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Synopsis

Relativistic heavy ion collision experiments (e.g. at RHIC, LHC) provide

us the opportunity to produce the deconfined phase of quantum chromo dynamics

(QCD), known as quark gluon plasma (QGP). QGP also existed in the early Universe,

when the universe was a few microsecond old. Relativistic heavy ion collisions, where

QGP phase is produced for a very short time is the only lab experiment where the

condition similar to early Universe can be produced.

QCD, the theory of strong interaction is an SU(3) gauge theory. Here gauge

charges are color charges. Two most important prediction of QCD are asymptotic

freedom and confinement. The strong interaction coupling constant is given by,

αs
(
Q2
)

=
4π

(11− 2nf/3) ln (Q2/Λ2)
(0.1)

where Λ ∼ 200 MeV is known as the QCD scale, nf is the number of flavors in

the theory and Q2 is the momentum transfer . Since nf = 6, the coupling decreases

with the increase in the momentum transfer. At very high energy or large momen-

tum transfer αs asymptotically approaches zero and the interaction between quarks

and gluons becomes very weak so they can move almost freely. This phenomena is

known as asymptotic freedom [1, 2]. Other phenomena confinement comes from the

fact that experimentally we have never observed any colored particle as an isolated

physical state. Experimentally we have observed mesons and baryons which are color

singlet. Attractive interaction between a quark and an antiquark has a confining

part (apart from the Coulombic part) which increases with the separation between

Quark-Antiquark. This makes it impossible to separate a single quark or antiquark

from a hadron. This phenomena is known as quark confinement or in general as color

confinement.

QCD predicts that under suitable physical condition there should be a phase

transition between confined and deconfined matter. At extreme conditions of very

high energy density and/or baryon density, hadrons undergo a phase transition to a

deconfined phase, where quarks and gluons forget the identity of the hadron to which

they belong, and they can travel freely across a distance which is larger than typical

hadron size. Phase transitions are characterized by some order parameter, which takes

different values in different phases. For QCD, thermal expectation of Polyakov loop
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l(x) [3] acts as an order parameter for confinement deconfinemnt phase transition.

l(x) = Tr

{
P

[
exp

(
ig

∫ β

0

dτA0(x)

)]}
. (0.2)

where, A0(~x, τ) = Aa0(~x, τ)T a, (a = 1, . . . N) are the gauge fields and T a are the gen-

erators of SU (N) in the fundamental representation. For QCD N = 3. P denotes

the path ordering in the Euclidean time τ , β = T−1(T is the temperature) and g is

the gauge coupling. l(x) is related to free energy of a test quark, 〈l(x)〉 = e−β∆F .

In confined phase free energy becomes infinite and order parameter vanishes and in

deconfined phase free energy becomes finite and l(x) also becomes finite. As the

QCD Lagrangian is invariant under any arbitrary SU(3) transformation, using the

periodicity of gauge field in euclidean time direction one can show that allowed trans-

formation for l is l(x) −→ z × l(x). Here z is the element of Z(3) ∈ SU(3), with

z = eiφ and φ = 0, 2π/3, 4π/3. As in confined phase l vanishes, it respect Z(3) sym-

metry, whereas in the deconfined phase it takes finite value and Z(3) symmetry breaks

spontaneously. This leads to 3 degenerate vacua corresponding to l = 1, e2πi/3, e4πi/3.

After symmetry breaking the order parameter field can choose any of the three vacua,

hence domains with different l will be produced. The junction of different domains

gives rise to topological defects, known as Z(3) domain walls. We have calculated

the profile of these walls (l(x) profile) between different vacua. Using the effective

potential (at finite temperature) of Polyakov loop given by Pisarski [4], we have nu-

merically extracted l(x) profile by minimizing the energy [5]. We then extract the

profile of gauge field A0 associated with the Z(3) domain wall profile by inverting the

above equation for l(x). Using the l(x) profile and using diagonal gauge choice for A0,

we have self consistently obtained the A0 profile [6]. It has been shown earlier that

this A0 profile associated with a Z(3) wall has CP violating effects [7–9]. This means

on interaction with the background field, quarks and antiquarks scatters differently.

There have been various signals proposed for the detection of QGP in relativistic

heavy-ion collisions. Though there is no single unique signal which allows a straight-

forward identification of the quark-gluon plasma phase. However, strong evidence

from several signals has been accumulating in support of the presence of the de-

confined phase of matter in heavy-ion collisions. Quarkonia suppression is one such

signature of QGP. Matsui and Satz [10] first proposed J/ψ suppression as a signature
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of QGP. The conventional mechanism for quarkonia suppression is such that due to

the presence of QGP medium, potential between qq̄ is Debye screened, resulting in

the swelling of quarkonia. If the Debye screening length of the medium is less than

the radius of quarkonia, then qq̄ may not form bound states. Due to this melting,

the yield of quarkonia will be suppressed. In conventional mechanism if the temper-

ature (T ) remains at certain value (TD) where Debye length is larger than the size

of quarkonia, then there will be no melting of quarkonia. Here we have discuss that

even the temperature remain below TD, the quarkonia will melt in medium.

In first case we have shown that the CP violating effects of background gauge

field associated with Z(3) walls can lead to disintegration of quarkonia. We consider

the quarkonia moving through the wall. As the interaction is CP violating, the quark

and antiquark of the system will be pulled apart from each other, this lead to spatial

excitation of the system. As the background gauge field A0 associated with the wall

carries color, the interaction also changes color composition of the system. We start

with color singlet J/ψ and consider the gauge field (A0 profile) as perturbation and

calculate the transition to an octet χ state. Using first order perturbation theory we

show that the transition probability rapidly increases with velocity or kinetic energy

of incoming quarkonia. As the octet states are not bound, they will melt in the

medium. Hence, yield of J/ψ will be suppressed [11].

There are certain conceptual issues in this scenario due to use of the CP violating

gauge field associated with the profile of l(x). Thus it becomes important to study

whether heavy quarkonia disintegration due to the Z(3) domain walls essentially

requires such CP violating interaction. We consider the interaction of q and q̄ as in [5]

where the interaction is modeled in terms of an effective quark mass which depends

on the magnitude of l(x). Again using the space dependent mass as perturbation and

using first order perturbation theory we found that quarkonia on interaction with

Z(3) walls has non-zero probability of getting excited to higher states which are short

lived in the medium. This is happening because the perturbation acts on different

space time points for the quark and the antiquark in the system. As there is no color

charge associated with l(x) or m(x), we have only spatial excitation. In this case the

transition probability first increases with velocity and attains a maximum value and

again decreases. This behavior is a distinguishable feature of our model, which is not
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present in the conventional mechanism of quarkonia suppression.

In next work, we question the validity of the assumption of adiabatic evolution of

quarkonia states during thermalization which underlies the conventional mechanism

based on Debye screening. We show that during thermalization stage quarkonia can

get excited because of the time dependence of the potential between quark and an-

tiquark. In conventional mechanism the basic picture assumes that when potential

changes then quarkonia wave function modifies itself adiabatically. One then inves-

tigates whether such a quarkonium state is bound or not, depending on the Debye

screening. This assumption of adiabatic evolution requires that the time scale for

change in potential be large enough compared to the typical time scale associated

with the dynamics of the system, e.g. the time scale associated with energy gap be-

tween the successive energy states. At very high energy it is likely that thermalization

is achieved in a very short time of order 0.25 fm for RHIC and 0.1 fm for LHC [12].

Also elliptic flow data shows that thermalization achieves within 1 fm [13]. This time

scale is comparable to the time scale associated with energy gap. Thus the validity

of adiabatic evolution does not hold. The problem thus needs to be treated using

time dependent perturbation theory and one should calculate the survival probability

of quarkonia under this perturbation. Considering the thermalization time scale to

be small enough (from various estimates and elliptic flow data) we have used sudden

approximation. We found that even when temperature of QGP remains below TD,

the quarkonium state decays with significant probability [14]. Survival probability

decreases with temperature of the medium. Also we have found that the probability

drops very significantly near TD. We have also estimated the error in using first order

perturbation theory which is the probability that the initial quarkonium state does

not remain in the same state during the time period τ (taken as 0.5 fm here) of

the change of the potential. This probability remains below 8 % for the thermal-

ization time used ≤ 1 fm. This shows the validity of approximation of first order

perturbation theory for our calculations.

In conclusion, we have proposed alternative mechanisms of quarkonia suppression

in relativistic heavy-ion collisions which do not require temperature to necessarily

exceed the Debye temperature of the quarkonium state under consideration. Our

mechanisms have distinctive features which can be used to distinguish them from the
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conventional mechanism of quarkonia suppression.
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Chapter 1

Introduction

1.1 Journey From Molecule to Quark

The thirst for going deep inside matter started a long ago when molecule was proposed

as the smallest constituents of pure chemical substances. Then, chronologically, John

Dalton gave Atomic Theory, J. J. Thomson (1897) discovered electron, Rutherford

proposed substructure of atom as electron and heavy mass nucleus in 1911, then he

discovered proton (1917 − 1919, named by him, 1920), James Chadwick discovered

neutron in 1932. Subsequently, quark was discovered as elementary constituent of

matter [1, 2]. This is clearly not the end, the search is still going on.

In the next two section we will discuss very briefly about Quantum Chromo Dy-

namics (QCD), the theory of strong interaction. We will also discuss different phases

and the phase diagram of QCD.

1.2 QCD, The Theory of Strong Interaction

In this section we will primarily follow references [3–5]. The quarks and gluons interact

with each other via strong interaction. The theory of strong interaction is QCD where

quarks and gluons are the fundamental particles which carry color charge. QCD

is a non-abelian gauge theory with gauge group SU(3). Quarks transform under

fundamental representation of SU(3) and carry three types of color charge, named

as red, blue and green, while antiquarks carry anti-color charges. The interaction
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between quarks are mediated by gauge bosons, called gluons. There are 8 types of

gluons in QCD. They transformed as adjoint representation of SU(3). The Lagrangian

for QCD is written as,

L = −1

4
Ga
αβG

αβ
a + ψ̄ (iγµDµ −m)ψ, (1.1)

where Dµ is called the covariant derivative and is given by,

Dµ = ∂µ − igTaAaµ. (1.2)

where Ta are the generators of SU(3) in the fundamental representation. They satis-

fies the commutation relation

[T a, T b] = fabcT c. (1.3)

Here fabc are the structure constants. Gαβ is the gluonic field strength tensor, which

is related to the commutator of covariant derivative as,[
Dα, Dβ

]
= igGαβ ≡ igTaG

a
αβ, (1.4a)

where Ga
αβ = ∂αA

a
β − ∂βAaα + gfabcAbαA

c
β. (1.4b)

The transformation of fields under SU(3) transformation U are given by

ψ → ψ′ = Uψ, (1.5a)

and TaA
a
µ → TaA

a ′
µ = UTaA

a
µU
−1 − i

(
∂µU

)
U−1. (1.5b)

From the QCD Lagrangian one can easily see that there are self-interaction terms

for gluons like,

g∂νA
a
µf

abcAµbAµc and g2fabcfalmAbµA
c
νA

µlAµm.

The corresponding Feynman diagrams have three point and four point vertices

for gauge bosons. This is a generic feature of every gauge theory (like QCD) with a

non-abelian gauge group that gauge fields have self interactions. Thus gluons carries

charge and self interact, unlike photons which are gauge bosons of an abelian gauge

theory with U(1) gauge group. This can also be seen directly by constructing Noether

charge for the gluon field.
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One of the most important features of QCD is asymptotic freedom, that follows

from running coupling constant of QCD

αs
(
Q2
)

=
4π

(11− 2nf/3) ln (Q2/Λ2)
, (1.6)

where Λ ∼ 200 MeV is known as the QCD scale and nf is the number of flavors in

the theory. Since nf = 6, the coupling decreases with the increase in the momentum

transfer Q2. So at very large momentum transfer, the coupling constant approaches

to very small value. This phenomenon is known as asymptotic freedom of QCD [6,7].

Hence, at very high energy and/or small distances (thus high density) the quarks

and gluons should move freely. The above expression also shows that for low energy,

coupling constant becomes very high, that means the interaction becomes stronger

at large distance.

1.3 Color Confinement

Quarks and gluons are not observed experimentally as isolated particles. They are

bound into hadrons, namely, mesons which are quark-antiquarks bound states, and

baryons which are bound states of three quarks. As gluons self-interact, one also

expects bound states consisting only of gluons, named as glueballs. However so far

there is no clear experimental evidence of these objects. Absence of isolated quarks

and gluons is related to another remarkable property of QCD, that the the color force

between a quark and antiquark inside a hadron is not only Coulomb like, there is a

confining part which increases with distance. This confining part comes from multi

gluon exchange between quarks. This makes impossible to remove a quark from a

hadron. This phenomena is known as color confinement. There is no theoretical proof

for this yet (apart from lattice gauge theory). In this case the perturbative treatment,

based on an expansion in powers of the coupling constant, is not valid. So to explain

confinement a non-perturbative treatment is needed.
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1.3.1 Bag Model of Confinement

A phenomenological model which is very useful for studying non perturbative quark-

gluon system is M.I.T. bag model [8]. This takes into account both the asymptotic

freedom and color confinement. In this model a hadron has an internal structure

associated with quarks and the gluon fields which are taken to be localized in a

spatial region. This region is called a bag. Quarks are treated as massless particles

inside a bag of finite dimension, and are infinitely massive outside the bag. The kinetic

energy of quarks constitutes a pressure, pushing the bag outward which is balanced

by a bag pressure (B) which tries to pull them inward. Hence, in this model, finite

size hadron results from the balance between two pressures. The phenomenological

quantity, B, is introduced to take into account the non-perturbative color confining

aspect of QCD. The total color charge of the matter inside the bag must be colorless,

by virtue of the Gauss’s Law. With three different types of color, the only allowable

hadronic bags are colorless qqq and qq̄ states. Glueballs are incorporated in this model

by considering gluonic fields confined inside the bag.

The simple picture can be used to estimate the bag pressure. With that one can

see how at extreme conditions of very high temperature and/or baryon density one

expects liberation of color charges leading to the formation of quark-gluon plasma

(QGP). For this we will primarily follow ref. [9],

1.3.2 Hadrons and the bag pressure

Consider massless fermions in a spherical cavity of radius R. The Dirac equation for

the fermions in that cavity is

γ.pψ = 0 (1.7)

In Dirac’s representation

γ0 =

I 0

0 −I


and

γi =

 0 σi

−σi 0


4



Where I is 2 × 2 unit matrix and σi are Pauli matrices. The wave function ψ is

written as

ψ =

ψ+

ψ−


where ψ+ and ψ− are 2− d Dirac spinors. So Eq. 1.7 becomes, P0 −~σ. ~P

+~σ. ~P −P0

ψ+

ψ−

 = 0

After solving the above equation we’ll have the ground state solution

ψ(~r, t) =

ψ+(~r, t)

ψ−(~r, t)

 =

 Ae−ip0tj0(p0r)χ+

Ae−ip0t(~σ.~r)j1(p0r)χ+


where j0 & j1 are spherical Bessel functions, χ± are Dirac spinors and A is normal-

ization constant.

The confinement of quarks only requires that vector current jµ = ψ̄γµψ should

vanish outside the cavity, that means the normal component of jµ should be zero at

the surface of the bag which is taken to be at r = R. This implies, for a normal vector

n directing outward, nµj
µ = ψ̄nµγ

µψ = 0. Since in the instantaneous rest frame, n0

is zero and ~n is the ordinary unit vector normal to the surface of the cavity, it can be

shown that −iγµnµψ = ψ. Hence ψ̄ψ = 0 This gives

j0(P 0R) = j1(P 0R). (1.8)

This has a solution

P 0R = 2.04 or P 0 =
2.04

R
. (1.9)

So the kinetic energy of a quark inside a bag is inversely proportional to the radius

of the bag. (This is expected also from simple application of uncertainty principle).

Consider a system of N quarks inside a bag. Then the total energy of the system will

be,

E =
2.04N

R
+

4

3
πR3B. (1.10)

Where the last term comes from the contribution of the bag pressure. Equilibrium

radius can be found by minimizing total energy, leading to

B
1
4 =

(
2.04N

4π

) 1
4 1

R
. (1.11)
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Assuming the radius of a three 3 quark hadron (baryon) to be 0.8 fm, from Eq.

1.11 one can calculate B
1
4 = 206 MeV

For more detail discussion of bag model see reference [10]

1.4 Deconfinement in QCD and quark-gluon plasma

As we mentioned above, at very high energies and very short distances, quarks and

gluons are expected to move freely due to asymptotic freedom of QCD. This leads

to the expectation that at very high temperatures (with very high thermal kinetic

energies of quarks and gluons) and/or very high baryon densities (implying very short

distances), one should get a gas of weakly interacting quarks and gluons where color

charges are no more confined within hadronic length scales. Such a system of quarks

and gluons with liberation of color charges is called the quark-gluon plasma.

Perturbative calculation for deconfined phase of QCD give satisfactory results [11],

but most of those are in high temperature limit. For the values of temperatures

near the transition temperature, only reliable calculations are from lattice at zero

baryon chemical potential. There are few perturbative calculation for finite baryon

density also. Lattice calculations also have been performed for finite baryonic chemical

potential, though different techniques give varying estimates for the critical point etc.

Here we will discuss the matter at extreme conditions in the Bag model.

As we discussed, in the bag model hadrons are confined inside a bag which has

a definite finite size due to balance between bag pressure and the pressure resulting

from the particles inside the bag. If the parton number is increased inside the bag,

as will happen at high temperature T , it will lead to increase in outward pressure.

Similarly, an increase in the density or baryon chemical potential µB will be expected

to increase the pressure due to larger Fermi momentum of partons. Hence one expects

that there will be a critical value of T and/or µB above which the bag pressure can

not hold the partons. As a result a new phase of matter containing quarks and

gluons is possible in which liberated quarks and gluons are in thermal equilibrium.

The phase is known as the deconfined phase of partonic mater or the Quark-Gluon

Plasma. Using standard methods all the thermodynamic quantities can be calculated

considering a noninteracting system of massless quarks and gluons. In this ideal gas
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limit, resulting expressions for pressure P , entropy density S, energy density E and

number density n. are as follows, [12],

P =

(
gg +

7

8
gf

)
π2T 4

90
+
gf
24

(
µ2
qT

2 +
µ4
q

2π2

)
(1.12a)

S = 2

(
gg +

7

8
gf

)
π2T 3

45
+
gf
12
µ2
qT (1.12b)

E =

(
gg +

7

8
gf

)
π2T 4

30
+
gf
8

(
µ2
qT

2 +
µ4
q

2π2

)
(1.12c)

n =
gf
12

(
µqT

2 +
µ3
q

π2

)
. (1.12d)

Where gg is degeneracy factor for gluons and gf is degeneracy factor for fermions.

µq = 3µB is the quark chemical potential. We will consider two flavor degrees of

freedom, which is reasonable approximation up to RHIC energy, and we will discuss

the behavior of plasma in the two extreme regimes, at high temperature and at high

density.

1.4.1 Quark Gluon Plasma at High Temperature

For this we will take the case of zero baryon density, i.e. µB = 0. Thus, the pressure

in this case is given by (Eq. 1.12a),

P = 37
π2

90
T 4 (1.13)

The critical temperature Tc is the temperature above which this pressure exceeds the

bag pressure B and the partons become deconfined. We get,

Tc =

(
90B

37π2

) 1
4

(1.14)

using the value B
1
4 = 206 MeV we get Tc ∼ 144 MeV . Beyond this value of

temperature the bag can’t hold the matter inside it. Hence, quark matter is produced.

Such a phase is believed to have existed in the early universe when the age of the

universe less than few micro-seconds. During these stages the temperature was higher

than the above value of Tc. Net baryon density was almost negligible in the universe

so µB = 0 is a good approximation .
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1.4.2 Quark Gluon Plasma at High Density

Next extreme regime we consider is that at zero temperature and at high baryon

density. The pressure can be found from Eq. 1.12a,

P =
µq

4

2π2
. (1.15)

Again for the critical value of quark chemical potential µqc, this pressure is equal

to the bag pressure B. Using B
1
4 = 206 MeV one can get µqc ∼ 434 MeV leading to

the critical baryon number density nc ∼ 0.72/fm3. The baryon number density (from

nucleons) in normal nuclear matter is ∼ 0.16/fm3. So the critical baryon density is

about 5 times the normal nuclear baryon number density.

For finite temperature and finite chemical potential, the critical temperature and

critical baryon chemical potential will be some where in between the values for the

above two extreme cases. In the next section we will discuss the qualitative features

of the resulting QCD phase diagram.

1.5 QCD Phase Diagram

The QCD phase diagram as a function of temperature (T ) and baryon chemical

potential µB is shown in Fig.1.1 [13]. It gives an overall idea of different phases of

QCD, and associated phase transitions. The qualitative aspects of this phase diagram

can be represented in terms of three different regions.

There are lot of available lattice simulation for the region with zero chemical poten-

tial and finite temperatures. For realistic values of quark masses, lattice calculations

predicts that there are no genuine phase transitions at zero µB, so there should not

be any phase boundaries in this direction. Calculations indicate a crossover from the

hadronic phase to the quark-gluon plasma for realistic u, d and s quark masses [14,15].

The crossover temperature is likely to be in the range 150 − 180 MeV . The early

universe was in this region and the experiment like RHIC and LHC also explore this

regime of phase transition for very small µB

If we move along the µB direction for zero temperature, then there is possibility

of rich phase structures. First nuclear matter appears near µB ∼ 940 MeV which
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Figure 1.1: QCD phase diagram (see ref. [13]).

is separated from the hadronic gas by a first order transition line. For larger values

of µB, neutron superfluidity is expected to occur (as inside neutron stars), where

neutrons condense to form superfluid. As µB is further increased, high density QGP

is expected to form. However, here several exotic phases are possible, such as color

superconductor which results from condensation of quark Cooper pairs (which are

formed due to attractive q − q interaction in the 3∗ channel) like electron-electron

Cooper pair in normal superconductor. Detailed properties of such phases are not

yet understood, for a review see ref. [16]. Other exotic phases are proposed in this

high µB regime [13], like the Color Flavor Locked (CFL) phase, or the crystalline

color superconductor. The core of neutron star may contain all these phases. The

upcoming experiment compressed baryonic matter (CMB) at FAIR is expected to

explore this region of high µB QCD.

For finite T and finite µB there are very few lattice calculations available. In this

region effective field theory models predict first order phase transition. Combined

with the lattice results which show a cross-over transition at low values of µB, we

conclude that the first order transition line should end at a point with T = Tc and

µB = µc at which the phase transition is second order. This point is the critical

point in phase diagram. Several experiments are devoted to find this critical point.
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There are many open question which remain to be answered about the QCD phase

diagram. There are several experiment going on and several experiments are planed

for the investigation of these aspects of QCD phase diagram.

The thesis is organized as follows: After this introduction, the next chapter (Chap-

ter 2) contains a brief review of confinement-deconfinement phase transition and for-

mation of topological defects like Z(3) walls. It also contains numerical calculations

for finding the profile of Polyakov loop order parameter l(x) interpolating between

two vacua as well as the profile of associated gauge field (A0). The formation of QGP

in laboratory and its signatures have been reviewed briefly in chapter 3. The time

evolution of quantum states is discussed in chapter 4 in first order time-dependent

perturbation theory. The two limits, adaibatic perturbation, and the sudden per-

turbation have been discussed in detail. Chapter 5 presents the new mechanism of

quarkonia dissociation on interaction with the background gauge field associated with

a Z(3) wall. The interaction of Z(3) walls with quarkonia and quarkonia dissociation

by modeling effective mass as a function of l(x) is presented in chapter 6. Quarko-

nia dissociation during thermalisation due to time dependenc of the quark-antiquark

potential is discussed in chapter 7. Chapter 8 summarizes the work presented in this

thesis.
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Chapter 2

Confinement Deconfinement Phase

Transition and Formation of

Topological Defect

In this chapter, we will discuss the confinement-deconfinement phase transition as

a spontaneous symmetry breaking phase transition, leading to topologically non-

trivial vacuum manifold. This leads to topological structures such as domain walls

and strings. We will start our discussion with topological defects and formation of

topological defect with few example.

2.1 Topological Defects

When a symmetry is spontaneously broken, then it may imply existence of topological

defects if the vacuum manifold has non-trivial topology. In condensed matter physics

there are many examples of topological defects like string defects and point defects

in liquid crystals, vortices in superfluid helium and flux tubes in superconductors.

There are many example of topological defects in early universe, like cosmic strings,

magnetic monopoles, and domain walls (for details, see [17]). In this section we will

first discuss few examples of topological defects. Then we will discuss the process of

formation of topological defects, usually known as the Kibble mechanism [18]. We will

then discuss the formation of Z(3) domain walls which result from the spontaneous
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breaking of Z(3) symmetry in the confinement-deconfinement transition.

2.1.1 Examples of Topological Defects

The existence of different types of topological objects like domain walls, strings,

monopole and textures depends on the topology of the vacuum. Here we will briefly

discuss domain wall and string defects.

1. Domain Walls : Domain walls appear when a discrete symmetry is sponta-

neously broken leading to a disconnected vacuum manifold. Consider simple

case of a single scalar field having double well potential after symmetry break-

ing. The Lagrangian can be written as,

L =
1

2
(∂µφ)2 − λ

4
(φ2 − v2)2. (2.1)

The Lagrangian has discrete Z(2) symmetry under the transformation φ→ −φ.

The potential has two minima at φ = ±v. When the field chooses any of the

vacua then the symmetry of ground state breaks spontaneously. If φ takes

different vacuum values in any two different spatial regions then continuity of

φ requires that these two regions are separated by a planar sheet where φ = 0.

This is the domain wall defect. 1-d Field equation has analytic solution, which

gives the profile of this domain wall in physical space as shown in Fig. 2.1.

φ = v tanh(

√
λ

2
vz). (2.2)

The solution φ passes through zero as it interpolates between the two different

vacuum values from far left to far right.

2. Strings : String defects appear when a continuous symmetry breaks sponta-

neously leading to nontrivial first homotopy group of the vacuum manifold. If

φ for the Lagrangian in Eq.2.1 is a complex scalar field then the Lagrangian has

continuous U(1) symmetry with symmetry transformation φ → eiθφ. Where θ

varies continuously from 0 to 2π. The potential in this case has a ’Mexican hat’

shape with degenerate minima at |φ| = v. A choice of vacuum with specific

value of θ (say θ = 0) breaks the U(1) symmetry spontaneously. String defect

results when θ varies non-trivially in physical space as follows.
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Figure 2.1: The domain wall configuration.

  

n=+1 n=−1

P P

θ θ

Real Space

Order Parameter
        Space

Figure 2.2: Field configuration for a vortex (string in 3 dimension)
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When we traverse a closed path L in physical space it is possible for the field φ

to wrap non-trivially around the circle of minima of the potential, so, the phase

of φ develops a non-trivial winding. For example, net change in θ, ∆θ = ±2π in

Fig.2.2 (+ and − signs correspond to the figures on left and right respectively).

If we shrink the loop L in the physical space, we can locate the point where

the field value has singularity and value is not defined . So the magnitude of

the field will take zero value at that point. It is important to note that this

point cannot be removed by any local change, we have to modify the full system

to remove it. In 2-d, the location of this singularity represents a point defect

which is a topological defect with unit winding. For ∆θ = ±2π we get a defect

and antidefect respectively. In three space dimensions, by shrinking the loop L

in physical space at different (2-d) planes, one can easily see that the locus of

this singularity represents a topological line or string defect.

2.1.2 Formation of Topological Defects: Kibble Mechanism

Kibble gave a general theory of formation of topological defects in a spontaneous

symmetry breaking transition. He argued that after spontaneous symmetry breaking

transition, domains of ordered phase form in physical space below Ginzberg temper-

ature. The size of these domains will be of the order of correlation length at that

temperature. The choice of order parameter in a domain is completely independent

from the other one. In between the two domains, the order parameter varies follow-

ing geodesic rule which states that the order parameter in between the two domains

traces the shortest path on the vacuum manifold to minimize gradient energy term,

present in the free energy.

If around the intersection of several of those domains, the order parameter has

a topologically nontrivial variation, that means by local modification of the system

this specific non-trivial variation cannot be removed, then the defect is called topo-

logical. The type of topological defect, like domain wall, string, monopole, or texture

(topological object), depends on the topology of the vacuum and space dimensions.
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2.2 Confinement-Deconfinement Phase Transition

In this section we will focus on confinement-deconfinement phase transition. First

we will construct the order parameter for this transition, then from the symmetry

considerations we will write the effective potential for the order parameter. In the

entire discussion here we will consider pure QCD, where there are no dynamical

quarks. We primarily follow the discussion in ref. [19].

2.2.1 Polyakov Loop Order Parameter

Consider SU(N) gauge theory at finite temperature without dynamical quarks. Let

us denote the states by |sG〉. The partition function of the system is then written as

Z = Tre−βF =
∑
sG

〈sG|e−βH |sG〉. (2.3)

In order to distinguish confined phase from the deconfined one, we will consider

free energies of infinitely massive static quarks and antiquarks. Let us introduce

operators, ψ†a( ~x0, t) and ψa( ~x0, t) which create and annihilate static quarks with color

a at position x0, and time t, along with their charge conjugates for antiquarks. These

field operators satisfy the anticommutation relations

{ψa( ~x1, t), ψ
†
b( ~x2, t)} = δabδ

3( ~x1 − ~x2). (2.4)

Similar relation holds also for conjugate fields, and all other equal-time anti-commutators

vanishes. The (Euclidean) time evolution of the wave function is given by Dirac equa-

tion in the Euclidean space.

(
−i∂0δ

ab − gAab0 ( ~x0, τ)
)
ψb( ~x0, τ) = 0, (2.5)

where A0 = Ai0λi, with λi being the Gell-Mann matrices. This gives the solution as

ψa( ~x0, β) = P

[
exp

(
ig

∫ τ=β

0

dτA0( ~x0, τ)

)]
ab

ψb( ~x0, 0), (2.6)

where P denotes path ordering forward in time.

Now our aim is to find whether the system is in the confined phase or in the

deconfined phase. For this purpose, we introduce an infinitely heavy test quark,
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placed at position ~x0, as a probe. (As the test quark should not have any back

reaction, that means the test quark should be static in medium, so we consider the

test quark as infinitely heavy.) In the presence of this test quark the state of the

system is given by |s〉 = ψ†a( ~x0, 0)|sG〉. Hence the partition function becomes

Zq = e−βF ( ~x0) =
1

N

∑
s

〈s|e−βH |s〉

=
1

N

∑
sG

〈sG|
∑
a

ψa( ~x0, 0)e−βHψ†a( ~x0, 0)|sG〉,
(2.7)

where N is the number of colors. N = 3 for QCD. Thus the sum over a is on all

possible color states. Now just like the operator e−iHt generates the time translation

in Minkowski time, e−βH generates the time translation in Euclidean space. Thus, in

the Euclidean space, for any operator O,

eβHO(t)e−βH = O(t+ β). (2.8)

This implies

eβHψa( ~x0, 0)e−βH = ψa( ~x0, β), (2.9a)

⇒ Zq =
1

N

∑
sG

〈sG|
∑
a

e−βHψa( ~x0, β)ψ†a( ~x0, 0)|.sG〉 (2.9b)

The time evolved field in Eq. 2.6 is related to the initial field by an overall phase.

This overall phase is the non-Abelian analogue of Bohm-Arhanov phase and is called

the Wilson line. In the Euclidean space, due to the periodicity in time direction, it

becomes a loop. The trace of this quantity over all color degree of freedom is known

as the Polyakov Loop. It is defined as

L(~x) =
1

N
Tr

{
P

[
exp

(
ig

∫ τ=β

0

dτA0( ~x0, τ)

)]}
. (2.10)

Using eq. (2.6) and eq. (2.10) in eq. (2.9), we get

Zq =
∑
sG

〈sG|e−βHL(~x)|sG〉. (2.11)

Dividing this by the partition function of the pure glue system, we get the change

in the free energy of the system in the presence of the test quark as,

Zq
Z
≡ e−β∆F = 〈L(~x)〉. (2.12)
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As we are dealing with static, infinitely massive quark, the free energy of a single

quark system does not carry much sense. However, for a quark at positions ~x and an

anti-quark at position ~y, one can show the free energy of the system is function of

the distance between the quark and the anti-quark as

〈L†(~y)L(~x)〉 ∝ e−βFqq̄ . (2.13)

• For confining phase, the free energy required to separate a quark from an

anti quark is infinite. That means Fqq̄ → ∞ as the separation between the

quark and antiquark increases. Also if the quark and antiquarks are far away

from each other, then one will expect Polyakov loops at these positions to be

uncorrelated. Thus 〈L†(~y)L(~x)〉 −→ 〈L†(~y)〉〈L(~x)〉 = |〈L(~x)〉|2. Then Eq.(2.13)

becomes

|〈L(~x)〉|2 ∝ e−βFqq̄ . (2.14)

Hence 〈L(x)〉 = 0 in the confining phase.

• For deconfined phase, Fqq̄ is finite, hence 〈L(x)〉 is finite. One can normalized

〈L(x)〉 to unity

Thus Polyakov loop can be used to distinguish the confinement as an order pa-

rameter. It vanishes in the confined phase and becomes unity in the deconfined phase

at high temperature.

2.2.2 Spontaneous Breaking of Z(3) Symmetry and Z(3) Do-

main Walls

We now discuss symmetry properties of the Polyakov loop order parameter. The QCD

Lagrangian is invariant under any arbitrary SU(3) transformation. Let us consider

U(x, τ) ∈ SU(3) to be the transformation. Then the transformation of gauge fields

and consequently that of Polyakov Loop are given as

Aµ(x, τ) −→ A′µ(x, τ) = U(x, τ)Aµ(x, τ)U(x, τ)−1 + iU(x, τ)∂µU(x, τ)−1 (2.15)

L(~x) −→ L(~x)′ =
1

N
Tr

{
U(x, β)P

[
exp

(
ig

∫ τ=β

0

dτA0( ~x0, τ)

)]
U(x, 0)

}
(2.16)
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Since the gauge fields are periodic in the direction of Euclidean time, only those

transformation are allowed which preserve the periodic boundary conditions of the

gauge fields. We note that with Aµ(x, 0) = Aµ(x, β), the relation A′µ(x, β) = A′µ(x, 0)

holds from Eq. (2.15) if U(x, β) = ZU(x, 0), such that Z ∈ SU(N), commutes with

all the SU(N) matrices and is space-time independent. Under this transformation

Polyakov Loop also transform as

L(~x) −→ ZL(~x). (2.17)

By definition, the set of all such elements Z, is called the center group of SU(N)

denoted by Z(N). The elements of Z(N) are

Z = eiφ1; φ = 2πm/N ; m = 0, 1 . . . (N − 1) (2.18)

For the case of QCD, N = 3. Thus we conclude that finite temperature pure QCD

is invariant under Z(3) symmetry transformations. The Polyakov loop transforms ac-

cording to eq. (2.17) under this Z(3). Hence the order parameter 〈L(~x)〉 −→ Z〈L(~x)〉.
In the confining phase 〈L(~x)〉 = 0 which implies 〈L(~x)〉 remains invariant in confining

phase. Whereas, in the deconfined phase 〈L(~x)〉 6= 0, thus it is not invariant under

Z(3) transformations. Thus we conclude that the discrete Z(3) symmetry is sponta-

neously broken in the deconfined QGP phase. There are 3 equivalent phases in the

high temperature phase characterized by values of 〈L(~x)〉, Z〈L(~x)〉 and Z2〈L(~x)〉.
Note that the Z(3) symmetry is spontaneously broken in the QGP or the high tem-

perature phase but it’s restored in the low temperature or the confined phase. This

is in contrast to usual situations in condensed matter systems where the symmetry

is restored in the high temperature phase. In view of discussion of section 2.1.1 we

note that there will be topological domain wall defect can exist. These corresponds

to interpolation of Polyakov loop order parameter field between different Z(3) vacua.

We will discuss details of these Z(3) domain wall defects further below.

2.2.3 Effective potential for Order Parameter

In the following, we will suppress the vector indices on ~x and use l(x) for the thermal

expectation of Polyakov loop. We will use the effective Lagrangian for the Polyakov
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loop as proposed by Pisarski [20,21],

L =
N

g2
|∂il|2T 2 − V (l), (2.19)

where

V (l) =
(
−b2|l|2 + b3(l3 + (l∗)3) + |l|4

)
b4T

4. (2.20)

Figure 2.3: Surface plot of potential in the complex l(x) plane for T = 400 MeV.

Since l is dimensionless, dimensions of the potential is made up by the factor

T 4. In the mean field theory, b4 is taken as constant and b2 varies with temper-

ature. For b3 6= 0, the Lagrangian has Z(3) symmetry. The parameters are fit-

ted in ref. [22–24] such that the effective potential reproduces the thermodynam-

ics of pure SU(3) gauge theory on lattice [25, 26]. The coefficients are taken as

b2 = (1− 1.11/x) (1 + 0.265/x)2 (1 + 0.300/x)3−0.478, (with x = T/Tc and Tc ∼ 182

MeV), b3 = 2.0 and b4 = 0.6061 × 47.5/16. With these values, l (x) −→ y =

b3/2 + 1
2
×
√
b2

3 + 4b2 (T =∞) as T −→ ∞. Various quantities are then rescaled

such that l (x) −→ 1 as T −→∞. The scaling are

l (x)→ l (x)

y
, b2 →

b2

y2
, b3 →

b3

y
, b4 → b4y

4. (2.21)

The surface plot of potential in the complex l(x) plane for T = 400 MeV is shown

in figure 2.3. At low temperature where l = 0, the potential has only one minimum.
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For temperatures higher than Tc, l(x) develops a non vanishing vacuum expectation

value l0, and the cubic term above leads to three degenerate Z(3) vacua.

2.2.4 Z(3) Domain Wall Defect in C.D. Transition

In the previous section we have discussed the formation of topological defects in the

case of spontaneous symmetry breaking phase transition via Kibble mechanism. Ap-

plication of this for the case of spontaneous breaking of Z(3) symmetry in QCD has

been discussed in the literature and the numerical simulation results show that in rel-

ativistic heavy-ion collisions typically several large domain wall defects are expected

to form in a typical event [27–29]. Basic physical picture of the formation of these

Z(3) walls is as follows. In the case of confinement deconfinement phase transition,

the Z(3) symmetry is restored in the low temperature phase and it is broken sponta-

neously in the high temperature phase. Consider effective potential for the Polyakov

loop order parameter as given in Eq. 2.20. There are three degenerate minima for

temperature higher than Tc. The order parameter field chooses any of these there min-

ima randomly in different regions of space (typically separated by correlation length).

Hence domains with different l, l = 1, ei2π/3, ei4π/3 are formed. This leads to forma-

tion of Z(3) domain walls in between domains corresponding to different Z(3) vacua.

Also, the junction of three domain walls will give rise to topological string, known

as the QGP string. Using the techniques used in reference [27] we have calculated

the profile of l (domain wall) between different domains for the case of confinement

deconfinement phase transition. Figure 2.4 shows the profile of domain wall between

two Z(3) domains and the QGP String at the junction of three interfaces.

In Eq. 2.10 we can see that L(~x) is essentially the condensation of background

gauge field (A0). It has been discussed in the literature [30] that this background

gauge field leads to CP violating effects for quarks interacting with the wall. This

will play an essential role in our calculations of the interaction of quarkonia with

these Z(3) walls. We will briefly discuss how to calculate the gauge field A0 from the

Polyakov loop order parameter associated with a given Z(3) wall.
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Figure 2.4: (a):Profile of Domain Wall between two Z(3) domains. (b): QGP String

at the junction of three interfaces.

2.2.5 Calculating A0 Profile for Z(3) Domain Wall

To calculate the A0 profile we follow the work in ref. [30]. We invert Eq.(2.10) to

calculate the A0 profile form L(~x) profile. We choose A0 to be of the form

A0 =
2πT

g
(aλ3 + bλ8) , (2.22)

where, g is the coupling constant and T is the temperature. λ3 and λ8 are the diagonal

Gell-Mann matrices. The coefficients a and b depend only on spatial coordinates. The

advantage of taking the diagonal gauge choice is that we deal with the eigenvalues of

the matrices that are invariant under gauge transformations.

Substituting eq.(2.22) in eq. (2.10), we get

3L(x) = exp(iα) + exp(iβ) + exp(iγ), (2.23)

where, α = 2π (a+ b) , β = 2π (−a+ b) and γ = 2π(−2b). Here a and b are rescaled

like a→ a/2 and b→ b/(2
√

(3)). On comparing the real and imaginary part of Eq.

(2.23), we get

cos (α) + cos (β) + cos (γ) = 3|L| cos (θ) , (2.24a)

sin (α) + sin (β) + sin (γ) = 3|L| sin (θ) . (2.24b)

In eq. (2.10), A0 appears as a phase, implies it has 2πn degeneracy so any increment

or decrement in the value of A0 by a factor of 2πn will result in the same value of
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L (~x). Eq. (2.24), when solved for |L| = 1 and θ = 0, give a set of pairs (a, b) as the

solutions. Since all these solutions reflect 2πn ambiguity in A0, we choose any of the

pair and set it as the initial condition. Here we have chosen (a, b) = (−1.5,−1.0).

To calculate A0 by inverting Eq. (2.24), we choose the continuity of A0 across the

domain wall. This is a crucial ingredient in the numerical scheme that we have used to

determine the profile of a, b and hence, A0. A small region was chosen near the initial

a, b and then |L| was calculated for all values in that region. We have taken only

those values of a and b were the error between the calculated |L| and |L| obtained by

energy minimization was minimum. The process was then repeated for each value of

z to obtain a, b values as functions of z. We have compared the calculated |L| profile

and the one obtained by energy minimization and shown in figure (2.5a). Figure

(2.5b) shows the profile of parameters a and b across the domain wall. The calculated
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Figure 2.5: (a): Plot of calculated |L| from a & b and the one obtained from minimiz-

ing the energy. The inset figure shows the deviation between the two profiles. (b):

Profile of a and b between the regions L(~x) = 1 and L(~x) = ei2π/3 with initial point

(−1.5,−1.0). Figure taken from [30].

a, b were then used to calculate A0 using eq (2.22). The A0 profile was fitted to the

function A0(x) = p tanh(qx + r) + s using gnuplot. The calculated A0 profile, fitted

A0 profile and their difference is plotted in figure (2.6).

In the next chapter we will focus on the QGP phase and discuss the formation

and evolution of QGP in relativistic heavy-ion collisions and various experimental

signatures which have been proposed to detect the transient early stage of QGP.
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Chapter 3

QGP in Laboratory and its

Signature

The only way to produce QGP in laboratory is to collide two relativistic heavy nuclei.

In these relativistic heavy ion collision experiments (RHICE), heavy nuclei (like gold,

lead or copper) are accelerated to ultra relativistic energies with at least few hundreds

of GeV per nucleon (in case of LHC their energies are of the order of TeV ) and then

are collided with each other. At these energies the nuclei get Lorentz contracted in

the direction of the boost. The contraction factor is proportional to energy and is

equal to Average Energy per nucleon
nucleon mass

, which is few hundred for RHIC and of the order of

thousand for LHC. The nuclei of size about 10−12 fm should looks like a 2−D disc

in the laboratory frame. But instead of a 2 −D disc it looks like a thin pancake of

thickness ∼ 1 fm because of quantum fluctuations.

3.1 Evolution of Medium

After collision, the produced parton system undergoes different stages of evolution,

which are characteried as the stages of pre-equilibrium, thermalization, hadronization

and subsequently chemical then thermal freezeout. Finally hadrons are detected in

the detectors. The evolution of the partonic system in these stages is as follows (see

figure 3.1):
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Figure 3.1: A schematic diagram showing various stages of evolution in Heavy Ion

Collisions

3.1.1 Pre-Equilibrium and Thermalization

At the time of initial collision of hadrons (hence of partons), due to very high energies,

the strong interaction coupling constant becomes very small. As a result the quarks

and gluons inside the nucleons interact little due to asymptotic freedom. Hence when

the nuclei collide, they essentially pass through each other with negligible interaction

as if they are transparent. However, the coupling is not exactly zero, and this leads

to copious production of secondary partons in the overlapping region of the nuclei

as they pass through each other. Hard collisions also lead to some of the partons

getting stopped in the overlapping region, leading to non-zero (though small) baryonic

chemical potential of the produced parton system. This sets up the initial conditions

or the pre-equilibrium stage for the formation of QGP in laboratory. Still there is no

successful model to fully explain this non-equilibrium stage of collision. The modeling

of these initial conditions itself is very challenging. There are different types of initial

conditions used. One uses the Color Glass Condensate (CGC) model, the Glauber

initial conditions and string decays, parton cascade etc. Different models have their

own advantages and limitations. Intensive research is going on to understand detailes

of these initial conditions. Due to very high density of particle in the overlap region,
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they undergo multiple interactions and rapidly attain thermal equilibrium. Various

calculations lead to estimate of the thermalization time of about 0.25 fm for RHIC

and 0.1 fm for LHC [31]. From experimental side, elliptic flow data [32] requires

hydrodynamic evolution with thermalization time to be less than about 1 fm.

3.1.2 Local Equilibration, Plasma Expansion, and Hadroniza-

tion

As the two receding nuclei move rapidly away from each other, the initial partonic

system fills up the region in between them, undergoing rapid longitudinal expansion.

There is no transverse expansion initially. After local equilibration the pressure of the

system leads to build up of expansion in the transverse direction, though it remains

small in comparison to longitudinal expansion. Only at very late stages the expansion

becomes more or less isotropic. As the system expands, its temperature drops and

finally when the temperature of the system falls below the quark-hadron transition

temperature, the system hadronizes. Subsequently, the system of hadron gas evolves

with time as the temperature keeps dropping down.

3.1.3 Chemical freeze-out

Initially (just after Hadronization) the produced hadrons have high enough scattering

cross section (as the density and/or temperature is high enough) to undergo inelastic

collisions. In that stage hadrons interacts and change their chemical composition.

With the expansion of the system the temperature and density of the hadron gas

decreases and consequently inelastic scattering rate decreases. After certain time the

inelastic scattering becomes insignificant and the chemical composition of the system

does not change any further (other than the decay of particles). This is known as the

stage of chemical freeze-out. We can use the statistical thermal models to described

the chemical freeze-out stage with well defined system parameters such as chemical

freeze-out temperature Tch and baryon chemical potential µB at the feeze-out stage.

Still after chemical freeze-out elastic collisions take place and momentum distribution

of the system changes.
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3.1.4 Thermal Freeze-out

As the system keeps expanding, after some time the expansion rate will exceed the

rate of scattering. This means that the momentum distribution of the particles will

not change further and they will move freely to the detector. As different species

with different mass and interaction rates will have different mean free paths, they

will decouple at different times.

3.2 Signature of QGP

After thermal freeze-out hadrons are detected in the detector. We cannot detect the

existence QGP phase directly by any detector. Only way is to find certain signatures

that QGP existed during an earlier stage of the system evolution. One has to make

theoretical models of the phases at earlier stage and predict the signature of the early

transient QGP phase in terms of properties of hadrons which can be detected in the

detectors. Verification of these predictions with experimental data will give informa-

tion about these early stages. Though there is no single unique signal which allows a

straightforward identification of the quark-gluon plasma phase but accumulative set

of signals taken together may provide the indication of the presence of the deconfined

phase of matter. Here briefly we will discuss some of the signatures, in particular

the signal of suppression of J/ψ. In the next section we will discuss the conventional

mechanism of this signature of J/ψ suppression in more detail.

3.2.1 Dilepton Production in the Quark-Gluon Plasma

In the quark-gluon plasma, quark/anit-quark interactions can lead to formation of

virtual photons γ∗, which subsequently decay into a lepton-antilepton pair (l− l+).

The produced lepton-antilepton pair is called a dilepton. The interaction of those

particles with medium is electromagnetic interaction, which is suppressed by a factor

( αe√
s
)2, where αe is fine structure constant and

√
s is the charged lepton center-of-mass

energy. Accordingly, the mean-free path of the leptons are expected to be larger than

the size of the medium produced. So they will likely reach the detector without fur-

ther interaction with medium. The production and momentum distribution of those
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dileptons depends on the momentum distribution of quarks/antiquarks in medium

which is governed by the thermodynamics of the medium. Hence dileptons carry the

thermodynamic information of the medium at the moment of their production.

3.2.2 Direct Photon Production

In the quark-gluon plasma, a quark and antiquark can interact via each other to

produce a photon and a gluon. Also a quark (or an antiquark) can interact with a

gluon to produce a photon and a quark (or an antiquark). The first one is known

as annihilation processes and the other one is the as Compton processes which is

analogous to Compton process in quantum electrodynamics. The analogous elec-

tromagnetic process for the first case is q q̄ → γ γ is allowed but suppressed by a

factor αe
αs
∼ 0.02. Where αe is electromagnetic fine structure constant e2

4π
and αs is

related to strong coupling constant (g) as αs = g2

4π
. In both the processes a photon

is produced in medium. As it interacts with the medium only via electromagnetic

interaction, same as dilepton, it reaches detector without further interaction. As the

production and momentum distribution of produced photon also governed by the

thermodynamic condition of the medium through source quarks and gluons, it also

carries the thermodynamical properties of the medium at their production time.

Both the above signals have been observed in RHICE [33–35]. However Hadronic

interaction can also produce di-lepton pairs or photons. Therefore to separate out

the portion of production of di-lepton and photon in QGP, it is necessary to analyze

the contributions of other sources.

3.2.3 Strangeness Enhancement

In nucleon-nucleon collisions, all the light quark-antiquark pairs (like uū, bb̄, ss̄) are

expected to be produced, including the strange quarks. Afterwards the strange quarks

and antiquarks combine with other antiquarks and quarks to form strange hadrons.

Experimentally the ratio of strange hadron and non-strange hadron are found to be

0.08 [36] for p − Be collision and 0.05 for pp collision. For the case of heavy ion

collision this ratio is enhanced. First observation was from NA57 collaboration of

SPS at 158 GeV/A energies [37]. Subsequently STAR collaboration at RHIC also
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observed the same phenomena [38,39]. This indicates that there is another source of

ss̄ production than purely hadronic interactions [40, 41]. If there is a QGP medium

then thermal ss̄ can be produced. Hence the enhancement of strange hadrons for

heavy-ion collisions compared to p − Be and pp collisions indicates existence of an

intermediate deconfined phase of matter.

3.2.4 Elliptic Flow

This is the strongest signal of QGP as a thermalized system. It arises from the fact

that non-central collisions will give rise to spatially anisotropic medium arising from

the geometry of the overlapping region of the colliding nuclei. Consequently, the

pressure gradients will be different in different azimuthal directions. Hydrodynamic

evolution of this syetm will lead to momentum anisotropy of final state particles.

Consequently, the second Fourier coefficient (called as elliptic flow) of the azimuthal

distribution of particles will be non-zero. This has been observed experimentally in

RHIC and LHC experiments [42]. Hydrodynamical simulations [43–45] show that

the observed anisotropy can be explained only when there is a QGP medium, with

thermalization time smaller than 1 fm and with a small value of η/s. The elliptic

flow of partons reflects the momentum anisotropy of thermalized quarks [46–49].

3.2.5 Jet Quenching

In deep inelastic scattering processes, due to hard scattering, pairs of jets, with par-

tons moving in opposite directions are produced. The jet that propagate through the

dense and hot matter suffers re-scattering thus loses energy and finally gets absorbed

in that medium. The other jet moving in opposite direction which suffers less inter-

action that propagate outside the medium can be detected. This effect is known as

jet quenching which indicates the presence of a hot and dense medium. This was first

observed at RHIC [50,51] then subsequently at LHC also [52]. This quenching of jet

carries information about the hot and dense medium.
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3.2.6 Quarkonia Suppression

Quarkonia, the bound state of heavy quark (q) and antiquark (q̄), are produced at

the early stages of the heavy-ion collision. There are two types of quarkonia which

can be produced at presently available accelerators enrgies, charmonia (bound state

of charm and anticharm) like J/ψ, ψ′ etc., and bottomonia (bound state of bottom

and antibottom) like Υ, Υ(2S) etc. In high energy heavy ion collisions QGP, the

deconfined phase of matter, is expected to be produced. With color charges being

deconfined, there will be Debye screening of the color charges in the QGP [53]. This

screening will weaken the binding of quark-antiquark system. If the screening is suffi-

cient, quarkonia will not be bound any more and will melt in the medium. The heavy

quark and the antiquark will subsequently combine with other antiquarks/quarks to

form open charms (D) and open bottoms (B) during the subsequent hadronization

process. This will increase suppression of yield of quarkonia. Matsui and Satz [54]

first proposed suppression of yield of J/ψ (and other charmonia) as a signal for the

presence of QGP. This has been observed experimentally at SPS in central Pb-Pb

collisions [55, 56], and in subsequent experiemnts (though at higher energies, regen-

eration of quarkonia also becomes important).

As this thesis relates to this particular signal, we will start discussing this in

more detail with the potential model picture of quarkonia. We start by considering

quarkonia as a two body system with color charges g and −g. The potential energy

of the qq̄ system, separated by a distance r, coming from one gluon exchange can be

represented phenomenologically by the Coulomb potential energy (in analogy with

quantum electrodynamics)

V0(r) = −α
r

(3.1)

The confining part, coming from multi gluon exchange is represent by a term linear

in r (in accordance with the string model of confinement)

Vc(r) = σr. (3.2)

α is related to the strong coupling constant g and σ is the string tension. The potential

energy and Hamiltonian for the qq̄ system are [57–59]

V (r) = −α
r

+ σr; H =
p2

2µ
+ V (r) (3.3)
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where µ(= mq
2

), the reduced mass of the quark antiquark system. The parameters of

the Hamiltonian (or the potential) are fixed from the observed spectra of quarkonia.

We choose the parameters α = 0.52, σ = 0.926 GeV/fm and mc = 1.84 GeV and

mb = 5.17 GeV [57].

In the second step we put the qq̄ system in QGP. The QGP consists of thermal

quarks and gluons, which will rearrange around the q and q̄ and modify the potential

between q and q̄. This modification of Coulomb part is because of the (Debye)

screening of color charges of q and q̄. Consequently, the interaction will become short

range Yukawa-type interaction. The string tension part also gets modified because of

the thermal medium, and eventually vanishes after certain temperature [53,59]. Now,

confinement occurs because of the string (linear part in the potential). Therefore,

vanishing of the string tension implies deconfinement of quarks and gluons. However,

for charmonia or bottomonia, absence of string tension does not automatically give

rise the phenomena of melting. They remain bound up to certain temperature (Td)

because of modified (Debye screened) Coulomb interaction ( or Yukawa interaction)

in medium.

Qualitatively the Debye screening can be understood by approximating the non-

abelian color interaction by abelian Coulomb interaction. The phenomena of screen-

ing comes from redistribution of thermal charges like quarks and gluons. Consider

initially a quark-gluon plasma, in thermal equilibrium at a temperature T, with zero

chemical potential. The number density of quarks nq and antiquarks nq̄ are same. The

number density of different flavors with mass mq, at a temperature T , is proportional

to the Boltzmann factor e−mq/T . This implies that QGP will consist of mostly u, d

and s quarks and antiquarks up to few hundred MeV temperature. In that temper-

ature range the fraction of charm and bottom quark will be very small. Invoking the

fact that the string tension part is negligible and the quarks and anti quarks interact

via color Coulomb interaction (−α
r
), any test quark will be surrounded by quarks of

opposite charge. This will reduce the visibility of the test quark from others, leading

to reduced interaction strength and range. So a heavy quark and antiquark will feel

less interaction between them because of the screening. For the case of plasma as a

massless quark and antiquark ideal gas, the potential V (r) seen by a test quark at a

distance r will be modified from the long-range Coulomb potential to the short-range
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Yukawa potential

V (r) = −α
r
e
− r
λd , (3.4)

where λd is screening length or Debye length. For the abelian case this is given by [9]

λd =

√
9× 1.202 T

π2q2(nq + nq̄)
(3.5)

As in the abelian approximation gauge bosons do not carry color charge, so the

screening above does not have any contribution from gauge bosons (gluons). But

the contribution from gluons will be non-zero for QCD. Like quarks and antiquarks,

gluons also polarize the medium surrounding the test quark. This gives additional

screening to the test quark. The Debye mass (inverse of Debye length) from one loop

Perturbative QCD (PQCD) calculation (Appendix C of [60]) is given by,

md(PQCD) =
1

λd(PQCD)
= gT

√
1 +

Nc

6
+
Nf

3
(3.6)

Here subscript “c” is for color and “f” is for flavor. Now our goal is to find the temper-

ature (Td) at which the Debye screening will be sufficient to break the quark-antiquark

pair. We can estimate that temperature by taking non-relativistic approximation.

The Hamiltonian for qq̄ system in QGP is

H =
p2

2µ
− αe−r/λd

r
(3.7)

By semi-classical argument and using the uncertainty relation 〈p2〉 ∼ 1
r2 we have the

energy of the system

E(r) =
1

2µr2
− αe−r/λd

r
(3.8)

By minimizing energy (E(r)) with respect to r we have the condition for the possible

bound state.

− 1

µr3
+
α

r2
(1 + r/λd)e

−r/λd = 0 (3.9)

or

x(x+ 1)e−x = (αµλd)
−1 (3.10)

where x = r/λd. The above equation has a solution only if (αµλd)
−1 ≤ 0.84. Implies

λmind =
1

0.84 αµ
(3.11)
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is the smallest value of Debye length which permits bound state. Eq.(3.9) in the limit

λd → ∞ provides us the Bohr radius at zero temperature, which is rBohr = 1/(αµ)

From Eq.(3.11) we can say, qq̄ will not be bound if 1.19rBohr > λd. For J/ψ taking

α = 0.52 and mq = 1.84 we get Debye length at T = 200 MeV to be λd(PQCD) =

0.36 fm and rBohr = 0.41 fm. This indicates that at T = 200 MeV this qq̄ system

will not be bound. Using Eq.3.6 and 3.11 we have the dissociation temperature

Td = 0.84 µ

√
2α

9π
(3.12)

which is about 150 MeV for α = 0.52.

Though the values are not very reliable, with the crude picture used here, quali-

tatively we conclude that there will be a maximum temperature (Td) for QGP, above

which there won’t be any bound quarkonia. So the suppression in the yield of quarko-

nia will indicate the creation of QGP in heavy ion collision. Experimental results [56]

show a suppression of J/ψ with number of participants (Npart). This is consistent

with the expectation of J/ψ suppression in the QGP medium.

However, there are other factors too that can lead to the suppression of J/ψ

because of which it has not been possible to use J/ψ suppression as a clean signal

for QGP like, J/ψ suppression in Hadronic medium. One also observes stronger

suppression for forward rapidity than on the mid rapidity at RHIC [61, 62] as well

as at LHC [63]. Using the same picture Υ suppression is proposed as a signal and it

has been observed in ALICE collaboration [64]. This does not have such issues like

anomalous suppression in different rapidity region.
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Chapter 4

Evolution of States Under

Time-Dependent Perturbation

Theory

This thesis primarily concerns the evolution of quarkonia states under changes in

potential between quark and antiquark in the QGP medium produced in RHICE.

The change in the potential can originate from the interaction of the quarkonia with

Z(3) domain walls, or it can occur during thermalization of the medium produced

in RHICE and also during the evolution of the thermalized medium of QGP. Here

we will discuss the evolution of quarkonia states using time-dependent perturbation

theory. We will discuss the validity of adiabaticity during the evolution of quarkonia

states and discuss the opposite limit of sudden approximation for the perturbation.

We will also check the error in the use of sudden approximation. We start with brief

review of the evolution of quantum states under time dependent perturbation.

4.1 Time-Dependent Perturbation Theory

In the case of time-independent perturbation theory we calculate how the eigen states

and corresponding eigen values of unperturbed Hamiltonian gets modified due to the

presence of a perturbation. When perturbation depends on time then the Hamiltonian

changes with time, consequently there would not be any stationary states. So in this
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case we are not suppose to talk about only the modification of eigen states. Rather, we

are interested in the evolution of initial states under the action of this time dependent

perturbation.

Consider the time-dependent Hamiltonian as

H = H0 + V (t) (4.1)

Where H0 is the constant (in time) part of the Hamiltonian whose eigen values (En)

and eigen functions (|n(t)〉 = e−iEnt|n〉) are exactly known, and V (t) is small pertur-

bation in comparison to the original Hamiltonian

Now if at initial time (t = 0), the system is in the eigen state |i(0)〉 of H0 and

we let the system evolve under this perturbation then we want to find what is the

probability that the system can be found in state |f(t)〉 at some later time t. Let

us assume that at time t the initial state evolved to a state |ψ(t)〉. We can always

expand |ψ(t)〉 in terms of the eigen state |n(t)〉 of H0, as it forms a complete set of

orthonormal basis.

|ψ(t)〉 =
∑
n

cn(t)|n(t)〉. (4.2)

The probability that the state |ψ(t)〉 make a transition to the state |f(t)〉 can be

found by taking projection of |ψ(t)〉 on |f(t)〉. Taking |f(t)〉 to be an eigen state of

H0, this gives

〈f(t)|ψ(t)〉 = cf (t). (4.3)

Since |n(t)〉 are eigen states of H0, they satisfy time dependent Schrödinger equation

i
∂

∂t
|n(t)〉 = H0|n(t)〉, (4.4)

Schrödinger equation corresponding to the perturbed Hamiltonian H is

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (4.5)

Using Eq.(4.1), Eq.(4.2) and Eq.(4.4), we obtain

i
∑
n

(
∂

∂t
cn(t))|n(t)〉 =

∑
n

V (t)cn(t)|n(t)〉 (4.6)

Multiplying both side of the above equation by 〈f(t)| and integrating one can get the

relation

i
∂

∂t
cf (t) =

∑
n

Vfn(t)cn(t), (4.7)
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where

Vfn(t) = 〈f(t)|V (t)|n(t)〉

= Vfne
iωfnt (4.8)

and

Vfn = 〈f |V (t)|n〉 , ωfn = Ef − En (4.9)

Since we have taken the initial state |i(t)〉 also to be an eigen state of H0, this implies

that at zeroth order (in perturbation V ) the amplitude c
(0)
n = δin. Then, up to first

order (O(V )) Eq.(4.7) becomes

ċ
(1)
f (t) = −iVfieiωfit. (4.10)

Integrating this equation, we have

c
(1)
f (t) = −i

∫ t

0

Vfie
iωfit

′
dt′ (4.11)

The expression for complete first order amplitude is

cf (t) = c
(0)
f (t) + c

(1)
f (t)

= δfi − i
∫ t

0

Vfie
iωfit

′
dt′ (4.12)

Hence the probability of transition up to first order from initial state |i(t)〉 to a

final state |f(t)〉 is

Pfi(t) = |cf (t)|2

= |δfi − i
∫ t

0

Vfie
iωfit

′
dt′|2 (4.13)

4.1.1 Transition Under Perturbation Acting for Finite Time

In many cases the time dependent Hamiltonian never goes to its original value. Per-

turbation starts at t = 0 and remains non-zero even after a finite time t. In that case

at t→∞ right hand side (RHS) of Eq.(4.11) diverges. So this formula for transition

from one state to other state can not be applied directly. Physically this divergence
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is not important for our case and this can be removed easily (see, ref. [65] for details).

To do this, we integrate RHS of Eq.(4.11) by parts:

c
(1)
f (t) = −i

∫ t

0

Vfie
iωfit

′
dt′

= −
[
Vfie

iωfit
′

ωfi

]t
0

+

∫ t

0

∂Vfi
∂t
eiωfit

′

ωfi
dt′ (4.14)

Since at t = 0, V (t) = 0 implies at t = 0 first term vanishes, while at t this term this

term gives the contribution of the modification in the states under the action of time

independent perturbation up to first order correction (with the exponential factor

eiωfit giving the corresponding time dependence). That means if we expand V (t) in

Taylor seres about V (0) up to first order then at t → ∞ the first term corresponds

to the constant part of the perturbation V (∞), while the second term corresponds

to the time varying part giving transition to other states. Thus, the probability of

transition to other states will be given by ( [65])

Pfi(t) =
1

ω2
fi

|
∫ t

0

V̇fie
iωfitdt|2. (4.15)

If V̇ (t) is sufficiently small during the relevant time interval (meaning that the

perturbation V (t) varies slowly) then the second term will be negligible compared

to the first term in Eq.4.14. Thus if we apply perturbation sufficiently slowly (adi-

abatically), a system will remain in that state. For that the system has to be in a

non-degenerate stationary state. In Sec.(4.2) the above scenario will be discussed in

more detail.

4.2 Adiabatic Evolution of States

In heavy-ion collisions one often uses adiabatic evolution of states in any change of

Hamiltonian (during thermalization of the medium after collision, during freezeout

etc.). Origin of the word “Adiabatic” is a Greek word adiabatos ’impassable’, from a-

’not’ + dia ’through’ + batos ’passable’ (from bainein ’go’), was introduced by Nicolas

Lèonard Sadi Carnot in 1824 to explain Carnot heat engine. In the present context,

adiabatic evolution means gradually changing conditions allowing the system to adapt

its configuration. In such evolution process, a state with an initial Hamiltonian will
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evolve with time to the corresponding eigen state of final Hamiltonian. That means if

a Hamiltonian changes continuously fromH(t0) toH(t) and we let the the initial state,

|n(t0)〉 which is an eigen state of H(t0), to evolve adiabatically then it will reach a final

state |n(t)〉, the corresponding eigen state of H(t). In previous section qualitatively

we have discussed the condition for adiabatic evolution. Now quantitatively we will

find the condition for adiabatic evolution. For a time-dependent Hamiltonian H, the

instantaneous eigen functions (|n(t)〉) and eigen values (En(t)) are given as

H(t)|n(t)〉 = En(t)|n(t)〉 (4.16)

At any instant of time these states form a complete orthonormal basis. So one can

expand any general solution |ψ(t)〉for schrödinger equation

i
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 (4.17)

in terms of that basis as

|ψ(t)〉 =
∑
n

cn(t)|n(t)〉eiθn(t) (4.18)

where

θn(t) = −
∫ t

0

En(t′)dt′ (4.19)

Substituting Eq.(4.18) into the Eq.(4.17) and using the relation Eq.(4.16) we have

i
∑
n

(
ċn|n〉+ cn ˙|n〉+ icn|n〉θ̇n

)
eiθn =

∑
n

cnEn|n〉eiθn (4.20)

After taking derivative on both side of Eq.(4.19) we can show that last term of LHS

is equal to RHS. This implies∑
n

ċn|n〉eiθn = −
∑
n

cn ˙|n〉eiθn (4.21)

Multiplying 〈m| from left and after simplification we obtain

ċm = −
∑
n

cn〈m|ṅ〉ei(θn−θm) (4.22)

Taking derivative on both side of Eq.(4.16) we get

Ḣ|n〉+H ˙|n〉 = Ėn|n〉+ En ˙|n〉. (4.23)
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Multiplying 〈m| from left and using the relation 〈m|H = Em〈m| we have for m 6= n

〈m|Ḣ|n〉 = (En − Em)〈m|ṅ〉. (4.24)

Finally we have

ċm = −cm〈m|ṁ〉 −
∑
n6=m

cn
〈m|Ḣ|n〉

(En − Em)
ei(θn−θm). (4.25)

For adiabatic limit (when H varies slowly) we can drop the second term at the RHS

of the above equation, then we obtain

ċm = −cm〈m|ṁ〉. (4.26)

When the system starts from the state |i〉 initially, the boundary condition cn(0) = δin

implies the solution of the Eq. 4.26

ci = ci(0)eγi(t) (4.27)

where

γi(t) = i

∫ t

0

〈i(t′)| ∂
∂t′
|i(t′)〉dt′ (4.28)

So the final state can be written as

|ψ(t)〉 = eγi(t)eθi(t)|i(t)〉 (4.29)

θi(t) and γi(t) are known as dynamical and geometric phase, respectively. Hence the

final state is nothing but the ith eigen state of the Hamiltonian H(t) at time t with

a phase factor. We say that the adiabatic approximation is valid when the following

condition (expressed in terms of dimensionless ratio) is satisfied [66],

|〈m|Ḣ(t)|n〉|
(En − Em)2

� 1 (4.30)

Or (
τe
τm

)2

� 1 (4.31)

Where τe gives an estimate of the transition time scale between different states (being

inverse of the characteristic energy gap between different energy eigenstates of the

system), whereas τm corresponds to the time scale of the evolution of the Hamiltonian.

The above ratio is a measure of adiabaticity, which should be much less than 1 in

order to allow the adiabatic evolution of states of the quantum mechanical system.
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4.3 Sudden Perturbation

Consider another limiting case when perturbation changes abruptly over a very small

time interval τ . From Eq.(4.5) one can write

δ|ψ(t)〉 = H|ψ(t)〉δt (4.32)

As the time interval is infinitesimally small and H|ψ(t)〉 is finite in that duration

of time, one can say δ|ψ(t)〉 ∼ 0. Wave function remains unchanged on action of

sudden perturbation. We solve the instantaneous eigen states of H, before and after

that instant. Using the fact that the initial state |n(0)〉 remains unchanged, the

final state, which is nothing but the initial state, is no longer eigen states of final

Hamiltonian of the system, i.e. the state will not be a stationary states and will, in

general, be a linear combination of the stationary states |n′(t)〉 of final Hamiltonian

H. So the overlap of |n(0)〉 with the new stationary eigen states |n′(t)〉, gives us the

probability of its transition to other states. The probability of transition from initial

state |i〉 of H0 to a final state |f ′〉 of H is

Pfi = 〈f ′|i〉. (4.33)

The calculation of sudden perturbation is exact, the only approximation is taken

here is the time interval of the change of Hamiltonian is infinitesimally small, i.e. the

Hamiltonian changes suddenly.

4.3.1 Condition for Sudden approximation and Error Calcu-

lation

To find the condition for validity of sudden approximation, we should find the prob-

ability ζ that the state does not remain in the original state after action of the

perturbation (V (t)), which is measure of the error involved in this approximation.

Consider the initial state |i〉 to be an eigen state of H0. The projection operator

orthogonal to that state is Q = 1− |i〉〈i|. |ψ〉 is the evolved states after action of the

perturbation. So ζ can be written as

ζ = 〈ψ|Q|ψ〉 (4.34)
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|ψ〉 can be expanded in terms of the eigen state |n〉 of H0.

|ψ〉 =
∑
n

cn|n〉 (4.35)

Where the expansion coefficients cn’s can be found using perturbation theory. Using

first order perturbation theory Eq.(4.12 & 4.8). We have,

cn = δni − i
∫ τ

0

〈n|V (t)|i〉dt (4.36)

In the above integration one can take outside the integral the comparatively slowly

varying function |i〉 & |n〉 and use the instantaneous values. The integral is then

found to be

cn = δni − iτ〈n|
(

1

τ

∫ τ

0

V (t)dt

)
|i〉

= δni − iτ〈n|V̄ |i〉 (4.37)

Where

V̄ =
1

τ

∫ τ

0

V (t)dt (4.38)

Using equations (4.34, 4.35, 4.37 & 4.38) and after simplification we have

ζ = τ 2〈i|V̄ QV̄ |i〉+O(τ 3) (4.39)

As we have consider the value of cn corrected up to first order which is order of τ and

ζ is second order in cn, ζ is correct up to order τ 2. Since

〈i|V̄ QV̄ |i〉 = 〈i|V̄ 2|i〉 − 〈i|V̄ |i〉2 =
(
∆V̄

)2
(4.40)

where ∆V̄ is the root mean square deviation of the observable V̄ in the state |i〉, so

we have the error in sudden approximation calculation

ζ = τ 2(∆V̄ )2 +O(τ 3) (4.41)

Hence the condition for the validity of the sudden approximation, ζ � 1 implies

τ � 1

∆V̄
(4.42)

This is nothing but one form of time energy uncertainty relation. We will use the

results of this section later in Chapter 7 where we will consider the issue of adiabaticity

in the evolution of quarkonia states during the early thermalization of QGP in RHICE.
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Chapter 5

A Novel Mechanism of J/ψ

Disintegration in Heavy Ion

Collisions

We discussed in section 2.2.4 that confinement-deconfinement transition will lead to

formation of Z(3) domain walls. We have calculated background gauge field associ-

ated with such Z(3) walls in section 2.2.5. Several aspects of these topological domain

wall defects have been discussed in literature [30,67,68]. It was shown in ref. [68] that

background gauge field A0 associated with generalized Z(N) interfaces can lead to

spontaneous CP violation in the Standard Model which, in turn, can lead to baryo-

genesis in the early universe. A detailed quantitative analysis of this spontaneous CP

violation was done in [30], in the context of quark/antiquark scattering from Z(3)

walls in the QGP phase. The main approach followed in refs. [30,68] was based on the

assumption that the profile of the Polyakov loop order parameter l(x) corresponds to

a condensate of the background gauge field A0 (in accordance with the definition of

the Polyakov loop). This profile of the background gauge field is then calculated from

the profile of l(x). Such a gauge field configuration in the Dirac equation leads to

different potentials for quarks and antiquarks, leading to spontaneous CP violation

in the interaction of quarks and antiquarks from the Z(3) wall. This is the origin

of spontaneous CP violation from Z(N) walls which was first discussed by Altes et

al. [68, 69] in the context of the universe and in ref. [70] for the case of QCD. In [30]
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quantitative results were obtained for the profile of A0 from the profile of Polyakov

loop l(x) between different Z(3) vacua (using specific effective potential for l(x) as

discussed in [20, 22–24]). This background A0 configuration acts as a potential for

quarks and antiquarks. It was shown in ref. [30] that the quarks have significantly

different reflection coefficients than anti-quarks and the effect is stronger for heavier

quarks. For a discussion of calculation of A0 profile, see ref. [30].

In this chapter, we discuss the effect of this spontaneous CP violation on the

propagation of quarkonia in the QGP medium, in particular, the J/ψ meson. J/ψ

are produced in the initial stages of relativistic heavy ion collisions. As these are heavy

mesons (m ∼ 3GeV ), they are never in equilibrium with the QGP medium produced

in present heavy-ion collision experiments. However, there are finite T effects (like

Debye screening etc.) affecting its motion in a thermal bath. Such effects give rise

to the important signal of J/ψ suppression as we discussed in the Introduction. We

ignore these effects initially and comment on it towards the end of this chapter. Note

that if the Debye length is larger, then the conventional mechanism of J/ψ melting

does not work. As we will argue, for large Debye screening length, our mechanism of

J/ψ disintegration, discussed in this chapter, works better as any possible screening

of the domain wall over the relevant length scale of J/ψ will be small.

If a domain wall is present in the QGP, then a J/ψ moving through the wall will

have a non-trivial interaction with it. Due to the CP violating effect of the interface

on quark scattering, c and c̄ in J/ψ experience different color forces depending on the

color of the quark and the color composition of the wall. This not only changes the

color composition of cc̄ bound state (from color singlet to color octet state) but also

facilitates its transition to higher excited states (for example χ states). Color octet

quarkonium states are unbound (also, the χ state has larger size than J/ψ and the

Debye length), hence they will dissociate in the QGP medium. This summarizes the

basic physics of our model discussed in this chapter for quarkonia disintegration due

to Z(3) walls [71].
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5.1 Interaction of J/ψ with a Z(3) wall

In our model, J/ψ interacts with the gauge field A0 corresponding to the l(x) profile

of the Z(3) wall. This allows for the possibility of color excitations of J/ψ as well as

the spatial excitations of its wave function. First we discuss the possibility of color

excitations of J/ψ. Subsequently, we will discuss spatial excitations of J/ψ.

5.1.1 Color excitation of J/ψ

We work in the rest frame of J/ψ and consider the domain wall coming and hitting

the J/ψ with a velocity v along z-axis. The gauge potential and coordinates are

appropriately Lorentz transformed as

A0(z)→ A′0(z′) = γ (A0(z)− vA3(z)) (5.1a)

A3(z)→ A′3(z′) = γ (A3(z)− vA0(z)) (5.1b)

z = γ (z′ + vt′) . (5.1c)

We assume that there is no background vector potential, Ai(z) = 0 ; i = 1, 2, 3.

A′3 obtained from Eq. (5.1b) has only z′ dependence, so it does not produce any

color magnetic field. Further, using the non-relativistic approximation of the Dirac

equation one can see that the perturbation terms in the Hamiltonian (say, H1(A′3))

involving A′3 are suppressed compared to the perturbation term (H1(A′0)) involving

A′0 at least by a factor

H1(A′3)

H1(A′0)
∼ v

c

1

mcrJ/ψ
(5.2)

where rJ/ψ is the size of the J/ψ wave function and mc is the charm quark mass.

As we will see, the largest value of v/c we consider is 0.20 - 0.24 (above which tran-

sition amplitude becomes too large to trust first order perturbation approximation).

With rJ/ψ ' 0.4 fm, the suppression factor in Eq. 5.2 is of order 10 %. Thus we

neglect perturbation due to A′3 and only consider perturbation due to A′0 as given

by Eq.(5.1a). We use first order time dependent perturbation theory to study the

excitation of J/ψ due to the background A0 profile and consider the transition of J/ψ
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from initial energy eigenstate ψi with energy Ei to the final state ψj with energy Ej.

The transition amplitude is given by

Aij = δij − i

∫ tf

ti

〈ψj|Hint|ψi〉ei(Ej−Ei)tdt. (5.3)

We take incoming quarkonia to be a color singlet state. The interaction of the

quarkonia with the wall is written as

Hint = V q(z′1)⊗ Iq̄ + Iq ⊗ V q̄(z′2) (5.4a)

with V q,q̄(z′1,2) = gA′q,q̄0 (z′1,2), (5.4b)

where A′q,q̄0 (z′1,2) is the background field configuration in the rest frame of J/ψ. z′1

and z′2 are the coordinates of q and q̄ in quarkonia and g is the gauge coupling. The

gauge potential A0 is taken in the diagonal gauge as

A0 =
2πT

g
(aλ3 + bλ8) , (5.5)

where λ3 and λ8 are the Gell-Mann matrices. Under CP, A0 → −A0, hence Aq̄0 = −Aq0.

Now, both the initial and the final states have a spatial, spin and color part. The

incoming quarkonia is a color singlet while outgoing state could be a singlet or an

octet. Using Eq. (5.4), (5.5) and extracting only the color part of interaction, we get

〈ψout|Hint|ψsinglet〉 = 〈ψout|gA′q0 (z′1)⊗ Iq̄|ψsinglet〉

+ 〈ψout|Iq ⊗ gA′q̄0 (z′2)|ψsinglet〉.
(5.6)

The color singlet state of J/ψ is written as,

|ψsinglet〉 =
1√
3

[
1

0

0


q

⊗


1

0

0


q̄

+


0

1

0


q

⊗


0

1

0


q̄

+


0

0

1


q

⊗


0

0

1


q̄]
.

(5.7)

If the outgoing state is also a singlet then, each term on RHS of Eq. (5.6) is

zero due to the traceless nature of A0. Eq. (5.3) gives Aij = 1 for ground state
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(i = j). (Meaning, one will then need to resort to 2nd order perturbation theory for

consistency). For higher orbital states (i 6= j), amplitude is identically zero. A color

octet state like |rḡ〉, can be written as

|rḡ〉 =


1

0

0


q

⊗


0

0

1


q̄

. (5.8)

For such an outgoing state each term on RHS of Eq. (5.6) again vanishes identically

because of the diagonal form of A0, resulting in zero transition probability. Same

argument leads to zero transition probability to all other octet states with similar

color content, viz. bḡ, br̄, gr̄, gb̄, rb̄. There are only two states with non-zero color

contribution to transition probability. They are

|rr̄ − bb̄〉 =
1√
2

[
1

0

0


q

⊗


1

0

0


q̄

−


0

1

0


q

⊗


0

1

0


q̄]

(5.9)

and

|rr̄ + bb̄− 2gḡ〉 =
1√
6

[
1

0

0


q

⊗


1

0

0


q̄

+


0

1

0


q

⊗


0

1

0


q̄

− 2


0

0

1


q

⊗


0

0

1


q̄]
.

(5.10)

Using Eq. (5.9) and (5.10) in conjunction with Eq. (5.5),(5.1) and (5.6), we get

the color part of transition probability as

〈rr̄ − bb̄|Hint|ψsinglet〉 =
1√
6

(Ar0 − Ab0) and (5.11a)

〈rr̄ + bb̄− 2gḡ|Hint|ψsinglet〉 =
1√
18

(Ar0 + Ab0 − 2Ag0), , (5.11b)

where, Ar0, A
b
0 and Ag0 are the diagonal components of the matrix A′0 (z′1)−A′0 (z′2).

Eq. (5.11a) and (5.11b) are the effective interactions that lead to the excitations of

incoming J/ψ (in the color singlet state of cc̄) to the corresponding octet state. Due
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to repulsive Coulombic interaction of q and q̄ in the octet representation, one may

expect that J/ψ may disintegrate while traversing through a Z(3) wall purely by

color excitation. However, we will see in the next section that this is not so and one

needs to also consider spatial excitation of J/ψ due to Z(3) wall.

5.1.2 Spatial excitations of J/ψ

We now consider the spatial excitations. The spatial part of the states is decided by

the potential between cc̄ in J/ψ which is taken as,

V (|~r1 − ~r2|) = − αsCF
|~r1 − ~r2|

+ Ccnf σ|~r1 − ~r2|, (5.12)

where αs is the strong coupling constant and σ is the string tension. For J/ψ,

we will use charm quark mass mc = 1.28 GeV, αs = π/12, and σ = 0.16 GeV 2

[72,73]. CF is the color factor depending on the representation of the cc̄ state. CF =

4/3 for singlet state, while CF = −1/6 for the octet states showing the repulsive

nature of the Coulombic part of the interaction for the octet states. Ccnf denotes

the representation dependence of the confining part of the potential. For general

sources, this factor follows Casimir scaling [74, 75] for the string tension. For J/ψ

in color singlet representation, Ccnf = 1 with the value of σ used here [72, 73]. It

is not clear what should be the value of Ccnf if cc̄ are in the octet representation.

As the Coulombic part of the potential is repulsive for the octet state of cc̄ (with

CF = −1/6), it is not clear if there should be a confining part of the potential at all in

this case for large distances. Early lattice simulations had indicated some possibility

of mildly rising potential for the confining part for qq̄ in octet representation [76].

However, recent simulations do not show any such possibility. At large distances,

the net potential between a q and q̄ in color octet state appears to be independent

of distance [77]. With the repulsive Coulombic part, this implies a very small value

for Ccnf for the confining part. For our purpose it suffices to assume that in the

octet representation, J/ψ becomes unbound, having repulsive interaction at short

distances.

We have seen above that the form of A0 in Eq.5.5 only allows for transition from

color singlet to two of the color octet states given in Eqs.5.9,5.10. As we discussed
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above, cc̄ in color octet state is unbound. Thus our task should be to consider

transition from initial color singlet J/ψ to unbound state of cc̄, say in plane waves.

However, this also does not look correct as the initial J/ψ (in the color singlet state)

transforms to a color octet state only as it traverses the Z(3) wall (as coefficients a

and b in Eq.5.5 undergo spatial variations). Thus during the early part of the passage

of J/ψ through the wall, it should be dominantly in the singlet state (which is a

bound state) and it will be incorrect to consider transition to unbound, plane wave

states of cc̄ at this stage. Only at later stages, when the octet component is dominant,

it may be appropriate to consider repulsive potential in Eq. 5.12, and unbound cc̄

states for the transition probability. This means that the perturbation term should

appropriately account for the growth of octet component for the potential in Eq. 5.12,

along with a continuing singlet component with corresponding singlet potential in Eq.

5.12. This clearly is a complex issue, and a proper account of appropriate potential for

this type of evolution of J/ψ cannot be carried out in simple approximation scheme

considered here. We make a simplifying assumption that J/ψ becomes unbound

only when it transforms to the octet representation after its interaction with the

Z(3) wall. Until then it is assumed to be in the color singlet representation. Thus,

in the calculations of the spatial excitation of the J/ψ state below, we use the cc̄

potential (Eq. 5.12) in the color singlet representation. The underlying physics is that

incoming J/ψ is in the color singlet state, it interacts with Z(3) wall which excites it

to higher state (spatial excitation), still in color singlet state. While traversing the

Z(3) wall, and undergoing this spatial excitation, the J/ψ state also transforms to

color octet state. The final state, after traversing the Z(3) wall, is spatially excited

state in color octet representation, and our calculations give probability for this final

state. This final octet state is unbound and hence such excited J/ψ disintegrates.

We emphasize that at this stage, our aim is to point out the new possibilities of

disintegration of J/ψ with Z(3) walls and this simplifying assumption should not

affect our qualitative considerations and approximate estimates. We hope to give

a more complete treatment in future. Thus, we continue to use the color singlet

potential in Eq. 5.12, while considering the spatial excitation of J/ψ.
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Since the potential is central, we perform coordinate transformations

~Rcm =
~r1 + ~r2

2
and ~r = ~r1 − ~r2, (5.13)

where, ~r is the relative coordinate between q and q̄. ~Rcm is the center of mass of

J/ψ. Using Eq. (5.13) with Eq. (5.1), we get

Ar0 = γA11
0

[
γ(z′1 + vt′)

]
− γA11

0

[
γ(−z′2 + vt′)

]
. (5.14)

z′1 and z′2 are written in terms of ~Rcm and ~r. Similar expressions can be obtained

for Ab0 and Ag0. In the above coordinates, the J/ψ wave function is Ψ(~Rcm)ψ(~r).

For simplicity, we assume that the center of mass motion remains unaffected by the

external perturbation. Then Ψ(~Rcm) has the plain wave solution, while ψ(~r) can be

written ψ(r, θ, φ) = ψ(r)Y m
l (cos θ, φ). As J/ψ is the l = 0 state, we have

ψi = ψ(r)Y 0
0 and ψj = ψn (r)Y m

l (cos θ, φ) . (5.15)

The radial part, ψ(r), is obtained by solving radial part of Schrödinger equation

with effective potential given by

V (r) = −αsCF
r

+ Ccnf σr +
l(l + 1)

2µr2
, (5.16)

where µ is the reduced mass. When we use Eq. (5.11), (5.14) and (5.15) in Eq. (5.3),

we get one of the terms as∫ ∞
−∞

ψ∗jA
r
0ψi d~r1d~r2 =

∫ ∞
0

∫ 1

−1

∫ 2π

0

ψ∗n(r)Y m∗
l (cos θ, φ)Ar0

Y 0
0 ψ100(r) r2 drd(cos θ)dφ.

(5.17)

In the above equation, we have ignored the motion of the center of mass of charmo-

nium and have considered only the relative coordinate. Under cos θ → − cos θ, Ar0 →
−Ar0 and ψi does not change. So if Y m

l (cos θ, φ) = Y m
l (− cos θ, φ) then RHS of Eq.

(5.17) is zero. Thus we do not get any transition to a state which is symmetric under

cos θ → − cos θ. This has very important significance. While the color part prohibits

the transition to singlet final states, the space dependence of interaction forbids the

transition to the l = 0 state (in color octet). Thus we see that purely color excitation
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of J/ψ due to A0 field of a domain wall is not possible. The excitation is possible to

the first excited state of an octet (like an ‘octet χ’ state). As the excited state will

have a radius larger than the l = 0 state it is more prone to melting in the medium,

(though with color octet composition, the final state becomes unbound anyway).
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Figure 5.1: A0 profile across the Z(3) domain wall for T = 400 MeV. Only (1, 1)

component is shown. Other components are similar. See ref. [30] for details. This is

same as Fig. 2.6. We show it here for the sake of completeness.

5.2 Results

We numerically compute the integral given in Eq. (5.3) with various parameters given

after Eq. 5.12. The profile of A0 is calculated from the profile of the Polyakov loop

order parameter for a Z(3) domain wall at a temperature T =400 MeV (as a sample

value). The details of this are given in ref. [30]. As explained there, the resulting

profile is very well fitted by the functional form p tanh(qx+ r) + s, see Fig. 5.1. This

is same as Fig. 2.6. We show it here again for the convenience of the reader.

We calculated the wave functions for various states of cc̄ with the complete poten-

tial given by Eq. (5.16). For the calculation of the wave-functions for various states of

cc̄ we have used Numerov method for solving the Schrödinger equation. We have also

used energy minimization technique to get the wave functions and the bound state

energy and the results obtained by both the methods match very well. Fig. (5.2)
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Figure 5.2: (Color online) Wave functions for J/ψ (l = 0) and χ (l = 1) states.

shows the radial part of the wave function for the l = 0, 1 states of charmonium. The

bound state contributions to the energy (excluding the rest mass of quarks) are found

to be E0 = 0.447 GeV for J/ψ and E0 = 0.803 GeV for χ state (l = 1). We see from

Fig.2 that the radius of J/ψ is about 0.5 fm while that for χ is about 0.8 fm. Debye

length in QGP at T = 200 MeV is rd ∼ 0.6 fm and smaller at higher temperatures.

Thus χ state is unstable and it should melt easily in the medium (apart from the fact

that in color octet state it also becomes unbound). Fig.3 shows the combined proba-

bility of transition to both the color octet χ states (Eqs.5.9,5.10) for an incoming J/ψ

with different velocities moving normal to the domain wall. As we see, the probability

rapidly rises as a function of velocity. However, for large velocities the probability of

transition becomes large making first order perturbation approximation insufficient,

and one needs more reliable estimates. Thus, the plot in Fig.3 should be trusted only

for small velocities. Nonetheless, the trend at higher velocities strongly suggests that

most of J/ψ will disintegrate while interacting with Z(3) walls.

5.3 Conclusions

These results show that on interaction with a Z(3) domain wall, a J/ψ particle will

make an excitation to a higher orbital state in color octet representation which is

unbound and will readily melt in the surrounding QGP medium. At higher energies,
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Figure 5.3: Probability p of transition of J/ψ to color octet χ states vs. its velocity

v. Note that the probability rapidly rises with v.

the transition probability keeps increasing, making the first order perturbation theory

inapplicable and the results are not trustworthy. Nonetheless, this implies that at

higher energies, almost all J/ψ are expected to disintegrate in this manner. This

strong PT dependence of J/ψ disintegration probability is a distinctive signature of

our model wherein the probability of disintegration of J/ψ is enhanced with higher

PT . This can be used to distinguish this mechanism from the conventional Debey

screening suppression. A very crucial point in the entire discussion is the Debye

screening of the A0 profile of the domain wall itself as it carries color. At temperature

400 MeV, the domain wall has a thickness of ∼ 1.5 fm and the Debye radius for QGP

is ∼ 0.7 fm. This means that Debye screening will be effective outside a sphere of

diameter ∼ 1.5 fm. So we do not expect the domain wall to be significantly Debye

screened. In the above discussion, we have completely ignored the effects of a thermal

bath (QGP medium) on the potential (Eq. 5.12) between cc̄ ( [72, 78]). However as

these effects make the potential between cc̄ weaker, the charmonium state swells. So it

will be even easier for the interaction to break these bound states. These temperature

effects will also be crucial for other heavier qq̄ states like bottomonium as they have

large binding energies. Another important aspect which has been ignored for the

sake of simplicity, in the above calculations, is the question of the center of mass

motion. This assumption is correct only in an average sense as the average force
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(∆V/∆z) acting on c and c̄ vanishes. This averaging is done over the thickness ∆z,

which is the thickness of the domain wall itself. However as the instantaneous force

(∂V/∂z) is non-zero, there is a non-zero instantaneous acceleration of the center of

mass. A more detailed analysis of the problem is required to incorporate all these

details. One also needs to include the effects of dynamical quarks leading to explicit

breaking of Z(3) symmetry. We mention that such a disintegration of J/ψ from a color

electric field may not necessarily come from a background domain wall arising in QGP

medium. In a thermal medium there are always statistical fluctuations. These gluonic

fluctuations will have energy of order ∼ T . Depending on the correlation length of the

fluctuation, a J/ψ passing through it may disintegrate via the mechanism discussed

above. It would be interesting to study the effect of these thermal gluonic fluctuations

on the spectrum of mesons.

53



54



Chapter 6

Disintegration of quarkonia in

Heavy Ion Collisions due to

non-trivial profile of the Polyakov

loop of Z(3) interfaces

In the last chapter we have discussed the implications of CP violating effects of gauge

potential A0 associated with a Z(3) domain wall. There we have proposed a novel

mechanism for disintegration of quarkonia due to this CP violation from Z(3) walls

[71]. We discussed certain important issues of gauge choice and the color dependence

of the A0 profile associated with the Z(3) walls. In view of these discussions it becomes

important to study whether quarkonia disintegration due to the Z(3) domain walls

essentially requires such CP violating interaction. We consider this issue in this

chapter. We show that quarkonia disintegration due to the Z(3) domain walls can

occur solely due to spatial variation of l(x) profile of the Z(3) wall, even in the absence

of CP violating interaction arising from the associated A0 profile. For this we consider

the interaction of q and q̄ with the Z(3) wall, as in ref. [79], where the interaction

is modeled in terms of an effective quark mass depending on the value of |l(x)|. We

find that quarkonia on interaction with a Z(3) wall again has non-zero probability

of getting excited to higher states. This happens because q and q̄ interact with Z(3)

walls at different space-time points which leads to the excitation of quarkonia to
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higher excited states, which are short lived in the QGP medium.

6.1 Interaction of quarkonia with Z(3) walls with

effective quark mass

Like Polyakov loop order parameter, the effective quark mass is also different in the

confined and the deconfined phases of QCD. While in the QGP phase (where l(x)

assumes a non-zero value) quarks are supposed to have the current masses, in the

confined phase (where l(x) = 0) quarks are supposed to acquire constituent mass

of order 300 MeV. This indicates a possible dependence of effective quark mass on

the magnitude of Polyakov loop order parameter. Hence we model the dependence

of effective mass of the quarks on the Polyakov loop order parameter, and study

the interaction of quarkonia with Z(3) interfaces. We show that this interaction

(treated as a time dependent perturbation for a quarkonia traversing through a Z(3)

wall) disintegrates quarkonia by exciting it to higher states of qq̄ system which are

supposed to be short-lived in the QGP medium. The effective mass can be modeled

as in ref. [80] identifying l(x) with the color dielectric field χ, where effective mass of

the quark is inversely proportional to χ. This leads to divergent quark mass in the

confining phase, consistent with the notion of confinement. However we know that

the divergence of quark energy in the confining phase should be a volume divergence

(effectively the length of string connecting the quark to the boundary of the volume).

1/l(x) dependence will not have this feature, hence we do not follow this modeling.

Further, in the spirit of the expectation that a linear term in l should arise from

explicit symmetry breaking due to dynamical quarks [20, 22–24] and also for the

sake of simplicity, we use the modeling of the quark mass dependence on l(x) in the

following manner [79].

m(x) = mq +m0(l0 − |l(x)|) (6.1)

Here l(x) represents the profile of the Z(3) interface, and l0 is the vacuum value of

|l(x)| appropriate for the temperature under consideration. mq is the current quark

mass as appropriate for the QGP phase with |l(x)| = l0, with mu ' md = 10 MeV,
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ms = 140 MeV, mc = 1.28 GeV and mb = 4.66 GeV. m0 characterizes the constituent

mass contribution for the quark. We will take m0 = 300 MeV. Note that here m(x)

remains finite even in the confining phase with l(x) = 0. As mentioned above, this

is reasonable since we are dealing with a situation where l(x) differs from l0 only in

a region of thickness of order 1 fm, thickness of the Z(3) domain wall. (We mention

that we continue to neglect the effect of dynamical quark in the consideration of the

profile of Z(3) which will arise from a linear term in l in the effective potential of

l(x)). Such a linear term leads to slightly asymmetric profile of l(x) which does not

affect main considerations presented below.)

We work in the rest frame of the quarkonia and consider the domain wall coming

and hitting the quarkonia with a velocity v along the z-axis. Considering the space

dependent part of m(z) in Eq.6.1 as a potential term in the Dirac equation for the

propagation of quarks and antiquarks, one can write the interaction of the quarkonia

with the wall as,

Hint = mq(z1) +mq̄(z2) (6.2a)

with, mq(z) = mq̄(z) = m0(l0 − |l(z)|) (6.2b)

where z1 and z2 are the coordinates of q and q̄ in quarkonia. (Thus, note that quark

and antiquark have the same interaction with the Z(3) wall in complete contrast to

the CP violating case of the previous chapter. As we mentioned above, here the

excitation of quarkonia occurs due to different space-time locations of the quark and

the antiquark during propagation of the quarkonia through the Z(3) wall.)

We use first order time dependent perturbation theory to study the excitation of

quarkonia due to the background l(x) profile and consider the transition of quarkonia

from initial energy eigenstate ψi with energy Ei to the final state ψj with energy Ej.

The transition amplitude is given by

Aij = δij − i

∫ tf

ti

〈ψj|Hint|ψi.〉e−i(Ej−Ei)tdt. (6.3)

The states are determined using the potential between qq̄ in quarkonia taken is

V (|~r1 − ~r2|) = − α

|~r1 − ~r2|
+ σ|~r1 − ~r2| (6.4)

where r1 and r2 are the coordinates of the quarks and antiquarks respectively, σ is the

string tension, α = 4
3
αs and αs is the strong coupling constant. Since the potential is
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central, we perform coordinate transformations

~Rcm =
~r1 + ~r2

2
and ~r = ~r1 − ~r2, (6.5)

where, ~r is the relative coordinate between q and q̄. ~Rcm is the center of mass of

quarkonia. Hence, z1 = Rcm + r
2

cos θ and z2 = Rcm − r
2

cos θ. And, one can write

the quarkonia wave function as Ψ(~Rcm)ψ(~r). To simplify the calculation, we assume

that the center of mass motion remains unaffected by the external perturbation. As

a result Ψ(~Rcm) has the plain wave solution, and ψ(~r) can be written ψ(r, θ, φ) =

ψ(r)Y m
l (cos θ, φ). As we are considering transition form ground state to other states

of quarkonia, we have

ψi = ψ(r)Y 0
0 and ψj = ψn (r)Y m

l (cos θ, φ) . (6.6)

The radial part, ψ(r), is obtained by solving radial part of the Schrödinger equa-

tion (for heavy quarkonia, non-relativistic treatment is adequate) with the effective

potential given by

Vr (r) = −αs
r

+ σr +
l(l + 1)

2µr2
(6.7)

where µ is the reduced mass. Using Eqn. 6.2 and 6.6 one can find

〈ψj|Hint|ψi〉 =

∫ ∞
0

∫ 1

−1

∫ 2π

0

ψ∗n(r)Y m∗
l (cos θ, φ)

{mq
[
γ(z′1 + vt′)

]
+mq̄

[
γ(−z′2 + vt′)

]
}

Y 0
0 ψ100(r) r2 drd(cos θ)dφ.

(6.8)

We again emphasize that in the above equation, we have ignored the acceleration of

the center of mass of quarkonia and have considered only the relative coordinate. Here

functions mq, mq̄ and ψi’s are symmetric under cos θ → − cos θ. So if Y m
l (cos θ, φ) =

−Y m
l (− cos θ, φ) then RHS of Eqn. (6.8) is zero. Thus we do not get any transition

to a state which is not symmetric under cos θ → − cos θ.

6.2 Results

We numerically compute the integral given in Eqn. (6.3) with various parameters

for J/ψ and for Υ states. We have calculated the wave functions for various states
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Figure 6.1: Radial part of wave functions for different states of cc̄.
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Figure 6.2: Radial part of wave functions for different states of bb̄ .
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of qq̄ with the complete potential given by Eqn. (6.7). For the calculation of the

wave-functions for various states of qq̄ we have used Numerov method for solving

the Schrödinger equation. As we want to show the different possible mechanism for

quarkonia disintegration with order of magnitude estimate, so we have taken same

α and σ for cc̄ and bb̄ bound state which are α = 0.471 and σ = 0.192 GeV 2 [59].

Fig. (6.1) and (6.2) shows the radial part of the wave function for different states of

charmonium and bottomonium respectively.

As no higher excited state of charmonium is expected to be stable in the QGP

medium other than J/ψ even at T = 200 MeV, J/ψ will dissociate in medium on

interaction with domain wall if it makes transition to excited states of charmonium.

Fig. (6.3) shows the probability of transition of J/ψ to other excited states of char-

monium for different velocity of the charmonium (consequently, of the wall in the

charmonimum rest frame) on interaction with the domain wall at T = 400 MeV.

Transition probability is very small for small velocity, it increases with velocity and

attains a maximum value ' 11% and again decreases to very small value for very

high speed of J/ψ hitting the domain wall perpendicularly. The maximum probabil-

ity is smaller (less than 2%) for domain wall at T = 200 MeV. Similarly at T = 400

MeV only Υ is bound and all other states of bottomonium are unbound. So Υ will

dissociate in medium by the same mechanism if it makes transition to excited states.

Fig. (6.4) shows the probability of transition from Υ to other excited states of bot-

tomonium for different velocity on interaction with domain wall at T = 400 MeV.

The behavior of the plot of the probability of transition vs. velocity is same as for

the case of J/ψ. The difference is in the maximum value of the probability and the

corresponding value of the temperature. Transition probability is negligible (less than

1%) for domain wall at T = 200 MeV.

6.3 Conclusions

These results conclusively show that on interaction with a Z(3) domain wall, a J/ψ

or Υ will make an excitation to higher orbital states which will readily melt in the

surrounding QGP medium. Transition probability first increases with energy and
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again decreases to very small value. For very small velocity the results are not trust-

worthy as we have neglected the acceleration of center of mass. Nonetheless, this

implies that at some energies the suppression will increase in this manner, decreasing

subsequently at higher energies. This new type of PT dependence of quarkonia dis-

integration probability is a distinctive signature of our model. This can be used to

distinguish this mechanism from the conventional Debye screening suppression.

We mention again that the results in this chapter show that quarkonia disintegra-

tion due to the Z(3) domain walls can occur solely due to spatial variation of l(x)

profile of the Z(3) wall, even in the absence of CP violating interaction arising from

the associated A0 profile (as was discussed in chapter 5). It thus becomes interesting

to investigate both these effects together on quarkonia disintegration. l(x) profile will

affect the quark and the antiquark in the same manner while the A0 profile will lead

to the CP violating interaction, distinguishing quark from antiquark. We hope to

investigate this in a future work.

Note that for the case of thermal quarkonia, thermal effects make the potential

between qq̄ weaker, leading to swelling of quarkonia states. This implies that it will be

easier for the interaction to break these bound states when finite temperature effects

are incorporated in the quark-antiquark potential. Another important aspect which

has been ignored for the sake of simplicity in our calculations is the question of the

acceleration of center of mass. This assumption is correct only for large velocities. A

more detailed analysis of the problem is required to incorporate all these details. One

also needs to include the effects of dynamical quarks leading to explicit breaking of

Z(3) symmetry (consequently asymmetric profile of l(x) for a Z(3) wall).
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Chapter 7

Quarkonia Disintegration due to

time dependence of the qq̄ potential

in Relativistic Heavy Ion Collisions

In the last two chapter we have discussed dissociation of quarkonia on interaction with

Z(3) walls which appear as topological defects due to spontaneous breaking of Z(3)

symmetry in QGP. Here we will consider other possibilities of quarkonia melting [81]

due to time dependence of the qq̄ potential, without invoking any such exotic objects.

The conventional mechanism of quarkonia disassociation becomes effective when

the medium thermalizes, potential between qq̄ gets Debye screened resulting in the

swelling of quarkonia. If the Debye screening length of the medium is less than the

radius of quarkonia, then qq̄ may not form bound states, leading to melting of the

initial quarkonium. Due to this melting, the yield of quarkonia will be suppressed.

In the above picture, suppression of quarkonia occurs when the temperature of QGP

achieves a certain value, TD, so that the Debye screening melts the quarkonium bound

state. Thus, if the temperature remains smaller than TD, so that Debye screening

length remains larger than the quarkonia size, no suppression is expected. This type

of picture is consistent with the adiabatic evolution of a quantum state under changing

potential. Original quarkonia has a wave function appropriate for zero temperature

potential between a q and q̄. If the environment of the quarkonium changes to a finite

temperature QGP adiabatically, with Debye screened potential, the final state will
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evolve to the quarkonium state corresponding to the finite temperature potential. If

temperature remains below TD, quarkonium wave function changes (adiabatically)

but it survives as the quarkonium.

We question this assumption of adiabatic evolution during the thermalization

stage for ultra-relativistic heavy-ion collisions, such as at RHIC, and especially at

LHC. In the next section we will discuss the validity of adiabaticity for ultra rela-

tivistic heavy ion collisions, especially during the thermalization stage.

7.1 Validity of Adiabaticity for Ultra Relativistic

Heavy Ion Collisions

At very high energy it is possible that thermalization is achieved in a very short

time, about 0.25 fm for RHIC and even smaller about 0.1 fm for LHC [31]. The

issue of thermalization in RHICE has been extensively investigated using different

approaches for the pre-equilibrium stages. Ads/CFT correspondence has also been

utilized to give and upper bound on the thermalization time scale of 1/T [82], leading

to a time scale of 0.4 fm for T = 500 MeV. Estimates based on color glass condensate

model give values of thermalization time ranging up to about 1 fm., see refs. [83, 84]

One can take a conservative estimate of the thermalization time scale to be less than

1 fm as suggested by the elliptic flow measurements [43]. For J/ψ and even for Υ,

typical time scale of qq̄ dynamics will be at least 1-2 fm from the size of the bound

state and the fact that qq̄ have non-relativistic velocities. Also, ∆E between J/ψ

and its next excited state (χ) is about 300 MeV (400 MeV for Υ states), leading

to transition time scale ∼ 0.7 fm (0.5 fm for Υ). Thus the change in the potential

between q and q̄ occurs in a time scale which is at most of the same order, and

likely much shorter than, the typical time scale of the dynamics of the qq̄ system, or

the time scale of transition between relevant states. We have shown in section 4.31

that required condition for validity of adiabatic approximation is the opposite, that

means the time scale for thermalization should be much larger than the time scale

corresponding to energy gap between nearest energy level. The problem, therefore,

should be treated in terms of a time dependent perturbation and survival probability
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of quarkonia should be calculated under this perturbation. It is immediately clear that

even if the final temperature remains less than TD, if the change in potential is fast

enough invalidating the adiabatic assumption, then transition of initial quarkonium

state to other excited states will occur. Such excited states will have much larger

size, typically larger than the Debye screening length, and will melt away. Thus

quarkonia melting can occur even when QGP temperature remains below TD. We

mention that adiabatic evolution of quarkonia states has been discussed earlier for the

cooling stage of QGP in relativistic heavy ion collisions in the context of sequential

suppression of quarkonia states [85, 86]. However, as far as we are aware, validity of

adiabatic evolution during the thermalization stage has not been discussed earlier.

7.2 Quarkonia Evolution Using Sudden Approxi-

mation

Given the large difference between thermalization time scale of order 0.1 - 0.2 fm [31],

and the time scale of qq̄ dynamics in a quarkonium bound state being of order 1-2 fm

(or the time scale of transition between relevant states being 0.5 - 0.7 fm), it may be

reasonable to use the sudden perturbation approximation. The initial wave function

of the quarkonium cannot change under this sudden perturbation. Thus, as soon

as thermalization is achieved with QGP temperature being T0 (which may remain

less than TD for the quarkonium state under consideration), the initial quarkonium

wave function is no longer an energy eigen state of the new Hamiltonian with the qq̄

potential corresponding to temperature T0. One can find overlap with the new eigen

states, giving us the survival probability of the quarkonium as well as the probability

of its transition to other excited states. We will follow the sudden approximation to

calculate the survival probability of quarkonia. We will also estimate the error in using

this approximation with the knowledge that the time scale of thermalization is non-

zero, though small (less than 1 fm). We mention here that the sudden approximation

has been used earlier in the context of heavy-ion collisions for production of hydrogen

like atoms at late stages of the evolution of the system, see ref. [87].

For calculating the zero temperature wave function of the quarkonium we use the
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following potential between q and q̄.

V (r) = −α
r

+ σr (7.1)

where α = 4
3
αs, αs is the strong coupling constant, and σ is the string tension. For

J/ψ, we will use charm quark mass mc = 1.28 GeV, α = 0.471, and σ = 0.192 GeV 2

[59]. For Υ, we use the bottom quark mass mb = 4.66 GeV.

For calculating wave functions at finite temperature we use the following potential

which incorporates Debye screening

V (r) = −α
r
exp(−ωDr) +

σ

ωD
(1− exp(−ωDr)) (7.2)

where ωD = gT
√

1 +Nf/6 [59]. We use Nf = 3. We have calculated wave

functions for charmonium and bottomonium states at different temperatures with

above potentials using Numerov method for solving the Schrödinger equation. We

have also used energy minimization technique to get the wave functions for the ground

states and the binding energy and the results obtained by both the methods match

very well. Fig.7.1 shows plots of wave functions for J/ψ at T = 0 and 200 MeV. With

finite temperature potential (Eq.7.2), excited states of charmonium are not found for

T ≥ 200 MeV. Fig.7.2 shows wave functions for Υ states at T = 0, 200, 400, and 500

MeV. For Bottomonium, we find excited state Υ(2S) at T = 200 MeV which is shown

in Fig.7.3, along with the ground state Υ(1S) at T = 0.

As we mentioned, we use the sudden approximation to calculate the survival prob-

ability of quarkonium state which is calculated directly by calculating (mod square of)

the overlap of the wave function of the zero temperature quarkonium state with the

wave function of the appropriate state at finite temperature. Figs.7.1-7.3 immediately

give an idea of this overlap, which is clearly decreasing with increasing temperature

implying decreasing survival probability of the quarkonium. Fig.7.4 shows the plot

of survival probabilities for J/ψ and for Υ as a function of temperature. Survival

probabilities are plotted up to a temperature TD beyond which the quarkonium state

does not exist any more due to Debye screening in the potential in Eq.7.2. We note

dramatic decrease in survival probabilities down to about 10 % as temperature in-

creases to about 260 MeV and 590 MeV respectively for the two cases. It is important
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Figure 7.1: Wave functions for J/ψ states at different temperatures.
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Figure 7.2: Wave functions for Υ(1S) states at different temperatures.
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Figure 7.3: Wave functions for Υ(1S) and Υ(2S) states at T = 0 and T = 200 MeV

respectively.

to note that survival probabilities for J/ψ and Υ significantly reduce even when the

temperature remains smaller than TD for the respective case. The overlap of Υ(2S)

wave function at T = 200 MeV and Υ(1S) at T = 0 (Fig.7.3) gives the transition

probability of an initial Υ to the excited state to be about 10 %. We now estimate
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Figure 7.4: Survival probabilities of initial T = 0 J/ψ and Υ states in QGP at

different temperatures calculated in the sudden (quench) approximation.

the error in using this sudden approximations by calculating the probability ζ of tran-

sition of the original quarkonium state to some other state during the time scale τ of
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Figure 7.5: Plot of the probability ζ encoding the error in making the sudden ap-

proximation. ζ is the probability that the initial quarkonium state does not remain

in the same state during the time period τ (taken as 0.5 fm here) of the change of

the potential.

the change of the potential using the relations

ζ = τ 2∆H̄2 (7.3)

Here, <> denotes the expectation value in the initial quarkonium state. For

calculating the time averaged Hamiltonian H̄, we model the time dependence of the

temperature in the following manner,

T (t) =
t

τ
T0 (7.4)

where T0 is the maximum temperature of QGP. This linear increase of tempera-

ture is a simple way to model the initial non-equilibrium stage of the parton system.

A more careful calculation should account for the non-equilibrium nature of the sys-

tem. However, to roughly estimate the error in making the sudden approximation,

it should be reasonable to assume a quasi-equilibrium system, with initially increas-

ing temperature upto a maximum value T0 (which will subsequently decrease due to

continued plasma expansion). In Fig.7.5 we provide plot of ζ for different quarkonia

states as a function of temperature. We have taken thermalization time τ = 0.5 fm for
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these plots (which is on the higher side of the expected value at RHIC and at LHC).

We note that the error in using sudden approximation remains less than about 8%.

7.3 Discussion

We point out the main difference between our approach and the conventional ap-

proaches for calculating heavy quarkonium suppression in QGP. In conventional ap-

proach, quarkonium suppression is calculated for a QGP medium which has achieved

high enough temperature TD so that Debye screening becomes effective in making

the quarkonium unbound. If temperature remains below TD one does not expect

any suppression of the corresponding quarkonium state. Our approach is to focus

on the situation when temperature remains below TD (for the specific quarkonium

under consideration). If the initial thermalization of QGP happens very slowly in

time scale much larger than the time scale of quarkonium which is of order 1 fm, then

indeed we will conclude that no quarkonium suppression will be expected. However,

in ultra-relativistic heavy-ion collisions thermalization is definitely achieved within

a time scale of about 1 fm (from elliptic flow measurements) [43], which is of same

order as the dynamical scale of qq̄ in the quarkonium bound state (or the time scale

of transition between relevant states). In such a situation one cannot assume that

the initial zero temperature quarkonium state will simply evolve to the finite tem-

perature quarkonium state. Instead, time dependent perturbation theory should be

used to calculate the survival probability of the initial quarkonium state. In fact

expected thermalization time scale at RHIC and LHC may be as short as 0.25 - 0.1

fm respectively [31]. With such rapid thermalization, use of sudden perturbation

approximation may be appropriate. We calculate survival probability of quarkonium

(and transition to excited state for Υ) and show that even when temperature of QGP

remains much below TD, the quarkonium state can decay with significant probability.

Even if the temperature exceeds TD, during initial stages of heating the decay of

initial quarkonium state due to time dependent potential, as discussed here, should

be incorporated in calculating the final net quarkonium suppression.

It thus provides new avenues for the experiments to look for different patterns of

suppression of quarkonium depending on the temperature. For the same maximum
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temperature T0, nuclear effects, the time dependent perturbation effects (as used here

in sudden approximation), and the conventional Debye screening effects, all may show

qualitatively different behavior when the duration of thermalization τ is changed.

One way to clearly distinguish our mechanism from the conventional mechanism is to

study quarkonium suppression for varying QGP temperatures and the thermalization

time scale independently. One may achieve this by considering different centrality, or

rapidity, or by using different combinations of nucleus size and collision energies so

that the thermalization time and QGP temperature can be varied independently.
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Chapter 8

Summary

In the following we present a brief summary of our work, presented in this thesis. We

have discussed alternate mechanisms of quarkonia disintegration, showing that even

when the temperature T remain below the Debye temperature TD (above which the

Debye length becomes smaller than the size of quarkonia), the quarkonia can melt in

the medium. This is totally different than the conventional mechanism of quarkonia

melting, where quarkonia will melt only when T ≥ TD.

We first presented a brief review of the confinement-deconfinement phase transi-

tion, where thermal expectation value of Polyakov loop l(x) acts as order parameter

for this phase transition. l(x) vanishes in the confined phase, respecting Z(3) symme-

try, whereas in the deconfined phase it takes non-zero value leading to spontaneous

breakdown of Z(3) symmetry. This leads to three degenerate vacua corresponding to

l = 1, e2πi/3, e4πi/3. After the symmetry breaking, field can choose any of the vacua in

different regions of space, hence domains with different l form. The junction of differ-

ent domains give rise to topological defects, in particular, Z(3) walls at the junctions

of two domains corresponding to different vacua. We have calculated the profile of

l(x) associated with the Z(3) interpolating between different vacua. We have confined

the discussion in this thesis to pure QCD and neglected the effect of dynamical quark

in the profile of Z(3) walls.

Subsequently we have calculated the background gauge field (A0) associated with

the l(x) profile of the wall. This has CP violating effect on the interaction of quarks

with the wall. We have showed that the CP violating interaction of this background
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A0 field leads to color excitation of quarkonia along with special excitation, which

will imply quarkonia melting in the QGP medium. We have used first order time-

dependent perturbation theory to calculate the transition of the initial quarkonia

to excited states and we found that probability of transition increases with kinetic

energy of the quarkonia.

We then address the issue whether heavy quarkonia disintegration due to the Z(3)

walls necessarily requires such CP violating interaction which needs the extraction

of A0 condensate from the l(x) profile. Thus we considered the quark interaction

with the wall modeled in terms of an effective l(x) dependent quark mass. Again

using the space dependent mass as perturbation and using first order time-dependent

perturbation theory we found that quarkonia on interaction with Z(3) walls has

non-zero probability of getting excited to higher states, which are short lived in the

medium. Here we have only spatial excitation. In this case the transition probability

first increases with velocity, attains a maximum value, and subsequently decreases.

In the last work we showed that not only due to Z(3) walls in the medium, dur-

ing thermalization also quarkonia can get excited because of the time dependence

of the potential between quark and antiquark. In the conventional mechanism of

quarkonia suppression due to Debye screening, an essential assumption is that when

quark-antiquark potential changes in the medium, the quarkonia wave function mod-

ifies itself adiabatically to remain in the instantaneous eigen state of the Hamiltonian.

Thus, no transitions to other states are considered during the evolution of the po-

tential. Such an assumption of adiabaticity requires that the time scale for potential

change should be much larger compared to the dynamical time scale of the quarkonia,

e.g. the time scale associated with transition rate between various energy states. At

very high energies in RHICE, it is likely that thermalization is achieved in a very

short time which is comparable to, or even smaller than, the time scale of transition

between quarkonia states. This implies that the validity of adiabatic evolution does

not hold and the problem needs to be treated using time dependent perturbation

theory. One should then calculate the survival probability of quarkonia during the

change of the potential. Considering the thermalization time scale to be small enough

(from various estimates and elliptic flow data) we have used sudden approximation.

We found that even when temperature of QGP remains below TD, the quarkonium
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state decays with significant probability. This probability increases with temperature

of the medium. We have also estimated the error in using this sudden approximation

and found that the error remains below 8 % for the thermalization time of about

0.5 fm.
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