.122), by keeping only the ones which are not
corrected by instanton bilinears. The classical dressing is a space of dimension
21 and again, by adding the contribution from the sum over instantons, we
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recover the correct 22-dimensional moduli space of one E6 instanton.

5.2.8 Nf = 6

The Hilbert series of M̃1,E7 can be written as

H[M̃1,E7 ](t;x) =
∞∑
n=0

 0

n 0 0 0 0 0


x

t2n . (5.2.125)

The E7 representations can be decomposed into those of SO(12)× U(1) using
the projection matrix:

PE7→D6×U(1) =



0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

−2 −2 −3 −4 −3 −2 −1



. (5.2.126)

Under the action of this matrix, the fugacities x of E7 are mapped to the
fugacities y of SO(12) and the fugacity q of U(1) as

x =

(
1

q2
,
y6

q2
,
y5

q3
,
y4

q4
,
y3

q3
,
y2

q2
,
y1

q

)
. (5.2.127)

We then have the following highest weight generating function:

G[M̃1,E7 ](t;µ2, µ4, µ5; q)

= PE
[(

1 + µ2 + µ5(q + q−1) + (q2 + q−2)
)
t2 + µ4t

4
]
,

(5.2.128)

where at order t2 we recognise the contributions of: S, which is a singlet of
SO(12); the instanton and the anti-instanton operators with U(1)I charge ±1

in the spinor representation [0, 0, 0, 0, 1, 0]; the instanton and the anti-instanton
operators with U(1)I charge ±2 which are singlets of SO(12); the meson in
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the adjoint representation [0, 1, 0, 0, 0, 0]. In addition there is a fourth-rank
antisymmetric tensor of SO(12) at order t4.

The generators and their relations
The expansion up to order t4 of (5.2.128) is given by

H[E7](t;x, q)

= 1 +
(

1 + [0, 1, 0, 0, 0, 0] + (q + q−1)[0, 0, 0, 0, 1, 0] + (q2 + q−2)
)
t2

+
(

2 + [0, 2, 0, 0, 0, 0] + [0, 0, 0, 0, 2, 0] + [0, 0, 0, 1, 0, 0] + [0, 1, 0, 0, 0, 0]

+ (q + q−1)(2[0, 0, 0, 0, 1, 0] + [0, 1, 0, 0, 1, 0])

+ (q2 + q−2)(1 + [0, 0, 0, 0, 2, 0] + [0, 1, 0, 0, 0, 0])

+ (q3 + q−3)[0, 0, 0, 0, 1, 0] + (q4 + q−4)
)
t4 + . . . . (5.2.129)

The plethystic logarithm of this Hilbert series is given by

PL [H[E7](t;x, q)]

=
(

1 + [0, 1, 0, 0, 0, 0] + (q + q−1)[0, 0, 0, 0, 1, 0] + (q2 + q−2)
)
t2−

−
(

2 + [0, 0, 0, 1, 0, 0] + [0, 1, 0, 0, 0, 0] + [2, 0, 0, 0, 0, 0]

+ (q + q−1)([0, 0, 0, 0, 1, 0] + [1, 0, 0, 0, 0, 1]) + (q2 + q−2)[0, 1, 0, 0, 0, 0]
)
t4 + . . . .

(5.2.130)

For SO(12), we use a, b, c, d = 1, . . . , 12 to denote vector indices, α, β, ρ, σ =

1, . . . , 32 to denote indices of the spinor representation [0, 0, 0, 0, 1, 0], and
α̇, β̇, ρ̇, σ̇ = 1, . . . , 32 to denote indices of the conjugate spinor representation
[0, 0, 0, 0, 0, 1]. The spinor representation of SO(12) is pseudoreal, hence all
contractions of the spinor indices are made with the epsilon tensor, which takes
the forms

εαβ or εαβ or εα̇β̇ or εα̇β̇ . (5.2.131)

Gamma matrices γa take the forms

(γa)αβ̇ . (5.2.132)
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The product of two gamma matrices has the following forms:

(γab)αβ ≡ (γ[a)αα̇(γb])ββ̇ε
α̇β̇ and (γab)α̇β̇ ≡ (γ[a)αα̇(γb])ββ̇ε

αβ , (5.2.133)

where the spinor indices are symmetric. The product of four gamma matrices
has the following forms:

(γabcd)ασ ≡ (γ[a)αα̇(γb)ββ̇(γc)ρρ̇(γ
d])σσ̇ε

α̇β̇εβρερ̇σ̇ (5.2.134)

(γabcd)α̇σ̇ ≡ (γ[a)αα̇(γb)ββ̇(γc)ρρ̇(γ
d])σσ̇ε

αβεβ̇ρ̇ερσ , (5.2.135)

where the spinor indices are antisymmetric.
The generators of the moduli space areMab, which is a 12×12 antisymmetric

matrix, the instanton operators Iα1+, I
α
1− and I2+, I2−, and the glueball superfield

S.
From (5.2.130), we have the following sets of relations:

[2, 0, 0, 0, 0, 0] + [0, 0, 0, 0, 0, 0] : MabM bc = (Iα1+εαβI
β
1−)δac (5.2.136)

[0, 0, 0, 1, 0, 0] : M [a1a2Ma3a4] = Iα1+I
β
1−(γa1···a4)αβ

(5.2.137)

[0, 0, 0, 0, 0, 0] : S2 + I2+I2− = Iα1+I
β
1−εαβ (5.2.138)

[0, 1, 0, 0, 0, 0] : SMab = Iα1+I
β
1−(γab)αβ (5.2.139)

(q2 + q−2)[0, 1, 0, 0, 0, 0] : I2±M
ab = Iα1±I

β
1±(γab)αβ (5.2.140)

(q + q−1)([1, 0, 0, 0, 0, 1] + [0, 0, 0, 0, 1, 0]) : MabIα1±(γb)αβ̇ = (SIα1± + I2±I
α
1∓)(γa)αβ̇ .

(5.2.141)

To aid computations it is useful to rewrite (5.2.129) and (5.2.130) in terms of
characters of SO(12)× SU(2). The reader can find the relevant formulae in
Appendix B.2.
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Expansion in the instanton fugacity
The highest weight generating function (5.2.128) can be expanded in powers

of the instanton number fugacity q as

G[M̃1,E7 ](t;µ2, µ4, µ5; q)

=
1

(1− t2)(1− µ2t2)(1− µ4t4)(1− µ2
5t

4)(1− t4)

∑
m∈Z

(t2µ5)|m|qm
∑
n∈Z

t2|n|q2n

= PE[(µ2
5 + 1 + µ2)t2 + µ4t

4 + µ2
5t

6]

×
(1 + µ2

5t
4

1− t4
∑

m even

t|m|qm − (tµ5)2

1− µ2
5t

4

∑
m even

µ
|m|
5 t2|m|qm

+
(1 + t2)µ5t

1− t4
∑
m odd

t|m|qm − (tµ5)2

1− µ2
5t

4

∑
m odd

µ
|m|
5 t2|m|qm

)
.

(5.2.142)

The first equality is a q expansion in terms of a double sum. This separates
the classical dressing from the one and two instanton contributions. It is
precisely the presence of both types of instantons as quadratic generators that,
for Nf > 5, complicates the features of the q expansion in terms of a one sum
only. We still write such an expansion in the second equality, splitting it into
odd and even terms.

5.2.9 Nf = 7

The Hilbert series of M̃1,E8 can be written as

H[M̃1,E8 ](t;x) =

∞∑
n=0

 0

0 0 0 0 0 0 n


x

t2n . (5.2.143)
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The E8 representations can be decomposed into those of SO(14)× U(1) using
the projection matrix

PE8→D7×U(1) =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

−4 −5 −7 −10 −8 −6 −4 −2



. (5.2.144)

Under the action of this matrix, the fugacities x of E8 are mapped to the
fugacities y of SO(14) and the fugacity q of U(1) as

x =

(
1

q4
,
y7

q5
,
y6

q7
,
y5

q10
,
y4

q8
,
y3

q6
,
y2

q4
,
y1

q2

)
. (5.2.145)

We then have the following highest weight generating function:

G[M̃1,E8 ](t;µ; q) = PE

[
t2
(
1 + µ2 + µ6q + µ7q

−1 + µ1(q2 + q−2)
)

+ t4
(
1 + µ2 + µ4 + µ6q + µ7q

−1 + µ3(q2 + q−2)
)

+ t6
(
µ4 + µ5(q2 + q−2)

) ]
.

(5.2.146)

The generators and their relations
The Hilbert series of the reduced moduli space of 1 E8 instanton can be

written in terms of characters of SO(14)× U(1) as

H[E8](t;x, q)

= 1 +
(

(1 + [0, 1, 0, 0, 0, 0, 0]) + [0, 0, 0, 0, 0, 1, 0]q + [0, 0, 0, 0, 0, 0, 1]q−1
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+ [1, 0, 0, 0, 0, 0, 0](q2 + q−2)
)
t2 +

(
2 + [0, 0, 0, 0, 0, 1, 1] + [0, 0, 0, 1, 0, 0, 0]

+ 2[0, 1, 0, 0, 0, 0, 0] + [0, 2, 0, 0, 0, 0, 0] + [2, 0, 0, 0, 0, 0, 0]

+ (2[0, 0, 0, 0, 0, 1, 0] + [0, 1, 0, 0, 0, 1, 0] + [1, 0, 0, 0, 0, 0, 1])q

+ (2[0, 0, 0, 0, 0, 0, 1] + [0, 1, 0, 0, 0, 0, 1] + [1, 0, 0, 0, 0, 1, 0])q−1

+ ([0, 0, 0, 0, 0, 2, 0] + [0, 0, 1, 0, 0, 0, 0] + [1, 0, 0, 0, 0, 0, 0] + [1, 1, 0, 0, 0, 0, 0])q2

+ ([0, 0, 0, 0, 0, 0, 2] + [0, 0, 1, 0, 0, 0, 0] + [1, 0, 0, 0, 0, 0, 0] + [1, 1, 0, 0, 0, 0, 0])q−2

+ [1, 0, 0, 0, 0, 1, 0](q3 + q−3) + [2, 0, 0, 0, 0, 0, 0](q4 + q−4)
)
t4 + . . . .

(5.2.147)

The plethystic logarithm of this Hilbert series is given by

PL [H[E8](t;x, q)]

=
(

(1 + [0, 1, 0, 0, 0, 0, 0]) + [0, 0, 0, 0, 0, 1, 0]q + [0, 0, 0, 0, 0, 0, 1]q−1

+ [1, 0, 0, 0, 0, 0, 0](q2 + q−2)
)
t2 −

(
2 + [2, 0, 0, 0, 0, 0, 0] + [0, 0, 0, 1, 0, 0, 0] + [0, 1, 0, 0, 0, 0, 0]

+ ([0, 0, 0, 0, 0, 1, 0] + [1, 0, 0, 0, 0, 0, 1])q + ([0, 0, 0, 0, 0, 0, 1] + [1, 0, 0, 0, 0, 1, 0])q−1

+ ([0, 0, 1, 0, 0, 0, 0] + [1, 0, 0, 0, 0, 0, 0])(q2 + q−2)

+ [0, 0, 0, 0, 0, 0, 1]q3 + [0, 0, 0, 0, 0, 1, 0]q−3 + (q4 + q−4)
)
t4 + . . . .

(5.2.148)

It is also useful to write the Hilbert series written in terms of characters of
representations of SO(16):

H[E8](t; z)

= 1 + ([0, 0, 0, 0, 0, 0, 0, 1] + [0, 1, 0, 0, 0, 0, 0, 0])t2+

(1 + [0, 0, 0, 0, 0, 0, 0, 1] + [0, 0, 0, 0, 0, 0, 0, 2]

+ [0, 0, 0, 1, 0, 0, 0, 0] + [0, 1, 0, 0, 0, 0, 0, 1] + [0, 2, 0, 0, 0, 0, 0, 0])t4 . . . .

(5.2.149)

The plethystic logarithm of this Hilbert series is

PL[H[E8](t; z)]

= ([0, 0, 0, 0, 0, 0, 0, 1] + [0, 1, 0, 0, 0, 0, 0, 0])t2 −
(

1 + [0, 0, 0, 1, 0, 0, 0, 0]

+ [1, 0, 0, 0, 0, 0, 1, 0] + [2, 0, 0, 0, 0, 0, 0, 0]
)
t4 + . . . .

(5.2.150)
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Note that the spinor representation [0, 0, 0, 0, 0, 0, 0, 1] of SO(16) branches
to those of SO(14)× U(1) as

[0, 0, 0, 0, 0, 0, 0, 1] −→ [0, 0, 0, 0, 0, 0, 1]−1 + [0, 0, 0, 0, 0, 1, 0]+1 , (5.2.151)

corresponding to the charge ±1 instanton operators I1− and I1+, whereas the
field X in the adjoint representation [0, 1, 0, 0, 0, 0, 0, 0] of SO(16) contains the
charge ±2 instanton operators I2+, I2−, the glueball superfields S and the
meson M .

Thus, one independent singlet at order t4 of (5.2.149) implies that I1+I1− is
proportional to the singlet formed by I2+, I2−, S and M in X. The adjoint
field X of SO(16) satisfies the matrix relation

X2 = 0 , (5.2.152)

transforming in the rank two symmetric representation [2, 0, 0, 0, 0, 0, 0, 0] +

[0, 0, 0, 0, 0, 0, 0, 0] of SO(16). This representation branches into those of
SO(14)× U(1) as

[2, 0, 0, 0, 0, 0, 0, 0] −→ 1 + [0, 0, 0, 0, 0, 0, 0]−4 + [0, 0, 0, 0, 0, 0, 0]+4

+ [1, 0, 0, 0, 0, 0, 0]−2 + [1, 0, 0, 0, 0, 0, 0]+2 + [2, 0, 0, 0, 0, 0, 0]0.

(5.2.153)

Upon expanding (5.2.152) in components, we see that the vanishing components
(X2)15,15, (X2)16,16 and (X2)15,16 imply that

Ia2+I
a
2+ = 0 , Ia2−I

a
2− = 0 , S2 + Ia2+I

a
2− = 0 . (5.2.154)

These relations are collected in (5.2.164) and (5.2.174).
For future reference, the branching rule of the representation [1, 0, 0, 0, 0, 0, 1, 0]

of SO(16) to those of SO(14)× U(1) is

[1, 0, 0, 0, 0, 0, 1, 0] −→ [0, 0, 0, 0, 0, 0, 1]−3 + [0, 0, 0, 0, 0, 0, 1]+1 + [0, 0, 0, 0, 0, 1, 0]−1

+ [0, 0, 0, 0, 0, 1, 0]+3 + [1, 0, 0, 0, 0, 0, 1]−1 + [1, 0, 0, 0, 0, 1, 0]+1 ,

(5.2.155)
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and the branching rule of the representation [0, 0, 0, 1, 0, 0, 0, 0] of SO(16) is

[0, 0, 0, 1, 0, 0, 0, 0] −→ [0, 0, 0, 1, 0, 0, 0]0 + [0, 0, 1, 0, 0, 0, 0]−2 + [0, 0, 1, 0, 0, 0, 0]+2

+ [0, 1, 0, 0, 0, 0, 0]0 . (5.2.156)

For SO(14), we use a, b, c, d = 1, . . . , 14 to denote vector indices and
α, β, ρ, σ = 1, . . . , 64 to denote the spinor indices. Note that the spinor repre-
sentation of SO(14) is complex. The delta symbol has the form

δαβ . (5.2.157)

The gamma matrices γa can take the following forms:

(γa)αβ or (γa)αβ , (5.2.158)

where the α, β indices are antisymmetric. The product of two gamma matrices
is

(γab)αρ ≡ (γ[a)αβ(γb])βρ . (5.2.159)

The product of three gamma matrices has the forms

(γabc)αρ ≡ (γ[a)αβ(γb)βσ(γc])σρ and (γabc)αρ ≡ (γ[a)αβ(γb)βσ(γc])σρ ,

(5.2.160)

symmetric in the spinor indices. The product of four gamma matrices is

(γabcd)αβ ≡ (γ[a)ασ1(γb)σ1σ2(γc)σ2σ3(γd])σ3β . (5.2.161)

The generators of the moduli space are Mab, which is a 14× 14 antisymmetric
matrix; the instanton operators Iα and Ĩα; and the gaugino superfield S.

The relations corresponding to order t4 of (5.2.148) are as follows:

[2, 0, 0, 0, 0, 0, 0] + [0, 0, 0, 0, 0, 0, 0] : MabM bc + I
(a
2+I

c)
2− = Iα1+(I1−)αδ

ac

(5.2.162)

[0, 0, 0, 1, 0, 0, 0] : M [a1a2Ma3a4] = (I1−)β(γa1···a4)βαI
α
1+

(5.2.163)

[0, 0, 0, 0, 0, 0, 0] : S2 + Ia2+I
a
2− = 0 (5.2.164)
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[0, 1, 0, 0, 0, 0, 0] : SMab + I
[a
2+I

b]
2− = Iα1+(I1−)β(γab)βα

(5.2.165)

q([0, 0, 0, 0, 0, 1, 0] + [1, 0, 0, 0, 0, 0, 1]) : MabIα1+(γb)αβ

= SIα1+(γa)αβ + Ia2+(I1−)β (5.2.166)

q−1([0, 0, 0, 0, 0, 0, 1] + [1, 0, 0, 0, 0, 1, 0]) : Mab(I1−)α(γb)αβ

= S(I1−)α(γa)αβ + Ia2−I
β
1+ (5.2.167)

q2[0, 0, 1, 0, 0, 0, 0] : M [abI
c]
2+ = Iα1+(γabc)αβI

β
1+ (5.2.168)

q−2[0, 0, 1, 0, 0, 0, 0] : M [abI
c]
2− = (I1−)α(γabc)αβ(I1−)β

(5.2.169)

q2[1, 0, 0, 0, 0, 0, 0] : MabIb2+ = SIa2+ (5.2.170)

q−2[1, 0, 0, 0, 0, 0, 0] : MabIb2− = SIa2− (5.2.171)

q3[0, 0, 0, 0, 0, 0, 1] : Ia2+I
α
1+(γa)αβ = 0 (5.2.172)

q−3[0, 0, 0, 0, 0, 0, 1] : Ia2−(I1−)α(γa)αβ = 0 (5.2.173)

(q4 + q−4)[0, 0, 0, 0, 0, 0, 0] : Ia2+I
a
2+ = Ia2−I

a
2− = 0 . (5.2.174)

Expansion in the instanton fugacity
The highest weight generating function (5.2.146) can be rewritten in terms

of an implicit expansion in q involving 5 sums:

G[M̃1,E8 ](t;µ; q) = PE
[

(1 + µ2) t2 + (1 + µ2 + µ4) t4 + µ4t
6
]

× PE
[
(µ6µ7 + µ2

1)t4 + (µ6µ7 + µ2
3)t8 + µ2

5t
12
]

×
( ∑
n1≥0

(µ6t
2q)n1 +

∑
n1<0

(µ7t
2)−n1qn1

) ∑
n2∈Z

(µ1t
2)|n2|q2n2

×
( ∑
n3≥0

(µ6t
4q)n3 +

∑
n3<0

(µ7t
4)−n3qn3

) ∑
n4∈Z

(µ3t
4)|n4|q2n4

∑
n5∈Z

(µ5t
6)|n5|q2n5 .

(5.2.175)

5.3 USp(4) with one antisymmetric hypermultiplet

In this theory, we pick the trivial value of the discrete theta angle for the
USp(4) gauge group. The Higgs branch at infinite coupling of this theory is
identified with the reduced moduli space of 2 SU(2) instantons on C2 [34],
whose global symmetry is SU(2)× SU(2). The Hilbert series is given by (3.14)
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of [71]. For reference, we provide here the explicit expression of the Hilbert
series up to order t6:

H[M̃2,SU(2)](t; y, x) = 1 + ([0; 2] + [2; 0])t2 + [1; 2]t3 + (1 + [0; 4] + [2; 2] + [4; 0])t4

+ ([1; 2] + [1; 4] + [3; 2])t5 + ([0; 2] + [0; 6] + [2; 0]

+ 2[2; 4] + [4; 2] + [6; 0])t6 + . . . . (5.3.1)

The plethystic logarithm of this expression is

PL
[
H[M̃2,SU(2)](t; y, x)

]
= ([0; 2] + [2; 0])t2 + [1; 2]t3 − t4 − ([1; 2] + [1; 0])t5

− ([2; 0] + [0; 2])t6 + . . . .

(5.3.2)

The corresponding highest weight generating function is (see (4.25) of [74])

G[M̃2,SU(2)](t;µ1, µ2) = PE
[
(µ2

1 + µ2
2)t2 + µ1µ

2
2t

3 + t4 + µ1µ
2
2t

5 − µ2
1µ

4
2t

10
]
,

(5.3.3)

where µ1 and µ2 are respectively the fugacities for the highest weights of the
SU(2) acting on the centre of instantons and the SU(2) associated with the
internal degrees of freedom.

Let us use the indices a, b, c, d = 1, 2 for the first SU(2) and i, j, k, l = 1, 2

for the second SU(2). The generators of the moduli space are as follows.

• Order t2: The rank two symmetric tensors Pab and Mij in the represen-
tation [2; 0] and [0; 2] of SU(2)× SU(2):

Pab = Pba , Mij = Mji . (5.3.4)

• Order t3: A doublet of rank two symmetric tensors (Aa)ij , with

(Aa)ij = (Aa)ji , (5.3.5)

in the representation [1; 2] of SU(2)× SU(2).

The singlet relation at order t4 can be written as

[0; 0]t4 : Tr(P 2) = Tr(M2) . (5.3.6)
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The relations at order t5 are

[1; 0]t5 : εii
′
εjj
′
(Aa)ijMi′j′ = 0 , (5.3.7)

[1; 2]t5 : εbb
′
Pab(Ab′)ij = εkk

′
Mik(Aa)k′j + (i↔ j) . (5.3.8)

The relations at order t6 are

[2; 0]t6 : Tr(P 2)Pab = εii
′
εjj
′
(Aa)ij(Ab)i′j′ , (5.3.9)

[0; 2]t6 : Tr(M2)Mij = εabεkk
′
(Aa)ik(Ab)k′j . (5.3.10)

Let us now rewrite the above statements in SU(2)× U(1) language. Up to
charge normalisation, we identify the Cartan subalgebra of the latter SU(2)

associated with µ2 with the U(1)I symmetry. More precisely, if w is the fugacity
associated to the Cartan generator of the latter SU(2), then q = w2 is the
fugacity for the topological symmetry. The highest weight generating function
can then be written as

G[M̃2,SU(2)](t;µ1; q) = PE
[(

1 + µ2
1 + (q + q−1)

)
t2 +

(
µ1 + µ1(q + q−1)

)
t3

− µ1t
5 − µ2

1t
6
]
.

(5.3.11)

This can be written as a power series in q as

G[M̃2,SU(2)](t;µ1; q) =
1

(1− t2) (1− t4) (1− µ1t)
(
1− µ2

1t
2
)

(1− µ1t3)
×

(
(1− µ2

1t
6)

∞∑
j=−∞

qjt2|j| −
(
1− t4

) ∞∑
j=−∞

qjt2|j|(µ1t)
|j|+1

)
.

(5.3.12)
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The Hilbert series up to order t6 can be written explicitly as follows:

H[M̃2,SU(2)](t; y, q) = 1 +
(

1 + [2] + (q + q−1)
)
t2 +

(
[1] + [1](q + q−1)

)
t3

+
(

2 + [2] + [4] + (1 + [2])(q + q−1) + (q2 + q−2)
)
t4

+
(

2[1] + [3] + (2[1] + [3])(q + q−1) + [1](q2 + q−2)
)
t5

+
(

2 + 3[2] + [4] + [6] + (2 + 2[2] + [4])(q + q−1)

+ (1 + 2[2])(q2 + q−2) + (q3 + q−3)
)
t6 + . . . .

(5.3.13)

The plethystic logarithm of this Hilbert series is given by

PL
[
H[M̃2,SU(2)](t; y, q)

]
=
(

1 + [2] + (q + q−1)
)
t2 +

(
[1] + [1](q + q−1)

)
t3 − t4

−
(

2[1] + [1](q + q−1)
)
t5 −

(
1 + [2] + (q + q−1)

)
t6

+ . . . . (5.3.14)

The generators. At order t2, the generators are

[2] : Pab with Pab = Pba , (5.3.15)

q, q−1, 1 : I, Ĩ, S . (5.3.16)

The generators Pab are identified as a product of two antisymmetric tensors:

Pab = Tr(XaXb) . (5.3.17)

At order 3, the generators are denoted by

q[1], q−1[1], [1] : Ja , J̃a , Ta . (5.3.18)

where the generators Ta are identified as a product of two gauginos and one
antisymmetric tensor

Ta = Tr (XaWW) . (5.3.19)

The relations. The relation at order t4 can be written as

[0]t4 : Tr(P 2) + S2 = IĨ . (5.3.20)
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The relations at order t5 can be written as

[1]t5 : STa = ĨJa + IJ̃a , (5.3.21)

q[1]t5 : PabJb′ε
bb′ + ITa + SJa = 0 , (5.3.22)

[1]t5 : PabTb′ε
bb′ + 2STa = 0 , (5.3.23)

q−1[1]t5 : PabJ̃b′ε
bb′ + ĨTa + SJ̃a = 0 . (5.3.24)

The relations at order t6 can be written as

[2]t6 : S2Pab + TaTb = J(aJ̃b) + IĨPab , (5.3.25)

qt6 : S2I = εabJaTb + I2Ĩ , (5.3.26)

t6 : S3 = εabJaJ̃b + SIĨ , (5.3.27)

q−1t6 : S2Ĩ = εabJ̃aTb + Ĩ2I . (5.3.28)

5.4 USp(2k) with one antisymmetric hypermultiplet

As in the previous sections, we pick the trivial value of the discrete theta
angle for USp(2k) gauge group. The Higgs branch of the conformal field theory
at infinite coupling is identified with the moduli space of k SU(2) instantons on
C2 [34]. Below we consider the moduli space of the theory at finite coupling.

For k = 1, the Higgs branch at finite coupling is

C2 × Z2 , (5.4.1)

where C2 is the classical moduli space of a USp(2) gauge theory with 1 anti-
symmetric hypermultiplet and Z2 is the moduli space generated by the glueball
superfield S such that S2 = 0. The Hilbert series is then given by

Hk=1(t;x,w) = H[Z2](t;w)H[C2](t;x)

= (1 + w2t2) PE
[
t(x+ x−1)

]
=

1 + w2t2

(1− tx)(1− tx−1)
,

(5.4.2)

where the fugacity w corresponds to the number of gaugino superfields.
For higher k, the theory in question can be realised as the worldvolume

theory of k coincident D4-branes on an O8− plane. Hence, the moduli space is
expected to be the k-th symmetric power of C2 × Z2, whose Hilbert series is
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given by

Hk(t, x, w) =

∮
|ν|=1

dν

2πiνk+1
exp

( ∞∑
m=1

νm

m
Hk=1(tm;xm, wm)

)

=
k∑
j=0

(wt)2jH[SymjC2](t, x)H[Symk−jC2](t, x) ,

(5.4.3)

where H[SymnC2](t, x) is the Hilbert series for the n-th symmetric power of
C2:

H[SymnC2](t, x) =

∮
|ν|=1

dν

2πiνn+1
exp

( ∞∑
m=1

νm

m

1

(1− tmxm)(1− tmx−m)

)
.

(5.4.4)

We tested the result for k = 2 directly from the field theory side using Macaulay2;
the details are presented in Appendix B.1.

Note that this result also holds for USp(2k) gauge theory with 1 antisym-
metric hypermultiplet and 1 fundamental hypermultiplet. This is because the
classical moduli space of this theory is the moduli space of k SO(2) instantons
on C2 — this space is in fact the k-symmetric power of the moduli space of 1

SO(2) instanton on C2, which is identical to C2.
Since the symmetric product Symk(C2×Z2) has a C2 component that can be

factored out, it is natural to define the Hilbert series H̃k(t;x,w) of the reduced
moduli space as follows:

Hk(t;x,w) = H[C2](t;x)H̃k(t;x,w) =
1

(1− tx)(1− tx−1)
H̃k(t;x,w) .

(5.4.5)

Examples

For k = 2, we have

H̃k=2(t, x, w) = (1 + w4t4)(1− t4) PE[(x2 + 1 + x−2)t2] + (wt)2 PE[(x+ x−1)t]

= 1 + ([2] + w2)t2 + [1]w2t3 + ([4] + [2]w2 + w4)t4 + ([3]w2)t5

+ ([6] + [4]w2 + [2]w4)t6 + . . . . (5.4.6)
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The plethystic logarithm of this Hilbert series is

PL[H̃k=2(t, x, w)]

= ([2] + w2)t2 + [1]w2t3 − t4 − [1](w2 + w4)t5 − ([2]w4 + w6)t6 + . . . .

(5.4.7)

For k = 3, we have

H̃k=3(t, x, w) = 1 + ([2] + w2)t2 + ([3] + [1]w2)t3 + (1 + [4] + 2[2]w2 + w4)t4

+ ([3] + [5] + ([1] + 2[3])w2 + [1]w4)t5 +
(

[2] + 2[6]

+ (1 + [2] + 3[4])w2 + 2[2]w4 + w6
)
t6 + . . . .

(5.4.8)

The plethystic logarithm of this Hilbert series is

PL[H̃k=3(t, x, w)] = ([2] + w2)t2 + ([3] + [1]w2)t3 + [2]w2t4 − [1]t5

−
(

[2] + (1 + [2])w2 + [2]w4
)
t6 + . . . .

(5.4.9)

General k.

For general k, we have two sets of generators transforming in:

1. representation [p] at order tp, for all 2 ≤ p ≤ k;

2. representation [p]w2 at order tp+2, for all 0 ≤ p ≤ k − 1;

these follow from the generators of the moduli space of two instantons, given
by section 8.5 of [1]. Explicitly, these generators are

Tr(Xa1Xa2),Tr(Xa1Xa2Xa3), . . . ,Tr(Xa1Xa2 · · ·Xak), (5.4.10)

Tr(WW), Tr(Xa1WW), Tr(X(a1
Xa2)WW) , . . . , Tr(X(a1

· · ·Xak−1)WW)

where a1, a2, . . . , ak = 1, 2. The set of relations with the lowest dimension
transform in the representation [k − 2] at order tk+2.

In the limit k →∞, the moduli space is thus freely generated by (5.4.10).12

A similar situation was considered in [66], where it was pointed out that the
generating function of multi-trace operators for one brane is equal to that of
single trace operators for infinitely many branes.

12We would like to express our thanks to Nick Dorey for his nice presentation at the
Swansea workshop and especially for discussing this point.
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5.5 Pure super Yang-Mills theories

For 5d N = 1 pure Yang-Mills theory, the Higgs branch at infinite coupling
takes a simple orbifold structure. Field theoretic and stringy arguments can be
provided for this statement.

In [49] it was argued by counting zero modes that for an SU(N) gauge group
the instanton operators transform in the spin-N2 representation of SU(2)R. In
[50] the result was generalised to arbitrary gauge groups. Using the observation
of [125] that the instanton contribution to the superconformal index is given
by an “SU(2)-covariantized" version of the Hilbert series, the SU(2)R spin of
instanton operators in pure Yang-Mills theories is given by 1

2h
∨
G, where h

∨
G is

the dual Coxeter number of the group G. It is then straightforward to construct
the relation between the instanton operators and the glueball operator:

Sh
∨
G = IĨ . (5.5.1)

which reduces to the standard nilpotency for S [64] at finite coupling where
the instanton operators are set to zero. The Higgs branch at infinite coupling
is thus the orbifold C2/Zh∨G .

For SU(N) pure Yang-Mills a stringy construction provides a complementary
viewpoint. For this therory, an SL(2,Z) transformation on the 5-brane web can
be exploited to set the charges of the external 5-brane legs to (p1, q1) = (N,−1)

and (p2, q2) = (0, 1). In this basis, the web can be depicted as follows (this
example is for N = 3):

(5.5.2)

At infinite coupling, the two 5-branes intersect and move apart, giving a one
quaternionic dimensional Higgs branch, which has a cone structure. Using the
classification of hyperKähler cones of dimension 1, the space has to be an ADE
singularity. The existence in the chiral ring of the operator S, which has spin-1
under SU(2)R, rules out the D and E cases, implying that the Higgs branch
has to be C2/Zm, for some m. The value of m can be deduced by considering
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the intersection number, which is given by:

p1q2 − p2q1 = N . (5.5.3)

The Higgs branch at infinite coupling is therefore C2/ZN .13

The generators of the Higgs branch at infinite coupling are I, S, Ĩ, singlets
under SU(N), and with U(1)I charge +1, 0 and − 1 respectively. For N > 2,
the isometry group of C2/ZN is identified with U(1)I . For N = 2, the isometry
of the Higgs branch is enhanced to SU(2) and the operators form a triplet
(I, S, Ĩ).

The construction can be generalised by means of orientifold planes [37] to
give analogous results for the case of classical gauge groups.

13We thank Cumrun Vafa for discussions about this point.



Chapter 6

Conclusion

The purpose of this thesis was to present techniques that allow for exploration
of vacuum varieties in supersymmetric gauge theories and the role that some
local operators that are not visible in the Lagrangian play in the structure of
the vacuum.

Firstly we explicitly showed how the structure of vacuum varieties displays
highly non-trivial behaviour even in its classical limit: a nice class of theories
was presented whose classical moduli space is the union of two cones. The
phenomenon is an interesting playground to show the links between the geometry
of the vacuum variety and representation theory. The following two chapters
were instead dedicated to quantum corrected moduli spaces.

In particular, chapter 4 was dedicated to proposing and testing a simple
formula for the Hilbert series of moduli spaces of pure Yang-Mills instantons,
which arise as Coulomb branches of three-dimensional N = 4 generalised
quiver gauge theories whose quiver diagrams are given by over-extended Dynkin
diagrams. A natural modification of the monopole formula for the Coulomb
branch Hilbert series introduced in [30] allowed for a comprehensive study of
instantons in all simple Lie groups, including the non-simply laced ones. The
proposal has been successfully tested against previous works for one and two
instantons and produced new results for higher instanton numbers. General
features of the moduli spaces of instantons can be systematically deduced from
the formalism here presented. It would be interesting to derive the explicit
ring structure of the moduli spaces by a careful analysis of monopole operators
through the results presented here and using the recent proposal of [143].

Some natural questions remain open. Firstly, it would be nice to derive the
formula from a path integral by folding the appropriate simply laced quiver via
an outer automorphism group. This would help to understand the Higgs branch
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of such quivers and compute superconformal indices [23, 28, 103, 104, 102] .
Secondly, the Coulomb branch formalism should also allow for the computation
of the hyperKähler metric on the moduli spaces of instantons [14, 15]. Indeed,
formulae (4.2)–(4.4) in [15] could be generalised to non-simply laced quivers by
inserting the multiplicity λ in the matter contribution to the metric in analogy
with (4.3.3). For classical groups, this suggestion can be tested against the
metric obtained from the hyperKähler quotient in the Higgs branch of the
corresponding ADHM quiver.

As far as the Higgs branch of 5d N = 1 theories are concerned, a coherent
picture for all values of the gauge coupling emerges in the work of chapter 5.
In particular, we have presented explicit relations that define the chiral ring
at infinite coupling and are consistent with those at finite coupling. A crucial
result of this work is the correction to the glueball superfield, S, which at finite
coupling is a nilpotent bilinear in the gaugino superfield and at infinite coupling
becomes an ordinary chiral operator on the Higgs branch.

For pure SU(2) theories with Nf ≤ 7 flavours a nice pattern was established.
The finite coupling relations involving mesons and the glueball operator are
corrected at infinite coupling by bilinears in the instanton operators, in the
obvious way dictated by representation theory. New relations also arise which
exist uniquely at infinite coupling.

By expanding the highest weight generating function of the Hilbert series
at infinite coupling in powers of q, we have analysed the dressing of instanton
operators by mesons and gauginos. For Nf ≤ 5 the defining equations for the
space associated to the dressing can be obtained by keeping the relations at
infinite coupling which are not corrected by the instanton operators. For Nf =

6, 7, the presence of charge ±2 instanton operators as generators independent
from the charge ±1 ones complicates the picture and leaves the interpretation
of the classical dressing in a preliminary and unsatisfactory stage.

The techniques developed here could also be applied to other 5d N = 1

theories with known Higgs branch at infinite coupling. We leave this to future
work. The long term goal is to better understand supersymmetric instanton
operators and their dressing from first principles and use such knowledge to
derive a general formula for the Hilbert series associated to the Higgs branch
at infinite coupling.

It is furthermore the hope of the author that the pedagogical presentation
strived for in this thesis can somewhat serve present and future researchers in
the quest for further developments in the field.
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Appendix A

A.1 The Hilbert series for k USp(2N) instantons for
odd k via Higgs branch

For higher number of instantons, the Hilbert series can be computed more
easily from the Higgs branch of the ADHM quiver. In particular for k odd the
Hilbert series is given by

gk,USp(2N)(t;x;u)

=
1

2

∑
ω=±1

∫
dµSO(k)(z) PE

[
ωχ

USp(2N)
[1,0,...,0] (u)χ

SO(k)
[1,0,...,0](z)t

+ (x+ x−1)(χ
SO(k)
[2,0,...,0](z) + 1)t− t2χSO(k)

[0,1,0,...,0](z)
]
, (k odd)

(A.1.1)

where for SO(k), the Dynkin labels [1, 0, . . . , 0], [2, 0, . . . , 0], [0, 1, 0, . . . , 0]

denotes the vector, the symmetric traceless, and the adjoint representations
respectively. Here ω corresponds to the parity action ±1 of O(k) = SO(k)×
{±1} for odd k. The Haar measure of SO(2k + 1) is given by∫

dµSO(2k+1)(z)

=

∮
|z1|=1

dz1

2πiz1
· · ·
∮
|zk|=1

dzk
2πizk

∏
1≤i<j≤k

(1− zizj)
(

1− ziz−1
j

) k∏
m=1

(1− zm) ,

(A.1.2)

where the adjoint representation is taken as

χ
SO(2k+1)
[0,1,0,...,0](z) =

∑
1≤i<j≤k

(
zizj + ziz

−1
j

)
+

k∑
m=1

zm (A.1.3)

The Hilbert series for the reduced moduli space of instantons is then given by

g̃k,USp(2N)(t;x;u) = (1− tx)(1− tx−1)gk,USp(2N)(t;x;u) . (A.1.4)
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A.2 Monopole operators and symmetry enhancement

A.2.1 G2

The relevant diagram for k G2 instantons is depicted below.

◦
1
− α0•

k
− α1◦

2k
V

α2◦
k

(A.2.1)

where the simple roots α0,α1,α2 are indicated above the nodes. The positive
roots of G2 are of the form c1α1 + c2α2, with (c1, c2) listed in Table A.1. For
each positive root, we tabulate the monopole operators associated with it.

Positive root R(α0) R(α1) R(α2)

(1, 0) (0) (1, 0) (0)

(0, 1) (0) (0, 0) (1)

(1, 1) (0) (1, 0) (1)

(1, 2) (0) (1, 0) (2)

(1, 3) (0) (1, 0) (3)

(2, 3) (0) (1, 1) (3)

Table A.1: Magnetic charges R(α)
i of the monopole operators that contribute

to each positive root α of G2 for k = 1 instanton.

A.2.2 F4

The relevant diagram for k F4 instantons is depicted below.

◦
1
− α0•

k
− α1◦

2k
− α2◦

3k
⇒ α3◦

2k
− α4◦

k
(A.2.2)

The 24 positive roots of F4 are of the form
∑4

i=1 ciαi, with (c1, . . . , c4) listed
in Table A.2. For each positive root, we tabulate the monopole operators
associated with it.
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Positive root R(α0) R(α1) R(α2) R(α3) R(α4)

(1, 0, 0, 0) (0) (1, 0) (0, 0, 0) (0, 0) (0)

(0, 1, 0, 0) (0) (0, 0) (1, 0, 0) (0, 0) (0)

(0, 0, 1, 0) (0) (0, 0) (0, 0, 0) (1, 0) (0)

(0, 0, 0, 1) (0) (0, 0) (0, 0, 0) (0, 0) (1)

(1, 1, 0, 0) (0) (1, 0) (1, 0, 0) (0, 0) (0)

(0, 1, 1, 0) (0) (0, 0) (1, 0, 0) (1, 0) (0)

(0, 0, 1, 1) (0) (0, 0) (0, 0, 0) (1, 0) (1)

(0, 1, 1, 1) (0) (0, 0) (1, 0, 0) (1, 0) (1)

(1, 1, 1, 0) (0) (1, 0) (1, 0, 0) (1, 0) (0)

(1, 1, 1, 1) (0) (1, 0) (1, 0, 0) (1, 0) (1)

(0, 1, 2, 0) (0) (0, 0) (1, 0, 0) (2, 0) (0)

(1, 1, 2, 0) (0) (1, 0) (1, 0, 0) (2, 0) (0)

(0, 1, 2, 1) (0) (0, 0) (1, 0, 0) (2, 0) (1)

(1, 2, 2, 0) (0) (1, 0) (1, 1, 0) (2, 0) (0)

(1, 1, 2, 1) (0) (1, 0) (1, 0, 0) (2, 0) (1)

(0, 1, 2, 2) (0) (0, 0) (1, 0, 0) (2, 0) (2)

(1, 2, 2, 1) (0) (1, 0) (1, 1, 0) (2, 0) (1)

(1, 1, 2, 2) (0) (1, 0) (1, 0, 0) (2, 0) (2)

(1, 2, 3, 1) (0) (1, 0) (1, 1, 0) (2, 1) (1)

(1, 2, 2, 2) (0) (1, 0) (1, 1, 0) (2, 0) (2)

(1, 2, 3, 2) (0) (1, 0) (1, 1, 0) (2, 1) (2)

(1, 2, 4, 2) (0) (1, 0) (1, 1, 0) (2, 2) (2)

(1, 3, 4, 2) (0) (1, 0) (1, 1, 1) (2, 2) (2)

(2, 3, 4, 2) (0) (1, 1) (1, 1, 1) (2, 2) (2)

Table A.2: Magnetic charges R(α)
i of the monopole operators that contribute

to each positive root α of F4 for k = 1 instanton.
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A.2.3 CN

The relevant diagram for k USp(2N) instantons is depicted below.

◦
1
− α0•

k
⇒ α1◦

k
− · · · −

αN−1◦
k︸ ︷︷ ︸

N−1 nodes

⇐ αN◦
k

(A.2.3)

where the simple roots are indicated above each node. The positive roots of
USp(2N) are

∆+ = {ei + ej}i<j ∪ {ei − ej}i<j ∪ {2ei}Ni=1 , (A.2.4)

where {ei} is the standard basis. The simple roots of USp(2N) can be written
as

α` = e` − e`+1 , 1 ≤ ` ≤ N − 1 ,

αN = 2eN .
(A.2.5)

The positive roots can be written in terms of the simple roots as

ei − ej =

j−1∑
`=i

α` ,

2ei = 2
N−1∑
`=i

α` +αN ,

ei + ej =

j−1∑
`=i

α` + 2

N−1∑
`=j

α` +αN .

(A.2.6)

The magnetic charges R(α)
i of the monopole operators that contribute to

each positive root α of CN for k = 1 instanton are as follows:

• ei − ej : (1) from nodes αp with 1 ≤ p ≤ j − 1, and (0) from other nodes.

• 2ei: (0) from node α0, (2) from nodes αp with i ≤ p ≤ N − 1, and (1)

from node αN .

• ei + ej : (0) from node α0, (1) from node αp with 1 ≤ p ≤ j− 1, (2) from
node αq with j ≤ q ≤ N − 1, and (1) from node αN .
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A.2.4 BN

The relevant diagram for k SO(2N + 1) instantons is depicted below.

◦
1
− α0•

k
−
α1 ◦ k
|
◦
2k
α2

− α3◦
2k
− · · · −

αN−1◦
2k︸ ︷︷ ︸

N−3 nodes

⇒ αN◦
k

(A.2.7)

where the simple roots are indicated at each node. The positive roots of
SO(2N + 1) are

∆+ = {ei + ej}i<j ∪ {ei − ej}i<j ∪ {ei}Ni=1 , (A.2.8)

where {ei} is the standard basis. The simple roots of SO(2N + 1) can be
written as

α` = e` − e`+1 , 1 ≤ ` ≤ N − 1 ,

αN = eN .
(A.2.9)

The positive roots can be written in terms of the simple roots as

ei − ej =

j−1∑
`=i

α` ,

ei =

N∑
`=i

α` ,

ei + ej =

j−1∑
`=i

α` + 2

N∑
`=j

α` .

(A.2.10)

The magnetic charges of the monopole operators that contribute to each
positive root α of BN for any instanton number are as follows:

• ei: (1,0) from the nodes αp with i ≤ p ≤ N , and (0) from other nodes.

• ei − ej : (1,0) from the nodes αp with i ≤ p ≤ j − 1, and (0) from other
nodes.

• ei + ej : (1,0) from the nodes αp with i ≤ p ≤ j − 1, (12,0) from the
nodes αq with j ≤ q ≤ N − 1, (2) from the node αN .
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Appendix B

B.1 Hilbert series of chiral rings with gaugino super-
fields

In this appendix we present a method to compute the Hilbert series of the
Higgs branch at finite coupling. In this computation we include the classical
chiral operators as well as the gaugino superfield W.

In five dimensions, the gaugino λAI carries the USp(4) spin index A = 1, . . . , 4

and the SU(2)R index I = 1, 2. Since we focus on holomorphic functions, which
are highest weights of SU(2)R representations, we restrict ourselves to I = 1.
In 4d N = 1 language the fundamental representation of USp(4) decomposes
to [1; 0] + [0; 1] of SU(2)× SU(2). These are usually denoted by undotted and
dotted indices, respectively. Since the latter correspond to non-chiral operators
in the 4d N = 1 holomorphic approach, we adhere to the undotted SU(2)

spinor index. The gaugino superfield is henceforth denoted as Wα.
We will see that the 4d N = 1 formalism adopted in this appendix yields

results for the Hilbert series that are consistent with the chiral ring obtained by
setting instanton and anti-instanton operators to zero in the five-dimensional
UV fixed point, which is discussed in the Chapter 5.

B.1.1 SU(2) gauge theory with Nf flavours

Let us denote the chiral matter fields appearing in the Lagrangian by Qia, with
i = 1, . . . , 2Nf and a = 1, 2. The F -terms relevant to the classical Higgs branch
are1

εabεcdQiaQ
i
d = 0 . (B.1.1)

These relations are symmetric under the interchange of the indices b and c.
Now let us discuss the inclusion of the gaugino superfield (Wα)ab. Wα is

1Here and in Chapter 5 , our relations are valid in the chiral ring. As operator relations,
they hold up to a superderivative.
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adjoint valued and is chosen to be a traceless symmetric 2-index tensor:

εab(Wα)ab = 0 . (B.1.2)

Moreover, we impose the following conditions (see section 2 of [64]) :

Each component of (Wα)ab is an anti-commuting variable , (B.1.3)

εbc(Wα)ab(Wβ)cd + (β ↔ α) = 0 ∀ α, β = 1, 2, a, d = 1, 2, (B.1.4)

εbc(Wα)abQ
i
c = 0 ∀ α = 1, 2, a = 1, 2, i = 1, . . . , Nf . (B.1.5)

The condition (B.1.3) follows from the fact that the lowest component of
the gaugino superfield is fermionic. The relation (B.1.4) follows from gauge
invariance and supersymmetry. The relation (B.1.5) indicates how the gaugino
superfield acts on fundamental fields.

The Hilbert series of the ring of variables Qia, (Wα)ab subject to the conditions
(B.1.1), (B.1.2), (B.1.3), (B.1.4) and (B.1.5) can be computed using Macaulay2.
For reference, we provide the Macaulay2 code for the case of Nf = 3 in source
code (SC) 1.

After integrating over the SU(2) gauge group and restricting to the scalar
sector under the Lorentz group, we obtain the Hilbert series of the space

M̃1,SO(2Nf ) ∪ Z2 , (B.1.6)

where M̃1,SO(2Nf ) is the reduced moduli space of one SO(2Nf ) instanton on
C2 and Z2 is the moduli space generated by the glueball superfield S such that
S2 = 0

H[M̃1,SO(2Nf ) ∪ Z2](t;x, w) = H[Z2](t;w) +H[M̃1,SO(2Nf )](t;x)− 1

= w2t2 +

∞∑
p=0

[0, p, 0, . . . , 0]t2p ,

(B.1.7)

where the fugacity w counts the number of gaugino superfields W and x are
the fugacities of SO(2Nf ). The plethystic logarithm up to order t4 of this is

PL
[
H[M̃1,SO(2Nf ) ∪ Z2](t;x,w)

]
= ([0, 1, 0, . . . , 0] + w2)t2 −

(
1 + [2, 0, . . . , 0]

+ [0, 0, 0, 1, 0, . . . , 0] + w2[0, 1, 0, . . . , 0] + w4
)
t4 + . . . .

(B.1.8)
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This shows that the generators are the meson M ij = −M ji, in the adjoint
representation of SO(2Nf ), and the glueball S = − 1

32π2 TrWαWα, subject to
the relations

M ijM jk = 0 , M [ijMkl] = 0 , SM ij = 0 , S2 = 0 . (B.1.9)

SC 1: A Macaulay2 code to compute the Hilbert series of the ring of variables
Qia, (Wα)ab, with Nf = 3, subject to the conditions (B.1.1), (B.1.2), (B.1.3),
(B.1.4) and (B.1.5). Here we write Qia as Qai and (Wα)ab as wabα. The ring R
is multi-graded with respect to the following charges (in order): 1. the R-charge
associated with the fugacity t, 2. the number of gaugino superfields associated
with the fugacity w, 3. the weights of the SU(2) gauge group, and 4. the
weights of the SU(2) symmetry associated with the index α.
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B.1.2 USp(2k) gauge theory with one antisymmetric hyper-
multiplet

The analysis is similar to the previous subsection. Let us denote the antisym-
metric fields by Xij

a , where a = 1, 2 and i, j = 1, . . . , 2k are the USp(2k) gauge
indices. The F -terms associated to the classical Higgs branch is

Jii′Jjj′Jkk′ε
abXij

a X
k′i′
b = 0 , (B.1.10)

where Jij is the symplectic matrix associated with USp(2k).
For the gaugino superfield W ij

α (with α = 1, 2), we impose the conditions
[64]

W ij
α =Wji

α , (B.1.11)

each component of W ij
α is an anti-commuting variable , (B.1.12)

JjkW ij
(αW

kl
β) = 0, (B.1.13)

Jjk(W ij
α X

kl
a −Xij

a Wkl
α ) = 0 . (B.1.14)

After integrating over the USp(2k) gauge group and restricting to the scalar
sector under the Lorentz group, we obtain the Hilbert series of the space

Symk
(
C2 × Z2

)
, (B.1.15)

In particular, for k = 2, we recover the Hilbert series (5.4.6).

B.2 Nf = 6 in representations of SO(12)× SU(2)

Here we rewrite (5.2.129) and (5.2.130) in terms of characters of representations
of SO(12)× SU(2):

H[E7](t;x, y)

= 1 + ([0, 0, 0, 0, 0, 0; 2] + [0, 0, 0, 0, 1, 0; 1] + [0, 1, 0, 0, 0, 0; 0])t2

+ (1 + [0, 0, 0, 0, 0, 0; 4] + [0, 0, 0, 0, 1, 0; 1] + [0, 0, 0, 0, 1, 0; 3] + [0, 0, 0, 0, 2, 0; 2]

+ [0, 0, 0, 1, 0, 0; 0] + [0, 1, 0, 0, 0, 0; 2] + [0, 1, 0, 0, 1, 0; 1] + [0, 2, 0, 0, 0, 0; 0])t4

+ . . . . (B.2.1)
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The plethystic logarithm of (B.2.1) is

PL [H[E7](t;x, y)]

= ([0, 0, 0, 0, 0, 0; 2] + [0, 0, 0, 0, 1, 0; 1] + [0, 1, 0, 0, 0, 0; 0])t2 −
(

2 + [0, 0, 0, 1, 0, 0; 0]

+ [2, 0, 0, 0, 0, 0; 0] + [0, 0, 0, 0, 1, 0; 1] + [1, 0, 0, 0, 0, 1; 1] + [0, 1, 0, 0, 0, 0; 2]
)
t4

+ . . . . (B.2.2)

The representation [0, 0, 0, 0, 0, 0; 2] corresponds to I2+, I2− and S, [0, 0, 0, 0, 1, 0; 1]

to I1± and [0, 1, 0, 0, 0, 0; 0] to M . In the Hilbert series (B.2.1) there is only
one independent singlet at order t4: this means that the singlets coming from
these three sets of operators must be proportional to each other. These indeed
correspond to the trace part of (5.2.136) and the relation (5.2.138).
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Appendix C

C.1 The dual theory of Sp(n) with 2n flavours under
3d mirror symmetry

Since the Higgs branch of theories with 8 supercharges receives no quantum
corrections [9] and independent of the spacetime dimension, we can consider
the theories at hand to be defined in 3d with N = 4 supersymmetry. This
perspective is useful because 3d mirror symmetry [14] can then be exploited.
In so doing a dual theory, whose Coulomb branch is identical to the Higgs
branch we have studied, can be identified. This can be accomplished using the
brane engineering introduced in [16], through the generalisation by means of
orientifold planes in [106, 107] that allows for brane constructions for theories
with SO(2N) flavour symmetry.

The original gauge theory with SO(2N) flavour symmetry is best engineered
in its Coulomb branch, as here the brane picture is clear. A sequence of brane
moves allows for the Higgs branch to be reached. Subsequently S-duality on the
branes can be implemented, which corresponds to effecting 3d mirror symmetry
for the gauge theory on the world-volume of the branes. At this stage the brane
construction is depicting the 3d dual theory in its Coulomb branch. Thus, the
specifics of this dual gauge theory can now be read off from the branes.

The brane construction for Sp(k) with SO(2N) flavour symmetry can be
implemented in the following way. We take Type IIB and orientifold it by
means of an O5− along the 012789 directions, i.e we take the quotient R1,9/ΩZ2,
where Z2 acts by reversing each of the 3456 coordinates and Ω is the worldsheet
parity operator. We place a NS5 brane that stretches through the 012345
directions at some distance away on the positive s = 6 direction (w.r.t. the
orientifold position which we set as the origin). Moreover we add N D5 branes
that stretch through the same directions as the orientifold but again at some
distance away on the positive s = 6 direction. This configuration preserves
eight supercharges. k half-D3 branes can be added at any point along the 345
directions and stretching along the 0126 directions, without further breaking
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supersymmetry. The orientifold induces brane images to its left along the s = 6

direction, i.e one NS5 brane image and N D5 brane images, as well as opposite
images along the 345 directions, i.e k half-D3 brane images. Its action on the
field theory living on the world volume of the branes is to project out some
string states, leaving an SO(2N) gauge symmetry on the stack of D5-branes
and an Sp(k) gauge symmetry on the D3 branes. For an observer on the latter,
the result is an Sp(k) gauge theory with SO(2N) flavour symmetry. The brane
construction is sketched in Figure C.1.

N D5 images

O5−

N D5

k half-D3
images

k half-D3

NS5 image NS5

6

345
789

Figure C.1: Coulomb branch of Sp(k) with N flavours. Each black line
corresponds to a half-D3 brane. Here k = 2 and N = 8. The one presented
here is the double cover of the orientifold O5− theory.

Ensuring the D5 branes are positioned at the origin of the 345 directions, as
shown in Figure C.1, sets the masses to zero. In order to go to the origin of
the Coulomb branch the k D3 branes are shifted along the 345 directions so
that they touch the N D5 branes. We sketch this in Figure C.2.

When the D5 branes and the D3 branes sit at the same point on the 345
directions, the latter can maximally split, turning on all the moduli that
parametrise the Higgs branch. The splitting must take into account the fact
that the O5− projection doesn’t allow a D3 brane to stretch between a D5

brane and its mirror image .
Moreover, the maximally splitting of the D3 branes has to be achieved

supersymmetrically: the non supersymmetric s-configuration, namely more
than one D3 brane stretching between an NS5 and a D5 brane, is not allowed.
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Figure C.2: The origin of the moduli space for Sp(k) with N flavours: the 2k
half-D3 branes are at the same position as the N D5 branes and the O5− on
the 345 direction. On the left is the double cover of the origin of the moduli
space and on the right the physical space. The picture has been simplified: the
green dots represent D5 branes (and their images), the cross is the orientifold
plane and the blue line the NS5 brane (and its image).

Thus, if a D3 brane is already stretched between a D5 and an NS5 brane, the
“next" D3 brane can’t split there and has to stretch all the way to the next
available D5 brane. The resulting configuration is sketched in (a) of Figure C.3
.

The last step is executed for convenience: the NS5 brane can be moved across
the D5 branes intervals 2k times: each such time a D3 brane is destroyed. The
result is sketched in (b) of Figure C.3.

(a) (b)

Figure C.3: The Higgs branch is achieved by maximally breaking the D3 branes
between the D5 branes. Near the orientifold plane, the right projection must
be adopted, i.e. D3 branes cannot stretch between a D5 brane and its image.
At the NS5 end of the system, caution must also be used: a supersymmetric
configuration is achieved when at most one D3 brane stretches between a D5
and an NS5 brane. A D3 brane that stretches leftward from the NS5 brane
towards a D5 brane can end on the latter provided it is the first to do so:
otherwise it must continue onwards to the next left D5 brane. This is how the
configuration sketched in (a) is achieved. There is still freedom to move the
NS5 brane across the D5 branes, as this does not affect the moduli space. Each
motion of the NS5 across a D5 brane results in the annihilation of a D3 brane.
Moving the NS5 brane across 2k intervals results in the set-up of (b)

Now that the Higgs branch of Sp(k) with N flavours has been engineered
via branes, mirror symmetry in the form of S-duality can be performed: it
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acts by converting NS5 branes into D5 branes and vice versa, D3 branes into
themselves and the O5− into an ON−. The resulting brane construction is
sketched in Figure C.4 (a). After mirror symmetry the Higgs branch of the
original theory is exchanged with the Coulomb branch of the new dual theory:
so the configuration of branes in Figure C.4 (a) depicts the Coulomb branch of
the mirror theory.

But from branes engineering Coulomb branches it is easy to read off the
associated quiver gauge theory: in so doing we obtain the quiver in Figure C.4
(b), which corresponds to the dual theory of Sp(k) with N flavours and repro-
duces the mirror quiver appearing in [107]. The SO(2N) symmetry in this
dual theory is manifest: the quiver is the flavoured, balanced (in the sense of
[81]1), DN Dynkin diagram, with ranks as in the figure. It is precisely the set
of balanced nodes that forms the Dynkin diagram of the global symmetry on
the Coulomb branch.

(a)

ON− NS5

k

2k 2k

D5

2

k

1

◦
k
−
◦ k
|
◦
2k
− · · · −

�1
|
◦
2k︸ ︷︷ ︸

N−2k−1 nodes

− ◦
2k−1

− · · · − ◦
2
− ◦

1

(b)

Figure C.4: (a) The brane set up for the Coulomb branch of the mirror dual of
Sp(k) with 2N flavours. (b) The resulting quiver gauge theory can be read off
directly from the branes.

The most relevant part in our discussion is to examine the limit cases, namely
the instances where the number of flavours N approaches the number of colours
2k. The most general quiver occurs when there is at least one node with rank
2k. The limiting cases can be thus obtained by setting N − 2k − 1 = 1, 0,−1

1for each node Nf = 2Nc
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respectively. We tabulate these in Table C.1.

Flavours Branes Quivers

N = 2k + 2

ON− NS5

k

2k

D5

2

k

1 ◦
k
−
◦ k
|
◦
|
�1

2k
− · · · − ◦

2
− ◦

1

N = 2k + 1

ON− NS5

k

2k − 1

D5

2

k

1

�
1
− ◦

k
−

�1
|
◦ k
|
◦

2k−1
− · · · − ◦

2
− ◦

1

N = 2k

ON− NS5

k

2k − 2 2

k − 1

1

�
2
− ◦

k
−
◦ k−1
|
◦

2k−2
− · · · − ◦

2
− ◦

1

Table C.1: The quivers associated to theories where N approaches 2k. The
quiver in the first line falls into the general class since there is one node with
rank 2k: it is precisely this one that gets flavoured. When the last node in the
linear chain is 2k − 1, the D5 brane gives a U(1) flavour symmetry to both the
spinor nodes. Lastly, for N = 2k, the flavour node has moved all the way to
frame one of the two spinor nodes.

The last row of the table is the case we are interested in. To make contact
with the previous section it is useful to let N = 2n. Then the quiver theory
in the last row corresponds then to the case n = k and is precisely the mirror
dual of Sp(n) with 2n flavours. The Coulomb branch of the former should
be isomorphic to the Higgs branch of the latter. The Hilbert series for the
ring of invariants on the Coulomb branch can be studied using the techniques
introduced in [30]. Let’s take the simplest example of n = 1. This degenerate
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case corresponds to the quiver:

�
2
− ◦

1

i.e. U(1) with 2 flavours. The Coulomb branch of this theory is C2/Z2, which
means we recover only one of the two (identical) cones that contribute to the
Higgs branch of SU(2) with 2 flavours.

Computing the Hilbert series of the Coulomb branch for higher values of n,
the same conclusion is reached: not the union, but only a single hyperKähler
cone is obtained. This can be understood by recognising that the flavour node
in the flavoured D2n quiver reaches one of the spinor roots of the Dynkin
diagram. But flavouring the cospinor node is an equally allowed choice and the
Coulomb branch associated to this quiver corresponds to the second cone that
makes up the variety. The brane construction reflects the ambiguity: the two
spinor representations are equivalent and physically undistinguishable.

This class of theories is quite special. Three-dimensional mirror symmetry
has here a very awkward realisation: on the one side a single quiver, whilst on
the other side two different quivers, equivalent by relabelling. It is nonetheless
a legitimate pair, if for no other reason than the fact that it is the natural limit
of a standard family of mirror pairs.

Field-theoretically the waters are still murky: what is the precise Lagrangian
for the mirror theory of Sp(n) with 2n flavours?
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Appendix D

D.1 Chiral ring of SU(nc) with Nf flavours

The representations for the relations of SU(nc) with Nf with Nf ≥ 2nc are
tabulated below.

−t4 ([1, 0, . . . , 0, 1] + [0, . . . , 0])

−tnc+2 unc
(

[1, 0, . . . , 0, 1
(nc−1)th

, 0, . . . , 0] + [0, . . . , 0, 1
(nc+1)th

, 0, . . . , 0, 1]

+ [0, . . . , 0, 1
(nc)th

, 0, . . . , 0]

)
−tnc+2 u−nc

(
[0, . . . , 0, 1

(Nf−nc+1)th
, 0, . . . , 0, 1] + [1, 0, . . . , 0, 1

(Nf−nc−1)th
, 0, . . . , 0]

+ [0, . . . , 0, 1
(Nf−nc)th

, 0, . . . , 0]

)

−t2ncu2nc

(
[0, . . . , 0, 1

(nc−2)th
, 0, . . . , 0, 1

(nc+2)th
, 0, . . . , 0]

+ [0, . . . , 0, 1
(nc−4)th

, 0, . . . , 0, 1
(nc+4)th

, 0, . . . , 0] + · · ·
)

−t2ncu−2nc

(
[0, . . . , 0, 1

(Nf−nc−2)th
, 0, . . . , 0, 1

(Nf−nc+2)th
, 0, . . . , 0]

+ [0, . . . , 0, 1
(Nf−nc−4)th

, 0, . . . , 0, 1
(Nf−nc+4)th

, 0, . . . , 0] + · · ·

)

−t2nc
(

[0, . . . , 0, 1
(nc)th

, 0, . . . , 0, 1
(Nf−nc)th

, 0, . . . , 0]

+[0, . . . , 0, 1
(nc−1)th

, 0, . . . , 0, 1
(Nf−nc+1)th

, 0, . . . , 0] + · · ·

+ [1, 0, . . . , 0, 1] + [0, . . . , 0]
)
*

Table D.1: Relations for the Higgs branch of 4d N = 2 SU(nc) with Nf

flavours.
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*This is not the full story. Because of higher syzygies the representations
uncharged under U(1)B at t2nc are slightly modified according to whether nc is
odd or even. For nc odd the representation −t2nc [1, 0, . . . , 0, 1], i.e. the adjoint
in the last line of the table, does not appear in the PL. It is screened by an
adjoint coming with a plus sign (a higher syzygy). On the other hand for even nc
the representations [1, 0, . . . , 0, 1]+[0, . . . , 0] on the last line appear twice rather
than once as indicated on the table! Again, a higher syzygy adjoint and singlet
show up, both with a minus sign, thus adding two (spurious) contributions to
the set of relations.
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