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Synopsis

Relativistic heavy ion collision experiments (e.g. at RHIC, LHC) provide
us the opportunity to produce the deconfined phase of quantum chromo dynamics
(QCD), known as quark gluon plasma (QGP). QGP also existed in the early Universe,
when the universe was a few microsecond old. Relativistic heavy ion collisions, where
QGP phase is produced for a very short time is the only lab experiment where the
condition similar to early Universe can be produced.

QCD, the theory of strong interaction is an SU(3) gauge theory. Here gauge
charges are color charges. Two most important prediction of QCD are asymptotic

freedom and confinement. The strong interaction coupling constant is given by,

4
(11 — 2ns/3) In (Q2%/A2?)

where A ~ 200 MeV is known as the QCD scale, ny is the number of flavors in

o, (Q%) = (0.1)

the theory and @?* is the momentum transfer . Since ny = 6, the coupling decreases
with the increase in the momentum transfer. At very high energy or large momen-
tum transfer «, asymptotically approaches zero and the interaction between quarks
and gluons becomes very weak so they can move almost freely. This phenomena is
known as asymptotic freedom [1,[2]. Other phenomena confinement comes from the
fact that experimentally we have never observed any colored particle as an isolated
physical state. Experimentally we have observed mesons and baryons which are color
singlet. Attractive interaction between a quark and an antiquark has a confining
part (apart from the Coulombic part) which increases with the separation between
Quark-Antiquark. This makes it impossible to separate a single quark or antiquark
from a hadron. This phenomena is known as quark confinement or in general as color
confinement.

QCD predicts that under suitable physical condition there should be a phase
transition between confined and deconfined matter. At extreme conditions of very
high energy density and/or baryon density, hadrons undergo a phase transition to a
deconfined phase, where quarks and gluons forget the identity of the hadron to which
they belong, and they can travel freely across a distance which is larger than typical
hadron size. Phase transitions are characterized by some order parameter, which takes

different values in different phases. For QCD, thermal expectation of Polyakov loop
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I[(z) [3] acts as an order parameter for confinement deconfinemnt phase transition.

exp <z’g /O ’ dTAO(x)) ] } (0.2)

where, Ay(Z,7) = AY(Z,7)T* (a = 1,...N) are the gauge fields and 7" are the gen-
erators of SU (V) in the fundamental representation. For QCD N = 3. P denotes

l(x) = Tr{P

the path ordering in the Euclidean time 7, 3 = T~(T is the temperature) and g is
the gauge coupling. [(7) is related to free energy of a test quark, (I(z)) = e #AF,
In confined phase free energy becomes infinite and order parameter vanishes and in
deconfined phase free energy becomes finite and [(x) also becomes finite. As the
QCD Lagrangian is invariant under any arbitrary SU(3) transformation, using the
periodicity of gauge field in euclidean time direction one can show that allowed trans-
formation for [ is l(z) — z x I(z). Here z is the element of Z(3) € SU(3), with
z=¢e"“ and ¢ = 0,27/3,47/3. As in confined phase [ vanishes, it respect Z(3) sym-
metry, whereas in the deconfined phase it takes finite value and Z(3) symmetry breaks
spontaneously. This leads to 3 degenerate vacua corresponding to [ = 1, e2™/3 ¢*i/3,
After symmetry breaking the order parameter field can choose any of the three vacua,
hence domains with different [ will be produced. The junction of different domains
gives rise to topological defects, known as Z(3) domain walls. We have calculated
the profile of these walls (I(z) profile) between different vacua. Using the effective
potential (at finite temperature) of Polyakov loop given by Pisarski [4], we have nu-
merically extracted [(z) profile by minimizing the energy [5]. We then extract the
profile of gauge field Ay associated with the Z(3) domain wall profile by inverting the
above equation for [(x). Using the I(z) profile and using diagonal gauge choice for Ay,
we have self consistently obtained the Aq profile [6]. It has been shown earlier that
this Ay profile associated with a Z(3) wall has CP violating effects [7-9]. This means
on interaction with the background field, quarks and antiquarks scatters differently.

There have been various signals proposed for the detection of QGP in relativistic
heavy-ion collisions. Though there is no single unique signal which allows a straight-
forward identification of the quark-gluon plasma phase. However, strong evidence
from several signals has been accumulating in support of the presence of the de-

confined phase of matter in heavy-ion collisions. Quarkonia suppression is one such

signature of QGP. Matsui and Satz [10] first proposed J/1) suppression as a signature
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of QGP. The conventional mechanism for quarkonia suppression is such that due to
the presence of QGP medium, potential between gg is Debye screened, resulting in
the swelling of quarkonia. If the Debye screening length of the medium is less than
the radius of quarkonia, then ¢¢g may not form bound states. Due to this melting,
the yield of quarkonia will be suppressed. In conventional mechanism if the temper-
ature (T') remains at certain value (7p) where Debye length is larger than the size
of quarkonia, then there will be no melting of quarkonia. Here we have discuss that
even the temperature remain below T, the quarkonia will melt in medium.

In first case we have shown that the C'P violating effects of background gauge
field associated with Z(3) walls can lead to disintegration of quarkonia. We consider
the quarkonia moving through the wall. As the interaction is CP violating, the quark
and antiquark of the system will be pulled apart from each other, this lead to spatial
excitation of the system. As the background gauge field Ay associated with the wall
carries color, the interaction also changes color composition of the system. We start
with color singlet J/¢ and consider the gauge field (A, profile) as perturbation and
calculate the transition to an octet y state. Using first order perturbation theory we
show that the transition probability rapidly increases with velocity or kinetic energy
of incoming quarkonia. As the octet states are not bound, they will melt in the
medium. Hence, yield of J/¢ will be suppressed [11].

There are certain conceptual issues in this scenario due to use of the C'P violating
gauge field associated with the profile of [(x). Thus it becomes important to study
whether heavy quarkonia disintegration due to the Z(3) domain walls essentially
requires such CP violating interaction. We consider the interaction of ¢ and g as in [5]
where the interaction is modeled in terms of an effective quark mass which depends
on the magnitude of I(x). Again using the space dependent mass as perturbation and
using first order perturbation theory we found that quarkonia on interaction with
Z(3) walls has non-zero probability of getting excited to higher states which are short
lived in the medium. This is happening because the perturbation acts on different
space time points for the quark and the antiquark in the system. As there is no color
charge associated with [(x) or m(z), we have only spatial excitation. In this case the
transition probability first increases with velocity and attains a maximum value and

again decreases. This behavior is a distinguishable feature of our model, which is not
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present in the conventional mechanism of quarkonia suppression.

In next work, we question the validity of the assumption of adiabatic evolution of
quarkonia states during thermalization which underlies the conventional mechanism
based on Debye screening. We show that during thermalization stage quarkonia can
get excited because of the time dependence of the potential between quark and an-
tiquark. In conventional mechanism the basic picture assumes that when potential
changes then quarkonia wave function modifies itself adiabatically. One then inves-
tigates whether such a quarkonium state is bound or not, depending on the Debye
screening. This assumption of adiabatic evolution requires that the time scale for
change in potential be large enough compared to the typical time scale associated
with the dynamics of the system, e.g. the time scale associated with energy gap be-
tween the successive energy states. At very high energy it is likely that thermalization
is achieved in a very short time of order 0.25 fm for RHIC and 0.1 fm for LHC [12].
Also elliptic flow data shows that thermalization achieves within 1 fm [13]. This time
scale is comparable to the time scale associated with energy gap. Thus the validity
of adiabatic evolution does not hold. The problem thus needs to be treated using
time dependent perturbation theory and one should calculate the survival probability
of quarkonia under this perturbation. Considering the thermalization time scale to
be small enough (from various estimates and elliptic flow data) we have used sudden
approximation. We found that even when temperature of QGP remains below Tp,
the quarkonium state decays with significant probability |14]. Survival probability
decreases with temperature of the medium. Also we have found that the probability
drops very significantly near Tp. We have also estimated the error in using first order
perturbation theory which is the probability that the initial quarkonium state does
not remain in the same state during the time period 7 (taken as 0.5 fm here) of
the change of the potential. This probability remains below 8 % for the thermal-
ization time used < 1 fm. This shows the validity of approximation of first order
perturbation theory for our calculations.

In conclusion, we have proposed alternative mechanisms of quarkonia suppression
in relativistic heavy-ion collisions which do not require temperature to necessarily
exceed the Debye temperature of the quarkonium state under consideration. Our

mechanisms have distinctive features which can be used to distinguish them from the
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conventional mechanism of quarkonia suppression.
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Chapter 1

Introduction

1.1 Journey From Molecule to Quark

The thirst for going deep inside matter started a long ago when molecule was proposed
as the smallest constituents of pure chemical substances. Then, chronologically, John
Dalton gave Atomic Theory, J. J. Thomson (1897) discovered electron, Rutherford
proposed substructure of atom as electron and heavy mass nucleus in 1911, then he
discovered proton (1917 — 1919, named by him, 1920), James Chadwick discovered
neutron in 1932. Subsequently, quark was discovered as elementary constituent of
matter [1,2]. This is clearly not the end, the search is still going on.

In the next two section we will discuss very briefly about Quantum Chromo Dy-
namics (QCD), the theory of strong interaction. We will also discuss different phases

and the phase diagram of QCD.

1.2 QCD, The Theory of Strong Interaction

In this section we will primarily follow references [3-5]. The quarks and gluons interact
with each other via strong interaction. The theory of strong interaction is QCD where
quarks and gluons are the fundamental particles which carry color charge. QCD
is a non-abelian gauge theory with gauge group SU(3). Quarks transform under
fundamental representation of SU(3) and carry three types of color charge, named

as red, blue and green, while antiquarks carry anti-color charges. The interaction



between quarks are mediated by gauge bosons, called gluons. There are 8 types of
gluons in QCD. They transformed as adjoint representation of SU(3). The Lagrangian
for QCD is written as,

1 _
£ = —1GaG + (1" Dy —m) ¥, (1)
where D), is called the covariant derivative and is given by,
D, =0, —igl,Aj. (1.2)

where T, are the generators of SU(3) in the fundamental representation. They satis-

fies the commutation relation
[T, T% = fobeTe, (1.3)

Here f¢ are the structure constants. G4 is the gluonic field strength tensor, which

is related to the commutator of covariant derivative as,

[DQ,DB] — igGop = igTy G, (1.42)

where Gy = 9, A% — 9 AL + gf ™ A® A, (1.4b)

The transformation of fields under SU(3) transformation U are given by

v = = U, (1.5a)
and T, A% > T, AL = UT, AU —i(9,0) U, (1.5b)

From the QCD Lagrangian one can easily see that there are self-interaction terms

for gluons like,
a rabc b pAuc 2 rabc palm Ab Ac l m
go, AL fC A ARC and g7 fUCfUT AL A AR AR

The corresponding Feynman diagrams have three point and four point vertices
for gauge bosons. This is a generic feature of every gauge theory (like QCD) with a
non-abelian gauge group that gauge fields have self interactions. Thus gluons carries
charge and self interact, unlike photons which are gauge bosons of an abelian gauge
theory with U(1) gauge group. This can also be seen directly by constructing Noether
charge for the gluon field.



One of the most important features of QCD is asymptotic freedom, that follows

from running coupling constant of QCD

2 47
(@) = AT =20, /3y (@278 (1.6

where A ~ 200 MeV is known as the QCD scale and n; is the number of flavors in

the theory. Since ny = 6, the coupling decreases with the increase in the momentum
transfer Q2. So at very large momentum transfer, the coupling constant approaches
to very small value. This phenomenon is known as asymptotic freedom of QCD [6,7].
Hence, at very high energy and/or small distances (thus high density) the quarks
and gluons should move freely. The above expression also shows that for low energy,
coupling constant becomes very high, that means the interaction becomes stronger

at large distance.

1.3 Color Confinement

Quarks and gluons are not observed experimentally as isolated particles. They are
bound into hadrons, namely, mesons which are quark-antiquarks bound states, and
baryons which are bound states of three quarks. As gluons self-interact, one also
expects bound states consisting only of gluons, named as glueballs. However so far
there is no clear experimental evidence of these objects. Absence of isolated quarks
and gluons is related to another remarkable property of QCD, that the the color force
between a quark and antiquark inside a hadron is not only Coulomb like, there is a
confining part which increases with distance. This confining part comes from multi
gluon exchange between quarks. This makes impossible to remove a quark from a
hadron. This phenomena is known as color confinement. There is no theoretical proof
for this yet (apart from lattice gauge theory). In this case the perturbative treatment,
based on an expansion in powers of the coupling constant, is not valid. So to explain

confinement a non-perturbative treatment is needed.



1.3.1 Bag Model of Confinement

A phenomenological model which is very useful for studying non perturbative quark-
gluon system is M.I.T. bag model [§]. This takes into account both the asymptotic
freedom and color confinement. In this model a hadron has an internal structure
associated with quarks and the gluon fields which are taken to be localized in a
spatial region. This region is called a bag. Quarks are treated as massless particles
inside a bag of finite dimension, and are infinitely massive outside the bag. The kinetic
energy of quarks constitutes a pressure, pushing the bag outward which is balanced
by a bag pressure (B) which tries to pull them inward. Hence, in this model, finite
size hadron results from the balance between two pressures. The phenomenological
quantity, B, is introduced to take into account the non-perturbative color confining
aspect of QCD. The total color charge of the matter inside the bag must be colorless,
by virtue of the Gauss’s Law. With three different types of color, the only allowable
hadronic bags are colorless gqq and qq states. Glueballs are incorporated in this model
by considering gluonic fields confined inside the bag.

The simple picture can be used to estimate the bag pressure. With that one can
see how at extreme conditions of very high temperature and/or baryon density one
expects liberation of color charges leading to the formation of quark-gluon plasma

(QGP). For this we will primarily follow ref. [9],

1.3.2 Hadrons and the bag pressure

Consider massless fermions in a spherical cavity of radius R. The Dirac equation for

the fermions in that cavity is

vp =0 (1.7)
In Dirac’s representation
- I 0
0 —1I
and
; 0 o
v = .
—o' 0



Where [ is 2 x 2 unit matrix and o' are Pauli matrices. The wave function ) is

written as

(o
(e
where ¢, and ¥_ are 2 — d Dirac spinors. So Eq. becomes,

P =

P, —&P\ (v,

— :0
+¢.P —-P, | \y_

After solving the above equation we’ll have the ground state solution

B(F.t) = Yo (7 t) _ Af_ipotjo (Pr)x+
V(7 t) Ae= (G 7)1 (P"r) x+
where jo & j; are spherical Bessel functions, y+ are Dirac spinors and A is normal-
ization constant.

The confinement of quarks only requires that vector current j# = 1)y*4 should
vanish outside the cavity, that means the normal component of j# should be zero at
the surface of the bag which is taken to be at » = R. This implies, for a normal vector
n directing outward, n,j* = ¢n, ") = 0. Since in the instantaneous rest frame, ng

is zero and 77 is the ordinary unit vector normal to the surface of the cavity, it can be

shown that —iv,n#1 = . Hence Ynp = 0 This gives
jo(P'R) = j1(P°R). (1.8)

This has a solution
2.04

R

So the kinetic energy of a quark inside a bag is inversely proportional to the radius

P°R=204 or P’ = (1.9)

of the bag. (This is expected also from simple application of uncertainty principle).
Consider a system of N quarks inside a bag. Then the total energy of the system will
be,

E=""+4_mR*B. (1.10)

Where the last term comes from the contribution of the bag pressure. Equilibrium

radius can be found by minimizing total energy, leading to

1
1 . 4
Bt — (2 04N> L (1.11)

4 R
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Assuming the radius of a three 3 quark hadron (baryon) to be 0.8 fm, from Eq.
[L.11] one can calculate Bi = 206 MeV

For more detail discussion of bag model see reference |10]

1.4 Deconfinement in QCD and quark-gluon plasma

As we mentioned above, at very high energies and very short distances, quarks and
gluons are expected to move freely due to asymptotic freedom of QCD. This leads
to the expectation that at very high temperatures (with very high thermal kinetic
energies of quarks and gluons) and/or very high baryon densities (implying very short
distances), one should get a gas of weakly interacting quarks and gluons where color
charges are no more confined within hadronic length scales. Such a system of quarks
and gluons with liberation of color charges is called the quark-gluon plasma.

Perturbative calculation for deconfined phase of QCD give satisfactory results [11],
but most of those are in high temperature limit. For the values of temperatures
near the transition temperature, only reliable calculations are from lattice at zero
baryon chemical potential. There are few perturbative calculation for finite baryon
density also. Lattice calculations also have been performed for finite baryonic chemical
potential, though different techniques give varying estimates for the critical point etc.
Here we will discuss the matter at extreme conditions in the Bag model.

As we discussed, in the bag model hadrons are confined inside a bag which has
a definite finite size due to balance between bag pressure and the pressure resulting
from the particles inside the bag. If the parton number is increased inside the bag,
as will happen at high temperature 7', it will lead to increase in outward pressure.
Similarly, an increase in the density or baryon chemical potential upg will be expected
to increase the pressure due to larger Fermi momentum of partons. Hence one expects
that there will be a critical value of T" and/or pup above which the bag pressure can
not hold the partons. As a result a new phase of matter containing quarks and
gluons is possible in which liberated quarks and gluons are in thermal equilibrium.
The phase is known as the deconfined phase of partonic mater or the Quark-Gluon
Plasma. Using standard methods all the thermodynamic quantities can be calculated

considering a noninteracting system of massless quarks and gluons. In this ideal gas



limit, resulting expressions for pressure P, entropy density S, energy density £ and

number density n. are as follows, [12],

P = (gg + ggf) W;? + g—i <M§T2 + :—E) (1.12a)
S=2 <gg + ggf) ﬂjﬁ: + ‘i]—;ugT (1.12Db)

= (gg + ggf) W;? + %f (uﬁTQ + 2#_75*2) (1.12¢)
n = i’—; (un2 + Z—g) . (1.12d)

Where g, is degeneracy factor for gluons and gy is degeneracy factor for fermions.
tqy = 3pp is the quark chemical potential. We will consider two flavor degrees of
freedom, which is reasonable approximation up to RHIC energy, and we will discuss
the behavior of plasma in the two extreme regimes, at high temperature and at high

density.

1.4.1 Quark Gluon Plasma at High Temperature

For this we will take the case of zero baryon density, i.e. up = 0. Thus, the pressure
in this case is given by (Eq. [1.12p),

7T2 4
P =375.T (1.13)

The critical temperature T is the temperature above which this pressure exceeds the

bag pressure B and the partons become deconfined. We get,

90B \
e (20) 116

using the value Bi = 206 MeV we get T, ~ 144 MeV. Beyond this value of

temperature the bag can’t hold the matter inside it. Hence, quark matter is produced.
Such a phase is believed to have existed in the early universe when the age of the
universe less than few micro-seconds. During these stages the temperature was higher
than the above value of T,.. Net baryon density was almost negligible in the universe

so up = 0 is a good approximation .



1.4.2 Quark Gluon Plasma at High Density

Next extreme regime we consider is that at zero temperature and at high baryon

density. The pressure can be found from Eq. [1.124,

ket

Coop?’

Again for the critical value of quark chemical potential p¢, this pressure is equal

(1.15)

to the bag pressure B. Using Bi =206 MeV one can get u? ~ 434 MeV leading to
the critical baryon number density n. ~ 0.72/fm3. The baryon number density (from
nucleons) in normal nuclear matter is ~ 0.16/fm?>. So the critical baryon density is
about 5 times the normal nuclear baryon number density.

For finite temperature and finite chemical potential, the critical temperature and
critical baryon chemical potential will be some where in between the values for the
above two extreme cases. In the next section we will discuss the qualitative features

of the resulting QCD phase diagram.

1.5 QCD Phase Diagram

The QCD phase diagram as a function of temperature (7') and baryon chemical
potential pp is shown in Fig [13]. Tt gives an overall idea of different phases of
QCD, and associated phase transitions. The qualitative aspects of this phase diagram
can be represented in terms of three different regions.

There are lot of available lattice simulation for the region with zero chemical poten-
tial and finite temperatures. For realistic values of quark masses, lattice calculations
predicts that there are no genuine phase transitions at zero pupg, so there should not
be any phase boundaries in this direction. Calculations indicate a crossover from the
hadronic phase to the quark-gluon plasma for realistic u, d and s quark masses [14,/15].
The crossover temperature is likely to be in the range 150 — 180 MeV. The early
universe was in this region and the experiment like RHIC and LHC also explore this
regime of phase transition for very small ug

If we move along the pup direction for zero temperature, then there is possibility

of rich phase structures. First nuclear matter appears near ug ~ 940 MeV which
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Figure 1.1: QCD phase diagram (see ref. [13]).

is separated from the hadronic gas by a first order transition line. For larger values
of pup, neutron superfluidity is expected to occur (as inside neutron stars), where
neutrons condense to form superfluid. As up is further increased, high density QGP
is expected to form. However, here several exotic phases are possible, such as color
superconductor which results from condensation of quark Cooper pairs (which are
formed due to attractive ¢ — ¢ interaction in the 3* channel) like electron-electron
Cooper pair in normal superconductor. Detailed properties of such phases are not
yet understood, for a review see ref. [16]. Other exotic phases are proposed in this
high pup regime [13], like the Color Flavor Locked (CFL) phase, or the crystalline
color superconductor. The core of neutron star may contain all these phases. The
upcoming experiment compressed baryonic matter (CMB) at FAIR is expected to
explore this region of high ug QCD.

For finite T" and finite up there are very few lattice calculations available. In this
region effective field theory models predict first order phase transition. Combined
with the lattice results which show a cross-over transition at low values of ug, we
conclude that the first order transition line should end at a point with 7" = T, and
up = pe at which the phase transition is second order. This point is the critical

point in phase diagram. Several experiments are devoted to find this critical point.



There are many open question which remain to be answered about the QCD phase
diagram. There are several experiment going on and several experiments are planed
for the investigation of these aspects of QCD phase diagram.

The thesis is organized as follows: After this introduction, the next chapter (Chap-
ter [2) contains a brief review of confinement-deconfinement phase transition and for-
mation of topological defects like Z(3) walls. It also contains numerical calculations
for finding the profile of Polyakov loop order parameter [(z) interpolating between
two vacua as well as the profile of associated gauge field (Ap). The formation of QGP
in laboratory and its signatures have been reviewed briefly in chapter [3] The time
evolution of quantum states is discussed in chapter [ in first order time-dependent
perturbation theory. The two limits, adaibatic perturbation, and the sudden per-
turbation have been discussed in detail. Chapter [5| presents the new mechanism of
quarkonia dissociation on interaction with the background gauge field associated with
a Z(3) wall. The interaction of Z(3) walls with quarkonia and quarkonia dissociation
by modeling effective mass as a function of [(x) is presented in chapter |§| Quarko-
nia dissociation during thermalisation due to time dependenc of the quark-antiquark
potential is discussed in chapter [/} Chapter [§] summarizes the work presented in this

thesis.
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Chapter 2

Confinement Deconfinement Phase
Transition and Formation of

Topological Defect

In this chapter, we will discuss the confinement-deconfinement phase transition as
a spontaneous symmetry breaking phase transition, leading to topologically non-
trivial vacuum manifold. This leads to topological structures such as domain walls
and strings. We will start our discussion with topological defects and formation of

topological defect with few example.

2.1 Topological Defects

When a symmetry is spontaneously broken, then it may imply existence of topological
defects if the vacuum manifold has non-trivial topology. In condensed matter physics
there are many examples of topological defects like string defects and point defects
in liquid crystals, vortices in superfluid helium and flux tubes in superconductors.
There are many example of topological defects in early universe, like cosmic strings,
magnetic monopoles, and domain walls (for details, see [17]). In this section we will
first discuss few examples of topological defects. Then we will discuss the process of
formation of topological defects, usually known as the Kibble mechanism [18]. We will

then discuss the formation of Z(3) domain walls which result from the spontaneous
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breaking of Z(3) symmetry in the confinement-deconfinement transition.

2.1.1 Examples of Topological Defects

The existence of different types of topological objects like domain walls, strings,
monopole and textures depends on the topology of the vacuum. Here we will briefly

discuss domain wall and string defects.

1. Domain Walls : Domain walls appear when a discrete symmetry is sponta-
neously broken leading to a disconnected vacuum manifold. Consider simple
case of a single scalar field having double well potential after symmetry break-

ing. The Lagrangian can be written as,
1 A
L= §(8,@)2 — Z(QBZ —v?)2. (2.1)

The Lagrangian has discrete Z(2) symmetry under the transformation ¢ — —¢.
The potential has two minima at ¢ = +v. When the field chooses any of the
vacua then the symmetry of ground state breaks spontaneously. If ¢ takes
different vacuum values in any two different spatial regions then continuity of
¢ requires that these two regions are separated by a planar sheet where ¢ = 0.
This is the domain wall defect. 1-d Field equation has analytic solution, which

gives the profile of this domain wall in physical space as shown in Fig. 2.1}

o= Utanh(\/gvz). (2.2)

The solution ¢ passes through zero as it interpolates between the two different

vacuum values from far left to far right.

2. Strings : String defects appear when a continuous symmetry breaks sponta-
neously leading to nontrivial first homotopy group of the vacuum manifold. If
¢ for the Lagrangian in Eq[2.T]is a complex scalar field then the Lagrangian has
continuous U(1) symmetry with symmetry transformation ¢ — e¢. Where 6
varies continuously from 0 to 27. The potential in this case has a "Mexican hat’
shape with degenerate minima at |¢| = v. A choice of vacuum with specific
value of 6 (say # = 0) breaks the U(1) symmetry spontaneously. String defect

results when 6 varies non-trivially in physical space as follows.
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Figure 2.1: The domain wall configuration.
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Figure 2.2: Field configuration for a vortex (string in 3 dimension)
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When we traverse a closed path L in physical space it is possible for the field ¢
to wrap non-trivially around the circle of minima of the potential, so, the phase
of ¢ develops a non-trivial winding. For example, net change in 8, Af = £27 in
Fig. (+ and — signs correspond to the figures on left and right respectively).
If we shrink the loop L in the physical space, we can locate the point where
the field value has singularity and value is not defined . So the magnitude of
the field will take zero value at that point. It is important to note that this
point cannot be removed by any local change, we have to modify the full system
to remove it. In 2-d, the location of this singularity represents a point defect
which is a topological defect with unit winding. For Af = 427 we get a defect
and antidefect respectively. In three space dimensions, by shrinking the loop L
in physical space at different (2-d) planes, one can easily see that the locus of

this singularity represents a topological line or string defect.

2.1.2 Formation of Topological Defects: Kibble Mechanism

Kibble gave a general theory of formation of topological defects in a spontaneous
symmetry breaking transition. He argued that after spontaneous symmetry breaking
transition, domains of ordered phase form in physical space below Ginzberg temper-
ature. The size of these domains will be of the order of correlation length at that
temperature. The choice of order parameter in a domain is completely independent
from the other one. In between the two domains, the order parameter varies follow-
ing geodesic rule which states that the order parameter in between the two domains
traces the shortest path on the vacuum manifold to minimize gradient energy term,
present in the free energy.

If around the intersection of several of those domains, the order parameter has
a topologically nontrivial variation, that means by local modification of the system
this specific non-trivial variation cannot be removed, then the defect is called topo-
logical. The type of topological defect, like domain wall, string, monopole, or texture

(topological object), depends on the topology of the vacuum and space dimensions.
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2.2 Confinement-Deconfinement Phase Transition

In this section we will focus on confinement-deconfinement phase transition. First
we will construct the order parameter for this transition, then from the symmetry
considerations we will write the effective potential for the order parameter. In the
entire discussion here we will consider pure QCD, where there are no dynamical

quarks. We primarily follow the discussion in ref. [19].

2.2.1 Polyakov Loop Order Parameter

Consider SU(N) gauge theory at finite temperature without dynamical quarks. Let

us denote the states by |sg). The partition function of the system is then written as

Z=Tre " = Z(sc\e’ﬁH\sG). (2.3)

sG
In order to distinguish confined phase from the deconfined one, we will consider
free energies of infinitely massive static quarks and antiquarks. Let us introduce
operators, ¢! (zp,t) and 1, (7, t) which create and annihilate static quarks with color
a at position xg, and time t, along with their charge conjugates for antiquarks. These

field operators satisfy the anticommutation relations

{770(1(1?1’ t)7 ¢£(‘f§v t)} = ab63(17_i - fé) (24)

Similar relation holds also for conjugate fields, and all other equal-time anti-commutators
vanishes. The (Euclidean) time evolution of the wave function is given by Dirac equa-

tion in the Euclidean space.
(—i805ab — gAgb(x_E), T)) Uy(2g,7) = 0, (2.5)

where Ay = A} \;, with ); being the Gell-Mann matrices. This gives the solution as

vl 5) =P [exp (i | o, ")) Wl 0), (2.6)

a
where P denotes path ordering forward in time.
Now our aim is to find whether the system is in the confined phase or in the

deconfined phase. For this purpose, we introduce an infinitely heavy test quark,
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placed at position zj, as a probe. (As the test quark should not have any back
reaction, that means the test quark should be static in medium, so we consider the
test quark as infinitely heavy.) In the presence of this test quark the state of the
system is given by |s) = (7, 0)|s¢). Hence the partition function becomes

- 1
Zq = €_BF(:DO) = N Z<S|€_5H|S>

| < (2.7)
=N > {sal Y @0, 0)e Ml (w0, 0)]sq),

where N is the number of colors. N = 3 for QCD. Thus the sum over a is on all

possible color states. Now just like the operator et generates the time translation
in Minkowski time, e ## generates the time translation in Euclidean space. Thus, in

the Euclidean space, for any operator O,

PHO) e = O(t + B). (2.8)

This implies
Mapa (20, 0)e ™M = (0, B), (2.9a)
= 2=+ sl e P, AU 0)ls6)  (290)

The time evolved field in Eq. is related to the initial field by an overall phase.
This overall phase is the non-Abelian analogue of Bohm-Arhanov phase and is called
the Wilson line. In the Euclidean space, due to the periodicity in time direction, it
becomes a loop. The trace of this quantity over all color degree of freedom is known

as the Polyakov Loop. It is defined as

L(7) = %Tr {P {eXp (z’g /0 T:ﬁ dTAO(fO,T)ﬂ } | (2.10)

Using eq. (2.6) and eq. (2.10) in eq. (2.9), we get

Z, =) (scle ™ L(Z)|sc). (2.11)

Dividing this by the partition function of the pure glue system, we get the change
in the free energy of the system in the presence of the test quark as,

D= (1(@). (212)
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As we are dealing with static, infinitely massive quark, the free energy of a single
quark system does not carry much sense. However, for a quark at positions ¥ and an
anti-quark at position ¥, one can show the free energy of the system is function of

the distance between the quark and the anti-quark as
(LY () L(Z)) o e PFaa, (2.13)

e For confining phase, the free energy required to separate a quark from an
anti quark is infinite. That means F,; — oo as the separation between the
quark and antiquark increases. Also if the quark and antiquarks are far away
from each other, then one will expect Polyakov loops at these positions to be
uncorrelated. Thus (LT(7)L(Z)) — (LT(#))(L(Z)) = [(L(F))|>. Then Eq.(2.13)
becomes

(L(Z)) > ox e~ FFaa, (2.14)
Hence (L(z)) = 0 in the confining phase.

e For deconfined phase, F; is finite, hence (L(x)) is finite. One can normalized

(L(x)) to unity

Thus Polyakov loop can be used to distinguish the confinement as an order pa-
rameter. It vanishes in the confined phase and becomes unity in the deconfined phase

at high temperature.

2.2.2 Spontaneous Breaking of Z(3) Symmetry and Z(3) Do-

main Walls

We now discuss symmetry properties of the Polyakov loop order parameter. The QCD
Lagrangian is invariant under any arbitrary SU(3) transformation. Let us consider
U(z,7) € SU(3) to be the transformation. Then the transformation of gauge fields

and consequently that of Polyakov Loop are given as

A, 7) — A (2,7) = U, 7) A, T)U (2, 7) " + iU (2, 7)0,U (z, )" (2.15)
L(7) — L(T) = %Tr {U@, 3)P {exp (ig /0 T:B dTAO(fO,T))} Ulz, 0)} (2.16)
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Since the gauge fields are periodic in the direction of Euclidean time, only those
transformation are allowed which preserve the periodic boundary conditions of the
gauge fields. We note that with A,(z,0) = A,(x, 3), the relation 4/ (z, 8) = A} (,0)
holds from Eq. if U(x, ) = ZU(x,0), such that Z € SU(N), commutes with
all the SU(N) matrices and is space-time independent. Under this transformation

Polyakov Loop also transform as
L(7) — ZL(%). (2.17)

By definition, the set of all such elements Z, is called the center group of SU(N)
denoted by Z(N). The elements of Z(N) are

7 =e“l; ¢=2mm/N; m=0,1...(N—1) (2.18)

For the case of QCD, N = 3. Thus we conclude that finite temperature pure QCD
is invariant under Z(3) symmetry transformations. The Polyakov loop transforms ac-
cording to eq. under this Z(3). Hence the order parameter (L(Z)) — Z(L(Z)).
In the confining phase (L(Z)) = 0 which implies (L(Z)) remains invariant in confining
phase. Whereas, in the deconfined phase (L(Z)) # 0, thus it is not invariant under
Z(3) transformations. Thus we conclude that the discrete Z(3) symmetry is sponta-
neously broken in the deconfined QGP phase. There are 3 equivalent phases in the
high temperature phase characterized by values of (L(Z)), Z(L(Z)) and Z*(L(%)).
Note that the Z(3) symmetry is spontaneously broken in the QGP or the high tem-
perature phase but it’s restored in the low temperature or the confined phase. This
is in contrast to usual situations in condensed matter systems where the symmetry
is restored in the high temperature phase. In view of discussion of section we
note that there will be topological domain wall defect can exist. These corresponds
to interpolation of Polyakov loop order parameter field between different Z(3) vacua.

We will discuss details of these Z(3) domain wall defects further below.

2.2.3 Effective potential for Order Parameter

In the following, we will suppress the vector indices on Z and use [(z) for the thermal

expectation of Polyakov loop. We will use the effective Lagrangian for the Polyakov
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loop as proposed by Pisarski [20}21],
N
L= ?|8il|2T2 — V), (2.19)

where
V() = (—bg|l|2 + b3(l3 + (l*)3) + |l|4) byT*. (2.20)

Figure 2.3: Surface plot of potential in the complex [(x) plane for T = 400 MeV.

Since [ is dimensionless, dimensions of the potential is made up by the factor
T*. In the mean field theory, b, is taken as constant and b, varies with temper-
ature. For by # 0, the Lagrangian has Z(3) symmetry. The parameters are fit-
ted in ref. such that the effective potential reproduces the thermodynam-
ics of pure SU(3) gauge theory on lattice [25,[26]. The coefficients are taken as
by = (1 —1.11/z) (14 0.265/x)* (1 + 0.300/z)* — 0.478, (with & = T/T, and T, ~ 182
MeV), by = 2.0 and by = 0.6061 x 47.5/16. With these values, [ (z) — y =
b3/2 + 3 x /b3 +4by (T = c0) as T —» oo. Various quantities are then rescaled

such that [ (x) — 1 as T'— oo. The scaling are

by

?7

l(x)%m, by —

b
by — =, by — bay. (2.21)
y y

The surface plot of potential in the complex [(z) plane for T" = 400 MeV is shown
in figure At low temperature where [ = 0, the potential has only one minimum.
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For temperatures higher than T, [(x) develops a non vanishing vacuum expectation

value [y, and the cubic term above leads to three degenerate Z(3) vacua.

2.2.4 Z(3) Domain Wall Defect in C.D. Transition

In the previous section we have discussed the formation of topological defects in the
case of spontaneous symmetry breaking phase transition via Kibble mechanism. Ap-
plication of this for the case of spontaneous breaking of Z(3) symmetry in QCD has
been discussed in the literature and the numerical simulation results show that in rel-
ativistic heavy-ion collisions typically several large domain wall defects are expected
to form in a typical event [27-29]. Basic physical picture of the formation of these
Z(3) walls is as follows. In the case of confinement deconfinement phase transition,
the Z(3) symmetry is restored in the low temperature phase and it is broken sponta-
neously in the high temperature phase. Consider effective potential for the Polyakov
loop order parameter as given in Eq. [2.20] There are three degenerate minima for
temperature higher than 7,.. The order parameter field chooses any of these there min-
ima randomly in different regions of space (typically separated by correlation length).

2r/3 eWr/3 are formed. This leads to forma-

Hence domains with different [, [ = 1,e
tion of Z(3) domain walls in between domains corresponding to different Z(3) vacua.
Also, the junction of three domain walls will give rise to topological string, known
as the QGP string. Using the techniques used in reference [27] we have calculated
the profile of [ (domain wall) between different domains for the case of confinement
deconfinement phase transition. Figure [2.4] shows the profile of domain wall between
two Z(3) domains and the QGP String at the junction of three interfaces.

In Eq. we can see that L(Z) is essentially the condensation of background
gauge field (Ap). It has been discussed in the literature [30] that this background
gauge field leads to CP violating effects for quarks interacting with the wall. This
will play an essential role in our calculations of the interaction of quarkonia with
these Z(3) walls. We will briefly discuss how to calculate the gauge field Aq from the

Polyakov loop order parameter associated with a given Z(3) wall.
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Figure 2.4: (a):Profile of Domain Wall between two Z(3) domains. (b): QGP String

at the junction of three interfaces.

2.2.5 Calculating A, Profile for Z(3) Domain Wall

To calculate the Ay profile we follow the work in ref. . We invert Eq.(2.10) to
calculate the Ay profile form L(Z) profile. We choose Aj to be of the form

2nT
Ao = WT (CL)\3 + b)\g) s (222)

where, g is the coupling constant and 7" is the temperature. A3 and \g are the diagonal
Gell-Mann matrices. The coefficients a and b depend only on spatial coordinates. The
advantage of taking the diagonal gauge choice is that we deal with the eigenvalues of

the matrices that are invariant under gauge transformations.

Substituting eq.(2.22)) in eq. (2.10]), we get
3L(x) = exp(ia) + exp(i8) + exp(iy), (2.23)

where, o« = 27 (a +b) , f =27 (—a + b) and v = 27(—2b). Here a and b are rescaled
like @ — a/2 and b — b/(2\/z3)). On comparing the real and imaginary part of Eq.

(2.23), we get

cos (o) + cos (B) + cos () = 3|L| cos (0) , (2.24a)
sin (a) + sin (B) + sin () = 3|L|sin (0) . (2.24D)

In eq. (2.10]), Ay appears as a phase, implies it has 27n degeneracy so any increment

or decrement in the value of Ag by a factor of 27n will result in the same value of
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L(Z). Eq. (2:24)), when solved for |L| = 1 and # = 0, give a set of pairs (a,b) as the
solutions. Since all these solutions reflect 2rn ambiguity in Ay, we choose any of the
pair and set it as the initial condition. Here we have chosen (a,b) = (—1.5, —1.0).
To calculate Ay by inverting Eq. (2.24), we choose the continuity of Ay across the
domain wall. This is a crucial ingredient in the numerical scheme that we have used to
determine the profile of a, b and hence, Ay. A small region was chosen near the initial
a,b and then |L| was calculated for all values in that region. We have taken only
those values of a and b were the error between the calculated |L| and |L| obtained by
energy minimization was minimum. The process was then repeated for each value of
z to obtain a, b values as functions of z. We have compared the calculated |L| profile
and the one obtained by energy minimization and shown in figure ) Figure

(2.5b) shows the profile of parameters a and b across the domain wall. The calculated

1 0.5
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(a)

(b)

Figure 2.5: (a): Plot of calculated |L| from a & b and the one obtained from minimiz-
ing the energy. The inset figure shows the deviation between the two profiles. (b):
Profile of a and b between the regions L(Z) = 1 and L(&) = ¢"*"/3 with initial point

(—1.5,—1.0). Figure taken from [30].

a,b were then used to calculate Ag using eq . The Ag profile was fitted to the
function Ag(x) = ptanh(gx + r) + s using gnuplot. The calculated Ay profile, fitted
Ag profile and their difference is plotted in figure .

In the next chapter we will focus on the QGP phase and discuss the formation
and evolution of QGP in relativistic heavy-ion collisions and various experimental

signatures which have been proposed to detect the transient early stage of QGP.
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Figure 2.6: Plot of calculated Ay and the fitted profile (Ag(x) = ptanh(qx 4 r) + s).
The parameters have values p = —378.27, ¢ = 7.95001, r = —49.7141, s = —1692.48.

Only (1,1) component of Ag is plotted. The other components also have similar fit.
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Chapter 3

QGP in Laboratory and its

Signature

The only way to produce QGP in laboratory is to collide two relativistic heavy nuclei.
In these relativistic heavy ion collision experiments (RHICE), heavy nuclei (like gold,
lead or copper) are accelerated to ultra relativistic energies with at least few hundreds
of GeV per nucleon (in case of LHC their energies are of the order of eV ) and then
are collided with each other. At these energies the nuclei get Lorentz contracted in
the direction of the boost. The contraction factor is proportional to energy and is
equal to Average Energy per nucleon o 1)ih g few hundred for RHIC and of the order of

nucleon mass

thousand for LHC. The nuclei of size about 10 — 12 fm should looks like a 2 — D disc

in the laboratory frame. But instead of a 2 — D disc it looks like a thin pancake of

thickness ~ 1 fm because of quantum fluctuations.

3.1 Evolution of Medium

After collision, the produced parton system undergoes different stages of evolution,
which are characteried as the stages of pre-equilibrium, thermalization, hadronization
and subsequently chemical then thermal freezeout. Finally hadrons are detected in

the detectors. The evolution of the partonic system in these stages is as follows (see

figure [3.1):
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Figure 3.1: A schematic diagram showing various stages of evolution in Heavy Ion

Collisions

3.1.1 Pre-Equilibrium and Thermalization

At the time of initial collision of hadrons (hence of partons), due to very high energies,
the strong interaction coupling constant becomes very small. As a result the quarks
and gluons inside the nucleons interact little due to asymptotic freedom. Hence when
the nuclei collide, they essentially pass through each other with negligible interaction
as if they are transparent. However, the coupling is not exactly zero, and this leads
to copious production of secondary partons in the overlapping region of the nuclei
as they pass through each other. Hard collisions also lead to some of the partons
getting stopped in the overlapping region, leading to non-zero (though small) baryonic
chemical potential of the produced parton system. This sets up the initial conditions
or the pre-equilibrium stage for the formation of QGP in laboratory. Still there is no
successful model to fully explain this non-equilibrium stage of collision. The modeling
of these initial conditions itself is very challenging. There are different types of initial
conditions used. One uses the Color Glass Condensate (CGC) model, the Glauber
initial conditions and string decays, parton cascade etc. Different models have their
own advantages and limitations. Intensive research is going on to understand detailes

of these initial conditions. Due to very high density of particle in the overlap region,
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they undergo multiple interactions and rapidly attain thermal equilibrium. Various
calculations lead to estimate of the thermalization time of about 0.25 fm for RHIC
and 0.1 fm for LHC [31]. From experimental side, elliptic flow data [32] requires

hydrodynamic evolution with thermalization time to be less than about 1 fm.

3.1.2 Local Equilibration, Plasma Expansion, and Hadroniza-
tion

As the two receding nuclei move rapidly away from each other, the initial partonic
system fills up the region in between them, undergoing rapid longitudinal expansion.
There is no transverse expansion initially. After local equilibration the pressure of the
system leads to build up of expansion in the transverse direction, though it remains
small in comparison to longitudinal expansion. Only at very late stages the expansion
becomes more or less isotropic. As the system expands, its temperature drops and
finally when the temperature of the system falls below the quark-hadron transition
temperature, the system hadronizes. Subsequently, the system of hadron gas evolves

with time as the temperature keeps dropping down.

3.1.3 Chemical freeze-out

Initially (just after Hadronization) the produced hadrons have high enough scattering
cross section (as the density and/or temperature is high enough) to undergo inelastic
collisions. In that stage hadrons interacts and change their chemical composition.
With the expansion of the system the temperature and density of the hadron gas
decreases and consequently inelastic scattering rate decreases. After certain time the
inelastic scattering becomes insignificant and the chemical composition of the system
does not change any further (other than the decay of particles). This is known as the
stage of chemical freeze-out. We can use the statistical thermal models to described
the chemical freeze-out stage with well defined system parameters such as chemical
freeze-out temperature 7., and baryon chemical potential g at the feeze-out stage.
Still after chemical freeze-out elastic collisions take place and momentum distribution

of the system changes.
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3.1.4 Thermal Freeze-out

As the system keeps expanding, after some time the expansion rate will exceed the
rate of scattering. This means that the momentum distribution of the particles will
not change further and they will move freely to the detector. As different species
with different mass and interaction rates will have different mean free paths, they

will decouple at different times.

3.2 Signature of QGP

After thermal freeze-out hadrons are detected in the detector. We cannot detect the
existence QGP phase directly by any detector. Only way is to find certain signatures
that QGP existed during an earlier stage of the system evolution. One has to make
theoretical models of the phases at earlier stage and predict the signature of the early
transient QGP phase in terms of properties of hadrons which can be detected in the
detectors. Verification of these predictions with experimental data will give informa-
tion about these early stages. Though there is no single unique signal which allows a
straightforward identification of the quark-gluon plasma phase but accumulative set
of signals taken together may provide the indication of the presence of the deconfined
phase of matter. Here briefly we will discuss some of the signatures, in particular
the signal of suppression of J/1. In the next section we will discuss the conventional

mechanism of this signature of J/1 suppression in more detail.

3.2.1 Dilepton Production in the Quark-Gluon Plasma

In the quark-gluon plasma, quark/anit-quark interactions can lead to formation of
virtual photons v*, which subsequently decay into a lepton-antilepton pair (I~ IT).
The produced lepton-antilepton pair is called a dilepton. The interaction of those
particles with medium is electromagnetic interaction, which is suppressed by a factor
(f}—%)?, where «. is fine structure constant and +/s is the charged lepton center-of-mass
energy. Accordingly, the mean-free path of the leptons are expected to be larger than

the size of the medium produced. So they will likely reach the detector without fur-

ther interaction with medium. The production and momentum distribution of those
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dileptons depends on the momentum distribution of quarks/antiquarks in medium
which is governed by the thermodynamics of the medium. Hence dileptons carry the

thermodynamic information of the medium at the moment of their production.

3.2.2 Direct Photon Production

In the quark-gluon plasma, a quark and antiquark can interact via each other to
produce a photon and a gluon. Also a quark (or an antiquark) can interact with a
gluon to produce a photon and a quark (or an antiquark). The first one is known
as annihilation processes and the other one is the as Compton processes which is
analogous to Compton process in quantum electrodynamics. The analogous elec-
tromagnetic process for the first case is ¢ ¢ — v ~ is allowed but suppressed by a

Qe

factor 2= ~ 0.02. Where a is electromagnetic fine structure constant % and ay is

related to strong coupling constant (g) as o, = %. In both the processes a photon
is produced in medium. As it interacts with the medium only via electromagnetic
interaction, same as dilepton, it reaches detector without further interaction. As the
production and momentum distribution of produced photon also governed by the
thermodynamic condition of the medium through source quarks and gluons, it also
carries the thermodynamical properties of the medium at their production time.
Both the above signals have been observed in RHICE [33-35|. However Hadronic
interaction can also produce di-lepton pairs or photons. Therefore to separate out

the portion of production of di-lepton and photon in QGP, it is necessary to analyze

the contributions of other sources.

3.2.3 Strangeness Enhancement

In nucleon-nucleon collisions, all the light quark-antiquark pairs (like ui, bb, s5) are
expected to be produced, including the strange quarks. Afterwards the strange quarks
and antiquarks combine with other antiquarks and quarks to form strange hadrons.
Experimentally the ratio of strange hadron and non-strange hadron are found to be
0.08 [36] for p — Be collision and 0.05 for pp collision. For the case of heavy ion
collision this ratio is enhanced. First observation was from NA57 collaboration of

SPS at 158 GeV/A energies [37]. Subsequently STAR collaboration at RHIC also
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observed the same phenomena [38,39]. This indicates that there is another source of
s§ production than purely hadronic interactions [40,41]. If there is a QGP medium
then thermal ss can be produced. Hence the enhancement of strange hadrons for
heavy-ion collisions compared to p — Be and pp collisions indicates existence of an

intermediate deconfined phase of matter.

3.2.4 Elliptic Flow

This is the strongest signal of QGP as a thermalized system. It arises from the fact
that non-central collisions will give rise to spatially anisotropic medium arising from
the geometry of the overlapping region of the colliding nuclei. Consequently, the
pressure gradients will be different in different azimuthal directions. Hydrodynamic
evolution of this syetm will lead to momentum anisotropy of final state particles.
Consequently, the second Fourier coefficient (called as elliptic flow) of the azimuthal
distribution of particles will be non-zero. This has been observed experimentally in
RHIC and LHC experiments [42]. Hydrodynamical simulations [43-45] show that
the observed anisotropy can be explained only when there is a QGP medium, with
thermalization time smaller than 1 fm and with a small value of n/s. The elliptic

flow of partons reflects the momentum anisotropy of thermalized quarks [46/49].

3.2.5 Jet Quenching

In deep inelastic scattering processes, due to hard scattering, pairs of jets, with par-
tons moving in opposite directions are produced. The jet that propagate through the
dense and hot matter suffers re-scattering thus loses energy and finally gets absorbed
in that medium. The other jet moving in opposite direction which suffers less inter-
action that propagate outside the medium can be detected. This effect is known as
jet quenching which indicates the presence of a hot and dense medium. This was first
observed at RHIC [50,51] then subsequently at LHC also [52]. This quenching of jet

carries information about the hot and dense medium.
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3.2.6 Quarkonia Suppression

Quarkonia, the bound state of heavy quark (¢q) and antiquark (g), are produced at
the early stages of the heavy-ion collision. There are two types of quarkonia which
can be produced at presently available accelerators enrgies, charmonia (bound state
of charm and anticharm) like J/1, ¢ etc., and bottomonia (bound state of bottom
and antibottom) like T, Y(2S5) etc. In high energy heavy ion collisions QGP, the
deconfined phase of matter, is expected to be produced. With color charges being
deconfined, there will be Debye screening of the color charges in the QGP [53]. This
screening will weaken the binding of quark-antiquark system. If the screening is suffi-
cient, quarkonia will not be bound any more and will melt in the medium. The heavy
quark and the antiquark will subsequently combine with other antiquarks/quarks to
form open charms (D) and open bottoms (B) during the subsequent hadronization
process. This will increase suppression of yield of quarkonia. Matsui and Satz [54]
first proposed suppression of yield of J/¢ (and other charmonia) as a signal for the
presence of QGP. This has been observed experimentally at SPS in central Pb-Pb
collisions [55,[56], and in subsequent experiemnts (though at higher energies, regen-
eration of quarkonia also becomes important).

As this thesis relates to this particular signal, we will start discussing this in
more detail with the potential model picture of quarkonia. We start by considering
quarkonia as a two body system with color charges g and —¢g. The potential energy
of the gq system, separated by a distance r, coming from one gluon exchange can be
represented phenomenologically by the Coulomb potential energy (in analogy with

quantum electrodynamics)

Vo(r) = _% (3.1)

The confining part, coming from multi gluon exchange is represent by a term linear

in r (in accordance with the string model of confinement)

Ve(r) =or. (3.2)

a is related to the strong coupling constant g and o is the string tension. The potential

energy and Hamiltonian for the ¢g system are [57-59]

Vi(r) = —% +or; H= i + V{(r) (3.3)

24
30



where (= 5t), the reduced mass of the quark antiquark system. The parameters of
the Hamiltonian (or the potential) are fixed from the observed spectra of quarkonia.
We choose the parameters o = 0.52, ¢ = 0.926 GeV/fm and m. = 1.84 GeV and
my = 5.17 GeV' [57].

In the second step we put the ¢q system in QGP. The QGP consists of thermal
quarks and gluons, which will rearrange around the ¢ and ¢ and modify the potential
between ¢ and g. This modification of Coulomb part is because of the (Debye)
screening of color charges of ¢ and q. Consequently, the interaction will become short
range Yukawa-type interaction. The string tension part also gets modified because of
the thermal medium, and eventually vanishes after certain temperature [53,59]. Now,
confinement occurs because of the string (linear part in the potential). Therefore,
vanishing of the string tension implies deconfinement of quarks and gluons. However,
for charmonia or bottomonia, absence of string tension does not automatically give
rise the phenomena of melting. They remain bound up to certain temperature (1)
because of modified (Debye screened) Coulomb interaction ( or Yukawa interaction)
in medium.

Qualitatively the Debye screening can be understood by approximating the non-
abelian color interaction by abelian Coulomb interaction. The phenomena of screen-
ing comes from redistribution of thermal charges like quarks and gluons. Consider
initially a quark-gluon plasma, in thermal equilibrium at a temperature T, with zero
chemical potential. The number density of quarks n, and antiquarks ng are same. The
number density of different flavors with mass m,, at a temperature 7', is proportional
to the Boltzmann factor e=™¢/7. This implies that QGP will consist of mostly u, d
and s quarks and antiquarks up to few hundred MeV temperature. In that temper-
ature range the fraction of charm and bottom quark will be very small. Invoking the
fact that the string tension part is negligible and the quarks and anti quarks interact
via color Coulomb interaction (—%), any test quark will be surrounded by quarks of
opposite charge. This will reduce the visibility of the test quark from others, leading
to reduced interaction strength and range. So a heavy quark and antiquark will feel
less interaction between them because of the screening. For the case of plasma as a
massless quark and antiquark ideal gas, the potential V' (r) seen by a test quark at a

distance r will be modified from the long-range Coulomb potential to the short-range
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Yukawa potential

V()= —e %, (3.4)

r

where ), is screening length or Debye length. For the abelian case this is given by [9)

9x1.2027T
M= || g (3.5)
w2q*(ng + 1)

As in the abelian approximation gauge bosons do not carry color charge, so the
screening above does not have any contribution from gauge bosons (gluons). But
the contribution from gluons will be non-zero for QCD. Like quarks and antiquarks,
gluons also polarize the medium surrounding the test quark. This gives additional
screening to the test quark. The Debye mass (inverse of Debye length) from one loop

Perturbative QCD (PQCD) calculation (Appendix C of [60]) is given by,

Y i N N

Here subscript “c” is for color and “f” is for flavor. Now our goal is to find the temper-
ature (T}) at which the Debye screening will be sufficient to break the quark-antiquark
pair. We can estimate that temperature by taking non-relativistic approximation.

The Hamiltonian for ¢qq system in QGP is

(3.7)

By semi-classical argument and using the uncertainty relation (p?) ~ & we have the

energy of the system

1 ae /A

- 2412 B r

E(r) (3.8)

By minimizing energy (E(r)) with respect to r we have the condition for the possible

bound state.

1 o) N
—F+ﬁ(1+r/Ad)e Ad = (3.9)
or
r(z+1)e™ = (aug) ™! (3.10)

where x = 7/)\q. The above equation has a solution only if (auXg)™! < 0.84. Tmplies

min __ 1

“ 084 ap

(3.11)
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is the smallest value of Debye length which permits bound state. Eq. in the limit
Ag — oo provides us the Bohr radius at zero temperature, which is rgon. = 1/(ap)
From Eq. we can say, q¢ will not be bound if 1.19rgy,,. > Ag. For J/1¢ taking
a = 0.52 and m, = 1.84 we get Debye length at 7' = 200 MeV to be \y(PQCD) =
0.36 fm and rgyn,. = 0.41 fm. This indicates that at T" = 200 MeV this qq system
will not be bound. Using Eq[3.6] and we have the dissociation temperature

2
Ty = 0.84 1y / g—a (3.12)
T

which is about 150 MeV for a = 0.52.

Though the values are not very reliable, with the crude picture used here, quali-
tatively we conclude that there will be a maximum temperature (7) for QGP, above
which there won’t be any bound quarkonia. So the suppression in the yield of quarko-
nia will indicate the creation of QGP in heavy ion collision. Experimental results [56]
show a suppression of .J/v¢ with number of participants (Np4). This is consistent
with the expectation of J/1 suppression in the QGP medium.

However, there are other factors too that can lead to the suppression of J/v
because of which it has not been possible to use J/1 suppression as a clean signal
for QGP like, J/1 suppression in Hadronic medium. One also observes stronger
suppression for forward rapidity than on the mid rapidity at RHIC [61,/62] as well
as at LHC [63]. Using the same picture T suppression is proposed as a signal and it
has been observed in ALICE collaboration [64]. This does not have such issues like

anomalous suppression in different rapidity region.
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Chapter 4

Evolution of States Under
Time-Dependent Perturbation

Theory

This thesis primarily concerns the evolution of quarkonia states under changes in
potential between quark and antiquark in the QGP medium produced in RHICE.
The change in the potential can originate from the interaction of the quarkonia with
Z(3) domain walls, or it can occur during thermalization of the medium produced
in RHICE and also during the evolution of the thermalized medium of QGP. Here
we will discuss the evolution of quarkonia states using time-dependent perturbation
theory. We will discuss the validity of adiabaticity during the evolution of quarkonia
states and discuss the opposite limit of sudden approximation for the perturbation.
We will also check the error in the use of sudden approximation. We start with brief

review of the evolution of quantum states under time dependent perturbation.

4.1 Time-Dependent Perturbation Theory

In the case of time-independent perturbation theory we calculate how the eigen states
and corresponding eigen values of unperturbed Hamiltonian gets modified due to the
presence of a perturbation. When perturbation depends on time then the Hamiltonian

changes with time, consequently there would not be any stationary states. So in this
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case we are not suppose to talk about only the modification of eigen states. Rather, we
are interested in the evolution of initial states under the action of this time dependent
perturbation.

Consider the time-dependent Hamiltonian as
H=Hy,+V(t) (4.1)

Where Hy is the constant (in time) part of the Hamiltonian whose eigen values (E,)
and eigen functions (|n(t)) = e~*nf|n)) are exactly known, and V (¢) is small pertur-
bation in comparison to the original Hamiltonian

Now if at initial time (¢ = 0), the system is in the eigen state |i(0)) of Hy and
we let the system evolve under this perturbation then we want to find what is the
probability that the system can be found in state |f(t)) at some later time ¢. Let
us assume that at time ¢ the initial state evolved to a state [¢(f)). We can always
expand [¢(t)) in terms of the eigen state |n(t)) of Hp, as it forms a complete set of

orthonormal basis.
(1)) = ealB)n(t)). (4.2)

The probability that the state [i(t)) make a transition to the state |f(¢)) can be
found by taking projection of |¢)(¢)) on |f(t)). Taking |f(¢)) to be an eigen state of
Hy, this gives

(FO1@)) = cs(2). (4.3)

Since |n(t)) are eigen states of Hy, they satisfy time dependent Schrédinger equation
0

iz (1)) = Holn(1)), (4.4)

Schrodinger equation corresponding to the perturbed Hamiltonian H is

S (0) = HI(1) (4.)
Using Eq., Eq. and Eq., we obtain
iZ(%Cn(t))ln(tD =Y Veu()In(t) (4.6)

Multiplying both side of the above equation by (f(¢)| and integrating one can get the

relation

9 es(t) = 3 VilD)en(t), (47)
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where

Vin(t) = (fO)IV(D)In(t))
= Vet (4.8)

and

Vin = (fIVO)In) , wpm = Ef — En (4.9)

Since we have taken the initial state |i(¢)) also to be an eigen state of Hy, this implies

that at zeroth order (in perturbation V') the amplitude 0 = din- Then, up to first
order (O(V)) Eq.(4.7) becomes

V() = —iVpent, (4.10)
Integrating this equation, we have
t o
() = —i / Vet at! (4.11)
0

The expression for complete first order amplitude is

i) = )+ V)
t
= bp—1 / Ve rt at’ (4.12)
0

Hence the probability of transition up to first order from initial state |i(¢)) to a

final state |f(t)) is

Pp(t) = |ef(t)

t
— o= / Vet gy |? (4.13)
0

4.1.1 Transition Under Perturbation Acting for Finite Time

In many cases the time dependent Hamiltonian never goes to its original value. Per-
turbation starts at ¢ = 0 and remains non-zero even after a finite time ¢. In that case
at t — oo right hand side (RHS) of Eq.(4.11)) diverges. So this formula for transition

from one state to other state can not be applied directly. Physically this divergence
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is not important for our case and this can be removed easily (see, ref. [65] for details).

To do this, we integrate RHS of Eq.(4.11]) by parts:

t
1 . W i /
cge)(t) = —z/o Vet dt!
1% iwpit' t Vi giwpit!
= —{L] +/ ot (4.14)
Wi 0 0 Wi

Since at t = 0,V (t) = 0 implies at ¢t = 0 first term vanishes, while at t this term this
term gives the contribution of the modification in the states under the action of time
independent perturbation up to first order correction (with the exponential factor
e™rit giving the corresponding time dependence). That means if we expand V (t) in
Taylor seres about V(0) up to first order then at ¢ — oo the first term corresponds
to the constant part of the perturbation V(oo), while the second term corresponds
to the time varying part giving transition to other states. Thus, the probability of
transition to other states will be given by ( [65])

1 Lt
Pyi(t) = E'/O Vyieritdt]?. (4.15)

If V(t) is sufficiently small during the relevant time interval (meaning that the
perturbation V(¢) varies slowly) then the second term will be negligible compared
to the first term in Eq. Thus if we apply perturbation sufficiently slowly (adi-
abatically), a system will remain in that state. For that the system has to be in a
non-degenerate stationary state. In Sec. the above scenario will be discussed in

more detail.

4.2 Adiabatic Evolution of States

In heavy-ion collisions one often uses adiabatic evolution of states in any change of
Hamiltonian (during thermalization of the medium after collision, during freezeout
etc.). Origin of the word “Adiabatic” is a Greek word adiabatos 'impassable’; from a-
‘not’ + dia "through’ + batos 'passable’ (from bainein ’go’), was introduced by Nicolas
Leonard Sadi Carnot in 1824 to explain Carnot heat engine. In the present context,
adiabatic evolution means gradually changing conditions allowing the system to adapt

its configuration. In such evolution process, a state with an initial Hamiltonian will
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evolve with time to the corresponding eigen state of final Hamiltonian. That means if
a Hamiltonian changes continuously from H (to) to H(t) and we let the the initial state,
|n(to)) which is an eigen state of H(ty), to evolve adiabatically then it will reach a final
state |n(t)), the corresponding eigen state of H(t). In previous section qualitatively
we have discussed the condition for adiabatic evolution. Now quantitatively we will
find the condition for adiabatic evolution. For a time-dependent Hamiltonian H, the

instantaneous eigen functions (|n(t))) and eigen values (E,(t)) are given as
H(t)[n(t)) = En(t)[n(t)) (4.16)

At any instant of time these states form a complete orthonormal basis. So one can

expand any general solution |¢(t))for schrodinger equation

.0
i () = H(O)l (1) (217

in terms of that basis as

[D(1)) =Y calt)In(t))e™ (4.18)

n

where .
0,(t) = —/ E,(tdt (4.19)
0
Substituting Eq.(4.18)) into the Eq.(4.17)) and using the relation Eq.(4.16|) we have
iy (c'n]n) +ealn) + icn|n>9n> ¢ =" ¢y Enln)e (4.20)

After taking derivative on both side of Eq.(4.19) we can show that last term of LHS
is equal to RHS. This implies

D aln)e® = = " cyln)e (4.21)

n n

Multiplying (m| from left and after simplification we obtain
bm ==Y co(mlir)e’On=0m) (4.22)
Taking derivative on both side of Eq. we get
H|n) 4+ H|n) = Eu|n) + Ey|n). (4.23)
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Multiplying (m| from left and using the relation (m|H = E,,(m| we have for m # n

(m|H|n) = (B, — En){(m|n). (4.24)
Finally we have
H .
b = —Co () — ;ncn—(g"_ gﬂi)elwn—@m). (4.25)

For adiabatic limit (when H varies slowly) we can drop the second term at the RHS

of the above equation, then we obtain
Cm = —Cpp(m|m). (4.26)

When the system starts from the state |¢) initially, the boundary condition ¢, (0) = d;,
implies the solution of the Eq.

¢; = ci(0)e® (4.27)

where
() = i / () S (4.28)

So the final state can be written as
(1)) = e e Di(t)) (4.29)

0;(t) and ~;(t) are known as dynamical and geometric phase, respectively. Hence the
final state is nothing but the i’ eigen state of the Hamiltonian H(¢) at time ¢ with
a phase factor. We say that the adiabatic approximation is valid when the following

condition (expressed in terms of dimensionless ratio) is satisfied |66],

KmlH (0] fgﬁ@:;@' <1 (4.30)
Or )
(TT—) <1 (4.31)

Where 7, gives an estimate of the transition time scale between different states (being
inverse of the characteristic energy gap between different energy eigenstates of the
system), whereas 7,, corresponds to the time scale of the evolution of the Hamiltonian.
The above ratio is a measure of adiabaticity, which should be much less than 1 in

order to allow the adiabatic evolution of states of the quantum mechanical system.
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4.3 Sudden Perturbation

Consider another limiting case when perturbation changes abruptly over a very small

time interval 7. From Eq.(4.5) one can write
dv(t)) = Hp(t))dt (4.32)

As the time interval is infinitesimally small and H|v(t)) is finite in that duration
of time, one can say 0|y (t)) ~ 0. Wave function remains unchanged on action of
sudden perturbation. We solve the instantaneous eigen states of H, before and after
that instant. Using the fact that the initial state |n(0)) remains unchanged, the
final state, which is nothing but the initial state, is no longer eigen states of final
Hamiltonian of the system, i.e. the state will not be a stationary states and will, in
general, be a linear combination of the stationary states |n’(¢)) of final Hamiltonian
H. So the overlap of |n(0)) with the new stationary eigen states |n/(t)), gives us the
probability of its transition to other states. The probability of transition from initial

state |i) of Hy to a final state |f’) of H is
Py = (f']i) (433)

The calculation of sudden perturbation is exact, the only approximation is taken
here is the time interval of the change of Hamiltonian is infinitesimally small, i.e. the

Hamiltonian changes suddenly.

4.3.1 Condition for Sudden approximation and Error Calcu-

lation

To find the condition for validity of sudden approximation, we should find the prob-
ability ( that the state does not remain in the original state after action of the
perturbation (V/(¢)), which is measure of the error involved in this approximation.
Consider the initial state |7) to be an eigen state of Hy. The projection operator
orthogonal to that state is Q = 1 — |i)(i|. |¢) is the evolved states after action of the

perturbation. So ( can be written as

¢ = @WlQlp) (4.34)
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|1)) can be expanded in terms of the eigen state |n) of Hy.

) = caln) (4.35)

n
Where the expansion coefficients ¢,,’s can be found using perturbation theory. Using

first order perturbation theory Eq.(.12] & [4.8)). We have,

Cn = Os — /0 V)it (4.36)

In the above integration one can take outside the integral the comparatively slowly

varying function |i) & |n) and use the instantaneous values. The integral is then

found to be
, I ,
Cn = Opi—iT(n (—/ V(t)dt) |7)
T Jo
= Op —iT{n|V]i) (4.37)
Where
_ 1 [T
V= —/ V(t)dt (4.38)
T Jo

Using equations (4.34] [4.35] [4.37| & |4.38)) and after simplification we have

¢ =7V QV]i) + O(?) (4.39)

As we have consider the value of ¢,, corrected up to first order which is order of 7 and

¢ is second order in ¢,, ¢ is correct up to order 72. Since

G\VQV|i) = (i|V3i) — (i|V]i)* = (AV)2 (4.40)

where AV is the root mean square deviation of the observable V in the state i), so

we have the error in sudden approximation calculation
¢ =7*AV)? +0(r%) (4.41)
Hence the condition for the validity of the sudden approximation, ¢ < 1 implies

1
— 4.42
N (4.42)

This is nothing but one form of time energy uncertainty relation. We will use the
results of this section later in Chapter 7 where we will consider the issue of adiabaticity

in the evolution of quarkonia states during the early thermalization of QGP in RHICE.
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Chapter 5

A Novel Mechanism of J/v

Disintegration in Heavy Ion

Collisions

We discussed in section 2.2.4] that confinement-deconfinement transition will lead to
formation of Z(3) domain walls. We have calculated background gauge field associ-
ated with such Z(3) walls in section[2.2.5] Several aspects of these topological domain
wall defects have been discussed in literature [30,/67,68]. It was shown in ref. [68] that
background gauge field Ay associated with generalized Z(N') interfaces can lead to
spontaneous CP violation in the Standard Model which, in turn, can lead to baryo-
genesis in the early universe. A detailed quantitative analysis of this spontaneous CP
violation was done in [30], in the context of quark/antiquark scattering from Z(3)
walls in the QGP phase. The main approach followed in refs. [30,/68] was based on the
assumption that the profile of the Polyakov loop order parameter I(z) corresponds to
a condensate of the background gauge field A (in accordance with the definition of
the Polyakov loop). This profile of the background gauge field is then calculated from
the profile of [(z). Such a gauge field configuration in the Dirac equation leads to
different potentials for quarks and antiquarks, leading to spontaneous CP violation
in the interaction of quarks and antiquarks from the Z(3) wall. This is the origin
of spontaneous CP violation from Z(N) walls which was first discussed by Altes et

al. [68,69] in the context of the universe and in ref. [70] for the case of QCD. In [30]
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quantitative results were obtained for the profile of Ay from the profile of Polyakov
loop I(x) between different Z(3) vacua (using specific effective potential for I(z) as
discussed in [20,22-24]). This background A, configuration acts as a potential for
quarks and antiquarks. It was shown in ref. [30] that the quarks have significantly
different reflection coefficients than anti-quarks and the effect is stronger for heavier
quarks. For a discussion of calculation of Ay profile, see ref. [30].

In this chapter, we discuss the effect of this spontaneous CP violation on the
propagation of quarkonia in the QGP medium, in particular, the J/¢ meson. J/1
are produced in the initial stages of relativistic heavy ion collisions. As these are heavy
mesons (m ~ 3GeV), they are never in equilibrium with the QGP medium produced
in present heavy-ion collision experiments. However, there are finite T effects (like
Debye screening etc.) affecting its motion in a thermal bath. Such effects give rise
to the important signal of J/1¢ suppression as we discussed in the Introduction. We
ignore these effects initially and comment on it towards the end of this chapter. Note
that if the Debye length is larger, then the conventional mechanism of J/1¢ melting
does not work. As we will argue, for large Debye screening length, our mechanism of
J /1 disintegration, discussed in this chapter, works better as any possible screening
of the domain wall over the relevant length scale of J/v will be small.

If a domain wall is present in the QGP, then a J/1) moving through the wall will
have a non-trivial interaction with it. Due to the CP violating effect of the interface
on quark scattering, ¢ and ¢ in J /1 experience different color forces depending on the
color of the quark and the color composition of the wall. This not only changes the
color composition of ¢¢ bound state (from color singlet to color octet state) but also
facilitates its transition to higher excited states (for example x states). Color octet
quarkonium states are unbound (also, the y state has larger size than J/v and the
Debye length), hence they will dissociate in the QGP medium. This summarizes the
basic physics of our model discussed in this chapter for quarkonia disintegration due

to Z(3) walls [71].
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5.1 Interaction of J/¢) with a Z(3) wall

In our model, J/v interacts with the gauge field Ay corresponding to the I(z) profile
of the Z(3) wall. This allows for the possibility of color excitations of J/i as well as
the spatial excitations of its wave function. First we discuss the possibility of color

excitations of J/1. Subsequently, we will discuss spatial excitations of J /1.

5.1.1 Color excitation of J/¢

We work in the rest frame of J/¢ and consider the domain wall coming and hitting
the J/v with a velocity v along z-axis. The gauge potential and coordinates are

appropriately Lorentz transformed as

Ao(z) = Ay(2") = v (Ao(z) — vA3(2)) (5.1a)
Az(z) = A5(2)) = v (As(z) — vAy(2)) (5.1b)
2=z +vt). (5.1¢)

We assume that there is no background vector potential, A;(z) = 0 ;i = 1,2, 3.
A% obtained from Eq. (5.1b) has only 2’ dependence, so it does not produce any
color magnetic field. Further, using the non-relativistic approximation of the Dirac
equation one can see that the perturbation terms in the Hamiltonian (say, H'(Aj))
involving A} are suppressed compared to the perturbation term (H'(Ajf)) involving
Aj at least by a factor

HY(AY) v 1
HY(A)  cmeryy

where 7/, is the size of the J/v¢ wave function and m, is the charm quark mass.

(5.2)

As we will see, the largest value of v/c we consider is 0.20 - 0.24 (above which tran-
sition amplitude becomes too large to trust first order perturbation approximation).
With r;,, ~ 0.4 fm, the suppression factor in Eq. is of order 10 %. Thus we
neglect perturbation due to A} and only consider perturbation due to Aj as given
by Eq.). We use first order time dependent perturbation theory to study the
excitation of J/1 due to the background A, profile and consider the transition of .J/1)
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from initial energy eigenstate v; with energy F; to the final state ¢; with energy E;.

The transition amplitude is given by

ty '
Aij = 05 — Z/ (0 | M5~ P00, (5.3)
t.

K2

We take incoming quarkonia to be a color singlet state. The interaction of the

quarkonia with the wall is written as

Hine = VI(2)) @11+ T @ VI(2)) (5.4a)
with V(2] ,) = gAT (2 ,), (5.4b)

where Af(z{,) is the background field configuration in the rest frame of J/1. 2]
and 2}, are the coordinates of ¢ and ¢ in quarkonia and g is the gauge coupling. The

gauge potential Aj is taken in the diagonal gauge as

2nT
AO = % (a/\3 + b/\g) s (55)

where A3 and \g are the Gell-Mann matrices. Under CP, Ay — — Ay, hence Ag = —AL
Now, both the initial and the final states have a spatial, spin and color part. The

incoming quarkonia is a color singlet while outgoing state could be a singlet or an

octet. Using Eq. (5.4)), (5.5)) and extracting only the color part of interaction, we get

<wout‘%int’wsin9let> - <wout|gA6q(Zi> ® Hq|¢singlet>

. (5.6)
+ <¢outmq & gAO (22)|wsinglet>-
The color singlet state of J/1 is written as,
q q q q
1 1 0 0
1
|Ysingtet) = Ao elof H|t |t
0 0 0 0
; a (5.7)
0 0
+10] ®|0
1 1

If the outgoing state is also a singlet then, each term on RHS of Eq. (5.6) is
zero due to the traceless nature of Ag. Eq. (5.3)) gives A;; = 1 for ground state

45



(1 = j). (Meaning, one will then need to resort to 2nd order perturbation theory for
consistency). For higher orbital states (i # j), amplitude is identically zero. A color
octet state like |rg), can be written as

q q

1 0
rg) =10 ® 0] - (5.8)
0 1

For such an outgoing state each term on RHS of Eq. again vanishes identically
because of the diagonal form of Ay, resulting in zero transition probability. Same
argument leads to zero transition probability to all other octet states with similar
color content, viz. bg, bF, g7, gb, rb. There are only two states with non-zero color

contribution to transition probability. They are

q q q q
1 1 0 0
- 1
rr — bb) = — 0 X010 — 11 X111 5.9
| ) \/5[ (5.9)
0 0 0 0
and
q q q q
1 1 0 0
- 1
rir+0b—299)=—||10| 0| +|1] ®|1
| 93) \/6[
0 0 0 0
. a (5.10)
0 0
—2 K I|0 ]
1 1

Using Eq. (5.9) and (5.10) in conjunction with Eq. (5.5)),(5.1) and (5.6), we get

the color part of transition probability as

(r7 — bb|Hint|Vsingter) (A — Ap) and (5.11a)

1

V6
_ 1

T+ bb — 299 Hzn singlet) —

< gg‘ thb gl t> \/E

where, A5, Ab and AJ are the diagonal components of the matrix A (2])— Aj (25).

Eq. (5.11a) and (5.11b)) are the effective interactions that lead to the excitations of

incoming J/v (in the color singlet state of ¢¢) to the corresponding octet state. Due

(AL + Ab —2A9), (5.11b)
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to repulsive Coulombic interaction of ¢ and ¢ in the octet representation, one may
expect that J/¢ may disintegrate while traversing through a Z(3) wall purely by
color excitation. However, we will see in the next section that this is not so and one

needs to also consider spatial excitation of J/v due to Z(3) wall.

5.1.2 Spatial excitations of J/

We now consider the spatial excitations. The spatial part of the states is decided by
the potential between c¢ in J/v which is taken as,

Qg C’F

V(|F1—F2|>:— +Ocnf O'|7?1—T72|, (512)

|71 — 72

where «y is the strong coupling constant and o is the string tension. For J/v,
we will use charm quark mass m. = 1.28 GeV, a, = 7/12, and 0 = 0.16 GeV?
[72,/73]. CF is the color factor depending on the representation of the c¢ state. Cp =
4/3 for singlet state, while Cr = —1/6 for the octet states showing the repulsive
nature of the Coulombic part of the interaction for the octet states. C.,; denotes
the representation dependence of the confining part of the potential. For general
sources, this factor follows Casimir scaling [74}|75] for the string tension. For J/v¢
in color singlet representation, C.,y = 1 with the value of o used here [72,73]. It
is not clear what should be the value of C,,; if c¢ are in the octet representation.
As the Coulombic part of the potential is repulsive for the octet state of c¢ (with
Cr = —1/6), it is not clear if there should be a confining part of the potential at all in
this case for large distances. Early lattice simulations had indicated some possibility
of mildly rising potential for the confining part for ¢¢ in octet representation [76].
However, recent simulations do not show any such possibility. At large distances,
the net potential between a ¢ and ¢ in color octet state appears to be independent
of distance [77]. With the repulsive Coulombic part, this implies a very small value
for Ce,s for the confining part. For our purpose it suffices to assume that in the
octet representation, J/¢ becomes unbound, having repulsive interaction at short
distances.

We have seen above that the form of Ay in Eq[5.5 only allows for transition from
color singlet to two of the color octet states given in Eqs[5.95.10] As we discussed
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above, c¢ in color octet state is unbound. Thus our task should be to consider
transition from initial color singlet J/v¢ to unbound state of c¢, say in plane waves.
However, this also does not look correct as the initial J/v (in the color singlet state)
transforms to a color octet state only as it traverses the Z(3) wall (as coefficients a
and b in Eq undergo spatial variations). Thus during the early part of the passage
of J/¢ through the wall, it should be dominantly in the singlet state (which is a
bound state) and it will be incorrect to consider transition to unbound, plane wave
states of cc at this stage. Only at later stages, when the octet component is dominant,
it may be appropriate to consider repulsive potential in Eq. [5.12] and unbound c¢
states for the transition probability. This means that the perturbation term should
appropriately account for the growth of octet component for the potential in Eq. [5.12]
along with a continuing singlet component with corresponding singlet potential in Eq.
[b.12] This clearly is a complex issue, and a proper account of appropriate potential for
this type of evolution of J/1¢ cannot be carried out in simple approximation scheme
considered here. We make a simplifying assumption that .J/¢ becomes unbound
only when it transforms to the octet representation after its interaction with the
Z(3) wall. Until then it is assumed to be in the color singlet representation. Thus,
in the calculations of the spatial excitation of the J/1i state below, we use the cc
potential (Eq. in the color singlet representation. The underlying physics is that
incoming .J/v is in the color singlet state, it interacts with Z(3) wall which excites it
to higher state (spatial excitation), still in color singlet state. While traversing the
Z(3) wall, and undergoing this spatial excitation, the J/1 state also transforms to
color octet state. The final state, after traversing the Z(3) wall, is spatially excited
state in color octet representation, and our calculations give probability for this final
state. This final octet state is unbound and hence such excited J/1 disintegrates.
We emphasize that at this stage, our aim is to point out the new possibilities of
disintegration of J/t¢ with Z(3) walls and this simplifying assumption should not
affect our qualitative considerations and approximate estimates. We hope to give
a more complete treatment in future. Thus, we continue to use the color singlet

potential in Eq. [5.12] while considering the spatial excitation of J/4.
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Since the potential is central, we perform coordinate transformations

écm = n ‘;‘TQ and r= _’1 - FQ, (513)

where, 7 is the relative coordinate between ¢ and g. ﬁcm is the center of mass of

J/1. Using Eq. (5.13) with Eq. (5.1]), we get

Ay = v Ay [7(2{ + vt’)] — A} M—z; + Ut’)]. (5.14)

2, and 2} are written in terms of R, and 7. Similar expressions can be obtained
for AY and AY. In the above coordinates, the .J/i) wave function is W(R., )¢ (7).
For simplicity, we assume that the center of mass motion remains unaffected by the

external perturbation. Then W(R,,;,) has the plain wave solution, while () can be

written ¢(r, 0, ¢) = ¥(r)Y;™ (cos 0, ¢). As J/1 is the | = 0 state, we have

U = Y(r)Yy and  ; =, (1) Y, (cos b, ¢). (5.15)

The radial part, 1(r), is obtained by solving radial part of Schrédinger equation

with effective potential given by

. aCr I(1+1)
Vir)= . + Ceny or + our?

where 1 is the reduced mass. When we use Eq. (5.11)), (5.14) and (5.15)) in Eq. (5.3),

we get one of the terms as

(5.16)

[e'e) [e'e) 1 2
/ AT, ddiy = / / / ()Y (cosb, 6) A
oo o J-1Jo

Y(]Ol/)lo()(?“) 7”2 d?"d(COS 0>d§b

(5.17)

In the above equation, we have ignored the motion of the center of mass of charmo-
nium and have considered only the relative coordinate. Under cos — — cos, Aj —
—Af and 1; does not change. So if ¥, (cos 6, ¢) = Y™ (—cos b, ¢) then RHS of Eq.
is zero. Thus we do not get any transition to a state which is symmetric under
cos) — — cos 6. This has very important significance. While the color part prohibits
the transition to singlet final states, the space dependence of interaction forbids the

transition to the [ = 0 state (in color octet). Thus we see that purely color excitation
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of J/1 due to Ay field of a domain wall is not possible. The excitation is possible to
the first excited state of an octet (like an ‘octet x’ state). As the excited state will
have a radius larger than the [ = 0 state it is more prone to melting in the medium,

(though with color octet composition, the final state becomes unbound anyway).

-1300 — — ‘ : ‘
1400 | T fitted curve
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-1500 +
—~  -1600 |
c 1700 \
= -1800 -
=) “‘
< .1900 |
-2000 + i
-2100 SN—— |
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11.5 12 12.5 13 13.5
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Figure 5.1: Ay profile across the Z(3) domain wall for 7" = 400 MeV. Only (1,1)
component is shown. Other components are similar. See ref. [30] for details. This is

same as Fig. 2.6l We show it here for the sake of completeness.

5.2 Results

We numerically compute the integral given in Eq. with various parameters given
after Eq. [0.12] The profile of Ay is calculated from the profile of the Polyakov loop
order parameter for a Z(3) domain wall at a temperature 7" =400 MeV (as a sample
value). The details of this are given in ref. [30]. As explained there, the resulting
profile is very well fitted by the functional form ptanh(qz + r) + s, see Fig. |5.1} This
is same as Fig. 2.6 We show it here again for the convenience of the reader.

We calculated the wave functions for various states of c¢ with the complete poten-
tial given by Eq. . For the calculation of the wave-functions for various states of
c¢ we have used Numerov method for solving the Schrodinger equation. We have also
used energy minimization technique to get the wave functions and the bound state

energy and the results obtained by both the methods match very well. Fig. ((5.2)

20



) (2)
Yi=0(2
71 1=0
Yi=1(2)
6 L
5 L
N |
=4 4
3 L
2 L
1 L
0 L L
0 0.5 1 1.5 2

z (fm)

Figure 5.2: (Color online) Wave functions for J/¢ (I = 0) and x (I = 1) states.

shows the radial part of the wave function for the [ = 0, 1 states of charmonium. The
bound state contributions to the energy (excluding the rest mass of quarks) are found
to be Ey = 0.447 GeV for J/¢ and Ey = 0.803 GeV for x state (I =1). We see from
Fig.2 that the radius of J/1 is about 0.5 fm while that for x is about 0.8 fm. Debye
length in QGP at T'= 200 MeV is ry ~ 0.6 fm and smaller at higher temperatures.
Thus y state is unstable and it should melt easily in the medium (apart from the fact
that in color octet state it also becomes unbound). Fig.3 shows the combined proba-
bility of transition to both the color octet y states (Eqs[5.9|p.10) for an incoming J/v
with different velocities moving normal to the domain wall. As we see, the probability
rapidly rises as a function of velocity. However, for large velocities the probability of
transition becomes large making first order perturbation approximation insufficient,
and one needs more reliable estimates. Thus, the plot in Fig.3 should be trusted only
for small velocities. Nonetheless, the trend at higher velocities strongly suggests that

most of J/1¢ will disintegrate while interacting with Z(3) walls.

5.3 Conclusions

These results show that on interaction with a Z(3) domain wall, a J/v¢ particle will
make an excitation to a higher orbital state in color octet representation which is

unbound and will readily melt in the surrounding QGP medium. At higher energies,
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Figure 5.3: Probability p of transition of J/1 to color octet x states vs. its velocity
v. Note that the probability rapidly rises with v.

the transition probability keeps increasing, making the first order perturbation theory
inapplicable and the results are not trustworthy. Nonetheless, this implies that at
higher energies, almost all J/1¢ are expected to disintegrate in this manner. This
strong Pr dependence of J/v disintegration probability is a distinctive signature of
our model wherein the probability of disintegration of .J/1 is enhanced with higher
Pr. This can be used to distinguish this mechanism from the conventional Debey
screening suppression. A very crucial point in the entire discussion is the Debye
screening of the A profile of the domain wall itself as it carries color. At temperature
400 MeV, the domain wall has a thickness of ~ 1.5 fm and the Debye radius for QGP
is ~ 0.7 fm. This means that Debye screening will be effective outside a sphere of
diameter ~ 1.5 fm. So we do not expect the domain wall to be significantly Debye
screened. In the above discussion, we have completely ignored the effects of a thermal
bath (QGP medium) on the potential (Eq. between c¢ ( [72}/78]). However as
these effects make the potential between cc weaker, the charmonium state swells. So it
will be even easier for the interaction to break these bound states. These temperature
effects will also be crucial for other heavier ¢q states like bottomonium as they have
large binding energies. Another important aspect which has been ignored for the
sake of simplicity, in the above calculations, is the question of the center of mass

motion. This assumption is correct only in an average sense as the average force
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(AV/Az) acting on ¢ and ¢ vanishes. This averaging is done over the thickness Az,
which is the thickness of the domain wall itself. However as the instantaneous force
(0V/0z) is non-zero, there is a non-zero instantaneous acceleration of the center of
mass. A more detailed analysis of the problem is required to incorporate all these
details. One also needs to include the effects of dynamical quarks leading to explicit
breaking of Z(3) symmetry. We mention that such a disintegration of .J/v from a color
electric field may not necessarily come from a background domain wall arising in QGP
medium. In a thermal medium there are always statistical fluctuations. These gluonic
fluctuations will have energy of order ~ T'. Depending on the correlation length of the
fluctuation, a J/1 passing through it may disintegrate via the mechanism discussed
above. It would be interesting to study the effect of these thermal gluonic fluctuations

on the spectrum of mesons.
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Chapter 6

Disintegration of quarkonia in
Heavy Ion Collisions due to
non-trivial profile of the Polyakov

loop of Z(3) interfaces

In the last chapter we have discussed the implications of C'P violating effects of gauge
potential Ay associated with a Z(3) domain wall. There we have proposed a novel
mechanism for disintegration of quarkonia due to this CP violation from Z(3) walls
[71]. We discussed certain important issues of gauge choice and the color dependence
of the Aq profile associated with the Z(3) walls. In view of these discussions it becomes
important to study whether quarkonia disintegration due to the Z(3) domain walls
essentially requires such CP violating interaction. We consider this issue in this
chapter. We show that quarkonia disintegration due to the Z(3) domain walls can
occur solely due to spatial variation of [(x) profile of the Z(3) wall, even in the absence
of CP violating interaction arising from the associated A, profile. For this we consider
the interaction of ¢ and ¢ with the Z(3) wall, as in ref. [79], where the interaction
is modeled in terms of an effective quark mass depending on the value of |I(z)|. We
find that quarkonia on interaction with a Z(3) wall again has non-zero probability
of getting excited to higher states. This happens because ¢ and ¢ interact with Z(3)

walls at different space-time points which leads to the excitation of quarkonia to
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higher excited states, which are short lived in the QGP medium.

6.1 Interaction of quarkonia with Z(3) walls with

effective quark mass

Like Polyakov loop order parameter, the effective quark mass is also different in the
confined and the deconfined phases of QCD. While in the QGP phase (where I(z)
assumes a non-zero value) quarks are supposed to have the current masses, in the
confined phase (where [(x) = 0) quarks are supposed to acquire constituent mass
of order 300 MeV. This indicates a possible dependence of effective quark mass on
the magnitude of Polyakov loop order parameter. Hence we model the dependence
of effective mass of the quarks on the Polyakov loop order parameter, and study
the interaction of quarkonia with Z(3) interfaces. We show that this interaction
(treated as a time dependent perturbation for a quarkonia traversing through a Z(3)
wall) disintegrates quarkonia by exciting it to higher states of ¢g system which are
supposed to be short-lived in the QGP medium. The effective mass can be modeled
as in ref. [80] identifying [(x) with the color dielectric field x, where effective mass of
the quark is inversely proportional to y. This leads to divergent quark mass in the
confining phase, consistent with the notion of confinement. However we know that
the divergence of quark energy in the confining phase should be a volume divergence
(effectively the length of string connecting the quark to the boundary of the volume).
1/l(z) dependence will not have this feature, hence we do not follow this modeling.
Further, in the spirit of the expectation that a linear term in [ should arise from
explicit symmetry breaking due to dynamical quarks [20}[22-24] and also for the
sake of simplicity, we use the modeling of the quark mass dependence on [(x) in the

following manner [79].

m(x) = mq +mo(lo — |I(x)]) (6.1)

Here () represents the profile of the Z(3) interface, and [y is the vacuum value of
|l(z)| appropriate for the temperature under consideration. m, is the current quark

mass as appropriate for the QGP phase with |I(z)| = [y, with m, ~ mg = 10 MeV,
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ms = 140 MeV, m, = 1.28 GeV and m;, = 4.66 GeV. mg characterizes the constituent
mass contribution for the quark. We will take mo = 300 MeV. Note that here m(z)
remains finite even in the confining phase with /() = 0. As mentioned above, this
is reasonable since we are dealing with a situation where I(z) differs from [y only in
a region of thickness of order 1 fm, thickness of the Z(3) domain wall. (We mention
that we continue to neglect the effect of dynamical quark in the consideration of the
profile of Z(3) which will arise from a linear term in [ in the effective potential of
[(x)). Such a linear term leads to slightly asymmetric profile of [(x) which does not
affect main considerations presented below.)

We work in the rest frame of the quarkonia and consider the domain wall coming
and hitting the quarkonia with a velocity v along the z-axis. Considering the space
dependent part of m(z) in Eq as a potential term in the Dirac equation for the
propagation of quarks and antiquarks, one can write the interaction of the quarkonia

with the wall as,

Hint = m(z1) + m7(zo) (6.2a)
with, m?(z) = m%(z) = mo(lo — |1(2)]) (6.2b)

where 2; and z are the coordinates of ¢ and g in quarkonia. (Thus, note that quark
and antiquark have the same interaction with the Z(3) wall in complete contrast to
the CP violating case of the previous chapter. As we mentioned above, here the
excitation of quarkonia occurs due to different space-time locations of the quark and
the antiquark during propagation of the quarkonia through the Z(3) wall.)

We use first order time dependent perturbation theory to study the excitation of
quarkonia due to the background I(z) profile and consider the transition of quarkonia
from initial energy eigenstate 1; with energy F£; to the final state ¢; with energy F;.

The transition amplitude is given by

ty .
Aij = 0ij — Z/ (i | Hime|i.ye T Ei= Bt gy (6.3)
ti
The states are determined using the potential between ¢g in quarkonia taken is
— — (67 — —
V(r—r >:_|F1—F2| + o|r — T4 (6.4)

where 1 and ry are the coordinates of the quarks and antiquarks respectively, o is the

string tension, o = %as and ay is the strong coupling constant. Since the potential is

27



central, we perform coordinate transformations

_’cm = - ;_TQ and r= _’1 - FQ? (65)

where, 7 is the relative coordinate between ¢ and ¢. ﬁcm is the center of mass of

r

5cosf. And, one can write

quarkonia. Hence, 21 = Rey + 5cos0 and 20 = Reyp —
the quarkonia wave function as W(R., )1 (7). To simplify the calculation, we assume
that the center of mass motion remains unaffected by the external perturbation. As
a result W(R.,) has the plain wave solution, and ¢ (7) can be written (6, ¢) =
»(r)Y;™ (cos @, ¢). As we are considering transition form ground state to other states

of quarkonia, we have

vy = P(r)Yy and ;= ¢, (1) Y™ (cos b, ). (6.6)

The radial part, ¢(r), is obtained by solving radial part of the Schriodinger equa-
tion (for heavy quarkonia, non-relativistic treatment is adequate) with the effective

potential given by
g I(1+1)
+or+

Vi (r) = Y o (6.7)
where p is the reduced mass. Using Eqn. and one can find
o 1 p2m
(V| Hintths) = / / / Yr(r)Y,™ (cos b, ¢)
o J-1Jo .

{m?[y(z] + vt")] + mI[y(—z + vt')]}

Y 100(r) 7% drd(cos 0)de.
We again emphasize that in the above equation, we have ignored the acceleration of
the center of mass of quarkonia and have considered only the relative coordinate. Here
functions m?, m? and v;’s are symmetric under cos — — cosf. So if Y™ (cos b, ¢) =

=Y, (—cos b, ¢) then RHS of Eqn. is zero. Thus we do not get any transition

to a state which is not symmetric under cosf — — cos 6.

6.2 Results

We numerically compute the integral given in Eqn. (6.3)) with various parameters

for J/1¢ and for T states. We have calculated the wave functions for various states
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Figure 6.1: Radial part of wave functions for different states of cc.
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Figure 6.2: Radial part of wave functions for different states of bb .
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of g with the complete potential given by Eqn. (6.7). For the calculation of the
wave-functions for various states of gg we have used Numerov method for solving
the Schrodinger equation. As we want to show the different possible mechanism for
quarkonia disintegration with order of magnitude estimate, so we have taken same
« and o for c¢ and bb bound state which are a = 0.471 and ¢ = 0.192 GeV? [59)].
Fig. and shows the radial part of the wave function for different states of
charmonium and bottomonium respectively.

As no higher excited state of charmonium is expected to be stable in the QGP
medium other than J/¢ even at T' = 200 MeV, J/¢ will dissociate in medium on
interaction with domain wall if it makes transition to excited states of charmonium.
Fig. shows the probability of transition of J/1 to other excited states of char-
monium for different velocity of the charmonium (consequently, of the wall in the
charmonimum rest frame) on interaction with the domain wall at 7" = 400 MeV.
Transition probability is very small for small velocity, it increases with velocity and
attains a maximum value ~ 11% and again decreases to very small value for very
high speed of J/1 hitting the domain wall perpendicularly. The maximum probabil-
ity is smaller (less than 2%) for domain wall at 7' = 200 MeV. Similarly at 7' = 400
MeV only T is bound and all other states of bottomonium are unbound. So T will
dissociate in medium by the same mechanism if it makes transition to excited states.
Fig. shows the probability of transition from T to other excited states of bot-
tomonium for different velocity on interaction with domain wall at 7" = 400 MeV.
The behavior of the plot of the probability of transition vs. velocity is same as for
the case of J/1¢. The difference is in the maximum value of the probability and the
corresponding value of the temperature. Transition probability is negligible (less than

1%) for domain wall at 7" = 200 MeV.

6.3 Conclusions

These results conclusively show that on interaction with a Z(3) domain wall, a J/4
or T will make an excitation to higher orbital states which will readily melt in the

surrounding QGP medium. Transition probability first increases with energy and
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again decreases to very small value. For very small velocity the results are not trust-
worthy as we have neglected the acceleration of center of mass. Nonetheless, this
implies that at some energies the suppression will increase in this manner, decreasing
subsequently at higher energies. This new type of Pr dependence of quarkonia dis-
integration probability is a distinctive signature of our model. This can be used to
distinguish this mechanism from the conventional Debye screening suppression.

We mention again that the results in this chapter show that quarkonia disintegra-
tion due to the Z(3) domain walls can occur solely due to spatial variation of I(z)
profile of the Z(3) wall, even in the absence of CP violating interaction arising from
the associated Ay profile (as was discussed in chapter |5)). It thus becomes interesting
to investigate both these effects together on quarkonia disintegration. [(x) profile will
affect the quark and the antiquark in the same manner while the Ag profile will lead
to the CP violating interaction, distinguishing quark from antiquark. We hope to
investigate this in a future work.

Note that for the case of thermal quarkonia, thermal effects make the potential
between qq weaker, leading to swelling of quarkonia states. This implies that it will be
easier for the interaction to break these bound states when finite temperature effects
are incorporated in the quark-antiquark potential. Another important aspect which
has been ignored for the sake of simplicity in our calculations is the question of the
acceleration of center of mass. This assumption is correct only for large velocities. A
more detailed analysis of the problem is required to incorporate all these details. One
also needs to include the effects of dynamical quarks leading to explicit breaking of

Z(3) symmetry (consequently asymmetric profile of [(z) for a Z(3) wall).
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Chapter 7

Quarkonia Disintegration due to
time dependence of the ¢ potential

in Relativistic Heavy Ion Collisions

In the last two chapter we have discussed dissociation of quarkonia on interaction with
Z(3) walls which appear as topological defects due to spontaneous breaking of Z(3)
symmetry in QGP. Here we will consider other possibilities of quarkonia melting [81]
due to time dependence of the ¢qq potential, without invoking any such exotic objects.

The conventional mechanism of quarkonia disassociation becomes effective when
the medium thermalizes, potential between gq gets Debye screened resulting in the
swelling of quarkonia. If the Debye screening length of the medium is less than the
radius of quarkonia, then ¢¢g may not form bound states, leading to melting of the
initial quarkonium. Due to this melting, the yield of quarkonia will be suppressed.
In the above picture, suppression of quarkonia occurs when the temperature of QGP
achieves a certain value, Tp, so that the Debye screening melts the quarkonium bound
state. Thus, if the temperature remains smaller than T, so that Debye screening
length remains larger than the quarkonia size, no suppression is expected. This type
of picture is consistent with the adiabatic evolution of a quantum state under changing
potential. Original quarkonia has a wave function appropriate for zero temperature
potential between a g and ¢. If the environment of the quarkonium changes to a finite

temperature QGP adiabatically, with Debye screened potential, the final state will
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evolve to the quarkonium state corresponding to the finite temperature potential. If
temperature remains below T, quarkonium wave function changes (adiabatically)
but it survives as the quarkonium.

We question this assumption of adiabatic evolution during the thermalization
stage for ultra-relativistic heavy-ion collisions, such as at RHIC, and especially at
LHC. In the next section we will discuss the validity of adiabaticity for ultra rela-

tivistic heavy ion collisions, especially during the thermalization stage.

7.1 Validity of Adiabaticity for Ultra Relativistic

Heavy Ion Collisions

At very high energy it is possible that thermalization is achieved in a very short
time, about 0.25 fm for RHIC and even smaller about 0.1 fm for LHC [31]. The
issue of thermalization in RHICE has been extensively investigated using different
approaches for the pre-equilibrium stages. Ads/CFT correspondence has also been
utilized to give and upper bound on the thermalization time scale of 1/7" [82], leading
to a time scale of 0.4 fm for T" = 500 MeV. Estimates based on color glass condensate
model give values of thermalization time ranging up to about 1 fm., see refs. [83,84]
One can take a conservative estimate of the thermalization time scale to be less than
1 fm as suggested by the elliptic flow measurements [43]. For J/¢ and even for T,
typical time scale of ¢q dynamics will be at least 1-2 fm from the size of the bound
state and the fact that ¢¢g have non-relativistic velocities. Also, AE between J/1
and its next excited state (x) is about 300 MeV (400 MeV for T states), leading
to transition time scale ~ 0.7 fm (0.5 fm for T). Thus the change in the potential
between ¢ and ¢ occurs in a time scale which is at most of the same order, and
likely much shorter than, the typical time scale of the dynamics of the ¢g system, or
the time scale of transition between relevant states. We have shown in section [£.31]
that required condition for validity of adiabatic approximation is the opposite, that
means the time scale for thermalization should be much larger than the time scale
corresponding to energy gap between nearest energy level. The problem, therefore,

should be treated in terms of a time dependent perturbation and survival probability
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of quarkonia should be calculated under this perturbation. It is immediately clear that
even if the final temperature remains less than T}, if the change in potential is fast
enough invalidating the adiabatic assumption, then transition of initial quarkonium
state to other excited states will occur. Such excited states will have much larger
size, typically larger than the Debye screening length, and will melt away. Thus
quarkonia melting can occur even when QGP temperature remains below TpH. We
mention that adiabatic evolution of quarkonia states has been discussed earlier for the
cooling stage of QGP in relativistic heavy ion collisions in the context of sequential
suppression of quarkonia states [85/86]. However, as far as we are aware, validity of

adiabatic evolution during the thermalization stage has not been discussed earlier.

7.2 Quarkonia Evolution Using Sudden Approxi-

mation

Given the large difference between thermalization time scale of order 0.1 - 0.2 fm [31],
and the time scale of ¢¢ dynamics in a quarkonium bound state being of order 1-2 fm
(or the time scale of transition between relevant states being 0.5 - 0.7 fm), it may be
reasonable to use the sudden perturbation approximation. The initial wave function
of the quarkonium cannot change under this sudden perturbation. Thus, as soon
as thermalization is achieved with QGP temperature being Ty (which may remain
less than T for the quarkonium state under consideration), the initial quarkonium
wave function is no longer an energy eigen state of the new Hamiltonian with the qq
potential corresponding to temperature Ty. One can find overlap with the new eigen
states, giving us the survival probability of the quarkonium as well as the probability
of its transition to other excited states. We will follow the sudden approximation to
calculate the survival probability of quarkonia. We will also estimate the error in using
this approximation with the knowledge that the time scale of thermalization is non-
zero, though small (less than 1 fm). We mention here that the sudden approximation
has been used earlier in the context of heavy-ion collisions for production of hydrogen
like atoms at late stages of the evolution of the system, see ref. [87].

For calculating the zero temperature wave function of the quarkonium we use the
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following potential between ¢ and q.

V(r)= —%—I—ar (7.1)

where a = %as, a5 s the strong coupling constant, and o is the string tension. For
J /1, we will use charm quark mass m. = 1.28 GeV, a = 0.471, and ¢ = 0.192 GeV?
[59]. For T, we use the bottom quark mass my;, = 4.66 GeV.
For calculating wave functions at finite temperature we use the following potential
which incorporates Debye screening
o

V(r)= —?exp(—wpr) + é(l — exp(—wpr)) (7.2)

where wp = gT\/m [59]. We use Ny = 3. We have calculated wave
functions for charmonium and bottomonium states at different temperatures with
above potentials using Numerov method for solving the Schrodinger equation. We
have also used energy minimization technique to get the wave functions for the ground
states and the binding energy and the results obtained by both the methods match
very well. Fig shows plots of wave functions for J/¢ at T'= 0 and 200 MeV. With
finite temperature potential (Eq., excited states of charmonium are not found for
T > 200 MeV. Fig[7.2] shows wave functions for T states at 7" = 0,200, 400, and 500
MeV. For Bottomonium, we find excited state Y(25) at T = 200 MeV which is shown
in Fig[7.3] along with the ground state Y(1S) at 7" = 0.

As we mentioned, we use the sudden approximation to calculate the survival prob-
ability of quarkonium state which is calculated directly by calculating (mod square of)
the overlap of the wave function of the zero temperature quarkonium state with the
wave function of the appropriate state at finite temperature. Figs[7.1}{7.3 immediately
give an idea of this overlap, which is clearly decreasing with increasing temperature
implying decreasing survival probability of the quarkonium. Figl7.4] shows the plot
of survival probabilities for J/¢) and for T as a function of temperature. Survival
probabilities are plotted up to a temperature T beyond which the quarkonium state
does not exist any more due to Debye screening in the potential in Eq[7.2] We note
dramatic decrease in survival probabilities down to about 10 % as temperature in-

creases to about 260 MeV and 590 MeV respectively for the two cases. It is important
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Figure 7.1: Wave functions for J/1 states at different temperatures.
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Figure 7.2: Wave functions for T(15) states at different temperatures.
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Figure 7.3: Wave functions for T(15) and Y(2S) states at 7' = 0 and 7" = 200 MeV

respectively.

to note that survival probabilities for J/¢ and Y significantly reduce even when the
temperature remains smaller than T, for the respective case. The overlap of T(25)
wave function at 7' = 200 MeV and T(15) at T = 0 (Fig[7.3) gives the transition
probability of an initial T to the excited state to be about 10 %. We now estimate
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Figure 7.4: Survival probabilities of initial 7" = 0 J/¢ and T states in QGP at

different temperatures calculated in the sudden (quench) approximation.

the error in using this sudden approximations by calculating the probability ( of tran-

sition of the original quarkonium state to some other state during the time scale 7 of
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Figure 7.5: Plot of the probability ¢ encoding the error in making the sudden ap-
proximation. ( is the probability that the initial quarkonium state does not remain
in the same state during the time period 7 (taken as 0.5 fm here) of the change of

the potential.

the change of the potential using the relations

¢ =1°AH? (7.3)

Here, <> denotes the expectation value in the initial quarkonium state. For
calculating the time averaged Hamiltonian H, we model the time dependence of the

temperature in the following manner,

T(t) = ;TO (7.4)

where 7§ is the maximum temperature of QGP. This linear increase of tempera-
ture is a simple way to model the initial non-equilibrium stage of the parton system.
A more careful calculation should account for the non-equilibrium nature of the sys-
tem. However, to roughly estimate the error in making the sudden approximation,
it should be reasonable to assume a quasi-equilibrium system, with initially increas-
ing temperature upto a maximum value T (which will subsequently decrease due to
continued plasma expansion). In Fig we provide plot of ¢ for different quarkonia

states as a function of temperature. We have taken thermalization time 7 = 0.5 fm for
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these plots (which is on the higher side of the expected value at RHIC and at LHC).

We note that the error in using sudden approximation remains less than about 8%.

7.3 Discussion

We point out the main difference between our approach and the conventional ap-
proaches for calculating heavy quarkonium suppression in QGP. In conventional ap-
proach, quarkonium suppression is calculated for a QGP medium which has achieved
high enough temperature T so that Debye screening becomes effective in making
the quarkonium unbound. If temperature remains below Tp one does not expect
any suppression of the corresponding quarkonium state. Our approach is to focus
on the situation when temperature remains below T, (for the specific quarkonium
under consideration). If the initial thermalization of QGP happens very slowly in
time scale much larger than the time scale of quarkonium which is of order 1 fm, then
indeed we will conclude that no quarkonium suppression will be expected. However,
in ultra-relativistic heavy-ion collisions thermalization is definitely achieved within
a time scale of about 1 fm (from elliptic flow measurements) [43], which is of same
order as the dynamical scale of ¢g in the quarkonium bound state (or the time scale
of transition between relevant states). In such a situation one cannot assume that
the initial zero temperature quarkonium state will simply evolve to the finite tem-
perature quarkonium state. Instead, time dependent perturbation theory should be
used to calculate the survival probability of the initial quarkonium state. In fact
expected thermalization time scale at RHIC and LHC may be as short as 0.25 - 0.1
fm respectively [31]. With such rapid thermalization, use of sudden perturbation
approximation may be appropriate. We calculate survival probability of quarkonium
(and transition to excited state for T) and show that even when temperature of QGP
remains much below T, the quarkonium state can decay with significant probability.
Even if the temperature exceeds Tp, during initial stages of heating the decay of
initial quarkonium state due to time dependent potential, as discussed here, should
be incorporated in calculating the final net quarkonium suppression.

It thus provides new avenues for the experiments to look for different patterns of

suppression of quarkonium depending on the temperature. For the same maximum
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temperature Ty, nuclear effects, the time dependent perturbation effects (as used here
in sudden approximation), and the conventional Debye screening effects, all may show
qualitatively different behavior when the duration of thermalization 7 is changed.
One way to clearly distinguish our mechanism from the conventional mechanism is to
study quarkonium suppression for varying QGP temperatures and the thermalization
time scale independently. One may achieve this by considering different centrality, or
rapidity, or by using different combinations of nucleus size and collision energies so

that the thermalization time and QGP temperature can be varied independently.
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Chapter 8

Summary

In the following we present a brief summary of our work, presented in this thesis. We
have discussed alternate mechanisms of quarkonia disintegration, showing that even
when the temperature T remain below the Debye temperature T (above which the
Debye length becomes smaller than the size of quarkonia), the quarkonia can melt in
the medium. This is totally different than the conventional mechanism of quarkonia
melting, where quarkonia will melt only when T" > T.

We first presented a brief review of the confinement-deconfinement phase transi-
tion, where thermal expectation value of Polyakov loop [(z) acts as order parameter
for this phase transition. {(z) vanishes in the confined phase, respecting Z(3) symme-
try, whereas in the deconfined phase it takes non-zero value leading to spontaneous
breakdown of Z(3) symmetry. This leads to three degenerate vacua corresponding to
[ =1,e>™/3 e*i/3  After the symmetry breaking, field can choose any of the vacua in
different regions of space, hence domains with different [ form. The junction of differ-
ent domains give rise to topological defects, in particular, Z(3) walls at the junctions
of two domains corresponding to different vacua. We have calculated the profile of
[(x) associated with the Z(3) interpolating between different vacua. We have confined
the discussion in this thesis to pure QC'D and neglected the effect of dynamical quark
in the profile of Z(3) walls.

Subsequently we have calculated the background gauge field (Ay) associated with
the [(x) profile of the wall. This has C'P violating effect on the interaction of quarks
with the wall. We have showed that the CP violating interaction of this background
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Ag field leads to color excitation of quarkonia along with special excitation, which
will imply quarkonia melting in the QGP medium. We have used first order time-
dependent perturbation theory to calculate the transition of the initial quarkonia
to excited states and we found that probability of transition increases with kinetic
energy of the quarkonia.

We then address the issue whether heavy quarkonia disintegration due to the Z(3)
walls necessarily requires such C'P violating interaction which needs the extraction
of Ay condensate from the [(x) profile. Thus we considered the quark interaction
with the wall modeled in terms of an effective I(z) dependent quark mass. Again
using the space dependent mass as perturbation and using first order time-dependent
perturbation theory we found that quarkonia on interaction with Z(3) walls has
non-zero probability of getting excited to higher states, which are short lived in the
medium. Here we have only spatial excitation. In this case the transition probability
first increases with velocity, attains a maximum value, and subsequently decreases.

In the last work we showed that not only due to Z(3) walls in the medium, dur-
ing thermalization also quarkonia can get excited because of the time dependence
of the potential between quark and antiquark. In the conventional mechanism of
quarkonia suppression due to Debye screening, an essential assumption is that when
quark-antiquark potential changes in the medium, the quarkonia wave function mod-
ifies itself adiabatically to remain in the instantaneous eigen state of the Hamiltonian.
Thus, no transitions to other states are considered during the evolution of the po-
tential. Such an assumption of adiabaticity requires that the time scale for potential
change should be much larger compared to the dynamical time scale of the quarkonia,
e.g. the time scale associated with transition rate between various energy states. At
very high energies in RHICE, it is likely that thermalization is achieved in a very
short time which is comparable to, or even smaller than, the time scale of transition
between quarkonia states. This implies that the validity of adiabatic evolution does
not hold and the problem needs to be treated using time dependent perturbation
theory. One should then calculate the survival probability of quarkonia during the
change of the potential. Considering the thermalization time scale to be small enough
(from various estimates and elliptic flow data) we have used sudden approximation.

We found that even when temperature of QGP remains below T, the quarkonium
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state decays with significant probability. This probability increases with temperature
of the medium. We have also estimated the error in using this sudden approximation

and found that the error remains below 8 % for the thermalization time of about

0.5 fm.
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