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Abstract

We report observations of the ultra-high-energy gamma-ray source LHAASO J2108+5157, utilizing VERITAS,
HAWC, Fermi-LAT, and XMM-Newton. VERITAS has collected ∼40 hr of data that we used to set ULs to the
emission above 200 GeV. The HAWC data, collected over ∼2400 days, reveal emission between 3 and 146 TeV,
with a significance of 7.5σ, favoring an extended source model. The best-fit spectrum measured by HAWC is
characterized by a simple power law with a spectral index of 2.45 ± 0.11stat. Fermi-LAT analysis finds a point
source with a very soft spectrum in the LHAASO J2108+5157 region, consistent with the 4FGL-DR3 catalog
results. The XMM-Newton analysis yields a null detection of the source in the 2–7 keV band. The broadband
spectrum can be interpreted as a pulsar and a pulsar wind nebula system, where the GeV gamma-ray emission
originates from an unidentified pulsar, and the X-ray and TeV emissions are attributed to synchrotron radiation
and inverse Compton scattering of electrons accelerated within a pulsar wind nebula. In this leptonic scenario, our
X-ray upper limit provides a stringent constraint on the magnetic field, which is ≲1.5 μG.
Unified Astronomy Thesaurus concepts: Gamma-ray astronomy (628); X-ray astronomy (1810)

1. Introduction

It is generally recognized that cosmic rays (CRs) with energies
up to 1015 eV, corresponding to the knee in the CR particle
spectrum, can be produced within our Galaxy (W. Baade &
F. Zwicky 1934; V. L. Ginzburg & S. I. Syrovatskiĭ 1966;
P. Blasi 2013). However, the locations and the nature of these
powerful accelerators, often referred to as PeVatrons, remain
unknown. The charged nature of CRs makes it difficult to trace
their original direction, as their trajectories are significantly
deflected by interactions with the Galactic magnetic field.
However, in proximity to their source, CRs interact with matter
or radiation fields, giving rise to gamma-rays. Since gamma-rays
are neutral messengers unaffected by magnetic fields, we can
trace their direction back to the point of origin.
Gamma-rays, especially those with ultra-high energy (UHE;

>1014 eV), are a valuable tool for determining the characteristics
of Galactic PeVatrons (D. Bose et al. 2022). In recent years,
extensive air shower (EAS) arrays have provided evidence of
gamma-ray emission above 100 TeV from a handful of objects in
the Galactic plane, including the Crab Nebula (M. Amenomori
et al. 2019), eHWC J1825−134, eHWC J1907+063, and eHWC

J2019+368 (A. U. Abeysekara et al. 2020; K. Malone et al. 2023).
The list of these UHE emitters has been considerably extended by
the results of the Large High Altitude Air Shower Observatory
(LHAASO) experiment, a gamma-ray and CR observatory in the
Chinese province of Sichuan (Z. Cao 2010). The LHAASO
collaboration reported the detection of 530 photons above 100 TeV
and up to 1.4 PeV, from 12 Galactic sources. Each of these sources
was detected with a statistical significance greater than 7σ (Z. Cao
et al. 2021b). The detection of gamma-rays with energies close to
1 PeV from the Crab Nebula is the first model-independent
evidence that this source is a leptonic PeVatron, and highlights the
great discovery potential for such objects by this experiment.
LHAASO has recently expanded its catalog to around 90 sources,
43 of which were discovered above 100 TeV (Z. Cao et al. 2023).
Among the TeV–PeV sources listed in Z. Cao et al. (2023), there
are 25 that have no counterpart in other wavelengths.
LHAASO J2108+5157 was detected by the LHAASO

collaboration in the energy range from 1 to 25 TeV at 8.1σ
using the Water Cherenkov Detector Array (WCDA) and
above 25 TeV at 30.3σ with the Kilometer Squared Array
(KM2A) detector (Z. Cao et al. 2021c, 2021c, 2023). Despite
its unambiguous detection in the TeV gamma-ray band, it is an
interesting candidate for further investigation, as it has not
been detected at any other wavelength. The power-law index
of its spectrum is reported to change from 1.56 ± 0.34 in the
1–25 TeV range to 2.97 ± 0.07 above 25 TeV. Initially,

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further
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LHAASO J2108+5157 was identified as a point source using
only the KM2A detector (Z. Cao et al. 2021a). However, with
a larger data set from KM2A and the inclusion of the WCDA
detector, the source is reported to be slightly extended and can
be modeled as 2D Gaussian, with sigma values of 0°.19 ± 0°.02
and 0°.14 ± 0°.03 in the KM2A and WCDA data, respectively
(Z. Cao et al. 2023).
The Large-Sized Telescope prototype (LST-1) observed this

source for 49 hr; no detection was reported (S. Abe et al. 2023).
In a dedicated analysis of the region around LHAASO J2108
+5157 using 12.2 yr of Fermi-LAT data, a hard-spectrum source
was detected at the 4σ level, with a photon index of 1.9 ± 0.2
(S. Abe et al. 2023), in addition to the previously identified soft-
spectrum source 4FGL J2108+5155, which shows no emission
above 2 GeV (Z. Cao et al. 2021a). The steep spectrum of 4FGL
J2108+5155 above a few GeV makes it incompatible with the
LHAASO spectral measurement. The hard-spectrum source has
an angular separation of ∼0°.27 from LHAASO J2108+5157.
Since this distance is greater than the extension upper limit (UL)
reported in Z. Cao et al. (2021a), it is unlikely that this hard-
spectrum source is associated with LHAASO J2108+5157.
No significant X-ray emission was detected during the

4.7 ks exposure from the Swift-XRT survey of the LHAASO
J2108+5157 region (M. C. Stroh & A. D. Falcone 2013). The
nearest known X-ray source is the binary RX J2107.3+5202,
located 0°.25 from LHAASO J2108+5157. Moreover, no
energetic pulsar has been identified in the nearby region.
Despite recent progress in the discovery of PeV gamma-ray

sources, in particular with HAWC and LHAASO, the
fundamental question of the nature of objects producing
gamma-rays above 100 TeV remains unanswered. With their
ability to resolve UHE sources with an angular resolution
�0°.1, the imaging atmospheric Cherenkov telescopes (IACTs)
offer a complementary perspective that provides more insight
into the identification of gamma-ray sources. In addition,
precise spectral measurements in the GeV–TeV range can help
distinguish between leptonic and hadronic PeVatrons, as the
Klein–Nishina suppression renders inverse Compton scattering
of nonthermal electrons inefficient, leading to suppression of
the leptonic emission channel in the TeV range.
The structure of the paper is as follows: Sections 2, 3, 4, and

5 describe the data analysis procedures and the results for
VERITAS, HAWC, Fermi-LAT, and XMM-Newton, respec-
tively. In Section 6, we discuss the multiwavelength modeling
of LHAASO J2108+5158, and the results of this study are
summarized in the concluding Section 7.

2. VERITAS Observations and Data Analysis

The Very Energetic Radiation Imaging Telescope Array
System (VERITAS) is an array of four IACTs located at the
Fred Lawrence Whipple Observatory in Amado, Arizona
(J. Holder et al. 2006). Each telescope is equipped with a 12 m
tessellated reflector and a 499 element photomultiplier tube
(PMT) camera, providing a field of view (FoV) of 3°.5. These
telescopes capture the Cherenkov light produced by gamma-
ray and cosmic-ray showers in the atmosphere. VERITAS is
sensitive in the energy range between ∼80 GeV and ∼30 TeV.
It has an angular resolution of ∼0°.1 at 1 TeV, and can detect a
point source with 1% of the flux of the Crab Nebula, with 5σ
statistical significance, in 24 hr.63

VERITAS observed LHAASO J2108+5157 for 40 hr in
2021. After applying quality cuts and a correction for dead
time, we obtain 35 hr of good quality data. The observations
were performed in wobble mode with an offset of 0°.7 to the
source centroid (R.A.: 317°.15, decl.: 51°.95). A minimum of
two images was required for event reconstruction, and a
machine-learning classification method utilizing boosted
decision trees (M. Krause et al. 2017) was employed to
remove background events. Despite removing more than 99%
of background events, there was still an irreducible back-
ground, estimated using the ring background method (D. Berge
et al. 2007). The reconstruction and event selection led to an
energy threshold of 200 GeV for the analysis.
Figure 1 shows the significance map of the LHAASO J2108

+5157 region using VERITAS data above 200GeV. The map is
smoothed with a circular window of radius 0°.09, consistent with
the VERITAS point-spread function (PSF). It is clear from the map
that no gamma-ray excess is detected at the location of LHAASO
J2108+5157 (R.A.= 317°.15, decl. = 51°.95). The statistical
significance is calculated using the likelihood method (T. P. Li
& Y. Q. Ma 1983), resulting in a value of 0.6σ. The significance is
also calculated by assuming LHAASO J2108+5157 as an
extended source with a radius of θ = 0°.25. This also leads to
null detection at the 0.3σ level. The spectral analysis is performed
for a circular region with a radius of 0°.25 around the LHAASO
J2108+5157-KM2A position, since the source is detected as an
extended source in Z. Cao et al. (2023). The resulting ULs for the
flux at a 95% confidence level are shown in Figure 2. These ULs
are calculated for energies above a threshold of 500GeV.

3. HAWC Analysis

The High Altitude Water Cherenkov Gamma-Ray Observa-
tory (HAWC) is a ground-based water Cherenkov instrument
located in Sierra Negra, Puebla state, Mexico, at an altitude of
4100 m above sea level (A. Abeysekara et al. 2023). It consists
of 300 tanks in the main array. Each tank is equipped with

Figure 1. VERITAS significance map above 200 GeV, created with an
integration radius of 0°.09. The green dotted circle shows the integration radius
(θ = 0°.25) used to extract spectral ULs from VERITAS. The best-fit positions
measured by WCDA, KM2A, HAWC, and Fermi-LAT with their error bars
are also shown as magenta, blue, red, and black plus signs, respectively. Light
gray contours from the 13CO map, integrated between −20 and −8 km s−1, are
also shown. These contours correspond to levels of [−4, 4, 5, 8, 12, 16, 20]
times the rms value of 0.5 K km s−1 (E. de la Fuente et al. 2023).

63 https://veritas.sao.arizona.edu/about-veritas/veritas-specifications
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three 8 inch Hamamatsu PMTs and one 10 inch high-quantum-
efficiency Hamamatsu PMT. HAWC is sensitive to extensive
air shower (EAS) events with primary energies from several
hundreds of GeV to above 100 TeV. It has a duty cycle of
more than 95%.
Using the newly produced pass 5 data (∼2400 days;

A. Albert et al. 2024), a source in the LHAASO J2108
+5157 region was detected significantly above 300 GeV, as
shown in Figure 3. The HAWC data are binned into two-
dimensional bins based on the fraction of PMT hits and the
reconstructed energy. Since events with shower cores landing
on the detector array (so-called “on-array” events) allow a
more accurate reconstruction, only the “on-array” events were
used in this analysis. The morphology and energy spectrum of
the source is determined by likelihood fitting with the HAWC
Accelerated Likelihood (HAL) plugin for the Multi-Mission
Maximum Likelihood (3ML) framework (G. Vianello et al.
2015). Likelihood calculation with the HAL plugin has been
described well by previous HAWC publications (e.g.,
P. W. Younk et al. 2015; A. Abeysekara et al. 2017;
A. U. Abeysekara et al. 2021).
We chose a circular region of interest (RoI) with a radius of 3°

centered at R.A.= 317°.14, decl.= 51°.94. Since the source is about
3° away from the Galactic plane, we assume that the diffuse
background emission from the Galactic diffuse emission and
unresolved sources is negligible in this analysis (A. Abramowski
et al. 2014; A. U. Abeysekara et al. 2017). Two morphology
models were tested with the HAWC data, and the extended source
model with a symmetric Gaussian was favored. It yielded a
detection significance of 7.5σ, with the best-fit centroid location at
R.A.= 317°.12 ± 0°.09 and decl.= 51°.96 ± 0°.05, and a best-fit
extension of 0°.21 ± 0°.04 (see Figure 3). The energy spectrum is
well fit by a power law ( ( )/ /=dN dE N E E0 0 ) with flux

normalization of ( ) ( )×+ +1.86 stat. syst.0.30
0.40

0.17
0.24 10−16 cm−2TeV−1 s−1

at a pivot energy of 35 TeV and an index of ±2.45
( ) ( )+0.11 stat. syst.0.03

0.01 . After determining the best-fit spectral
parameters from the likelihood fitting across the whole energy
range, the flux points are calculated by refitting the flux
normalization in each energy bin while fixing the spectral index
to the global best-fit value. The resulting fluxes correspond to
the median energy of each bin (see Figure 2 for HAWC spectral
points). The energy range of 3–146 TeV is determined by
applying a step function to the best-fit spectral model and
varying its boundaries to find where the log-likelihood
significantly deviates from the best fit (A. Abeysekara et al.
2018). This range covers the transition between the
spectra measured by LHAASO-WCDA (index of
−1.56± 0.34) and KM2A (index of −2.83± 0.18 (Z. Cao
et al. 2023)), and motivates the search for a spectral curvature in
the HAWC data. With the current statistics, the HAWC data
do not support spectral curvature. A log-parabola model
( ( ) )( )/ / /=dN dE N E E E E

0 0
ln 0 is disfavored relative to a

power-law model based on the Bayesian information criterion
(BIC), with a ΔBIC of 11 (R. E. Kass & A. E. Raftery 1995).
Nevertheless, the HAWC results are consistent with LHAASO
within uncertainties, and this helps bridge the spectra
observed by WCDA and KM2A. A similar test with
increased statistics in the future could lead to a more definitive
conclusion. Current best-fit parameters for a log-parabola model
are a flux normalization = ×+N 2.30 0.5

0.6 10−16 cm−2 TeV−1 s−1,
α = 2.52 ± 0.21, and β = 0.17 ± 0.18.
The systematic errors were calculated as described in

A. Abeysekara et al. (2019), in which different sources of
systematic uncertainty are investigated, including the charge
uncertainty, PMT threshold, late-light simulation, and absolute
PMT efficiency/time dependence. They are treated separately,
and the effects of each source of systematic uncertainty are
added in quadrature to the others to obtain the final systematic
errors for the source.
We also performed a joint fit using flux points from

VERITAS, HAWC, and LHAASO. Among these independent
measurements, HAWC provides the strongest constraints
below 20 TeV, as shown in Figure 2. For this fit, we used a
power law with an exponential cutoff, described by the

Figure 2. The spectral energy distribution of LHAASO J2108+5157
measured by VERITAS and HAWC. Notably, the VERITAS ULs are derived
from a circular region with 0°.25 radius for energies above a threshold of
500 GeV. The data from LHAASO-KM2A reported in Z. Cao et al. (2021a)
were included in the joint fit. The fitting model used is a power law with
exponential cutoff (ECPL). The spectral index is fixed to a value of 1.7,
consistent with Z. Cao et al. (2023). This fitting constrains the cutoff energy to
82 ± 30 TeV. The gray band represents the 68% error band of the ECPL
model. The magenta and green bands represent the power-law spectral energy
distribution plots for WCDA and KM2A, respectively, as reported in Z. Cao
et al. (2023).

Figure 3. HAWC significance map of the LHAASO J2108+5157 region
above 300 GeV. The best-fit positions measured by HAWC and KM2A are
represented as red and blue markers, respectively, along with their error bars.
A white circle around the HAWC position indicates the best-fit extension.
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equation ( ( ) (/ / /=dN dE N E E E Eexp0 0 cutoff). The spec-
tral index (γ) and reference energy (E0) are fixed at respective
values of 1.7 and 20 TeV, resulting in a cutoff energy of
82 ± 30 TeV. The spectral index is fixed at 1.7 to ensure
consistency with the VERITAS ULs and to better constrain the
cutoff energy.

4. Fermi-LAT Analysis

To investigate any GeV emission associated with LHAASO
J2108+5157, we analyzed 14.2 yr of the Large Area Telescope
(LAT) data (2008 August–2022 October, MET 239557417—
687054166). The LAT is a pair-conversion detector on board
the Fermi Gamma-ray Space Telescope (Fermi). It can detect
gamma-rays in the energy range from below 20MeV to above
300 GeV with an energy-dependent angular resolution of ≲0°.2
above 10 GeV (W. B. Atwood et al. 2009).
The region of interest (RoI) was defined as a box region

with a side length of 21° (acceptance cone radius of 15°)
centered at the centroid of LHAASO J2108+5157 (R.
A.= 317°.22, decl.= 51°.95). We selected the “SOURCE”
class (evclass= 128) and “FRONT&BACK” type (evtype= 3)
events in 100MeV–1 TeV within the RoI. The events were
reconstructed using the instrument response function (IRF)
P8R3_SOURCE_V3. We filtered the events with a maximum
zenith angle of 90° and the filter expression DATA_QUAL>0
&& LAT_CONFIG==1. We then performed a binned like-
lihood analysis using Fermipy v1.2 (M. Wood et al. 2017),
a Python package for analyzing the LAT data with the Fermi
Science Tools. The events were binned into 0°.1 spatial bins
and eight logarithmic energy bins per decade. Our model was
comprised of the Galactic diffuse emission model
(gll_iem_v07.fits), the isotropic emission model
(iso_P8R3_SOURCE_V3_v1.txt), and the source models
within 20° of the center of the ROI from the latest LAT source
catalog (4FGL-DR3; S. Abdollahi et al. 2022). The model was
fitted to the data to obtain the maximum likelihood.
The data are explained well by the model and Gaussian

fluctuations. We have generated and analyzed test statistic
(TS64) maps in different energy ranges (1, 3, 5, 10, 30, 50, and
100 GeV–1 TeV) to search for any significant gamma-ray
excess in the vicinity of LHAASO J2108+5157; no significant
excess is detected. 4FGL J2108.0+5155 is the only source in
4FGL-DR3 that lies within the extension of LHAASO J2108
+5157 (0°.19 ± 0°.02). As a point source that is 0°.13 away from
LHAASO J2108+5157, 4FGL J2108.0+5155 is modeled with
a log parabola in 4FGL-DR3. The parameters of our best-fit
model for 4FGL J2108.0+5155 are in good agreement with
those of 4FGL-DR3. 4FGL J2108.0+5155 is detected below
10 GeV and shows a sharp cutoff around 1 GeV in its
spectrum. Such a spectral feature is often observed in
gamma-ray pulsars.
Z. Cao et al. (2021a) reported a significant (7.8σ) detection

of the spatial extension ∼0°.48 (2D Gaussian width) of 4FGL
J2108.0+5155 using 12.2 yr of the LAT data in the 1 GeV–
1 TeV range. We performed an extension fit with a symmetric
Gaussian model in this energy range, starting from our best-fit
model and freeing the same parameters as before. The best-fit
extension of 4FGL J2108.0+5155 is 0°.55 with a marginal

increase in likelihood (Δln =L 16) and lower statistical
significance (5.7σ). In addition, the significance of multiple
sources located near 4FGL J2108.0+5155 dropped below the
detection threshold after the model was reoptimized with
4FGL J2108.0+5155 as an extended source. It is likely that the
gamma-rays originally attributed to nearby point sources are
now attributed to 4FGL J2108.0+5155 because the source
model has been so greatly extended. The model parameters of
the extended 4FGL J2108.0+5155 are poorly constrained.
S. Abe et al. (2023) used 13.5 yr of LAT data in the
1–500 GeV band to claim evidence (4σ) of a new hard (power-
law differential index = 1.9) point source just outside the
extent of LHAASO J2108+5157. Despite the low possibility
of being the counterpart of LHAASO J2108+5157, due to its
location, adding the new source to their model improved their
model for 4FGL J2108.0+5155. We do not detect this point
source. Additionally, all the model parameters of 4FGL
J2108.0+5155 are already tightly constrained in our model,
with values that match the catalog. We attribute the
discrepancy between our work and the previous work of
Z. Cao et al. (2021a) and S. Abe et al. (2023) to the energy
range of the data used in each analysis. While Z. Cao et al.
(2021a) and S. Abe et al. (2023) fitted their model to the high-
energy data (>1 GeV), our model was first optimized in the
entire energy range of 4FGL-DR3 (100MeV–1 TeV). Since
the majority of the sources in the catalog, including 4FGL
J2108.0+5155, have most of their emission below a few GeV,
excluding the low-energy data to fit the catalog models would
naturally lead to deviations from the model. We conclude that
the GeV emission in the LHAASO J2108+5157 region is
characterized by a point-like source with a spectral cutoff at
∼1 GeV, consistent with the model for 4FGL J2108.0+5155
in 4FGL-DR3.

5. XMM-Newton Analysis

XMM-Newton is an X-ray space observatory with three
coaligned telescopes on board. The primary instruments of
XMM-Newton are the European Photon Imaging Cameras
(EPIC), which consists of three CCD cameras (MOS1, MOS2,
and pn). Each camera covers a field of view with a diameter
0°.5 with an angular resolution of 6″ FWHM. The cameras are
sensitive in the energy range from 0.2 to 12 keV for MOS1 and
MOS2, and from 0.2 to 15 keV for pn (L. Strüder et al. 2001;
M. J. L. Turner et al. 2001).
We obtained new XMM-Newton observations of LHAASO

J2108+5157 in 2023 May (observation IDs 0923400501,
0923400901, and 0923401001; total exposure 96 ks). The
telescope pointing was at the centroid of LHAASO J2108
+5157 reported in Z. Cao et al. (2021a). All three cameras
were operated in full-frame mode with a thin filter. We utilized
nearly the entire FoV (a circular region of radius 0°.2) for the
analysis. Since a significant part of the source region lies on
MOS 1’s missing chips (CCD3 and CCD6), only MOS 2 and
pn were used.
We processed the XMM-Newton data using the XMM-

Newton Extended Source Analysis Software (XMM-ESAS)
package in the XMM-Newton Science Analysis System (SAS
v21.0.0; C. Gabriel et al. 2004). First, we visually examined
the images from the three cameras. We created event files for
MOS2 (pn) using the emchain (epchain) task and filtered the
good time intervals (GTIs) affected by soft proton (SP) flares
using the espfilt task. The net exposure after filtering is 62 ks.

64 TS = −2ln(Lmax,0/Lmax,1) was calculated for each spatial bin, where in
each spatial bin, Lmax,0 and Lmax,1 are the maximum likelihoods without and
with an additional source, respectively. For the spectrum of an additional
source, a power law with index 2 was used.
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We used the cheese task to detect and mask point sources in
the FoV. With the exception of V1061 Cygni, an eclipsing
binary located just outside our source region at the north-
western edge of the FoV, no bright point source is present. We
generated model quiescent particle background (QPB) spectra
and images from the corner chip data and the filter-wheel
closed data using mosspectra (pnspectra) and mosback
(pnback) tasks. We subtracted the QPB, merged the three
observations into a mosaic, and corrected the exposure to
obtain an image of the FoV in the 2–7 keV range. This energy
range was selected to avoid additional modeling of the thermal
cosmic background (Local Bubble and halo), the line
emissions of the QBP (not included in the model), and the
charge exchange in the solar wind. No significant emission
was observed in the image in the vicinity of LHAASO
J2108+5157.
We have performed a spectral analysis with Xspec

(K. A. Arnaud 1996) to place a UL on a putative diffuse
emission associated with LHAASO J2108+5157. The spectra
from the three observations and two detectors were jointly
analyzed in the 2–7 keV range. The model QPB spectra were
used for the background spectra while additional background
components were included in the source model. The back-
ground components included in the source model are the weak
line emission of the QPB (Cr Kα at 5.4 keV and Fe Kα at 6.4
keV) and the cosmic X-ray background (power law with
Γ = 1.4 and normalization 11.6 photons keV−1 s−1 cm−2 sr−1

(A. De Luca & S. Molendi 2004)). The Galactic hydrogen
column density in the direction of LHAASO J2108+5157
(NH = 1.21 × 1022 cm−2) was used to account for the
absorption.65 Using an absorbed power law (tbabs*pow)
with the power-law index fixed to 2, we calculate the 95%
unabsorbed flux UL in 2–10 keV= 3.5 × 10−13 erg s−1 cm−2

(reduced χ2 = 1922/2464) for the X-ray emission from
LHAASO J2108+5157.66 Note that the residual SP back-
ground was not included in the model because the model
parameters are unconstrained due to the limited counts over
the background and the degeneracy with the source model
(power law). The effect of the residual SPs should be marginal
—we examined the count rate over the exposure and
confirmed that none of the remaining GTIs had significantly
elevated rates after filtering.

6. Leptonic Modeling of Multiwavelength Emission

Gamma rays can be produced either by the leptonic scenario,
in which relativistic electrons emit inverse Compton radiation
by upscattering low-energy photons, or by the hadronic
scenario, in which relativistic protons interact with protons in
the surrounding gas, leading to the production of neutral and
charged pions. Since no strong pulsars or supernova remnants
(SNRs) have yet been detected within 99% containment radius
of KM2A extension (0°.58) of LHAASO J2108+5157, it is
difficult to reach any firm conclusions regarding the origin of
gamma-ray emission. Recently, a hadronic scenario has been
proposed in which cosmic rays escaping from an old SNR and
interacting with nearby molecular clouds produce the gamma-
rays (E. de la Fuente et al. 2023; A. De Sarkar 2023;
A. M. W. Mitchell 2024). Alternatively, the pulsar-like spectral

signature of 4FGL J2108+5155 makes the leptonic scenario
plausible to explain the gamma-ray emission from LHAASO
J2108+5157 (Z. Cao et al. 2021a; S. Abe et al. 2023).
In this section, we provide a benchmark model for the

leptonic scenario, which explains the multiwavelength data
obtained as part of this work and from Z. Cao et al. (2021a)
and Z. Cao et al. (2023). Investigation of the broader parameter
space is left for future work.
The VERITAS UL at 1 TeV and the Fermi-LAT UL at

200 GeV show a significant hardening of the spectrum below
10 TeV, which is critical for considering not only the leptonic
but also the hadronic scenario where the accelerator (middle-
aged SNR) and the gamma-ray emitter (dense gas cloud) are
separated. A detailed study of this scenario, utilizing the
HAWC, VERITAS, and XMM-Newton data from this work,
along with newly obtained radio data, is performed in E. de La
Fuente et al. (2025, in preparation).
Previous studies have already modeled the broadband

gamma-ray emission by assuming an exponential cutoff
power-law electron population with a spectral index of 2.2, a
cutoff energy of 200 TeV, and a magnetic field of 3 μG
(Z. Cao et al. 2021a). However, with the inclusion of ULs from
LST-1 data in the GeV–TeV range, the electron spectral index
was constrained to a value of (1.5 ± 0.4). Furthermore, by
adding ULs in the X-ray band from XMM-Newton, the
maximum magnetic field is estimated to be 1.2 μG in the
leptonic model (S. Abe et al. 2023).
In this new study, we include additional data from the

VERITAS and HAWC observatories and re-examine the
modeling under the leptonic scenario. We assume that 4FGL
J2108.0+5155 is a pulsar that powers a pulsar wind nebula
(PWN) associated with LHAASO J2108+5157. Electrons
accelerated within the PWN follow a power-law distribution
with an exponential cutoff,

( ) ( )/ /=dN dE N E E
E

E
exp , 1e e e e e

e

e
,0 ,0

,cut

e

where Ne,0 is the normalization constant, representing the
electron flux at the reference energy of Ee,0 = 1 TeV, αe is the
electron spectral index, and β is the cutoff index whose value
can be 1 (simple exponential cutoff) or 2 (super-exponential
cutoff) depending on the particle acceleration mechanism
(V. N. Zirakashvili & F. Aharonian 2007). The photons of the
cosmic microwave background (CMB) are considered as seed
photons with which relativistic electrons interact to produce
emission in the VHE region through the process of inverse
Compton scattering. The same electron population also
generates nonthermal X-rays through the synchrotron process.
The normalization constant Ne,0, and hence the total electron
energy, is scaled to the estimated distance to the source (1 kpc;
Z. Cao et al. (2021a)). The TeV and X-ray data are modeled
using the Naima package (V. Zabalza 2015), while the Fermi-
LAT data are modeled using a log parabola spectrum
(S. Abdollahi et al. 2022) with the best-fit parameters from
this work.
The sharp cutoff in the 100 s TeV range measured by

LHAASO-KM2A favors a super-exponential cutoff (β = 2) in
the electron spectrum over a simple exponential cutoff (β = 1).

65 https://www.swift.ac.uk/analysis/nhtot/index.php
66 When the power-law index is fixed to 1.5 (2.5), the UL is increased
(decreased) by 1.2 × 10−13 erg s−1 cm−2.
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With β fixed at 2, our benchmark model with αe = 1.6 and
Ee,cut = 196 TeV explains the observed TeV data well, as
shown in Figure 4. A magnetic field of ∼1.5 μG or below is
required to ensure compliance with the X-ray flux UL. The
total energy of electrons above 1 GeV is estimated to

be ( )×5.2 10 d44
1.0 kpc

2
erg.

7. Summary and Conclusion

In this paper, we have analyzed 62 ks of XMM-Newton
data, 14 yr of Fermi-LAT data, 40 hr of VERITAS data, and
2400 days of HAWC data. From the multiwavelength analysis,
we draw the following conclusions:

1. The XMM-Newton observation in the energy range
2–7 keV did not detect any significant signal from
LHASSO J2108+5157. Despite this null detection, the
ULs obtained in the X-ray region allow us to constrain
the magnetic field strength to ≲1.5 μG under the leptonic
scenario.

2. The analysis of the Fermi-LAT data above 100MeV
revealed a point-like source 4FGL J2108.0+5155 toward
the LHAASO J2108+5157 region. Its properties align
with those reported in the 4FGL-DR3 catalog (4FGL
J2108.0+5155). The measured spectrum shows a pulsar-
like spectrum with a steep cutoff above 1 GeV.

3. We have reported a nondetection of LHAASO J2108
+5157 using VERITAS data above 200 GeV. The
spectral ULs of this observation are consistent with the
WCDA spectrum (Z. Cao et al. 2023) and constrain the
emission model parameters in the 1–10 TeV range.

4. With 2400 days of HAWC data, we have detected the
source at a significance level of 7.5σ above 300 GeV.
Furthermore, an extended source with an extension of
0°.21 ± 0°.04 is slightly favored. The best-fit position of

the emission centroid in HAWC is at 0°.06 ± 0°.07 offset
from the position measured by KM2A.

5. We provided a benchmark model for the multiwave-
length SED under the assumption that LHAASO J2108
+5157 is a PWN powered by a (yet to be identified)
gamma-ray pulsar 4FGL J2108.0+5155. Under this
leptonic scenario, the GeV detected by Fermi-LAT is
attributed to the pulsar emission, and the X-ray and TeV
emissions are explained by synchrotron radiation and
inverse Compton scattering, respectively, of relativistic
electrons accelerated within the PWN. The electron
spectrum is described by a power law with a super-
exponential cutoff (β = 2), electron index αe = 1.6, and
cutoff energy Ee,cut = 196 TeV.
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Figure 4. Leptonic model under the assumption of PWN being the source
class. The sharp cutoff around 100 TeV observed by LHAASO-KM2A favors
a super-exponential cutoff (β = 2) in the electron spectrum. Our benchmark
model with the electron power-law index αe = 1.6 and cutoff energy Ee,

cut = 196 TeV explains the VERITAS, HAWC, and LHAASO observations.
Our XMM-Newton flux UL constrains the magnetic field to ≲1.5 μG.
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