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Abstract

The lightcone gauge is a set of what are called the observational coordinates adapted to our
past lightcone. We develop this gauge by producing a perturbed spacetime metric that describes
the geometry of our past lightcone where observations are usually obtained. We then connect the
produced observational metric to the perturbed Friedmann-Lemâıtre-Robertson-Walker metric in
the standard general gauge or what is the so-called 1+3 gauge. We derive the relations between
these perturbations of spacetime in the observational coordinates and those perturbations in the
standard metric approach, as well as the dynamical equations for the perturbations in observational
coordinates. We also calculate the observables in the lightcone gauge and re-derive them in terms
of Bardeen potentials to first order. A verification is made of the observables in the perturbed
lightcone gauge with those in the standard gauge. The advantage of the method developed is that
the observable relations are simpler than in the standard formalism. We use the perturbed lightcone
gauge in galaxy surveys and galaxy number density contrast. The significance of the new gauge is
that by considering the null-like light propagations, the calculations are much simpler since angular
deviations are not considered.

Standard cosmology based on General Relativity is generally believed to have serious shortcom-
ings, such as the unexplained issues of dark matter and dark energy. As a remedy, many alternative
theories of gravitation have been proposed over the years, one of which is f(R) gravity. We explore
classes of irrotational-fluid cosmological models in the context of f(R) gravity in an attempt to put
some theoretical and mathematical restrictions on the form of the f(R) gravitational Lagrangian.
In particular, we investigate the consistency of the linearised dust models for shear-free cases as well
as in the limiting cases when either the gravito-magnetic or gravito-electric components of the Weyl
tensor vanish. We also discuss the existence and consistency of classes of non-expanding irrotational
spacetimes in f(R)-gravity.

Furthermore, we explore exact f(R) gravity solutions that mimic Chaplygin-gas inspired ΛCDM
cosmology. Starting with the original, generalized and modified Chaplygin gas equations of state,
we reconstruct the forms of f(R) Lagrangians. The resulting solutions are generally quadratic in the
Ricci scalar, but have appropriate ΛCDM solutions in limiting cases. These solutions, given appro-
priate initial conditions, can be potential candidates for scalar field-driven early universe expansion
(inflation) and dark energy-driven late-time cosmic acceleration.

Keywords: General Relativity, Direct Observational Approach, Observables, Galaxy Surveys,
Galaxy Number Count, Density Contrast, Cosmological Perturbations, Past Lightcone Gauge, f(R)
Gravity, Modified Gravity, Cosmic Acceleration, Dark Energy, Irrotational Universe, Shear-free Uni-
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Conventions and Abbreviations

Throughout this thesis (unless otherwise stated), the natural units (~ = c = kB = 8πG = 1) will be
used, and Greek indices (α , β , µ , ν . . . ) and Latin indices a , b , c . . . run from 0 to 3 whereas Latin
indices (i , j . . . ) run from 1 to 3. The symbols ∇ and ; represent the usual covariant derivative
whereas ∂ and , stand for partial derivatives; ∇̃ and the overdot . represent the spatial covariant
derivative, and differentiation with respect to cosmic time, respectively. We use the (− + ++)
spacetime signature and the Riemann tensor is defined by

Rµναβ = Γµνβ,α − Γµνα,β + ΓγνβΓµαγ − ΓσναΓµβσ , (1)

where the Γµνβ are the Christoffel symbols and they are symmetric in the lower indices, defined by

Γµνβ =
1

2
gµα(gνα,β + gαβ,ν − gνβ,α) . (2)

The Ricci tensor is obtained by contracting the first and the third indices of the Riemann tensor:

Rµν = gαβRαµβν , (3)

and the Ricci scalar is given as
R = Rµµ . (4)

The following are standard notations used in the thesis:

g : det(gµν), the determinant of the metric gµν , (5)

(µν) : symmetrization over the indices µ and ν , (6)

[µν] : anti-symmetrization over the indices µ and ν . (7)

The 4-dimensional volume element ηµνγβ is defined such that

ηµνγβ = η[µνγβ], η0123 =
√
|det gµν | . (8)

The following are abbreviations frequently used in the thesis:

BBN: Big Bang Nucleosynthesis
CMB: Cosmic Microwave Background
EFEs: Einstein Field Equations
FLRW: Friedmann-Lemâıtre-Robertson-Walker
GI: Gauge-invariant
GLC: Generalized Lightcone
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GR: General Relativity
LTB: Lemâıtre-Tolman-Bondi
WMAP: Wilkinson Microwave Anisotropy Probe
APM: Automatic Plate Measuring
PSCz: Point Source Catalogue Redshift
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Chapter 1

Introduction

Nothing exists except atoms and
empty space; everything else is
opinion.

Democritus

1.1 Curved Spacetime

Cosmology is the study of the origin, evolution, and the eventual fate of the Universe; points of
epistemological interest probably as old as human civilisation itself. Modern cosmology in the sense
of ‘physical cosmology’ started with the publication of Einstein’s General Relativity (GR) in late
1915 [12,13]. Einstein wrote down the now so-called Einstein-Hilbert action

SEH =
1

2

∫
all spacetime

d4x
√
−gR , (1.1)

from which we can derive the field equations:

Gµν + gµν = Tµν , (1.2)

where
Gµν ≡ Rµν − 1

2gµνR (1.3)

is the Einstein tensor, gµν is the metric of the spacetime geometry, Rµν is the Ricci tensor, R
is the Ricci scalar and Tµν is the energy momentum tensor sourced by the presence of matter in
spacetime [14]. In his formulation of GR, Einstein gave an entirely new and astounding explanation
of energy, matter and gravity. He described gravity as the consequence of the bending of spacetime
around a massive body, i.e., it replaces Newtonian gravity with curved spacetime. In this view of
gravity, a test particle with velocity uν follows the geometry of space with a geodesic trajectory
given by

uµ∇µuν = 0, (1.4)

where

uµ =
dxµ

dτ
, (1.5)

and τ is a proper time along the geodesic [10]. The idea of the geometry of the spacetime that
is curved by the existence of matter on it was a new way of understanding space and time, as a

4
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spacetime dynamical continuum evolving according to the local content of energy and momentum.
Astronomers have applied and tested these new scientific definitions to the extent that they have
become the conceptual foundations of modern cosmology.

The model offered as a cosmological solution to Einstein’s equation was first suggested by himself
in 1917 [15]. In his solution Einstein held the idea of a static universe [16]. His theory was not based
on firm observational data, but rather on a mere theoretical simplification. Einstein mistakenly
wanted to balance the self attraction of matter on the large scales by adding a new term (Λ) to his
equations such that Eq. (1.2) gets modified as

Gµν + Λgµν = Tµν , (1.6)

in order to keep the Universe static [17,18]. Einstein’s approach was then generalised independently
by Friedmann in 1922 [19], where he did not try to balance the matter allowing the possibility of an
expanding or contracting universe, i .e., evolving cosmos, and by Lemâıtre in 1927 [20, 21] who also
predicted the redshift1 of receding galaxies before its observation by Hubble [22] in 1929. The work
of Friedmann and Lemâıtre was develpoed with geometric properties of spacetime by Robertson in
1929 [23–26], followed by Walker [27].

1.2 The Friedmann-Lemâıtre-Robertson-Walker Models: the
Background Geometry of the Universe

The Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric (also shortened as FRW or RW) is a
solution to the EFEs with a homogeneous and isotropic universe. The cosmological models based on
this metric including perturbations are sometimes called the Standard Model of modern cosmology
because they describe successfully the major features of the observed universe [28], its expansion
from a hot Big Bang leading to the observed galactic redshifts and remnant black body radiation [29].
These models, however, do not describe the real universe well in an essential way, in that the highly
idealised degree of symmetry does not correspond to the lumpy real universe [30].

The assumption of large-scale isotropy observed in particular through the Cosmic Microwave
Background (CMB), where it shows that our Universe properties are almost identical whatever the
direction we look at. The hypothesis of the so-called Copernican Principle: the Earth occupies no
unique (or central) position in the Universe infer the homogeneity. These two facts are counted
as a pillars of the Cosmological Principle: the Universe can be modeled as statistically spatially
homogeneous2 and isotropic. Therefore modern cosmology is based on this hypothesis that our
universe is to a good approximation homogeneous and isotropic on sufficiently large scales [31].

We know now the real universe is a perturbed one and there are inhomogeneities and anisotropies
arising during structure formation, that can be compared in detail with observations, but we can
consider it as almost FLRW at the same time. In this section we will strictly examine homogeneous
and isotropic cosmologies.

1.2.1 The Homogeneous Universe

The Coordinate systems and metric

In order to explain a homogeneous and isotropic space one can admit a slicing of a maximally
symmetric space along a fixed time coordinate t, such that the 3-spaces-like hypersurfaces Σt are
surfaces of intrinsic geometry of homogeneity and isotropy with a spatial metric γij of constant time
and curvature

K =
k

a2(t)
. (1.7)

1The redshift of an object is defined to be the fractional Doppler shift of its emitted light (photons) wavelength due
to its local peculiar motion. A cosmological redshift originates from the general relativistic effects of space expansion
affecting the wavelengths of cosmological events.

2From here onwards ‘homogeneous’ implies spatially homogeneous.
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Here k denotes spacetime curvature and takes the values −1, 0 or +1 depending on whether the
Universe is open, flat or closed, respectively. The normalised metric dσ2 characterises a 3-space of
normalised constant curvature whose spatial spherical comoving coordinates (χ, θ, φ) can be chosen
such that

dσ2 = γijdx
idxj = dχ2 + S2(χ)(dθ2 + sin2 θdφ2) . (1.8)

The term γijdx
idxj is a function of three spatial coordinates and it can describe an Euclidean space,

or hyperbolic space, whereas χ is a radial coordinate, φ and θ are two angles in the sky running
from 0 to 2π and from −π to π respectively. S(χ) depends on the curvature k, and it can be given
as [14]

S(χ) =

 sin(χ) for k = +1,
χ for k = 0,
sinh(χ) for k = −1 .

(1.9)

Figure 1.1: The kinematics of the scale factor a in FLRW universe which satisfies the energy condition
ρ+ 3p > 0.

At k = +1 the function S(χ) relates the surface of a comoving sphere to its radius χ, whereas
the equation

ds2 = −c2dt2 + a(t)2γijdx
idxj (1.10)

gives the full spacetime metric widely known today as the FLRW metric. Using the radial coordinate
r = S(χ), the metric can also take the form

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ

)
, (1.11)

where dΩ = dθ2 + sin2 θdφ2. This construction shows how the Cosmological Principle, and thus
the symmetry assumptions, has allowed us to reduce the ten arbitrary functions of the space-time
metric into a single function of one variable a(t) and a pure number k.

The cosmological time is related to the conformal time η by

dt = adη . (1.12)



Chapter 1. Introduction 7

Then we can re-write Eq. (1.10) in the form of

ds2 = −a(η)2dη2 + a(η)2γijdx
idxj . (1.13)

The FLRW solutions to the EFEs are the best fit to the observed universe so far [31].

1.2.2 Kinematics and Dynamics

For matter which respects the assumptions of homogeneity and isotropy, the stress-energy tensor
must read

Tµν = ρ(t)uµuν + p(t)hµν , (1.14)

where ρ and p define the energy density and isotropic pressure (respectively) of all kinds of standard
matter, i .e., baryonic matter, dark matter, radiation. Each species is characterised by the equation-
of-state parameter w, defined as

w =
p

ρ
, (1.15)

the ratio between its pressure and its energy density. hµν = gµν + uµuν is the projector on spatial
sections t = const., hence hµ0 = 0 and hij = gij .

The EFEs (1.2) reduce to ordinary differential equations, known as Friedmann’s equations, for
the function a(η), with (′ = d/dη):

H2 =
1

3
a2ρ− k

a2
+

1

3
a2Λ , (1.16)

a′′

a
= −1

6
(1 + 3w)a2ρ+

1

3
a2Λ . (1.17)

Here H is the conformal Hubble parameter related to H as follows:

H ≡ 1

a

da

dt
=
ȧ

a
, H ≡ 1

a

da

dη
=
a′

a
= aH . (1.18)

The energy-momentum conservation equation is given by

ρ′ = −3

(
a′

a

)
(ρ+ p) = −3(1 + w)Hρ . (1.19)

Here ρ is a combination of cold non-relativistic matter with pm = 0, and radiation with pr = 1/3ρr.
We can also define the fractional energy densities

Ωm ≡
(
ρa2

3H2

)
, (1.20)

Ωk ≡ − k

H2
, (1.21)

ΩΛ ≡ Λa2

3H2
, (1.22)

where Ωm, Ωk and ΩΛ are the fractional energy densities for matter, curvature and dark energy
density, respectively. The total energy density in the Universe can thus be given in a more compact
form by virtue of Eq. (1.16) as

1 = Ωm + ΩΛ + Ωk , (1.23)

For Ωm � Ωk,ΩΛ contributions to Eq. (1.19) the scale factor evolves as

a ∝ t
2

3(1+w) ∝ η
2

1+3w , (1.24)
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when

w =

{
0 for nonrelativistic matter ,
1/3 for ultrarelativistic component (radiation) .

(1.25)

When Ωk � Ωm,ΩΛ > 0 with w = 0, we get [32]

a(t) ∝ sinh2/3

(√
3Λ

2
t

)
. (1.26)

When Λ = 0, it coincides with a ∝ t2/3, but when the cosmological constant is dominant over the
contribution of matter then we get a(t) ∝ exp(t

√
Λ/3) = exp(tH) where the expansion rate will be

a constant in this case.

1.3 Some Observations

In this section we are going to discuss some cosmological observations. To measure the observables,
we require a specific model, such as the FLRW model at a particular time.

1.3.1 Hubble Diagram

Figure 1.2: The top panel depicts the Hubble diagram (Redshift-Distance Relation) with the ΛCDM
best fit; the bottom shows the residuals. This diagram is obtained by the analysis of 740 SNeIa [1].

The diagram represents the plot of luminosity distance dL of objects with known intrinsic lu-
minosity, i .e., the so-called standard candles where Supernovae type Ia (SNeIa) are the best can-
didates, with their redshift, showing a redshift increasing with distance as a result of an expanding
universe [22]. This recent Hubble diagram obtained by [1], where they plot the joint lightcurves,
i .e., the evolution of the luminosity of the event with time, with the redshift (that is determined by
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spectroscopic measurements), is interpreted assuming that light propagates through a smooth ho-
mogeneous and isotropic universe, so that the redshift luminosity distance dL is measured assuming
FLRW model [33].

The Hubble diagram obtained from SNeIa data was a good probe for investigating the existence
of dark energy at low redshift. That is how SNe provided the evidences of the accelerated cosmic
expansion discovered in the late 1990s.

1.3.2 The Cosmic Microwave Background (CMB)

The CMB is a thermal radiation imprint showing that the Universe was born about 13.81 billion
years ago with a Big Bang using the FLRW model. The COsmic Background Explorer (COBE)
satellite [34] was the first space-based experiment dedicated to measure the CMB spectrum, then
by the Wilkinson Microwave Anisotropy Probe (WMAP) [35]. Recent precision observations of the
CMB have been done by the Planck mission in 2013 [36].

The Universe was in its early stages at high enough temperature to be fully ionised; then processes
such as Thompson scattering would thermalise the radiation field very efficiently. One would then
expect to observe a radiation field which would have retained the black-body spectrum [2], see Fig.
[1.3]. When the primordial plasma cooled enough, light thus suddenly stopped being scattered by
charged particles, and started propagating freely, following null geodesics. The spatial distribution
from the CMB, showing that this happened everywhere at the same cosmic time. These findings
were rewarded with the 1978 and 2006 Nobel Prizes in Physics.

Figure 1.3: The black-body spectrum of the CMB radiation measured with COBE satellite [2].

As observers, we can measure three main things about this radiation: frequency spectrum,
temperature and polarisation states. Each of these observables contains information about the
creation and evolution of the field and is packed with cosmological information. The observed
average temperature is uniform across the sky of ∼ 2.72548±0.00057 K [37]. The CMB temperature
anisotropy δT/T ∼ 10 µK corresponds to regions of slightly different densities, representing the seeds
of all future structure of the Universe; the galaxies of today. We see these temperature fluctuations
projected in a 2D spherical sky, see Fig. [1.4]. This implies that, on the CMB temperature map,
two points (hot or cold) on the last scattering surface are most likely to be separated by an angle
θ∗ = rs/rA, where rs is the sound horizon and rA is the area distance measured by using the
standard choice of FLRW model. The analysis of the fluctuations of this thermal radiation has
given us valuable insights into our universe and its parameters; such as the rate of expansion, the
Hubble parameter, the mean matter density of the Universe.

The resulting anisotropies spectrum of the CMB shows a series of acoustic oscillations as shown
in Fig. [1.5], which present a snapshot of the CMB sky at the moment when photons decouple from
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Figure 1.4: The 4 years of data collection by Planck satellite. The colour code corresponds to
temperature fluctuations of a few micro-Kelvin [3].

electrons. The details of the physics and the analysis of the CBM spectra can be found in [10, 38].
The CMB physics is well understood now due to the analysis of its fluctuations. It inspires an era

Figure 1.5: The 2013 Planck CMB temperature angular power spectrum [3].

of precision of measurements in cosmology. The main reason why the CMB allows such an accurate
determination of cosmological parameters lies in the fact that its anisotropies are small and it can
be determined within a first-order perturbation theory.

1.3.3 Baryon Acoustic Oscillations (BAO)

The BAO is the observational consequence of the clustering of baryonic matter on certain length
scales due to acoustic waves which propagated in the early universe. The primordial plasma would
have had very slight overdensities of matter, where they gravitationally attract more matter. But
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the intense heat of the photon-matter interactions seeks thermal equilibrium, which creates a large
amount of outward pressure. Before the decoupling and the emission of the CMB, the pressure
results in sound waves of both baryons and photons. These sound waves have imprinted the matter
distribution in the late times, leading to characteristic patterns in the galaxy distribution and hence
geometry and expansion history. It appears as an acoustic peak of the CMB anisotropy [39].

The BAO signal grows with the cosmic expansion, and considered as a cosmic standard ruler,
the BAO scale rd estimated today by

rd = (1 + z∗)rA(z∗)θ∗ , (1.27)

where rA(z) is adapted to the FLRW model. The BAO signal can be observed at some different
epochs of the Universe, e.g, z = 1090 (Fig. [1.5]), z = 2.34 (Fig. [1.6b]) and z = 0.57 (Fig. [1.6a]).

(a) Power spectrum of galaxy sample, the BAO signal
is effectively measured at z = 0.57 [40].

(b) Two-point correlation function for objects aligned
with the line of sight, the effective redshift is z = 2.34
[41].

1.3.4 The Accelerating Universe

A recent study by the Supernova [42,43] Cosmology Group (SCP) and the High-z Supernova Search
Team (HZT) for redshift and distance measurements of Ia supernovae was crucial in determining
the extension of Hubble’s law in large distances z <∼ 1. The results showed that at high redshifts,
supernovae are getting dimmer than expected by a factor of about 10 − 15% compared to Hubble
law. The unexpected results imply that the Universe is unexpectedly accelerating [44].

Since the accelerated expansion cannot be produced by an ordinary matter and radiation field
distribution, then it must be a kind of an exotic fluid generically known as dark energy, whose
negative pressure counterbalances the gravitational attraction, comprising close to a 70% of the
total energy density of the Universe [45].

The non-vanishing cosmological constant Λ is the simplest, most obvious candidate for dark
energy acting as a cosmic fluid with equation of state w = −1, which can also be thought of as a
perfect fluid satisfying the equation of state p = −ρ. Since the accelerated expansion in the early
Universe needs to end to connect to the radiation dominated Universe, whereas the pure cosmolog-
ical constant gives rise to an exponential expansion, this model is not responsible for inflation. But
it is possible to use the cosmological constant for dark energy since the late acceleration today does
not need to end. Due to the cosmological constant the Ωm reduces and that conclude in reduces
the observed angular distance rA and hence the luminosity distance dL, therefore observing the SNe
with a given z appear dimmer in a Universe whose filled by dark energy than without zΛ6=0 < zΛ=0.

There are other candidates for the role of dark energy as well. A plausible alternative is dynamical
vacuum energy [46], or a scalar field φ with a slowly varying potential [47], represented by the
so-called quintessence scalar field. The scalar fields are traditionally used in inflationary models
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to describe the transition from the quasi-exponential expansion of the early universe to power-law
expansion [48]. Moreover it is generally difficult to construct viable quintessence potentials motivated
from early-universe particle physics because the field mass responsible for cosmic acceleration today
is very small (mφ ∼ 10−33eV) [49]. The question of explaining why the vacuum energy or scalar field
dominates the Universe only recently is the cosmic coincidence problem. A recently proposed class
of simple cosmological models is based on the use of peculiar perfect fluids such as the Chaplygin gas
model [50, 51]. In [52] we discussed the possibility of treating Chaplygin gas as a scalar field model
in a universe without conventional matter forms in early and late cosmological expansion histories.

Another suggestion proposed is that it could be the energy of the quantum vacuum, but its energy
density would be enormously larger than today’s dark energy density [53]. Other suggestions include
inhomogeneous cosmologies. Such models make use of the fact that the expansion rate is larger in
overdense regions, so that if we happen to live inside a particularly large void in the Universe
we will measure a lower value of H0 in our vicinity than the average value in the Universe [54].
There is another approach to explain the acceleration of the Universe: modified gravity, i .e., the
gravitational theory is modified compared to GR. These are several versions of these models [55–61],
but in this thesis we will only consider those gravitational models obtained by the inclusion of higher-
order curvature invariants in the Einstein-Hilbert action that result in fourth-order field equations.
Although modified theories of gravity may account for the observed dimming of supernovae, it seems
the dark energy hypothesis will remain the favorite candidate in astronomy corridors for at least the
near foreseeable future. The observations still do not show particular evidence to favour any one of
such alternative models.

1.3.5 Visible Matter and Dark Matter

One of the most important observables in cosmology is the amount of matter existing in the Universe.
This is because it tells us so much about the evolution of the Universe and consequently its expansion
rate. The average density 〈ρ〉 of the visible luminous matter can be calculated by determining the
number of galaxies nG within the Hubble volume and the average galactic mass MG [62] as

〈ρ〉 = nG〈MG〉. (1.28)

By measuring distances and velocities of stars within the galaxy and using Kepler’s Third Law, we
can determine the mass of a galaxy as

GM(r) = v2r , (1.29)

where r is the radius of the galactic, v the orbital velocity and M(r) the total mass within a
spherically symmetric region of radius r. In [63] they measure the gas and the stellar masses of the
Coma Cluster Mb and compare it with its total ‘dynamical’ mass assuming that will equal to the
mean cosmological baryonic fraction

Mb

Mtot
=

Ωb
Ωm

. (1.30)

Calculating Ωb from the analyses of the Big Bang Nucleosynthesis (BBN), they concluded that
Ωm ≈ 0.28 ± 0.56 for h = 0.5 which is close to the current admitted value. Nevertheless the total
luminous matter in the Universe provides less than 1% of the critical density required for a flat
universe [64]

ρc =
3H2

0

8πG
= 1.88× 10−29h2g cm−3 . (1.31)

In [65] they introduce a more subtle method for constraining the cosmological parameters with
galaxy clusters were the gas mass fraction extracted from galaxy clusters read

fgas =
Mgas

Mtot
= ArA +B(z)r

3/2
A (z) , (1.32)
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where A and B are some cosmological parameters-independent values, and Mgas = Mb −MG [65],
so that the area distance rA constrains all the cosmological dependence. Eq. (1.32) is a model-
dependent formula because of the rA(z) term, in this case FLRW. The analysis of Planck data
shows that normal matter, making up galaxies and stars, contributes only about 4.9% to the mass
and energy density of the Universe.

The near-flat geometry of the Universe that current observations seem to suggest, in particular
from the position of the first acoustic peak in the CMB power spectrum, suggest that luminous matter
in galaxies cannot be accounted only for the matter density in our Universe. When astronomers
measure the rotational velocity curves of our galaxy, and when they extend far from the centre of
the galaxy r, they find out that the velocities of some rare stars have constant velocity curves and
do not, therefore, follow Keplerian laws of motion [66].

Figure 1.7: Rotation curves of typical spiral galaxy predicted, disk and extended dark matter halo
models and observed with error bars [4]. Best fit obtained for an exponential disk model with
maximum mass.

This implies that
M(r) ∝ r . (1.33)

There seems to be a lot of invisible mass, ‘dark matter’, extending beyond the visible limits of
virtually all spiral galaxies [67]. In an effort to explain the missing mass in the velocity curve of
galaxies, Jan Oort postulated the existence of dark matter in 1932 [68]. Thus, measuring average
velocity of galaxies and the average inverse distance between galaxies in a cluster can be used to infer
its total gravitational mass, shown by Fritz Zwicky in 1933 [69]. He suggested that there must be
some form of invisible matter in which it would provide enough mass and gravity to hold the cluster
together [5, 70, 71]. The existence and properties of dark matter are inferred from its gravitational
effects on visible matter, radiation, and the large-scale structure of the Universe, see Fig. [1.8].
According to the CMB measurements, about 84.5% of the total matter in the Universe exists in
dark matter form. On the other hand, dark energy with dark matter constitute 95.1% of the total
mass-energy content of the Universe. Needless to say, most of the matter and energy in the Universe
is unaccounted for.

Dark matter is classified as cold, warm and hot dark matter [72]; some combination of them is
also possible. The classification is based on the particles that are assumed to make it up, and their
typical velocity dispersion of those particles.

The best dark matter candidates are based on the CDM hypothesis, with weakly interacting
massive particles (WIMPS) as most favourite particles. There are currently several alternative
theories of gravity that try to do away with dark matter, with MOND [73] and TeVeS [74] among the
most popular, although neither of these theories can account for the properties of galaxy clusters [75].
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Figure 1.8: Image of the Bullet Cluster obtained by the Chandra X-ray Observatory: The blue color
shows the distribution of dark matter, which passed through the collision without slowing down.
The red coulour shows the hot X-ray emitting gas. In green are the gravitational mass contours
reconstructed from weak-lensing observations [5].

1.3.6 Large-scale Structure

According to the prevailing paradigm, it is sufficient that matter density fluctuations grow from
considerable initial fluctuations with amplitudes of order of 10−5 to reproduce the cosmic structures
observed today [38]. The small deviations from homogeneity and isotropy in the CMB are of utter-
most importance since, most probably, they represent the seeds, which, via gravitational instability,
have led to the formation of large-scale structure, galaxies and eventually solar systems with planets
that support life in the Universe. Gravitational instability for overdense regions is a powerful sce-
nario for structure formation; it is easy to understand and most likely responsible for the structures
in our universe [6]. In time, matter accumulates in initially overdense regions that are denser than
average. It does not matter how small the initial overdensity was, eventually enough matter will be
attracted to the region to form structures (e.g., in typical cosmological scenarios, the overdensity
was of order 1 part in 105). A mass near an overdense region is attracted to the centre by gravity
but at the same time repelled by isothermal pressure. If the region is dense enough, gravity wins
and overdensity grows with time, see Fig. [1.9]. In the mean time, the Universe exhibits a uniform
isotropic expansion, and because there is slightly more matter in the overdensity, there will be a
slightly stronger gravitational attractive force tending to draw that overdense region together and
due to that the overdense regions will expand at slower rate than average which can serve to retard
the expansion locally. Eventually, the overdensity, or perturbation as it is often called, will reach a
point where it stops expanding altogether and begins to collapse under its own weight (gravity) [76].
As it collapses it will fragment into thousands or even millions of knots, each of which themselves
will collapse, forming a cluster of stars or galaxies, depending on how big the original cloud of gas
was to begin with [77]. An overdense region that is larger than the horizon distance cannot be
supported by its internal pressure, because any changes in pressure are propagated at a speed that
is lower than the speed of light. Nevertheless, the relative density fluctuation within this overdense
region does grow with time, although it will grow slowly since the overdense region is expanding
at a lower rate than the universe around it. However, the horizon distance increases with time,
so eventually, the overdense region will lie within the horizon distance and can respond to internal
pressure changes. After this time, an overdense region can be stable against collapse provided that
the mass within this region is less than the amount of pressure required for the balance [78]. The
fact that the anisotropies measured recently by COBE [79] and then by Planck just coincide with
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Figure 1.9: Gravitational instability: a nearby mass attracted to the center of an overdense region
by gravity and repelled by pressure [6].

the amount of growth necessary to form structures today is taken as a hint that the gravitational
instability picture may be correct [80]. Nevertheless, several complications must be addressed to
obtain a real picture of the matter distribution in the Universe.

The study of these anisotropies requires a comparison between the observations and theory in
order to know the behaviour and distribution of matter and hence the power spectrum, for example,
in Newtonian framework, the way to relate the matter overdensity to the gravitational potential at
late time in a static universe is determined by the Poisson equation

∇2
iΦ = ρ , (1.34)

From the above we can conclude the force of gravitational instability

Fi = mai , (1.35)

where a here is the acceleration of the fluid, together with the Euler equation [81]

(∂t + ui∇j)uj = −∇ip
ρ
−∇iΦ , (1.36)

and the basic equation of mass conservation in fluid dynamics [82]

∂tρ = −∇i(ρui) . (1.37)

These equations describe the evolution of small perturbations around a homogeneous background.
By combining the linearised evolution equations (1.37) and (1.36) for the fluctuations, we can get
the equation

(∂2
t − c2s∇2)δρ = ρ̄δρ , (1.38)

where cs is the speed of sound, the total matter ρ = ρ̄+δρ, ρ̄ describes the homogeneous background
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Figure 1.10: Slices through the SDSS 3-dimensional map of the distribution of galaxies and it
contains about 100 billion stars. Earth is at the center, and each point represents a galaxy. Galaxies
are couloured according to the ages of their stars. The outer circle is at a distance of two billion
light years. Both slices contain all galaxies within −1.25 and 1.25 degrees declination [7].

and δρ denotes small inhomogeneous matter fluctuations. Similarly for the potential, pressure
and velocity we can decompose them into homogeneous and inhomogeneous parts. The pressure
fluctuations are proportional to the density fluctuations as δp = c2sδρ.

Eq. (1.38) can be solved by a plane wave δρ = A exp[i(ωt − k)], where ω2 = c2sk
2 − ρ̄, and this

solution indicates that there is a critical wavenumber, called the Jeans wavenumber,

kJ =

√
ρ̄

cs
, (1.39)

for which the frequency of the matter fluctuations oscillations is zero [81]. On small scales k > kJ the
pressure dominates and we get an oscillating solution with a fixed amplitude. On the other hand,
on large scales k < kJ gravity dominates and the fluctuations grow exponentially, the crossover
happening at the Jeans length

λJ =
2π

kJ
= cs

√
π

ρ̄
. (1.40)

In an expanding universe such that r(t) = a(t)x, where r(t) and x represent the physical and
comoving coordinates, the velocity field can be given by [82]

ui(t) = Hri + vi , (1.41)

where Hri is the Hubble flow, and vx = aẋ. With some algebra we can re-write the continuity
equation Eq. (1.37) to first order as[

∂ρ̄

∂t
+ 3Hρ̄

]
δ + ρ̄

∂δ

∂t
+
ρ̄

a
∇ivi = 0 , (1.42)

where δ is the fractional density perturbation δρ
ρ̄ , also known as the density contrast. More over, the
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Poisson and Euler equations (1.34) and (1.36) reduce to

∇2
i δΦ = a2ρ̄δ , (1.43)

v̇i +Hvi = − 1

aρ̄
∇iδp−

1

a
∇iδΦ . (1.44)

Using these equations together with Eq. (1.19) results in the Jeans’ instability equation 3

δ̈ + 2Hδ̇ − 1

a2
∇2δ = ρ̄δ . (1.45)

The second term on the LHS of the above equation of motion plays the role of a damping (friction)
force term such that below the Jeans’ length the fluctuations oscillate with decreasing amplitude
and above the Jeans’ length the fluctuations experience power-law growth [81].

Figure 1.11: A galaxies survey power spectrum from PSCz and APM data survey 4 [8]. The bias is
the square root of the ratio of power spectra.

By expanding Eq. (1.38) into its Fourier components

δρ(t, r) =

∫
d3k

(2π)3
e−ik.rδρk(t) , (1.46)

we can compute the matter fluctuation spectrum. For each Fourier mode

(∂2
t + c2sk

2)δρk = 0 , (1.47)

the solution of which is given by

δρk = Ake
iωkt +Bke

−iωkt , (1.48)

3More details of this derivation can be found in [76,78,81,82].
4The PSCz is a redshift survey of 15,411 galaxies accomplished by [83], and APM is the best power-spectrum

determination from the angular correlations survey [84].



Chapter 1. Introduction 18

where ωk = csk. Fourier modes evolve independently, and the power spectrum is sufficient to
completely describe the density field.

1.4 The Cosmological Parameters

Cosmological parameters, including a parameterization of some functions, are simple numbers de-
scribing the properties of our Universe whose geometry is well characterised by Friedmann metric.
They have been measured within increasing precision over the last decades. The term originally
was used to refer to the parameters describing the global dynamics of the Universe, such as its
expansion rate H0 = 67.74 ± 0.46 Km/s/Mpc, often written as H0 = h × 100 Km/s/Mpc, and
the space curvature of the cosmological model Ωk = 0.0008+0.0040

−0.0039 , These parameters are from the
recent observations made by Planck 2015 based on ΛCDM assumption, more details in [3, 85]. The
structure and fate of the universe can be described by the cosmological parameters, such as mean
mass density Ωm = 0.3089 ± 0.0062 of matter in the universe (baryons Ωbh

2 = 0.02230 ± 0.00014.
Photons Ωγ , neutrinos Ων and radiation Ωr represent much less ∼ 10−4. The remainder is known of
its nonrelativistic manner and it does not interact with the normal matter, it has in particular no
electromagnetic signature named cold dark matter ΩCDM , and dark energy ΩΛ = 0.6911±0.0062 the
current value of the cosmological constant, at the present time divided by the critical density [3,85].
Each of these parameters evolves differently with the redshift, so it is unlikely that two terms will
be comparable at any given time [86]. The present photon density is 4.7× 10−31 kg m−3 using the
standard models [87].

With these parameters one can test the consistency of the standard relativistic expanding cosmo-
logical model that is known as Λ-Cold-Dark-Matter (ΛCDM). However, if Ωm < 1, then the universe
is undergoing from a state of matter domination into a state where either the space curvature or
the cosmological constant is dominant. These cosmological parameters can only be believably de-
termined when several independent methods of estimation have been applied and all yield similar
values of the parameters. The three main ways of estimation of Ωm are [86]:

(1) Local low-redshift dynamical tests

(2) Tests that depend on the coordinate distance to high-redshift sources through the angular size
distance or the luminosity distance (radio source and the supernova)

(3) Tests using the fluctuations of the microwave background radiation on different angular scales.

The mean matter density today is ρm ∼ 3×10−27 kg/m3. We need to describe the nature of pertur-
bations in the Universe, through global statistical descriptors such as the matter and radiation power
spectra (their study is naturally intertwined with the determination of cosmological parameters).
There may also be parameters describing the physical state of the Universe, such as the ionisation
as a function of time during and since the recombination era. Typical comparisons of cosmological
models with observational data now feature ten parameters [88].

Calculating the observables, i.e., the number count, angular sizes of distant objects, Luminosity
distance.. etc., we can track the history of the Universe at least back to where the interaction
allows the interchanges between the densities of the different species before the BBN. But the main
target is to measure the global cosmological parameters based on model assumption. In this thesis
cosmological distances measures are studied in detail, for the homogeneous universe in Sec. 1.5
and for the inhomogeneous universe in Sec. 2.3. In Ch. 3 we will introduce a simpler approach
for measuring distances in cosmology where we develop a lightcone gauge using a simple fact that
observations are made in our past lightcone.

1.4.1 The History of the Universe

With all the observations that have been made and that we introduced in this chapter we can finally
tell the story of our Universe. After the observational confirmation of the expanding Universe,
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cosmologists concluded that the galaxies will be spread much farther apart in the far future and
that the Universe must have been much denser looking back in time. Therefore following the
Friedmann dynamics back in time shows that there is a singularity, namely at a(t) = 0, we choose
the origin of the cosmic time t = 0 occurs at the big bang singularity, then present-day-value of
t0 = 13.81 Gyr represent the age of the Universe [33]. This is generally taken to be the precursor of
the current Big Bang model [89, 90]. After Planck era t ∼ 10−35 and within the first t ∼ 10−32 our
Universe is thought to have experienced a first period of accelerated expansion, its called inflation
introduced by Guth (1981) [91, 92]. This sudden increase in the rate of expansion of the Universe
would have increased the size of the Universe by an enormous factor. Prior to inflation the entire
universe was small and causally connected; it was during this period that the physical properties
evened out. Inflation resolves the horizon problem and the so-called flatness problem of the big bang
model. It has therefore been accepted as part of the current concordance model of cosmology. Many
inflationary models have been proposed and tested with observations [93], but the most popular
models of inflation that involves a single scalar field, the inflaton, whose slight inhomogeneities, and
due to quantum fluctuations, have been the seeds of the Universe structures that we observe today.

The so called the reheating phase [94] started after the end of inflation during which the inflaton
decays into particles of the standard model of particle physics. The Universe was about 379000
years old - much before the formation of stars and planets - it was denser, much hotter, and filled
with hydrogen plasma. As the Universe expanded further, both the plasma and the radiation filling
it grew cooler and at a temperature of about 3000K, it became favourable for protons and electrons
to combine into hydrogen neutral atoms, and some stable nuclei (helium and lithium) could be
formed from a primordial mixture of protons, neutrons and electrons [95,96].

This is the Primordial nucleosynthesis, or BBN as it is commonly called [97], is the earliest
and one of the most stringent tests of Big Bang cosmology. The relevant BBN reactions that
played an important role in the history of the Universe took place in the first three minutes, notably
(corresponding to temperatures of T ∼ 1 MeV to ∼ 109 KeV or higher [98]). At the end of this epoch
the scale factor reads a0/aBBN = 5×107 and dominated by radiation. From Friedmann equations we
know that radiation density Ωr decreases faster than the nonrelativistic matter density, at some point
they become equal Ωm a0/aequ = Ωm/Ωr ∼ 3400. During the recombination epoch and at this point
atomic nuclei and electrons recombined into atoms, then photons stopped interacting with matter
and became allowed to travel freely through space, and so the Universe became transparent [99].
When light started to travel freely through space rather than constantly being scattered by electrons
and protons in plasma, a photon decoupling of matter and radiation formed. The decoupled photons
reach present-day observers as the CMB, and they appear to come from a spherical surface around
the observer such that the radius of the shell is the distance each photon has travelled since it was
last scattered at the epoch of recombination. Such a surface is referred to as the last scattering
surface (LSS).

Since light from this epoch has basically remained unaltered to the present day in the CMB
imprint, that is what gives it the term relic radiation. The Universe remained basically neutral for
few hundreds of millions of years the dark ages, during this time structure form via gravitational
accretion creating the first stars and their light broke some of the neutral atoms into hydrogen
ions in the interstellar medium during the epoch of reionization a0/are ∼ 12. The next billions of
years the formation and evolution of galaxies took place and the large-scale-structure separated by
walls and filaments. The cosmological constant starts to dominate over matter density leading to
an accelerated cosmic expansion a0/am ∼ 1.3 [33].
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Figure 1.12: The history of the Universe [9].
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1.5 Distances in Cosmology

We have shown in the previous sections a brief review of some current status of observational
cosmology that fits so well with ΛCDM model. We emphasize that for every observation that involves
the relation between angular or luminous distance and redshift area distance, FLRW spacetime is
assumed, i.e, light propagates through a homogeneous and isotropic universe.

Here we are going to show some theoretical derivations of these distances with standard cosmo-
logical model. This will give a framework to interpret cosmological observations and to measure its
free parameters. In particular we will show the crucial relation between cosmological distances and
redshift for their correct interpretation. Over small distances, the relation between angular diameter
distance and redshift, or luminosity distance and redshift, does not depend on whether there is or
is not a cosmological constant, or the total value of the matter density Ωm. These differences only
become apparent over much larger distances, which make these expressions sufficient when they are
written as functions of redshift z.

In cosmology spatial distance and velocity measurements are important to determine the con-
sistency of relativistic theories and to measure the cosmological parameters. Thus investigations
of spatial distance measurement arose from the fact that any specific astronomical measurement of
distance carried out in any relativistic model of spacetime must lead to a result which depends upon
the particular operations of measurement, and not upon the particular coordinate system used to de-
scribe the spacetime. Formulating invariant quantities corresponding to these various astronomical
distances depends on the observations of apparent magnitude, apparent size, or apparent luminosity
of distant light sources [100,101]. There are different ways to measure distances in cosmology all of
which give the same result in a Minkowski universe but differ in an expanding universe. They are,
however, simply related as we shall see [38].

1.5.1 Redshift

A photons trajectory

We can define the four-vector kµ as the gradient of a wave phase

kµ = ∂µφ , (1.49)

which indicates the local direction of electromagnetic wave propagation through the spacetime. The
propagation equation of the waves has to obey in the geometric optics

kµkµ = 0 . (1.50)

By taking the gradient of Eq. (1.50) and using Eq. (1.49), we can define the trajectory that followed
by the electromagnetic waves

kµ∇µkν = 0 . (1.51)

The path where kµ is everywhere tangent are called null geodesics, and it can be interpreted as the
world lines of photons or light rays. The geodesic equation (1.51) can also be written.

dkµ

dv
+ Γµναk

νkα = 0 , (1.52)

The momentum of the photon is
pµ = ~kµ , (1.53)

where ~ = h/(2π) the reduced Planck constant. The affine parameter v along a given light ray is
naturally defined with its tangent vector

kµ =
dxµ

dv
, (1.54)
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indicating that a small variation in v corresponds to a small displacement dxµ = kµdv along the
light ray. Then the geodesic equation becomes

kν∇νkµ =
dkµ

dv
+ Γµνρk

νkρ =
d2xµ

dv2
+ Γµνρ

dxν

dv

dxρ

dv
, (1.55)

where ∇ν is the covariant derivative with respect to ν. τ denotes as the observer proper time, then
the angular frequency is defined as

ω =

∣∣∣∣dφdτ
∣∣∣∣ = |uµ∂µφ| = uµkµ . (1.56)

In order to detect the wave its propagations have to be in the direction opposite to the direction in
which the observer is actually looking. This implies

kµ = ω(uµ + nµ) . (1.57)

Here nµ is a unit direction vector of the photons, and uµ their 4-velocity vector, defined more with
the orthonormality relations

uµuµ = −1, nµnµ = 1, uµnµ = 0 . (1.58)

The difference between the frequency emitted by a source ωs and the actual frequency measured by
an observer ωo is quantified by the redshift z as

1 + z =
ωs
ωo

=
(uµkµ)s
(uµkµ)o

. (1.59)

1.5.2 Proper Distance

If we place the galaxies at equal distance from each other and labelled them by a fixed coordinate
x, and if space itself is expanding in time, the scale factor a will depend on time as well, and the
relative velocity between two galaxies at distance

d = a∆x (1.60)

is
v = ȧ∆x , (1.61)

such that

v =
da(t)/dt

a(t)
d =

ȧ

a
d = H0d , (1.62)

where v is the recessional velocity, typically expressed in km/s, and d is the proper distance (which
can change over time, unlike the comoving distance, which is constant) from the galaxy to the
observer, measured in megaparsecs (Mpc)5. Here H0 is the Hubble constant and corresponds to the
value of the Hubble parameter H(t) at the time of observation. H(t) is a value that is time dependent
and which can be expressed in terms of the scale factor.

It is convenient to normalise the scale factor such that a0 = 1, so that comoving scales become
physical scales today. On the other hand, an object at z � 1 at physical distance d away from us,
recedes with speed v, then roughly d ≈ η0 − η is the time delay between the events (A,B) in the
same frame, and the positions of the two events will be changing over time due to the expansion,
and therefore, a0 ≈ a(η) + a′(η0 − η), so that

1 + z ≈ 1 +
a′

a
(η0 − η) ≈ 1 +H0d . (1.63)

5 1 parsec = 3.2615638 light years = 3.0856776× 1016 metres.
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Figure 1.13: The proper distance between nearby events (A,B) connected by a unique geodesic G.

Therefore we have v ≈ z, and H0 = v/z. The proper distance can be written as

d =

∫ z

0

dz′

(1 + z′)H(z′)
=

1

H0

∫ z

0

dz′

(1 + z′)h(z′)
, (1.64)

where H(z) is the Hubble parameter as a function of redshift, and h(z) = H(z)/H0 is an expansion
parameter normalized by the Hubble constant, given by

h(z) =
√

Ωr(1 + z)4 + Ωd(1 + z)3 + Ωk(1 + z)2 + ΩΛ . (1.65)

1.5.3 Comoving Distance (Line-of-Sight)

A comoving distance between two events in the Universe, at a specific moment of the cosmological
time will remain constant, if the two objects are moving with the Hubble flow which will give distance
that does not change in time due to the expansion of space [102]. The total line-of-sight comoving
distance between two nearby objects along the radial lightray can be given by

dc =
1

H0

∫ z

0

dz′

h(z′)
. (1.66)

The line-of-sight comoving distance is the fundamental distance measure for all other distance mea-
sures [102].

1.5.4 Transverse Comoving Distance

The comoving distance between two objects on the sky that are at a constant redshift z, and they
are separated by an angle δθ is δθdm, where dm is the transverse comoving distance, i .e., the cross-
sectional length of an object perpendicular to the light ray. It is related to the line-of-sight comoving
distance dc by [102]

dm =


dH√
|Ωk|

sinh
[√
|Ωk|dc/dH

]
if Ωk > 0 ,

dc if Ωk = 0 ,
dH√
|Ωk|

sin
[√
|Ωk|dc/dH

]
if Ωk < 0 ,

(1.67)

where dH = 1/H0 is called Hubble distance.

1.5.5 Area Distance

The area distance is also known as the angular diameter distance. This cosmological distance measure
relates the proper transverse size of an object to the solid angle in which it is observed, from the
directions originating at the object and pointing towards the observer. The area distance rA at
the observer, also called “the corrected luminosity distance” in [103], and “observer area distance”
in [104], is defined by,

dSo = r2
A(O)dΩo , (1.68)
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Figure 1.14: In a curved spacetime, light travels on null geodesics, and the area distance rA of the
source from the observer is r2

A = dSo/dΩo.

where dΩo is the solid angle subtended by that object at the observer, and dSo is its cross-sectional
area or the transverse size of the object at the observer, see Fig. [1.14]. The area distance measured
from the source would be defined using the geodesic bundle diverging from the source and the ratio
between the physical transverse size of the source and the solid angle under which it would be
observed from the source

dSs = r2
A(S)dΩs . (1.69)

From the above definition of the area distance at the source, one can say that it is not directly
observable, i .e., an observer can measure dSs, then the observer cannot without knowing rA(S)
determine the solid angle dΩs into which this radiation was emitted [105]. The relation between
rA(O) and rA(S) is

rA(S) = (1 + z)rA(O) . (1.70)

From now on in our calculations of distances we will consider the area distance measured from the
observer rA. The area distance is related also to the transverse comoving distance measured in
FLRW by

rA(z) =
dm

1 + z
. (1.71)

The difficulty of measuring angular distance in astronomy is that it requires standard rulers or
sources of a known size or it can be calibrated by independent experiments. The angular diameter
distance is also naturally involved in strong gravitational lensing and time delays experiments.

1.5.6 Luminosity Distance

Distances can be inferred by measuring the flux from an object of known luminosity. In a nonrela-
tivistic picture, the luminosity distance dL is defined by the relationship between the flux F of the
luminosity, i .e., the rate at which radiation crosses a unit area of surface per unit time, and the
intrinsic luminosity L of an object, i .e., energy per unit time, arriving at the observer [106]

dL =

√
L

4πF
. (1.72)
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A light source not only appears smaller but also fainter as it lies farther from the observer. It is
related to the transverse comoving distance and angular diameter distance by

dL(z) = (1 + z)dm = (1 + z)2rA . (1.73)

The factor (1 + z)2 can be interpreted as follows: the first (1 + z) comes from the shifted energies of
the photons at the emission and reception and time dilation between the source and the observer, the
second factor (1 + z) is due to the exchange of the roles of s and o Eq. (1.70). Because gravitational
waves follow null geodesics just like electromagnetic waves, their detections are expected to usher in
excellent measurements of luminosity distance to their sources.

1.6 Observations on the Past Lightcone

Figure 1.15: Observations from the vertices of our past lightcone and future past lightcone.

One of the fundamental features of cosmology is that there is only one Universe, on which we
cannot experiment; we can only observe it [105]. The Universe is so large that the spatial distances
and time scales involved are also very large. Thus, we must distinguish between the observable
Universe for which we have data, and the Universe which includes regions we cannot directly influence
or observe. In GR light travels on the null cone which is the surface of the lightcone. Therefore an
observer on the apex can only observe another event crossing the null cone.

On cosmological scales we are it is not possible for us to move away from our local galactic
worldline C. Therefore observations give direct access only to our past lightcone C−, at one cosmo-
logical time q: here and now. This is a fundamental constraint on what is empirically decidable in
cosmology [107]. Therefore an observer on the central worldline C can only observe distant galaxies
and quasars and a radiation background. All the astrophysical data obtained from actual observa-
tions are mainly localised on our past lightcone in a 3-dimensional hypersurface around our past
worldline. Since all these observations are made at different times and in different directions, they
are assumed to have been obtained by observing from a single point on C(q) [108]. The observation
of a cosmological quantity (massive stars, black holes, etc.) in the sky requires a set of lightcones
along the observation time interval, where data needs to be located only in one past lightcone [108].
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However, the time variation of the same object is expected to be extremely long compared to the
time interval in which the observations are made, hence we can only consider one lightcone C−(q)
to specify our data.

Figure 1.16: Observations of an event on the null cone.

There are particular restrictions down our past lightcone to the limiting redshift beyond which
either we cannot perform astronomical observations, or due to the fact the actual structure of the
past lightcones is not ideal, but rather very complicated due to the null caustics-points, that occur
near to these giant cosmological objects. One needs to consider the existence of such caustics when
observations are interpreted, a challenge that can be overcome assuming the Universe is filled with
a perfect fluid in which cosmological quantities could be considered as particles [108]. Now with
these smoothing approximation techniques we may have the ideal past lightcone ready to set up for
observation.

1.7 The Scope of this Thesis

The lightcone gauge is a set of observational coordinates adapted to our past lightcone. And it is
made at one point in spacetime as initial data for the field equations without any a priori assumptions
about the spacetime geometry, such as assuming that spacetime is isotropic and homogeneous. The
attempt is to deduce the large-scale structure of the Universe by using idealized astronomical obser-
vations, and then confront these interpretations of the astronomical observations with cosmological
theory.

In the work we will present here we intend to use and examine cosmology in our past lightcone
with cosmological observations. Assuming that our galactic world line is a regular geodesic, where
observations are made, then metric variables and curvature components as one approaches the central
world line can be achieved. We will add perturbations to the lightcone to obtain a perturbed metric
to first-order calculations. We will derive the observables quantities within our perturbed lightcone,
and compare them with what has been obtained from the standard approach. The point of this
new gauge is to convince you as a reader that the calculations of the cosmological observables are
much easier since we consider signals moving in straight lines and hence no light deflection and
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space distortion need to be worried about. We will also use the new gauge to calculate the density
fluctuations, then we will make gauge transformations to our result in the perturbed lightcone gauge
to the general gauge and see if our result is compatible with the results obtained in the standard
gauge. We prove that our perturbed metric is genuine and it fulfills the EFE degrees of freedom.

The second topic is to address the recent observations of the accelerated cosmic expansion rate
by using modified theories of gravity. We analyze models of f(R) gravity that allow non-rotating
fluid solutions, i .e., when the vorticity is zero. We consider several sub-cases, such as shear-free
cases, non-expanding cosmologies, etc...

In the scramble for the understanding of the nature of dark matter and dark energy, it has recently
been suggested that the change of behavior of the missing energy density might be regulated by the
changes in the equation of state of the background fluid. Chaplygin gas models are based on the
existence of some kind of exotic fluids out there in the Universe. Our approach attempts to replace
such exotic fluids with modification of gravity (geometry rather than extra fluid). We will attempt
to produce f(R) models that replace Chaplygin gas solutions. This work aims to bring to light a
geometric interpretation of the model by re-writing the different toy Chaplygin gas models in terms
of exact f(R) gravity solutions that are generally quadratic in the Ricci scalar with appropriate
ΛCDM limiting solutions.
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Perturbation Theory in Cosmology

Nothing happens until something
moves.

Albert Einstein

2.1 The Inhomogeneous Universe: Gauge-invariant Cosmo-
logical Perturbation Theory

The measurements of the anisotropies in the CMB of the Universe show only small initial fluctuations
from FLRW background. This spatial variation of the density growth in the actual universe is not
quite uniform in all directions. The evolution of these fluctuations until the time when they become
of order unity can be studied within linear perturbation theory [38].

2.1.1 The Metric of the Perturbed Spacetime

We shall now slightly perturb the FLRW model with the basic perturbation equations [10]

gµν = gµν + a2δgµν , (2.1)

where gµν represents the unperturbed Friedmann metric, and δgµν can be parametrised in terms of
its components respectively as

δgµνdx
µdxν = −2φdη2 + 2Bidηdx

i + 2Cijdx
idxj . (2.2)

Here Bi is a rank-1 tensor and Cij is a rank-2 tensor [10]. For linear perturbation theory, the
spacetime metric is thus

ds2 = a2(η)
[
−(1 + 2φ)dη2 + 2Bidx

idη + (γij + 2Cij)dx
idxj

]
. (2.3)

The inverse components and the Christoffel symbols associated with this metric are given in Ap-
pendix A.1.

28
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2.1.2 Decomposition of the Perturbation Variables

The perturbation variables in Eq. (2.2) can be decomposed by splitting the vector field Bi as a sum
of a gradient of a scalar and a divergenceless vector as [10]:

Bi ≡ ∇iB +Bi where ∇iBi = 0 . (2.4)

For a velocity field, B will be the potential, and Bi the vorticity. Here we can see that the 3-
components of the vector have been split into 1 scalar (B) and 2 vector (Bi) components. Analo-
gously, the symmetric rank-2 tensor Cij can be decomposed as

Cij ≡ −ψγij +∇i∇jE +∇iFj +
1

2
hij with ∇iFi = ∇ihij = hii = 0 . (2.5)

The 6 components of Cij have thus been split into 2 scalar (ψ and E), 2 vector (Fi) and 2 tensor
(hij) components. Therefore, δgµν is decomposed into 10 components with 10 degrees of freedom of
the metric. The advantages of this Scalar-Vector-Tensor (SVT) decomposition lies in the fact that
the three types of perturbations are decoupled and can thus be studied separately.

2.1.3 The Gauge Problem

A problem in perturbation theory can be summarised in the ‘choice of gauge’. If coordinates are
chosen in the background manifold s then the correspondence Ω introduces a coordinate system on
the physical manifold s. With tensor fields Q (e.g., the Ricci scalar, the energy density ρ, etc.) on
s, and the corresponding physical quantity Q on s, then we define the perturbation δQ of Q at the
point x ∈ s by [10]

δQ(x) = Q(x)−Q(x, t). (2.6)

It is usually understood that the perturbation δQ is small. However, δQ can be assigned at any
point on the physical manifold s by simply altering the correspondence Ω.

In order to map between this two manifolds, we need to compare two different spacetimes. We will
consider for the physical observable universe s with a spacetime manifold M, metric g and energy
momentum tensor T , which in some sense must be close to the FLRW universe, and a fictitious
background spacetime s with manifold M and metric g and energy momentum tensor T . This
implies that there exist some unphysical degrees of freedom related to the choice of the coordinate
systems on the two manifolds [10].

Similarly, ρ(x) describes the actual value of the energy density at point x, while ρ(x) describes
the fictitious background value there. The quantity δρ = ρ − ρ is the variation in density of the
background model and the realistic lumpy model [109]. In general, the mapping is given as

Ω : gµν → gµν . (2.7)

An interesting and yet nontrivial problem is how to identify points in the background s with
corresponding points in the realistic spacetime s, in accord with

gµν → gµν = gµν + δgµν . (2.8)

This is related to the difficulties of the background choice. We will assume the existence of back-
grounds that lead to the FLRW universe. There are may be many different ways to these different
backgrounds leading to slightly different FLRW backgrounds. But since |g − g| is small, of order ε,
the differences of FLRW backgrounds must also be small, of order ε, and can be regarded as part of
the perturbations [38].

The only possibilities for gauge-invariant quantities are: a scalar or a tensor, which are constant
in M. These quantities can be given any value we desire by altering that map; we can, e.g., set
it to zero by choosing the real surfaces of constant energy density to be the background surfaces
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Figure 2.1: Any perturbed quantity is defined by the mapping between the background universe
FLRW, M, and the actual perturbed universe M [10].

of constant time and, hence, of constant energy density. Consequently, perturbation equations
written in terms of this variable have as solution both physical modes and gauge modes, the latter
corresponding to the variation of gauge choice rather than to physical variation, because they depend
intrinsically on the manifold choice, and this is what is called the gauge problem. One way to solve
this is by very carefully keeping track of the gauge choice used and the resulting gauge freedom.
The perturbations are not unique but Eq. (2.6) is invariant under coordinate transformations. And
as long as it does not matter how we map Ω : s → s when it leaves the background manifold s
unchanged, the mapping is called a gauge transformation [110].

2.1.4 Gauge Transformation

The gauge transformation reflects the freedom of choosing different diffeomorphism {xµ} in the
physical manifold M

xµ ← xµ = xµ + ζµ , (2.9)

where ζµ is a vector field. Thus, if we alter (push forward) the initial correspondence Q(x) maybe
only slightly to Q(x+ ζ) to obtain the new identification map Ω∗, this describes the same geometry
as g [38]. Since we have chosen the background metric g we only allow diffeomorphisms which leave
g invariant, but they can deviate at first order. The definition of the perturbation is now

δQ∗(x) = Q(x)−Q(Ω∗(x)) . (2.10)

It is evident that the difference is

∆Q(x) = δQ∗(x)− δQ(x) = Q(Ω(x))−Q(Ω∗(x)), (2.11)

and constitutes the fundamental gauge-invariance [111]. The only gauge-invariant quantities are the
ones for which

LζQ = 0 , ∀ζ , (2.12)
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with vanishing or constant contribution to the background [38,111]. The perturbation of an arbitrary
tensor field Q = Q+ εδQ obeys the gauge transformation to first order as

δQ −→ δQ+ LζQ , (2.13)

and the metric transforms as
gµν → gµν + Lζgµν . (2.14)

Since all relativistic equations are covariant by definition, they can always be written in the form
Q = 0, where Q is a tensor field [10,111]. It is thus always possible to write all the relevant equations
in perturbations up to first order in terms of gauge-invariant quantities only. Such a treatment would
ensure that no gauge, i .e.., unphysical, degree of freedom, is misleadingly used.

2.1.5 Gauge-invariant Variables

In order to extract the physical degrees of freedom, we will consider an active transformation of the
coordinate system defined by the displacement vector ζ. Therefore the coordinates of any point will
change according to Eq. (2.9). The vector field ζµ is decomposed into 2 scalar degrees of freedom

(T and L), and 2 vector degrees of freedom (L
i
), which is divergenceless, i.e., ∇iLi = 0, as

ζ0 = T, ζi = Li = ∇iL+ Li . (2.15)

The perturbation variables under gauge transformations look like [10]

φ→ φ+ T ′ +HT , (2.16)

Bi → Bi −∇iT + L′i , (2.17)

Cij → Cij +∇iLj +∇jLi + 2HTγij . (2.18)

Then the metric g transforms as

Lζg = a2[−2(HT + T ′)dη2 + 2(L′i −∇iT )dηdxi + (2HTγij +∇jLi +∇iLj)dxidxj ] . (2.19)

Now using the above decomposed perturbation variables, and under gauge transformations they
become [10]

φ→ φ+ T ′ +HT , (2.20)

Bi → Bi + Li , (2.21)

B → B − T + L′ , (2.22)

ψ → ψ +HT , (2.23)

E → E + L , (2.24)

F i → F i + Li , (2.25)

hij → hij . (2.26)

Since one of the gauge-invariant quantities corresponds exactly to the Newtonian potential energy
from Newtonian gravity, the Newtonian limit can be performed easily. By putting the scalar per-
turbations E = −L and T = L′, E = B = 0 one gets the so-called longitudinal gauge:

δg = −2Φdη2 + 2Ψγijdx
idxj . (2.27)

For vector perturbation it is convenient to set F i = −Li so that F i will vanish and we will have

δg0i = Φi = (F ′i −Bi) . (2.28)

This is a ‘vector gauge’ and it is gauge invariant. Clearly there are no tensorial gauge transformations
and hence hij is also gauge invariant [38].
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The traditionally favoured choice for cosmological perturbations is the metric perturbation the-
ory. In the so-called Bardeen’s approach [112] for metric perturbations, we can construct a set of
gauge-invariant independent quantities related to density perturbations, but these quantities are not
perturbations themselves in terms of the background metric, i.e., they do not depend on Li and T .
For instance

φ = Φ−H(B − E′)− (B − E′)′ , (2.29)

ψ = Ψ +H(B − E′) , (2.30)

where Φ and Ψ are called Bardeen potentials. The Bardeen approach to cosmological perturbation
theory is widely used and fundamentally important.

A new method developed by Ellis and Bruni (1989) [109] as an alternative description of spacetime
in terms of scalars, 3-vectors and projected symmetric trace-free (PSTF) tensors is the so-called 1+3
covariant approach [113], and the later is what we are going to use and call as standard gauge. It
has the freedom of choosing a set of coordinates and transforming to another if wished. This work is
built on the work of Ehlers [114], Hawking (1966) [115], Olson [116] and Stewart and Walker [111],
and does not use the metric directly but describes the spacetime instead by means of covariant and
gauge-invariant quantities obtained by a local foliation of spacetime into ‘space’ and ‘time’.

2.1.6 The Four-velocity

A comoving observer’s trajectory along a worldline orthogonal to the hypersurfaces Σt is given by,
uµ the four-velocity of the observer

uµ = uµ + δuµ , (2.31)

satisfying the condition given in Eqs. (1.58). With a time-like geodesic, the normalisation condition
of uµ to zeroth order provides the solution

uµ = a−1δµ0 , uµ = −aδ0
µ , (2.32)

and hence ui = 0 at zeroth order. From Eqs. (1.58) we see that

gµνu
µuν = −1 , (2.33)

and therefore
− a2(1 + 2φ)u02

= −1 . (2.34)

This leads to

u0 =
1

a

(
1− φ

)
, (2.35)

and
δu0 = −a−1φ . (2.36)

We then write
δui = a−1vi , (2.37)

where vi is the peculiar velocity of the object. It is also easy to show that

δu0 = −aφ, and δui = a(vi +Bi) . (2.38)

We can decompose vi into a scalar and a tensor part according to the form of Eq. (2.4):

vi = ∇iv + vi. (2.39)

And upon performing a gauge transformation on δuµ,

δuµ → δuµ + Lζuµ, (2.40)
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where
Lζuµ = ζα∇αuµ − uα∇αζµ . (2.41)

After SVT decompositions on v and vi, they will transform as

v → v − L′ , (2.42)

vi → vi − L
′
i . (2.43)

Like the case of metric perturbative gauge-invariant quantities, we can define the gauge-invariant
quantities associated with quantities in Eqs. (5.54), (2.43):

V ≡ v − E′ , (2.44)

V i ≡ vi −Bi , (2.45)

W i ≡ vi − F ′i . (2.46)

Different choices are possible [10,106], and it is also worth noting that we can relate different gauge-
invariant variables like

W i = V i − Φi . (2.47)

2.2 Perturbations of Null Geodesics

We would like now to study the effects of perturbation on the light rays coming from a source to
the observer.

2.2.1 Effects on Source Position

On astronomical and cosmological scales, light gets deflected by any inhomogeneous gravitational
field and affects the source’s apparent position, therefore when measuring distances of a distorted
image or the brightness of images one has to study the geodesic deviation of null geodesics. Conse-
quently, such measurements rely on our good understanding of light propagation through the cosmos,
in particular the way that light beams are focused by matter lying between us as the main observer
and the sources.

Figure 2.2: The deviation of the angular coordinates θ̄I of the source given an observational direction
d.

For example, if we want to study the position of a far distant source, on the observer’s celestial
sphere, we could consider an event S, and a straight line of sight d corresponding to the direction
θ̄I |I=2,3 = (θ, φ) towards which the observer is looking, where (θ, φ) are two angles in the sky. Now
due to a perturbed spacetime, between the source and the observer, the deflection of light implies
that the light ray deviates from its radial straight line θI = θ̄I , to angular coordinates corresponding
to

θI = θ̄I + δθ̄I . (2.48)

This new direction corresponds to the direction in which the observer would see the image if light
did follow a radial straight line [33]. The above equation relates the real position of the source to
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its observable position.

2.2.2 Effects on Null-vector

The geodesic of photons is a worldline xµ(λ) where λ is an affine parameter. Applying perturbation
to the geodesic equation (1.52) to first order, we get

kµ = (k
µ

+ δkµ) ,Γµνα = (Γ
µ
να + δΓµνα) , (2.49)

d

dλ
δkµ + k

ν
k
α
δΓµνα + 2k

ν
Γ
µ
ναδk

α = 0 . (2.50)

The tangent vector of the null geodesic satisfies the condition

gµνk
µkν = 0 . (2.51)

Perturbing the above Eq. (2.51) also to first order, we will get

k
µ
k
ν
δgµν + k

µ
gµνδk

ν + k
ν
gµνδk

µ = 0 . (2.52)

2.2.2.1 Conformal Trick

We can use the perturbed FLRW metric as in Eq. (2.2) and by connecting two metrics using Sachs’
and Wolfe’s conformal techniques [117] such that

ds2 = a2d̃s
2
, (2.53)

where
d̃s

2
=
[
−(1 + 2φ)dη2 + 2Bidx

idη + (δij + 2Cij)dx
idxj

]
. (2.54)

d̃s
2

is a conformal space metric, and it is called a perturbed Minkowski metric. It has all the
geometrical properties of the FLRW metric but its space is not expanding. The lightlike geodesics

of ds2 coincide with those of d̃s
2
. If k̃ is a null geodesic for the metric d̃s

2
with affine parameter λ̃,

then
k̃µ = a2kµ (2.55)

is a null geodesic for ds2 with affine parameter λ. However the affine parameters do not coincide
and are related by

dλ̃ = a−2dλ . (2.56)

In the following, we will first calculate k̃µ, and then we will use Eq. (2.55) to determine kµ. Lightlike
geodesics are invariant under conformal transformations; we are doing this to make our calculations
easier. We will drop the tilde (̃ ) and keep in mind the calculations are made on the conformal
space unless otherwise stated. The 0-components of the geodesic equation (2.50), with the use of
Eq. (2.52), can be written as

d

dλ
δk0 + k

0
k

0
δΓ0

00 + 2k
0
Γ0

00δk
0 + 2k

0
k
i
δΓ0

0i + 2k
i
Γ0

0i

+δk0 + 2k
0
Γ0

0iδk
i + k

i
k
j
δΓ0

ij + k
j
Γ0

ijδk
i + k

i
Γ0

ijδk
j = 0 , (2.57)

and with a conventional choice of k
µ

= (1, ni) at the background, where ni is the unit vector, we
have

d

dλ
δk0 + φ′ + 2ni∇iφ+ ninj

(
C ′ij −∇iBj

)
= 0 . (2.58)

We also define the backward affine parameter along the past lightcone, such that

φ′ =
dφ

dλ
− ni∇iφ . (2.59)
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Then we can rewrite Eq. (2.58) as

d

dλ
δk0 = φ′ − 2

d

dλ
φ− ninj

(
C ′ij −∇iBj

)
. (2.60)

Integrating both sides of Eq. (2.60) yields

δk0
o − δk0

s =

∫ o

s

[
φ′ − 2

d

dλ
φ− ninj

(
C ′ij −∇iBj

)]
dλ . (2.61)

k0 is a component along the light trajectory between the observer o and the source s is given by

k0
o − k0

s = k
0

o + δk0
o − k

0

s − δk0
s . (2.62)

And since the background is Minkowski, the background term is the same both at the source and
observer points. Therefore

k0
o − k0

s =

∫ o

s

[
φ′ − 2

d

dλ
φ− ninj

(
C ′ij −∇iBj

)]
dλ . (2.63)

Now calculating the i-component of the null vector,

d

dλ
δki + k

0
k

0
δΓi00 + 2k

0
Γi00δk

0 + 2k
0
k
j
δΓi0j + 2k

j
Γi0jδk

0

+2k
0
Γi0jδk

j + k
j
k
k
δΓijk + k

j
Γijkδk

k + k
k
Γijkδk

j = 0 , (2.64)

and hence

d

dλ
δki+Bi

′
+∇iφ+2nj

(
Ci
′
j +

1

2
(∇jBi −∇iBj)

)
+njnk

(
∇kCij+∇jCik−∇iCjk

)
= 0 , (2.65)

which we can rewrite after integrating both sides, as

δkio − δkis =

∫ o

s

[
−Bi′ −∇iφ− 2nj

(
Ci
′
j +

1

2
(∇jBi −∇iBj)

)
−njnk

(
∇kCij +∇jCik −∇iCjk

)]
dλ . (2.66)

ki is a vector along the path between the observer o and the source s

kio − kis = k
i

o + δkio − k
i

s − δkis . (2.67)

In the Minkowski background, this yields

kio − kis =

∫ o

s

[
−Bi′ −∇iφ− 2nj

(
Ci
′
j +

1

2
(∇jBi −∇iBj)

)
−njnk

(
∇kCij +∇jCik −∇iCjk

)]
dλ , (2.68)

and since we are dealing with a conformal space the background terms are constant.
Now applying Eq. (2.55) and Eq. (2.56) to our null vector results Eqs. (2.63) and (2.68) to move

back from conformal space to FLRW space, then for the 0-components will get

k0
s =

a2
o

a2
s

k0
o −

1

a2
s

∫ o

s

a−2

[
φ′ − 2a2 d

dλ
φ− ninj

(
C ′ij −∇iBj

)]
dλ . (2.69)
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In particular the observer sends a light ray of a past-pointed null cone vectors. Then this implies

−gabkaub < 0 . (2.70)

We can normalize the null vector k0
o = −1 at the observer position

k0
s = − 1

a2
s

− 1

a2
s

∫ o

s

a−2

[
φ′ − 2a2 d

dλ
φ− ninj

(
C ′ij −∇iBj

)]
dλ . (2.71)

Applying the same conformal transformation to the i-components, we will get

kis =
a2
o

a2
s

kio −
1

a2
s

∫ o

s

a−2

[
−Bi′ −∇iφ− 2nj

(
Ci
′
j +

1

2
(∇jBi −∇iBj)

)
−njnk

(
∇kCij +∇jCik −∇iCjk

)]
dλ , (2.72)

where kio = nio at the observer, then we get slightly simpler expression in the FLRW space

kis =
nio
a2
s

− 1

a2
s

∫ o

s

a−2

[
−Bi′ −∇iφ− 2nj

(
Ci
′
j +

1

2
(∇jBi −∇iBj)

)
−njnk

(
∇kCij +∇jCik −∇iCjk

)]
dλ . (2.73)

By lowering the indices, we obtain

ksη = 1 +

∫ o

s

a−2φ′dλ−
∫ o

s

a−2[ninj
(
C ′ij −∇(jBi)

)
]dλ−Bini , (2.74)

and

ksi = noi +

∫ o

s

a−2∇iφdλ+

∫ o

s

a−2B′idλ+ 2

∫ o

s

a−2

[
nj
(
C ′ij +

1

2
(∇jBi −∇iBj)

)]
dλ

+

∫ o

s

a−2

[
nlnj

(
2∇jCil −∇iClj

)]
dλ−Bi|os + 2njCij |os . (2.75)

2.2.3 Effect on Frequency

Now we can calculate the effect of perturbations on the observed frequency of the light signal by
using Eq. (1.59) to first-order perturbation along with the 4-velocity we define in Sec. 2.1.6 and
Eqs. (2.71), (2.73) we get

1 + z =
ωs + δωs
ωo + δωo

=

[
(gµν + δgµν)(k

µ
+ δkµ)(uν + δuν)

]
s[

(gγσ + δgγσ)(k
γ

+ δkγ)(uσ + δuσ)
]
o

,

1 + z =
1

a(ηs)

[
[1− φ+ nivi − ni∇iB − niBi]os +

∫ o

s

(φ+ ψ)′dη

−
∫ o

s

ninj
(
∇i∇jE′ +∇(iF

′
j) +

1

2
h′ij −

1

2
(∇i∇jB +∇jBi +∇i∇jB +∇iBj)

)
dη

]
,

(2.76)

where we have used a−2dλ = dη. Substituting for the Bardeen potentials quantities using Eqs. (2.29,
2.30) and further simplify the term ∇i∇j(B − E′) as follows:
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ninj∇i∇j(B − E′) = ni∇i
(
d

dη
− ∂

∂η

)
(B − E′) , (2.77)

= −
(
d

dη
− ∂

∂η

)
(B − E′)′ + ni∇i

d

dη
(B − E′) , (2.78)

= (B − E′)′′ − d

dη
(B − E′)′ + ni∇i

d

dη
(B − E′) . (2.79)

Thus, integrating both sides leads to∫ o

s

ninj∇i∇j(B − E′)dη =

∫ o

s

(B − E′)′′dη − (B − E′)′|os + ni∇i(B − E′)|os . (2.80)

Moreover, let us decompose vi using Eq. (2.39) into scalar and tensor parts:

vi = [∇iv + vi] , (2.81)

= [∇i(V + E′) + (V i +Bi)] , (2.82)

= Vi + [∇iE′ +Bi] , (2.83)

where Vi is the gauge-invariant velocity perturbation of the baryon fluid, and now we can obtain

1 + z =
1

a(η)s

[
[1− Φ +H(B − E′) + Vin

i]os +

∫ o

s

(Φ + Ψ)′dη −
∫ o

s

ninj
(
∇iF ′j +

1

2
h′ij −∇iBj

)
dη

]
.

(2.84)

Using (2.28) in the above equation results

1 + z =
1

a(η)s

[
[1− Φ +H(B − E′) + Vin

i]os +

∫ o

s

(Φ + Ψ)′dη −
∫ o

s

ninj
(
∇iΦj +

1

2
h′ij

)
dη

]
.

(2.85)

This redshift relation is in a general gauge presentation, which we can reduce to any sort of gauge we
want. The redshifts calculated are gauge-invariant if and only if they relate to the observed redshift
of emission points on an invariantly specified surface in our past lightcone C−(q). This equation
is known as the Sachs-Wolfe (SW) equation as well and it relates photons’ present potential and
energy to their potential and energy at the emission. The interpretation given the perturbations
considered is based on a splitting of perturbations into scalar, vector, and tensor parts [10]. The
ordinary Sachs-Wolfe term,

ΘSW ≡ [−Φ +H(B − E′)]os (2.86)

is the scalar only contribution whereas the Doppler term

Θdop ≡ [Vin
i − Φin

i]os (2.87)

is the scalar-and- vector contribution and indicates that the emitter source and the observer do not
have the same velocity. Finally, the term

ΘISW ≡
∫ o

s

(
(Φ + Ψ)′ − Φ′in

i +
1

2
h′ijn

inj
)
dη (2.88)

contains all three kinds of perturbations and is called the integrated Sachs-Wolfe term. The physical
meaning of this splitting is non-local, and its implications depend on the details of the gauge choice
made. All terms in the above equation are gauge invariant. One may think the term H(B − E′) is
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not gauge invariant under gauge transformation, but can proven to be so using the transformations;

η −→ η − T , (2.89)

xi −→ xi − Li , (2.90)

and thus

B − E′ −→ B − E′ − T, (2.91)

a(η) −→ a(η)[1−HT ]. (2.92)

Therefore, 1 + z is gauge invariant.

2.3 The Perturbative Cosmological Distances

We are going to calculate the cosmological distances in a perturbed FLRW space. The perturbed
distance is a gauge-invariant quantity. In any arbitrary geometry of spacetime it is easier to measure
the distance in a gauge of our choice.

A distance measure from a moving source with 4-velocity us and an observer moving with 4-
velocity uo, can be obtained as a solution of the Sachs focusing equation [118, 119], which rules
the relative acceleration between neighbouring geodesic motions, it represents the deviation of the
geodesic equation

d2D

dλ2
= −

(
R+ |Σ|2

)
D , (2.93)

Σ is the complex shear of the light ray, this equation surely provides the best geometrical interpre-
tation of curvature, where

R =
1

2
Rµνk

µkν , |Σ|2 = ΣµνΣµν . (2.94)

Σµν describes the shear

Σµν = Σ〈µν〉 ≡ N α
(µN

σ
ν)∇αkσ −

1

2
θNµν , (2.95)

where Nµν is the screen space tensor given by Eq. (4.1), θ describes the expansion of a bundle of
light rays [120]. The shear related to the photon ray vector by

Nα
µN

β
ν∇αkβ =

1

2
θNµν + Σµν . (2.96)

In perturbed FLRW metric to first order, the Sachs focusing equation reduces to [119]

d2D

dλ2
= −RD (2.97)

since the complex scalar shear vanishes for a conformally flat spacetime and Σ2 contributes only at
second order [119]. We consider a light bundle with vertex at the source; this leads to the following
initial conditions:

D(λs) = 0,
dD(λs)

dλ
= ωs = −(gµνk

µuν)s . (2.98)

These are general initial conditions for an arbitrary affine parameter λ for distance measure. We can
normalise λ such that ωs = (1 + zs) then one could obtain the redshift luminosity distance, while
ωs = (1 + zs)

−1 gives us the redshift angular diameter distance [119].

2.3.1 Area Distance

One considers a past-oriented lightlike geodesic, so we can normalise λ = λs such that ωs = 1. That
will ease the calculations for us for now. We will get the area distance in terms of the direction n
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and the time of emission ηs. If we would like to obtain the real observed area distance simply we
need to measure the source redshift in the same direction n.
The area distance will be given by

rA(λo) = (λo − λs)−
∫ λo

λs

∫ λ

λs

R(λ− λs)dλ′dλ . (2.99)

Note that as we showed in Sec. 2.2.2.1, a perturbed FLRW universe is conformally related to a
perturbed Minkowski spacetime by the scale factor a. The null geodesics are invariant under confor-
mal transformations, therefore the distance D will not be affected by the conformal transformation
that we are going to apply. Then the effect of the expansion on the distance simply leads to a
rescaling [121]. The two conformally related area distances will be

rA = as r̃A . (2.100)

We will drop the tilde and bear in mind that the following calculations have been done in
conformal space. From Eq. (2.99) we can calculate the area distance using the right initial conditions
of the Sachs focusing equation for an arbitrary affine parameter λ. At the source s it is useful to
express the affine parameter in terms of the conformal time∫ o

s

kηdλ =

∫ o

s

dη , (2.101)

and from Eq. (2.63) we get

λo − λs = (ηo − ηs) +

∫ λo

λs

∫ λ

λs

[
− d

dλ
(Φ + Ψ) + ni∇i(Φ−Ψ)

−2ni∇iΦ− ninj [∇i∇jE′ +∇(iF
′
j) +

1

2
h′ij −∇(iBj)]

]
dλ′dλ . (2.102)

This leads to

λo − λs = (ηo − ηs)
[
1− (Φ + Ψ) + (B − E)′

]
+

∫ ηo

ηs

(ηo − η)

[
−ni∇i(Φ + Ψ)− ni∇i(B − E′)′

+ninj∇i∇j(B − E′)− ninj
(
∇(iF

′
j) +

1

2
h′ij +∇(iBj)

)]
dη , (2.103)

where we have used the identity B.60. We need to calculate

R =
1

2
(R00 + 2R0in

i +Rijn
inj) . (2.104)

Using a Maple code, we have calculated the Ricci tensor components, and therefore

−
∫ λo

λs

∫ λ

λs

(λ− λs)Rdλ′dλ = −1

2

∫ λo

λs

∫ λ

λs

(λ− λs)
[
−2

d2

dλ2
[Φ−H(B − E′)− (B − E)′]

+(∇2 − ninj∇i∇j)(Φ + Ψ) + (∇2 − ninj∇i∇j)(B − E′)′

−∇2[ni(Bi − F ′i )] − ninj [∇(iB
′
j) −∇(iF

′′
j)]− n

inj∇2hij

−2ninj∇i∇j(B − E′)
]
dλ′dλ , (2.105)

where ∇2 = ∇i∇i. By joining Eqs. (2.103) and (2.105), we can give the area distance in FLRW
space by
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rA(n, ηs) = a(ηs)(ηo − ηs)
[
1−Ψs −H(B − E′)

+
1

2

1

ηo − ηs

∫ ηo

ηs

(η − ηs)(ηo − η)

(
(∇2 − ninj∇i∇j −

2

ηo − η
ni∇i)(Φ + Ψ)

−ni∇2(Bi − F ′i )− ninj(∇(iB
′
j) −∇(iF

′′
j))− n

inj∇2hij −
2

ηo − η
(∇(iF

′
j)

+
1

2
h′ij +∇(iBj))n

inj
)
dη

]
, (2.106)

where we have used the conformal transformation as mentioned in Eq. (2.56).

2.3.2 Luminosity Distance

For the perturbed luminosity distance we need

(1 + z)2 =
1

a2(ηs)

[
1− 2Φo + 2Φs + 2H(B − E′) + 2Vin

i

+2

∫ ηo

ηs

(Φ + Ψ)′dη − 2ninj
∫ ηo

ηs

(
∇iF ′j +

1

2
h′ij −∇iBj

)
dη

]
. (2.107)

Using Eq. (2.106), the luminosity distance is given by

dL(n, ηs) = a(ηs)
−1(ηo − ηs)

[
1− 2Φo + 2Φs −Ψs +H(B − E′) + 2Vin

i + 2

∫ o

s

(Φ + Ψ)′dη

−2ninj
∫ o

s

(
∇iF ′j +

1

2
h′ij −∇iBj

)
dη

+
1

2

1

ηo − ηs

∫ ηo

ηs

(η − ηs)(ηo − η)

(
[∇2 − ninj∇i∇j −

2

ηo − η
ni∇i](Φ + Ψ)

−∇2ni(Bi − F ′i )− ninj [∇(iB
′
j) −∇(iF

′′
j)]− n

inj∇2hij −
2

ηo − η
[∇(iF

′
j) +

1

2
h′ij

+∇(iBj)]n
inj
)
dη

]
. (2.108)

We can re-write the term
∫

(Φ + Ψ)′dη as follows, with the use of Eq. (2.59) and Eq. (B.55):∫
(Φ + Ψ)′dη =

∫ ηo

ηs

Φ′dη +

∫ ηo

ηs

Ψ′dη , (2.109)

=
1

ηo − ηs

∫ ηo

ηs

(η − ηs)Φ′dη +
1

ηo − ηs

∫ ηo

ηs

∫ η

ηs

Φ′dη′dη +

∫ ηo

ηs

Ψ′dη ,(2.110)

or ∫
(Φ + Ψ)′dη =

1

ηo − ηs

∫ ηo

ηs

(η − ηs)
d

dη
Φdη − 1

ηo − ηs

∫ ηo

ηs

(η − ηs)ni∇iΦdη

+
1

ηo − ηs

∫ ηo

ηs

∫ η

ηs

d

dη′
Φdη′dη − 1

ηo − ηs

∫ ηo

ηs

∫ η

ηs

ni∇iΦdη′dη

+

∫ ηo

ηs

d

dη
Ψdη −

∫ ηo

ηs

ni∇iΨdη , (2.111)
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∫
(Φ + Ψ)′dη =

1

ηo − ηs
[(η − ηs)Φ]ηoηs −

1

ηo − ηs

∫ ηo

ηs

(η − ηs)ni∇iΦdη +
1

ηo − ηs

∫ ηo

ηs

Φdη

− 1

ηo − ηs

∫ ηo

ηs

∫ η

ηs

ni∇iΦdη′dη + Ψ−
∫ ηo

ηs

ni∇iΨdη , (2.112)

= (Φo + Ψ)− 1

ηo − ηs

∫ ηo

ηs

(η − ηs)ni∇iΦdη +
1

ηo − ηs

∫ ηo

ηs

Φdη

− 1

ηo − ηs

∫ ηo

ηs

∫ η

ηs

ni∇iΦdη′dη −
∫ ηo

ηs

ni∇iΨdη . (2.113)

Substituting the above decomposed term back into the dL(n, ηs), we will get

dL(n, ηs) =
(ηo − ηs)
as(η)

[
1 + 2Ψo + 2Φs − 3Ψs +H(B − E′) + 2Vin

i +
2

(ηo − ηs)

∫ ηo

ηs

Φdη

− 1

(ηo − ηs)

∫ ηo

ηs

∫ η

ηs

(η′ − ηs)
(ηs − η)

ni∇i(Φ + Ψ)dη′dη − 2

(ηo − ηs)

∫ ηo

ηs

(η − ηs)ni∇iΦdη

− 2

(ηo − ηs)

∫ ηo

ηs

∫ η

ηs

ni∇iΦdη′dη −
∫ ηo

ηs

ninj
(
∇(iF

′
j) +

1

2
h′ij −∇(iBj)

)
dη

−2

∫ ηo

ηs

ni∇iΨdη +
1

2

1

(ηo − ηs)

∫ ηo

ηs

∫ η

ηs

(η′ − ηs)
(

[∇2 − ninj∇i∇j ](Φ + Ψ)

−∇2Bin
i −∇(iB

′
j)n

inj +
2

(ηs − η)
∇(iBj)n

inj +∇2niF
i′ +∇(iF

′′
j)n

inj

− 2

(ηs − η)
∇(iF

′
j)n

inj +
2

(ηs − η)
ninjh′ij −∇2hijn

inj
)
dη′dη

]
.

(2.114)

Converting the double integrals into a single integral, this yields

dL(n, ηs) =
(ηo − ηs)
as(η)

[
1 + 2Ψo + 2Φs − 3Ψs +H(B − E′) + 2Vin

i − 2

(ηo − ηs)

∫ ηo

ηs

(η − ηs)ni∇iΦdη

+
1

(ηo − ηs)

∫ ηo

ηs

(η − ηs)ni∇i(Φ + Ψ)dη − 2

∫ ηo

ηs

ni∇iΨdη −
2

(ηo − ηs)

∫ ηo

ηs

∫ η

ηs

ni∇iΦdη′dη

+
2

(ηo − ηs)

∫ ηo

ηs

Φdη −
∫ ηo

ηs

ninj
(
∇(iF

′
j)+

1

2
h′ij −∇(iBj)

)
dη

+
1

2

1

(ηo − ηs)

∫ ηo

ηs

(ηo − η)(η − ηs)
(

[∇2 − ninj∇i∇j ](Φ + Ψ)−∇2Bin
i −∇(iB

′
j)n

inj

− 2

(η − ηs)
∇(iBj)n

inj +∇2niF
i′ +∇(iF

′′
j)n

inj +
2

(η − ηs)
∇(iF

′
j)n

inj − 2

(η − ηs)
ninjh′ij

−∇2hijn
inj
)
dη

]
. (2.115)

2.3.2.1 The Observed Luminosity Distance

The conformal time and the background redshift are not observable quantities. A luminosity distance
as a function of these is not a directly measurable quantity; we need to relate it to a gauge-dependent
quantity. What we do measure (observe) instead is the redshift of the source

zs = zs + δzs , (2.116)
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where

δzs = (1 + zs)

[
Ψo −Ψs +H(B − E′) + Vin

i −
∫ ηo

ηs

ni∇i(Φ + Ψ)dη

−
∫ ηo

ηs

ninj
(
∇(iF

′
j) +

1

2
h′ij −∇(iBj)

)
dη

]
. (2.117)

Writing
dL(n, ηs) = dL(n, η(zs)) ≡ dL(n, zs) , (2.118)

by taking the Taylor expansion of dL(n, zs) around zs we get [119,121]

dL(n, zs) = dL(n, zs)−
d

dzs
dL(n, zs)|z=z δzs , (2.119)

with

d

dzs
dL(n, zs)|z=z =

d

d(zs + δzs)
dL(n, (zs + δzs))|z=z , (2.120)

=
d

dzs
dL(n, zs)

(
1−

(
δzs
zs

)2)
|z=z , (2.121)

=
d

dzs
dL(n, zs) +O(1) , (2.122)

= (1 + zs)
−1dL +H−1

s +O(1) , (2.123)

where we have used the fact that zs + 1 = 1/a(ηs). This leads to

d

dzs
dL(n, zs)|z=z = −

(
(1 + zs)

−1dL +H−1
s

)
δzs , (2.124)

= (1 + zs)

[
− (ηo − ηs +H−1

s )

][
Ψo −Ψs +H(B − E′) + Vin

i

−
∫ ηo

ηs

ni∇i(Φ + Ψ)dη −
∫ ηo

ηs

ninj
(
∇(iF

′
j) +

1

2
h′ij −∇(iBj)

)
dη

]
.

(2.125)

Then the redshift luminosity distance will be given as

dL(n, zs) = (1 + zs)

[
(ηo − ηs) + [(ηo − ηs)−H−1

s ]Ψo − [2(ηo − ηs)−H−1
s ]Ψs

+2(ηo − ηs)Φs −H−1
s H(B − E′) + [(ηo − ηs)−H−1

s ]Vin
i + 2

∫ ηo

ηs

Φdη

+

∫ ηo

ηs

(ηs − η)ni∇i(−3Φ + Ψ)dη + [(ηo − ηs)−H−1
s ]

∫ ηo

ηs

ni∇i(−Ψ + Φ)dη

+ninjH−1
s

∫ ηo

ηs

(
∇iF ′j +

1

2
h′ij −∇iBj

)
dη

+
1

2

∫ ηo

ηs

(η − ηs)(ηo − η)

(
[∇2 − ninj∇i∇j ](Φ + Ψ)−∇2ni(Bi − F ′i )

−ninj [∇(i B
′
j) −∇(iF

′′
j)] − n

inj∇2hij −
2

ηo − η
[∇(iF

′
j) +

1

2
h′ij +∇(iBj)]n

inj
)
dη

]
.

(2.126)
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This equation is the final expression we have got for the luminosity distance [122,123] in a perturbed
Friedmann universe in general gauge, as a function of the measured source redshift zs and its direction
n. This equation is complicated and contains the angular and redshift fluctuations of the luminosity
distance, which may also contain important information about our universe. Nevertheless the matter
distribution and the geometry have fluctuations too, but to first order in perturbation theory these
fluctuations can average out in the mean and are therefore expected to be small.
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Chapter 3

Ideal Observational Cosmology

Time is the true driving force of
the Universe.

Khalid Masood

Cosmological observable quantities, henceforth simply referred to as observables, encode infor-
mation about the state of the Universe at a particular cosmological redshift. In our past lightcone
we can obtain these observables which can give us our connection to the rest of the Universe. Hence
a precise measure of cosmological observables can directly determine the geometry of the observable
part of the spacetime, in the so-called observational approach [124]. Furthermore we can assume a
dynamical theory for the spacetime curvature of the past lightcone, i.e, GR.

The observations are taken so that we can discover what these observations imply about the
large-scale structure of the Universe. The idea was first discussed in [103], and Refs. [108, 125–127]
discussed the construction of the spacetime metric and ways to determine local matter density
in the Universe directly from astronomical observations on our past lightcone as initial data for
the field equations, and later to establish what is called now the lightcone gauge based on an
observational coordinates set. The main aim was to a great extent that cosmology rather be a
directly observational subject [108]. Therefore, they bring cosmologically interpretable astronomical
observations into a confrontation with the cosmological theories, to reveal the structure of distant
regions in the Universe.

3.1 Observational Coordinates

A lightcone gauge has been constructed and adapted to observations made on the null cone using
observational coordinates as following. A spacetime consists of a manifold M with metric g. We
shall assume the spacetime filled with a perfect fluid of the form

Tµν = ρuµuν + p(gµν + uµuν) , (3.1)

where Tµν is the stress energy tensor. The first step in constructing a set of observational coordinates
is to identify fundamental observers. The integral curves of the velocity vector uµ and their nor-
malised 4-velocity, represent the worldlines of these fundamental observers, i.e, they are comoving
with the galaxies. If τ is the proper time along these worldlines, then

uµ =
dxµ

dτ
, uµuµ = −1 . (3.2)

45



Chapter 3. Ideal Observational Cosmology 46

Let us now single out our worldline C, where C is a set of timelike geodesics generated by uµ at the
event attached to us, on Earth.

Figure 3.1: Observational coordinates {w, y, θ̂, φ̂} based on the event q on the worldline C. w is the

time of observation; θ̂, φ̂ represent the direction of observation; and y is a measure of distance to the
object observed.

We will introduce the set of observational coordinates xµ =: {w, y, θ̂, φ̂}, constructed as follows:
the coordinate w is the past lightcones of the events on C, generated along our worldline. It can be
normalized by measuring the proper time along the central worldline C (in other words, w|C = τ |C).
By choosing w = w0 to correspond to the event q here and now, the null cone generated then
will represents the surfaces of events that happened on our past lightcone at constant w0. Then
generically q will be at the vertices of the lightcones where we receive information and signals from
the Universe. Then w is completely determined when w0 has been chosen. The null geodesic vector
field kµ and ν is the affine parameter along this null geodesic, generating the geodesics of these
lightcones, will be written as

kµ = dxµ/dν , (3.3)

where
kµ ≡ w,µ ⇒ kµkµ = 0 . (3.4)

This definition necessarily implies that k is hypersurface-orthogonal [128],

kµ;ν = kν;µ . (3.5)

Null geodesic vector fields are orthogonal to the null surfaces and generate the past-directed null
geodesics along the past lightcone, on which w is constant:

kµ;νk
ν = 0⇒ w,µk

µ = 0 . (3.6)

Once the null geodesic vector condition is satisfied at the central worldline, this implies

kµu
µ = w,µu

µ ⇔ kµu
µ|c = 1 , (3.7)
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and this shows that the affine parameter ν is uniquely defined geometrically on the null geodesics,
and this defines the central condition. If we specify that ν = 0 on the worldline C, so the event “q”
is given by

w = w0 , ν = 0 . (3.8)

The coordinate y measures distances down the null geodesics, and so represents spatial distance
from “q” [108]. There are various choices of y that might be suitable for different purposes, for
example [108]:

(1) y = ν, the unique affine parameter down the null geodesics through C determined by the central
conditions on C (ν|c = 0, uµkµ|C = 1). The spacetime metric will be simplified, but one loses
the beautiful physical interpretation of observational coordinates;

(2) y = rA, the area distance down the null cones from C;

(3) y = z, galactic redshift observed from C, imposing y=cst along matter worldlines;

(4) y chosen as in one of (1)-(3) on the initial null cone w = w0, and then specified thereafter to be
comoving with the fluid; y,µu

µ = 0.

When one of these specific choices has been made, y is uniquely defined on all the null cones. We
will use such a choice of coordinate y as a coordinate comoving with the fluid, and determined by a
unique specification on the initial null cone w = w0. From equations (3.3) and (3.4), and because
w,µk

µ = 0 we will have [108]

kµ = δ0
µ , kµ = dxµ/dν = (1/β)δµ1 ⇒ (1/β) = dy/dν for β > 0 , (3.9)

where β is some function that determines the relation of the affine parameter ν to the coordinate
y. Eq. (3.9) shows the rate of change of the coordinate y down the null geodesics relative to the
affine parameter ν. β = cst when y is affine parameter; and β → 1 when we choose y = rA as
y → 0 [108]. Different values of y with constant values of ν represent an event at the same distance

from q down the null cone in different directions. The coordinates (θ̂, φ̂) are angles on the “physical”
sky. The observer sees the sky as the superposition of 2-spheres embedded in the lightcone, then
we can redefine θ̂, φ̂ as spherical coordinates on the celestial sphere with respect to the (physically
non-rotating) reference frame eµ

1. They label the geodesics generating the past lightcone (they are
constant along such geodesics) [108]. At a constant surface w, the null-cone geodesics are generated

by constant θ̂ and φ̂, so
kµθ̂,µ = kµφ̂,µ = 0 . (3.10)

They are based on a parallelly propagated orthonormal tetrad eµ [108] along C. Then at a constant
w and ν,

lim
ν→0

{
ds2

ν2

∣∣∣∣
w=cst
ν=cst

}
= dΩ2 = dθ̂2 + sin2 θ̂dφ̂2 . (3.11)

These coordinates do not necessarily cover all the spacetime, but they do cover that part which is
observable from the worldline C.

3.2 The Observational Metric

The metric components can be obtained from the previous discussions. From Eqs. (3.4) and (3.9)
we see that

kµkµ = 0⇒ w,µg
µνw,ν =⇒ g00 = 0 , (3.12)

kµ = gµνkν ⇒ gµ0 = (1/β)δµ1 , (3.13)

1These tetrad vectors eµ are defined through the conditions: (u = e0,u · ei = 0, eiej = δij), and thus satisfy the
parallel propagation along C: ∇ueµ|c = 0, with u the velocity of the comoving geodesic observer.
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and thus
gµνgνγ = δµγ ⇒ g0νgνγ = δ0

γ ⇒ g1γ = βδ0
γ . (3.14)

We can get the general expression for gµν and compute its inverse by introducing new functions for
the non-constrained components. We thus have [108],

gµν =


α β v2 v3

β 0 0 0
v2 0 h22 h23

v3 0 h23 h33

 , gνγ =


0 1/β 0 0

1/β δ σ2 σ3

0 σ2 h33/h −h23/h
0 σ3 −h23/h h22/h

 , (3.15)

where

h = det(hIJ) = h22h33 − (h23)2 , (3.16)

δ = −(α+ β(v2σ2 + v3σ3))/β2 . (3.17)

Here we have defined

σ2 = −(v2h33 − v3h23)/βh , (3.18)

σ3 = − (v3h22 − v2h23) /βh , (3.19)

where (I, J) ∈ {2, 3}2. The angular distance rA can be defined in terms of the proposed functions
above,

r4
A sin2 θ̂ = h = det(hIJ) , fIJ = hIJ/r

2
A ⇒ det(fIJ) = sin2 θ̂ , (3.20)

where fIJ give an alternative representation of the quantities hIJ . The metric form above implies
that the surface w|cst are null surfaces. But it does not, as it stands, guarantee that these null
surfaces are the past lightcones of the geodesic worldline C. To set this feature, one has to impose
some limits on the behaviour of the metric tensor components near the worldline C [108]. When the
coordinate y is taken to be the affine parameter or the area distance, these essential limits are [108]:

lim
y→0

α = −1, lim
y→0

β = 1, lim
y→0

(vI/y
2) = 0, lim

y→0
hIJdx

IdxJ/y2 = dΩ2 . (3.21)

When this coordinate y is taken to be the last case (4), from what we obtained above, and by making

a coordinate transformation y′ = y′(w, y, θ̂, φ̂), w′ = w, θ̂′ = θ̂, φ̂′ = φ̂, as y → 0, one finds the limits
are found to be [108]

lim
y→0

α = −1 , lim
y→0

β = β0(w, xI) , lim
y→0

vI = 0 , lim
y→0

hIJdx
IdxJ/y2 = β2

0dΩ2 . (3.22)

These limits we just introduced guarantee the necessary conditions to make the null hypersurfaces to
be the past lightcones of observer of the worldline C. Finally we can say that we have observational
coordinates if and only if the metric tensor components obey Eqs. (3.15) and (3.21) [108].

Now we could characterise the cosmological quantities on the null cone at w = w0 down to
some distance y∗, and with the knowledge of the following: the metric tensor components gµν =
{α, β, vI , hIJ}, the matter 4-velocity components uµ, the total number density n of the sources, and
the radiation density ρrad at each point of the null cone. Assuming the equation of state of the
matter is known from local astronomical observations, knowledge of n will determine the local rest
mass density of matter ρm at each point and the isotropic pressure pm will be determined, and so
the matter contribution to the total stress tensor will be known [108].

3.3 The Perturbed Lightcone Gauge

The Perturbed Lightcone Gauge (PLG) is a gauge built on our understanding of the observational
coordinates that we introduced in Sec. 3.1. The PLG links the perturbed variables (α, β, vI , hIJ)
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introduced in the lightcone metric, into their equivalent variables in the perturbed FLRW. The PLG
uses the same coordinates (w, y, θ̂, φ̂) 2 as the observational coordinates with the same definitions.
The produced expressions we obtained are in a general gauge, and we could reduce them into any
gauge we desire.

3.3.1 The PLG Coordinates Transformations

The coordinate transformation will depend on all coordinates. We can think of this coordinate
transformation like projecting a lightcone of a fundamental observer expressed with observational
coordinates, into a spatial hypersurface presented by 1+3 general coordinates system, see Fig. 3.2.
Considering the perturbed FLRW metric with coordinates xµ = (η, χ, θ, φ) as given in Eq. (2.3)

Figure 3.2: Spacetime diagram showing the transformations between the observational coordinates
into a spatial hypersurface in general coordinates.

with
γij = δ1

i δ
1
j + S2(χ)

(
δ2
i δ

2
j + sin2(θ)δ3

i δ
3
j

)
, (3.23)

the ‘0i’ and ‘ij ’ perturbed components are decomposed as given in (2.4) and (2.5). We will define

the four-vectors ξµ and the tensor δ̂µ associated with the coordinates transformation as

xµ̂ = xµ + ξµ + εδ̂µ , (3.24)

where ε is a small parameter that keeps the equation as it is needed for possible higher-order terms,
ξµ = (χ, 0, 0, 0), and the δ̂µ expresses the coordinate change of the perturbed part of the observational
metric. We can therefore define the new coordinates in terms of the FLRW coordinates as follows:

x0̂ = w = η + χ+ εδ̂w(η, θ, φ) , (3.25)

x1̂ = y = χ+ εδ̂y(η, χ, θ, φ) , (3.26)

2We will use the overhat symbol ˆ to indicate the use of the observational coordinates.
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x2̂ = θ̂ = θ + εδ̂θ̂(η, χ, θ, φ) , (3.27)

x3̂ = φ̂ = φ+ εδ̂φ̂(η, χ, θ, φ) . (3.28)

The associated Jacobian matrix is

∂xµ̂

∂xν
=



1 + ε∂δ̂w∂η 1 + ε∂δ̂w∂χ ε∂δ̂w∂θ ε∂δ̂w∂φ

ε∂δ̂y∂η 1 + ε∂δ̂y∂χ ε∂δ̂y∂θ ε∂δ̂y∂φ

ε∂δ̂θ∂η ε∂δ̂θ∂χ 1 + ε∂δ̂θ∂θ ε∂δ̂θ∂φ

ε∂δ̂φ∂η ε∂δ̂φ∂χ ε∂δ̂φ∂θ 1 + ε∂δ̂φ∂φ


= δµ̂ν + δµ̂0 δ

1
ν + ε

∂δ̂µ̂

∂xν
. (3.29)

The matrix can be inverted according to the relation

(A+ εH)−1 = A−1 − εA−1HA−1 , (3.30)

where A is the background metric, and H is the perturbation. Thus we get

∂xµ

∂xν̂
= δµν − δ

µ
0 δ

1
ν − ε∂ν δ̂µ̂ + εδ1

ν∂w δ̂
µ̂ + εδµ0 ∂ν δ̂y − εδ

µ
0 δ

1
ν∂w δ̂y . (3.31)

In general, the last term in the RHS of (3.29) is given by

∂δ̂µ̂

∂xν
=

∂δ̂µ̂

∂xγ̂
∂xγ̂

∂xν
, (3.32)

=
∂δ̂µ̂

∂xν̂
+
∂δ̂µ̂

∂xw
δ1
ν . (3.33)

Re-writing Eq. (3.31) using Eq. (3.33) we will get

∂xµ

∂xν̂
= δµν − δ

µ
0 δ

1
ν − ε

∂δ̂µ̂

∂xν̂
− ε ∂δ̂

µ̂

∂xw
δ1
ν + εδ1

ν

∂δ̂µ̂

∂xw
+ εδµ0

∂δ̂y

∂xν̂
+ ε

∂δ̂y

∂xw
δ1
νδ
µ
0 − εδ

µ
0 δ

1
ν

∂δ̂y

∂xw
,(3.34)

or
∂xµ

∂xν̂
= δµν − δ

µ
0 δ

1
ν − ε

∂δ̂µ̂

∂xν̂
+ εδµ0

∂δ̂y

∂xν̂
. (3.35)

And again we can rewrite Eq. (3.29) as

∂xµ̂

∂xν
= δµ̂ν + δµ̂0 δ

1
ν + ε

∂δ̂µ̂

∂xν̂
+ ε

∂δ̂µ̂

∂xw
δ1
ν . (3.36)

Eqs. (3.35) and (3.36) are our key equations for the transformations. Now γij will transform as
follows:

γij =
∂xµ̂

∂xi
∂xν̂

∂xj
γ̂µ̂ν̂ , (3.37)

=

(
δµ̂i + δµ̂0 δ

1
i + ε

∂δ̂µ̂

∂xi

)(
δν̂j + δν̂0 δ

1
j + ε

∂δ̂ν̂

∂xj

)
γ̂µ̂ν̂ , (3.38)

= γ̂îĵ + ε
∂δ̂µ̂

∂xi
γ̂µ̂ĵ + ε

∂δ̂ν̂

∂xj
γ̂îν̂ . (3.39)
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Applying Eq. (3.33), one can rewrite this as

γij = γ̂îĵ + ε

(
∂δ̂µ̂

∂xî
+
∂δ̂µ̂

∂xw
δ1
i

)
γ̂µ̂ĵ + ε

(
∂δ̂ν̂

∂xĵ
+
∂δ̂ν̂

∂xw
δ1
j

)
γ̂îν̂ . (3.40)

At the background we can write
ξµ = xµ̂ − xµ. (3.41)

Hence we have the following:

∂ξµ

∂xν̂
=

∂ξµ

∂xγ
∂xγ

∂xν̂
, (3.42)

= δµ0 δ
1
γ

(
δγν − δ

γ
0 δ

1
ν − ε

∂δ̂γ̂

∂xν̂
+ εδγ0

∂δ̂y

∂xν̂

)
, (3.43)

= δµ0 δ
1
ν − δ

µ
0 ε
∂δ̂y

∂xν̂
. (3.44)

And finally, the metric tensor gµν transforms as

gµ̂ν̂ =
∂xγ

∂xµ̂
∂xσ

∂xν̂
gγσ . (3.45)

These transformations are valid up to first order. Note that γîĵ is a zeroth-order term. The new
metric elements are then: (we will stop writing ε for simplicity)

gww = a2(w − y)

[
− 1− 2

(
φ− ∂w δ̂w + ∂w δ̂y

)]
, (3.46)

gwî = a2(w − y)

[
δ1
i + 2φδ1

i +Bi + ∂îδ̂w − ∂îδ̂y − δ
1
i ∂w δ̂w + δ1

i ∂w δ̂y − γîĵ∂w δ̂
ĵ

]
, (3.47)

gîĵ = a2(w − y)

[
γîĵ − δ

1
i δ

1
j − 2φδ1

i δ
1
j − 2δ1

(i∂ĵ)δ̂w + 2δ1
(j∂î)δ̂y − 2B(iδ

1
j) + 2Cîĵ − 2γ

k̂(̂i
∂ĵ)δ̂

k̂

]
.

(3.48)

Let us now introduce the definitions for the perturbed metric elements:

δg00 = δα = −2
(
φ− ∂w δ̂w + ∂w δ̂y

)
, (3.49)

δg01 = δβ = 2φ+Bχ + ∂y δ̂w − ∂y δ̂y − ∂w δ̂w , (3.50)

δg0I = vI = BI + ∂Î δ̂w − ∂Î δ̂y − γÎĴ∂w δ̂
Ĵ , (3.51)

δg1̂1̂ = 0 = −2φ− 2∂y δ̂w − 2Bχ + 2Cχχ , (3.52)

δg1̂Î = 0 = −∂Î δ̂w + ∂Î δ̂y −BÎ + 2C1̂Î − 2γk̂(1̂∂I)δ̂
k̂ , (3.53)

δgIJ = HÎĴ = 2CÎĴ − 2γK̂(Î∂Ĵ)δ̂
K̂ , (3.54)

with (I, J,K) ∈ {2, 3}2. The perturbed metric describes the past lightcone in the observational

coordinates xâ = (w, y, θ̂, φ̂) given by

ds2 = a2(w − y)
[
(−1 + δα)dw2 + 2(1 + δβ)dwdy + 2vÎdx

Îdw + hÎĴdx
ÎdxĴ

]
. (3.55)

The tensor hÎĴ =
(
ΩÎĴ +HÎĴ

)
, where ΩÎĴ = S2(y)

(
δ2
Î
δ2
Ĵ

+ sin2(θ̂)δ3
Î
δ3
Ĵ

)
, is a spatial tensor given

by

hÎĴ =

(
Ωθθ +Hθθ Hθφ

Hθφ Ωφφ +Hφφ

)
. (3.56)
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We can further split the tensor hÎĴ into trace HT and traceless parts H, where

HT = Hθθ +
1

sin2 θ̂
Hφφ , (3.57)

is the trace of the perturbed hÎĴ on the 2-sphere. Eqs. (3.52) and (3.53) are constrains that define
the observational metric.

3.3.2 The PLG Four-velocity

We will use the uµ̂ as the perturbed 4-velocity of a fundamental observer in the observational
coordinates, which is defined by

uµ̂ =
(
uw, uî

)
, (3.58)

where

uî =
vî

a(w − y)
. (3.59)

The full perturbed 4-velocity is given by

uµ̂ =
1

a(w − y)

(
(1 + δuw), δuy, δuθ̂, δuφ̂

)
. (3.60)

Expanding terms out using the Einstein summation rule with Eq. (3.2), yields

g00u
0u0 + 2g01u

0u1 + 2g0Iu
0uI + gIJu

IuJ = −1 , (3.61)

and therefore, using the expressions for the components of the metric tensor from the preceding
section, we get

(−1 + δα)(1 + δu0)2 + 2(1 + δβ)(1 + δu0)δu1 +

2vI(1 + δu0)δuI + (ΩIJ +HIJ) δuIδuJ = −1 . (3.62)

Further simplifying gives
− 2δu0 + δα+ 2δu1 = 0 , (3.63)

whence we can conclude

δu0 = δu1 +
δα

2
. (3.64)

It is now easy to see that using lowering operation on the indices uµ̂ = gµ̂ν̂u
ν̂ , the zeroth component

of the covariant 4-velocity is given by

u0 = g00u
0 + g01u

1 + g0Iu
I , (3.65)

= a(−1 + δα− δu0 + δu0 − δα

2
) , (3.66)

= a(−1 +
δα

2
) , (3.67)

where we have used Eq. (3.64) in the last two steps. Thus,

u0 =
1

a
(1 + δα/2) . (3.68)

Moreover,

u1 = g10u
0 + g11u

1 + g1Iu
I , (3.69)

= a(1 + δβ + δu0) , (3.70)
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and finally,

uI = gI0u
0 + gI1u

1 + gIJu
J , (3.71)

= a(vI + ΩIJδu
J) . (3.72)

3.3.3 Connecting the Perturbations δ̂µ with the Perturbed FLRW

To determine the local structure of the Universe, we wish to know the values of δ̂µ, where it is
always labeled with the observation coordinates µ̂ = {w, y, θ̂, φ̂}, and we can do that directly via the
definition of the kµ in observational coordinates given by Eq. (3.9). The most important thing here
is that in order to calculate the null vector kµ in the observational coordinates, we do not have to
follow the long procedure we did in calculating the null vector kµ in 1+3 general coordinates system
in Sec. 2.2.2. However we can reach the same result if we do so. From Eq. (B.5) at the background
and Eq. (3.9), where we defined β = (1 + δβ) ,we can write

kµ̂ = a−2(1− δβ)δµ̂y . (3.73)

It is to be recalled that kµ = dxµ/dλ where λ is the affine parameter with dλ = a−2dη and
a2 d

dλ = ∂
∂η + ∂

∂χ . Thus we can write

kw = 0 =
dw

dλ
, (3.74)

=
dη

dλ
+
dχ

dλ
+
dδ̂w

dλ
, (3.75)

= kη + kχ +
dδ̂w

dλ
, (3.76)

from which

δ̂w = −
∫

(kη + kχ)dλ . (3.77)

Similarly,

ky = a−2(1− δβ) =
dy

dλ
, (3.78)

a−2(1− δβ) =
dχ

dλ
+
dδ̂y

dλ
, (3.79)

and hence

−δβ
a2

=
dδ̂y

dλ
. (3.80)

This leads to

δ̂y = −
∫ (

δβ

a2

)
dλ = −

∫
δβdη . (3.81)

And for δ̂Î ≡ (δ̂θ̂, δ̂φ̂), where Î ∈ {2, 3}2,

kÎ = 0 =
dÎ

dλ
, (3.82)

=
dI

dλ
+
dδ̂Î

dλ
, (3.83)

and therefore

δ̂Î = −
∫
kIδÎIdλ . (3.84)
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Here we connected the perturbations of the observational metric with the perturbations of the
perturbed FLRW metric. Applying all the above into the constrain Eq. (3.52) we get

0 = −φ−Bχ + Cχχ − ∂y δ̂w , (3.85)

0 = −φ−Bχ + Cχχ + ∂y

∫
(kη + kχ)dλ . (3.86)

We can use the facts that

∂

∂y
|w=cst =

∂

∂η
|χ=cst +

∂

∂χ
|y=cst =

d

dη
, (3.87)

∂

∂w
|y=cst =

∂

∂η
|χ=cst , (3.88)

which means that y mimics the behaviour of the affine parameter along the light ray. And we can
define also the identity

kη + kχ =
1

a2

(
nχ(φ+ ψ) +Bχ + nχ∂χ∂

χE + nχ∂χF
χ + nχ

1

2
h χ
χ

)
. (3.89)

This result makes use of the null geodesic equations (2.71) and (2.73). Therefore, we see that the
very definition of the observable coordinates via the relation kâ = β−1δây ensures that the metric
has the correct form again.

3.4 Einstein Field Equations in the PLG

Using our observational metric (3.55) to calculate the 10 partial differential equations of the EFEs,
we are going to consider a cosmological fluid with

∂wp ≡ ωρ̇⇒ ρ̇ ≡ −3H(1 + ω)ρ ≡ −∂yp , (3.90)

where H = ∂wa/a and H = −∂ya/a. We also note the following useful relations:

∂2
wa

a
= −∂wH+H2 , (3.91)

∂2
ya

a
= ∂yH+H2. (3.92)

Then at the background the EFEs read:

E(0)
ww = 3H2 + 3k − 8πGa2ρ− a2Λ = 0 , (3.93)

E(0)
wy = −3H2 − 3k + 8πGa2ρ+ a2Λ = 0 , (3.94)

E(0)
yy = −2Hp+ 2H2 − 8πGa2ρ+ 2k − 8πGa2p = 0 , (3.95)

E
(0)
θθ = S2H2 − S2k + a2ΛS2 − 2S2(Hp+H2)− 8πGa2S2p = 0 , (3.96)

E
(0)
φφ = S2 sin2(θ)H2 − S2 sin2(θ)k − 8πGa2S2 sin2(θ)p+ a2ΛS2 sin2(θ)

−2S2 sin2(θ)(Hp+H2) = 0 , (3.97)

and
E

(0)
wθ = E

(0)
wφ = E

(0)
θφ = E

(0)
yθ = E

(0)
yφ = 0 . (3.98)

We have calculated the 10 equations using the observational metric (3.55). As we can see, at the
background the EFEs satisfy the observational metric justification.

We are going to derive the dynamical equations of the perturbations in observational coordinates.
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In order to simplify the system we need to use the spherical decomposition dynamics, as follows:

δρ(w, y) =
+∞∑
l=0

l∑
m=−l

[
δρlm(w, y)Y lm(I)

]
, (3.99)

δu0(w, y) =
+∞∑
l=0

l∑
m=−l

[
δulm0 (w, y)Y lm(I)

]
, (3.100)

δα(w, y) =
+∞∑
l=0

l∑
m=−l

[
δαlm(w, y)Y lm(I)

]
, (3.101)

δβ(w, y) =
+∞∑
l=0

l∑
m=−l

[
δβlm(w, y)Y lm(I)

]
, (3.102)

vI(w, y, I) =
+∞∑
l=1

l∑
m=−l

[
vlm(w, y)Y lmI (I) + vlm(w, y)Y

lm

I (I)

]
, (3.103)

δuI(w, y, I) =
+∞∑
l=1

l∑
m=−l

[
δulm(w, y)Y lmI (I) + δu

lm
(w, y)Y

lm

I (I)

]
, (3.104)

HIJ(w, y, I) =
1

2

+∞∑
l=0

l∑
m=−l

HT
lm(w, y)γIJY

lm(I) +
+∞∑
l=2

l∑
m=−l

[
H lm(w, y)Y lmIJ (I)

+H
lm

(w, y)Y
lm

IJ (I)

]
, (3.105)

to enable us to decompose them harmonically and produce functions suitable for the extraction of
observational quantities, see Sec. A.2 for more details. Using the above definitions and a Maple
code we calculated the 10 equations using the observation metric (3.55). The conservation equations
∇µTµx , where {x : w, y, Î} are given by

(1) ∇µTµw =

[
− (1 + ω)ρ

(
1

2
∂wH

T + ∂wδu
0 + ∂wβ − l(l + 1)δu

)
− ∂wδρ

−3H(1 + ω)δρ

]
Y = 0 , (3.106)

(2) ∇µTµy =

[
− 2

3
a(4− 3ω)ρ̇δu0 − (1 + ω)ρ

(
∂yδu

0 − 2∂wδu
0

)
+ a(−1

3
+ ω)ρ̇β

+2(1 + ω)ρ∂wβ +
1

2
(1 + ω)ρ∂wH

T + (1 + ω)∂wδρ+ ω∂yδρ

+3H(1 + ω)δρ− ρ(1 + ω)l(l + 1)δu

]
Y = 0 , (3.107)

(3) ∇µTµI =

[
S2(1 + ω)ρ∂wδu+ S2

(
ωρ̇− 16πGa2(1 +

1

3
)ωρ+ 4Hρ

)
δu

+(1 + ω)ρ∂wv +

(
ωρ̇− 16πGa2(1 +

1

3
)ωρ+ 4Hρ

)
v

]
Y I

+

[
− (1 + ω)ρδu0 + S2(1 + ω)ρ∂wδu+ S2

(
ωρ̇− 16πGa2(1 +

1

3
)ωρ

)
+4Hρδu+ (1 + ω)ρ∂wv +

(
ωρ̇− 16πGa2(1 +

1

3
)ωρ+ 4Hρ

)
v



Chapter 3. Ideal Observational Cosmology 56

+ωδρ

]
YI = 0 . (3.108)

We also substituted for the scalar δα by the vector δuw using Eq. (3.68). Since our observer is
comoving with the matter, we can consider u1 = dy

dτ = 0, where τ is the matter proper time. And
the field equations are:

(4) EIJ =

[
∂yv − 2Hv − 2S2∂2

wyH − S2∂2
yH + 2(S2H− S(1− S2k)

1
2 )∂wH

−2S(1− S2k)
1
2 ∂yH

]
Y IJ +

[
− 2β + 2∂yv − 4Hv − 2S2∂2

wyH − S2∂2
yH

+2(S2H− S(1− S2k)
1
2 )∂wH − 2S(1− S2k)

1
2 ∂yH

]
YIJ = 0 , (3.109)

(5) EI
I =

[
8S2

(
(1− S2k)

1
2

S
H+ 4πGa2ωρ− 1

2
Λa2

)
δu0 + (8S2H− 4S(1− S2k)

1
2 )∂yδu

0

−2S2∂2
yδu

0 + (4SH(1− S2k)
1
2 + 4S2k)β + (4S2H− 2S(1− S2k)

1
2 )∂yβ

+2S2∂2
wyβ + 2S2∂2

wyH
T +

1

2
S2∂2

yH
T + 2(−S2H+ S(1− S2k)

1
2 )∂wH

T

+2S(1− S2k)
1
2 ∂yH

T − 16πGa2S2ωδρ− l(l + 1)β + l(l + 1)∂yv

−2Hl(l + 1)v

]
Y = 0 , (3.110)

(6) EwI =

[
16πGS4a2(1 + ω)ρδu+ l(l + 1)v − S2∂2

wyv − S2∂2
yv + 2S(1− S2k)

1
2 ∂wv

+(16πGS2(1 + ω)ρa2 − 4S2k)v + (2− l(l + 1))S2∂wH

]
Y I

+

[
2S2∂yδu

0 − 4HS2δu0 + 16πGS4a2(1 + ω)ρδu− S2∂wβ + S2∂yβ

−S2∂2
wyv − S2∂2

yv + 2S(1− S2k)
1
2 ∂wv +

(
16πGS2(1 + ω)ρa2 − 4S2k

)
v

−1

2
S2∂wH

T +
1

2
S2∂wH(2− l(l + 1))

]
YI = 0 , (3.111)

(7) EyI =

[
− 2HS2∂yv +

(
− 2 + 4SH(1− S2k)

1
2 − 16πGS2(1 + ω)ρa2

)
v

+S2∂2
yv − 16πGS4a2(1 + ω)ρδu+ (2− l(l + 1))S2∂yH

]
Y I

+

[
− 2HS2∂yv +

(
− 2 + 4SH(1− S2k)

1
2 − 16πGS2(1 + ω)ρa2

)
v

+S2∂2
yv − 16πGS4a2(1 + ω)ρδu− S2∂yβ − 2S(SH− (1− S2k)

1
2 )β

−1

2
S2∂yH

T +
1

2
(2− l(l + 1))S2∂yH

]
YI = 0 , (3.112)
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(8) Eyy =

[
− 32πGSa2(1 + ω)ρδu0 − 32πGSa2(1 + ω)ρβ − 16πGa2S(1 + ω)δρ

−4(SH− (1− S2k)
1
2 )∂yβ − S∂2

yH
T − 2(1− S2k)

1
2 ∂yH

T

]
Y = 0 , (3.113)

(9) Ewy =

[
16πGS3a2(1 + ω)ρδu0 − 4S(1− 4SH(1− S2k)

1
2 + S2Λa2

−4S2k + 4πGS2(1 + ω)ρa2)δu0 + 4S2(SH− (1− S2k)
1
2 )∂yδu

0

−4S(1− 2SH(1− S2k)
1
2 − 2S2k)β − Sl(l + 1)β + 16πGS3a2(1 + ω)ρβ

+4S2(SH− (1− S2k)
1
2 )∂yβ + 16πGS3a2δρ− Sl(l + 1)∂yv

−4(SH− 1

2
(1− S2k)

1
2 )l(l + 1)v + S3∂2

yH
T + S3∂2

wyH
T

+SHT +
9

2
(1− S2k)

1
2S2∂yH

T − 2S2(SH− (1− S2k)
1
2 )∂wH

T

−1

2
Sl(l + 1)HT − S l

2(l + 1)2

2
H + Sl(l + 1)H

]
Y = 0 , (3.114)

(10) Eww =

[
4S

(
1− 4SH(1− S2k)

1
2 + (Λ + 8πGρ)S2a2 − 6S2k

)
δu0

+2Sl(l + 1)δu0 − 4S2

(
SH− (1− S2k)

1
2

)
∂wδu

0

−4S2

(
2SH− (1− S2k)

1
2

)
∂yδu

0 − 16πGa3S2δρ+ 2Sl(l + 1)β

+4S2(1− S2k)
1
2 ∂wβ − 4S2

(
SH− (1− S2k)

1
2

)
∂yβ

−4S

(
3S2k + 2SH(1− S2k)

1
2 − 1

)
β − 2Sl(l + 1)∂yv − 2Sl(l + 1)∂wv

+2(2SH− (1− S2k)
1
2 )l(l + 1)v − S3∂2

wH
T − S3∂2

yH
T − 2S3∂2

wyH
T

−SHT − 9

2
S2(1− S2k)

1
2 ∂yH

T + 2S2(SH− (1− S2k)
1
2 )∂wH

T

+
1

2
Sl(l + 1)HT + S

l2(l + 1)2

2
H − Sl(l + 1)H

]
Y = 0 . (3.115)

Here we have used ∂2
yS(y) = −S(y)k, and

(∂yS(y))2

S(y)2
=

1

S(y)2
− k . (3.116)

The perturbed observational metric has the 10 degrees of freedom: 3 from the scalar (δβ, δρ, δu0), 2
from the vector vI , 2 from the vector δuI and 3 from the tensor HIJ . More work in the future will
be added to the calculated first-order EFE in the PLG metric.
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Figure 3.3: Illustration of the GLC coordinates of an inhomogeneous lightcone parametrized by GLC
coordinates: The observer sees the sky as the superposition of 2-spheres [11].

3.5 The Geodesic Lightcone Gauge

The Geodesic Lightcone Gauge (GLC) has been introduced and discussed in detail in [129–134],
where they introduced a lightcone metric close to the observational coordinates and it has its dif-
ferences from the observational coordinates as well. Their metric consists of 6 arbitrary functions
(Υ, Ua, γab) [11]. It is totally gauge fixed, with a specially adapted coordinate system corresponding
to constant-time hypersurfaces, xµ = (w, τ, θa) where a = 1 , 2, and τ is a coordinate to describe
the proper time measured by an observer in geodesic motion. Its line element is given by

ds2
GLC = Υ2dw2 − 2Υdwdτ + γab(dθ̃

a − Uadw)(dθ̃b − U bdw) , (3.117)

w representing a null coordinate defining past light cones, where (∂µw∂
µw = 0), with an observer

moving with a proper time τ along her geodesic. Υ is an inhomogeneous scale factor, Ua is a shift-
vector, and the symmetric 2 × 2 matrix γab is the metric inside Σ(w, τ). The angles θ̃a are the
angles were the photons keep their path orthogonal to a 2-sphere Σ(w, τ) of constant time in our
past lightcone. The ∂µτ defines a geodesic flow [129]

(∂ντ)∇ν(∂µτ) = 0 . (3.118)

Then we can obtain gττGLC=-1. The metric and its inverse will take the form

gGLCµν =

 0 −Υ
−→
0

−Υ Υ2 + U2 −Ub
−→
0
T

−UTa γab

 , gνγGLC =

 −1 −Υ−1 −U b/Υ
−Υ−1 0 0

−(Ua)T /Υ
−→
0
T

γab

 , (3.119)

where
−→
0 = (0, 0) and Ub = (U1, U2). With g ≡ detgGLCµν , and γ ≡ detγab, we get

√
−g = Υ

√
|γ| . (3.120)

This GLC metric has the 6 degrees of freedom to describe the geometry of spacetime.
For flat FLRW metric, the transformation into GLC coordinates and the meaning of the metric
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components are easily obtained from Eq. (3.119):

τ = t , w = r + η , θ1 = θ , θ2 = φ , (3.121)

Υ = a(t) , Ua = 0 , γabdθ
adθb = a2(t)r2(dθ2 + sin2 θdφ2) , (3.122)

where r is defined from (1.11). The constant τ and constant w hypersurfaces intersect each other
on 2-dimensional surface (w0, τs), see Fig. [3.3]. Notice that this 2-sphere can be expressed in a
constant redshift hypersurface [129], where it corresponds to the constant Υ hypersurface on the
past lightcone.

To measure the distance from the observer down to the object in the GLC we need to calculate
the differences between the observer proper time and the object proper time.

τ =

∫ τo

τs

dτ ′ . (3.123)

To move from GLC gauge to the PLG gauge simply by applying the coordinates transformations
using Eqs. (3.35) and (3.36) that we have mentioned earlier.

3.6 Differences Between the PLG and the GLC

We can summarise the differences between the PLG and the GLC as follows:

• The PLG uses the observational coordinates (w, y, θ̂, φ̂), whereas the GLC metric uses (τ, w, θ̃a),
the first two coordinates has created the main difference between the two gauges.

• The y coordinate in the PLG represents a spatial radial distance or a null distance down the
lightcone. But in GLC the y coordinate has been replaced by the proper time coordinate τ
and the differences on the proper time of the event crossing the null cone and the fundamental
observer moving along its worldline represent the distance down the null cone. And by this
distance replacement definitions they will enhance the significance of the GLC gauge to have
a coordinate system both adapted to the observations of the source and the proper time of the
observer [135].

• An important difference is that the GLC gauge corresponds to a complete ‘gauge fixing’ of the
observational coordinates. We can describe the GLC gauge as a ‘gauge fixing’ with 6 degrees
of freedom, unlike the PLG gauge which is expressed in a general gauge with 10 degrees of
freedom.

• The PLG gauge of the observational coordinates is set by the condition w = τ |C , where τ is
the proper time of the observer. On the other hand, in the GLC gauge the lightcone set by
w =

∫
dτ/a(τ) ≡ η, where a(τ) is defined as the homogeneous limit of the Υ function.

• Both gauges break down when caustics appear down on the past lightcone [108,135].

• The GLC is well adapted to computations of quantities related to light signals, to simplify the
so-called averaging on the lightcone [135].
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Observables in the Past Lightcone Gauge

To go wrong in one’s own way is
better than to go right in
someone else’s.

Fyodor Dostoyevsky

We are going to present here the observables that we can measure on our past lightcone. By
using the observational coordinates (w, y, θ̂, φ̂) introduced in Ch 3, then we are going to get a set
of observables defined by the PLG parameters, where they are more simple but different definitions
from what we introduced in Sec. 2.3. To justify our observables that can cover the perturbed FLRW
limits, we need to transfer them from the PLG gauge on the lightcone into 1+3 general gauge on
a hypersurface that is orthogonal to the observer 4-velocity and described by a perturbed FLRW
metric. In order to do so we need to understand the screen space lying on the hypersurface.

4.1 The Screen Space

We are going to show how the covariant description of light beams, are naturally defined and they
can be turned to a more observation-oriented description. This requires to introduce a notion of
screen, on which observers can project the beam and characterise its shape and extension. The
screen space is orthogonal to the observer 4-velocity, and the tensor [120]

Nµν = gµν + uµuν − nµnν (4.1)

projects quantities into the screen space and satisfies the following conditions [120]:

Nµ
µ = 2, NµαN

α
ν = Nµν , Nµνk

µ = Nµνu
µ = Nµνn

µ = 0 . (4.2)

4.1.1 Derivatives and Integrals in the Screen Space

We can isolate the components into parallel and orthogonal components to the light ray. We denote
the parts lying in the screen space by ⊥ and the parts parallel to it by ‖. Furthermore, let us define
the covariant angular derivative ∇⊥i on the screen space and the derivative ∇‖ along the direction
of observations, respectively, as [120,136]

∇⊥iXj ≡ (γ k
i − nink)(γ l

j − njnl)∇⊥kXl , (4.3)

60
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∇‖ ≡ ni∇iX . (4.4)

The radial derivative can be interchanged with the derivative along a null geodesic using the
relation

∇‖X = ∂ηX −
d

dλ
X . (4.5)

At the background, one can switch the affine parameter λ with the conformal time η, and both are
related to the radial distance along the past lightcone by χ = λo − λ = ηo − η = η− ηs. The spatial
derivative is in general decomposed into parts along the null geodesic and in the screen space as

∇i = ni∇‖ +∇⊥i , (4.6)

= ni(∂η −
d

dη
) +∇⊥i . (4.7)

Then the 3-D Laplacian on the Minkowski background becomes

∇2 = γij [nj∇‖ +∇⊥j ][ni∇‖ +∇⊥i ] , (4.8)

= γij [ninj∇2
‖ + nj∇‖∇⊥i +∇⊥j [ni∇‖] +∇⊥i∇⊥j ] , (4.9)

= γij [ninj∇2
‖ + nj∇⊥i∇‖ +∇⊥jni∇‖ + ni∇⊥j∇‖ +∇⊥i∇⊥j ], (4.10)

= γij [ninj∇2
‖ + n(i∇⊥j)∇‖ +∇⊥jni∇‖ +∇⊥i∇⊥j ] , (4.11)

= ∇2
‖ + γij∇⊥jni∇‖ +∇2

⊥ , (4.12)

where [120]

∇⊥inj =
1

λo − λ
(γij − ninj) =

1

χ
(γij − ninj) . (4.13)

This leads to the relation

∇2 = ∇2
‖ +

2

χ
∇‖ +∇2

⊥ , (4.14)

which can also be rewritten as

∇2
⊥ = −ninj∇i∇j −

2

ηo − η
ni∇i +∇2 . (4.15)

Since the radial derivative can be interchanged with the derivative along a null geodesic [120], one
can write

ni∇inj∇jX = ∇2
‖ = ∇‖(∇‖X) , (4.16)

= (X ′′ − dηX ′)− dη(X ′ − dηX) , (4.17)

= X ′′ − 2dηX ′ − d2ηX , (4.18)

and we can conclude that

∇i∇j = ninj∇2
‖ + 2n(i∇⊥j)∇‖ +

1

χ
(γij − ninj)∇‖ +∇⊥i∇⊥j . (4.19)

4.1.2 Screen Space and SVT Decompositions

We can decompose a spatial vector vi that is orthogonal to the 4-velocity uµ on a perturbed spacetime
into [120]

vi = niv‖ + vi⊥ , (4.20)

where
v‖ = njv

j , vi⊥ = N i
jv
j . (4.21)
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And for a symmetric trace-free spatial tensor hij , the screen space decomposition will look like

hij = h‖(ninj −
1

2
Nij) + 2h⊥|(inj) + h⊥ij , (4.22)

where
h⊥ij = Nk

i N
l
jhkl, h⊥|(inj) = Nk

(inj)n
lhkl , (4.23)

and
hi⊥|ni = 0 = nih

ij
⊥ = Nijh

ij
⊥ . (4.24)

4.2 The Redshift of Distant Galaxies in the PLG

The distance-redshift relations for far-away cosmological objects play an important role in cosmology.
It has led to the discovery of the expansion of the Universe [137] and later on to the discovery of its
accelerated expansion [138].

Figure 4.1: A time interval dτ at the observed galaxy is measured as a time interval dw by the
observer.

The redshift of a source crossing the lightcone is the time dilation observed from C(w, y, θ̂, φ̂) of
a source of a proper time τ along its worldlines, crossing our past lightcone is determined by the
ratio dw/dτ along our worldline. Using the relations (3.4) and (4.25), then the observed redshift z
of its emitted light is determined by

1 + z =
λo
λs

=
ac(w)

a(w, y)
=
dw

dτ
= uw , (4.25)

where ac(w) is the scale factor along the central worldline C at singular point w0|C (it can be taken
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equal to 1 today). Or we can use the expression

1 + z =
(kµuµ)s
(kµuµ)o

, (4.26)

where we can normalise (kµuµ)o = 1, and we can re-write (4.26) as

1 + z = (kµu
µ)s, (4.27)

using (3.4) again, we will get

1 + z = (δ0
µu

µ)s , (4.28)

= (uw)s . (4.29)

This shows that in the lightcone gauge the redshift of the source is its 4-velocity. Where the 4-
velocity of the source is directly observable because the redshift is directly measurable from the
observed source spectrum. Furthermore

ui =
dxi

dτ
= (1 + z)

dxi

dw
. (4.30)

And we can obtain the velocity components uµ = gµνu
ν using (3.15) [108].

4.2.1 Gauge Transformations of the Redshift

To show that Eq. (4.29) is fulfilling the right form of redshift in the standard model we need to
transform our result using the PLG to first-order perturbation. Using the coordinates transforma-
tions mentioned in the previous chapter, we can transform the uη of Eq. (2.35) into uw using the
coordinate transformations given by Eq. (3.36), getting

1 + z = uw =
dxw

dxa
ua , (4.31)

=
dxw

dxη
uη +

dxw

dxi
ui , (4.32)

=
1

a(w − y)

(
δ0
0 +

∂δ̂w

∂xw

)(
1− φ

)
+

1

a(w − y)

(
δ0
0δ

1
i +

∂δ̂w

∂xî
+
∂δ̂w

∂xw
δ1
i

)
vi ,

=
1

a(w − y)

[
1 + ∂w δ̂w − φ+ viδ1

i

]
. (4.33)

We can use the definition of the 4-velocity of Eq. (3.68) and substitute for δα by Eq. (3.49)

uw =
1

a
(1 + δα/2) =

1

a
(1 + (∂w δ̂w − φ− ∂w δ̂y)) . (4.34)

Comparing the above with Eq. (4.33), we can conclude that

∂w δ̂y = −viδ1
i . (4.35)

We could decompose vi into scalar and tensor parts according to Eqs. (2.81, 2.83)

vi = V i + γij [∇jE′ +Bj ] . (4.36)
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We need now to calculate ∂w δ̂w, by using the fact that

kµ = ∂µw . (4.37)

Thus we get
kη = ∂ηw = ∂η(η + χ+ δ̂w) = 1 + ∂η δ̂w . (4.38)

Applying Eq. (3.88) leads to

∂w δ̂w = kη − 1 . (4.39)

We know that

kη = 1 +

∫ o

s

a−2φ′dλ−
∫ o

s

a−2
[
ninj

(
C ′ij −∇(iBj)

)]
dλ−Bini , (4.40)

which, upon substituting for Bi and Cij by Eqs. (2.4, 2.5), becomes

kη = 1 +

∫ o

s

a−2φ′dλ

−
∫ o

s

a−2

[
ninj

(
−ψ′δij +∇i∇jE′ +∇(iF

′
j) +

1

2
h′ij−

1

2
(∇i∇jB −∇jBi +∇i∇jB −∇iBj)

)]
dλ

−∇iBni −Bini . (4.41)

Further, we substitute for the gauge-invariant quantities and re-write Eq. (4.41) as

kη = 1 +

∫ o

s

a−2Φ′dλ

−
∫ o

s

a−2(B − E′)′′dλ−
∫ o

s

a−2
[
ninj (−Ψ′δij +∇i∇jE′ +∇(iF

′
j) +

1

2
h′ij −∇i∇jB −∇(iBj)

)]
dλ

−∇iBni −Bini . (4.42)

Substituting Eq. (2.80) in Eq. (4.42), we then will get

kη = 1 +

∫ o

s

Φ′dη −
∫ o

s

(B − E′)′′dη +

∫ o

s

(B − E′)′′dη − (B − E′)′|os + ni∇i(B − E′)|os

−
∫ o

s

ninj
(
−Ψ′δij +∇(iF

′
j) +

1

2
h′ij −∇(iBj)

)
dη − ni∇iB −Bini , (4.43)

= 1 +

∫ o

s

Φ′dη − (B − E′)′ − ni∇iE′ −
∫ o

s

ninj
(
−Ψ′δij +∇(iF

′
j) +

1

2
h′ij −∇(iBj)

)
dη

−Bini . (4.44)

We can therefore write

∂w δ̂w =

∫ o

s

(Φ+Ψ)′dη−(B−E′)′−ni∇iE′−
∫ o

s

ninj
(
∇(iF

′
j) +

1

2
h′ij −∇(iBj)

)
dη−Bini . (4.45)

Now substituting the above equation and Eq. (4.36) in Eq. (4.33) yields

1 + z =
1

a(η)

[
1 +

∫ o

s

(Φ + Ψ)′dη − (B − E′)′ − ni∇iE′ − niBi

−
∫ o

s

ninj
(
∇(iF

′
j) +

1

2
h′ij −∇(iBj)

)
dη − Φ +H(B − E′) + (B − E′)′ + Vin

i + γij [∇jE′ +Bj ]δ
1
i

]
.

(4.46)
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We can write the above as

1 + z =
1

a(η)

[
1− Φ +H(B − E′) + Vχ +

∫ o

s

(Φ + Ψ)′dη −
∫ o

s

(
∇χF ′χ +

1

2
h′χχ −∇χBχ

)
dη

]
.

(4.47)

Using the gauge-invariant variable of Eq. (2.28), the above result can be summarized as

1 + z =
1

a(η)

{
[1−Φ +H(B −E′) + Vχ]os +

∫ o

s

(Φ + Ψ)′dη −
∫ o

s

∇χΦχdη −
1

2

∫ o

s

h′χχdη

}
. (4.48)

And this is the exact answer of the redshift in general coordinates system that we got earlier in Eq.
(2.84), which makes the statement of our redshift in observational coordinates a correct statement,
and the observational approach more trusted.

4.3 The Area Distance in the PLG

The shape and size of the image of the source depends on the path taken by the light rays from the
source to the observer through the spacetime by the null geodesics; i.e, it depends on the spacetime
curvature. In fact they are both represented by the metric components hIJ , which are in principle,
directly measurable. For an object of known size and shape observed at time w0 and lying at distance
y in the direction θ̂, φ̂ one has [108]

dl2 = hIJ(w0, y, θ̂, φ̂)dxIdxJ , (4.49)

where dl represents distance of the object perpendicular to the line of sight, which are known if the
size, shape and orientation of the object are known. The term dxI represents the corresponding
angular displacements at the image, which are directly measurable [108]. Comparing the angular
measurements with the known dimensions, one can deduce hIJ . And directly from (4.49) and (3.21),
we get the area distance rA given by (3.20) [108]

rA =

[
det[hIJ ]

sin2 θ̂

] 1
4

, (4.50)

where

hIJ =

(
a2S2(1 +Hθ̂θ̂) a2S2Hθ̂φ̂

a2S2Hθ̂φ̂ a2S2(sin2 θ̂ +Hφ̂φ̂)

)
. (4.51)

For simplicity we express the embedded S(y) in HIJ , thus defining the determinant as

det[h] = a4S4(sin2 θ̂ +Hφ̂φ̂ + sin2 θHθ̂θ̂)− a
4S4H2

θ̂φ̂
, (4.52)

and therefore

rA =

(
a4S4[1 +Hθ̂θ̂ +

1

sin2 θ̂
Hφ̂φ̂]

) 1
4

. (4.53)

This means the area distance using the PLG can be written in a very simple way as

rA = a((w − y), η)S(y)

[
1 +

1

4
HT

]
. (4.54)

Nice and simple expression of area distance in the lightcone gauge, but we need to verify this
expression with the one in the general gauge, therefore we need to do the gauge transformation.
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4.3.1 The Gauge Transformations of the Area Distance

In the subsequent calculations, we need to justify whether our results are consistent with the ones
in general 1 + 3 coordinates. Note that w|C θ, φ are constants at the surface. We recall that the
area distance for Eq. (4.54), and from Eq. (3.54) we have

HIJ = 2CIJ − 2γK̂(I∇J)δ̂
K̂ ,

in observational coordinates, and since

γIJHIJ ≡ HI
I = HT , (4.55)

one can write

HT = 2γIJCIJ − γIJγKI∇J δ̂K̂ − γIJγK̂J∇I δ̂
K̂ , (4.56)

= 2CII − 2∇I δ̂I , (4.57)

which, when substituting

δ̂I = −
∫ λ

λs

kIdλ′ (4.58)

yields

HT = 2CII + 2∇I
∫ λ

λs

kIdλ′ , (4.59)

and according to Eq. (B.49), we have

HT = 2CII + 2

∫ λ

λs

∇IkIdλ′ . (4.60)

We will write the above equation in terms of the perpendicular and parallel components to the screen
space’s spatial tensor Nij , where

X⊥i = N i
jX

j and n⊥i = 0 . (4.61)

We can think of it as a 2-sphere metric embedded in one higher dimension of Euclidean space with
constant radius, therefore

HT = 2C⊥i⊥i + 2

∫ λ

λs

∇⊥ik⊥idλ′ . (4.62)

Then the null vector from the source position at xs and along the light trajectory to the observer
position at xo as a function of the affine parameter λ is given by

k⊥i = − 1

a2

∫ λ

λs

a−2

[
−B⊥i′ −∇⊥iφ− 2nj

(
C⊥i

′
j +

1

2
(∇jB⊥i −∇⊥iBj)

)
−njnk

(
∇kC⊥ij +∇jC⊥ik −∇⊥iCjk

) ]
dλ′ , (4.63)

= − 1

a2

1

(λo − λs)

∫ λo

λs

∫ λ

λs

a−2

[
−B⊥i′ −∇⊥iφ− 2nj

(
C⊥i

′
j +

1

2
(∇jB⊥i −∇⊥iBj)

)
− njnk

(
∇kC⊥ij +∇jC⊥ik −∇⊥iCjk

) ]
dλ′dλ . (4.64)

One can expand further Eq. (4.62) using (4.63) to obtain
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HT = 2C⊥i⊥i

+2

∫ λ

λs

a−2∇⊥i
{
n⊥i

a2
− 1

a2

1

(λo − λs)

∫ λo

λs

∫ λ

λs

a−2

(
−B⊥i′ −∇⊥iφ− 2nj

(
C⊥i

′
j +

1

2
(∇jB⊥i −∇⊥iBj)

)
−njnk

(
∇kC⊥ij +∇jC⊥ik −∇⊥iCjk

) )
dλ′dλ

}
dλ′ , (4.65)

where a−2dλ → dη in the perturbed spacetime, and (θ, φ) are constant angles along the light ray
between the source at ηs and the observer at ηo. We can therefore consider the unit radial vector
n⊥i = 0, reducing Eq. (4.65) to

HT = 2C⊥i⊥i + 2

∫ η

ηs

∇⊥i
{
− 1

(ηo − ηs)

∫ ηo

ηs

(η′ − ηs)
[
−B⊥i′ −∇⊥iφ

− 2nj
(
C⊥i

′
j +

1

2
(∇jB⊥i −∇⊥iBj)

)
− njnk

(
∇kC⊥ij +∇jC⊥ik −∇⊥iCjk

) ]
dη

}
dη′ ,

(4.66)

= 2C⊥i⊥i +
2

(ηo − ηs)

∫ ηo

ηs

∫ η

ηs

(η′ − ηs)
[
∇⊥iB⊥i

′
+∇⊥i∇⊥iφ −2∇⊥i njC⊥i

′
j

+∇⊥inj∇jB⊥i −∇⊥i∇⊥iBjnj +∇⊥injnk∇kC⊥ij +∇⊥injnk∇jC⊥ik

−∇⊥i∇⊥iCjknjnk
]
dη′dη . (4.67)

Expanding more by substituting for Bi and Cij by Eqs. (2.4), (2.5), and applying the Bardeen
gauge-invariant potentials of Ch. 2 into Eq. (4.67), we get

HT = −4Ψs − 4H(B − E′) + 2∇⊥i∇⊥iE + 2∇⊥iF⊥i + h⊥i⊥i

+
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1
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]
dη′dη .

(4.68)

Now we will apply the relations from Sec. (4.1) on the terms above, and we will write each term
derivations separately for simplicity, see B.4. Putting all the pieces together we will get

HT = −4Ψs − 4H(B − E′) +
2

(ηo − ηs)

∫ ηo

ηs

∫ η

ηs

(η′ − ηs)
[
(∇2 −∇2
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2

χ
∇(iBj)n

inj +∇2njF
j ′ +∇(iF

′′
j)n

jni − 2

χ
∇(iF

′
j)n

jni

+
2

χ
ninj

1

2
h′ij −∇2hijn

inj
]
dη′dη . (4.69)
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Now substituting back in (4.54), the area distance is given by

rA(n, η) = a(ηs)(ηo − ηs)
[
1−Ψs −H(B − E′) +

1

2

1

(ηo − ηs)

∫ ηo

ηs

(η − ηs)(ηo − η)

×
(

(∇2 − ninj∇i∇j −
2

(ηo − η)
ni∇i)(Φ + Ψ)− ni∇2Bi + ni∇2F ′i −∇(iB

′
j)n

inj

+∇(iF
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j)n

jni −∇2hijn
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(ηo − η)
(∇(iF

′
j)n

jni + ninj
1

2
h′ij +∇(iBj)n

inj)

)
dη

]
,

(4.70)

where S(χ) = (ηo − ηs). This equation represents the area distance of an object in a general gauge
including the vector and tensor modes contributions in the Friedmann universe, see Eq. (2.106),
and it is equivalent to the expression of the area distance in our PLG, see Eq. (4.54). The double
integrals term in Eq. (4.70) represents the integrated effects proportional to line-of-sight integrals
of the scalar, vector and tensor modes and their time derivatives.

4.4 The Luminosity Distance in the PLG

The luminosity distance received from a source of area distance rA, observed at redshift z, is defined
in the past-lightcone as

dL =
(
1 + z

)2
rA , (4.71)

and is independent of other spacetime properties. This quantity is directly measurable. The lumi-
nosity distance between a source at ηs along the way of sight of an observer at ηo, is given by using
the PLG as

dL = a(w − y)S(y)
(
1 + z

)2[
1 +

1

4
HT

]
. (4.72)

4.4.1 The Gauge Transformations of the Luminosity Distance

We are going now to transform the above-mentioned expression of the luminosity distance in PLG
to the general gauge, and justify our Eq. (4.72). From Eq (4.70), we can write

dL(n, ηs) =
S(χ)

as(η)

[
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]
. (4.73)

Converting the double integrals into single integral with (ηo − η) = (ηs − η) results in
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dL(n, ηs) =
(ηo − ηs)
as(η)
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, (4.74)

where we have used Eq (2.113) as well. We can relate the peculiar velocities of the source to the
Bardeen potential via the first-oder perturbations of Einstein’s equations using uµ = a−1(1−Φ, vi)
where we can get

vi(η) = − 1

4πGa2(ρ+ p)

(
a′

a
∇iΦ +∇iΦ′

)
. (4.75)

Eq. (4.74) is the luminosity distance of a source in direction n at conformal time ηs. It is presented
in a general gauge, with the scalar, vector and tensor modes together. Then the real observed
luminosity distance will be given as

dL(n, zs) = (1 + zs)
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, (4.76)

where we have use Eq (2.125). It is equivalent to our expression of luminosity distance in PLG Eq.
(4.72) which we expressed in one single line.

4.4.2 The Luminosity Distance in the Longitudinal Gauge

We are now going to rewrite an expression for the luminosity distance from Eq. (4.74) in longitudinal
gauge, which it has been done in [121]. To do so, we will consider a perfect fluid where Φ = Ψ. This
gives
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dL(n, ηs) = (1 + zs)(ηo − ηs)
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Using this and the expression for the redshift fluctuations

δzs = (1 + zs)

[
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, (4.78)

where we have used Eq (2.59), then
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Then the redshift luminosity distance in the longitudinal gauge is
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We can re-write the above equation by substituting for each ni∇i the terms ( ddη − ∂η) and with

using of Eq. (4.75) again to obtain

dL(n, zs) = (1 + zs)(ηo − ηs)
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In this equation the first line, apart from the background contribution, contains what can be identi-
fied as “gravitational redshift”. This is, however, not entirely correct since this term does not vanish
even if Ψs = Ψo [121]. The second line can be the terms due to peculiar motion of the observer and
emitter (Doppler terms). The third and fourth lines collect integrated effects proportional to line-
of-sight integrals of Ψ and its time derivative, and the fifth and last line represents the lensing term
with ∇2Ψ ∝ δρ.
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4.4.3 Vector Contributions to the Luminosity Distance

Vector perturbations they may serve as a source of cosmic strings or primordial magnetic fields
[139, 140]. The vector contribution to the luminosity distance at ηs and from Eq. (4.74) we can be
written as
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[
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Using
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we can rewrite this contribution as
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(4.85)

This expression depends only on the gauge-invariant quantities Fi and Bi, and as expected it is a
completely geometrical equation.

4.4.4 Tensor Contributions to the Luminosity Distance

Tensor perturbations are generically produced during inflation, and hence their contribution has to be
added for completeness. A gravitational wave from a far away passing arbitrary object could generate
a tensor perturbation added to the luminosity distance, and in principle could be detected [119].
The tensor contributions for an object at ηs and from Eq. (4.74) are given by
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And
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for a measurable relation
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and hence

dL(n, zs) = (1 + zs)

[
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The origin of the different terms in this relation is as follows: the first term is the unperturbed
expression for the luminosity distance in a Friedmann-Lemâıtre universe at the observed redshift zs,
the second term derives from the redshift correction, the third term from the relation between the
conformal time η and the affine parameter λ, and the last one we can interpret as a lensing effect.
The first two terms come from the perturbation of the redshift.

4.4.5 The Shear on the Lightcone

The shear σIJ of the null geodesics generating the null cone is a measure of the rate of distortion
down these geodesics. It is usually defined by projecting the covariant derivative of kµ down the
null geodesics into the “screen space” orthogonal to kµ and the 4-velocity uµ of the fundamental
observers, and then subtracting off the trace [108]. The trace-free part is then the shear of the light
rays:

σ̂IJ =

(
r2
A

2β

)
δIi δ

J
j

∂fIJ
∂y

. (4.90)

The magnitude of the shear is σ̂, determined by

σ̂2 =
1

2
σIJg

IKσKLg
JL . (4.91)

Both rA and fIJ can, in principle, be directly observed, whereas the shear can only be determined
from the knowledge of hIJ [108]. From Eq. (4.90), where

fIJ = hIJ/r
2
A ⇒ det(fIJ) = sin2 θ, (4.92)

give an alternative representation of the quantities hIJ as its conformal two-structure. So
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)
, (4.93)
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2

(
∂yHφφ −
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2
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)
, (4.94)

σ̂θφ =
S2

2

(
∂yHθφ

)
. (4.95)

As the size and shape of the image are independent of the motion of the observer, one may carry
out this calculation for the particular observer moving with zero proper motion and zero redshift;

the corresponding 4-velocity will then be uw = 1
a(η)

[
1 +∂w δ̂w−φ+ vχ

]
, and the projection into the

screen space, defined by its components hÎĴ = δÎi δ
Ĵ
j gÎĴ . From these results it follows that while hÎĴ ,

and so both rA and fÎĴ , can in principle be directly observed, the null geodesic expansion θ̂ and
shear σ̂ab can only be determined from this knowledge of hÎĴ if the metric component β is known,

this implies that θ̂ and shear σ̂ab are not directly observable.
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The Galaxy Number Count

If what appears little be
universally despised, nothing
greater can be attained; for all
that is great was at first little,
and rose to its present bulk by
gradual accessions and
accumulated labours.

Samuel Johnson

The large-scale cosmic structure contains lots of information about the global properties of our
Universe, and by analysing maps of galaxies we can probe the initial conditions of the Big Bang and
its physical processes that have operated subsequently [141, 142]. Galaxy clusters are the largest
bound structures in the Universe. Clusters vary from groups of tens of galaxies to more than 1000
galaxies. They represent nonlinear overdensities. Statistical measurements of galaxy motions and
clustering with the weak gravitational lensing, provide some of the strongest evidence to date that
Einstein’s GR is an accurate description of gravity on cosmological scales. However, what are not
yet exactly known are the content and the mechanisms responsible for the Universe’s acceleration
that put GR in an increasingly more awkward position.

5.1 The Galaxy Surveys

Galaxies are the building blocks which define the large-scale distribution of visible matter in the
Universe and it can be used to trace the underlying dark matter distribution. Without dark matter,
galaxy formation would occur substantially later in the Universe than it is observed. After this
all dark matter ripples could grow freely, forming seeds into which the baryons could later fall.
Such information requires a combination of the galaxies’ location in three dimensions and distance
information from its redshift [143].

From the analysis of the SDSS data, it has been concluded that the irregularities in the galaxy
density are still on the level of a few percent on scales of 100h−1Mpc. Also, about 10% of the
observed galaxies are found in gravitationally-bound clusters, such as the nearby Virgo and Coma
clusters [144–146]. It also seems to exist in larger structure forms, such as superclusters with densities
about twice the average density of the Universe. Recent large galaxy surveys have been performed
with SDSS, and the 2dF Galaxy Redshift Survey that measured the spectra of hundreds of thousands
of objects and obtained precise three-dimensional maps of the deep sky about the distribution of
matter in the Universe [147, 148]. The latest generation of the SDSS (SDSS-IV, 2014-2020) will
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extend its precision by expanding its revolutionary infrared spectroscopic survey of the Galaxy in
the northern and southern hemispheres, with the collaboration of the extended Baryon Oscillation
Spectroscopic Survey (eBOSS) and APO Galaxy Evolution Experiment 2 (APOGEE-2). Spatially
resolved maps of individual galaxies Mapping Nearby Galaxies at APO (MaNGA) will be made
using the Sloan spectrographs [149].

The galaxy survey map could be a good test for models beyond ΛCDM models like modified
gravity models and dark energy models.

5.1.1 The Real Measure in Galaxy Surveys

What we measure from galaxy surveys is an incomplete picture because what we actually measure
are the galaxy redshifts (z) and the sky positions (θ, φ), we cannot provide the true positions of the
galaxies [150]. If the Universe were completely homogeneous and isotropic, where light propagates on
straight lines, we could know the true position of galaxies directly. But we know that the Universe is
not homogeneous and isotropic, and there are small but significant inhomogeneities between us and
other galaxies that distort our coordinate systems, as well as change the redshift and the photons’
propagation slightly. They also change the shape and the size of the image and therefore we see a
distorted image of the galaxies and hence we see a distorted version of the dark matter distribution.
That effects the galaxy number count and the convergence κ (or the magnification). To interpret the
observed data properly, we need to understand these distortions. Two well-known examples are the
redshift-space distortions due to the peculiar velocity of the galaxies and the gravitational lensing
which affects the size and the shape of the object’s image.

5.1.2 The Galaxy Bias

We cannot always assume in advance that any given class of galaxy traces cosmological density in an
unbiased fashion, and we should therefore look at the properties of a variety of tracers. The galaxy
bias is the relationship between the spatial distribution of galaxies and the underlying dark matter
density field (matter density contrast)

δg(z, k) = b(z, k)δm(z, k) , (5.1)

known as local bias. Here we define the linear galaxy bias b as the ratio of the mean galaxy number
density contrast to the mean density contrast of dark matter. And the scale-independent local bias
is defined as

δg(z, k) = b(z)δm(z, k) . (5.2)

A scale independent galaxy bias factor b assumed in one gauge appears as a scale dependent galaxy
bias factor b(k) in another gauge. This translates into a perfect degeneracy in the power spectrum:

Pg(z, k) = b2(z)Pm(z, k) . (5.3)

The empirical degree of bias today is probably small, but naturally larger at earlier epochs of galaxy
formation. At high redshifts, the first galaxies to form will be the first structures to collapse, which
will be biased tracers of the mass. The galaxy bias is expected to be a strong function of redshift,
initially b > 1 at high redshift and approaching unity over time. This is consistent with the idea
that galaxies formed early on in the most overdense regions of space, which are biased. For Ω ≤ 0.3
would imply that optically-selected galaxies are anti-biased, where b < 1, indicating that galaxies
are less clustered than the dark matter distribution, whereas substantial bias must exist for Ω = 1
models, for which there is a strongly non-monotonic function of scale. The real-space power spectra
show only a weak scale-dependent relative bias of b ' 1.15 on large scales (scales larger than 60
Mpc) and tend towards a constant value, increasing to b ' 1.5 on the smallest scales (scales smaller
than 30 Mpc).

The galaxy bias of a given observational sample is often inferred by comparing the observed
clustering of galaxies with the clustering of dark matter measured in a cosmological simulation.
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Therefore, the bias depends on the cosmological model used in the simulation. A very important
cosmological parameter is σ8, defined as the standard deviation of galaxy count fluctuations in a
sphere of radius 8h−1 Mpc, and the absolute bias value inferred can be simply scaled with the
assumed value of σ8. The relative bias as a function of scale can be defined as the square root of
the ratio of the power spectra [151–156].

5.2 Galaxy Number Count

The number count is what we can measure when we divide the map of galaxy surveys with beams
at fixed redshift and solid angle, see Fig. [5.1]. By counting the galaxies in each pixel separately we
can study the fluctuation of the galaxy number and the distribution of dark matter, i.e., if there is
no galaxy in the region, that means no dark matter there. The geometric properties of spacetime

Figure 5.1: The number count of galaxies per pixel at fixed redshift and solid angle.

play a role in the determination of the distribution of galaxies. The number count is the number of
these galaxies observed in a given solid angle dΩ in the distance range (r, r+ dr), the corresponding
volume of which is given by

dV = a3(η)r2drdΩ . (5.4)

If the source number density is n(ηs) and the probability of detection is P , the number of sources
observed is

dN = P

[
n(η)

(1 + z)3

]
a3(η)f2(r)drdΩ , (5.5)

where the quantity in brackets is constant if source numbers are conserved in a FLRW model, and dr
can be expressed in terms of observable quantities such as dz. f is the selection function representing
the fraction of galaxies in dV that are actually detected and included in the number count. In
general f depends on η, r, θ and φ. We can estimate f from the knowledge of the galactic brightness
distribution and spectrum and redshift z, and the detection limit, there are many undetectable
objects in the sky, including entire galaxies, because they lie below the detection line.



Chapter 5. The Galaxy Number Count 76

5.2.1 Distortions in Galaxy Number Counts

The observed redshift and position of galaxies are affected by the matter fluctuations and the grav-
ity waves between the source galaxies and the observer. The volume element constructed using
the observed redshift and observed angle is different from the real physical volume occupied by the
observed galaxies. The observed flux and redshift of the source galaxies are also different from their
intrinsic properties. Therefore, the observed galaxy fluctuation field contains additional contribu-
tions arising from the distortion in observable quantities and these include tensor contributions as
well as numerous scalar contributions [157].

Figure 5.2: Same redshift
bin different physical volume:
Where in one of the pixel all
the galaxies moving toward the
centre of the pixel.

Figure 5.3: Same solid angle
different physical volume: An
overdensity cluster bending the
light beams emitted by the
galaxies.

Figure 5.4: Same radial bin
different distance: The whole
galaxies in the pixel is moving
toward the observer.

Credit: C. Bonvin.

In a galaxy redshift survey, at redshift z the observer looks at different part of the sky and
selects two pixels in two different directions with the same solid angle and redshift bin to measure
the number of galaxies N(n, z)dΩndz in each of them. By averaging over the solid angle he can
obtain the redshift distribution 〈N〉(z)dz of these galaxies. This observer can experience different
cases of distortions in the galaxy number count:

• If one of these pixels is inside an overdensity region, that will make all the galaxies move
toward the centre of the pixel and the number of galaxies in the pixel will squeeze in size and
therefore the observer will count two different galaxy number in two different physical volume
with the same solid angle and redshift bin, see Fig. [5.2].

• In Fig. [5.3], a case where the same observer have the same redshift bin and solid angle of the
two pixels, but an overdensity cluster is observed in the way between one of the pixels and the
observer. The overdensity cluster will bend the light beams coming from the galaxies changing
the size of the solid angle, and the observer will see a different physical volume between the
two pixels.

• Fig. [5.4] shows a case where in one of the pixels all galaxies are moving in the same direction
towards the observer. Due to the expansion, the galaxy number will be diluted and the observer
will see fewer galaxies in that pixel.

Therefore, the observed galaxy number density is affected by perturbations given the total num-
ber of observed galaxies, and it contains additional contributions from the distortions in the ob-
servable quantities, compared to the standard description that galaxies simply trace the underlying
matter distribution.
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5.2.2 The Galaxy Number Count on the Lightcone Gauge

Suppose one counts the galaxies seen in a solid angle dΩ0 around the direction of observation (θ̂, φ̂),
down to a distance y. An increment from y −→ y + dy will result in including dN new galaxies in
the count, where dN is the number of galaxies detected in a volume of size as (dy, dθ̂, dφ̂) around a
point on our past lightcone

dV = (r2
AdΩ)(uµkµdν) (5.6)

corresponding to the range (y −→ y + dy) in the coordinate y. If the number density of galaxies
at the position y is n, then (n dV ) is the number of galaxies that will be contained in this volume.
However there is a chance that not all of the galaxies will be counted in dV , in general, for some will
be too faint to be detected, while others may not be selected for inclusion in the galactic number
count because of various selection effects (e.g. they may be confused with stars if their images are
very small) [108]. We will write dN in the form

dN = fmdV , (5.7)

where fm is the selection function representing the fraction of galaxies in dV that are actually
detected and included in the number count; one can estimate fm from knowledge of the galactic
brightness distribution and spectrum, the area distance rA and redshift z. In general, fm will depend
on w, y, θ̂ and φ̂. The number count of galaxies in a box of size (dy, dθ̂, dφ̂) around a point on our
past lightcone can also be calculated as

dN = fmr
2
A(1 + z)dΩ0

βdy , (5.8)

where dν = βdy, and β = a2(1 + δβ). If y has been chosen to be an observable quantity, then dN
is directly measurable. As z and rA are known, one can estimate the selection function fm, which
depends on rA, z, the galaxy properties and the observational limits and selection effects. Therefore,
in principle, one could determine the quantity β in terms of known quantities.

5.3 The Perturbation of Galaxy Number Counts ∆

The galaxy number density contrast in one pixel can be given by

∆ =
N − N̄
N̄

= b · δρ
ρ

= b · δ . (5.9)

The number count ∆ is an observable quantity; it relates the number of the galaxies in each pixel to
the average numbers of the galaxies N̄ , and the distribution of dark matter δ and its bias b. Since
the density of the Universe is changing with time, it is useful to express the magnitude of density
variation using the relative density fluctuation, which is defined as follows:

δρ

ρ
=

density within a fluctuation−mean density of the Universe

mean density of the Universe
. (5.10)

5.3.1 The ∆ Calculations in Redshift Space

Galaxy formation is a local process and its relation to the underlying matter density should be well
defined and gauge invariant. The observable quantities such as observed galaxy counting should be
independent of a choice of the gauge condition. The large-scale distribution of galaxies, the density
fluctuation δ(x, t) which we calculate in a given Friedmann background, is not a gauge invariant, this
is “the cosmological gauge problem” [38]. Since it depends on the background Friedmann universe
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we compare the observed ρ(x, t) with [150].

δ(x, t) ≡ ρ(x, t)− ρ̄(t)

ρ̄(t)
. (5.11)

In order to fix this problem, one has to consider individual observational effects like the redshift
space distortions [158,159], the Alcock-Pacinski [160] or lensing [150,161].

For unbiased distribution as we will consider for this section, ρ̄, is the mean galaxy density, i.e.,

ρ̄ = 〈ρ〉 . (5.12)

The physical survey volume density per redshift bin per solid angle can be written as a background
part in a homogeneous world and a fluctuated quantity, since the solid angle and the redshift bin
are distorted between the source and the observer:

V (n, z) = V (z) + δV (n, z) . (5.13)

Then following the discussion in [150], the redshift density perturbation can be written as

δz(n, z) =
ρ(n, z)− 〈ρ〉(z)

〈ρ〉(z)
, (5.14)

=

N(n,z)
V (n,z) −

〈N〉(z)
V (z)

〈N〉(z)
V (z)

, (5.15)

=

(
N(n, z)V (z)

V (z) + δV (n, z)
− 〈N〉(z)

)(
1

〈N〉(z)

)
, (5.16)

=

(
N(n, z)−N(n, z)

δV (n, z)

V (z)
− 〈N〉(z)

)(
1

〈N〉(z)

)
, (5.17)

=
N(n, z)− 〈N〉(z)

〈N〉(z)
− N(n, z)δV (n, z)

V (z)〈N〉(z)
, (5.18)

=
N(n, z)− 〈N〉(z)

〈N〉(z)
−

(
〈N〉(z) + δN(n, z)

)
δV (n, z)

V (z)〈N〉(z)
, (5.19)

=
N(n, z)− 〈N〉(z)

〈N〉(z)
− δV (n, z)

V (z)
. (5.20)

The perturbation in the number density of galaxies is an observed quantity, and the volume pertur-
bation also can be measured with other tracers than galaxies, and it is therefore measurable by itself
and hence gauge invariant [150]. Therefore they are gauge-invariant quantities. And hence δz(n, z)
is a gauge invariant. We can re-write the above expression as

∆(n, z) =
N(n, z)− 〈N〉(z)

〈N〉(z)
= δz(n, z) +

δV (n, z)

V (z)
, (5.21)

which is a gauge-invariant expression.

5.3.2 The Computation of δz(n, z)

We need to relate δz(n, z)→ δ(x, t) to a gauge-independent quantity. So to first order

δz(n, z) =
ρ(n, z)− ρ(z)

ρ(z)
=

(ρ(z) + δρ(n, z))− ρ(z)

ρ(z)
,

=
(ρ(z − δz) + δρ(n, z))− ρ(z)

ρ(z)
. (5.22)
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Taylor expansion of ρ(z) around z gives

ρ(z) = ρ(z + δz) , (5.23)

= ρ(z) +
dρ

dz
δz(n, z(η)) . (5.24)

Using the fact that z = z + δz and Eq. (5.23) in Eq. (5.22) yields

δz(n, z) =
ρ(z) + δρ(n, z)− ρ(z)

ρ(z) + dρ
dz δz(n, z(η))

, (5.25)

=
δρ(n, z)− dρ

dz δz(n, z(η))

ρ(z) + dρ
dz δz(n, z(η))

, (5.26)

=
δρ(n, z)

ρ(z) + dρ
dz δz(n, z(η))

− dρ

dz

δz(n, z(η))

ρ(z) + dρ
dz δz(n, z(η))

, (5.27)

=
δρ(n, z)

ρ(z)

(
1− dρ

dz

δz(n, z(η))

ρ(z)

)
− dρ

dz

δz(n, z(η))

ρ(z)

(
1− dρ

dz

δz(n, z(η))

ρ(z)

)
.

(5.28)

Thus, to first order

δz(n, z) = δ(n, z)− dρ

dz

δz(n, z(η))

ρ(z)
, (5.29)

where δρ(n,z)
ρ(z) = δ(n, z), and by using

dρ

dz
= −3

ρ

1 + z
, (5.30)

the matter fluctuation (at the observed redshift) is given by

δz(n, z) = δ(n, z) + 3
δz(n, z(η))

(1 + z)
. (5.31)

Here we relate the perturbation variables in direction n at redshift z to their unperturbed position
and time η. z = z(η) is the redshift of the background universe that we measure on and δz is the
redshift perturbation to this universe, δz(n, z) = δ(n, z) in a uniform-redshift frame δz = 0. It is
gauge invariant since is defined by observable quantities, where the time slicing is set by the observed
redshift z, rather than by an arbitrary choice of coordinate systems or gauge conditions as for δ(n, z)
and differs in its value contingent upon the gauge choice [162].

Moreover, by solving the background relation z = z(η), we can write

ρ(n, z(η)) = ρ(η) + δρ(n, η) . (5.32)

Note that ρ(z) = ρ(z + δz) deviates to first order from ρ(z). Both δz and δρ depend on the chosen
background and are, hence, gauge dependent; however their combination in Eq. (5.29) must turn
out to be gauge invariant as it is in principle observable.
Gauge-invariant density fluctuations and velocity perturbations can be found by combining δ, v and
vi with metric perturbations. We shall use the Bardeen relations [112]

V ≡ v − E′ = vlong , (5.33)

Ds ≡ δ + 3(1 + w)H(E′ −B) ≡ δlong , (5.34)

D ≡ δlong + 3(1 + w)HV = δ + 3(1 + w)H(v −B)

= Ds + 3(1 + w)HV , (5.35)

Dg ≡ δ + 3(1 + w)(ψ) = δlong − 3(1 + w)Ψ

= Ds + 3(1 + w)Ψ . (5.36)
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Here vlong and δlong are the velocity and density perturbations in the longitudinal gauge and Dg

is density fluctuation on the uniform curvature hypersurface. On sub-horizon scales the differences
between δ, δLong, Dg andD are negligible as are the differences between v and V . Since measurements
of density and velocity perturbations can only be made on sub-horizon scales, we may therefore use
any of the gauge-invariant perturbation variables to compare with measurements [38].

If we want to introduce a bias between the matter density and the galaxy density, it would prob-
ably be most physical to assume that both galaxies and dark matter follow the same velocity field, as
they experience the same gravitational acceleration. We then expect that biasing should be applied
to the density fluctuation in comoving gauge D and not to Dg. On small scales, such differences
are irrelevant, but on large scales they do become relevant, as becomes clear when considering the
(linear) power spectra for the different density fluctuation variables [150].

5.3.3 The Volume Distortion

The volume perturbation δV
V should be gauge invariant, because it is, in principle, a measurable

quantity given unbiased volume tracers. The differential volume element (seen by a source with
4-velocity uµ) is given by

dV =
√
−gεµναβuµdxνdxαdxβ . (5.37)

In terms of the observed redshift z and sky position determined by the polar angles (θ, φ) at the
observation time,

dV =
√
−gεµναβuµ

∂xν

∂z

∂xα

∂θs

∂xβ

∂ϕs

∣∣∣∣∂(θs, ϕs)

∂(θo, ϕo)

∣∣∣∣ dzdθodϕo ,
= v(z, θoϕo)dzdθodϕo , (5.38)

where v is a volume density, which determines the volume perturbation

δV

V
=
v(z)− v(z)

v(z)
=
δv

v
. (5.39)

The determinant of the Jacobian matrix is

∣∣∣∂(θs, ϕs)

∂(θo, ϕo)

∣∣∣ = det J =


∂z
∂z

∂z
∂θo

∂z
∂ϕo

∂θs
∂z

∂θs
∂θ0

∂θs
∂ϕo

∂ϕs
∂z

∂ϕs
∂θo

∂ϕs
∂ϕ0

 , (5.40)

and gives the transformation matrix from the angles at the source to the angles at the observer. In
homogeneous and isotropic backgrounds, the geodesics are straight lines, that is,

θs = θo , ϕs = ϕo . (5.41)

But in a perturbed universe, angles are perturbed with respect to

θs = θ0 + δθ , ϕs = ϕo + δϕ . (5.42)

Thus using (5.42) in the Jacobian expression given in (5.40), to first order of Taylor expansion, one
gets ∣∣∣∂(θs, ϕs)

∂(θo, ϕo)

∣∣∣ = 1 +
∂δθ

∂θ
+
∂δϕ

∂ϕ
. (5.43)

We discussed in the last two subsections a general simplification steps for computing the two
terms of Eq. (5.21). We can apply them to any spacetime metric. In [150] they calculated the
perturbed galaxy number counts using the perturbed FLRW metric. In the up coming section we
are going to compute the perturbed galaxy number counts using our perturbed PLG metric and use
the simplified steps we just introduced above. Then we will do a coordinate transformation to our
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final answer to the perturbed FLRW space and compare it with what [150] obtained.

5.4 Galaxy Number Counts Fluctuations with the PLG

Let us now consider the geodesic of a photon emitted from a galaxy in our lightcone background
which arrives to us at the vertex of our lightcone, moving in straight null-like vectors pointed in
direction n (hence, to lowest order, it is seen under the direction −n from the observer). The
observer receives the photon redshifted by

1 + z = uw =
1

a
(1 +

δα

2
) = (1 + z̄)(1 +

δα

2
) . (5.44)

Since
δz = z − z (5.45)

and

δz =
1

2
(1 + z̄)δα , (5.46)

we have

δz(n, z) = δm(n, z) +
3

2
δα . (5.47)

The volume perturbation in terms of redshift and sky position is determined by our observation
coordinates (w, y, θ̂, φ̂), and therefore

v =
√
−gε0123u

w ∂y

∂z

∂θ̂

∂θ̂s

∂φ̂

∂φ̂s
+
√
−gε1230u

y ∂w

∂z

∂θ̂

∂θ̂s

∂φ̂

∂φ̂s
, (5.48)

where the components of ε satisfy

ε0321 = ε0231 = ε0312 = ε0132 = ε0213 = ε0123 = 1, (5.49)

ε1320 = ε1230 = ε1302 = ε1203 = ε1023 = ε1032 = −1 , (5.50)

and the angles between the source and the observer are fixed, it can be shown that there is no
angular displacement

δθ̂ = δφ̂ = 0 . (5.51)

That will lead to the volume perturbation being given as

v =
√
−guw ∂y

∂z
−
√
−guy ∂w

∂z
. (5.52)

(5.53)

With constant light cone w|cst, we get

v =
√
−guw ∂y

∂z
. (5.54)

Furthermore
√
−g = a4S2 sin(θ)

(
1 +

HT

2
+ δβ

)
, (5.55)

and the 4-velocity of the source according to the observational coordinates

u = {(1 + z), niv
i} , (5.56)
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where vi ≡ vy, vθ̂ and vφ̂. Since dy
dz is the change in comoving distance y with redshift along the

photon geodesic, we can re-write it as

dy

dz
=

d(y + δy)

d(z + δz)
=
d[y(1 + δy

y )]

d[z(1 + δz
z )]

,

=
dy(1 + δy

y ) + yd(1 + δy
y )

dz(1 + δz
z ) + zd(1 + δz

z )
,

=
dy

dz + dδz
+

dδy

dz + dδz
,

=
dy

dz
(1− dδz

dz
) +

dδy

dz
(1− dδz

dz
) ,

=
dy

dz
− dy

dz

dδz

dz
+
dδy

dz
. (5.57)

Using the fact that y = χ, we can rewrite the above result as

dy

dz
=

dχ

dz
− dχ

dz

dδz

dz
+
dδy

dz
=

(
dχ

dη
− dχ

dz

dδz

dη
+
dδy

dη

)
dη

dz
. (5.58)

Here dy/dz is to be understood as the change in comoving distance y with respect to the redshift along
the photon geodesic. The distinction between z and z is only relevant for background quantities.

Appling our reslut above to Eq. (5.54), then it will look like

v(z) = a4S2 sin(θ)

(
1 +

HT

2
+ δβ

)
(1 + z)

(
dχ

dη
− dχ

dz

dδz

dη
+
dδy

dη

)
dη

dz
. (5.59)

In Eq. (5.58)), the last term contains the redshift-space distortion, which will turn out to be the
biggest correction to the power spectrum [150]. To lowest order along the photon geodesic, with
1 + z = a0

a = 1
a , we have

dη

dz
=

dη

dz

da

da
, (5.60)

=
dη

da

da

dz
=
dη

da

d

dz

(
1

1 + z

)
, (5.61)

= − 1

a′
(1 + z)

−2
= − a

a′
(1 + z)

−1
, (5.62)

= −aH−1 = −H−1 . (5.63)

With all the above taken into account, the volume element becomes

v(z) = −a4S(y)2 sin(θ)

(
1 +

HT

2
+ δβ

)(
1 +

1

2
δα

)(
dχ

dη
− 1

H(1 + z)

dδz

dη
+
dδy

dη

)
H−1 , (5.64)

or

v(z) =
a4S(y)2 sin(θ)

H

(
−1 +

1

H(1 + z)

∂δz

∂y
− ∂δy

∂y
− HT

2
− δβ − 1

2
δα

)
, (5.65)

where we have used the relations (3.87). Furthermore, if we introduce the volume density as

δv

v
=
v(z)− v(z)

v(z)
, (5.66)

and v(z) is given by the Taylor expansion of v(z) around z, we get
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v(z) = v(z + δz) , (5.67)

= v(z) +
dv

dz
δz , (5.68)

v(z) = v(z) +
dv(z)

dz
δz(n, z) . (5.69)

To obtain the fluctuation of v just subtract the unperturbed part v(z) from v of Eq.(5.65) (and
additional 1/a factor coming from the background part of [1+z] term), using a = 1/(z + 1)

v(z) =
S(y)2 sin(θ)

(1 + z)4H
, (5.70)

obtaining

dv(z)

dz
= sin θ

d

dz

[
S(y)2

(1 + z)4H

]
,

= sin θ

[
2S(y)dS(y)/dz(1 + z)4H− S(y)2[4(1 + z)3H+ (1 + z)4 dH

dz

(1 + z)8H2

]
,

= sin θ

[
2S(y)(dS(y)/dχ).(dχ/dz)(1 + z)4H− S(y)2[4(1 + z)3H+ (1 + z)4 dH

dη
dη
dz ]

(1 + z)8H2

]
,

= sin θ

[
2S(y) aH (1 + z)4H− S(y)2[4(1 + z)3H+ (1 + z)4H′(−aH−1)]

(1 + z)8H2

]
,

= sin θ

[
2S(y)a(1 + z)−4H−2 − S(y)2[4(1 + z)−5H−1 − (1 + z)−4aH′H−3]

]
, (5.71)

= v(z)

[
2

S(y)H
− 4 +

H′

H2

]
(1 + z)−1 . (5.72)

Thus,

v(z) = v(z)

(
1 +

[
2

S(y)H
− 4 +

H′

H2

]
δz

1 + z

)
, (5.73)

and

δv

v
=

(
1

H(1 + z)

∂δz

∂y
− ∂δy

∂y
− HT

2
− δβ +

[
2

S(y)H
+
H′

H2
− 1

]
δα

2

)
. (5.74)

And since from Eq. (3.81) we can conclude

∂δy

∂y
=
dδy

dη
= −δβ , (5.75)

then

δv

v
=

(
1

H(1 + z)

∂δz

∂y
− HT

2
+

[
2

S(y)H
+
H′

H2
− 1

]
δα

2

)
. (5.76)

With S(y) = y = (ηo − ηs) in flat space, and δz = 1
2 (1 + z)δα, one can then write

∆(n, z) = δ(n, z) +
1

2H
∂δα

∂y
− HT

2
+

[
2

yH
+
H′

H2
− 1

]
δα

2
. (5.77)

This is the expression for the density redshift perturbation in observational coordinates using the
observational metric, and as indicated does not include unmeasurable monopole terms or a dipole
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term (niVi)o that usually arises by the perturbation at the observer position. Moreover it does
not depend on the peculiar velocity of observer and emitter, and we do not need to compute the
deviation vectors that relate the perturbed geodesic to the unperturbed one. It only depends on
quantities in terms of the perturbed metric and in principle all measurable.

Eq. (5.77) is gauge-invariant expression, the first term we have discussed it earlier, the sec-
ond term contains the Doppler term, the integrated sachs-wolfe, the gravitational redshift and the
redshift-space distortion. The third term contains the lensing distortion and time delay, and the last
term contains the redshift perturbation of the volume.

5.4.1 Gauge Transformations of the Density Fluctuations

We need now to convert our result in Eq. (5.77) from the PLG into its equivalent expression in
the general coordinates and then we will contrast the outcomes. The upcoming result is already
obtained in [150,157,162]. Now we will convert each term one by one:

1

2H
∂δα

∂y
=

1

H(1 + z)

∂δz

∂y
=

1

H(1 + z)

dδz

dη
, (5.78)

= −Φ +H(B − E′) + Vχ +

∫ ηo

ηs

(Φ + Ψ)′dη −
∫ ηo

ηs

(
∂(χF

′
χ) +

1

2
h′χχ − ∂(χBχ)

)
dη

+
1

H
d

dη

[
− Φ +H(B − E′) + Vχ +

∫ ηo

ηs

(Φ + Ψ)′dη −
∫ ηo

ηs

(
∂χF

′
χ +

1

2
h′χχ −∂χBχ

)
dη

]
,

(5.79)

= −Φ +H(B − E′) + Vχ +

∫ ηo

ηs

(Φ + Ψ)′dη −
∫ ηo

ηs

(
∂(χF

′
χ) +

1

2
h′χχ − ∂(χBχ)

)
dη

+
1

H

[
∂χVχ + Ψ′ −

(
∂χF

′
χ+

1

2
h′χχ − ∂χBχ

)]
, (5.80)

where for a pressureless matter moving along the geodesics, we know that

V̇χ −HVχ − ∂χΨ = 0 . (5.81)

and for

δα

2
=

δz

(1 + z)
, (5.82)

=

[
− Φ +H(B − E′) + Vχ +

∫ ηo

ηs

(Φ + Ψ)′dη

−
∫ ηo

ηs

(
∂χF

′
χ +

1

2
h′χχ − ∂(χBχ)

)
dη

]
. (5.83)

Finally, the HT term, you may see B.5 for more detailed derivation. Using the definition of ∆Ω

as the angular part of the Laplacian, which is denoted as

∆Ω = (∂2
θ + cot θ∂θ +

1

sin2 θ
∂2
φ) ≡ ∇⊥i∇⊥i , (5.84)

we can show that

HT =

[
− 2Ψ− 2H(B − E′)

+
1

ηo − ηs

∫ ηo

ηs

∫ η

ηs

(
∆Ω

[
(Φ + Ψ)−Bχ + F ′χ −

1

2
hχχ

])
dη′dη

]
. (5.85)
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Now using Eqs. (5.34) and (5.36) together with the above expressions, we get

∆(n, z) = Dg −Ψ−H(B − E′) +
1

H

[
Ψ′ + ∂χVχ −

(
∂χF

′
χ +

1

2
h′χχ −∂χBχ

) ]
+

[
2

yH
+
H′

H2

][
− Φ +H(B − E′) + Vχ +

∫ ηo

ηs

(Φ + Ψ)′dη −
∫ ηo

ηs

(
∂χF

′
χ +

1

2
h′χχ − ∂(χBχ)

)
dη

]
− 1

ηo − ηs

∫ ηo

ηs

(η′ − ηs)∆Ω

(
(Φ + Ψ)−Bχ + F ′χ −

1

2
hχχ

)
dη′ . (5.86)

For only scalars we have

∆(n, z) = Dg −Ψ−H(B − E′) +
1

H

[
Ψ′ + ∂χVχ

]
+

[
2

yH
+
H′

H2

][
− Φ +H(B − E′) + Vχ +

∫ ηo

ηs

(Φ + Ψ)′dη

]
− 1

ηo − ηs

∫ ηo

ηs

(η′ − ηs)∆Ω(Φ + Ψ)dη′ . (5.87)

Eq. (5.87) represents the gauge-invariant redshift density fluctuation using a FLRW metric.
The H−1∂χΨ term is the gravitational redshift. The light emitted from a galaxy has to pass via
that potential field and reach the observer. In so doing, the photon has to lose some of its own
energy and hence become redshifted. That will result in changing the redshift of the beam. The
term H−1∂χ(Vχ) is the redshift space distortion due to the galaxies’ peculiar velocity relative to
the observer line of sight, and this is considered the largest signal correction on the intermediate
scales [150]. The middle line comes from the redshift perturbation of the volume, and it contains a
Doppler term; it also contains the ordinary and integrated Sachs-Wolfe terms. The third line (the
integral) is the lensing distortion which corresponds to the change in the solid angle causing radial
and angular volume distortions and time delay [163–165]; it is relevant especially on large scales.
The rest of the terms have very small relativistic effects.

The standard Newtonian description of the galaxy power spectrum breaks down and the general
relativistic description is therefore essential for understanding the observed galaxy power spectrum
and deriving correct constraints from these measurements. The relativistic effects progressively
become significant at low angular multipoles at high redshifts z ≥ 2, where the relativistic effects
are dominant and significant on the horizon scale but they break the symmetry of the correlation
function [166]. Due to these effects ∆ contains additional information δ, V,Φ,Ψ, this can help
testing gravity by probing the relation between density, velocity and gravitational potentials. They
do affect our observables and by measuring these effects we can use them to test the relations between
the density, velocity and gravitational potentials. Using the PLG gauge was an attempt to make
the measuring of these relativistic effects achievable in most simple way. Our results will be most
significant for future galaxy survey catalogs like BOSS, DES, Euclid, and of significance to SLOAN-7
data analysis.
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Chapter 6

f (R) Theories of Gravity

The great tragedy of science - the
slaying of a beautiful hypothesis
by an ugly fact.

Thomas Huxley

Relativistic cosmology based on Einstein’s Field Equations (1.2) describes a universe with its
geometric properties. It is derived from a density variational principle Lagrangian (L) of the EH
action with scalar curvature R.

If L is chosen to be a function of R, we can consider that as an Extended Theory of Gravity [58].
This approach is aimed to address problems and shortcomings from the standard cosmological model,
such as the recently discovered, arguably not yet explained, phenomenon of cosmic acceleration
and the lack of a final theory of quantum gravity. It is also important to point out that any
extended theory also has to address where GR’s positive results had been obtained, i.e., such as Big
Bang cosmology, inflation, dark energy, local gravity constraints, cosmological perturbations, and
spherically symmetric solutions in weak and strong gravitational backgrounds.

The f(R) model of gravity is a family of theories, each one defined by a different function of
the Ricci scalar. Via the arbitrary function introduced in L, we have the freedom to explain the
accelerated expansion and the structure formation of the Universe without adding unknown forms of
energy or exotic matter. However, not all functional forms of these models can be accepted as viable
cosmological models; a wide range of them can be ruled out based on observations, cosmological and
astrophysical principles, while others can be rejected because of theoretical pathologies.

f(R) theories were first speculated on by Buchdahl [167] in 1970, but it gained more popularity in
cosmology after further developments by Starobinsky [168]. The recent interest has centred on their
potential candidacy as possible infrared (IR) and ultraviolet (UV) completions of GR [59, 60, 169–
172]. More recently, these gravitational alternative theories have found cosmological applications in,
inter alia, the dynamical study of homogeneous cosmological models [173–180, 180–188], the linear
growth of large-scale structures [189–197] and astrophysics [198–202].

6.1 Derivation of the f(R) Field Equations

There are three ways in deriving the field equations from the action in f(R) gravity. From the EH
action in Eq. (1.1), with some function of R, we get

S =
1

2

∫
d4x
√
−g [f(R) + 2Lm(gab,Ψm)] , (6.1)
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where Lm is a matter Lagrangian that depends on gab and matter fields Ψm. Unless otherwise
stated, in this chapter and the next ones, primes ′,′′ etc... are shorthands for first, second, etc...
derivatives with respect to the Ricci scalar. We will also use f as a shorthand for f(R).

6.1.1 The Metric Formalism

The first is the standard metric formalism in which the field equations are derived by the variation
of the action with respect to the metric tensor gab where it is the only independent variable. In this
formalism the affine connection depends on the metric gab. The variation of the determinant is

δ
√
−g = −1

2

√
−ggabδgab . (6.2)

The variation of the Ricci scalar with respect to the inverse metric gab is given by

δR = Rabδg
ab + gabδRab , (6.3)

= Rabδg
ab + gab (∇cδΓcab −∇bδΓcca) . (6.4)

In this (metric) formalism the connection can be written as

δΓ
c(m)
ab =

1

2
gcd (∇aδgdb +∇bδgda −∇dδgab) . (6.5)

Substituting this into Eq. (6.4) we will get

δR = Rabδg
ab + gab∇2δgab −∇a∇bδgab . (6.6)

Now the variation in the action reads

δS =
1

2

∫
(δf
√
−g + fδ

√
−g)d4x , (6.7)

=
1

2

∫
(f ′δR

√
−g − 1

2
δ
√
−ggabδgabf)d4x , (6.8)

=
1

2

∫ √
−g
[
f ′
(
Rabδg

ab + gab∇2δgab −∇a∇bδgab
)
− 1

2
gabδg

abδf

]
d4x . (6.9)

Using integration by parts, we get

δS =
1

2

∫ √
−gδgab

[
f ′Rab −

1

2
gabf +

(
gab∇2 −∇a∇b

)
f ′
]
d4x . (6.10)

Since the action remains invariant under variations,

f ′Rab −
1

2
f(R)gab +

(
gab∇2 −∇a∇b

)
f ′ = Tmab , (6.11)

where Tmab is the energy-momentum tensor of the matter fields defined by the variational derivative
of Lm in terms of gab:

Tmab = − 2√
−g

δLm
δgab

, (6.12)

and satisfying the continuity equation
∇aTmab = 0 . (6.13)

The trace of Eq. (6.11) is given by

3∇2f ′ + f ′R− 2f = T , (6.14)
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where T = gabTmab . The first term in Eq. (6.14) is a propagating scalar degree of freedom ψ ≡ f ′ and
the trace equation determines the dynamics of the scalar field [168]. It is due to the introduction
of fourth-order derivatives of the metric in the last two terms of the LHS of Eq. (6.11) that this
formalism is sometimes referred to as a fourth-order theory of gravity. We will use this formalism
for the rest of the thesis.

6.1.2 The Palatini Formalism

The second way of deriving the f(R) field equations is the Palatini formalism in which both gab and
Γcgd are treated as independent variables, and hence involves varying the action with respect to both
variables [203]. Varying the action (6.1) with respect to gab yields

f ′Rab(Γ)− 1

2
fgab = Tmab , (6.15)

where Rab(Γ) is the Ricci tensor corresponding to the connections Γcgd and it is different from the
Ricci tensor calculated in terms of metric connections Rab. The trace of (6.15) gives

f ′R− 2f = T . (6.16)

Here the Ricci scalar R(T ) is different from the Ricci scalar R(g) in the metric formalism and is
given by

R(T ) = R(g) +
3

2[f ′(R(T ))]2
[∇af ′(R(T ))][∇af ′(R(T ))] +

3

f ′(R(T ))
∇2f ′(R(T )) . (6.17)

The variation of the action with respect to the connection leads to the following field equations:

Gab =
Tab
f ′
− 1

2
(R(T )− f

f ′
)gab +

1

f ′
(∇a∇b − gab∇2)f ′

− 3

2(f ′)2

[
∇af ′∇bf ′ −

1

2
gab∇cf ′∇cf ′

]
. (6.18)

They are the same field equations as those obtained via the metric formalism but this will no longer
hold for f(R) theories whose Lagrangians are non-linear terms in R. Therefore the action in Palatini
f(R) is equivalent to

S =

∫
d4x
√
−g
[

1

2
ϕR(T )− U(ϕ)

]
+

∫
d4xLm(gab,Ψm) , (6.19)

where

ϕ = f ′(R(T )), U =
R(T )f ′(R(T ))− f(R(T ))

2
. (6.20)

From Eq. (6.16) we note that ∂ϕU = R/(2), and therefore

4U − 2ϕ∂ϕU = T . (6.21)

Now using the relation (6.17) we can re-write the action (6.19) as

S =

∫
d4x
√
−g
[

1

2
ϕR(g) +

3

4

1

ϕ
(∇ϕ)2 − U(ϕ)

]
+

∫
d4xLm(gab,Ψm) . (6.22)

We note that there are no second-order covariant derivatives of f ′, and hence the Palatini formalism
is sometimes known as a first-order approach [204].

These two approaches give rise to different field equations for a non-linear Lagrangian density in
R, while for the GR action they are identical with each other.
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6.1.3 The Metric-affine Formalism

The matter part of the action (6.15) depends on the affine connection and hence introduces a torsion
associated with matter. If this connection has its standard geometrical meaning the resulting theory
will be a metric-affine theory of gravity [205]. The field equations (6.11) can be written in the
following form:

Gab = T̃mab + TRab = Tab , (6.23)

where the effective EMT of standard matter is given by

T̃mab ≡
Tmab
f ′

, (6.24)

and the curvature fluid contribution to the total EMT is

TRab ≡
1

f ′
[
gab(f −Rf ′)/2 +∇a∇bf ′ − gab∇2f ′

]
. (6.25)

Since ∇aGab = 0 for the total fluid, it follows that the total energy-momentum is also conserved:

∇aTab = 0 and for the standard matter ∇aT (m)
ab = 0. It is straightforward to see that

∇aTRab =
f ′′

f ′2
T̃mab∇aR , (6.26)

∇aT̃mab =
∇aT (m)

ab

f ′
− f ′′

f ′2
T

(m)
ab ∇

aR . (6.27)

This theory is not yet a well explored one. But it is important to note once more that metric-
affine gravity is a modification of GR that follows its geometrical spirit but relaxes its simplifying
assumptions [205].

6.2 The Dynamics of f(R) Gravity

The effective total energy-momentum tensor described by

Tab = ρuaub + phab + 2q(aub) + πab (6.28)

sources the following thermodynamical quantities:

ρ = ρ̃m + ρR ,

p = p̃m + pR ,

qa = q̃ma + qRa ,

πab = π̃mab + πRab, (6.29)

with

ρ̃m =
ρm
f ′
, p̃m =

pm
f ′
, q̃ma =

qa
f ′
, π̃mab =

πmab
f ′

(6.30)

representing the effective energy density, isotropic pressure, heat flux and anisotropic pressure terms
for standard matter. In a perfect fluid the quantities qma and πmab both vanish in an FLRW background
and the effective background energy density and isotropic pressure of the curvature fluid are given
by

ρR =
1

f ′

[
1

2
(Rf ′ − f)−Θf ′′Ṙ

]
, (6.31)

pR =
1

f ′

[
1

2
(f −Rf ′) + f ′′R̈+ f ′′′Ṙ2 +

2

3
Θf ′′Ṙ

]
, (6.32)
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with an effective equation of state [199]

wR ≡ −
3f − 3Rf ′ + 6f ′′R̈+ 6f ′′Ṙ2 + 4Θf ′′Ṙ

3f − 3Rf ′ + 6Θf ′′Ṙ
. (6.33)

There are also other ways of defining the effective equation of state wR in a way that it mimics the
equation of state of dark energy [206–210]. The energy conservation equations for the matter and
curvature-fluid components read

ρ̇m = −Θ(ρm + pm), (6.34)

ρ̇R = −Θ(ρR + pR) + ρm
f ′′Ṙ

f ′2
, (6.35)

thus showing energy exchange between the two components due to the coupling between these
equations. The Friedmann and Raychaudhuri equations for these theories are generalised as

Θ2 = 3(ρ̃m + ρR)− 3
2 R̃ = 3

ρm
f ′

+
3

2

(
R− f

f ′

)
− 3ΘṘ

f ′′

f ′
− 9k

a2
, (6.36)

Θ̇ = − 1
3Θ2 − 1

2 (ρ̃m + 3p̃m)− 1
2 (ρR + 3pR) , (6.37)

= −1

3
Θ2 − 1

2f ′

(
2ρm − f − 2ΘṘf ′′

)
. (6.38)

The generalised Friedmann equations in a flat FLRW read

3f ′H2 = (ρ+ 3p) +
1

2
(f ′R− f)− 3Hḟ ′ , (6.39)

−2f ′Ḣ = (ρ+ 4p) + f̈ ′ −Hḟ ′ . (6.40)

The Ricci scalar is given by

R = 6

(
ä

a
+
ȧ2

a2
+

k

a2

)
= 6

(
Ḣ + 2H2 +

k

a2

)
, (6.41)

whereas the 3-Ricci curvature scalar is

R̃ = 2

(
ρ− 1

3
Θ2

)
= 6k/a2 . (6.42)

6.3 The Viability of f(R) Models

Over the last few decades, several models of f(R) gravitation have been proposed [174,200,211–217].
However, most of these models suffer from a number of problems such as matter instability [218–220],
the instability of cosmological perturbations [189,190,221], the absence of the matter era [222], and
the inability to satisfy local gravity constraints [55]. Amendola et al [223] derived some conditions
for cosmological viability of f(R) models. Viable f(R) dark energy models need to satisfy [200,204,
215,224]:

1. Avoiding the appearance of ghost particles. This corresponds to putting the constraint

f ′ > 0 ∀R (6.43)

to the f(R) model in question. This ensures that the graviton energy is positive and hence
that gravity remain attractive [215].
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2. Avoiding the matter instability. This requires the condition

f ′′ > 0 ∀R� f ′′ . (6.44)

Any violation of this condition gives rise to the negative mass squared (M2 < 0, M being a
characteristic mass scale) and tachyonic scalaron field.

3. The early universe was governed by a GR-like law of gravitation (as evidenced by BBN and
CMB constraints), i.e.,

lim
R→∞

f

R
= 1⇒ f ′ < 1 , (6.45)

implying together with Condition (2) that f ′ must monotonically asymptote to 1 from below.

4. A less stringent condition is also that

|f ′ − 1| � 1 , (6.46)

at recent epochs but this is not a necessary condition for the ongoing cosmic acceleration.

5. For a stable late-time de Sitter-type expansion

f ′

f ′′
> R ∀R > 0 . (6.47)

6.4 Some f(R) Models

In this section we briefly discuss some of the most common models of f(R) gravitation that have
gained some level of attention in recent years.

6.4.1 R2 Model

The first model of inflation proposed by Starobinsky [225] showed that R2 corrections in the standard
GR gravitational action of the form

f = R+ βR2, (β > 0) (6.48)

where β ≡ 1
6M2 can lead to accelerated expansion. In the slow-roll approximation for inflation, the

the inflaton field φ�M and the slow-roll parameter is given by

ε ≡ − Ḣ

H2
' 1

36βH2
. (6.49)

The number of e-foldings in this model can be given by

N ' 1

2ε
, (6.50)

whereas reheating around φ ' 0 results in the inflaton potential

V (φ) ' 1

12β
φ2 . (6.51)

This model is very consistent with the thermal temperature anisotropies observed in the CMB
and thus it can be an alternative to the scalar field models of inflation [226].

1β = 1 has been used for this figure.
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Figure 6.1: Scalar field rolling down to the minimum of the potential well equivalent1to the R+βR2.

6.4.2 1/Rn Model

The idea that the cosmic acceleration today may have originated from some modified theory of
gravity have been proposed by Carroll et al [227], as one of the earliest geometrical alternatives to
dark energy by introducing a Lagrangian of the form

f = R− β2(n+1)

Rn
, (β > 0, n > 0) , (6.52)

where β here is a constant with dimensions of mass. The total effective fluid is due to matter
instability and hence the accelerated expansion requires

wR = −1 +
2(n+ 2)

3(2n+ 1)(n+ 1)
< −1

3
, (6.53)

and can be achieved with carefully chosen values of β and n.There is a general understanding that
this model does not possess a standard matter-dominated epoch because of a large coupling between
dark energy and dark matter [177,189,190,228].

6.4.3 Rn Models

Among the most widely studied f(R) models of gravitation are the power-law f(R) models whose
Lagrangian densities take the form

f = βRn , (6.54)

where β = β(n) is a running coupling constant chosen in such a way that β = 1 for GR, i.e., for
n = 1. This model has been used to obtain spherically symmetric solutions for galaxy clustering, and
it is shown that the rotation curves of spiral galaxies shows a good agreement with the observational
data at n=1.7 [229].

6.4.4 αR + βRn Model

This is a class of models whose Lagrangian densities look like

f = αR+ βRn . (6.55)
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It is considered as a generalisation of both the Rn and the GR actions since α = 0 reduces to the Rn

and α = 1, β = 0 reduces to GR. Although this toy model is currently used a lot as an alternative
solution to inflationary and dark energy cosmology, it is known to violate the f ′′ > 0 condition, and
is not considered a viable candidate [55,227].

6.4.5 Starobinsky Models

These are models of the form [230]

f = R+ βRc

[(
1 +R2/R2

c

)−n − 1
]
, (β > 0, n > 0) , (6.56)

with positive free parameters β, n. Rc roughly corresponding to the order of the curvature scale
of the present-day value, R0. An interesting aspect of these models is that in the limiting extreme
curvature regimes,

lim
R/Rc→0

f = R , (6.57)

lim
R/Rc→∞

f ' R− βRc ≡ R− 2Λ . (6.58)

Thus at low-curvature regimes, there is no existence of the cosmological constant in the model
whereas there is an effective cosmological constant term Λ ≡ βRc/2 that can mimic dark energy at
late times.

Starobinsky shows that for some limiting values of n and R/Rc � 1 in the de Sitter solution
R = const., one can obtain a cosmic expansion history indistinguishable from that can be obtained
in the Concordance Model.

6.4.6 Hu-Sawicki Models

Hu and Sawicki [231] proposed a Lagrangian density of the form

f = R−
β1m

2
(
R/m2

)n
1 + β2 (R/m2)

n , (6.59)

where β1, β2 and n are the free parameters of the model and

m2 =
ρm
3
, (6.60)

is a curvature scale that depends on the value of the matter energy density. It is interesting to note
that this model also introduces no cosmological constant term for low-curvature regimes, since

lim
R/m2→0

f = R ,

whereas for high curvature regimes, one can recover an effective cosmological constant at present
epoch because in this limiting case

lim
R/m2→∞

f ' R− β1

β2
m2 +

β1

β2
2

m2

(
R

m2

)−n
.

These models have more recently shown growing popularity as viable f(R) gravitational solutions.
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6.4.7 Appleby-Battye Models

These are models that can be parametrised as [232,233]

f = R+Rc log
[
e−β +

(
1− e−β

)
e−R/Rc

]
, (6.61)

where β > 0 is a dimensionless constant and Rc scales as the present-day value of Λ. These models,
like the Starobinsky and Hu-Sawicki models, can be shown to mimic ΛCDM for large R and avoid
the cosmological constant in the limiting R = 0 regime

lim
R/Rc→0

f = R , (6.62)

lim
R/Rc→∞

f ' R− βRc . (6.63)

6.5 Scalar-Tensor Representation

Before we close this review chapter, it is worth pointing out that there exists an equivalence between
f(R) and Scalar-Tensor theories of gravity [204, 234–237]. If one replaces the f(R) action with one
containing a standard matter non-minimally coupled with a classical scalar field φ defined as

φ ≡ f ′ − 1 , (6.64)

the resulting action can be written as

Aφ =
1

2

∫
d4x
√
−g [f(φ(R)) + Lm], (6.65)

and the corresponding field equations can be thought of as the field equations of a classical canonical
scalar field φ with a potential V (φ) given by

(1 + φ)Gab = Tmab +
1

2
gab(f − (1 + φ)R) +∇b∇aφ− gab∇c∇cφ . (6.66)

In this representation, the scalar field φ will have an EMT given by

Tφab =
1

1 + φ

[
1

2
gab(f − (1 + φ)R) +∇b∇aφ− gab∇c∇cφ

]
, (6.67)

and satisfies the Klein-Gordon equation (KGE)

∇a∇aφ−
1

3
[2f − (1 + φ)R+ (ρm − 3pm)] = 0 . (6.68)

Defining the scalar field potential via the equation

dV

dφ
≡ 1

3
[2f − (1 + φ)R] =

dV

dR

dR

dφ
, (6.69)

and using the trace equation
1

3
T aa =

T

3
=

1

3
(ρm − 3pm) , (6.70)

the KGE can be rewritten as

∇a∇aφ−
dV

dφ
− 1

3
(ρm − 3pm) = 0 . (6.71)
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The scalar potential evolves according to

dV

dR
=

1

3
[2f − (1 + φ)R] f ′′ . (6.72)

Using this correspondence, one can recast the evolution equations in f(R) gravity into respective
cosmological equations in Scalar-Tensor theories, and vice versa. For example, in [52], we used
the equivalence between f(R) gravity and the Brans-Dicke subclass of scalar-tensor theories, and
treating the Chaplygin gas as a scalar field model in a universe without conventional matter forms,
we reconstructed the Lagrangian densities for the f(R) gravitational action.



Chapter 7

Irrotational-fluid Cosmologies in f (R) Gravity

Consistency is contrary to nature,
contrary to life. The only
completely consistent people are
dead.

Aldous Huxley

As an application of the preceding chapter, several classes of cosmological models with irrota-
tional fluid flows and where the underlying theory of gravitation is f(R)-gravity are investigated
in this chapter. Using the 1 + 3 covariant decomposition formalism, the integrability conditions
describing a consistent evolution of the linearized field equations of shear-free dust universes are
presented. We also derive consistency relations of models with more severe constraints, such as non-
expanding spacetimes as well as those spacetimes with vanishing gravito-magnetic or gravito-electric
components of the Weyl tensor.

In order to understand the dynamics of nonlinear fluid flows in f(R) theories, it is important
to understand the relationship between their Newtonian and general relativistic limits. This is rele-
vant both in the physics of gravitational collapse and the late nonlinear stages of cosmic structure
formation [108, 238–242]. The differential properties of time-like geodesics describe the fluid flows
in cosmology [31, 191, 243]. The expansion Θ, shear (distortion) σab, rotation (vorticity) ωa, and
acceleration Aa of the four-velocity field ua tangent to the fluid flowlines describe kinematics of such
fluid flows. The generalised field equations, i.e, governing the fluid flows, are obtained by contracting
the Ricci identities along and orthogonal to ua.

7.1 The 1 + 3 Covariant Description

The covariant approach in cosmology is an excellent framework for studying cosmological per-
turbations, and has been primarily developed to analyze the evolution of linear perturbations of
Friedmann-Lemâıtre-Robertson-Walker (FLRW) models in general relativity (GR) [244–246]. The
formalism is based on threading spacetimes via covariantly defined variables with respect to par-
tial frames. A fundamental observer slices spacetime into time and space. Unlike in the standard
gauge-invariant perturbation formalism (based on the foliation of a background spacetime with hy-
persurfaces and perturbing away from it), the covariant approach starts from the theory and reduces
to linearities in a particular background and has the main advantage that no unphysical gauge modes
appear here.
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In the 1 + 3 covariant decomposition, the four-velocity ua defines the covariant time derivative
for any tensor Sa..bc..d along an observer’s worldlines:

Ṡa..bc..d = ue∇eSa..bc..d . (7.1)

The projection tensor into the tangent 3-spaces orthogonal to ua is given by

hab ≡ gab + uaub , (7.2)

and is used to define the fully orthogonally projected covariant derivative for any tensor Sa..bc..d:

∇̃eSa..bc..d = hafh
p
c...h

b
gh
q
dh
r
e∇rSf..gp..q , (7.3)

with total projection on all the free indices. The orthogonally projected symmetric trace-free (PSTF)
part of vectors and rank-2 tensors is defined as

V 〈a〉 = habV
b , S〈ab〉 =

[
h(a

ch
b)
d − 1

3h
abhcd

]
Scd , (7.4)

and the volume element for the rest spaces orthogonal to ua is given by [31,247,248]

εabc = udηdabc = −
√
|g|δ0

[a δ
1
bδ

2
cδ

3
d]u

d ⇒ εabc = ε[abc], εabcu
c = 0, (7.5)

where ηabcd is the 4-dimensional volume element with the properties

ηabcd = η[abcd] = 2εab[cud] − 2u[aεb]cd. (7.6)

We define the covariant spatial divergence and curl of vectors and rank-2 tensors as [249]

divV = ∇̃aVa , (divS)a = ∇̃bSab , (7.7)

curlVa = εabc∇̃bV c , curlSab = εcd(a∇̃cSb)d . (7.8)

The first covariant derivative of ua can be split into its irreducible parts as

∇aub = −Aaub + 1
3habΘ + σab + εabcω

c, (7.9)

where Aa ≡ u̇a, Θ ≡ ∇̃aua, σab ≡ ∇̃〈aub〉 and ωa ≡ εabc∇̃buc. The Weyl conformal curvature tensor
Cabcd is defined as [31,248]

Cabcd = Rabcd − 2g[a
[cR

b]
d] +

R

3
g[a

[cg
b]
d] (7.10)

and can be split into its “electric” and “magnetic” parts, respectively, as

Eab ≡ Cagbhuguh, Hab = 1
2ηae

ghCghbdu
eud. (7.11)

Eab and Hab represent the free gravitational field [31], enabling gravitational action at a distance,
i.e, tidal forces and gravitational waves, and influence the motion of matter and radiation through
the geodesic deviation for timelike and null vector fields, respectively.

Cosmological quantities that vanish in the background spacetime are considered to be first-
order and gauge-invariant by virtue of the Stewart-Walker lemma [111]. In a multi-component fluid
universe filled with standard matter fields (dust, radiation, etc) and curvature contributions, the total
energy density, isotropic and anisotropic pressures and heat flux are as given in Eq. (6.29) [192]
where the linearised thermodynamic quantities for the curvature fluid component are defined as

ρR =
1

f ′

[
1
2 (Rf ′ − f)−Θf ′′Ṙ+ f ′′∇̃2R

]
, (7.12)
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pR =
1

f ′

[
1
2 (f −Rf ′) + f ′′R̈+ f ′′′Ṙ2 + 2

3

(
Θf ′′Ṙ− f ′′∇̃2R

)]
, (7.13)

qRa = − 1

f ′

[
f ′′′Ṙ∇̃aR+ f ′′∇̃aṘ− 1

3f
′′Θ∇̃aR

]
, (7.14)

πRab =
f ′′

f ′

[
∇̃〈a∇̃b〉R− σabṘ

]
. (7.15)

Applying the 1 + 3 covariant decomposition on the Bianchi and Ricci identities

∇[aRbc]d
e = 0 , (∇a∇b −∇b∇a)uc = Rabc

dud (7.16)

for the total fluid 4-velocity ua, the following linearised propagation (evolution) and constraint
equations are obtained [192,240]:

ρ̇m = −(ρm + pm)Θ− ∇̃aqma , (7.17)

ρ̇R = −(ρR + pR)Θ +
ρmf

′′

f ′2
Ṙ− ∇̃aqRa , (7.18)

Θ̇ = − 1
3Θ2 − 1

2 (ρ+ 3p) + ∇̃aAa , (7.19)

q̇ma = − 4
3Θqma − ρmAa , (7.20)

q̇Ra = − 4
3ΘqRa +

ρmf
′′

f ′2
∇̃aR− ∇̃apR − ∇̃bπRab , (7.21)

ω̇a = − 2
3Θωa − 1

2εabc∇̃
bAc , (7.22)

σ̇ab = − 2
3Θσab − Eab + 1

2πab + ∇̃〈aAb〉 , (7.23)

Ėab + 1
2 π̇ab = εcd〈a∇̃cHd

b〉 −ΘEab − 1
2 (ρ+ p)σab − 1

2∇̃〈aqb〉 −
1
6Θπab , (7.24)

Ḣab = −ΘHab − εcd〈a∇̃cEdb〉 + 1
2εcd〈a∇̃

cπ d
b〉 , (7.25)

(C1)a := ∇̃bσab − 2
3∇̃aΘ + εabc∇̃bωc + qa = 0 , (7.26)

(C2)ab := εcd(a∇̃cσb)d + ∇̃〈aωb〉 −Hab = 0 , (7.27)

(C3)a := ∇̃bHab + (ρ+ p)ωa + 1
2εabc∇̃

bqc = 0 , (7.28)

(C4)a := ∇̃bEab + 1
2∇̃

bπab − 1
3∇̃aρ+ 1

3Θqa = 0 , (7.29)

(C5) := ∇̃aωa = 0 , (7.30)

(C6)a := ∇̃apm + (ρm + pm)Aa = 0 . (7.31)

The evolution equations propagate consistent initial data on some initial (t = t0) hypersurface S0

uniquely along the (generally future-directed) reference timelike congruence whereas the constraints
restrict the initial data to be specified. For consistency, the constraint equations must remain
satisfied on any hypersurface St for all comoving time t .

7.2 Irrotational Spacetimes

Consistency analyses of the field equations for different models where integrability conditions, com-
binations of the Bianchi identities and their consequences, arise from imposing external restrictions
have been made over the years [240, 241, 249–253]. We are going to explore some [sub]classes of
irrotational cosmological models and show how these models put restrictions on the possible forms
of the underlying f(R) gravitational theory.
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Irrotational fluid flows admit geodesic timelike congruences with vanishing vorticity

ωa = 0 (7.32)

and characterise potential cosmological models for the late universe and gravitational collapse. For
a barotropic irrotational matter fluid with the equation of state pm = wρm, the evolution equa-
tions(7.17)-(7.25) for this class of spacetimes can be rewritten as:

ρ̇m = −(1 + w)ρmΘ− ∇̃aqma , (7.33)

ρ̇R = −(ρR + pR)Θ +
ρmf

′′

f ′2
Ṙ− ∇̃aqRa , (7.34)

Θ̇ = − 1
3Θ2 − 1

2f ′ (1 + 3w)ρm − 1
2 (ρR + 3pR) + ∇̃aAa , (7.35)

q̇ma = − 4
3Θqma − ρmAa , (7.36)

q̇Ra = − 4
3ΘqRa +

ρmf
′′

f ′2
∇̃aR− ∇̃apR − ∇̃bπRab , (7.37)

σ̇ab = − 2
3Θσab − Eab + 1

2πab + ∇̃〈aAb〉 , (7.38)

Ėab + 1
2 π̇ab = εcd〈a∇̃cHd

b〉 −ΘEab − 1
2 (ρ+ p)σab − 1

2∇̃〈aqb〉 −
1
6Θπab , (7.39)

Ḣab = −ΘHab − εcd〈a∇̃cEdb〉 + 1
2εcd〈a∇̃

cπ d
b〉 , (7.40)

and are constrained by the following equations:

(C1∗)a := ∇̃bσab − 2
3∇̃aΘ + qa = 0 , (7.41)

(C2∗)ab := εcd(a∇̃cσb)d −Hab = 0 , (7.42)

(C3∗)a := ∇̃bHab + 1
2εabc∇̃

bqc = 0 , (7.43)

(C4∗)a := ∇̃bEab + 1
2∇̃

bπab − 1
3∇̃aρ+ 1

3Θqa = 0 , (7.44)

(C5∗)a := w∇̃aρm + (1 + w)ρmAa = 0 , (7.45)

(C6∗)a := εabc∇̃bAc = 0 =⇒ Aa = ∇̃aψ for some scalar ψ . (7.46)

The new constraint(7.46) arises as a result of our irrotational restriction. To check for temporal
consistency, we propagate this constraint to obtain(

εabc∇̃bAc
).

= 0 , (7.47)

which is an identity. On the other hand, taking the curl of this constraint, one obtains

curl(curl(Aa)) = ∇̃a
(
∇̃bAb

)
− ∇̃2Aa + 2

3

(
ρ− 1

3Θ2
)
Aa (7.48)

= ∇̃a
(
∇̃b∇̃bψ

)
− ∇̃2∇̃aψ + 2

3

(
ρ− 1

3Θ2
)
∇̃aψ (7.49)

= ∇̃a
(
∇̃2ψ

)
− ∇̃2

(
∇̃aψ

)
+ 2

3

(
ρ− 1

3Θ2
)
∇̃aψ = 0 , (7.50)

which is another identity by virtue of Eq’s. (C.4) and(C.12).

7.2.1 Dust Spacetimes

Pure dust spacetimes are characterised by

w = 0 = pm , qma = 0 = Aa , π
m
ab = 0 , (7.51)
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and the linearised evolution and constraint equations read:

ρ̇d = −ρdΘ , (7.52)

ρ̇R = −(ρR + pR)Θ +
ρdf
′′

f ′2
Ṙ− ∇̃aqRa , (7.53)

Θ̇ = − 1
3Θ2 − 1

2f ′ ρd − 1
2 (ρR + 3pR) , (7.54)

q̇Ra = − 4
3ΘqRa +

ρdf
′′

f ′2
∇̃aR− ∇̃apR − ∇̃bπRab , (7.55)

σ̇ab = − 2
3Θσab − Eab + 1

2π
R
ab , (7.56)

Ėab + 1
2 π̇

R
ab = εcd〈a∇̃cHd

b〉 −ΘEab − 1
2

(
ρd
f ′

+ ρR + pR

)
σab − 1

2∇̃〈aq
R
b〉 − 1

6ΘπRab , (7.57)

Ḣab = −ΘHab − εcd〈a∇̃cEdb〉 + 1
2εcd〈a∇̃

cπR d
b〉 , (7.58)

(C1d)a := ∇̃bσab − 2
3∇̃aΘ + qRa = 0 , (7.59)

(C2d)ab := εcd(a∇̃cσb)d −Hab = 0 , (7.60)

(C3d)a := ∇̃bHab + 1
2εabc∇̃

bqcR = 0 , (7.61)

(C4d)a := ∇̃bEab + 1
2∇̃

bπRab − 1
3f ′ ∇̃aρm − 1

3∇̃aρR + 1
3ΘqRa = 0 . (7.62)

Notice here that no new constraints appear.

7.2.1.1 Shear-free Spacetimes

Over the years, the role of shear in GR and the special nature of shear-free cases in particular have
been studied [204, 243, 254–256]. Gödel showed [254] that shear-free time-like geodesics of some
spatially homogeneous universes cannot expand and rotate simultaneously and this result was later
generalized by Ellis [243] to include inhomogeneous cases of shear-free time-like geodesics. Goldberg
and Sachs, on the other hand, showed [255] that shear-free null geodesic congruences in vacuo re-
quire an algebraically special Weyl tensor, a result later generalized by Robinson and Schild [256]
to include non-vanishing, but special, forms of the Ricci tensor.

An interesting aspect of these shear-free solutions is that they do not hold in Newtonian grav-
itation theory [257–259], although Newtonian theory is a limiting case of GR under special cir-
cumstances, namely at low-speed relative motion of matter with no gravito-magnetic effects, i.e,
vanishing magnetic part of the Weyl tensor, and hence no gravitational waves. Now if we turn off
the shear, i.e., if we set

σab = 0 (7.63)

in the above propagation equations, we get Eq.(7.56) turning into a new constraint

(C5d)ab := Eab − 1
2π

R
ab = 0 , (7.64)

the temporal and spatial consistencies of which have to be checked. It is interesting to note here
that, unlike for shear-free dust spacetimes in GR, the electric component of the Weyl tensor does not
vanish because of the non-vanishing contribution of the anisotropic pressure πRab. However, we see
from Eq. (7.60) that Hab identically vanishes, thus resulting in another constraint from Eq. (7.58):

(C6d)ab := εcd〈a∇̃cEdb〉 − 1
2εcd〈a∇̃

cπd db〉 = 0 , (7.65)

which is an identity by virtue of Eq. (7.64). From(7.61), we see that qRa is irrotational, and therefore
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can be written as the gradient of a scalar:

qRa = ∇̃aφ . (7.66)

However, we already know from Eq. (7.59) that qRa = 2
3∇̃aΘ. One can therefore conclude that in

irrotational and shear-free dust spacetimes,

φ = 2
3Θ + C , (7.67)

for some spatially constant scalar C. We can rewrite this dynamical constraint on the expansion
history, using Eq. (7.14) in (7.66), as

2
3f
′∇̃aΘ +

(
f ′′Ṙ− 1

3Θf ′′
)
∇̃aR+ f ′′∇̃aṘ = 0 . (7.68)

For GR, i.e., f = R , f ′ = 1 , f ′′ = f ′′′ = 0 , we obtain a spatially constant expansion since

∇̃aΘ = 0 , (7.69)

which is trivially true for the class of models under consideration. Now to check for temporal
consistency of Eq. (7.64), we take the time derivative of both sides of this equation to obtain the
relation

π̇Rab + 2
3ΘπRab − 1

2∇̃〈aq
R
b〉 = 0 , (7.70)

which, using qRa and πRab as defined by Eq’s. (7.14) and(7.15), can be rewritten as[
3

2

(
f ′′′

f ′
− f ′′2

f ′2

)
Ṙ− Θf ′′

6f ′

]
∇̃〈a∇̃b〉R+ 3f ′′

2f ′ ∇̃〈a∇̃b〉Ṙ = 0 . (7.71)

Thus irrotational shear-free dust spacetimes governed by f(R) gravitational physics evolve consis-
tently if Eq. (7.71) is satisfied. Note that Eq. (7.71) becomes an identity in the GR limit. Now by
taking the curl of the above equation, we obtain[

3

2

(
f ′′′

f ′
− f ′′2

f ′2

)
Ṙ− Θf ′′

6f ′

]
εcda∇̃c∇̃〈b∇̃d〉R+ 3f ′′

2f ′ εcda∇̃c∇̃〈b∇̃d〉Ṙ = 0 , (7.72)

which is an identity by virtue of Eq. (C.3). Thus the temporal consistency condition given by
Eq. (7.71) is satisfied on any initial hypersurface. Moreover, from Eq’s. (7.65) and (7.72), we can
conclude that all irrotational shear-free dust spacetimes in f(R)-gravity are spatially consistent.

A further restriction one can make for such shear-free spacetimes is turning off Eab. This is a case
of vanishing Weyl tensor (since Hab = 0 by virtue of Eq. (7.60)), resulting in a locally conformally
flat metric. For such a class of cosmological models Eq. (7.57) changes to the (linearised) constraint

∇̃〈aqRb〉 = 0 =
1

f ′

[(
Ṙf ′′′ − 1

3Θf ′′
)
∇̃〈a∇̃b〉R+ f ′′∇̃〈a∇̃b〉Ṙ

]
. (7.73)

Eq. (7.56) implies

πRab = 0 =
f ′′

f ′
∇̃〈a∇̃b〉R , (7.74)

which, for f ′′ 6= 0, leads to the conclusion that

∇̃〈a∇̃b〉R = 0 . (7.75)

Using this and the relation (C.1), we see that Eq. (7.73) becomes an identity. Thus the linearised
f(R) field equations in irrotational and shear-free dust spacetimes with vanishing Weyl tensor are
consistent.
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7.2.1.2 Dust Solutions with divH = 0

The vanishing of the divergence of a non-zero Hab is a necessary condition for gravitational radiation
[260–262]. Here we analyse the consistency of divergence-free GM (∇̃bHab = 0) scenarios in an effort
to understand the nature of gravitationally radiating irrotational dust spacetimes. We see that there
are no new constraints arising as a result of imposing a divergence-free Hab to the field equations,
but as in the shear-free case discussed above, Eq. (7.61) implies that qRa satisfies Eq. (7.66) whereas
Eq. (7.67) generalises to

∇̃aφ = 2
3∇̃aΘ− ∇̃bσab . (7.76)

Another interesting subclass of these models arises if both Hab and Eab are divergence-free.
Described as “purely radiative” dust spacetimes [263], such models should satisfy the additional
modified constraint

∇̃aρm + f ′∇̃aρR + f ′ΘqRa −
3f ′

2 ∇̃
bπRab = 0 (7.77)

as a result of Eq. (7.62). One can see from this result that purely radiative irrotational dust space-
times in GR where f = R should be spatially homogeneous with ∇̃aρm = 0.

The so-called Newtonian-like spacetimes are described by the vanishing of the GM component
of the Weyl tensor [264]. Thus if the Weyl tensor is to have a purely GE component, then we notice
from Eq. (7.60) that a curl-free shear is required, i.e.,

Hab = 0 =⇒ εcd(a∇̃cσb)d = 0 , (7.78)

and the constraint(7.65) is obtained from Eq. (7.58). Although such models are known to be of
limited applicability in GR-based cosmology, there are some interesting features in f(R) cosmologies.

7.2.1.3 Purely Gravito-magnetic Spacetimes

These are models with vanishing gravito-electric component of the Weyl tensor and are referred to
as anti-Newtonian1 models because they are considered to be the most extreme of non-Newtonian
gravitational models [264]. The only anti-Newtonian solutions in GR are the FLRW spacetimes
[241,264], but a recent covariant consistency analysis [267] has shown that linearised anti-Newtonian
universes are permitted by some models of f(R) gravity.

As can be seen from the set of equations(7.52)-(7.62), no new constraint equations arise as a
result of vanishing Eab. This is because of the non-vanishing of πRab for generic f(R) models; but in
the GR limiting case Eq. (7.57) would have turned into a new constraint since πRab = 0.

7.2.2 Non-expanding Spacetimes

In this section we explore theoretical cases where the background spacetime is not expanding, i.e.,
Θ = 0 to analyse the kind of [in]consistencies one would obtain if a universe with such properties
existed. In this very special case, the linearised evolution equations (7.33)-(7.40) become

ρ̇m = −∇̃aqma , (7.79)

q̇ma =
w

1 + w
∇̃aρm , (7.80)

ρ̇R =
ρmf

′′

f ′2
Ṙ− ∇̃aqRa , (7.81)

q̇Ra =
ρmf

′′

f ′2
∇̃aR− ∇̃apR − ∇̃bπRab , (7.82)

σ̇ab = −Eab + 1
2πab + ∇̃〈aAb〉 , (7.83)

Ėab + 1
2 π̇ab = εcd〈a∇̃cHd

b〉 − 1
2 (ρ+ p)σab − 1

2∇̃〈aqb〉 , (7.84)

1An earlier use of the word ‘anti-Newtonian’ exists [265,266], where the word is used to refer to an earlier stage of
the Universe when the dimension of irregularity exceeds the cosmological (Hubble) horizon.
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Ḣab = −εcd〈a∇̃cEdb〉 + 1
2εcd〈a∇̃

cπ d
b〉 , (7.85)

whereas the revised constraint equations are given by

(C1s)a := ∇̃bσab + qa = 0 , (7.86)

(C2s)ab := εcd(a∇̃cσb)d −Hab = 0 , (7.87)

(C3s)a := ∇̃bHab + 1
2εabc∇̃

bqc = 0 , (7.88)

(C4s)a := ∇̃bEab + 1
2∇̃

bπab − 1
3∇̃aρ = 0 , (7.89)

(C5s)a := w∇̃aρm + (1 + w)ρmAa = 0 , (7.90)

(C6s) := ∇̃aAa − 1
2f ′ (1 + 3w)ρm − 1

2 (ρR + 3pR) = 0 . (7.91)

Eq. (7.80) has been obtained by using Eq. (7.45) into Eq. (7.36) whereas Eq. (7.91) arises from Eq.
(7.35), showing that in the non-expanding case the Raychaudhuri (acceleration) equation changes
into a constraint.

7.2.2.1 Dust Solutions

In the case of dust
Aa = 0 = qma , (7.92)

the active gravitational mass ρ + 3p = 0, because of Eq. (7.91). Since Eq. (7.79) implies ρd(t) =
constant, we notice that

ρR + 3pR = const (7.93)

as well. From the definitions of Eqs. (7.12) and (7.13) for ρR and pR and the trace equation

3f ′′R̈+ 3Ṙ2f ′′′ + 3ΘṘf ′′ − 3f ′′∇̃2R−Rf ′ + 2f − ρm + 3pm = 0 , (7.94)

we conclude that Eq. (7.93) implies2

f − 2f ′′∇̃2R = const . (7.95)

Thus any nonrotating and noexpanding dust spacetime in f(R) cosmology should have a gravita-
tional Lagrangian that satisfies Eq. (7.95).

7.2.2.2 Shear-free Solutions

As mentioned in the previous subsection, shear-free assumptions in cosmology result in many inter-
esting and at times intriguing properties. Despite the limited applicability of such assumptions in
standard cosmology - not least because the Universe is known, beyond any reasonable doubt, to be
expanding - it is interesting to explore the different mathematical constraints one obtains if f(R) is
the basic gravitational physics behind such cosmology. If we make the shear-free assumption, the
propagation equation (7.83) turns into the constraint

(C7s)ab := Eab − 1
2πab − ∇̃〈aAb〉 , (7.96)

whereas the constraint equations Eqs. (7.86) and(7.87) imply qa = 0 and Hab = 0. This means that
Eq. (7.84) reduces to

Ėab + 1
2 π̇ab = 0 . (7.97)

2In GR, where f(R) = R, this translates into stating the obvious result that a constant ρd implies a constant R
since f ′′ = 0.
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If we differentiate the new constraint equation (7.96) with respect to cosmic time, and solve simul-
taneously with Eq. (7.97) we obtain

Ėab − (∇̃〈aAb〉). = 0 . (7.98)

On the other hand, if we take the gradient of Eq. (7.96) and solve simultaneously with Eq. (7.89),
we obtain

∇̃bEab − 1
6∇̃aρ−

1
2∇̃

b∇̃〈aAb〉 = 0 . (7.99)

Moreover, the curl condition of Eq. (7.96) is identically satisfied by virtue of Eq’s. (7.85),(7.46)
and(C.3).

If we consider the special case of dust

Aa = 0 = qma , πmab = 0 , (7.100)

in this shear-free setting, then Eq. (7.98) implies Eab = const in time. However, since Eab is related
to πRab via Eq. (7.96), then πRab = const as well. This dictates that, because of Eq. (7.15), the

term f ′′

f ′ ∇̃〈a∇̃b〉R, be constant in cosmic time. It is also no coincidence that Eq. (7.95) is recovered

for this subclass as a result of Eq. (7.91). Another interesting point to note about non-expanding,
shear-free dust spacetimes is that since qa = 0 =⇒ qRa = 0, we are dictated by Eq. (7.14) to
conclude (

f ′′∇̃aR
).

= 0 , (7.101)

thus putting a constraint on the form of the viable f(R) gravitational action that describes such
spacetimes. We notice that Eq. (7.101) is an identity in GR.

A completely general covariant analysis of irrotational fluids in f(R) cosmology requires taking
nonlinear effects into account. In the case of purely radiative irrotational dust spacetimes, the consis-
tency requirement implies that such models need not be homogeneous, unlike their GR counterparts.

The introduction of integrability conditions in f(R) gravitational models, and their conservations
should these conditions be constraints, provides useful insight into the forms of the f(R) action. It
also helps us explore the existence and nature of some universe models that would otherwise not
exist under the stricter requirement of the action involving the EH Lagrangian of GR.



Chapter 8

Chaplygin-gas Solutions of f (R) Gravity

You cannot apply mathematics as
long as words still becloud reality.

Hermann Weyl

In the scramble for the understanding of the nature of dark matter and dark energy, it has recently
been suggested that the change of behavior of the missing energy density might be regulated by the
change in the equation of state of the background fluid instead of the form of the potential [268,269].
The Chaplygin Gas (CG) model in cosmology is one of the most profound candidates for this
suggestion. For quite sometime now, the CG model has been considered as another alternative to the
cosmological FLRW universe models with a perfect fluid equation of state with a negative pressure
[270, 271]. The model provides an interesting features of the cosmic expansion history consistent
with a smooth transition between an inflationary phase, the matter-dominated decelerating era, and
then late-time accelerated de Sitter phase of cosmic expansion can be achieved [50, 272, 273]; the
expansion of the Universe as alternative to the cosmological constant [274]. It predicts also that the
expanding universe will continue expanding and this could in principle be observed.

8.1 Chaplygin Gas in FLRW Models

The Chaplygin gas model in FLRW background provides a cosmic expansion history with a universe
filled with an exotic background fluid: the Chaplygin gas. The model consists of a universe that
transits from a decelerating matter-dominated phase to a late-time accelerated one. However, in its
intermediate stages, it behaves as a mixture of a cosmological constant and a perfect fluid obeying
the p = wρ equation of state. The resulting evolution of the Universe is not in disagreement with
the current observation of cosmic acceleration [50,270,272,273].

8.1.1 Original and Generalised CG Model

The CG model was introduced first by Chaplygin [275] as a model for aerodynamical studies. Chap-
lygin assumed an ideal fluid of gas in stabilised motion where all effects of external forces are be
neglected in order to get a steady irrotational flow of the gas, where vorticity formation is avoidable.
It is necessary to consider the pressure as a function of the density. So it is convenient to take the
equation of state in the form

p = − A

ρα
, (8.1)
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where p and ρ are respectively pressure and energy density in a comoving reference frame with
ρ > 0, and A and α are positive constants. α = 1 is constant of the ratio of specific fluctuation,
i.e, heat1. A more generalised CG equation of state is obtained when 0 ≤ α ≤ 1 [276–278]. Then
under homogeneity considerations, the relativistic energy conservation equation in the context of
FRW cosmology substituting for the equation of state yields an expression for the density in terms
of the scale factor a given as

ρ =

(
A+

B

a3(1+α)

) 1
1+α

, (8.2)

where B here is a positive integration constant. When α = 1 this solution takes us back to the
original Chaplygin gas. This simple and elegant model smoothly interpolates between matter phase,
for small value of a (a6 � B/A) the energy density is approximated by

ρ ∼
√
B

a3
, (8.3)

which clearly corresponds to a dust-like dominated phase. For large values of the cosmological radius
a, it follows that

p ' −ρ⇒ ρ ∼
√
A⇒ p ∼ −

√
A , (8.4)

which corresponds to an empty universe with a cosmological constant
√
A and that is a de Sitter

universe, through an intermediate regime described by the equation of state for stiff matter p = ρ.
The interesting point, however, is that such an evolution is accounted by using only one fluid. There
is a possibility of interpreting the model as a “quintessential” model [50, 269, 279]2 The critical
density for such model is

ρc = (A+B)
1

1+α , (8.5)

whereas the Hubble parameter given through the Friedmann equation by

H2 =

(
ȧ

a

)2

=
1

3
ρ =

1

3

(
A+

B

a3(1+α)

) 1
1+α

. (8.6)

This model automatically leads to an asymptotic phase where the equation of state is dominated
by a cosmological constant

√
A. Subsequently, it has been shown that this model admits, under

conditions, an inhomogeneous generalisation, which can be regarded as a unification of dark matter
and dark energy models [272].

We can express the perturbed pressure as

δp =
A

ρ2
δρ , (8.7)

and for the density contrast we have

δ =
δρ

ρ
∝ t2/3 . (8.8)

The most important point of the evolution of density perturbations in a universe dominated by
the Chaplygin gas is that a universe dominated by the Chaplygin gas admits an initial phase of
growing perturbations, with the same rate as in the dust case of the cosmological standard model,
from which it follows decreasing oscillations, which asymptotically go to zero [280]. Furthermore,
the model predicts an increasing value for the effective cosmological constant [50], i.e, in the context
of a Chaplygin cosmology, once an expanding universe starts accelerating it cannot decelerate any
more, a fact that we seem to be observing today.

For open or flat Chaplygin cosmologies (k = −1, 0), the Universe always evolves from a decel-
erating to an accelerating epoch. For the closed Chaplygin cosmological models (k = 1), for static

1The CG equation of state (EoS) its also obtainable from Nambu-Goto action for d-branes moving in a (d+2)-
dimensional spacetime and that by using the observational coordinates in the light-cone gauge [270].

2A quintessence field is a scalar field with standard kinetic term, which is minimally coupled to gravity.
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Einstein universes, the solution yields

B =
2

3
√

3A
. (8.9)

The generalised Chaplygin gas cosmological model, with no additional fluid components, is compat-
ible with structure formation and large scale structure only for α sufficiently small (α < 10−5), in
which case it is indistinguishable from the ΛCDM model.

The GCG of Eq. (8.1) is important to cosmology and it is one of the promising candidates to
explain the present accelerated expansion of the universe with simple model unifying dark matter
and dark energy [272,274,280] as manifestations of a single cosmic fluid [281–284].

8.1.2 Modified and Extended CG Models

The modified Chaplygin gas (MCG) model is often used often to describe the acceleration phase of
the Universe from the radiation era to the ΛCDM model. It includes a matter term [276,285]

p = Aρ− B

ρα
, 0 ≤ α ≤ 1 , (8.10)

where 0 < A < 1/3 , 0 < α < 1 and B is a positive constant. It has been shown that A = 1/3 is
the best fitted value to describe evolution of the Universe from radiation regime to the Λ-cold dark
matter regime [286]. The energy density for such a model is given by

ρ =

[
B

1 +A
+

C

a3(1+A)(1+α)

] 1
1+α

, (8.11)

where C is an arbitrary integration constant. This model is a more appropriate choice to have
constant negative pressure at low energy density and high pressure at high energy density. We
can use this equation of state to describe low-surface brightness galaxies which are supposed to be
dominated by dark matter [287]. The MCG equation of state is a suitable description for an ordinary
linear barotropic fluid [288]. While there are other barotropic fluids with equation of state being
quadratic and higher orders. For example, recently the model has been extended [289–291] so that
the resulting equation of state can also recover a barotropic fluids with higher orders

pc =

n∑
i=1

Aiρ
i
c −

B

ρα
, (8.12)

where pc and ρc are the pressure and energy density of the extended Chaplygin gas which is the
unification of the dark matter and dark energy. There is no general solution to this approach. But if
we reduce n = 1 the above expression recovers the standard MCG. Barotropic fluids with quadratic
equation of state can be recovered by setting n = 2, reducing Eq. (8.12) to

pc = A1ρc +A2ρ
2
c −

B

ραc
, (8.13)

where A1, A2, B and α are positive constants [292]. These models give us the second-order solution
[293]

ρc =

[
B

1 +A1
+

C

a3(1+A1)(1+α)
e−(1+α)(1+A1)f(ρc)

] 1
1+α

, (8.14)

where C = (1 +A1)−1 and f(ρc) is a function of the critical energy density ρc given by [293]
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f(ρc) =
A2ρc

(1 +A1)2
− BA2ρc

(1 + α)(1 +A1)2((1 +A1)ρ1+α
c −B)

+A2

∫
B(2 + α)

(1 + α)(1 +A1)2((1 +A1)ρ1+α
c −B)

dρc . (8.15)

Note that in case of A2 = 0, we have a vanishing f(ρc). With higher order n, we will recover a
higher-order barotropic fluid. From this model numerically, increasing n decreases the value of the
scale factor a and hence decreases the value of the energy density. The evolution of the scale factor
corresponding to n = 1 is faster than the case with n = 2, and the Hubble expansion parameter and
dark energy density are decreasing with n. Different orders of n have been studied in [293–295], and
it has been shown that by choosing appropriate values of constant parameters, the model has more
agreement with observational data than ΛCDM.

8.1.3 Generalised and Modified Cosmic Chaplygin Gas Models

The generalized cosmic Chaplygin gas (GCCG) models are those Chaplyging gas models that admit
the equation of state given by [296]

p = −ρ−α
[
C + (ρ1+α − C)−ω

]
, (8.16)

where

C =
A

1 + ω
− 1 , (8.17)

with A a constant which now can take on both positive and negative values, and 0 > ω > −l, l being
a positive definite constant which can take on values larger than unity. In the special case when
ω = 0 one can write that C = A − 1. The speciality of this model is stability so the theory is free
from unphysical behaviours even when the vacuum fluid satisfies the phantom energy condition [286].
The above equation satisfies the following conditions:

i) it becomes a de Sitter fluid at late time and when ω = −1,

ii) it reduces to p = ωρ in the limit that the Chaplygin parameter A→ 0,

iii) it reduces to the equation of state of current Chaplygin unified dark matter models at high
energy density,

iv) the evolution of density perturbations becomes free from any pathological behaviour of the
matter power spectrum for physically reasonable values of the involved parameters at late
times.

By integrating the cosmic conservation law for energy we get for the energy density

ρ(a) =

[
C +

(
1 +

B

a3(1+α)(1+ω)

) 1
1+ω

] 1
1+α

, (8.18)

where B is a positive integration constant. B shows the effect of Chaplygin gas, and the cosmic
effect represented by ω. A further extension of the CG model is called modified cosmic Chaplygin
gas (MCCG) [286,297], where the EOS is further generalized to

p = γρ− 1

ρα

[
B

1 + ω
− 1 +

(
ρ1+α − B

1 + ω
+ 1

)−ω]
. (8.19)

Here B and γ could be both positive or negative constants, and −l < ω < 0 where l is a positive
definite constant with values larger than unity. Here also, 0 < α ≤ 1, and the case where ω = 0
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gives the equation of state corresponding to the MCG. If we then put γ = 0, the equation of state
corresponding to the GCG is recovered. We can also reach back to the simplest case where α = 1,
the Chaplygin gas’s original equation of state.

Chaplygin gas models have been studied in flat Friedmann models, in terms of the recently
proposed “statefinder 3” parameters [298], dimensionless parameters that allow us to characterise
the properties of dark energy in a model-independent manner. It has also been shown that the simple
flat Friedmann model with Chaplygin gas can equivalently be described in terms of a homogeneous
minimally coupled scalar field φ, which has been used in a variety of inflationary models in describing
the transition from the quasi-exponential expansion of the early universe to a power law expansion
in order to understand the present acceleration of the Universe [50,51].

The model can be re-expressed as flat Friedman universes containing a scalar field with particular
self-interaction potentials [299,300]; in other words, a very light scalar field φ whose effective potential
V (φ) leads to an accelerated phase at the late stages of the Universe [271] by constructing models
where the matter responsible for such behaviour is also represented by a scalar field [301,302].

In [50, 303]a homogeneous scalar field φ(t) and a potential V (φ) have been shown to describe
Chaplygin cosmology. An extended work is done by [304] with a modified CG. Moreover, the
Chaplygin gas is the only gas known to admit a supersymmetric generalisation [305].

8.2 Chaplygin Gas as f(R) Gravity?

In the remainder of the chapter, we are going to study models of f(R) gravity which, when we
impose the Chaplygin gas equations of state (EoS) to their effective pressure and energy density,
produce viable exact solutions that reduce to the ΛCDM scenario in the approximate cosmological
limits.

8.2.1 Constant Ricci-Curvature Scenarios

Analogous to the matter EoS pm = wmρm, where wm is the matter EoS parameter, we can define
the EoS for the curvature fluid as pR = wRρR.

For FLRW spacetimes, the Ricci scalar R is given by

R = 2Θ̇ +
4

3
Θ2 , (8.20)

where Θ is the cosmic expansion parameter related to the cosmological scale factor a(t) and the
Hubble parameter H(t) via the equations

Θ ≡ 3
ȧ(t)

a(t)
= 3H(t) . (8.21)

Solving for Θ̇ one can rewrite the above equation as

Θ̇ =
R

2

(
1− 4

3R
Θ2

)
. (8.22)

If the Ricci scalar varies slowly, i.e., if R is almost constant, the solution of this ordinary differential

3The statefinder diagnostic trajectories in the plane {s,r} are constructed from the scale factor a(t) and their
derivatives up to third order as

r =

...
a

aH3
and s = −

r − 1

3(aä
ȧ2
− 1

2
)
.
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equation (o.d.e) takes the form

Θ =
1

2

√
3R tanh

[√
R

3
(t− t0)

]
, (8.23)

for some constant of integration t0 that can be taken to be the time at the commencement of the
inflationary phase of expansion. Solving for the cosmological scale factor gives

a(t) = a0

√√√√cosh

[√
R

3
(t0 − t)

]
. (8.24)

For simplicity we set t0 ' 0. During steady-state exponential expansion in a de Sitter spacetime
(such as during inflation or late-time evolution), the approximation Θ̇→ 0 results in

R =
4

3
Θ2 = const , a(t) = a0e

1
3 Θt , (8.25)

and the matter content evolves according to

ρm = ρ0

(
a(t)

a0

)−3(1+wm)

. (8.26)

During such an exponentially expanding cosmic evolution phase, for an initial energy density ρ0, we
see that the matter energy density decays exponentially:

ρm = ρ0e
−(1+wm)Θt . (8.27)

8.2.2 Chaplygin Gas Solutions in f(R) Gravity

8.2.2.1 Original and Generalized Chaplygin Gases

In the original treatment, the negative pressure associated with the Chaplygin gas models is related
to the (positive) energy density through the EoS

p = − A

ρα
(8.28)

for positive constant A and α = 1. But this was later generalized [50, 306] to include 0 ≤ α ≤ 1.
One of the first cosmological interpretations of such a fluid model was given in [302] where for flat
universes, Eq. (8.28) corresponds to a viscosity term that is inversely proportional to dust energy
density. Ever since the discovery of cosmic acceleration, however, both the original and generalized
Chaplygin gas models have been extensively studied as alternatives to dark energy and/or unified
dark energy and dark matter models (see, e.g., [50,269,272,274,307,308]).

Now if we consider the background curvature energy density and isotropic pressure terms defined
in Eqs. (7.12) and (7.13) above, in the constant-curvature limiting case, we have

ρR =
1

4
[R(f ′ + 1)− 2f ] = −pR . (8.29)

This equation of state, with an effective EoS parameter wR = −1, provides the condition for an
exponential (accelerated) expansion with a constant Hubble parameter. The energy density ρR
(with its negative pressure pR) remains constant and can be interpreted as playing the role of the
cosmological constant Λ.

Considering the curvature fluid as a manifestation of the Chaplygin gas with the EoS (8.28), we
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obtain

pR = −ρR = − A

ραR
, (8.30)

which, using Eq. (8.29), leads to the o.d.e

R
f(R)

dR
− 2f(R) +R = 4A

1
α+1 . (8.31)

Solving this ordinary differential equation yields

f(R) = R+ C1R
2 − 2A

1
α+1 (8.32)

for an arbitrary (integration) constant C1. We note that the ΛCDM solution f(R) = R − 2Λ is
already a particular solution with C1 = 0 and A = Λα+1. In particular, if α = 0, then A = Λ, from
which, going back to Eq. (8.30), one concludes ρR = Λ.

If we include the linearized Laplacian term in Eqs. (7.12) and (7.13) and use the eigenvalue −k
2

a2

of the covariantly defined Laplace-Beltrami operator ∇̃2 on (almost) FLRW spacetimes

∇̃2R = −k
2

a2
R (8.33)

for a comoving wavenumber k, we obtain the second-order o.d.e

B2Rf ′′(R)−Rf ′(R) + 2f(R)−R+ 4A
1

α+1 = 0 , (8.34)

where here we have defined

B2 ≡ 4(2 + 3α)

3(1 + α)

k2

a2
. (8.35)

The solution of Eq. (8.34) is given, for arbitrary constants C2, C3, by

f(R) = R+C2

[
R2 − 2RB2

]
+C3

[
(R2 − 2RB2)Ei

(
1,− R

B2

)
+ (R−B2)B2e

R
B2

]
−2A

1
α+1 , (8.36)

which should reduce to the quadratic solution (8.32) for negligible values of B2, i.e., for small
first-order contributions to the energy density and pressure terms.

8.2.2.2 Modified Chaplygin Gas

On the other hand, if one considers the modified Chaplygin gas (MCG) EoS [51, 131, 286, 289, 290,
306,309,310]

pR = γρR −
A

ραR
, (8.37)

then the resulting f(R) model generalizes to

f(R) = R+ C4R
2 − 2

(
A

γ + 1

) 1
α+1

, (8.38)

where C4 is an arbitrary integration constant.
The ΛCDM solution is a limiting case of this generalized model when C4 = 0 and A = (γ+1)Λα+1.

In particular, if α = 0 = γ, then A = Λ.
Following similar arguments as in the preceding subsection, if we include the linearized Laplacian

contributions to the energy density and pressure, we get Eq. (8.34) generalized to

B2Rf ′′(R)−Rf ′(R) + 2f(R)−R+ 4

(
A

γ + 1

) 1
α+1

= 0 , (8.39)
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the solution of which can be given by

f(R) = R+C5

[
R2 − 2RB2

]
+C6

[
(R2 − 2RB2)Ei

(
1,− R

B2

)
+ (R−B2)B2e

R
B2

]
−2

(
A

γ + 1

) 1
α+1

,

(8.40)
for an arbitrary integration constants C5 and C6. This solution obviously generalizes Solutions
(8.32),(8.36) and (8.38) and should reduce to the quadratic solution (8.32) for vanishingly small
B2 values. In [311], it has been shown that any quadratic Lagrangian leading to an isotropic,
homogeneous cosmological model takes the form

f(R) = R− 2Λ− 1

6
βR2 , (8.41)

where β is an arbitrary, real constant. If we keep only the quadratic solution in (8.40), i.e., if we set
C6 = 0, the Lagrangian (8.41) corresponds to the choice

C5 = −1

6
β ,B = 0 , A = (γ + 1)Λα+1 . (8.42)

Another interesting fact worth pointing out here is that the condition for the existence of a maximally
symmetric vacuum solution in f(R) gravity [311]

R0f
′(R0) = 2f(R0) (8.43)

leads to the quadratic solution resulting in the constraint

R0

(
1− 2C5B

2
)
− 4

(
A

γ + 1

) 1
α+1

= 0 . (8.44)

The corresponding GR de Sitter, anti-de Sitter and Minkowski solutions R0 = 4Λ (respectively for
Λ > 0 ,Λ < 0 and Λ = 0) are obtained when C5B

2 = 0 and A = (γ + 1)Λα+1.

The resulting solutions are generally quadratic in the Ricci scalar, but have appropriate ΛCDM
solutions in limiting cases. These solutions, given appropriate initial conditions, can be potential
candidates for scalar field-driven early universe expansion, i.e., inflation, and dark energy-driven
late-time cosmic acceleration. Of course, to take this model seriously one should have a good
fundamental reason to believe such fluid exists in the real universe.

8.2.2.3 Modified Generalized Chaplygin Gas

The so-called modified generalized Chaplygin gas (mGCG) model is described by a barotropic equa-
tion of state of the form [312,313]

p = βρ− (1 + β)
A

ρα
. (8.45)

Models of f(R) gravity that satisfy the condition (8.29), at the same time mimicking the mGCG, can
be shown to be governed by the same equation as (8.31) and admit the same solutions (8.32), provided
β 6= −1. On the other hand, if linearized Laplacian terms are included, then the corresponding
differential equation in f(R) generalizes to

D2Rf ′′(R)−Rf ′(R) + 2f(R)−R+ 4A
1

α+1 = 0 , (8.46)

where we have defined

D2 ≡ 4 [2 + 3α+ 3β(1 + α)]

3(1 + α)(1 + β)

k2

a2
. (8.47)
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Worthy of note is that this equation and its solution

f(R) = R+ C7

[
R2 − 2RD2

]
+ C8

[
(R2 − 2RD2)Ei

(
1,− R

D2

)
+ (R−D2)D2e

R
D2

]
−2

(
A

γ + 1

) 1
α+1

, (8.48)

reduce to their generalized counterparts of Eqs. (8.34) and (8.36) when β = 0.



Chapter 9

Conclusions and Future Outlook

It would be interesting to find out
what goes on in that moment
when someone looks at you and
draws all sorts of conclusions.

Malcolm Gladwell

We humans are very eager to observe and understand what is in the Universe, and that is ex-
actly what makes the study of our cosmos very interesting. In cosmology, we distinguish between
the observable universe for which by definition we have data and a universe which includes regions
we cannot directly influence or experiment on. The inference of the geometrical properties of the
universe from the observable universe cannot be achieved without hypothesis and philosophical prej-
udices.

The accurate determination of cosmological distances is the most important probe in cosmol-
ogy. Observing the Universe and measuring many of the cosmological observables can allow us to
determine the cosmological parameters which, in turn, allow us to study and track the history of
the whole Universe and predict its future and in between study its evolution. In this thesis we
calculated the observables in the so-called lightcone gauge adapted to the observational coordinates.
We developed this gauge by perturbing the lightcone, and reproducing a new linear perturbed gauge
to satisfy us up to first-order calculations of the observables. The calculations of the observables in
the new gauge introduced was much easier than the ones we usually obtain in the standard gauge.
We then used this perturbed gauge to compute the fractional perturbation of galaxy number counts,
which is truly measured in large galaxy surveys. In the later calculation we did not have to worry
about the spatial positions of the galaxy because we only observe galaxy redshifts and sky positions
on the lightcone background.

Ever since Hubble’s observations of the 1920s that changed our worldview once and for all, it
has become a textbook fact that the Universe is expanding. One of the important observables in
cosmology is the measure of the rate of this expansion of the Universe. Towards the turn of this
century, a totally unexpected discovery challenged our worldview once again: the Universe is not
only expanding but this expansion happens at an accelerated rate. Since Einstein’s field equations
based on General Relativity do not predict this (in fact the expansion should have been slowing down
at the present epoch due to matter domination), this discovery came as a surprise and left many
rushing to find possible hypotheses. One of such hypotheses is that the Universe is filled with an
invisible form of energy called dark energy. Other propositions came in the form of modifications to
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the underlying theory of gravity. In this thesis we discussed one of such possible modifications, f(R)
gravity. This theory of gravity is one of many candidates studied to solve the current accelerated rate
of expansion. The theory has its gravitational action chosen to include generic functions of the Ricci
scalar, and therefore comes with an the extra degree of freedom that can explain different cosmic
expansion scenarios, including accelerated ones. In particular, we studied f(R) gravitational models
that allow irrotational fluid flows. The integrability conditions describing a consistent evolution of
the linearized field equations of shear-free dust universes were studied, as well as the consistency
relations of models with more severe constraints, such as non-expanding spacetimes as well as those
spacetimes with vanishing gravito-magnetic or gravito-electric components of the Weyl tensor.

We also studied the possibility of the f(R) theory of gravity acting as an exotic curvature fluid
with negative pressure such as a Chaplygin gas. Assuming a temporally constant Ricci scalar, the
resulting f(R) solutions mimicking the Chaplygin gas equations of state are generally quadratic in
the Ricci scalar, but have appropriate ΛCDM solutions as their limiting cases. These solutions,
given appropriate initial conditions, can be potential candidates for scalar field-driven early universe
expansion (inflation) and dark energy-driven late-time cosmic acceleration.

The whole thesis was divided into three parts. Part I covered the literature review and the
general theoretical foundation of what would follow as calculations of the cosmological observables
in Part II. Part III focused on a class of alternative cosmological models, f(R) theories of gravity,
and their cosmological underpinnings.

In Chapter 1, we introduced the literature review on General Relativity and some cosmological
observables that are of importance to the development of the thesis.

In Chapter 2, we presented some basic background information about the GR solution and the
relation to the standard models of the Universe. We explained the perturbation theory and its ne-
cessity to the evolution of the Universe, and we calculated the observables in light of the perturbed
first-order FLRW models.

In Chapter 3, we introduced the observational coordinates set that is adapted to our past-
lightcone. Since we are the only observers in the Universe, we do our observation from one point
at the vertices of our lightcone. We derived the observational spacetime metric. In particular, we
were able to identify the way to fix the gauge properly, by showing the relations between the per-
turbations of spacetime in observational coordinates and those perturbations in the standard metric
approach. We derived its dynamical equations for the perturbations in observational coordinates.
We decomposed the equations into spherical harmonics in order to simplify the system and produce
functions suitable for the extraction of observational quantities, and checked for consistency with the
Einstein field equations degrees of freedom. We introduced the GLC gauge and presented the key dif-
ferences between the GLC gauge and the observational coordinates gauge and hence the PLG gauge.

In Chapter 4, we presented the observables of spacetime in the lightcone gauge using the ob-
servational coordinates. We verified the observables on the perturbed lightcone gauge with those
obtained in the standard perturbed gauge. The result was accurate and satisfactory to our expec-
tations. We showed the advantage of the method developed in our PLG gauge, namely that the
observable relations are simpler than in the standard formalism (not involving integro-differential
equations) and it can be extended to second order more easily.

In Chapter 5, we calculated the overdensity regions using the PLG gauge and the results were
remarkable. We did a verification with the standard gauge as well.

After introducing the rationale for considering alternative gravitational models, we presented the
generalized forms of the field equations of f(R) gravity in Chapter 6. We gave an overview of the
1 + 3 covariant spacetime splitting formalism as applied to f(R) theories and gave the propagation
and constraint equations relating the kinematical quantities arising from the covariant decomposi-
tion, first for the full nonlinear case and then in the linearised regime.
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In Chapter 7, in the framework of these new gravitational theories, we outlined the general con-
ditions that any f(R) model should satisfy for non-rotational dust universes for it to be a viable
candidate for explaining observations on all cosmological scales. We looked at the consistency rela-
tions of linearized perturbations of FLRW universes with irrotational fluid flows arising as a result
of imposing special restrictions to the field equations. We showed that linearized shear-free dust
models have a vanishing gravito-magnetic component of the Weyl tensor. The case of vanishing
full Weyl tensor in linearised f(R) field equations was also explored, as well as those models with
purely gravito-magnetic spacetimes. A subclass of gravito-magnetic models are those in which the
divergence of Hab is zero, a necessary condition for emission of gravitational waves. In GR, it is
known that these models are homogeneous dust FLRW universes. We showed that the homogeneity
condition is not necessary in f(R) gravity. Lastly, we derived an integrability condition for non-
rotating and no-expanding dust spacetimes in f(R) gravity.

In Chapter 8, we explored exact f(R) gravity solutions that mimic Chaplygin-gas inspired ΛCDM
cosmology for the so-called original, generalized, modified and generalized modified Chaplygin gas
equations of state. The resulting solutions are generally quadratic in the Ricci scalar, but have
appropriate ΛCDM solutions as their limiting cases. These solutions, given appropriate initial
conditions, can be potential candidates for scalar field-driven early universe expansion (inflation) and
dark energy-driven late-time cosmic acceleration. The solutions discussed here are based on a slowly-
changing Ricci curvature assumption. For future work more realistic solutions should relax this
assumption, and consider higher-order corrections. Numerical computations require more physically
motivated initial conditions, currently not fully understood.
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Appendix A

Some Useful Relations on Part I

A.1 The Perturbed FLRW Metric

The perturbed FLRW metric and the inverse metric in a conformal time:

g00 = −a2(1 + 2φ) , g00 = −1/a2 + 2φ/a2 , (A.1)

g0i = a2Bi , g0i = −1/a2Bi , (A.2)

gij = a2(δij + 2Cij) , gij = δij/a2 − 2Cij/a2 . (A.3)

The Christoffer symbols up to first order:

Γ0
00 = a′/a+ φ′ , (A.4)

Γ0
0j = Djφ+ a′/aBj , (A.5)

Γ0
jk = (a′/a− 2a′/aφ)δjk + C ′jk + 2a′/aCjk −B(j|k) , (A.6)

Γi00 = a′/aBi +B′i +Diφ , (A.7)

Γi0j = a′/aδij + C ′ij +
1

2
(Bi|j −B

|i
j ) , (A.8)

Γijk = ∂kC
i
j − ∂iCjk + ∂jC

i
k − a′/aδjkBi . (A.9)

A.2 Spherical Harmonic Decomposition

The spherically symmetric spatial metric is given by

ds2 = dθ2 + sin2 θdφ2 = γIJdx
IdxJ , (A.10)

where

γIJ =

(
1 0
0 1

sin2 θ

)
, (A.11)

and the axial metric, which is a function of just θ and φ, is given by

εI
J =

(
0 1

sin θ
− sin θ 0

)
, (A.12)
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where
εIJ = γIkγJlεk

l, and εI
JεJ

K = −γIk . (A.13)

A.2.1 Properties of the Harmonics Decomposition

The spherical harmonic decomposition is a conventional way to decompose a spatial tensor field δQ
into components which transform irreducibly under translations and rotation components, where
these components evolve independently. This is achieved by splitting the spacetime into a 2 ×
2 manifold, indicating 2-dimensional spherically symmetric surfaces and 2-dimensional spherical
harmonic functions Y lm(φ, θ).

Scalars : X(w, y,Xk) =
+∞∑
l=0

l∑
m=−l

[
X lm(w, y)Y lm(Xk)

]
, (A.14)

Vectors : XI(w, y,X
k) =

+∞∑
l=1

l∑
m=−l

[
X lm(w, y)Y lmI (Xk) +X

lm
(w, y)Y

lm

I (Xk)

]
, (A.15)

Tensors : XIJ(w, y,Xk) =
1

2

+∞∑
l=0

l∑
m=−l

XT
lm(w, y)γIJY

lm(Xk)

+
+∞∑
l=2

l∑
m=−l

[
X lm(w, y)Y lmIJ (Xk) +X

lm
(w, y)Y

lm

IJ (Xk)

]
. (A.16)

A.2.1.1 Polar Decomposition

The (Y lm, Y lmI , Y lmIJ ) represent the polar parts; for scalar, vector and tensor respectively. For the
scalar polar part we get

∇2
Y lm = γIJ∇

I∇JY lm = −l(l + 1)Y lm , (A.17)

εIJ∇
I∇JY lm = 0 . (A.18)

We can re-write the polar vector part as

Y lmI = ∂IY
lm , (A.19)

where we can say

Y lmθ = ∂θY
lm , (A.20)

Y lmφ = ∂φY
lm . (A.21)

The polar vector divergence can be given as

∇IY lmI = ∆Y lm = −l(l + 1)Y lm . (A.22)

Then for the polar tensor part we have

Y lmIJ = ∇I∂JY lm +
l(l + 1)

2
γIJY

lm , (A.23)

this means

Y lmθθ = ∂2
θY

lm +
l(l + 1)

2
Y lm , (A.24)

Y lmφφ = ∂2
φY

lm + sin θ cos θ∂θY
lm +

l(l + 1)

2
sin2 θY lm , (A.25)
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Y lmθφ = ∂2
θφY

lm − cos θ

sin θ
∂φY

lm . (A.26)

The polar tensor part is trace-free
γIJY lmIJ = 0 , (A.27)

and given this fact we can have

Y lm
I

I = γθθY lmθθ + γφφY lmφφ = 0 , (A.28)[
∂2
θY

lm +
1

sin2 θ
∂2
φY

lm +
l(l + 1)

2
Y lm +

l(l + 1)

2
Y lm +

cos θ

sin θ
∂θY

lm

]
= 0 , (A.29)[

∂2
θY

lm +
1

sin2 θ
∂2
φY

lm +
cos θ

sin θ
∂θY

lm

]
= −l(l + 1)Y lm . (A.30)

Also note the polar tensor divergence

∇IY lmIJ = ∇2
Y lmJ +

l(l + 1)

2
∇JY lm =

2− l(l + 1)

2
Y lmJ , (A.31)

whereas
∆Y lmI = ∇2

Y lmI = (1− l(l + 1))Y lmI , (A.32)

from which one gets

∆Yφ =

[
∂2
θY

lm
φ +

1

sin2 θ
∂2
φY

lm
φ +

cos θ

sin θ
∂θY

lm
φ

]
= (1− l(l + 1))Y lmφ , (A.33)

∆Yθ =

[
∂2
θY

lm
θ +

1

sin2 θ
∂2
φY

lm
θ +

cos θ

sin θ
∂θY

lm
θ

]
= (1− l(l + 1))Y lmθ , (A.34)

and for polar tensor
∆Y lmIJ = (4− l(l + 1))Y lmIJ . (A.35)

A.2.1.2 Axial Decomposition

The (Y
lm

I , Y
lm

IJ ) represent the axial part for vectors and tensors respectively and there is no axial
part for scalars. We can re-define the axial vector part as

Y
lm

I = εI
J∂JY

lm , (A.36)

where

Y
lm

θ =
1

sin θ
∂φY

lm , (A.37)

Y
lm

φ = − sin θ∂θY
lm . (A.38)

The axial vector divergence is given as

∇IY lmI = ∇IεIJY lmJ = γIm∇mεIJ∇JY lm , (A.39)

=
1

sin θ

[
∂2
θφY

lm − cos θ

sin θ
∂φY

lm

]
− 1

sin θ

[
∂2
θφY

lm − cos θ

sin θ
∂φY

lm

]
= 0 . (A.40)

For axial tensors we get
Y IJ = 2∇(IY J) = −2εk(I∇J)∇kY , (A.41)
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where

Y θθ =
2

sin θ

[
∂2
θφY −

cos θ

sin θ
∂φY

]
, (A.42)

Y φφ = −2 sin θ

[
∂2
θφY −

cos θ

sin θ
∂φY

]
, (A.43)

Y θφ = − sin θ

[
∂2
θY −

1

sin2 θ
∂2
φY −

cos θ

sin θ
∂θY

]
. (A.44)

The axial tensor is also trace-free
γIJY

lm

IJ = 0 , (A.45)

which implies that

∂θY
lm

θ +
1

sin2 θ
∂φY

lm

φ +
cos θ

sin θ
Y
lm

θ = 0 . (A.46)

The axial tensor divergence is

DIY
lm

IJ = −2DIεk(IDJ)Y
lm
k = −[1− l(l + 1)][γθθ∇θY δφJ − γ

φφ∇φY δθJ ] . (A.47)

The axial vector harmonics also obey

∆Y
lm

I = ∇2
Y
lm

I = (1− l(l + 1))Y
lm

I , (A.48)

from which one gets

∆Y φ =

[
∂2
θY

lm

φ +
1

sin2 θ
∂2
φY

lm

φ +
cos θ

sin θ
∂θY

lm

φ

]
= (1− l(l + 1))Y

lm

φ , (A.49)

∆Y θ =

[
∂2
θY

lm

θ +
1

sin2 θ
∂2
φY

lm

θ +
cos θ

sin θ
∂θY

lm

θ

]
= (1− l(l + 1))Y

lm

θ , (A.50)

and for tensors
∆Y

lm

IJ = (4− l(l + 1))Y
lm

IJ . (A.51)
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Some Useful Relations on Part II

B.1 Zero-order Coordinates Transformation

We can see now how the background changes under the PLG transformation. The Jacobian map
will look like

∂xµ̂

∂xν
=


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = δµ̂ν + δµ̂0 δ
1
ν , (B.1)

whereas the inverse matrix is given by

∂xµ

∂xν̂
=


1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = δµν̂ − δ
µ
0 δ

1
ν̂ . (B.2)

Then at the background level, the line element becomes,

ds2 = a2(w − y)(−dw2 + 2dwdy + S2(y)dΩ2) , (B.3)

and the 4-velocity is given by

uµ =
1

a(w − y)
δµ0 . (B.4)

The scale factor a(η) transforms as a(η) = a(w − y), and S(χ) = S(y), i.e, they are the same
spacetime functions but expressed in the new coordinates. The vector field k is given by

kµ = a(w)δ0
µ , kν = (a(w)/a2(w − y))δν1 . (B.5)

Therefore
dy

dν
= a(w)/a2(w − y)→ 1/a(w), at C . (B.6)

B.1.1 The Observables at Zeroth-order

The observable quantities are given by the relations
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1. The Redshift:
1 + z = a(w)/a(w − y) . (B.7)

2. The Area Distance:

r2
A = S2(y)a2(w)/(1 + z)2 = a2(w − y)S2(y) . (B.8)

3. The Luminosity Distance:
dL = (1 + z)2r2

A = a2(w)S2(y) . (B.9)

4. The Number Count

dN = fmn(w − y)r2
A dΩ a(w)(1 + z)−1dy = fmn(w − y)a3(w − y)S2(y) dΩdy . (B.10)

B.2 Relations on the Observational Metric

From the observational metric we can write the complete perturbed metric components to first order
as:

gww = −a2(w − y) (1− δα) , (B.11)

gwy = a2(w − y) (1 + δβ) , (B.12)

gyy = 0 , (B.13)

gwI = a2(w − y) (vI) , (B.14)

gIJ = a2(w − y) (ΩIJ +HIJ) , (B.15)

gyI = 0 . (B.16)

The contravariant metric tensor follows from the constraint to the required order:

gµνg
νλ = δλµ , (B.17)

and that gives

gww = 0 , (B.18)

gwy = a−2(w − y)−1 (1− δβ) , (B.19)

gwI = 0 , (B.20)

gyy = a−2(w − y)−1 (1− (δα+ 2δβ)) , (B.21)

gIJ = a−2(w − y)−1
(
ΩIJ −HIJ

)
, (B.22)

gyI = −a−2(w − y)−1ΩIJvJ . (B.23)

Using the definition of the Christoffel symbols given by Eq. (2) we can have the components of the
affine connection coefficients calculated to first order as

Γwww = 2
∂wa

a
+
∂ya

a
(1− δβ − δα) + ∂wδβ −

1

2
∂yδα , (B.24)

ΓwwI = −a
′

a
vI −

1

2
∂yvI +

1

2
∂Iδβ , (B.25)

ΓwIJ =
∂ya

a
(−ΩIJ −HIJ + ΩIJδβ)− 1

2
∂yΩIJ −

1

2
∂yHIJ +

1

2
εδβ∂yΩIJ , (B.26)

Γyyy = 2
∂ya

a
+ ∂yδβ , (B.27)

Γywy =
∂ya

a
(−1 + δα+ δβ) +

1

2
∂yδα , (B.28)
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ΓyIy =
∂ya

a
(vI − ΩJkΩIkvJ) +

1

2
∂yvI −

1

2
ΩJk∂yΩIkvJ +

1

2
∂Iδβ , (B.29)

ΓyIw = −∂wa
a

ΩIJΩIJvI −
∂ya

a
vI −

1

2
∂yvI +

1

2
∂Iδα+

1

2
∂Iδβ , (B.30)

Γyww =
∂wa

a
(1− δα− δβ) +

∂ya

a
(1− 2δα− 2δβ) +

1

2
∂wδα+ ∂wδβ −

1

2
∂yδα , (B.31)

ΓyIJ =
1

2
∂IvJ +

1

2
∂JvI −

∂wa

a
(ΩIJ + εHIJ − ΩIJδβ)− ∂ya

a
(ΩIJ +HIJ − ΩIJ

δα− 2ΩIJδβ)− 1

2
∂wHIJ −

1

2
∂yHIJ −

1

2
∂yΩIJ +

1

2
∂yΩIJδα

+∂yΩIJδβ +
1

2
ΩkJvJ∂IΩkJ , (B.32)

ΓIkJ =
∂ya

a
ΩImΩkJvm +

1

2
ΩImvm∂yΩkJ +

1

2
ΩmI∂kΩmJ +

1

2
ΩmI∂kHmJ

+
1

2
ΩmI∂JΩmk +

1

2
ΩmI∂JHmk −

1

2
ΩmI∂mΩkJ −

1

2
ΩmI∂mHkJ

−1

2
HmI∂kΩmJ −

1

2
HmI∂JΩmk +

1

2
HmI∂mΩkJ , (B.33)

ΓIww = −∂ya
a

ΩIJvJ + ΩIJ∂wvJ −
1

2
ΩIJ∂Jδα , (B.34)

ΓIwy =
∂ya

a
ΩIJvJ +

1

2
ΩIJ∂yvJ −

1

2
ΩIJ∂Jδβ , (B.35)

ΓIwJ =
∂wa

a
(ΩkIΩkJ + ΩkIHkJ − ΩkJH

kI) +
1

2
ΩkI∂wHkJ +

1

2
ΩkI∂Jvk

−1

2
ΩkI∂kvJ , (B.36)

ΓIyJ =
∂ya

a
(ΩkIΩkJ + ΩkIHkJ − ΩkJH

kI) +
1

2
ΩkI∂yΩkJ +

1

2
ΩkI∂yHkJ

−1

2
HkI∂yΩkJ , (B.37)

where
Γwwy = ΓwIy = Γwyy = ΓIyy = 0 . (B.38)

The Riemann tensor is defined by

Rµνγβ = Γµνβ,γ − Γµνγ,β + ΓανβΓµγα − ΓδνγΓµβδ , (B.39)

whereas the Ricci tensor is obtained by contracting the first and the third indices of the Riemann
tensor:

Rµν = gγβRγµβν , (B.40)

and the Ricci scalar is given as
R = Rµµ . (B.41)

B.3 Derivatives and Integrals

B.3.1 Commuting Partial Derivatives

Here is an attempt at finding a way to commute partial derivatives and integrals that we used in
our calculations. Assume we want to calculate ∂ηX where X is first order and is written:

X =

∫
Y dλ . (B.42)
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Then we have
d

dλ
X = Y ⇔ (∂χ + ∂η)X = a2Y . (B.43)

Therefore,
(∂χ + ∂η) ∂ηX = a2∂ηY + 2a2HY , (B.44)

or equivalently,
d

dλ
∂ηX = ∂ηY + 2HY . (B.45)

Hence,

∂η

∫
Y dλ =

∫
[∂ηY + 2HY ] dλ . (B.46)

Similarly:

∂χ

∫
Y dλ =

∫
[∂χY ] dλ . (B.47)

Using these two relations and integrating by parts, we recover∫
d

dλ
Y dλ = Y . (B.48)

Finally,

∂I

∫
Y dλ =

∫
∂IY dλ . (B.49)

B.3.2 Integration Formulae

Using integration by parts we can convert the double integrals over time into a single integral, using
a regular function f(η). We are going to integrate by parts the following function:∫ ηo

ηs

(η − ηs)f(η)dη, (B.50)

Choosing the auxiliary functions

u = η − ηs , dv = f(η)dη, (B.51)

du = dη , v =

∫ η

ηs

f(η′)dη′ (B.52)

then we can write

∫ ηo

ηs

(η − ηs)f(η)dη =

(
(η − ηs)

∫ η

ηs

f(η)dη

)no
ns

−
∫ ηo

ηs

dη

∫ η

ηs

f(η′)dη′, (B.53)

= (ηo − ηs)
∫ ηo

ηs

f(η)dη −
∫ ηo

ηs

dη

∫ η

ηs

f(η′)dη′, (B.54)

=

∫ ηo

ηs

dη

[ ∫ η

ηs

f(η)dη +

∫ ηo

η

f(η)dη

]
−
∫ ηo

ηs

dη

∫ η

ηs

f(η′)dη′, (B.55)

=

∫ ηo

ηs

dη(η − ηs)f(η) +

∫ ηo

ηs

dη(ηo − η)f(η)dη −
∫ ηo

ηs

dη

∫ η

ηs

f(η′)dη′,

(B.56)

0 =

∫ ηo

ηs

dη(ηo − η)f(η)−
∫ ηo

ηs

dη

∫ η

ηs

f(η′)dη′ . (B.57)
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Thus ∫ ηo

ηs

dη(ηo − η)f(η) =

∫ ηo

ηs

dη

∫ η

ηs

f(η′)dη′. (B.58)

or ∫ ηo

ηs

dη(η − ηs)f(η) =

∫ ηo

ηs

dη

∫ η

ηs

f(η′)dη′. (B.59)

We can also use the following from Eq. (B.55):∫ ηo

ηs

f(η)dη =
1

ηo − ηs

[ ∫ ηo

ηs

dη(η − ηs)f(η) +

∫ ηo

ηs

dη

∫ η

ηs

f(η′)dη′
]
. (B.60)

B.4 Some Useful Derivation for Sec. 4.4

Using Eq. (4.12) we have

∇⊥i∇⊥iE = (−ninj∇i∇j − γij∇⊥inj∇‖ + γij∇i∇j)E , (B.61)

= (−ninj∇i∇j − γij(∇i − ni∇‖)nj∇‖ + γij∇i∇j)E , (B.62)

= (−ninj∇i∇j − γij∇injnj∇j + γijni(n
i∇i)nj(nj∇j) + γij∇i∇j)E = 0 , (B.63)

and

∇⊥iF⊥i = (∇i − ni∇‖)(F i − niF‖) , (B.64)

= ∇iF i −∇iniF‖ − ni∇‖F i + ni∇‖niF‖ = 0 . (B.65)

From Eq. (4.22) and Eq. (4.24) we can write

h⊥i⊥i = hii − h‖(nini −
1

2
N i

i)− 2h⊥|(in
i) = 0 . (B.66)

We can also simplify and write

1

2
∇⊥injnk∇jh ⊥ik +

1

2
∇⊥injnk∇kh ⊥ij +∇⊥injh′ ⊥ij − 1

2
∇⊥i∇⊥ihjknjnk

= ∇⊥injnk∇kh ⊥ij + (∇⊥inj)h′ ⊥ij − 1

2
(∇2 − ninj∇i∇j − γij∇⊥inj∇‖)hlknlnk , (B.67)

= ∇⊥injnk∇k
1

2
(hij − h‖(��

�*0
ninj − 1/2

�
��

0

N i
j)−�

��>
0
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and the following terms can be re-written as
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Moreover, we note
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where Eq. (4.5) has been made use of.

B.5 Some Useful Expressions for Computing HT

The following facts/relations have been used in our calculations of Chapter 5:
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Some Useful Relations on Part III

C.1 Linearised Differential Identities

For all scalars f , vectors Va and tensors that vanish in the background, Sab = S〈ab〉, the following
linearised identities hold [192,240,249]:(

∇̃〈a∇̃b〉f
).

= ∇̃〈a∇̃b〉ḟ − 2
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where R̃ ≡ 2
(
µ− 1

3Θ2
)

is the 3-curvature scalar.
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