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Abstract

In this thesis we discuss various gauge group structures in the gauge-Higgs unifi-

cation models. The first group we considered was a toy SU(3) model, where it is

possible to have the unification of gauge and top Yukawa couplings, which is an at-

tractive feature of gauge-Higgs unification models in extra-dimensions. This feature

is usually considered difficult to obtain based on simple group theory analyses. We

reconsider several minimal toy models calculating the renormalisation group run-

ning at one loop. Our results show that the gauge couplings unify asymptotically

at high energies, and that this may result from the presence of an UV fixed point.

The Yukawa coupling in our toy models is enhanced at low energies, showing that a

genuine unification of gauge and Yukawa couplings may be achieved.

Furthermore, the evolution of the Cabibbo-Kobayashi-Maskawa matrix elements,

the Jarlskog invariant and the quark mixings are derived for the one-loop renor-

malisation group equations in a five-dimensional models for an SU(3) gauge group

compactified on an S1/Z2 orbifold. We have assumed that there is a fermion doublet

and two singlets located at the fixed points of the extra dimension, which pointed

to some interesting phenomenology in this toy model. We then explicitly test in a

simplified 5-dimensional model with SU(5), SU(5) × U(1)′ and G2 gauge symme-

tries, the evolution of the gauge couplings, by assuming that all the matter fields

are propagating in the bulk, and consider orbifolds based on Abelian discrete groups

which lead to 5-dimensional gauge theories compactified on an S1/Z2. The gauge

couplings evolution is derived at one-loop level and used to test the impact on lower

energy observables, in particular the Weinberg angle. For our numerical calculations

we have assumed that the fundamental scale is not far from the scope of the Large

Hadron Collider, where we choose the compactification radii to be the following

benchmark values: 1 TeV, 4 TeV, 5 TeV, 8 TeV, 10 TeV, 15 TeV and 20 TeV.

As these gauge-Higgs unification models can also contain many additional particles,
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we sought to use these particles as dark matter (DM) candidates. As many studies

have already been done on various spin DM particles, we chose to focus on the more

exotic spin-3/2 fermionic DM. We have allowed interactions with standard model

fermions through a vector mediator in the s-channel in our first considerations. An

interesting feature of the spin-3/2 nature of the standard model particles is that

there exists a minimum value of the DM mass for a given coupling and mediator

mass, below which the decay width of the mediator exceeds the mediator mass. We

find that for pure vector couplings almost the entire parameter space in DM and

mediator mass is consistent with the observed relic density, and is ruled out by the

direct detection observations through DM-nucleon elastic scattering cross-section. In

contrast, for pure axial-vector coupling, the most stringent constraints are obtained

from mono-jet searches at the Large Hadron Collider.

We have also considered a spin-3/2 fermionic DM particle interacting with the stan-

dard model quarks through the exchange of a charged and coloured scalar or vector

mediator in a simple t-channel model. It is found that for the vector mediator case

almost the entire parameter space allowed by the observed relic density is already

ruled out by the direct detection LUX data. There are no such bounds which exist

on the interaction mediated by scalar particles. Monojet + missing energy searches

at the Large Hadron Collider provide the most stringent bounds on the parameters

of the model for this case. The collider bounds put a lower limit on the allowed DM

masses.

These studies have shown a variety of particle phenomenology beyond the standard

model, where such models can be constrained from both collider and astrophysical

data.
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Chapter 1
General context and overview

1.1 Introduction

The coming years could represent a new era of unexpected and exciting discoveries

in high energy physics. For one thing, the CERN Large Hadron Collider (LHC)

has been operating for some time and much experimental data has already been

collected [1, 2]. So far, the greatest achievement of the LHC has been the discovery

of the missing building block of the Standard Model (SM), the Higgs particle (or, at

least, a particle which most likely is the SM Higgs particle) [3, 4]. On the other hand,

no direct evidence of new physics beyond the SM has been found, yet. However,

there are many reasons to believe that new physics should in fact show-up at, or

about, the TeV scale [5, 6, 7].

The ways in which new physics may manifest, could be in the more poorly under-

stood regions of the SM. For example, in the Higgs sector, and may lead to a way of

resolving issues of the Higgs vacuum stability. One model to resolve this instability

is with models like Gauge-Higgs Unification (GHU) in extra dimensions. This offers

a very promising solution to the problem of the radiative stability of the electroweak

scale (Higgs mass), by promoting the Higgs boson to a gauge field component, and

then gauge invariance itself can protect the mass term from divergent radiative cor-

rections [8]. Even though the model is an effective theory with a rather low cut-off,

the finiteness of the Higgs potential allows calculability. Furthermore, we know the

Universe to have dark matter (DM), where this is unexplained by the SM [9].

In order to build a successful GHU model, the first requirement is to find a gauge

group that contains SU(2)L× U(1)Y (and optionally the strong SU(3)c) and whose

adjoint representation contains a doublet of SU(2) to be identified with the Higgs

1



Section 1.1. Introduction Page 2

doublet. The group must have rank at least equal to the SM subgroup, which is

2, because the rank cannot be generally reduced by an orbifold breaking. As such,

we shall consider groups of rank 2 or 4. The second step is to normalise the U(1)

gauge coupling so that the candidate Higgs has the correct hypercharge: this fixes

the value of tan θW at the cut-off scale and allows us to predict the Z mass at low

energies. Finally, we need to make sure that the proper breaking of the unified group

to the SM with a scalar zero mode for the Higgs doublet can be correctly done: this

last step depends crucially on the symmetries of the orbifold compactification. In

Ref. [10] a survey of the rank 2 groups has been done already, showing that in

many cases the value of tan θW at the cut-off is too far from the low energy value.

However, even though the cut-off of the theory is small, the presence of many Kaluza-

Klein (KK) levels below the cut-off means that the running is not logarithmic as

in 4-dimensions, but starts showing a power law behaviour. Therefore, very large

corrections are expected and one cannot disregard any possibility without studying

the running. In this thesis we debate the minimal SU(3) model with a bulk triplet,

the evolution of quark masses and flavour mixings in 5-dimensions for an SU(3)

gauge group, as well as the evolution of the gauge couplings and Weinberg angle in

5-dimension for an SU(5), flipped SU(5) and G2 gauge group.

Another great problem in the SM is that there are no strong clues to explain DM.

Any new physics beyond the SM which anticipates the existence of new particles, for

instance the superpartner particles (in supersymmetry) [11], KK particles (in extra

dimensional models) [12, 13], also the techni-particles (such as in compositeness of

the Higgs models), can seek to explain these as DM candidates [14, 15]. In the

case of extra dimensions, we have the lightest KK particles, and if these particles

are stable, these can become candidates for DM [16]. For instance, the spin-3/2

fermions exist in the KK model [17]. One of the additional fermions in the GHU

model can be identified as a dark fermion, and thus, this dark fermion becomes the

DM candidate, and it has to be the lightest of the dark particles.

Many astrophysical and cosmological observations during the last several decades

provide strong evidence for the existence of DM in the Universe. The amount of DM

has been precisely measured by the Planck satellite mission to be ΩDMh
2 = 0.1188±

0.0010 [18], where the cold dark matter (CDM) content is estimated to comprise

roughly 26% of the total energy in the Universe. Investigations into the nature of

DM particles and their interactions has emerged as an important field of research.

Weakly interacting massive particle (WIMP) DM searches constitute an important

programme at the LHC, where the ATLAS and CMS collaborations [19, 20, 21] are

looking for DM signatures involving missing energy accompanied by a single or two
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jet events. It is expected, and there is indeed a real possibility, that the production

of DM particles of any spin at 13 TeV centre-of-mass energy would be detected.

Null results from the direct detection experiments [22, 23, 24, 25], which measure

nuclear-recoil in DM-nucleon elastic scattering, have provided the most stringent

upper bounds on the spin-independent DM-nucleon elastic scattering cross-section

over a wide range of DM masses. This has provided important constraints on the

DM models considered in the literature. In addition there are indirect detection

experiments whose aim is to detect the signature of annihilating or decaying DM

particles into the SM particles.

As such, in this thesis we will also consider a spin-3/2 DM particle as an alternative

to the conventional scalar, vector or spin-1/2 CDM particles. Where this spin-3/2

CDM has been studied in effective field theories (EFT) models and constraints from

the relic density, direct and indirect observations obtained [26, 27, 28, 29]. Spin-3/2,

7.1 KeV warm dark matter (WDM) has been considered as a means to provide a

viable explanation from the anomalous 3.1 KeV X-ray line observed by the XMM

Newton [30]. Furthermore, the spin-3/2 DM with a Higgs portal has recently been

investigated [31].

1.2 The Standard Model of Particles physics

The SM of particle physics has been a very successful model in describing most of the

particle phenomenology known so far [32], even though it possesses some problems

whose solution implies physics beyond the SM. The SM is a quantum field theory

model based on two main principles:

(1) The gauge principle.

(2) The spontaneous symmetry breaking mechanism.

In order to obtain a renormalisable theory, we need to construct a Lagrangian in

terms of operators of dimensionality such that the Lagrangian has dimensionality

4. Once we impose the local gauge invariance this will require the existence of the

gauge bosons, which determines the interactions of these gauge bosons with fermions

and also the interactions between the gauge bosons themselves. The combination

of local gauge invariance with the spontaneous symmetry breaking mechanism leads

to the Higgs mechanism, which generates the masses of weak vector bosons and

fermions [33]. In order to determine the gauge theory we need to specify:

(1) The gauge group.
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(2) The field content in terms of its spin and its representations under the SM

gauge groups.

The SM is a non-Abelian gauge theory with gauge group SU(3)C×SU(2)L×U(1)Y,

where the group corresponding to strong interactions is the SU(3)C colour group of

quantum chromodynamics (QCD) [32, 34]. QCD describes the strong interaction

between quarks, that arises from the exchange of the eight massless gluons that

couple to the colour charge of the fermions, Ga
µ (a=1,2,.....,8) [35]. The electroweak

theory, which describes the electromagnetic and weak interactions between quarks

and leptons, is basically based on the electroweak gauge group SU(2)L ×U(1)Y [36,

37].

For the sake of completeness, let us now define the SM field content and their

transformations under the SM gauge group, which are illustrated in Table 1.1.

The SM contains fermions also, where we can always write the Dirac spinor corre-

sponding to each SM fermion as a sum of two spinors, one with left chirality PL and

the other with right chirality PR:

Ψ = PRΨ + PLΨ = ΨR + ΨL =
1

2
(1− γ5)Ψ +

1

2
(1 + γ5)Ψ. (1.2.1)

The left and right-handed components of any fermion are assigned to different rep-

resentations of the SU(2)L×U(1)Y gauge groups [38]. In order to specify the trans-

formation properties under SU(2)L it is useful to define a new quantum number, the

weak isospin T. Therefore, any particles having a weak isospin different from zero

have an SU(2)L interaction, while those particles with weak isospin which is null

are not sensitive to the SU(2)L interaction. For instance, the weak isospin of the

fermions of left chirality is T = 1/2, thus the third component of the weak isospin

T3 can take values of ±1/2. Correspondingly, the quarks of left chirality are grouped

into quark doublets,

Qi =

(
uiL

diL

)
, (1.2.2)

where i is the family index (i = 1, 2, 3). The left-handed leptons are grouped into

the lepton doublets also,

Li =

(
νiL

eiL

)
. (1.2.3)

The weak isospin is null for the fermions of right chirality, i.e. the quarks uiR, diR

and lepton eiR. The weak hypercharge, Y , is the quantum number associated with

the group U(1)Y. Thus, the electric charge Q and the third component of the weak

isospin T3 are related by the Gell-Mann-Nishijima formula

Q = T3 + Y. (1.2.4)
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Fields Lorentz SU(3)C SU(2)L U(1)Y

Qi L 3 2 1
6

uiR R 3 1 2
3

diR R 3 1 −1
3

Li L 1 2 −1
2

eiR R 1 1 -1

Table 1.1: Summary of the SM field content and their quantum numbers.

Therefore, the quark doublets have hypercharge 1/6, the lepton doublets have hy-

percharge -1/2 and the right-handed fermions uiR, diR and eiR have hypercharge

2/3, -1/3, and -1 respectively. The quarks are triplets under the SU(3)C group, and

can interact via strong interactions, while leptons are colour singlets.

For each gauge group there is a gauge coupling associated to that gauge group, where

in the case of the electroweak gauge symmetry group SU(2)L×U(1)Y; there are two

different couplings constant, U(1)Y has a gauge coupling g′, and SU(2)L has a gauge

coupling g. The part of the SM Lagrangian that describes the SU(2)L×U(1)Y gauge

interactions is given by

LGaugeSM =iQiDµγ
µQi + iuiRDµγ

µuiR + idiRDµγ
µdiR

+ iLiDµγ
µLi + ieiRDµγ

µeiR −
1

4
W a
µνW

µν
a −

1

4
BµνB

µν , (1.2.5)

where W a
µ has a self-interacting term because of the non-Abelian nature of the

SU(2)L group;

W a
µν = ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν , (1.2.6)

and

Bµν = ∂µBν − ∂νBµ. (1.2.7)

The covariant derivative in this case is given as

Dµ = ∂µ + igW a
µTa + ig′BµY, (1.2.8)

where the Ta are identified as the representations of the SU(2)L generators and

are different for left handed and right handed fields. As we will see later, after

spontaneous symmetric breaking, we can write the covariant derivative in terms of

the gauge boson mass eigenstates

W 1
µ =

W+
µ +W−µ√

2
, W 2

µ =
i(W+

µ −W−µ )
√

2
, (1.2.9)

and

W 3
µ =

gZµ + g′Aµ√
g2 + g′2

, Bµ =
gAµ − g′Zµ√

g2 + g′2
. (1.2.10)
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Fields T T3 Y Q

Φ+ 1
2

1
2

1
2 1

Φ0 1
2 −1

2
1
2 0

Table 1.2: The quantum number of the Higgs doublet.

1.2.1 The SM Higgs and flavour.

Note that the discussion in this section based on Ref. [32]. A mass term for the

gauge vectors is prevented by the gauge symmetry, therefore, in order for these

gauge vectors to acquire masses, it is implied that somehow the gauge symmetry

must be broken. This can be done through spontaneous symmetry breaking [39],

which is a way for the gauge bosons to acquire masses, as well as the fermions,

whose mass terms are also otherwise forbidden by the gauge symmetry. Note that

the SM fermions in Table 1.1 are in chiral representations, and gauge symmetry

in conjugation with chiral representations forbid fermion mass terms (vector-like

fermions can have mass terms allowed by gauge symmetry).

The SM gauge group contains SU(3)C interactions which seem to be conserved, as

long as the gluons are massless, therefore this symmetry should not be broken [40].

We therefore only need to break the other part, SU(2)L×U(1)Y. In order to sponta-

neously break the gauge symmetry we need to introduce a scalar field in the theory,

which is called the Higgs field, and we need this field to give mass not only to the

gauge bosons but also to the SM fermions. Therefore we can introduce a complex

scalar doublet as

Φ =

(
Φ+

Φ0

)
, (1.2.11)

where the transformation of this doublet under the SM gauge group is given as:

(i) Under SU(3)C it is a singlet

Φ→ Φ. (1.2.12)

(ii) Under SU(2)L it is a doublet

Φr → UrsΦs, (1.2.13)

Φr and Φs are complex scalar doublet and r, s = 1, 2. The transformation

matrix Urs ∈ SU(2).

(iii) Under U(1)Y the value of hypercharge is Y = 1/2.

Accordingly, the quantum number of these fields are given in the Table 1.2.
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Figure 1.1: The Higgs potential V(Φ) where: in the left panel, the case where µ2 > 0,

and the right panel is the case where µ2 < 0, as a function of |Φ|2 = Φ†Φ.

Therefore, we can write the Lagrangian for the Higgs field as

LΦ = (DµΦ)†(DµΦ)− V (Φ†Φ), (1.2.14)

where the Higgs potential is given by

V (Φ†Φ) = µ2Φ†Φ +
λ

2
(Φ†Φ)2. (1.2.15)

The parameter λ should be non negative, otherwise the potential will not be bounded

from below, and µ2 should be real, because the Lagrangian is hermitian. µ2 can be

positive or negative, where in this case the action of the covariant derivative on the

Higgs doublet is given by the following equation

DµΦ = ∂µΦ + igW a
µ

σa
2

Φ + ig′Bµ
1

2
Φ. (1.2.16)

By minimising the Higgs potential there are two possibilities for the vacuum expec-

tation value (VEV), see Figure 1.1:

(i) µ2 > 0 in this case there is no SU(2)L × U(1)Y symmetry breaking.

(ii) µ2 < 0 in this case there is SU(2)L × U(1)Y symmetry breaking.

The Higgs potential only depends on the gauge invariant combination r2 = Φ†Φ,

therefore we can rewrite the Higgs potential in terms of r2 as

V (r) = µ2r2 +
λ

2
r4. (1.2.17)

When we minimise the potential in Equation (1.2.17) one can find

∂V

∂r
= 2µ2r + 2λr3 = 2r(µ2 + λr2) = 0. (1.2.18)
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Thus, in the case when µ2 < 0, the local and absolute minimum is given by

µ2 + λr2
0 = 0 =⇒ r2

0 = −µ
2

λ
, (1.2.19)

which is a positive quantity because µ2 < 0. This quantity is called the electroweak

symmetry breaking scale squared, and we denote it by v2:

v2

2
= −µ

2

λ
. (1.2.20)

The ground state is degenerate, as there are many possible values of the Higgs VEV

that correspond to the same value

|〈Φ〉|2 =
v2

2
. (1.2.21)

Accordingly, any such value of the VEV is possible as a ground state. Moreover

the ground state is not invariant under the SM gauge group, which means that the

SM gauge group is spontaneously broken. As an example, given any 〈Φ〉 such that

|〈Φ〉| = v/
√

2, there exists an SU(2)L transformation U such that

〈Φ〉 = U

 0
v√
2

 , (1.2.22)

where without loss of the generality, we can then assume that the ground state is of

the form

〈Φ〉 =

 0
v√
2

 . (1.2.23)

In order to show how the gauge group is broken, let us remember that a generator is

unbroken if the VEV is invariant under the associated (or generated) transformation

U |Φ 〉 = |Φ 〉, (1.2.24)

with

U = eiθ U ⇒ U |Φ 〉 = 0. (1.2.25)

The SM gauge group is spontaneously broken, except for the generators correspond-

ing to U(1)em × SU(3)C. Let us call T
(3)
A the SU(3)C generators, T

(2)
a the SU(2)L

generators and Y the hypercharge generator. Then the most general generator is

the superposition of all of these,

T =
8∑

A=1

αAT
(3)
A +

3∑
a=1

βaT
(2)
a + γY, (1.2.26)

where αA, βa and γ are real, and the generator T is unbroken only if

T 〈Φ〉 = 0. (1.2.27)
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As we know the Higgs doublet does not feel strong interactions, therefore

T
(3)
A 〈Φ〉 = 0. (1.2.28)

Thus, this will lead to the following

0 = T 〈Φ〉 = (βaT
(2)
a + γY )〈Φ〉 =

v

2

(
β1 − iβ2

γ − β3

)
. (1.2.29)

Accordingly, from the previous equation, we will get

β1 − iβ2 = 0 =⇒ β1 = β2 = 0,

and

γ − β3 = 0 =⇒ γ = β3.

Hence, we can rewrite the most general generator as

T = αAT
(3)
A + γ(T3 + Y )

= αAT
(3)
A + γQ. (1.2.30)

Thus, Equation (1.2.30) shows that the unbroken generators are T
(3)
A and Q, which

are the generators of U(1)em × SU(3)C. Therefore, in the SM the electroweak sym-

metry, if broken, is always correctly broken to U(1)em, and always v ≥ 0, with VEV

Equation (1.2.23) which do not have any complex relative phase, thus CP is not

spontaneously broken.

1.2.2 The gauge boson masses.

The SM gauge group contains twelve generators, where the number of the unbroken

generators is nine, accordingly, this means that the remaining three generators are

the broken generators. If the symmetry was a global symmetry the spectrum should

contain three massless physical degrees of freedom, the Nambu-Goldstone bosons [41,

42, 43]. Out of the four generators of the electroweak group only one is unbroken,

which means that three are broken. We then expect three vector bosons to acquire

a mass (W+
µ , W−µ and Zµ bosons) and three Higgs real degree of freedom (the

Goldstones) to be eaten up by them. Out of the four real (two complex) Higgs

degrees of freedom, only one then correspond to physical scalar, the Higgs boson [44,

45].

In order to write the spectrum following from spontaneous symmetry breaking, we

should rewrite the Higgs doublet Φ in terms of the displacement from the ground

state as follows:

Φ = 〈Φ〉+ Φ′, (1.2.31)
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and by applying Equation (1.2.16) to the VEV, one can get the following

Dµ〈Φ〉 = ∂µ〈Φ〉+ igW a
µ

σa
2
〈Φ〉+ ig′Bµ

1

2
〈Φ〉

=
iv

2
√

2

(
g(W 1

µ − iW 2
µ)

g′Bµ − gW 3
µ

)
. (1.2.32)

Therefore, by substituting DµΦ = Dµ〈Φ〉+DµΦ′ into Equation (1.2.14), we realise

that these gauge bosons acquire a mass, given as:

(Dµ〈Φ〉)†(Dµ〈Φ〉) =
v2

8
[2g2W−µ W

+µ + (g2 + g′2)ZµZ
µ]

= M2
WW

−
µ W

+µ +
1

2
M2
ZZµZ

µ. (1.2.33)

The masses of the W±µ and Zµ gauge bosons are given by

M2
W =

g2v2

4
, M2

Z = (g2 + g′2)
v2

4
, (1.2.34)

where all the other gauge fields associated to the unbroken generators remain mass-

less. We can define an angle θW ∈ [0, π/2], called the Weinberg angle, via

tan θW ≡
g′

g
, (1.2.35)

such that

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (1.2.36)

The physical bosons observed in interactions are the photon Aµ, W±µ and Zµ bosons.

Thus the W±µ bosons are mass eigenstates,

W±µ =
1√
2

(W1µ ∓ iW2µ) , (1.2.37)

while the W 3
µ and Bµ mix to give us two physical bosons Aµ and Zµ,

Zµ = cos θWW
3
µ − sin θWBµ and Aµ = sin θWW

3
µ + cos θWBµ. (1.2.38)

The value of v can be fixed from the measurement of the W mass as follows

v =
2MW

g
' 246GeV. (1.2.39)

1.2.3 The fermion masses.

In order to obtain the fermion masses we need to introduce the Yukawa Lagrangian,

which is given by

LY ukawa = λUij QLi Φ̃uRj + λDij QLi Φ dRj + λEijLLi Φ eRj + h.c., (1.2.40)
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where Φ̃ = i σ2Φ†, here we have included all three SM families through the family

indices i, j = 1, 2, 3. Accordingly, each of the three Yukawa couplings in Equa-

tion (1.2.40) is a 3× 3 complex matrix. Therefore, once the Higgs acquires a VEV,

all the SM fermions acquire a mass also, and these masses are proportional to their

Yukawa couplings. We can rewrite the Higgs field in terms of the unitary gauge,

where in this case the Goldstone bosons are removed from the Higgs fields. Therefore

Φ =

 0
v + ϕ√

2

 , (1.2.41)

and hence, the Lagrangian becomes

LY ukawa = LMass
Y ukawa + L′φ, (1.2.42)

where the first part in Equation (1.2.42) is given by

LMass
Y ukawa =

v√
2
λUiju

α
iRu

α
jL +

v√
2
λDijd

α
iRd

α
jL +

v√
2
λEijeiRejL + h.c., (1.2.43)

which gives the fermions masses

mU
ij = vλUij , mD

ij = vλDij , mE
ij = vλEij . (1.2.44)

While the second term in Equation (1.2.42) shows the Yukawa interaction of the

Higgs, ϕ, with the fermions,

L′φ =
λUij√

2
uαiRu

α
jLϕ+

λDij√
2
dαiRd

α
jLϕ+

λEij√
2
eαiRe

α
jLϕ+ h.c.. (1.2.45)

Thus, these interactions are diagonal in the mass eigenstate basis, which diagonalises

λUij , λ
D
ij and λEij . Therefore, there are no flavour changing Higgs interactions at

the tree level in the SM. Flavour changing interactions are generated at the loop

level in the quark sector, due to quark mixing, but not in the lepton sector. The

individual lepton matrices are in fact conserved in the SM (in the limit in which

neutrinos are massless). Finally, the Higgs squared mass is given by m2
H = λHv

2,

and is proportional to the electroweak symmetry breaking scale squared, and to

the Higgs self-coupling λH . While the electroweak scale has long been known from

the measurement of the Fermi constant GF , the Higgs boson has been discovered

only relatively recently, and its mass has been measured to be mH ' (125.5 ±
0.5) GeV [2, 3]. The mass matrices in Equation (1.2.44) are in flavour basis, and not

in the mass basis. In order to diagonalise them and define the real mass eigenstates,

we introduce unitary matrices which affect, in the quark sector, the interactions

containing both quark types with W±. This will lead to a non diagonal term in

the Yukawa Lagrangian which ensures couplings between different type of quark

generations through the CKM matrix (for more details see section 4.2).
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Particles colour spin Q mass [v]

e, µ, τ (1) 1/2 −1 λe,µ,ν/
√

2

νe, νµ, ντ (1) 1/2 0 0

u, c, t (3) 1/2 +2/3 λu,c,t/
√

2

d, s, b (3) 1/2 −1/3 λd,s,b/
√

2

h (1) 0 0
√

2λ

W± (1) 1 ±1 g/2

Z (1) 1 0
√
g2 + g′2/2

A (1) 1 0 0

G (8) 1 0 0

Table 1.3: Summary of the SM particles and their quantum numbers.

The neutrinos remain massless in the SM [46, 47, 48]:

mνe = mνµ = mντ = 0. (1.2.46)

The neutrino oscillations suggest that the neutrinos mass difference are measured

to be non-zero [49, 50], and the SM thus needs to be extended.

Finally, as a summary, one can write the full renormalisable part of the SM La-

grangian as follows:

LSM =− iQiDµγ
µQi − iuiRDµγ

µuiR − idiRDµγ
µdiR − iLiDµγ

µLi

− ieiRDµγ
µeiR −

1

4
W a
µνW

µν
a −

1

4
BµνB

µν − 1

4
Gµνa Gaµν

+ (λUij QLi Φ̃uRj + λDij QLi Φ dRj + λEijLLi Φ eRj + h.c.)

− (DµΦ)†(DµΦ)− λ(Φ†Φ− v2/2)2, (1.2.47)

where i, j = 1, 2, 3. We summarise in Table 1.3 the mass eigenstates of the SM, their

masses in terms of the VEV, as well as their SU(3)C×U(1)em quantum numbers.

1.3 Some Reasons to go Beyond the SM

The SM has been accepted as the current best description we have, and all the

parameters has been measured experimentally, where these tests have been done

with extremely high accuracy. Despite all of its successes, the SM is believed to be

only an effective low energy theory for numerous reasons, such as:

(1) Quantum Gravity and the Dark Matter Puzzle: The SM describes three

out of four fundamental interactions at the quantum level. While gravity is
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Figure 1.2: The one-loop Higgs correction with fermions inside the loop.

only treated classically and therefore, any quantum discussion for gravity has

to be contemplated as an effective field theory, which will only be valid up to

certain scales, smaller than the Planck scale (Mpl =
√
Gh/c3 ' 1019GeV) [51].

At this scale the quantum effects of gravity have to be included, where at this

scale the Einstein theory has the problem of being a non-renormalisable theory,

and accordingly unable to give us reliable observables beyond this scale. On

the other hand, DM, which makes up one quarter of our universe, also has no

explanation in the SM, and there are no candidates for DM in the SM [52, 53].

(2) The Hierarchy Problem (The Naturalness Problem): Mainly, the hier-

archy problem is the question of why there are totally different energy scales;

(Mew/Mpl) ' 10−15 GeV. This problem is also called the naturalness problem,

where in this case the radiative corrections to the Higgs mass are quadratically

divergent, which calls for “magical” cancellations to stabilise the Higgs mass

at its tree level value [53]. In order to understand this problem correctly let

us look for an example in the Higgs potential,

V (H) = µ2 |H|2 + λ |H|4, where µ2 < 0. (1.3.1)

As we know from the experimental point of view, the minimisation of such a

potential leads to 〈H〉 =
√
−µ2/2λ, and it is around 246 GeV. This means

that the bare mass of Higgs is approximately 100 GeV, which implies that

m2
H '(100 GeV)2. So we need to look to the radiative corrections, by consid-

ering the SM fermions couplings to the Higgs [54]

− LY = λf H f̄L fR + h.c.. (1.3.2)

By computing the 2-point function, with fermions running inside the loop, and

two external lines identified as zero momentum for the Higgs, it can be shown

(diagrammatically in Figure 1.2) that

iΠf
HH =−

∫
d4 p

(2π)4
Tr

[(
−
i λf√

2

)
i

6p−mf

(
−
i λf√

2

)
i

6p−mf

]

=− 2λ2
f

∫
d4 p

(2π)4

[
1

p2 −m2
f

+
2m2

f(
p2 −m2

f

)2

]
. (1.3.3)
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Therefore, the one-loop correction to the Higgs mass is given as:

∆m2
H '

Λ2

16π2

(
−2λ2

f

)
, (1.3.4)

where in this case Λ is the UV cut-off, and naturally it should be around the

TeV scale, because the idea is to protect the Higgs mass. Therefore, the SM

should appear as an effective theory valid up to the E < Meff ∼TeV scale.

(3) The cosmological constant problem: The cosmological constant problem

is the question of why
(

Λ̃/Mpl

)4
∼ 10−120 � 1, where Λ̃ is called the energy

density of free space time, thus, this puzzle is probably the biggest problem

in theoretical physics, and it is similar to the hierarchy problem, which is an

issue of naturalness [53, 55].

(4) Flavour problem: The flavour problem is the questions of why there are large

mass hierarchy of fermion and are not in the same order, note that the electron

mass is about 0.511 MeV and the top mass is around 173 GeV [56]. Also the

question of why in the SM we have exactly three copies of the fermions [57].

The SM is unable to generate a baryon asymmetry of the Universe of sufficient

size, the Universe is baryon-antibaryon asymmetric [58, 59].

(5) Gauge coupling unification: In the SM, aside from the electroweak (EW)

scale, there is a new scale of order 1015 GeV, called the Grand Unified scale.

It arises from the fact that in the SM we have three gauge couplings which run

according to the following Renormalisation Group Equations (RGEs) [60]:

1

αi(µ)
≡ 4π

g2
i (µ)

=
bi
2π

ln

(
µ

Λi

)
i = 1, 2, 3. (1.3.5)

Therefore, at the EW scale when µ = MZ , there is a hierarchy between the

couplings

α1(MZ) < α2(MZ) < α3(MZ). (1.3.6)

The RGEs will make this hierarchy between the gauge couplings, Equation (1.3.6),

change with the energy scale. In principle, let us assume there are no particles

other than the SM particles, thus at a much higher scale, such as the Grand

Unified scale (MGUT ∼ 1015 GeV), all the three couplings tend to unify [61].

We have in the SM the numerical coefficients appearing in Equation (1.3.5),

and are given by 1 [62, 63]:

bi =

(
41

10
,−19

6
,−7

)
, (1.3.7)

1These coefficients are derived in Appendix A.
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Figure 1.3: The running of the gauge couplings g3 (green), g2 (blue), and g1 (red)

in the SM as a function of a scale parameter t.

and accordingly, the running of the SM gauge couplings are shown in Fig-

ure 1.3, where the couplings g1, g2 and g3 are corresponding to U(1)Y, SU(2)L

and SU(3)C gauge groups respectively.

1.4 Some Ideas about Physics Beyond the SM

The SM is not the fundamental theory of the Universe, but is only an effective theory

describing the interactions of the strong, weak and electromagnetic interactions at

low energies. We need to find an extension that may solve some (or all) of the

problems mentioned above in order to generalise the SM. Accordingly, the idea now

is to go beyond the SM, and in order to do that there are several approaches we can

take. For example [51], one way is by adding new particles, or adding interactions

(as we shall do in chapter 7 and chapter 8, where we consider a spin-3/2 fermionic

DM interacting with SM fermions through a vector mediator in the s-channel [64],

as well as the t-channel [65]).

Another way is motivated from our previous discussion of the SM, in that it is mainly

based on two kinds of symmetries. The first one is the internal symmetry, which

is the gauge group of the SM, while the other is the space-time symmetry, or the

Poincare symmetry in 4 dimensions. The Poincare group is the group which contain

rotations and boosts. There are extensions of the 4 dimensional Poincare group,

as well as more general internal symmetries [51], such as supersymmetry (SUSY),

the most attractive aspect of SUSY is that it provides a solution to the hierarchy
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problem due to cancellations between the contributions of bosons and fermions to

electroweak scale, defined by the Higgs mass. As an example, for more general

internal symmetries, we consider the Grand Unification Theories (GUT), where in

this case the SM gauge group is the result of the breaking of a larger symmetry

group as follows [53]

GGUT
M≈1015GeV−−−−−−−−→ GSM

M≈102GeV−−−−−−−→ SU(3)×U(1)em, (1.4.1)

where GGUT is a larger symmetry group and GSM is the SM gauge group.

1.4.1 Extra spacetime dimensions.

The idea here is to add more dimensions to space-time, in which case the Poincare

symmetries of the SM, and the general coordinate transformations of general rela-

tivity, are significantly enhanced. This leads to the well known KK theories [51, 53].

In order to understand the idea of extra dimensions we shall consider as an example

the scalar field scenario in extra dimensions. For a massless 5-dimensional scalar

field φ(xµ, y), the action is given as:

S5D =

∫
d5x

(
∂Mφ∂Mφ − M2 φ† φ

)
, (1.4.2)

where one can presume that the scalar field is a periodic function on this new

coordinate (this new coordinate is compactified as a circle of radius R). Therefore,

we can expand the field φ(xµ, y) in a Fourier expansion along the new coordinate as

φ(xµ, y) =
∞∑

n=−∞
φn(xµ) exp

(
iny

R

)
, (1.4.3)

where the Fourier coefficients are functions of the standard 4-dimensional coordi-

nates. Therefore, they are a set of 4-dimensional scalar fields. The infinite number

of Klein Gordon equations for the massive 4-dimensional fields are then given by

∂µ∂µφn(xµ)−
(
M2 +

n2

R2
φn(xµ)

)
= 0, (1.4.4)

which means that each Fourier mode φn is a 4-dimensional particle with mass

m2
n = M2 +

n2

R2
, (1.4.5)

where R is the compactification radius, the mass eigenstates can be labeled by their

parity assignment with respect to the generators of the symmetry group of the

orbifold and by the KK numbers (n) [66].

As another example, let us presume the Higgs sector, which is comprised of the

following kinetic term, as well as the potential term [66]:

LH =

∫ 2π R

0
dy
[
(DM H(x, y))†

(
DM H(x, y)

)
− V

(
H†(x, y), H(x, y)

)]
. (1.4.6)
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Here an even parity, y → − y, is presumed for the five dimensional Higgs doublet,

the one extra spatial dimension coordinate y is compactified on the orbifold S1/Z2

with radius R. Thus the corresponding KK expansion is given as:

H(x, y) =
1√

2π R
H(0) (x) +

∞∑
n= 1

1√
π R

H(n)(x) cos
(n y
R

)
. (1.4.7)

Therefore, one can expand the covariant derivative as (DµH) and (D5H), in terms

of the KK modes, and then by integrating out the y coordinate, we can rewrite the

kinetic term as:

L4HK =

∫ 2π R

0
dy
[
(DM H)† (x, y)

(
DM H

)
(x, y)

]
= (DµH)(0)† (x) (DµH)(0) (x) + (DµH)(n)† (x) (DµH)(n) (x)

+ (D5H)(n)† (x)
(
D5H

)(n)
(x). (1.4.8)

The repetition of the indices signify a summation. Thus the four dimensional covari-

ant derivative objects (DµH)(0), (DµH)(n) and (D5H)(n) are written as follows:

(DµH)(0) = D(0)
µ H(0) −

(
i g
σa

2
W (n)a
µ + i g′

Y

2
B(n)
µ

)
H(n),

(DµH)(n) = D(nm)
µ H(m) −

(
i g
σa

2
W (n)a
µ + i g′

Y

2
B(n)
µ

)
H(0),

(D5H)(n) = D
(nm)
5 H(m) −

(
i g
σa

2
W

(n)a
5 + i g′

Y

2
B

(n)
5

)
H(0), (1.4.9)

where D
(0)
µ , D

(nm)
µ and D

(nm)
5 appearing in the above equation are given by:

D(0)
µ = ∂µ − i g

σa

2
W (0)a
µ − i g′

Y

2
B(0)
µ ,

D(nm)
µ = δnmD(0)

µ −∆nrm

(
i g
σa

2
W (r)a
µ + i g′

Y

2
B(r)
µ

)
,

D
(nm)
5 = −δnm n

R
−∆′nrm

(
i g
σa

2
W

(r)a
5 + i g′

Y

2
B

(r)
5

)
, (1.4.10)

where ∆nrm and ∆′nrm are:

∆nrm =
1√
2

(
δr,n+m + δn,r+m + δm,n+r

)
,

∆′nrm =
1√
2

(
δr,n+m + δn,r+m − δm,n+r

)
. (1.4.11)

The Higgs potential appearing in Equation (1.4.6) is given by:

V =

∫ 2π R

0
dy

[
µ2H†(x, y)H(x, y) + λ5

(
H†(x, y)H(x, y)

)2
]
, (1.4.12)
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hence, by integrating out the fifth coordinate, we obtain the following:

V4D =µ2
(
H(0)†H(0)

)
+ λ

(
H(0)†H(0)

)2
+
[
µ2 + 2λ

(
H(0)†H(0)

)](
H(n)†H(n)

)
+ λ

(
H(0)†H(n) + H(n)†H(0)

)(
H(0)†H(n) + H(n)†H(0)

)
+ 2λ∆npq

(
H(0)†H(n) + H(n)†H(0)

)(
H(p)†H(q)

)
+ λ∆npqr

(
H(n)†H(p)

) (
H(q)†H(r)

)
, (1.4.13)

where λ = λ5/2π R and

∆npqr =
1

2

[
δr,n+p+q + δn+p,q+r + δn+q,p+r + δn+r,p+q

+ δn,p+q+r + δp,n+q+r + δq,n+p+r

]
. (1.4.14)

Finally, let us have a look to the Abelian gauge field Lagrangian, which is given as

follows

Lgauge =

∫ 2π R

0
dy

[
− 1

4
BMN (x, y)BMN (x, y) − 1

4
W a
MN (x, y)WMN

a (x, y)

− 1

4
GAMN (x, y)GMN

A (x, y)

]
, (1.4.15)

where BMN (x, y), W a
MN (x, y) and GAMN (x, y) are the field strength tensors related

to the five dimensional gauge groups U(1)Y , SU(2)L and SU(3)C respectively. We

presume that the Aaµ(x, y), where (A ≡ G, W, B), are the components of the five

dimensional gauge fields of even parity y → −y. Thus the KK decomposition are

given by

Aaµ(x, y) =
1√

2π R
A(0)a
µ (x) +

∞∑
n=1

1√
π R

A(n)a
µ (x) cos

(n y
R

)
, (1.4.16)

and therefore, an odd parity is allocated to the Aa5. Aa5’s Fourier expansion is

Aa5(x, y) =

∞∑
n=1

1√
π R

A
(n)a
5 (x) sin

(n y
R

)
, (1.4.17)

and by integrating out the y coordinate, the effective 4 dimensional Lagrangian is

L4D
gauge =− 1

4

(
B(0)
µν B

(0)µν + B(n)
µν B

(n)µν + 2B
(n)
µ5 B(n)µ5

)
− 1

4

(
W (0)a
µν W (0)aµν + W (n)a

µν W (n)aµν + 2W
(n)a
µ5 W (n)aµ5

)
− 1

4

(
G(0)A
µν G(0)Aµν + G(n)A

µν G(n)Aµν + 2G
(n)A
µ5 G(n)Aµ5

)
. (1.4.18)
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1.5 Structure of this thesis

The structure of this thesis is as follows: In chapter 2 we shall give a brief summary

for the RGEs, the dimensional regularisation scheme, the cross section for the scat-

tering of two particles into a two particle final states, as well as some basic ideas

about the Boltzmann equation.

In chapter 3 we introduce the model in five-dimensions, compactified on an interval

S1/Z2, with bulk gauge groups SU(3)c× SU(3)W and a bulk fermion transforming as

a bi-fundamental. In chapter 4 we derive the evolution of the Cabibbo-Kobayashi-

Maskawa matrix elements, the Jarlskog invariant and the quark mixings in a five-

dimensional model for an SU(3) gauge group. In chapter 5 we explore the evolution

of the gauge couplings in five dimensions for SU(5) and flipped SU(5), and will

extend the discussion in chapter 6 for the G2 gauge group.

In chapter 7 we consider a spin-3/2 fermionic DM interacting with SM fermions

through a vector mediator in the s-channel, and will extend our discussion for the

t-channel in chapter 8. In chapter 9, we will give our overall conclusions.



Chapter 2
Mathematical Background

In this chapter we shall discuss the mathematical tools, which we will use during

this thesis, such as RGEs, dimensional regularisation, the averaged cross-section for

scattering, and the Boltzmann equation.

2.1 Renormalisation Group Equations

In this section we are going to introduce the most important object that we need

during this thesis: the β-functions. The crucial role of this object is that we need it in

order to determine the evolution of the coupling constants. Generally, by considering

a theory with n-couplings, gi, we need to solve a coupled set of differential equations

of the following form [67],

βi = µ
dgi
dµ

=
dgi
dt
, (2.1.1)

where t = ln[µ/MZ ]. The behaviour of the gauge coupling gi as a function of µ,

as shown in Equation (2.1.1), is called the renormalisation group flow of gi. In

general the β-functions depend on all the couplings and all the masses in the theory.

However, we can remove all the masses by focusing only on the universal ultra-violet

(UV) relevant coefficients. As an example, one can focus on the Yukawa coupling

evolution equations, where in this case we can write the general term for the Yukawa

interaction of the fermion and the boson as λ ψ̄L ψR φ. Therefore, let us write the

terms in this coupling as renormalisable quantities, or by rescaling [68]

ψR = Z
1/2
ψR
ψRR , (2.1.2)

ψL = Z
1/2
ψL
ψRL , (2.1.3)

φ = Z
1/2
φ φR. (2.1.4)

20
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By using Equations (2.1.2), (2.1.3) and (2.1.4) one can rewrite the Yukawa inter-

action of the fermion and the boson in terms of the renormalisable quantities as

follows:

λ ψ̄L ψR φ = λR Zcoupling ψ̄
R
L ψ

R
R φ

R. (2.1.5)

Accordingly, from Equation (2.1.5), we can write this as

λ = Zcoupling Z
−1/2
ψL

Z
−1/2
ψR

Z
−1/2
φ λR. (2.1.6)

While the bare parameters are independent of the renormalisation scale µ, we thus

have:

µ
∂ lnλR

∂ µ
=

1

2
µ
∂ lnZψR
∂ µ

+
1

2
µ
∂ lnZψL
∂ µ

+
1

2
µ
∂ lnZφ
∂ µ

− µ
∂ lnZcoupling

∂ µ
, (2.1.7)

where λR is the renormalised Yukawa coupling constant. Zφ, ZψL and ZψR are called

the wave function renormalisation constants, corresponding to the Higgs boson,

left-handed and right-handed fermions respectively. Generally, the wave function

renormalisation constants have the following form:

Zcoupling = 1 − γwave

2π
ln

(
µ

µ0

)
, (2.1.8)

where γwave is the anomalous dimension, and is given as

γwave =
1

2
µ
∂ ln Zwave

∂ µ
. (2.1.9)

When we calculate these wave function renormalisation constants, we ignore the

mass term in the propagators, since they have nothing to do with the divergent part

of the one loop diagrams [69].

2.2 Dimensional Regularisation Scheme

In this section we will mainly discuss the method of dimensional regularisation, where

this scheme will be a very important tool in our calculations during this thesis. In

QFT there at least three types of divergences: infra-red (IR), UV and collinear;

where here we are going to deal only with the UV divergences. The Feynman

diagrams involving loops lead to divergent integrals, and in order to handle this

type of divergent integral we need to cut them off at some high scale to avoid these

UV divergences. This can be done by giving them a finite upper limit. This way of

regularising infinite integrals is not very convenient in dealing with theories which

have a local symmetry, however, in this thesis we shall use dimensional regularisation,

which preserves the local symmetries.
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In order to understand the dimensional regularisation scheme let us use an example

of the 1-loop 4-point functions. In this scenario the Feynman diagram would have

two propagators and one integral, thus the integral is given as [70]

JΛ(p2,m2) =

∫
d4 k

(2π)4

1

(k2 −m2 + iε) ((p− k)2 −m2 + iε)
. (2.2.1)

This integral is logarithmically divergent in 4-space-time dimensions, however, it is

convergent if the space-time dimension is less than four. Accordingly, we will perform

this integration in an arbitrary dimension D, and after obtaining an answer which is

dependent on D, we can continue the result analytically to D = 4. Therefore, the

D-dimensional integral can be written as [71]

JΛ(p2,m2) =

∫
dD k

(2π)D
1

(k2 −m2 + iε) ((p− k)2 −m2 + iε)
. (2.2.2)

In order to tackle the above integral, one useful technique developed by Feynman

(called Feynman parametrisation), deals with the product of two propagators, A

and B, in the denominator, by writing them in one term as follows:

1

AB
=

∫ 1

0
d x

1

[Ax+B (1− x)]2
. (2.2.3)

Therefore, we can rewrite JΛ in Equation (2.2.1) by using the Feynman parametri-

sation from Equation (2.2.3), namely,

JΛ(p2,m2) =

∫
dD k

(2π)D

∫ 1

0
d x

1

[k2 + p2x(1− x)−m2 + iε]2
. (2.2.4)

We can now do the k integral in Minkowski space,

k2 = k2
0 − ~k2, (2.2.5)

where in this scenario the dimension of ~k is (D− 1), and the dimension of k0 is one.

We can handle the k0 integration by using Cauchy’s residue theorem. However, in

this case the poles in the complex plane are located at [71]

k2
0 − ~k2 + p2x(1− x)−m2 + iε = 0, (2.2.6)

or

k0 = ±
√
~k2 − p2x(1− x) +m2 + iε. (2.2.7)

If we take the external momentum to be p2 > 0 (time-like), the square root is real,

because the + iε shifts the poles. Hence, by considering the contour in Figure 2.1,

and if we used Cauchy’s residue theorem, the integral around this closed contour

gives us zero, because in this case there is no pole inside this closed contour. If we
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Figure 2.1: The contour we use to handle the integration.

look at the C1 and C2 parts, this goes to zero in the limit R → ∞. From the fact

that the total contour integral is zero, this tell us that the integral around the real

axis is the same as the one around the imaginary axis. So by using Cauchy’s residue

theorem one can see [71]∫ 1

0
d x

∫ ∞
−∞

dk0

∫
dD−1 ~k

(2π)D
1

[k2 + p2x(1− x)−m2 + iε]2
=∫ 1

0
d x

∫ i∞

−i∞
dk0

∫
dD−1 ~k

(2π)D
1

[k2 + p2x(1− x)−m2 + iε]2
. (2.2.8)

We can then change the variable k0, by using a Wick rotation k0 → ikD. JΛ can be

written in terms of the Euclidean integral

JΛ(p2,m2) =

∫ 1

0
d x

∫ ∞
−∞

dkD

∫
dD−1 ~k

(2π)D
1[

k2
E + p2x(1− x)−m2

]2 , (2.2.9)

where we can now drop the iε. Note that the integration above has rotational

symmetry, which can be used to separate the integral into a radial part, as the

angular part can be done as follows:

JΛ(p2,m2) =

∫ 1

0
dx

∫
kD−1 dk

(2π)D
VSD−1

[k2 + p2x(1− x)−m2]2
, (2.2.10)

where VSD−1 is the volume of a unit sphere in D-dimensional Euclidean space, and
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is given by

VSD−1 =
2πD/2

Γ(D/2)
. (2.2.11)

The Γ(D/2) is the Gamma function, and is given by:

Γ(z) =

∫ ∞
0

dt e−t tz−1 Re(z) > 0, (2.2.12)

and has the important property that it can be analytically continued to the complex

z-plane. It also has poles at z = 0. In the limit when z → 0, the Gamma-function

behaves like:

Γ(z) =
1

z
+ finite term. (2.2.13)

We can calculate the radial integral in Equation (2.2.10) with the help of the fol-

lowing general formula:∫ ∞
0

uδ

(u+A)σ
du = Aδ+1−σΓ(δ + 1) Γ(σ − δ − 1)

Γ(σ)
. (2.2.14)

By using Equation (2.2.14), we can write Equation (2.2.10) as:

JΛ(p2,m2) =
VSD−1

2(2π)D
Γ

(
D

2

)
Γ

(
4−D

2

)∫ 1

0
dx
[
−x(1− x)p2 +m2

](D−4)/2
.

(2.2.15)

We now want to continue the result to D = 4. To do this let us take D − 4 = z.

The Gamma function appearing in VSD−1 is finite, even though the Γ(z/2) diverges,

this divergence from Equation (2.2.13) behaves like

Γ
(z

2

)
z→0−−−→ 2

z
− γ +O(z), (2.2.16)

where the finite term γ = 0.5772... is called the Euler-Macheroni number. It is now

easy to see that as D → 4 (z → 0) Equation (2.2.15) reduces to [71]

JΛ(p2,m2) =
1

8π2

1

z
− 1

16π2

∫ 1

0
dx ln[−x(1− x)p2 +m2]

=
1

8π2

1

z
− 1

16π2

∫ 1

0
dx

[
ln m2 + ln

(
1− x(1− x)

p2

m2

)]
, (2.2.17)

where the term
(
1/16π2

) ∫ 1

0
dx lnm2 does not depend on p. This means that:

JΛ(p2,m2) =
1

8π2

1

z

1

16π2

∫ 1

0
dx ln

[
1− x(1− x)

p2

m2

]
+ constant +O(z), (2.2.18)

where to evaluate JΛ(p2,m2) when p2 = 0 we get

JΛ(0,m2) =
1

8π2

1

z
+ constant. (2.2.19)
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Equation (2.2.17) can then be written as follows:

JΛ(p2,m2)− JΛ(0,m2) = − 1

16π2

∫ 1

0
dx ln

[
1− x(1− x)

p2

m2

]
. (2.2.20)

The idea is to determine the finite expression in Equation (2.2.20). Thus we have

to subtract a divergent quantity from JΛ, which is not an unique procedure. For

example, we could subtract just the
(
1/8π2 z

)
from JΛ, thus we see that we still

obtain a finite result, however this result should be independent of p. The quantity

which was subtracted is defined by the scheme we employ, and when we subtract

the pole parts only, this renormalisation scheme is called the Minimal Subtraction

scheme (MS) [71].

2.3 The RGEs for the Yukawa couplings in the SM

In this section we will discuss the RGEs for the Yukawa couplings in the SM, where

the tools introduced here will be used extensively in chapter 3. We will write the

most generic formula for the Yukawa evolution equations in the SM, and define the

Yukawa coupling matrices to be yu, yd and ye. In the SM they run with momentum

according to the following formula [72, 73]:

16π2 dyu
dt

= yu

[
T − Gu +

3

2

(
y†u yu − y

†
d yd

)]
,

16π2 dyd
dt

= yd

[
T − Gd +

3

2

(
y†d yd − y

†
u yu

)]
, (2.3.1)

16π2 dye
dt

= ye

[
T − Ge +

3

2
y†e ye

]
.

The quantities T , Gu, Gd, and Ge are given as follows:

T = Tr
[
3 y†u yu + 3 y†d yd + y†e ye

]
,

Gu =
17

12
g2

1 +
9

4
g2

2 + 8 g2
3, (2.3.2)

Gd =
5

12
g2

1 +
9

4
g2

2 + 8 g2
3,

Ge =
15

4
g2

1 +
9

4
g2

2.

The relation between the y’s couplings appearing in Equations (2.3.1) and (2.3.2)

and the couplings in Equation (1.2.40) are give by

λUij = diag (yu, yc, yt) ,

λDij = diag (yd, ys, yb) , (2.3.3)

λEij = diag (ye, yµ, yτ ) .
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The g1, g2 and g3 correspond to the U(1)Y, SU(2)L, and SU(3)C gauge couplings

respectively, where the U(1)Y should be normalised correctly in the SU(5) normali-

sation. Note that an SU(5) normalisation is required in order have the couplings, as

in the SM, almost tend to unify [74]. This can be done by multiplying the coefficients

in front of g2
1 by factors of 3/5 [75].

By defining the following variables Mu = y†u yu, Md = y†d yd and Me = y†e ye, and

then by multiplying both sides of Equation (2.3.1) by y†u, y†d and y†e respectively, the

left hand side becomes

16π2 y†u
dyu
dt

= y†u yu

[
T − Gu +

3

2

(
y†u yu − y

†
d yd

)]
,

16π2 y†d
dyd
dt

= y†d yd

[
T − Gd +

3

2

(
y†d yd − y

†
u yu

)]
, (2.3.4)

16π2 y†e
dye
dt

= y†e ye

[
T − Ge +

3

2
y†e ye

]
.

By taking the Hermitian conjugate of Equation (2.3.1) and then by multiplying both

sides by yu, yd and ye respectively, we get

16π2 dy
†
u

dt
yu =

[
T − Gu +

3

2

(
y†u yu − y

†
d yd

)]
y†u yu,

16π2 dy
†
d

dt
yd =

[
T − Gd +

3

2

(
y†d yd − y

†
u yu

)]
y†d yd, (2.3.5)

16π2 dy
†
e

dt
ye =

[
T − Ge +

3

2
y†e ye

]
y†e ye.

Therefore, by adding Equation (2.3.4) to Equation (2.3.5), we get the following

formula

16π2 d y
†
u yu
dt

= 2 y†u yu

[
T − Gu + 3 y†u yu

]
− 3

2
{y†u yu, y

†
d yd},

16π2 d y
†
d yd
dt

= 2 y†d yd

[
T − Gd + 3 y†d yd

]
− 3

2
{y†d yd, y

†
u yu}, (2.3.6)

16π2d y
†
e ye
dt

= 2 y†e ye [T − Ge] + 3
(
y†e ye

)2
.

And by defining Mi = y†i yi,

16π2dMu

dt
= 2 (T − Gu) Mu + 3M2

u −
3

2
{Mu, Md}

16π2dMd

dt
= 2 (T − Gd) Md + 3M2

d −
3

2
{Md, Mu} (2.3.7)

16π2dMe

dt
= 2 (T − Ge) Me + 3M2

e .

At some momentum scale, µ, the matrices Mu and Md can be diagonalised by using
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two different unitary matrices Uu and Ud:

UuMu U
†
u = diag

(
λ2

u, λ
2
c , λ

2
t

)
, (2.3.8)

UdMd U
†
d = diag

(
λ2

d, λ
2
s , λ

2
b

)
. (2.3.9)

Accordingly, the CKM matrix at that scale µ will be given as

VCKM = Uu U
†
d . (2.3.10)

2.4 The cross-section for scattering of 2-particles into

2-particles

To continue our introduction of tools to be used in coming chapters, we now show

how to calculate the averaged cross-section for the scattering of two particles into

two particle final states, which is important for our studies in chapters 7 and 8.

In what follows we will give the formula for the n-particle Lorentz invariant phase

space, and it is defined as follows [76]

dLips(p1, p2, ..., pn) ≡
n∏
i=1

d3 pi
(2π)3 2Ei

. (2.4.1)

Here we have pi = (Ei ; ~p) and Ei =
(
|~p|2 +m2

i

)
, where in this case the correspond-

ing n-particle phase space integral is given as [76]:

Rn(s) ≡
∫

dLips(p1, p2, ..., pn) (2π)4δ

(
p −

∑
i

pi

)
. (2.4.2)

s is a Lorentz invariant quantity given by s ≡ p2 here, where we now presume

the case of two particles scattering to two particles, A + B → a + b, with four

momentum vectors, pA, pB, pa, and pb respectively. The s above is the well known

Mandelstam variable, where we define the following Lorentz invariant variables [77]:

s = (pA + pB)2 = (pa + pb)
2

t = (pA − pa)
2 = (pb − pB)2

u = (pA − pb)
2 = (pa − pB)B ,

(2.4.3)

having used the conservation of four-momentum, pA + pB = pa + pb, to define

the full-set. These Mandelstam variables can be evaluated in any reference frame,

therefore, it will be suitable to work in the centre of mass frame, as in this case

we have ~pB = − ~pA and ~pb = − ~pa. Thus, the four momentum of the scattering

process are given by the following formulas:

pA = (EA ; ~pA), pB = (EB ; − ~pA), pa = (Ea ; ~pa), pb = (Eb ; − ~pa).
(2.4.4)
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It is appropriate to define the magnitudes of the final and initial centre of mass

momenta, and they are defined as follows:

pi ≡ |~pA| = |~pB|, pf ≡ |~pa| = |~pb|. (2.4.5)

Therefore the mass shell conditions are given as:

EA =
(
p2
i + m2

A

)1/2
, EB =

(
p2
i + m2

B

)1/2
, (2.4.6)

and

Ea =
(
p2
f + m2

a

)1/2
, Eb =

(
p2
f + m2

b

)1/2
. (2.4.7)

From Equation (2.4.4) we have the following,

s = (EA + EB)2 , and t = m2
A + m2

a − 2EAEa + 2 pi pf cos θ. (2.4.8)

Using momentum and energy conservation, along with the mass shell condition, in

order to get the expression for the centre of mass frame energies as well as the three

momentum, we arrive at the following formulae [76]:

EA =
s + m2

A − m2
B

2
√
s

, EB =
s + m2

B − m2
A

2
√
s

,

Ea =
s + m2

a − m2
b

2
√
s

, Eb =
s + m2

b − m2
a

2
√
s

,

(2.4.9)

and

pi =
1

2
√
s
λ1/2

(
s, m2

A, m
2
B

)
, pf =

1

2
√
s
λ1/2

(
s, m2

a, m
2
b

)
. (2.4.10)

In the above expressions we have used λ1/2
(
s, m2

A, m
2
B

)
and λ1/2

(
s, m2

a, m
2
b

)
, these

are the square root of the triangle function, which is defined as [77]

λ1/2 (x, y, z) =
√
x2 + y2 + z2 − 2x y − 2x z − 2 y z. (2.4.11)

We now introduce the total cross section for the scattering of two particles into two

particles in the final states:

σ =
1

4
√

(pA.pB)2 − m2
Am

2
B

∫
dLips (2π)4 δ4

pA + pB −
∑
f

pf

∑
f

|Mfi|2,

(2.4.12)

where Mfi is the invariant scattering amplitude, and it is summed over all the

internal spin degrees of freedom. We shall estimate the spin averaged cross section,

via the summing of the squared matrix element over the initial spin states, then

dividing by (2JA + 1) (2JB + 1). Accordingly

d σ

dΩ
=

1

2λ1/2
(
s, m2

A, m
2
B

) dR2(s)

dΩ

1

(2 JA + 1) (2JB + 1)

∑
i,f

|Mfi|2, (2.4.13)
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where (2 JA + 1) (2 JB + 1) is the total number of the initial spin states, Ω ≡ (φ, θ)

refers to the centre of mass frame. The φ and θ refer to the azimuthal and polar

angles respectively, where φ of particle a in the centre of mass frame corresponds to

the rotation around the z-axis. As such the integral over Ω is given as:

dΩ = 2π d cos θ =
4π s

λ1/2
(
s, m2

A, m
2
B

)
λ1/2

(
s, m2

a, m
2
b

) dt. (2.4.14)

Therefore, the formula for the cross-section for the scattering of two particles A and

B into a two particles a and b is:

dσ

d cos θ
=

1

2 s

λ1/2
(
s, m2

A, m
2
B

)
λ1/2

(
s, m2

a, m
2
b

)
16π λ

(
s, m2

A, m
2
B

) 1

(2 JA + 1) (2JB + 1)

∑
i,f

|Mfi|2.

(2.4.15)

And,

σ =

∫ 1

−1

 1

32π s

λ1/2
(
s, m2

a, m
2
b

)
λ1/2

(
s, m2

A, m
2
B

) 1

(2 JA + 1) (2JB + 1)

∑
i,f

|Mfi|2
 d cos θ.

(2.4.16)

2.5 The Boltzmann equation

The following section based on Ref. [78]. To get the relic density contributions of the

DM particles, as in chapters 7 and 8, we will need to solve the Boltzmann equation

numerically. Recall that in the early hot Universe the densities of all the particles

were produced from a thermal bath, and consequently the densities swiftly drop

when the temperature of the expanding Universe decreases. This type of behaviour

is described by the Boltzmann equation.

The Boltzmann equation describes the evolution of the phase space distribution

of the particles, for instance, let us say we have a particle A(p, x, t), hence the

Boltzmann equation is given as:

L [A] = C [A] , (2.5.1)

where we have the Liouville operator L as given by:

L = pα
∂

∂ xα
− Γαβγ p

β pγ
∂

∂ pα
. (2.5.2)

C is the collision operator, which is described by the interactions which occur be-

tween the particles. For simplicity we will assume that the phase space distribution

is isotropic and homogeneous, this means that A(p, x, t) = A(E, t). We can then
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consider the metric which describes an isotropic and homogeneous expanding space

time called the Roberston-Walker metric,

ds2 = − dt2 + a(t)2 gαβdx
α dxβ for α, β = 0, 1, 2, 3. (2.5.3)

In this space we have a(t), which is the scale factor of the Universe, thus, the affine

connections (Christoffel symbols) are given by:

Γµαβ =
gµν

2

[
∂ gαν
∂ xβ

+
∂ gβν
∂ xα

−
∂ gαβ
∂ xν

]
. (2.5.4)

Accordingly, the Liouville operator acting on A takes the following simple formula:

L [A] = E
∂A
∂ t
− H p2 ∂A

∂ E
. (2.5.5)

The Hubble expansion rate in Equation (2.5.5) is given by:

H =
ȧ(t)

a(t)
. (2.5.6)

By substituting Equation (2.5.5) into (2.5.1), and then multiplying the left-hand side

and the right-hand side by d3p /
(

(2π)3 E
)

, followed by integrating with respect to

the full phase space, we get∫
d3p

(2π)3

∂A
∂ t
− H

∫
p2

E

∂A
∂ E

d3p

(2π)3 =

∫
C[A]

E

d3p

(2π)3 . (2.5.7)

Here we have the following relation:

∂ E

∂ p
=

1

2

1√
p2 + m2

2 p =
p

E
, (2.5.8)

which we can use to rewrite the second term in Equation (2.5.7) as

H

∫
p2

E

∂A
∂ E

d3p

(2π)3 =
H

(2π)3

∫
p
∂A
∂ p

d3p. (2.5.9)

We can now integrate out the angular parts of the previous integral, by invoking

the isotropic and homogeneous properties of the space. This will introduce factors

of 4π and p2 in the integrand. Using integration by parts on Equation (2.5.9), we

get:

4πH

(2π)3

∫ ∞
0

p3 ∂A
∂ p

dp =
4πH

(2π)3

([
p3A

]∞
0
− 3

∫ ∞
0

p2A dp
)
. (2.5.10)

Thus, Equation (2.5.7) can be written as:

dn

dt
+ 3H n =

∫
C[A]

E

d3p

(2π)3 . (2.5.11)
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The number density of particles, n is given by

n =
g

(2π)3

∫
A(p) d3p. (2.5.12)

For simplicities sake let us take the following 2 → 2 interaction A + B ↔ a + b,

therefore, the collision term for the particle A is given by [79]∫
C[A]

E

d3p

(2π)3 = −
∑
spin

∫ [
AAAB (1 ± Aa) (1 ± Ab) |MAB→ab|2

−AaAb (1 ± AA) (1 ± AB) |Mab→AB|2
]

× (2π)4 δ4 (pA + pB − pa − pb) dτA dτB dτa dτb, (2.5.13)

where Ai is the phase-space densities for the particles i, and the phase-space inte-

gration factors dτi ≡ d3pi /
(

(2π)3 2Ei

)
.

As we shall apply the Boltzmann equation to studies of DM candidate particles,

we can avoid calculating the full Boltzmann equation for the number density as a

function of time. As such we shall suppose that some type of interactions keep the

DM candidate generally to be in thermal equilibrium with the SM particles, and

also the DM will be able to annihilate.

In the early Universe the chemical potentials for the all particles are very small,

so they can be neglected, thus the number density in the absence of Bose-Einstein

condensation is given by [80]:

nχ =
gχ

2π2

∫ ∞
0

dp
p2

exp
([√

p2 + m2
χ

]
/T
)
± 1

. (2.5.14)

gχ is called the number of internal degrees of freedom, T is the temperature, and

mχ the mass of the relic particle. By defining x ≡ mχ/T and κ ≡ p/T , we can

write nχ as:

nχ =
gχ

2π2
T 3 I±(x), (2.5.15)

with

I±(x) =

∫ ∞
0

dκ
κ2

e
√
κ2 +x2 ± 1

. (2.5.16)

We can use in the following standard integration∫ ∞
0

dξ
ξn

eξ − 1
= ζ(n + 1) Γ(n + 1), (2.5.17)

where ζ(n) is the Riemann Zeta-function. In the relativistic limit we have mχ � T ,

and in this limit the integration of Equation (2.5.16) is reduced to

I±(0) '
∫ ∞

0
dκ

κ2

eκ ± 1
. (2.5.18)
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Accordingly, for the bosons we have I±(0) = 2 ζ(3), and for the fermions we have

I±(0) = 3 ζ(3)/4. Thus, we get

nχ =
ζ(3)

π2
gχ T

2

3/4 fermions

1 bosons
(2.5.19)

On the other hand, in the limit mχ � T , we have a similar integration formula

for both the fermions as well as the bosons, and in this limit the integration in

Equation (2.5.16) reduces to

I±(x) '
∫ ∞

0
dκ

κ2

e
√
κ2 +x2

. (2.5.20)

We can then perform a Taylor expansion for the square root in the denominator(√
κ2 + x2

)
, to lowest order in κ. We can use the Taylor expansion to write Equa-

tion (2.5.20) as:

I±(x) '
∫ ∞

0
dκ

κ2

ex+κ2/(2x)
= e−x

∫ ∞
0

dκκ2 e−κ
2/2x

= (2x)3/2 e−x
∫ ∞

0
dκκ2 e−κ

2
. (2.5.21)

From Equation (2.5.21) we get:

I± =

√
π

2
(x)3/3 e−x, (2.5.22)

which implies the following formula for the number density:

nχ = gχ

(
mχ T

2π

)3/2

e−mχ/T . (2.5.23)

The effective number of the relativistic degrees of freedom in the thermal equilibrium

case is given by the following expression:

g∗(T ) =
∑

j= bosons

gj +
7

8

∑
k= fermions

gk, (2.5.24)

gbosons = 28 and gfermions = 90 and hence g∗ = 106.75.

The relic density for the DM candidate χ is defined conventionally to be the ratio of

the current DM mass density ρχ(x0) ≡ mχ s0 Yχ(x0), and the critical density, which

is given as ρc ≡ 3H2
0/8π. s0 refers to the current values of the entropy and is equal

to 2889.2 cm−3 (T0/2.725 K)3 [81, 82], Yχ(x0) refers to the present relic abundance,

and the critical mass density value equal to 1.0537 × 10−5 h2 GeV cm−3 [82]. More

generally the density parameter is defined to be the ratio between the density of the

pertinent substance and the critical density, this relevant substance can be matter,

DM and dark energy. The distribution of this density parameter is ΩΛ = 68.3%,

ΩDM = 26.8% and ΩM = 4.9% for dark energy, DM and matter respectively [83].



Chapter 3
Unification of gauge and Yukawa

couplings

In this chapter we shall begin our investigation of GHU models by looking at the

situation in five-dimensions, where the extra-dimension is compactified on an interval

S1/Z2, with bulk gauge groups SU(3)c× SU(3)W and a bulk fermion transforming as

a bi-fundamental. The content of this chapter is based on our paper Ref. [84]. Our

paper [84] was motivated by the discovery of a Higgs boson at the LHC experiments,

which opened up a new era in particle physics. Aside from being the last missing

particle predicted by the SM, it has allowed a direct probe of the EW symmetry

breaking sector of the SM. In particular, the fact that its mass is close to the EW

scale itself, has materialised the issue of naturalness. Mass terms for scalar fields

are not protected by any quantum symmetry, therefore any new physics sector that

couples to it will feed into the value of the mass. In the SM the EW scale seems

to be shielded from high energy scales, like the Planck one, however, no reason

for this is present in the SM itself. Another intriguing hint for new physics is the

approximate unification of gauge couplings, that occurs at high energies once one

takes into account the renormalisation group evolution of the couplings. This has

lead to the development of GUT. The fact that the mass of the top quark is close to

the EW scale also suggests that the Yukawa coupling of the top may have a similar

origin.

The proposal of low-scale extra-dimensions [85, 86, 87, 88], mainly supported by

string theory constructions, opened new avenues for model building. One of the

most interesting ideas is developed in GHU models [89, 90, 91]. Extra-dimensional

models, in fact, contain a special class of scalar fields, that arise as an additional

33
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polarisation of vector gauge fields aligned with the extra compact space. If the Higgs

can be identified as such a scalar, its couplings with the fermions (the top quark in

particular) are also related to the gauge coupling. In addition, mass terms for the

Higgs would be forbidden by gauge invariance in the bulk of the extra-dimensions.

If the gauge symmetry is suitably broken by boundary conditions, a massless scalar

emerges in the spectrum, whose potential is then radiatively generated and finite [92,

93].

The GHU models are rather attractive as they address, at the same time, gauge-

Yukawa unification and naturalness. The main challenge is to find a gauge group,

GGHU, that successfully predicts the values of the SM couplings. The requirement

that it contains the EW gauge symmetry of the SM, i.e. SU(2)L and the U(1)Y

of hypercharge, and at the same time broken generators transforming as the Higgs

doublet field, strongly limits the possible choices. Most of these possibilities, though,

would seem to give incorrect predictions [94]. In this chapter we show that this

conclusion is modified once the energy evolution of the couplings is properly taken

into account. In fact, as the extra-dimensions are to be considered as an effective

theory, the unified predictions are only valid at the cut-off of the theory. However,

the experimental values refer to the EW scale, and the couplings may well change

due to the running via renormalisation group equations. This fact is well studied

and understood in extra-dimensional GUTs [60, 95]. Even though the cut-off of the

effective theory may be rather low, the running in extra-dimensions is not logarithmic

but follows a power law [60, 96, 97], thus it is much faster than in four dimensions.

We will show that, taking into account the running, the tree-level predictions are

strongly modified and the low energy values of the SM couplings can match the

experimental values, even if starting from completely different tree-level values. For

the top Yukawa, the running tends to ease the tension due to the largeness of the

top Yukawa at low energy compared to the gauge couplings.

3.1 Minimal SU(3) model with a bulk triplet

We will focus here on the simplest GHU group that allows us to embed both the EW

symmetry and the Higgs: GGHU = SU(3)W [98]. This group, of rank 2 like the EW

symmetry, contains an SU(2)×U(1) subgroup that can be identified with the gauged

EW one. Furthermore, the remaining 4 broken generators correspond to a doublet of

SU(2) with non-vanishing hypercharge, like the Higgs doublet in the SM. Fixing the

hypercharge of the doublet fixes the relation between the SU(2) and U(1) couplings.

Finally, a fermion field in the fundamental representation decomposes into a doublet
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SU(2)L U(1)Y Yuk. SU(3)c

g g′ y gs

SU(3) GHU gGHU

√
3 gGHU gGHU/

√
2 -

SM 0.66 0.35 1.0 1.2

Table 3.1: Gauge and Yukawa couplings in the SU(3) GHU model compared to the

SM values at the MZ scale (for the Yukawa we use the top as a reference even though

in this toy model the Yukawa corresponds to a down-type quark). We also include

for completeness the QCD coupling.

and singlet of the SU(2): once the hypercharge of the Higgs candidate is fixed, the

hypercharges of the doublet and singlet matches those of the left-handed quarks and

the right-handed down-type ones. While we would like to describe the top quark as

a bulk field, we will consider this simple model as a toy to test our idea. Note that

other possible gauge groups which may satisfy these requirements will be explored

in the next three chapters.

We also want to check if the running can enhance the Yukawa coupling at low

energies with respect to the unified value. Note that other SM fermions can be added

as localised degrees of freedom [94, 98], however, their couplings to the bulk Higgs

will be suppressed, thus explaining fermion masses below the EW scale. The SU(3)

predictions for the gauge and Yukawa couplings, in terms of the unified coupling

gGHU, are shown in Table 3.1, together with the SM values of the couplings at the

EW scale (i.e. MZ). For the Yukawa we consider the top Yukawa as our benchmark

value because it is the largest one. It is clear that the tree-level GHU predictions are

different from the SM values, however, they only apply at the cut-off of the effective

theory, which may be very far from the EW scale. We show that the running will

strongly modify the predictions.

We thus study the running effects in a concrete model based on a single extra-

dimension compactified on an interval S1/Z2. The boundary conditions at the two

end points of the interval, x5 = 0 and x5 = πR (where R is the radius of the extra-

dimension), are such that the GHU group is broken to the EW one. The spectrum

will thus contain massless gauge bosons plus a massless scalar associated to the

broken generators. Furthermore, the bulk fermion transforming as the fundamental

of SU(3)W is assigned boundary conditions such that only two massless fermions

appear and we identify them with the third generation quark doublet and down-

type singlet (the missing SM fermions are assumed to be localised). At low energy,

therefore, the field content matches that of the SM. The running of the couplings
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Figure 3.1: Running of the normalised gauge and Yukawa couplings for the SU(3)

GHU model, for 1/R = 5 TeV. The first KK mode enters at tKK ∼ 4.0.

will be affected by the presence of the KK states once the mass thresholds are met,

starting at mKK = 1/R.

In Figure 3.1 we show the running of the couplings as a function of the energy scale

µ, normalised to the unified values as in Table 3.1:

{g1, g2, g3, gy} =

{
g′√
3
, g, gs,

√
2 y

}
. (3.1.1)

Detailed calculations for the running of the couplings can be found in Appendix B.

The normalisations simply follow from the group theory structure of the SU(3)W

matrices, while the QCD coupling is, in principle, unrelated. The couplings follow

SM evolutions up to the scale where the first KK resonances appear, i.e.

tKK = ln
1

MZR
. (3.1.2)

From there on the running is modified by the extra-dimensions, and it features

the expected linear behaviour. The figure clearly shows that the gauge couplings

asymptotically tend to the same value.1 This is more evident from the plot in

Figure 3.2, where we show, as a function of the energy, a naive estimate of the 5-

dimensional loop factor, obtained by using naive dimensional analysis (NDA) [100,

101]:

αNDA
i (µ) ∼ g2

i (µ)

8π
µR . (3.1.3)

While all the couplings run asymptotically to zero, their ratio clearly tends to 1.

Thus it looks as if the unified value of the gauge couplings is an UV attractor of

the one loop running. It may seem surprising that the strong coupling also falls

1This behaviour for the gauge coupling evolution matches previous results, see for instance

Ref. [99].
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Figure 3.2: 5D NDA loop factor as a function of the energy, for 1/R = 5 TeV.

very close. However, the GHU model contains two SU(3) gauge structures, one

associated to QCD and the other to the EW gauge sector, and the bulk fermion is

a bi-fundamental. This allows for the existence of a Z2 symmetry between the two

sectors at high energy that implies equal couplings. Note, finally, that the NDA

loop factor, which can be thought of as a 5D ’t Hooft coupling (as µR counts the

number of KK tiers below energy µ), can be used as a marker of the energy, where

the calculability of the extra-dimensional theory is lost. The fact that the values

stay small seems to suggest that the theory under study may have a more extended

validity than previously thought.

The initial value of the Yukawa coupling, corresponding to y(mZ) = 0.51, is tuned

to achieve unification in the UV. This value depends only mildly on the scale of the

extra-dimension 1/R. It should be noted that the running of the Yukawa coupling

does not follow the gauge ones at high energy, due to the fact that the compactifi-

cation of the extra-dimension clearly singles out the scalar component of the bulk

gauge field. However, in the UV, the running needs to be replaced by the running

of the 5D gauge coupling. Our results show that the value of the Yukawa coupling

at low energy is larger than the values at unification, y = g2/
√

2, however the en-

hancement is not enough to explain the Yukawa coupling of the top, y = 1. It

should be remarked that the value we obtain is a solid prediction of this toy model.

Nevertheless two loop corrections, and the embedding of the top in a more realistic

model, may further improve the agreement. One possibility is to replace the bulk

fermion triplet with a larger representation that can contain a singlet with the cor-

rect hypercharge to match the right-handed top: the minimal possibility is to use

a 2-index symmetric representation (sextet). The sextet would contain a doublet
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and singlet matching the quantum numbers of the SM quarks, plus an SU(2) triplet.

Thus, one can define two independent Yukawa couplings. Furthermore, the triplet

acquires a mass by marrying to a localised chiral fermion, which is also needed to

cancel residual 4-dimensional gauge anomalies. We also performed the running in

this model, following the same prescriptions as before. However, we noticed that

the NDA loop factor estimate for the EW gauge couplings run to non-perturbative

values well before unification occurs, thus rendering the perturbative running unre-

liable. This result seems to indicate that only models with small representations of

the bulk gauge symmetries can provide useful predictions for the low energy values

of the couplings in the model.

3.2 The RGEs for an SU(3) toy model

The renormalisation group equations allow us to resum the leading energy-dependent

corrections to any coupling in terms of a differential equation. The solutions are

energy-dependent couplings whose values run with the scale at which the physics

is probed. While in four dimensions the running is logarithmic, in five dimensional

models it becomes linear in the energy. The generic structure of the running of the

gauge couplings at one loop level is given by [6]:

16π2 dgi
dt

= bSM
i g3

i + (S(t)− 1) bGHU
i g3

i , (3.2.1)

where t = ln (µ/MZ) and contains the energy scale parameter µ. We chose to use

the Z mass as a reference scale, so that for µ = MZ we have t = 0 and we can fix the

initial conditions of the running. The coefficients bSM
i and bGHU

i can be computed

once the field content of the model is specified: the former are equal to the values

in the SM, while the latter include the effects of the KK modes in the bulk of the

extra-dimension. This effect only starts contributing above the mass of the first

mode, equal to the inverse radius mKK = 1/R. The function S(t), defined as

S(t) =

{
µR = MZ R et for µ > 1/R ,

1 for MZ < µ < 1/R,
(3.2.2)

encodes the linear running due to the extra-dimension. This continuum approxima-

tion has been tested against the discrete sum over the KK modes, and the results

are in excellent agreement. For the SU(3) GHU model the b coefficients for the SM

gauge couplings, gi = {g′, g, gs}, are

bSMi =

[
41

10
, −19

6
, −7

]
, b

SU(3)
i =

[
−17

6
, −17

2
, −17

2

]
. (3.2.3)
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This result can be easily understood: −17/2 is the beta function of the unified

SU(3) model (recall that b
SU(3)
1 has an additional normalisation of 1/3), and the

result matches the fact that each KK tier contains a complete representation of

SU(3). For the hypercharge running the normalisation factor has been taken into

account.

Similarly, the general form of the running of the one loop β-function for the Yukawa

coupling y can be written as [102]:

16π2 d y

d t
= βSMy +

(
S(t)− 1

)
βGHU
y , (3.2.4)

where

βy = y

[
cy y

2 +
∑
i

di g
2
i

]
. (3.2.5)

Computing the coefficients for the Yukawa running is not as straightforward as

for the gauge ones: already at one loop, vertices involving different KK modes

contribute. Thus to simplify the calculation, we assigned the SM values to the new

couplings. Note though that the choice needs to be done in a consistent way. As

such, we decided on the following policy: for couplings between bosons, we always

associate the coupling to a gauge one, while couplings to fermions depend on the

quantum numbers of the boson (thus for doublets we associate the coupling to the

Yukawa)2. We also checked that the numerical results do not depend crucially on

this choice3. For the model under study the coefficients assume the following values

cSM
y =

9

2
, cSU(3)

y =
21

2
, (3.2.6)

and

dSMi =

[
− 5

12
, −9

4
, −8

]
, d

SU(3)
i =

[
−35

24
, −39

8
, −4

]
. (3.2.7)

It is interesting to notice that imposing the unification relations between the EW

couplings and the Yukawa, compare to Table 3.1, one would obtain a beta function

of
1

2
cSU(3)
y + 3d

SU(3)
1 + d

SU(3)
2 = −4 , (3.2.8)

which is the same value of d
SU(3)
3 for the QCD contribution. Thus, the running of

the scalar coupling, even in the unification regime, is different from the running of

the vector couplings. This is due to the intrinsic violation of 5D gauge invariance

encoded in the compactification of the extra-dimension.

2Note that for larger bulk representations this is the only physically meaningful choice. For

instance, in the case of a sextet, two Yukawa couplings can be identified that run differently from

each other.
3The detail of the calculation appear in Appendix B and Appendix C.
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The evolution equations for the gauge couplings can be solved analytically as, at one

loop level, they are not coupled. On the other hand, the Yukawa coupling is related

to the gauge couplings, therefore we have performed a numerical calculation, whose

results are given in Figure 3.1.

3.3 The naive dimensional analysis and asymptotic be-

haviour

The asymptotic behaviour of the running of the gauge couplings can be easily un-

derstood when rewriting Equation (3.2.1) in terms of αNDA (as defined in Equa-

tion (3.1.3))

dαNDA

dt
= αNDA +

bSU(3)

π
(αNDA)2 , (3.3.1)

where we only retain the term proportional to S(t) that grows with energy. As such,

for negative b, the above equation allows for an UV fixed point, where the coupling

stops running, that is

αNDA
∣∣
UV

= − π

bSU(3)
=

2π

17
. (3.3.2)

The value above matches the numerical value we found in Figure 3.2 and, as discussed

earlier, it remains perturbative. We also estimated the two loop contribution which

adds to Equation (3.3.1) the following term

+
b
SU(3)
2loop

2π2
(αNDA)3 , (3.3.3)

with b
SU(3)
2loop = −44. The zero of the beta function is marginally corrected and

now appears at αNDA
∣∣
UV
∼ 0.3. This confirms that the perturbative expansion

is well behaved. The presence of an UV fixed point is less certain, as there are

non-perturbative indications against its presence [103, 104].

3.4 Results and Discussions

Our results show that the running cannot be neglected and is crucial to test the fea-

sibility of gauge-Higgs-Yukawa unification in extra-dimensions. We have performed

a one loop calculation within the approximation of neglecting the finite parts of the

loops. The result can be improved by including the finite contributions, that may

also depend linearly on the energy [105] and thus be non-negligible. For increased

accuracy the two loop running may also be computed. For the purpose of this chap-

ter, the accuracy we achieved at one loop is sufficient to enforce our conclusions.
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Note that the effect of the running on the Yukawa coupling applies to any GHU

model and we expect qualitatively similar results to apply, i.e. an enhancement of

the Yukawa coupling at low energy. Thus the predictions of realistic models, such

as the ones in Refs. [106, 107, 108], will be affected by these running effects, in

particular for the Yukawa couplings. The unification of the couplings should occur

in any GHU model (as long as the running remains perturbative) as we showed that

it is due to an attractor in the UV. The simplicity of this model contrasts previous

attempts made in the literature to address the issue of the mismatch between tree-

level predictions and the low energy SM values. The value of the gauge couplings

can be easily modified by adding an extra gauged U(1)X in the extra-dimension.

The hypercharge is thus identified with a combination of the U(1) contained in the

unified group GGHU and of the new U(1)X , and the gauge coupling gX can be tuned

to the correct value. Additionally, localised kinetic terms [109] for the SM gauge

subgroups (that are not broken on the boundaries) also modify the unified relation.

The challenge presented by the top Yukawa is more critical. One possibility is to

embed the top in an higher dimensional representation in order to gain a group

theory factor [110] at the price of lowering the cut-off of the theory. Another possi-

bility is to modify the geometry of the extra-dimension by including a curvature: in

such a case, playing with the localisation of the zero mode wave functions, with an

enhanced overlap with the Higgs being obtained. The latter mechanism has been

used in warped space [111, 112], leading to a revival of composite Higgs models.

Properly taking into account the running, maybe none of the above complications

would be necessary. Note that obtaining the masses of light fermions is rather easy,

as one can use localisation in flat space to suppress the overlap with the Higgs [113],

or include light fermions as degrees of freedom localised on the boundaries [98].

To summarise, in this chapter we have introduced the simplest five-dimensional GHU

scenario, where we have used the gauge symmetry to be SU(3)c × SU(3)W, this is

the smallest group that contains SU(2) × U(1) as a maximal subgroup. We have

focused on the EW symmetry and the Higgs, where the gauge boson arises from the

4-dimensional components of the 5-dimensional gauge fields, whilst the Higgs field

arise from the internal components of the SU(3) gauge group. We will study in the

next chapter the evolution of the quark masses and the flavour mixings in 5D for

an SU(3) gauge group which is compactified on an S1/Z2 orbifold, where the RGEs

are also derived at one-loop level.



Chapter 4
Evolution of quark masses and flavour

mixings in 5D for an SU(3) gauge group

4.1 Model construction

This chapter shall discuss the evolution of the Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements, the Jarlskog invariant as well as the quark mixings in a five-

dimensional model for an SU(3) gauge group compactified on an S1/Z2 orbifold.1

Note that this is very similar to the model investigated in chapter 3, with the ex-

ception that in this chapter we will assume that the fermion doublet and the two

singlets are located at the fixed points of the extra-dimension. As such the quark

masses and the flavour mixings are derived at one-loop level [115]. The SM of parti-

cle physics is believed to be an effective low energy theory for a number of reasons,

where one of these reasons is to try and understand the fermion mass hierarchy and

quark mixings. In the SM there is a hierarchy of the quark masses belonging to var-

ious generations of the up-type quark masses (mt,mc,mu) and also the down-type

quark masses (mb,ms,md) [116]:

mt � mc � mu, mb � ms � md. (4.1.1)

In gauge theories, the renormalisable fermion masses come from mass terms such as

f̄Mf , and also arise from Yukawa terms like f̄Y fΦ. For these Yukawa terms, once

the Higgs doublet acquires a VEV, all the SM fermions acquire a mass, where this

mass is proportional to their Yukawa couplings [116]:

Yt,c,u =
mt,c,u

v
Yb,s,d =

mb,s,d

v
. (4.1.2)

1The work of this chapter is based on our published conference proceeding [114].

42
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Yt,c,u and Yb,s,d are the Yukawa coupling eigenvalues, v is the VEV of the Higgs field,

where this value can be fixed from the measurement of the W boson mass:

v =
2MW

g
' 246GeV. (4.1.3)

In the standard EW model with three quark families, the quark sector contains ten

free parameters, six quark masses and also four flavour mixing parameters [117].

In order to look into the dynamics of fermion mass and flavour mixing, we need

to extend the SM. We expected that any new physics beyond the SM shall appear

above the MZ ∼ 91.2 GeV scale. In order to build a mass model of quarks at the

high energy scale, one can use the RGEs. We need this technique to fill in the space

between the predictions of the model at µ � MZ and the experimental ones at

µ ≤MZ [118]. Therefore, we are using these RGEs in order to study the asymptotic

behaviour of the Lagrangian parameters, such as Yukawa couplings for both up-type

quarks and down-type quarks and also the mixing angles θ12, θ13 and θ23 [119]. In

order to compute the running of quark masses above the MZ scale we are going to

use the quark masses and the mixing parameters, which are obtained at the MZ

scale to determine the Yukawa couplings Yu and Yd. After doing this, we need to

solve the RGEs of the Yukawa couplings, in order to get the running of the quark

masses at any energy scale [118]. In order to diagonalise the quark mass matrices,

one can use an unitary matrix as follows [116, 120]:

uL = (UuL)u′L, ucR = (UucR)†u′R, dL = (UdL)d′L, dcR = (UdcR)†d′R.

(4.1.4)

However, this will lead to the following:

(UucR)† Yu (UuL) = diag(yu, yc, yt), (4.1.5)

(UdcR)† Yd(UdL) = diag(yd, ys, yb), (4.1.6)

or equivalently we can diagonalise the quark mass matrices appearing in the La-

grangian of Yukawa interactions by using the bi-unitary transformation [116, 117]:

(UuL)†Mu (UucR) = diag(mu,mc,mt), (4.1.7)

(UdL)†Md (UdcR) = diag(md,ms,mb). (4.1.8)

Accordingly, we use this bi-unitary transformation in order to change all our quark

fields from their flavour eigenstate basis to the basis of mass eigenstates [117]. Let us

assume that we are working in the basis where the Yukawa couplings for the up-type

quark Yu is diagonal, as appears in Equation (4.1.5), then the mass eigenstates of

the down-type quarks are connected to their weak eigenstates by the CKM matrix

VCKM [118]:

V †CKMYdY
†
d VCKM = diag(l2d, l

2
s , l

2
b ). (4.1.9)
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For the other way around, that is, if we are working in the basis in which the Yukawa

couplings for the down-type quarks are diagonal, then the mass eigenstates of the

up-type quarks are given by:

V †CKMYuY
†
uVCKM = diag(k2

d, k
2
s , k

2
b ). (4.1.10)

Furthermore, we can build the Yukawa couplings for the down-type quarks from

their eigenvalues and also from the CKM matrix [118].

There are many ways to look at the quark mass hierarchy and flavour mixings, we

shall investigate an SU(3) gauge group compactified on an S1/Z2 orbifold which has

size R−1 = 4 TeV, 8 TeV and 20 TeV.

4.2 The evolution of CKM matrix in 5 dimension for an

SU(3)

The SM of particle physics has been very successful in describing most of the particle

phenomenology known to date [32], but it possesses some problems whose solution

could imply physics beyond the SM. The SM is not like QCD and QED, it is a

theory which violates parity (P), time reversal (T) and charge conjugation (C). The

C and P separately are not a good symmetry of the SM, but the combination CP,

in the case of only one family of matter fields, or even if we have two families, is

a good symmetry. Since we have three families in the SM, CP is also not a good

symmetry. All of the SM Lagrangian is invariant under CP transformations, except

the part where the CKM matrix appears.

In order to study the CKM matrix, let us start with a simple expression ūiLγ
µdiL

and express it in terms of mass eigenstates, this will be given as

ūiLγ
µdiL = ū′hL(UuL)hiγ

µ(UdL)†ijd
′
jL = (UuL)hi(U

dL)†ij ū
′
hLγ

µd′jL. (4.2.1)

Because the above equation the two matrices are different, when we compute the

product of two unitary matrices we still get a unitary matrix. This unitary matrix

is called the CKM matrix

(UuL)hi(U
dL)†ij ≡ Vhj . (4.2.2)

In order to parameterise the quark sector’s flavour mixing we need the CKM ma-

trix [121]. The CKM matrix can be parameterised in terms of its 9 parameters [122]

as:

V =


eiτ1 0 0

0 eiτ2 0

0 0 eiτ3

Vst


eiσ1 0 0

0 eiσ2 0

0 0 eiσ3

 , (4.2.3)
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where Vst is the standard parametrisation and it is given as follows

Vst =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
iδ

0 1 0

−s13e
−iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 , (4.2.4)

where cij ≡ cos θij , and sij ≡ sin θij [123]. From the standard parameterisation,

which appears in Equation (4.2.4), the CKM matrix has the following form [124]

Vst =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (4.2.5)

Thus, from the experimental point of view, we know the following relationship

sin θ13 � sin θ23 � sin θ12 � 1, (4.2.6)

and we can express this hierarchy using the Wolfenstein parametrisation [125]:

sin θ23 =
|Vcb|√

|Vud|2 + |Vus|2
, (4.2.7)

and

sin θ12 =
|Vus|√

|Vud|2 + |Vus|2
. (4.2.8)

The RGEs for the CKM matrix beyond the R−1 scale is given as [126]:

16π2dViγ
dt

= 12S(t)

[ ∑
σ,j 6=i

k2
i + k2

j

k2
i − k2

j

l2σViσV
∗
jσVjγ +

∑
j,σ 6=γ

l2γ + l2σ
l2γ − l2σ

k2
jV
∗
jσVjγViσ

]
, (4.2.9)

where the energy scale parameter t= ln(µ/MZ) and S(t) = MZRe
t, and as we

mentioned earlier, our renormalisation point is the Z boson mass. Furthermore,

we can introduce the Jarlskog re-phasing invariant parameter J , which is a crucial

object in measuring the CP violation, and it is given through the unitarity properties

of VCKM, as follows [117]:

Im(VkαVlβV
∗
kβV

∗
lα) = J

∑
m,δ

(εklmεαβδ), (4.2.10)

where the subscript (k, l or m) runs over the (u, c, t) quarks and the subscript (α,

β or δ) runs over the (d, s, b) quarks. In particular, in this chapter we are using the

following J to present the CP violation phenomena:

J = Im(VcsVtbV
∗
cbV
∗
tb). (4.2.11)

Therefore, one can write its square as:

J2 = |Vtb|2|Vcs|2|Vts|2|Vcb|2−
1

4

(
1−|Vtb|2−|Vcs|2−|Vts|2−|Vcb|2+|Vtb|2|Vcs|2+|Vts|2|Vcb|2

)
.

(4.2.12)
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We can then define the RGE invariant quantity in the hierarchical limit mb � ms

as follows [127]:

R23 = sin(2θ23) sinh

[
ln

(
mb

ms

)]
⇒ R23 = sin θ23 cos θ23

(
mb

ms

)
. (4.2.13)

4.3 Numerical Results

In Figure 4.1 we present the evolution of the mass ratio for the one-loop calculation

for three different compactification scales: R−1 = 4 TeV, 8 TeV and 20 TeV. We

expect new physics to come into play when we reach our cut-off, where the cut-off

for our effective theory is when t = 4.1, 4.4, 4.9 for R−1 = 4 TeV, 8 TeV, 20 TeV

respectively. In the left panel we present the evolution of mu/mt, in this case one

can see that the SM (the black line) behaves like λ8, where λ ∼ 0.22. Through

the numerical analysis of the one-loop calculation, we observe that when the fifth

dimension contributions switch on, the mass ratio mu/mt decreases whenever the

energy increases, and this creates a significant change of order of λ8. In the right

panel we are showing the evolution of mc/mt, in this case we see that the SM behaves

like λ4, and when the fifth dimension KK-modes become kinematically accessible the

mass ratio mc/mt decreases with increasing energy, and in this case the change is of

the order of λ4.

In Figure 4.2 we plot the evolution of the CKM parameters, in the left panel we

plot |Vcb| and in the right panel |Vts|. We see that once the fifth dimension contri-

butions switch on, one can see that there are new contributions coming from the

fifth dimension. Accordingly the evolution of the CKM parameters |Vcb| and |Vts|
are rapidly increasing, this significant increase is of order of λ2.
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Figure 4.1: Evolution of the mass ratio for three different values of the compactifica-

tion radius we have used: 4 TeV (red line), 8 TeV (blue line), 20 TeV (green line);

as a function of the scale parameter t. In the left panel is the evolution of the mass

ratio mu/mt, and the right panel is the evolution of the mass ratio mc/mt.
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Figure 4.2: The evolution of the CKM elements for three different values of the

compactification radius we have used: 4 TeV (red line), 8 TeV (blue line), 20 TeV

(green line); as a function of the scale parameter t. In the left panel is the evolution

of the CKM element |Vcb|, and the right panel is the evolution of CKM element |Vts|.
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Figure 4.3: In the left panel is the evolution of the Jarlskog re-phasing-invariant

parameter; the right panel is the evolution of R23, for three different values of the

compactification radius: 4 TeV (red line), 8 TeV (blue line) and 20 TeV (green line);

as a function of the scale parameter t.
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Figure 4.4: Left panel is the evolution of sin θ23; the right panel is the evolution of

sin θ12, for three different values of the compactification radius: 4 TeV (red line), 8

TeV (blue line), 20 TeV (green line), as a function of the scale parameter t.
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In Figure 4.3, left panel, we plot the Jarlskog invariant parameter. As we mentioned

earlier, this gives us a good indication of the amount of CP violation in the quark

sector. As can be seen, once the fifth dimension contributions are reached, the

value of Jarlskog invariant increases sharply until we reach the cut-off. In the right

panel we present the evolution of the renormalisation invariant R23, where this

quantity describes the relationship between the mixing angles (sin θ23 and cos θ23)

and the mass ratio (mb/ms) as it appears in Equation (4.2.13). This renormalisation

invariant quantity starts to increase rapidly when the fifth dimension contributions

switch one, therefore, this rapid increase causes increases in the mixing angles, which

is suppressed by the mass ratio mb/ms. Similarly, in Figure 4.4, in the left panel,

we present the evolution of the mixing angle sin θ23, and in the right panel we plot

the evolution of the mixing angle sin θ12, where in this case after, the fifth dimension

is switched on, the mixing angles sin θ23 and sin θ12 increase rapidly. However, this

increase is suppressed by |Vcb| and |Vus| respectively, as is shown in Equation (4.2.7)

and Equation (4.2.8).

The discussion in this chapter related to the evolution of the mass ratio (only some

selected mass ratio plots have been shown), the evolution of the CKM elements (such

as |Vcb| and |Vts|), the evolution of the Jarlskog re-phasing invariant parameter, the

evolution of R23 as well s the evolution of sin θ23 and sin θ12. We note that when the

fifth dimension KK-modes switch on, all the above mentioned parameters increased

rapidly until we reach the cut-off. Up to this point we have only consider an SU(3)

GHU model (with and without additional fermions), we shall now extend this to

include different bulk gauge groups. As such, in the next chapter we qualitatively

discuss the evolution of the gauge couplings in 5D for an SU(5) as well as the flipped

SU(5) groups.



Chapter 5
Evolution of the gauge couplings and

Weinberg angle in 5D for an SU(5) and

flipped SU(5) gauge group

In this chapter we extend upon the works of chapters 3 and 4, by now considering

a simplified 5-dimensional model with a SU(5) and SU(5)×U(1)′ gauge symmetry.

We will only look at the the evolution of the gauge couplings, where in this scenario

the gauge couplings evolution will be derived at one-loop level and will be used to

test the impact on lower energy observables, in particular the Weinberg angle.1 The

idea of GUTs is to embed the SM gauge group (GSM ≡ SU(3)C × SU(2)L× U(1)Y )

into a large group G, where as we know the SM group is rank 4, which means that

the gauge group G must be at least rank 4. In this chapter we shall study the non-

supersymmetric extensions of the SM based on the gauge group SU(5) and flipped

SU(5). In particular, we will study higher-dimensional non-supersymmetric orbifold

models [94]. By considering orbifolds based on Abelian discrete groups which lead

to a 5-dimensional gauge theory compactified on an S1/Z2, we will assume that

all matter fields are propagating in the bulk. The extra dimension is compactified

on a circle of radius R with Z2 orbifold, therefore, the 5-dimensional KK modes of

the weak doublet (Q) and the singlet (q), as well as the gauge fields (A), are given

by [129, 130]:

Q(x, y) =
1√
2πR

Q0
L(x)+

1

2
√
πR

∞∑
n=1

[
QnL(x) cos

(
ny

R

)
+QnR(x) sin

(
ny

R

)]
, (5.0.1)

1The work of this chapter is based on our published conference proceeding [128].
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q(x, y) =
1√
2πR

q0
R(x) +

1

2
√
πR

∞∑
n=1

[
qnR(x) cos

(
ny

R

)
+ qnL(x) sin

(
ny

R

)]
, (5.0.2)

A(x, y) =
1√
2πR

A0(x) +
1

2
√
πR

∞∑
n=1

An(x) cos

(
ny

R

)
, (5.0.3)

where the zero modes are the 4-dimensional SM fields and there is a left- and a

right-handed KK mode for each SM chiral fermion, whilst the Higgs and the gauge

fields are Z2 even fields [129].

The chapter is structured as follows: In section 5.1 we discuss the evolution of the

gauge couplings and Weinberg angle in 5-dimensions for an SU(5) gauge group,

whilst in section 5.2 we discuss the evolution of the gauge couplings and Weinberg

angle in 5-dimensions for an SU(5)× U(1)′ gauge group.

5.1 The gauge coupling evolution equations for an SU(5)

In this section we shall explore the evolution of the gauge couplings and Weinberg

angle in five dimensions for an SU(5) gauge group, in order to have a unified theory

above some energy scale MX , with ng generation of fermions, where we need at least

12 new gauge bosons; an SU(2)L doublet, colour triplet and their antiparticles, plus

an SU(2)L singlet of the Higgs scalars hα [131]. We put the electroweak doublet and

the colour triplet in the 5-dimensional fundamental representation as follows:

5H =



hr

hg

hb

Φ+

Φ0


. (5.1.1)

SU(3)C acts on the first 3 components, and SU(2)L acts on the last two, where the

SU(5) gauge group breaks into the SM gauge group, when a scalar field 24H such

as the Higgs field acquires a VEV, and this VEV is proportional to the hypercharge

generator [131]. The Higgs sector is made up of an adjoint 24H , which acquires a

VEV from the spontaneous breaking SU(5) → SU(3)C × SU(2)W × U(1)Y :

< 24H >=
v√
30



2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 −3 0

0 0 0 0 −3


. (5.1.2)
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Therefore, we can write the full SU(3)C × SU(2)L× U(1)Y right handed represen-

tation of the creation operators as follows [132]:

u† ⊕ d† ⊕ e† ⊕ Q̄† ⊕ l̄† = (3, 1, 2/3)⊕ (3, 1,−1/3)⊕ (1, 1,−1)

⊕(3̄, 2,−1/6)⊕ (1, 2, 1/2). (5.1.3)

The new gauge bosons are called X and Y and they violate baryon and lepton

number and carry flavour and colour. The gauge bosons are given by the adjoint

representation of the SU(5) gauge group:

24→ (8, 1, 0)⊕ (1, 3, 0)⊕ (1, 1, 0)⊕ (3, 2,−5/6)⊕ (3̄, 2, 5/6), (5.1.4)

where (8,1,0) is identified as the SU(3)C gauge bosons Gαβ , (1,3,0) is identified as

the W± and W 0 gauge bosons, (1,1,0) is identified as the B gauge boson, (3,2,-5/6)

is identified as the Aτα = (Xα, Yα) gauge boson and (3̄,2,5/6) is identified as the

Aαβ = (Xα, Yα)T gauge boson. Therefore, the covariant derivative for a fundamental

representation is given by the following formula

Dµ = ∂µ − ig
24∑
a=1

λa
2
Aaµ ≡ ∂µ − igAµ, (5.1.5)

and the matrix of the gauge bosons becomes

Aµ =
1√
2



Grr Grg Grb X̄r Ȳr

Ggr Ggg Ggb X̄g Ȳg

Gbr Gbg Gbb X̄g Ȳg

Xr Xg Xb W3√
2

W+

Y r Y g Y b W− −W3√
2


+

√
3

5



−Bµ
3 0 0 0 0

0 −Bµ
3 0 0 0

0 0
Bµ
2 0 0

0 0 0
Bµ
2 0

0 0 0 0
Bµ
2


.

(5.1.6)

The new gauge bosons X and Y are clearly carrying colour, and they have electric

charge 4/3 and 1/3 respectively. The one-loop beta functions for the gauge couplings

in 4-dimensions for SU(5) are given by:

16π2g−3
1 βg1 =

81

20
, (5.1.7)

16π2g−3
2 βg2 = −19

6
, (5.1.8)

16π2g−3
3 βg3 = −41

6
. (5.1.9)

While the one-loop beta functions for the gauge couplings in 5-dimension for SU(5)

are given by:

16π2g−3
1 βg1 = (S(t)− 1)

(
81

10

)
, (5.1.10)
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Scenario t(R1) t(R2) t(R3)

5D SU(5) 7.51 8.19 8.86

Table 5.1: Summary the cut-offs in 5 dimensions for an SU(5) gauge group for three

different compactification radii R−1 = 5, 10 and 20 TeV, where t = ln(µ/MZ).
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Figure 5.1: Left panel: The evolution of the inverse fine structure constants α−1
i (µ)

in five dimensions as a function of t, for compactification scale R−1 = 5 TeV, where

α−1
1 is the (red line), α−1

2 is the (blue line) and α−1
3 is the (green line). Right panel:

Evolution of the Weinberg angle sin2 θW for all matter fields in the bulk, for three

different compactification scales; 5 TeV (red line), 10 TeV (blue line), 20 TeV (green

line) as a function of t.

16π2g−3
2 βg2 = (S(t)− 1)

(
7

6

)
, (5.1.11)

16π2g−3
3 βg3 = (S(t)− 1)

(
−5

2

)
, (5.1.12)

where t = ln(S(t)/MZR), S(t) = µR for MZ < µ < 1/R.

In Figure 5.1, left panel, we present the evolution of the inverse fine structure con-

stants in five dimensions for the one-loop beta-function, by assuming that all the

matter fields are in the bulk. We see that α−1
1 and α−1

2 approximately meet at

log(E/GeV ) ∼ 3.67, α−1
1 and α−1

3 approximately meet at log(E/GeV ) ∼ 3.72 and

α−1
3 and α−1

2 approximately meet at log(E/GeV ) ∼ 3.78. In Figure 5.1, right

panel, we present the evolution of the Weinberg angle sin2 θW for the one-loop beta-

function, for different values of compactification radius, for the model discussed

above. Notice that the prediction that the Weinberg angle for an SU(5) gauge

group is sin2 θW ∼ 3/8 at MX is over-shot by approximately 20%. We have sum-

marised our results, in Table 5.1, of the cut-offs for the case of an SU(5) gauge group

in 5 dimensions, these values correspond to the point where g1 =
√

5/3 g2.
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5.2 The gauge coupling evolution equations for an SU(5)×
U(1)′

In this section we shall explore the evolution of the gauge couplings and Weinberg

angle in five dimensions for an SU(5)× U(1)′ gauge group, where the flipped SU(5)

gauge group is different from SU(5) gauge group in the electric charge generators.

As it does not lie completely in the SU(5) gauge group, the flipped SU(5) is just

an embeding of SU(5) × U(1) into an SO(10) gauge group. Note that the flipped

SU(5) model is a very special GUT [133]. The flipped SU(5) gauge group contains

three generations of quarks and leptons, a (10, 10) Higgs boson, and therefore they

have the following representation [134]:

F(10) = [Q, dc, νc]; f̄(5̄) = [L, uc]; l1 = ec, (5.2.1)

and

H(10) = [QH , d
c
H ,ΦH ] H̄(10) = [QH̄ , d

c
H̄ ,ΦH̄ ], (5.2.2)

where the components ΦH , ΦH̄ break the flipped SU(5) gauge group to the SM

gauge group, once ΦH , and ΦH̄ acquires a VEV:

SU(5)×U(1)′ → SU(3)C × SU(2)L ×U(1)Y ×U(1)′, (5.2.3)

and then the gauge group, SU(3)C ×SU(2)L×U(1)Y× U(1)′, is spontaneously broken

to SU(3)C × U(1)em, once Φ5 acquires a VEV:

SU(3)C × SU(2)L ×U(1)Y ×U(1)′ → SU(3)C ×U(1)em. (5.2.4)

The flipped SU(5) gauge group includes SU(5) gauge bosons W±, W3, B, X, Y and

B̃, which is a U(1)′ gauge boson. The electric charge generator Q, in the flipped

SU(5) model, is given as follows:

Q = T3 −
1

5
Y ′ +

2

5
Ỹ , (5.2.5)

where Y ′ is the U(1) inside SU(5) and Ỹ is the one outside SU(5). The hypercharges

of the known quarks, leptons and Higgs field in the flipped SU(5) gauge group are

given as shown in Tabel 5.2 [133, 134]. The one-loop beta functions for the gauge

couplings in 4-dimensions for SU(5)×U(1)′ are given by:

16π2g−3
1 βg1 =

53

6
, (5.2.6)

16π2g−3
2 βg2 = −19

6
, (5.2.7)

16π2g−3
3 βg3 = −41

6
. (5.2.8)
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Fields SU(3)C SU(2)L Y5/2

Q 3 2 1
6

L 1 2 −1
2

uc 3̄ 1 −2
3

dc 3̄ 1 1
3

ec 1 1 1

Φ5 1 2 1
2

H̄1̄0 3̄ 1 −1
3

Table 5.2: Summary of the quarks, leptons and Higgs field content in the flipped

SU(5) model and their quantum numbers.
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Figure 5.2: Left panel: The evolution of the inverse fine structure constants α−1
i (µ)

in five dimension as a function of log(E/GeV ) for compactification scale R−1 = 5

TeV, where α−1
1 is the (red line), α−1

2 is the (blue line) and α−1
3 is the (green line).

Right panel: Evolution of the Weinberg angle sin θW for all matter fields in the bulk,

for two different compactification scales 1 TeV (red line), 5 TeV (blue line) and 10

TeV (green line) as a function of t.

While the one-loop beta functions for the gauge couplings in 5-dimensions for SU(5)×
U(1)′ are given by:

16π2g−3
1 βg1 = (S(t)− 1)

(
105

24

)
, (5.2.9)

16π2g−3
2 βg2 = (S(t)− 1)

(
− 7

24

)
, (5.2.10)

16π2g−3
3 βg3 = (S(t)− 1)

(
−5

2

)
. (5.2.11)

In Figure 5.2, left panel, we show the evolution of the α−1
i in 5-dimensions for

the one-loop beta-function, and in this case one can see that α−1
1 , α−1

2 and α−1
3

approximately unify at log(E/GeV ) ∼ 4.0 for compactification scale R−1 = 5 TeV.

In the right panel we present the evolution of the Weinberg angle for the one-loop

beta-function, for different values of compactification scales R−1 = 1 TeV and 5
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Scenario t(R1) t(R2) t(R3)

5D flipped SU(5) 4.55 5.08 5.55

Table 5.3: The cut-offs in 5 dimensions for the flipped SU(5) gauge group for two

different compactification radii R−1 = 1, 5 and 10 TeV, where t = ln(µ/MZ).

TeV, for the flipped SU(5) model. As an example, for R−1 = 5 TeV, sin2 θW ∼ 0.37

at t ∼ 5.08.

To summarise, in this chapter we have discussed the evolution of the gauge cou-

plings in 5D for an SU(5) and flipped SU(5) gauge group, where we have derived

these evolutions at one-loop level and used it to test the impact on lower energy

observables, especially the evolution of the Weinberg angle. This chapter has shown

that the evolution of the inverse fine structure constants for both SU(5) and flipped

SU(5) gauge groups tend to almost unify. The Weinberg angle for an SU(5) gauge

group is over-shot by approximately 20% and for the flipped SU(5) it over-shots by

roughly 7%. In the next chapter we shall extend our discussion to the G2 gauge

group.



Chapter 6
Evolution of the gauge couplings and

Weinberg angle in 5D for a G2 gauge

group

We will study in this chapter the evolution of the gauge couplings and Weinberg

angle in 5-dimensions for a G2 gauge group.1 Recall that theories which contain light

elementary scalars can look unnatural, because their masses receive quadratically

divergent loop corrections. This problem is known as the hierarchy problem of the

SM, as in this case the masses are pushed up to a cut-off scale [94]. In order to solve

this problem we need to lower the cut-off scale (as was done in the case of large extra

dimensional models), or to embed the Higgs field in a multiplet of a symmetry group

larger than the 4-dimensional Poincare group (such as SUSY) [136]. As we know,

SUSY is a space-time symmetry mapping particles and fields of integer spin (bosons)

into particles and fields of half integer spin (fermions), and vice-versa. Aside from

SUSY there are other extensions of the 4-dimensional Poincare group, the most

natural such choice would be to use the Poincare group of a higher dimensional

gauge theory [91, 137]. A gauge theory defined in more than four dimensions can

have many attractive features, one of these features is that the interactions at low

energies may be truly unified and some of the distinct fields in four dimensions can be

integrated in a single multiplet in higher dimensions, where the Higgs fields could be

a part of the gauge fields. Another feature is that the topology and structure of the

extra-dimension may provide us with new ways of breaking symmetries, accounting

for, at the same time, the hierarchy problem [138]. As such the SM Higgs field may

originate from extra components of a higher dimensional gauge field. We therefore

1The work of this chapter is based on our published conference proceeding [135].
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plan to discuss the evolution equations of the gauge couplings and Weinberg angle

for a G2 gauge group. In this model we consider the evolution of the gauge couplings

and Weinberg angle in 5D, we know that the proton decay is a well-known problem

for many gauge-unification model, the model under consideration is a toy model,

thus we do not addressed the proton decay.

The structure of this chapter is as follows: In section 6.1 we outline the G2 model

construction, in section 6.2 we explore the evolution of the gauge couplings and

Weinberg angle for a G2 gauge group. Our results and discussions will be given in

section 6.3.

6.1 The G2 Model Construction

In order to build a successful model we are first required to find a gauge group

that contains SU(2)L× U(1)Y (and optionally the strong SU(3)c), where the adjoint

representation contains a doublet of SU(2) to be identified with the Higgs doublet.

The second step is to normalise the U(1) gauge coupling so that the candidate Higgs

has the correct hypercharge.

In this section we will explore a simple five-dimensional gauge Higgs unification

scenario, where we use the gauge symmetry to be G2. The extra dimension is

compactified on a circle of radius R with a Z2 orbifolding [139]. This orbifold is given

as Z2 : y → −y, so our physical space is in the interval y ∈ [0, πR] and has two fixed

points at y = 0 and y = πR [6, 60]. We assume that all matter fields are propagating

in the bulk. The gauge bosons arise from the 4-dimensional components of the 5-

dimensional gauge fields, whilst the Higgs field arises from the internal components

of the gauge group G2 compactified on an S1/Z2 orbifold [6, 139, 140].

The G2 gauge group contains SU(3) as its maximal subgroup, and the decomposition

under SU(3) is given by:

14 = 8 + 3 + 3̄. (6.1.1)

Form this we can see that there are two possible doublets, one contained in the

adjoint of SU(3), and the other in the triplets, where in the first case g1 =
√

3 g2

while in the other case g1 = g2/
√

3. The decomposition under SU(2) × U(1) is

given by:

14 =
(

30 + (2 + 2̄)√3/2 + 10

)
+ (2 + 2̄)1/2

√
3 + (1 + 1̄)−1/

√
3 . (6.1.2)

The other maximal subgroup is SU(2) × SU(2) under which:

14 = (1, 3) + (3, 1) + (2, 4), (6.1.3)



Section 6.2. The evolution of the gauge couplings and Weinberg angle Page 58

where in this case the first SU(2) has to be identified with the one contained in the

SU(3) gauge group, and then in this case we can perform two possible breakings for

the group. That is, either its rotation, which is now breaks G2 → SU(3), and hence

the glide to SU(2) × SU(2), or vice-versa. The fundamental representations under

SU(3) decompose as:

7 = 3 + 3̄ + 1, (6.1.4)

and the fundamental representations under SU(2) × U(1) decompose as:

7 = (2 + 2̄)1/2
√

3 + (1 + 1̄)−1/
√

3 + 10. (6.1.5)

We need the RGEs to fill in the space between the predictions of the model at

µ�MZ and the experimental ones at µ ≤MZ . We can describe the contributions

from the SM and KK modes to the beta-functions in two separate terms, which are

different and independent [60, 141].

6.2 The evolution of the gauge couplings and Weinberg

angle

The evolution of the gauge couplings in 4-dimensions for the G2 gauge group at

one-loop is given by:

16π2dgi
dt

= bGi g
3
i , (6.2.1)

where the numerical coefficients in Equation (6.2.1) are given by:

bGi =

[
53

6
,−21

6
,−63

6

]
. (6.2.2)

We can then rewrite Equation (6.2.1) in terms of α−1
i as follows:

1

αi(µ)

d lnαi(µ)

d lnµ
=

bi
2π
. (6.2.3)

The one-loop beta functions for the gauge couplings in 5-dimensions for the G2 gauge

group are given by:

16π2g−3
3

d g3

d t
= −(S(t)− 1)

(
14

6

)
, (6.2.4)

16π2g−3
2

d g2

d t
= (S(t)− 1)

(
7

24

)
, (6.2.5)

16π2g−3
1

d g1

d t
= (S(t)− 1)

(
35

8

)
, (6.2.6)
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Figure 6.1: The evolution of the inverse fine structure constants α−1
i (µ) in 5-

dimensions for one-loop beta-functions as a function of t = ln (µ/MZ), for com-

pactification scale R−1 = 5 TeV, where α−1
1 is the (red line), α−1

2 is the (blue line)

α−1
3 is the (green line).

where S(t) = MZ Re
t is the number of KK states, t = ln (µ/MZ) is the energy

scale parameter, for MZ < µ < 1/R. We have chosen the Z boson mass as the

renormalization point, that is when the energy µ = 1/R or S(t) = 1, in this case

the whole beta-function reduces to the normal beta-functions [102, 142].

Scenario t(R1) t(R2) t(R3)

5D G2 4.529 5.045 5.245

Table 6.1: The cut-offs in 5 dimensions for the G2 gauge group for three different

compactification radii R−1 = 1, 5 and 10 TeV, where t = ln(µ/MZ).
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Figure 6.2: The evolution of the Weinberg angle sin2 θW for the one-loop beta-

function, for different values of compactification scales, R−1 = 1 TeV (red), R−1 = 5

TeV (blue) and R−1 = 10 TeV (green) as a function of t.

6.3 Results and discussions

We present in Figure 6.1 the evolution of the α−1
i in 5-dimensions for the one-loop

beta-function for the G2 gauge group. From this one can see that α−1
1 ,α−1

2 and α−1
3

are approximately unified at t ∼ 4.0.

In Figure 6.2 we present the evolution of the Weinberg angle for the one-loop beta-

functions, for different values of compactification scale. As an example, for R−1 =

10 TeV, sin2 θW ∼ 0.42 at t ∼ 5.56. When the fifth dimension KK modes become

kinematically accessible, there are large changes in the Weinberg angle up until we

reach the cut-off scale. We have chosen the cut-off for our effective theory as g1 = g2,

as shown in Table 6.1.

In this chapter we have introduced the evolution of the gauge coupling for a G2 gauge

group, and it was used to test the impact on lower energy observables, in particular

the evolution of the Weinberg angle. The other possible rank 2 gauge groups that

contain the SU(2) × U(1) EW gauge group is U(1) × U(1), and SO(4). The group

U(1)× U(1) is not large enough to include the SM group, and it only contains two

gauge bosons. While SO(4) ∼ SU(2)×SU(2)/Z2 group contains the SM group when

one of the SU(2) components is broken, where the adjoint representation (3, 1)×(1, 3)

does not contain enough generators, thus this group must be disregarded.

We have discussed models of GHU in previous chapters, where these kinds of models

ensure the existence of a DM candidate. Recall that in the extra-dimension models

we have many additional lightest KK particles, and these can be identified as DM

candidates if they are stable. As such, in the next two chapters we shall start looking
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into the spin-3/2 fermionic DM candidate interacting with SM fermions through a

vector mediator in the s-channel, as well as interacting with the SM quarks through

the exchange of a charged and coloured scalar or vector mediator in a simple t-

channel model.

Note that the spin-3/2 particles exist in several models beyond the SM, namely in

models of supergravity, where the graviton is accompanied by spin-3/2 gravitino

superpartner. Spin-3/2 fermions also exist in KK models, in string theory, and in

models of composite fermions [143, 144, 145, 146, 147]. Recently spin-3/2 CDM has

been studied in EFT models, and constraints from direct and indirect observations

have been obtained [26, 27, 28, 29].



Chapter 7
Minimal Spin-3/2 Dark Matter in a

simple s-channel model

In this chapter we shall address a spin-3/2 fermionic DM candidate interacting with

SM fermions through a vector mediator in the s-channel, where we will consider a

minimal SM singlet spin-3/2 vector-like fermion χ, interacting with the SM particles

through the exchange of a spin-1 mediator, Z ′, in a minimal flavour violation (MFV)

s-channel model. This chapter is heavily based on our paper [64].

A large number of cosmological and astrophysical observations provide strong ev-

idence for the existence of DM in the universe. The amount of CDM has been

precisely estimated from the measurements of the Planck satellite to be ΩDMh
2 =

0.1198 ± 0.0015 [18]. The nature of DM particles and their properties is the sub-

ject of intense investigation. One of the main physics programmes at the LHC is

devoted to the detection of DM, where there is the real possibility of the production

of DM particles of any spin at 13 TeV centre-of-mass energy. As such, the ATLAS

and the CMS collaborations are closely examining several DM signatures involving

missing energy, 6ET , accompanied by a single or two jet events [19]. In addition there

are direct detection experiments, which measure the nuclear-recoil energy and its

spectrum in DM-nucleon elastic scattering. The indirect detection experiments look

for signals of DM annihilation into SM particles in cosmic rays, and have detection

instruments mounted on satellites and ground based telescopes [148, 149].

EFTs in which the DM-SM interactions are mediated by heavy particles, which are

not accessible at the LHC energies, have been analysed in detail with limits from

direct and indirect searches. Recently the need to go beyond these EFT models

has been pointed out, in light of the large energy accessible at the LHC [150].

62
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Simplified models of DM with interactions to SM particles have emerged as attractive

alternatives to EFT models. In these models the interaction between the DM and

SM particles are mediated by spin-0 and spin-1 particles in the s-channel, which is

the focus of this chapter; whereas in the t-channel models the mediator can be a

scalar, a fermion or a vector particle, which will typically also carry colour or lepton

number, as discussed in chapter 8 [65].

As such we shall now consider a minimal SM singlet spin-3/2 fermion, χ, as a

DM candidate, interacting with the SM particles through the exchange of a spin-1

mediator, Z ′, in a MFV s-channel model. We shall begin by introducing the spin-3/2

CDM in an MFV s-channel model in section 7.1. Whilst in section 7.2 we discuss

all relevant experimental constraints including the relic density and the signatures

of these DM particles at the LHC. In section 7.3 we summarise our main results.

7.1 Spin-3/2 Singlet DM Model

In this section we extend the SM by including a spin-3/2 particle χ. We further

let χ be a SM singlet which interacts with the SM particles through the exchange

of a vector particle Z ′ in the s-channel. Note that this can be done, for example,

by extending the SM gauge symmetry with a new U(1)′ gauge symmetry which is

spontaneously broken, such that the mediator obtains a mass mZ′ . We also invoke

a discrete Z2 symmetry under which the spin-3/2 DM particle χ is odd, whereas all

other SM particles, including the vector mediator Z ′, are even. The spin-3/2 free

Lagrangian is given by [151]:

L = χ̄µΛµνχν , (7.1.1)

with

Λµν = (i 6∂ −mχ)gµν − i(γµ∂ν + γν∂µ) + iγµ 6∂γν +mχγ
µγν . (7.1.2)

Note that χµ satisfies Λµνχν = 0, and with χµ being on mass-shell we have

(i6∂ −mχ)χµ = ∂µχµ = γµχµ = 0. (7.1.3)

The spin sum for spin-3/2 fermions

S+
µν(p) =

3/2∑
i=−3/2

uiµ(p)ūiν(p) (7.1.4)

and

S−µν(p) =

3/2∑
i=−3/2

viµ(p)v̄iν(p), (7.1.5)
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are given by [151]:

S±µν(p) = −(6p±mχ)
[
gµν −

1

3
γµγν −

2

3m2
χ

6pµ 6pν ∓
1

3mχ
(γµpν − γνpµ)

]
. (7.1.6)

In view of the non-renormalisable nature of interacting spin-3/2 theories, we can

only write a generic set of interactions respecting the SM gauge symmetry between

the singlet Dirac-vector spinor, χµ, with SM fermions mediated by a vector particle

Z ′µ as (see for example [152])

Lχ,Z′ + Lf,Z′ ⊃ χ̄αγµ(gVχ − γ5gAχ )χβZ
′
µg

αβ +
∑

f=q,l,ν

f̄γµ(gVf − γ5gAf )fZ ′µ, (7.1.7)

where the sum is over all quarks, charged leptons and neutrinos. The interaction is

not restricted by MFV to be either a pure vector or axial vector. Although the form

of the low energy interactions of spin-3/2 particles should arise from an underlying

theory at high energies, we follow the approach of simplified model theories. The

purpose of a simplified model approach is to characterise the DM production present

in a complete theory, without having to specify the complete theory. In these theories

the mediator provides the link between the SM and DM candidate. In general

this interaction will induce flavour-changing neutral currents (FCNC), which are

strongly constrained by low energy phenomenology. The constraints can be avoided

by imposing a MFV structure on the couplings, or by restricting the interactions to

one generation.

There exists an extensive range of models with an extra U(1)′ symmetry (for a review

see [153]). The most stringent indirect constraints on mZ′ arise from the effect of

a Z ′ coupling to SM fermions in precision electro-weak observables from low energy

weak neutral current experiments [154, 155], and gives a lower limit on mZ′ of O(1

TeV); where LHC experiments set strong bounds on the Z ′ mass. For a Z ′ coupling

with SM particles to be of the order of SM-Z electro-weak coupling this bound is

typically m′Z ≥ 2 TeV [150]. This bound is somewhat relaxed (depending on the

model) when Z ′ is allowed to decay into DM candidates [154, 156].
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The decay width Γ(Z ′ → ff̄ + χαχ̄α) is given by 1

Γ(Z ′ → ff̄ + χαχ̄α) =
∑
f

Nc

12π
mZ′

√
1−

4m2
f

m2
Z′

[ (
(gVf )2 + (gAf )2

)
+

2m2
f

m2
Z′

(
(gVf )2 − 2(gAf )2

) ]
+
mZ′

108π

(
m2
χ

m2
Z′

)√
1−

4m2
χ

m2
Z′

×

[
(gVχ )2

(
36− 2

m2
Z′

m2
χ

− 2
m4
Z′

m4
χ

+
m6
Z′

m6
χ

)

+ (gAχ )2

(
−40 + 26

m2
Z′

m2
χ

− 8
m4
Z′

m4
χ

+
m6
Z′

m6
χ

)]
. (7.1.8)

The sum extends over all SM fermions f that are above the threshold, Nc = 3 for

quarks and 1 for leptons. There are several interesting consequences on the DM

mass and couplings arising from the above decay width expressions. If the DM

mass mχ > mZ′/2, the only decay channel available to the mediator Z ′ is into

SM fermions. Since Γ(Z ′) < mZ′ is required for the mediator description to be

perturbatively valid, the vector coupling, for example, should satisfy

8mZ′

12π

(
gVf
)2
< mZ′ ⇒

(
gVf
)2
<

3π

2
. (7.1.9)

Here we consider the coupling to be only to one generation for the purposes of illus-

tration. The qualitative result remains essentially unchanged if all three generations

are taken, except that the top quark mass may not be neglected in comparison to the

mediator mass. This gives ΓZ′/mZ′ ' 2 (gVf )2/3π, and we have the narrow width

approximation being applicable for gVf ≤ 1. However, if the DM mass mχ < mZ′/2,

the mediator can decay into DM pairs, and there exists a minimum limit on the DM

mass χ for a given value of the mediator mass with the coupling given roughly by

1

108π

(
mZ′

mχ

)4 (
gV,Aχ

)2
< 1. (7.1.10)

If the DM mass is below this value, the decay width would exceed the mediator

mass.

In what follows we consider universal couplings for simplicity, gVχ = gVf and gAχ = gAf ,

and restrict ourselves to one generation of SM fermions. In Figure 7.1 we have plotted

the mediator Z ′ decay width as a function of mχ for some benchmark values of pure

vector couplings gVχ,f , chiral couplings gVχ,f = ± gAχ,f and pure axial couplings gAχ,f .

It can be seen from Figure 7.1 that there exists a minimum mχ for a given coupling,

where a mass of χ less than the limit given in Equation (7.1.10) results in a value of

the decay width more than the value of mχ. This feature is peculiar to the spin-3/2

nature of the DM.
1The decay widths for the mediator Z′µ decay into χχ̄ and into ff̄ are given in Appendix D.
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Figure 7.1: Ratio of the mediator decay width to its mass Γ/mZ′ as a functions of

mχ/mZ′ for a few benchmark values of the couplings: 0.1, 0.5 and 1.0. The (a)

panel is for the vector couplings gVχ,f , and the (b) panel is for the chiral couplings

(gVχ,f = ± gAχ,f ). The (c) panel is for the axial-vector couplings gAχ,f .

7.2 Constraints for the spin-3/2 singlet DM model

7.2.1 Relic Density.

In the early universe the DM particles were kept in thermal equilibrium with the

rest of the plasma through the creation and annihilation of χ’s. The cross-section

of the annihilation process χχ̄ → ff̄ proceeds through Z ′, and the spin averaged
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cross-section is given by 2

σ
(
χχ̄→ ff̄

)
=
∑
f

Nc

√
s− 4m2

f

432πm4
χm

4
Z′ s

1√
s− 4m2

χ

[
1(

s−m2
Z′
)2

+ Γ2m2
Z′

]

×
[ (
gAf
)2 {(

gAχ
)2 {

4m2
f

{
10m6

χ

(
7m4

Z′ − 6m2
Z′s+ 3s2

)
− 2m4

χ s
(
16m4

Z′ − 6m2
Z′ s+ 3 s2

)
+m2

χ s
2
(
11m4

Z′

− 6m2
Z′ s+ 3 s2

)
−m4

Z′ s
3
}

+m4
Z′ s

(
−40m6

χ + 26m4
χ s

− 8m2
χ s

2 + s3
)}
−
(
gVχ
)2
m4
Z′
(
4m2

f − s
) (

36m6
χ

− 2m4
χ s− 2m2

χ s
2 + s3

)}
+
(
gVf
)2
m4
Z′
(
2m2

f + s
)

×
{(
gAχ
)2 (−40m6

χ + 26m4
χs− 8m2

χ s
2 + s3

)
+ (gVχ )2

(
36m6

χ − 2m4
χ s− 2m2

χ s
2 + s3

)}]
. (7.2.1)

Freeze out occurs when the χ’s are non-relativistic (v � c). We then have

s ' 4m2
χ +m2

χv
2 +O(v4) (7.2.2)

in the lab frame. The cross-section can be expanded in powers of v2 as 3

σv = a+ bv2 +O(v4). (7.2.3)

The relic density contributions of the DM particles can be obtained by numerically

solving the Boltzmann equation:

dnχ
dt

+ 3Hnχ = −〈σ|v|〉
(
n2
χ − (neqχ )2

)
, (7.2.4)

where 〈σ|v〉 is the thermally averaged χ-annihilation cross-section 〈σ(χχ̄→ ff̄)|v〉,
and nχ is the number density of the χ’s. When we are in thermal equilibrium the

number density is given by

neqχ = 4

(
mχ T

2π

)3/2

exp
(
−mχ

T

)
. (7.2.5)

The Hubble expansion rate is given by

H =

√
8πρ

3M2
pl

, (7.2.6)

where Mpl = 1.22×1019 GeV is the Planck mass. The Boltzmann equation is solved

numerically to yield [157]

ΩDMh
2 ' 2× 1.07× 109XF

Mpl
√
g∗

(
a+ 3b

XF

) , (7.2.7)

2The full expressions of the annihilation cross-section of spin-3/2 DM into SM fermions as a

function of v are given in the Appendix D.
3The expressions for a and b are given in the Appendix D.
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Figure 7.2: The contour plots between the mZ′ and mχ, where we have assumed that

the DM χ saturates the observed DM density. The (a) and the (c) panels are for

benchmark values of vector and axial-vector couplings respectively. The (b) panel is

for the chiral coupling.

where g∗ is the number of degrees of freedom at freeze-out temperature TF , and is

taken to be 92 for mb < TF < mZ′ , XF = mχ/TF . The freeze-out temperature is

obtained by solving

XF = ln

[
c(c+ 2)

√
45

8

gMplmχ

(
a+ 6b

XF

)
2π3
√
g∗(XF )

√
XF

]
, (7.2.8)

where c is taken to be 1/2. For spin-3/2 DM g = 4.

In Figure 7.2 we show the contour graphs between the mass of the mediator mZ′

and the DM mass mχ, by assuming that the DM χ saturates the observed DM

density. From the graphs we see that for small couplings g ≤ 0.1, the parameter

space (mχ,mZ′) is consistent with the observed relic density and is thus independent

of the coupling. This can be understood by noting that the leading term in the
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thermally averaged DM annihilation cross-section into SM fermions is given by

〈σ(χχ̄→ ff̄)|v〉 ' 20 g4

9πm2
Z′

m2
χ

m2
Z′

1(
1−

4m2
χ

m2
Z′

)2

+

(
Γ2

m2
Z′

)
' 8× 10−24

(mZ′/1TeV )2

g4(
1−

4m2
χ

m2
Z′

)2

+

(
Γ2

m2
Z′

) ( mχ

mZ′

)2

cm3 s−1.

(7.2.9)

The annihilation cross-section, being proportional to the fourth power in coupling,

falls rapidly for couplings ≤ 0.1, and the freeze out occurs early when the temper-

ature is high. This will result in the relic density falling below the observed value.

The annihilation rate, however, receives resonant enhancement at mχ ' 1
2mZ′ , in

which case the Γ/mZ′ term dominates over the pole term in the denominator. Thus

near resonance the annihilation cross-section becomes independent of the coupling

and we get the relic density contour curves almost independent of coupling. In this

situation the observed relic density is obtained for mχ ' 1
2mZ′ as is evident from

the graphs.

7.2.2 Direct Detection.

Constraints from DM detection experiments can be obtained from the elastic DM-

nucleon cross-section. In the present case, owing to the presence of both vector and

axial-vector couplings, the DM-nucleon scattering has both spin-independent and

spin-dependent components. The corresponding cross-section at zero momentum

transfer can be easily computed [158, 159, 160]. The spin-independent and spin-

dependent sub-dominant cross-sections are given by [161]:

σSI
χN =

µ2f2
N

πm4
Z′

=
9µ2

(
gVf g

V
χ

)2

πm4
Z′

' 1.4× 10−37
(
gVf g

V
χ

)2 ( µ

1GeV

)2
(

300 GeV

mZ′

)4

cm2, (7.2.10)

and

σSD
χN =

5µ2

3πm4
Z′
a2
N =

5µ2
(
gAf g

A
χ

)2

3πm4
Z′

(
∆uN + ∆dN + ∆sN

)2
' 4.7× 10−39

(
gAχ g

A
f

)2 ( µ

1GeV

)2
(

300 GeV

mZ′

)4

cm2, (7.2.11)

where

µ =
mχmN

mχ +mN
(7.2.12)
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Figure 7.3: The spin-independent nucleon-DM cross-section σSI (left panel) and

spin-dependent nucleon-DM cross-section σSD (right panel). The predicted cross-

section is shown here for different values of the coupling, and are in agreement with

the relic density constraints. In the plots we show the recent XENON1T data for

σSI, and the XENON 100 neutron bounds for σSD.

is the reduced mass. mN = (mp+mn)/2 ' 0.939 GeV is the nucleon-mass for direct

detection, with fp, fn and ap,n being given by:

fp = gVχ
(
2gVu + gVd

)
, fn = gVχ

(
2gVd + gVu

)
(7.2.13)

and

ap,n =
∑

q=u,d,s

gAχ∆qp,ngAq . (7.2.14)

The coefficients ∆qp,n depend on the light quark contributions to the nucleon spin [161]:

∆up =∆dn = 0.84± 0.02,

∆dp =∆un = −0.43± 0.02, (7.2.15)

∆sp =∆sn = −0.09± 0.02.

The axial-vector term is suppressed by the momentum transfer, or by the DM

velocity, and has been neglected. In Figure 7.3 we show the predictions for the spin-

independent σSI and spin-dependent σSD cross-sections for benchmark values of the

vector and axial-vector couplings, as a function of DM mass mχ. The corresponding

experimental bounds from XENON1T [23] and XENON100 [162] are also displayed.

The mediator mass mZ′ is set to give the observed relic density for all values of

mχ and the couplings. We find that for the vector coupling almost the entire pa-

rameter space (mχ,mZ′) is consistent with the observed relic density, and is ruled

out from the XENON1T bound on spin-independent nucleon-DM elastic scattering

cross-sections. The XENON-100 data on the spin-dependent cross-section, on the

other hand, does not place severe constraints on the parameter space, and as such

the allowed parameter space is consistent with the observe relic density.
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Figure 7.4: The prediction for the DM χ annihilation rate into bb̄ and τ+τ− for

benchmark values of couplings. The top, middle and bottom panels are for pure

vector, chiral and axial couplings respectively. The cross-sections are obtained for

(mχ,mZ′) values consistent with the observed relic density. Bounds from the Fermi-

LAT experiments are also shown.
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7.2.3 Indirect Detection.

DM annihilation in the universe would result in cosmic ray fluxes which can be

observed by dedicated detectors. The Fermi Large Area Telescope (LAT) collabora-

tion [163, 164] has produced constraints on the DM annihilation cross-section into

some final states, namely e+e−, µ+µ−, τ+τ−, bb̄, uū, W+W− etc. [163, 165].

In Figure 7.4 we show the prediction for the DM annihilation into bb̄ and τ+τ− for

vector, axial-vector and chiral couplings, as a function of mχ. The predictions shown

here are for benchmark values of couplings and for the DM mass mχ consistent with

the observed relic density. We have also shown the bounds from the Fermi-LAT

experiments. It can be seen from these figures that the Fermi-LAT data on the DM

annihilation cross-section, 〈σ(χχ̄ → bb̄, τ+τ−)|v〉, is consistent with the benchmark

vector and axial-vector couplings, and for (mχ,mZ′) parameters obtained from the

observed relic density. However, for the chiral couplings considered in this work

there is only a narrow window in the high DM mass (mχ ≥ 400 GeV) range for the

coupling g ' 1. For small values of the coupling (g ≤ 0.1) Fermi-LAT data does not

provide any stringent bounds on the (mχ,mZ′) parameter space.

7.2.4 Collider Constraints.

Monojet searches at the LHC with missing transverse energy, 6ET , have been used

by CMS at 8 TeV, based on an integrated luminosity of 19.7 fb−1 [166], to put

constraints on the interaction of quarks and DM particles. In the context of a spin-

1/2 DM particle interacting through a vector mediator, with vector and axial-vector

couplings, constraints on the DM mass mχ and the mediator mass mZ′ for some

representative values of the coupling have been obtained in the literature [167, 168,

169, 170, 171, 172].

For monojet constraints at the LHC, we use the parameter space (mχ,mZ′) for the

spin-3/2 DM, consistent with the observed DM density for benchmark couplings.

To obtain the cross-section for monojets we generate parton level events of the

process pp → χχ̄ + 1j using MadGraph5 [173], where the required model file for

the Lagrangian (7.1.7) is obtained from FeynRules [174]. The cross-sections are

calculated here to obtain bounds by requiring 6ET > 450 GeV, for which the CMS

results exclude new contributions to the monojet cross-section exceeding 7.8 fb at

95% CL. The resulting monojet cross-section for the vector, axial-vector and chiral

couplings are shown in Figure 7.5, where we find that the vector coupling results

are in agreement with the bounds from the direct detection experiments. In the

case of axial-vector couplings, the monojet search places stronger constraints on

the parameters, in comparison to the constraints from direct and indirect searches,

albeit for gAχ,f ∼ 1.
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Figure 7.5: The monojet cross-section in [pb] at the LHC with missing transverse en-

ergy 6ET + 1 jet signal, through pp→ Z ′ → χχ̄+1j. The cross-sections are obtained

by considering values of (mZ′ ,mχ) consistent with the observed relic density for the

benchmark couplings. The allowed parameter space for spin-3/2 DM candidates lies

below the CMS bound of σmonojet = 7.8 fb. The (a), (b) and (c) panels are for pure

vector, chiral and axial-vector couplings respectively.

7.3 Summary and discussion

Presuming a spin-3/2 nature of DM, in addition to the restriction on the coupling

arising from the decay width, there exists a minimum value of the DM mass for

a given coupling and mediator mass. In the case of vector and chiral couplings,

almost the entire parameter space (mχ,mZ′) is consistent with the observed relic

density, and is ruled out by direct detection through nucleon-DM elastic scattering

bounds given by XENON1T data. While for the case of a vector mediator with

pure axial-vector coupling there is, in contrast, a different result with respect to the

vector coupling. In this case the parameter space is consistent with the observed

relic density, and is also allowed by the indirect and direct (XENON100 neutron)
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observations.

For the benchmark couplings considered here there are no strong bounds on vector

and chiral couplings from the monojet searches at the LHC, and the results are

in broad agreement with the direct detection experiments. The case of pure axial

coupling is, however, different. Here the monojet search places stronger constraints

on the parameters in comparison to the constraints obtained from the XENON100

neutron observations.

The Fermi-LAT data on the DM annihilation cross-section is consistent with the

vector and axial-vector couplings considered here, and for the (mχ,mZ′) parameter

values obtained from the relic density. For couplings g ≤ 0.1 the Fermi-LAT data

does not provide stringent bounds on the (mχ,mZ′) parameters. For chiral couplings

the data allows only a narrow window in the DM mass (mχ ≥ 400 GeV) and g ' 1.

In the EFT frame work for pure vector couplings [26, 27] the entire parameter space

10 GeV < mχ < 1 TeV, and an effective interaction scale of the order of a few

tens of TeV, though consistent with the observed relic density, is ruled out from the

direct detection observations. For the case of pure axial coupling, bounds from direct

detection do not forbid the DM mass lying in this range. This is in agreement with

our study in a simple s-channel mediator model, except that in the mediator model

the minimum allowed DM mass is consistent with the observed relic density, and is

of order of 100 GeV. In the case of couplings with chiral SM fermions (gVf = gAf ) it

was found that for a spin-3/2 DM mass up to 1 TeV [28], the entire parameter space

is ruled out from direct detection. The monojet + 6ET searches at ATLAS rules

out DM masses up to 200 GeV. In contrast the s-channel mediator model monojet

searches at ATLAS are more stringent, and the allowed DM mass limit is raised to

greater than 500 GeV. For DM masses exceeding 1 TeV, there are no direct detection

constraints, but collider and indirect observation constraints still exist.

We will extend our discussion to the simple t-channel model in the next chapter by

looking into the spin-3/2 fermionic DM interacting with the SM quarks through the

exchange of a charged and colour scalar or vector mediator.



Chapter 8
Spin-3/2 Dark Matter in a simple

t-channel model

We will now consider a spin-3/2 fermionic DM particle interacting with the SM

quarks through the exchange of a charged and coloured scalar or vector mediator in

a simple t-channel model. The DM particle in this case is a t-channel annihilator,

and it interacts with the SM particles through the exchange of a scalar (S) or vector

(V) particle. This is in contrast to the s-channel model considered in chapter 7,

where a class of such t-channel models for scalar and vector mediator couplings with

a spin-1/2 DM candidate has been considered in Refs. [175, 176, 177, 178]. The

mediators in these t-channel models carry colour or leptonic index.

As such we shall describe the model for this study in section 8.1, and in section 8.2

all the relevant experimental constraints. The relic density contributions of the DM

particles is calculated, and assuming that the contribution by these spin-3/2 DM

particles does not exceed the observed relic density, constraints on the parameters

of the model are obtained in section 8.2.1. With these constraints in place we

discuss the compatibility of these constraints from the direct and indirect detection

experiments in section 8.2.2 and section 8.2.3 respectively. In section 8.3 we examine

the signature of these DM particles at the LHC, where a monojet signal with missing

energy is investigated. Section 8.4 is devoted to the summary and discussion of our

main results.

75
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8.1 The simple t-channel model

The model consists of a SM singlet spin-3/2 particle interacting through the medi-

ation of a scalar (S) or a vector (Vµ) which carries a baryonic (colour) or lepton

index. In general the mediator couples to right-handed up-type quarks (or leptons),

right-handed down-type quarks (or leptons) or left-handed quark (or lepton) dou-

blets. We consider here the right-handed up-type quark case for simplicity and the

other cases are similar. The spin-3/2 free Lagrangian is given by Equations (7.1.1)

to (7.1.6).

In view of the non-renormalisable nature of interacting spin-3/2 theories, we can

only write generic interactions which respect to the SM gauge symmetry between

the singlet, χ, with SM fermions mediated by a scalar or a vector [179]. We will

consider the vector and scalar mediator case separately:

1. Scalar mediator S: For the scalar mediator case, we can write the SM gauge

invariant interaction as:

Lint ⊃ −
(
gS
χ

)i
Λ

χ̄µ g
µν uiRDν S∗i + h.c., (8.1.1)

where i is a generation index and uiR ≡ (uR, cR, tR). In this case we do

not have a dimension-4 interaction term. This is because of the nature of

the vector-spinor χµ, which on mass-shell satisfies γµ χµ = 0, and thus it

is not possible to construct a Lorentz-invariant dimension-4 interaction term

involving χµ, S and the Dirac field uR.

2. Vector mediator Vµ: In this case we can write a dimension-4 term, as well as

a dimension-5 interaction term, namely,

Lint ⊃ i
(
cV
χ

)i
χ̄µ u

i
R (Vµ

i )∗ + h.c., (8.1.2)

and

Lint ⊃ i

(
gV
χ

)i
Λ

χ̄µ g
µα γβ uiR V∗iαβ + h.c. . (8.1.3)

For all calculations we set Λ = 1 TeV. The interaction Lagrangian for the scalar and

vector can be written as:

Lscalar = (Dµ Si)
†(Dµ Si) − m2

Si S†i Si, (8.1.4)

and

Lvector = −1

4
V†iµν Vµν

i + m2
V V†µ i Vµ i + i gs V†µ i t

a Vi
µG

µν
a , (8.1.5)

where Vi
µν = Dµ Vi

ν − Dν Vi
µ. Therefore, the covariant derivative is given by

Dµ = ∂µ + i gs taG
a
µ + i g

1

2
~τ . ~Wµ + i g′

1

2
Y Bµ, (8.1.6)
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where gs is the QCD strong coupling constant. Unlike the s-channel mediator, where

a single mediator is required, in the t-channel model we require a different mediator

for each generation. In general, the interaction given in Lagrangian (8.1.1), (8.1.2)

and (8.1.3) induce FCNC, which are strongly constrained by low energy phenomenol-

ogy. The FCNC constraints can be avoided by imposing a MFV structure on the

Yukawa couplings. The parameter space will be consist with the DM candidate mass

mχ, the scalar (vector) couplings
(
gS
χ

)i ((
cV
χ

)i
,
(
gV
χ

)i)
, and the mediator masses mi

S

(mi
V), for each generation. For simplicity we will set the couplings and mediator

masses for all the generations to be equal. If the mediator mass is in the kine-

matically accessible region of the LHC, the decay of the mediator and the ensuing

signal will become important. The decay width of the scalar and vector mediators

Γ(Si /V i → χ ūi), dropping the generation index, are given by:

Γ(S → χ ū) =

(
gS
χ

)2
m5

S

96πΛ2m2
χ

[
1−

(
mχ

mS
+
mu

mS

)2
][

1−

(
mχ

mS
− mu

mS

)2
]

×

[
1 −

m2
χ

m2
S

− m2
u

m2
S

]
λ1/2

(
1,
m2
χ

m2
S

,
m2
u

m2
S

)

'
(
gS
χ

)2
m5

S

96πΛ2m2
χ

(
1−

m2
χ

m2
S

)4

, (8.1.7)

since mi
S,mχ�mu is true for all quarks, except the top quark, and λ(a, b, c) ≡

a2 + b2 + c2 − 2 a b − 2 a c − 2b c ;

Γ(V → χ ū) =

(
cV
χ

)2
mV

288π

(
1 −

m2
χ

m2
V

− m2
u

m2
V

)[
5 +

m2
V

m2
χ

+
m2
χ

4m2
V

− m2
u

m2
χ

− m2
u

2m2
V

+
m4
u

4m2
V m

2
χ

]
λ1/2

(
1,
m2
χ

m2
V

,
m2
u

m2
V

)

'
(
cV
χ

)2
mV

288π

(
1 −

m2
χ

m2
V

)2(
5 +

m2
V

m2
χ

+
m2
χ

4m2
V

)
, (8.1.8)

and

Γ(V → χ ū) =

(
gV
χ

)2
m5

V

288πΛ2m2
χ

[
m2
χ

m2
V

+
m4
χ

m4
V

−
3m6

χ

m6
V

+

(
1 − m2

u

m2
V

)3

+
5m4

χm
2
u

m6
V

−
m2
χm

4
u

m6
V

]
λ1/2

(
1,
m2
χ

m2
V

,
m2
u

m2
V

)

'
(
gV
χ

)2
m5

V

288πΛ2m2
χ

[
1 +

m2
χ

m2
V

+
m4
χ

m4
V

−
3m6

χ

m6
V

](
1 −

m2
χ

m2
V

)
, (8.1.9)

for dimension-4 and dimension-5 interaction Lagrangians given in Equations (8.1.2)

and (8.1.3) respectively.
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Figure 8.1: Contour plots in the allowed DM mass mχ and the mass splitting ratio

r − 1 (with r = mS(mV )/mχ) in the left panels, and in the DM mass mχ and

the couplings in the right panels. We have assumed that the DM χ saturates the

observed relic density. The top panels are for the dimension-4 interaction term for

the vector mediator case. The middle and the bottom panels are for dimension-5

vector and scalar mediator cases respectively. In the left panels the colour gradient

corresponds to the Yukawa couplings required to give the observed relic density, which

in the right panels, the colour gradient corresponds to the mass splitting consistent

with the observed relic density.
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8.2 The constraints for the simple t-channel model

In this section we examine the constraints on the model parameters mχ,mS ,mV

and the coupling constants from the relic density, direct and indirect observations.1

8.2.1 Relic density.

In the early Universe the DM relic density is determined by the dominant DM an-

nihilation processes χ χ̄ → u ū mediated by the t-channel exchange of scalar/vector

mediators. Since the mediators in this model carry colour and charge co-annihilation

processes like χS(V) → u g and S S∗ (V V∗) → g g, even though exponentially

suppressed when mass splitting
(
mS/V − mχ

)
> freeze-out temperature TF , will

play an important rule if the DM mass gets closer to the mediator mass. The co-

annihilation processes χS(V) → u g are mediated by t-channel exchange of media-

tors as well as by s-channel exchange of gluons and through the four-point interaction

involving the DM, mediator, u-quark and the gluon vertex. These processes will re-

duce the Yukawa coupling needed to generate the required thermal relic abundance.

Self annihilation mediator processes S S∗(V V∗) → g g are generated by purly gauge

interactions and are independent of the Yukawa couplings and have the potential to

suppress the relic density below the observed value.

At freeze-out the DM and mediator particles are non-relativistic. In the non-

degenerate parameter space, the channel χ χ̄
S/V−−→ u ū cross-section can be easily

evaluated, and in the limit mχ, mS, mV � mu are given by

〈σ(χ χ̄
S−→ u ū)|v〉 '

(
gS
χ

)4
m2
χ

768πΛ4

1

(1 + r2)2 , (8.2.1)

〈σ(χ χ̄
V−→ u ū)|v〉 '

(
cV
χ

)4
1536πm2

χ

1

(1 + r2)2

[
5 − 4

r2
+

2

r4

]
, (8.2.2)

and

〈σ(χ χ̄
V−→ u ū)|v〉 '

(
gV
χ

)4
m2
χ

768πΛ4

1

(1 + r2)2

[
5 +

1

24

1

(1 + r2)2

]
, (8.2.3)

for the scalar-mediator and the vector-mediator dimension-4 and dimension-5 in-

teraction Lagrangians (8.1.1), (8.1.2) and (8.1.3) respectively, and the mass ratio

r =
(
mS/V

)
/mχ. The thermal relic density of χ’s is obtained by solving the Boltz-

mann equation (7.2.4).

The annihilation cross-section for the co-annihilation processes χS(V) → u g in this

1The work of this chapter is based on our paper [65].
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limit are give by 2

〈σ(χS → u g)|v〉 '
(
gS
χ

)2
g2
s

64πΛ2

(1 + r)

r3

[
1 +

14

9
r +

13

27
r2

]
, (8.2.4)

〈σ(χV → u g)|v〉 '
(
cV
χ

)2
g2
s

165888πm2
χ

1

r6(1 + r)

[
1164 + 5628 r + 11403 r2 + 12568 r3

+ 8242 r4 + 2452 r5 + 319 r6

]
, (8.2.5)

and

〈σ(χV → u g)|v〉 '
(
gV
χ

)2
g2
s

497664πΛ2

1

r5(1 + r)

[
372 + 2724 r + 6537 r2 + 8742 r3

+ 7072 r4 + 5222 r5 + 307 r6

]
. (8.2.6)

To calculate the relic density we have implemented the t-channel scalar and vector

interactions with SM quarks and spin-3/2 DM including the relevant co-annihilation

processes in micrOMEGAS [180], which numerically solves the Boltzmann equation

by taking the full expressions of the annihilation cross-section.3 We have checked

the relic abundance in the non-degenerate parameter space for some representative

values of the parameters, and found them to be in agreement with the numerical

calculations done by micrOMEGAS. The necessary model files for micrOMEGAS were

built using FeynRules [174]. In Figure 8.1 we show the contour graphs in the DM

mass and the mass splitting ratio r − 1. The colour gradients correspond to the

Yukawa couplings in the right panels and to the mass splitting ratio in the left panels

to conform to the observed relic density ΩDMh
2 ' 0.12. In the parameter space in

which co-annihilation is not important, comparatively large Yukawa couplings are

required to obtain the required relic density. In the co-annihilation region on the

other hand, we find the couplings to be reduced for almost all DM masses both for

the scalar and vector mediator cases. We find that with the increase in DM masses,

the co-annihilation channels take over the DM self annihilation processes and the

co-annihilation channels involving gauge interactions alone are able to depress the

relic density below the observed value. We see from the left-hand panels that there

are two regions in the DM mass, one around 80 GeV ≤ mχ ≤ 100 GeV and another

one around 300 GeV ≤ mχ ≤ 400 GeV, where the co-annihilation processes result

in a sharp drop in the couplings, required for the requisite relic density.

2In Appendix E we show the annihilation thermal cross section, in the case where the mediator

mass is getting closer to the DM mass.
3The relic density contributed by the DM particles is calculated by taking into account the

co-annihilation processes.
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8.2.2 Direct detection.

Direct detection experiments [22, 23, 24, 25] on elastic nucleon-DM scattering have

provided the most stringent bounds on DM mass and interactions in a large number

of conventional DM models. In the t-channel spin-3/2 DM model considered here,

the cross-sections at zero momentum transfer can be easily calculated [158, 159,

181]. The dominant contribution to the spin-independent cross-section for the vector

mediator case is given by

σSI ' 1

64π

(
cVχ
)2
µ2

m4
χ

[(
1 + mN

mχ

)2
− r2

]2 fN , (8.2.7)

and

σSI ' 1

64π

(
gVχ
Λ

)4
µ2[(

1 + mN
mχ

)2
− r2

]2 fN , (8.2.8)

where µ = (mχmN ) / (mχ + mN ), fN = 4 for protons and 1 for the neutrons, and

we have dropped the terms proportional to the quark mass and momenta in com-

parison to the leading term. The cross-section given in Equations (8.2.7) and (8.2.8)

correspond to the dimension-4 and dimension-5 interaction Lagrangians. The elas-

tic nucleon-DM cross section for the case of scalar mediator is suppressed by terms

proportional to quark momenta, and have not been considered here.

In Figure 8.2 we show the predictions for the spin-independent DM-proton scattering

cross-sections, σSI, for the vector mediator case. In the left panels the colour gradient

corresponds to the coupling and in the right panels to the mass splitting r − 1.

In the left panels for every DM mass and mass splitting, the Yukawa coupling is

obtained such that the parameters conform to the observed relic density, whereas in

the right panels the required mass splitting is obtained for a given Yukawa coupling.

We find that for any DM mass, the scattering cross-section generally increases as

the degenerate parameter region is approached. This happens because of resonante

enhancement of σSI near r = 1. For the case of dimension-5 vector interaction

(bottom panels), we see a drop of several orders of magnitude in the scattering

cross-section around the same DM mass regions, where the co-annihilation results

in a sharp drop in the couplings. In Figure 8.2 we have also shown the current

upper limits from LUX [25], PandaX-II [24] and the projected upper limit for the

XENON1T experiment [23].

8.2.3 Indirect detection.

The Fermi-LAT collaborations [164] have dedicated detectors to measure cosmic ray

fluxes arising from DM annihilation in the Universe. In Figure 8.3 we show the
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Figure 8.2: The spin-independent proton-DM cross-section σSI. The top and the

bottom panels correspond to dimension-4 and dimension-5 vector interactions. In

the left and right panel the colour gradients correspond to the Yukawa couplings and

mass splittings respectively. All parameters are consistent with the observed relic

density. We have also shown the graphs from the observed current upper limits

from LUX [25] and PANDAX-II [24] experiments. The projected upper limit for

XENON1T [23] has also been shown. Almost the entire parameter space (mχ,mV )

for the vector mediator case considered here is already ruled out from the LUX data.

prediction for the total DM annihilation into uū for the vector/scalar mediated t-

channel model. The predictions shown here are for the DM mass, mediator mass

and the couplings consistent with the observed relic density. We have also shown

the bounds from the 95% CL upper limits on the thermally-averaged cross-section

for DM particles annihilating into uū Fermi-LAT observations. As expected in the

parameter region where co-annihilation is important (r ' 1) the χ χ̄ annihilation

cross-section in the u ū channel is greatly suppressed. Even in the region away from

resonance (r � 1), the Fermi-LAT data does not provide strong bounds on the

mass and coupling parameters in the entire range consistent with ΩDMh
2 = 0.12.
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Figure 8.3: The prediction for the DM χ χ̄ annihilation rate into u ū, as a function of

the DM mass mχ. All the parameters are chosen to be consistent with the observed

relic density. The top and the middle panels are for dimension-4 and dimension-5

vector interactions respectively. The bottom panels are for the scalar interaction.

The colour gradient in the left and right panels correspond to the coupling and mass

splitting respectively. Bounds from the Fermi-LAT experiments are also shown [164].
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8.3 Collider bounds

The t-channel mediator model considered here has scalar and vector mediators

which carry colour, SU(2)L and U(1) charges. They can thus be singly produced

in association with DM particles, or pair produced if they are light enough at the

LHC. These processes will contribute to the monojet and dijet signals with missing

energy, with distinct signatures that can be searched for in dedicated searches. For

monojet events q g → q χ χ̄, these are dominant processes in comparison to q q̄ →
g χ χ̄, because of the large parton distribution probability of the gluon, as compared

to quark and antiquark in the proton. The authors of the simplified DM model

document [161] have emphasised that the dominance of the associated production

channels is a distinct feature of t-channel models. The 8 TeV CMS collaboration data

based on an integrated luminosity 19.7 fb−1 [19, 166] has been used by the authors

of Refs. [177, 182] to put bounds on the coupling of fermionic DM as a function

of the mediator and DM mass for the case of scalar and vector mediators. In the

present study we confine ourselves to constraints arising from the monojet signals

using the parameter space (mχ, mS/V) for different values of the couplings
(
gS
χ

)i
/(

gV
χ

)i
/
(
cV
χ

)i
consistent with the observed relic density. The cross-section for monojet

events is obtained by generating parton level events for the process p p → χ χ̄ j

using MadGraph [173], where the model file for the Lagrangian is obtained from

FeynRules, and we use CTEQ611 parton distribution function for five flavour quarks

in the initial state. We employ the usual cuts, and the cross-sections are calculated

to put bounds on the parameters of the model by requiring (i) EmissT > 250 GeV

and (ii) EmissT > 450 GeV, for which the CMS result excludes new contributions to

the monojet cross-section for the scalar and vector mediators as shown in Figure 8.4

as function of mχ, for the values of mediator mass mS/mV consistent with the relic

density. The results are displayed for some representative values of the couplings.

From Figure 8.4 we find that the collider bounds are much weaker compared to the

bounds from the direct detection experiments for the vector mediator case. The

scalar mediator case is interesting in this case as the collider bound rules out low

mass DM particles. The bounds from the monojet + missing energy cross section

puts a lower limit on the DM particle mass, where the limit depends on the coupling,

and increases with the coupling.
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Figure 8.4: The monojet cross-section in [pb] at the LHC with missing energy for

two cases (i) EmissT > 250 GeV and (ii) EmissT > 450 GeV. The cross-sections are

obtained for all masses and couplings consistent with the observed relic density. (a)

and (b) correspond to the dimension-4 and dimension-5 vector interactions terms

respectively and (c) for the dimension-5 interaction term for the scalar mediator.

The monojet cross-section from 8 TeV CMS collaboration data [166] based on an

integrated luminosity 19.7 fb−1 is shown.
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8.4 Summary and discussion

The direct detection experiments, through DM-nucleon elastic scattering data, pro-

vide the most stringent bounds for the case of a vector mediator. In this case the

entire parameter space allowed by the relic density is already ruled out by the LUX

data. This result is consistent with the earlier studies of spin-3/2 DM in the EFT [26]

frame work for pure vector couplings, as well as in a simplified s-channel model [64].

The co-annihilation is unable to ameliorate this situation.

There are no strong bounds from the the direct detection experiments on the scalar

mediated interactions due to the velocity suppression of σSI. In contrast, in the

EFT frame work, both the scalar as well as vector interactions give rise to dominant

spin-independent nucleon-DM scattering cross-sections and direct detection rules

out scalar interactions for spin-3/2 DM particles of masses lying between 10 GeV

and 1 TeV [26]. The current constraints from indirect searches, like the Fermi-LAT

data, are not sensitive enough to put any meaningful constraints on the parameters.

Monojet searches at the LHC do not provide strong bounds on the vector couplings

in comparison to the bounds from direct detection experiments. However, for the

case of the scalar mediator, where we do not get any strong bounds from the direct

detection experiment, collider bounds put a lower limit on the DM mass which is

mχ ≥ 300 GeV. This limit rises with the increase in coupling. Finally, it may be

mentioned that bounds from direct detection experiments can, however, be evaded

by foregoing the universal coupling between DM mediators and quarks, and letting

the DM particles interact with only one generation, say with the third generation

quarks (top-philic DM).



Chapter 9
Conclusion

9.1 Summary of key results

In this thesis we show that the running of couplings from the EW scale to the extra-

dimension scale needs to be taken into account in order to obtain reliable results.

When included, it allows us to obtain simple models of GHU where both the EW

gauge couplings and the top Yukawa unify. We have studied a toy model in five-

dimensions, compactified on an interval S1/Z2, with bulk gauge groups SU(3)c×
SU(3)W and a bulk fermion transforming as a bi-fundamental. This simple struc-

ture is enough to describe the EW gauge sector unified in SU(3)W . The fermions

contained in the bulk fermion match a down-type quark, yet the effective Yukawa

coupling is enhanced at low energies thanks to the running. We show that the run-

ning allows us to match the value of the Weinberg angle at the EW scale, as well

as larger than expected Yukawa couplings. Unified values of the couplings appear

as an attractor in the UV, providing an example of asymptotic unification. The

QCD gauge coupling also unifies, suggesting that the double-SU(3) structure may

be symmetric and may be embedded in a larger algebra.

We also derived in this thesis the one-loop RGEs in a five-dimensional GHU model

for an SU(3) gauge group by assuming that the fermion doublet and the two singlets

are located at the fixed points of the fifth dimension. We tested the evolution of the

mass ratios mu/mt, mc/mt, the CKM elements |Vcb|, |Vts|, the Jarlskog rephasing-

invariant, the renormalisation group invariant R23 and the evolution of the mixing

angle sin θ23 and sin θ12. We observed that when the fifth dimension KK-modes be-

came kinematically accessible all the previous physical observables evolution changed

rapidly. These physical observables evolutions mu/mt, mc/mt, |Vcb|, |Vts|, J , R23,

87
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sin θ23 and sin θ12 all over-shot by approximately 14%, 3%, 25%, 26%, 7%, 6%, 12%

and 20% respectively.

The one-loop RGEs in five-dimensions for an SU(5) and SU(5)×U(1)′ gauge group

compactified on an S1/Z2 have also been derived. We observed that when the fifth

dimension KK-modes became kinematically accessible the evolution of the Weinberg

angle rapidly increased by approximately 20% for SU(5) and 7% for SU(5)×U(1)′.

We also explicitly tested, in a simplified 5-dimensional model with a G2 gauge sym-

metry, the evolution of the gauge couplings and Weinberg angle. In this case we

observed that when the fifth dimension KK-modes switch on all the previous physi-

cal observables evolution changed rapidly. The Weinberg angle rapidly increased by

approximately 6% for G2 gauge group.

As we know, there is no direct evidence in the SM which explains DM, however, in the

GHU models we can obtain many additional particles. Note that we can seek these

out to use as candidates for DM. Accordingly, we have considered a spin-3/2 DM

particle interacting with SM fermions through a vector mediator in the s-channel.

Assuming MFV we used universal vector and axial-vector couplings and restricted

ourselves to one generation. We also considered a spin-3/2 DM particle interacting

with the SM fermions through the exchange of a scalar or a vector mediator in the

t-channel. Invoking MFV we restricted ourselves to the coupling of DM candidates

with SM singlet right-handed quarks with universal coupling. The thermal relic DM

abundance has been computed by taking into account the co-annihilation processes.

Co-annihilation has the effect of reducing the Yukawa couplings needed to generate

the required DM density. The co-annihilation effects are more pronounced in the

large mχ regime, where mediator self annihilation into gauge bosons has the poten-

tial to suppress the relic density below the observed value. Similar behaviour was

observed in the t-channel model for spin-1/2 and scalar DM particles [182]. In both

s-channel and t-channel models, spin independent cross section bounds from direct

detection experiments rule out the parameter space which yields the observed DM

abundance, while other experiments yield typically weaker bounds.

9.2 Aspects for future work

Further study is really crucial in order to see whether the phenomenology will change

or not when we change the gauge group, by focussing on a more pragmatic or realistic

model, such as SO(5) × U(1). In the case of the SO(5) gauge group, it contains

SU(2) × U(1) into two different ways: firstly, we can have a subgroup which is not

a subgroup of SO(4), therefore, in this situation the adjoint representation of SO(5)
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decomposes as 10 = (3, 0) + (1, 0) + (3,±1), thus there is no doublet which can play

the role of a SM-like Higgs. As such, this choice is not viable. The other possibility

is SO(5) → SU(2) × U(1) ⊂ SO(4), where in this case the adjoint representation

decomposes into 10 = (3, 0) + (1, 0) + (1,±1) + (2,±1/2). In this case there is a

complex doublet which can play the role of the Higgs, and furthermore the three

singlets and the doublet form the adjoint representation of the SO(4) subgroup. The

other gauge group is F4, where this gauge group is rank 4 and contains as maximal

subgroups SU(3) × SU(3), SU(2) × Sp6 as well as SO(9). For instance, the SO(5)

gauge group can decompose under the adjoint representation of SU(3) × SU(3) as

52 → (8, 1) + (1, 8) + (6, 3̄) + (6̄, 3), where in this case the Higgs doublet candidate

can be in the adjoint of both the SU(3) gauge groups. Given these preliminary

possible higher rank, more realistic, GHU models which can be studied, further

investigations are required.

Furthermore we can test GHU models in 6 dimensions by changing the geometry of

the extra-dimensional space. Extensions of our studies to two-loop corrections can

also be made.

With larger gauge groups comes the possibility of more additional particles, which

when viewed from an effective interacting DM perspective can lead to more intricate

phenomenologies. One such further study is to extend the DM into a Higgs portal

model, but instead of looking into thermal spin-3/2 DM it will be interesting to look

into non-thermal spin-3/2 creation, and then see the phenomenological changes, this

creates. We can also study the Sommerfield enhancement for this spin-3/2 DM, all

of which we hope to pursue in up coming works.



Appendix A
One-loop correction for gauge coupling

coefficients in the SM

In this appendix we shall derive the numerical coefficients of the gauge couplings

in the SM. One-loop corrections for gauge coupling coefficients in the SM are given

by [70]:

16π2 d gi
d t

= bSMi g3
i , (A.0.1)

where the SM numerical coefficients bSMi are given by

bSMi =

(
11

3
TGB(R) − 4

3
nG TF (R) − 1

3
nH TH(R)

)
. (A.0.2)

The coefficients in this expression are

T (R) δab = Tr (Ta Tb) , (A.0.3)

where nH refers to the number of Higgs scalars in the theory and nG is the number

of generations. TH(R), TF (R) and TGB(R) are the Higgs scalar, fermionic and

bosonic contributions respectively. As we know, the gauge bosons are in the adjoint

representation of the groupG, which mean that forG = SU(N): TGB (SU(N)) = N .

Hence, the SM numerical coefficients bSMi are determined as follows:

A.1 The strong interactions: SU(3)C

1. TGB(R): The gluons belong to the adjoint representation of SU(3), which

means that TGB (SU(3)) = 3.
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2. TF (R): For one fermionic generation, the contribution is coming from uα and

dα, hence

TF (1 generation) = TF (3) + TF (3) =
1

2
+

1

2
= 1. (A.1.1)

Recall that if we are dealing with Weyl fermions (uL, uR, dL, dR), then we

must include a 1/2 factor for each helicity, this coming from the fact that

TrL(R) = 1/2, with L(R) = (1 ± γ5) /2. Thus

TF (1 generation) = 4 .
1

2
.
1

2
= 1. (A.1.2)

3. TH(R): In the SM gauge group there are no coloured scalars, which means

TH = 0.

Finally, we have the numerical coefficient for the strong interaction as:

b3 =
33

3
− 4

3
nG, since we have 3 generations ⇒ b3 = 7. (A.1.3)

A.2 The weak interactions: SU(2)L

TGB (SU(2)) = 2, TF (1 generation) = 4 . 1
2 .

1
2 = 1 (the factor 1/2 is due to the

helicity), and since in the SM we have the standard Higgs doublet, TH = 1/2.

Finally, we have the numerical coefficient for the weak interaction as:

b2 =
22

3
− 4

3
nG −

1

6
, since we have 3 generations ⇒ b2 =

19

6
. (A.2.1)

A.3 Electromagnetic interactions: U(1)em

Since there are no boson contributions in the hypercharge coefficient bY , therefore

TGB = 0.

TF (1 generation) =
∑

Q2
em = 3

(
Q2
u + Q2

d

)
+ 2

(
Q2
Q + Q2

L

)
+ Q2

e =
10

3
.

(A.3.1)

TH for the SM Higgs is 1/2, therefore

b1 =

[
− 3× 4

3
× 10

3
× 1

2
− 1

6

]
= −41

6
. (A.3.2)

By using the SU(5) normalisation: g′ =
√

3/5 g1. Thus

b1 = −41

6
× 3

5
= −41

10
. (A.3.3)



Appendix B
Running of gauge and gauge-scalar

couplings in 5D

In this appendix let us consider a theory based on the gauge group

Gbulk = SU(N)W × SU(N)c , (B.0.1)

where SU(N)W contains the EW sector and SU(N)c contains QCD colour. In our

model we also add a single bulk fermion in the irreducible representation

ψ = (RW , Rc) . (B.0.2)

Accordingly, the one-loop beta-function for the vector couplings can be easily ob-

tained by using the standard formulas for the running of gauge couplings as:

βW =− 11

3
C(G)W +

1

6
C(G)W +

4

3
T (RW )d(Rc) , (B.0.3)

βc =− 11

3
C(G)c +

1

6
C(G)c +

4

3
T (Rc)d(RW ) . (B.0.4)

Note that the formula applies for Dirac fermions and real scalars. The group theory

factors are defined as follows:

fabcf bcd = C(G)δad , Tr[T aRT
b
R] = T (R)δab , T aRT

b
R = C2(R) , (B.0.5)

and d(R) is the dimension of the irreducible representation R.

B.1 Running of the gauge-scalar couplings

The running of the gauge-scalars is similar to the one for Yukawa couplings, which

receives contributions from the diagrams in Figure B.1. The result of the calculation
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure B.1: The diagrams contributing to the running of the gauge-scalar couplings.

can be expressed in a very compact form as follows: We define T aL/R as the couplings

of the gauge vectors to fermions, ha the couplings of gauge scalars to fermions, and

κaij the couplings of the gauge scalars i–j to the gauge bosons a (note that the gauge

indices cover all the gauge generators of the two groups in the model). Thus, the

contribution of each diagram to the beta function can be written as:

Diagram (a)⇒ghiβ = −8T aL · hi · T aR , (B.1.1)

Diagram (b+c)⇒ghiβ = T aL · T aL · hi +H i · T aR · T aR , (B.1.2)

Diagram (d)⇒ghiβ = −2hk κaklκ
a
li , (B.1.3)

Diagram (e+f)⇒ghiβ = 2(T aL · hk − hk · T aR) κaki , (B.1.4)

Diagram (g)⇒ghiβ = 2hm · hi · hm , (B.1.5)

Diagram (h+i)⇒ghiβ =
1

2
(hm · hm · hi + hi · hm · hm) , (B.1.6)

Diagram (j)⇒ghiβ = 2Tr[hi · hm] hm
(
×1

2
for Weyl

)
. (B.1.7)

In the model under study: T aL/R = gT a, hi = gT i, κaij − igfaij , where the contribu-

tion of each diagram to the beta function of the gauge scalar coupling for SU(N)W
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diagram SU(N)W SU(N)c

g2
W g2

c g2
c g2

W

a −8C2(RW ) + 4C(G)W −8C2(Rc) −8C2(Rc) + 4C(G)c −8C2(RW )

b+c 2C2(RW ) 2C2(Rc) 2C2(Rc) 2C2(RW )

d −2C(G)W - −2C(G)c -

e+f −2C(G)W - −2C(G)c -

g 2C2(RW )− C(G)W 2C2(Rc) 2C2(Rc)− C(G)c 2C2(RW )

h+i C2(RW ) C2(Rc) C2(Rc) C2(RW )

j 2d(Rc) T (RW ) - 2d(RW ) T (Rc) -

Table B.1: The contribution of each diagram to the beta-function.

and SU(N)c can be computed in a straightforward manner. The results of these

calculations are given in Table B.1.

Therefore, by summing all the contributions from Table B.1, the one-loop beta

functions can be written as:

βsW =(−3C2(RW )− C(G)W + 2d(Rc) T (RW ))g2
W − 3C2(Rc)g

2
c , (B.1.8)

βsc =(−3C2(Rc)− C(G)c + 2d(RW ) T (Rc))g
2
c − 3C2(RW )g2

W . (B.1.9)

B.2 SU(3)W GHU model with bulk triplet

In this section let us consider the case where NW = Nc = 3 and also RW = Rc = 3.

Therefore, in this scenario, C(G) = 3, C2(R) = 4/3 and T (R) = 1/2, and we find

βW = βc =− 17

2
g2
W/c (B.2.1)

βsW = βsc =− 4g2
W − 4g2

c . (B.2.2)

To compute the running of the SM gauge couplings and Yukawas, which are embed-

ded in SU(3)W, we can use the formulas developed in the previous section. However,

we assign different values to the gauge couplings depending on the generator they are

associated to. The rules are straightforward for the fermions, where the coupling is

g2 for the 3 generators in SU(2), g1 = g′/
√

3 for the generator of U(1), and gy =
√

2y

for the generators belonging to the doublet. The coupling y will be associated to

the Yukawa (for the bottom, in this specific toy model).

However, an ambiguity arises when considering the scalar couplings. As we are

interested in the running of the coupling of the doublet, the relevant vertices will
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always contain 2 doublets (either 2 scalars or one scalar and one vector) and one in

the SU(2)×U(2) group (either vector or scalar). There are two useful choices:

A) Assign the coupling following the generator associated to the vector in the

vertex. This choice allows for a nice limit: the contribution of the first 4

diagrams can be associated to the SM contribution to the running of the SM

Yukawa, while the last 3 diagrams to the Yukawa contribution to the running

of the Yukawa itself. This fact allows us to cross check the calculation against

the SM results.

B) Assign the coupling to the generators in SU(2) or U(1), i.e. always to the SM

gauge coupling. This choice is more physical: In fact, in models where there

are more than one coupling of the doublet to the fermions (like in the case

RW = 6), there is an ambiguity to what Yukawa to use in the scalar couplings.

Thus, this choice is the most physically motivated one.

Thus, choice A will be used as a check, choice B for the physical results.

B.2.1 Choice A.

The beta functions for the couplings of the doublet scalar (i.e. a bottom-like Yukawa)

can be extracted by the general formulas by choosing the external generator aligned

with the doublet. The results with coupling assignment A are summarised in Ta-

ble B.2. In bold we indicate the numbers that match to the SM calculation of the

bottom Yukawa coupling.

diagram g′2 g2
2 g2

c y2 g′y g2y

a 4/9 −32/3

b+c 5/36 3/4 8/3 3

d −1/2 −3/2 −6

e+f −1/2 −3/2 −
√

6/2 −3
√

2

g −1/9 8/3

h+i 5/72 3/8 4/3 3/2

j 6

tot −11/24 −15/8 −4 9/2 −
√

6/2 −3/
√

2

Table B.2: Coefficients of the beta-function in case A. In bold are the values corre-

sponding to SM values (for diagram j an extra factor of 1/2 should be taken as the

SM is chiral).

Therefore,

βy(SM) = − 5

12
g′

2 − 9

4
g2

2 − 8g2
c +

9

2
y2 . (B.2.3)
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B.2.2 Choice B.

The results with coupling assignment B are summarised in Table B.3.

diagram g′2 g2
2 g2

c y2

a 4/9 −32/3

b+c 5/36 3/4 8/3 3

d −1 −3

e+f −1 −3

g −1/9 8/3

h+i 5/72 3/8 4/3 3/2

j 6

tot −35/24 −39/8 −4 21/2

Table B.3: Coefficients of the beta-function in case B.

Therefore,

βy(KK) = −35

24
g′

2 − 39

8
g2

2 − 4g2
c +

21

2
y2 . (B.2.4)

B.3 SU(3)W GHU model with bulk sextet

Consider NW = Nc = 3 with Rc = 3 and RW = 6̄. In this case the group factors

that need to be changed are: C2(RW ) = 10/3 and T (RW ) = 5/2. Therefore we find:

βW =− 1

2
g2
W , (B.3.1)

βc =− 13

2
g2
c , (B.3.2)

βsW =2g2
W − 4g2

c , (B.3.3)

βsc =− g2
c − 10g2

W . (B.3.4)

In this model there are 2 couplings of the Higgs doublets to the components of the

sextet:

6̄SU(3)W = 3−1/3 ⊕ 21/6 ⊕ 12/3 . (B.3.5)

If we denote ψi (i = 1, 2, 3) with the singlet, doublet and triplet respectively, the

gauge scalar transforming as a doublet (Higgs) couples to the following combinations

of fermions:

− gHψ̄1ψ2 −
g√
2
Hψ̄2ψ3 + h.c. = −yt Hψ̄1ψ2 − yT Hψ̄2ψ3 + h.c. (B.3.6)
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where yt will play the role of the top Yukawa coupling. Note also that yt = g and

yT = g/
√

2 at unification.

As there are two couplings of the scalar to fermions, the coupling assignment A

defined in section B.2 is not physical in this case, but simply allows us to calculate

the SM running of the couplings yt and yT .

Note also that the bulk sextet will have a massless chiral colour triplet: to give it

mass and to cancel gauge anomalies, where an opposite chirality partner will need

to be added to one of the extra-dimension boundaries and coupled to give it a mass

MT . Thus the SM running of the gauge couplings when MT < mKK , is modified

by:

δβg′ =
4

3
, δβg2 = 8 , δβgc = 2 . (B.3.7)

Putting all this together, the beta functions for the SM gauge couplings below and

above MT are given by:

βg′ =

{
41/6

49/6
, βg2 =

{
−19/6

29/6
, βgc =

{
−7

−5
. (B.3.8)

B.3.1 Choice A.

The coefficients, relative to the SM running of the two Yukawa couplings are reported

in Table B.4 (we omitted the coefficients that are not physical). Thus the running

of the two Yukawas below the first KK threshold follow is:

βyt(SM + T ) =− 17

12
g′

2 − 9

4
g2

2 − 8g2
c +

9

2
y2
t +

33

2
y2
T , (B.3.9)

βyT (SM + T ) =− 5

12
g′

2 − 33

4
g2

2 − 8g2
c +

11

2
y2
t +

23

2
y2
T . (B.3.10)

These equations are valid down to MT , below which one can integrate out the triplet

and the running goes back to the SM:

βyt(SM) =− 17

12
g′

2 − 9

4
g2

2 − 8g2
c +

9

2
y2
t . (B.3.11)

B.3.2 Choice B.

The results with coupling assignment B are summarised in Table B.5. They con-

tribute to the running above the first KK threshold.

βyt(KK) =− 47

24
g′

2 − 39

8
g2

2 − 4g2
c +

21

2
y2
t +

9

2
y2
T , (B.3.12)

βyT (KK) =− 35

24
g′

2 − 63

8
g2

2 − 4g2
c +

3

2
y2
t +

51

2
y2
T . (B.3.13)
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running of yt g′2 g2
2 g2

c y2
t y2

T

a −8/9 −32/3

b+c 17/36 3/4 8/3

d −1/2 −3/2

e+f −1/2 −3/2

g 6

h+i 3/2 3/2

j 3 9

tot −17/12 −9/4 −8 9/2 33/2

running of yT g′2 g2
2 g2

c y2
t y2

T

a 4/9 −8 −32/3

b+c 5/36 11/4 8/3

d −1/2 −3/2

e+f −1/2 −3/2

g 2

h+i 1/2 5/2

j 3 9

tot −5/12 −33/4 −8 11/2 23/2

Table B.4: Coefficients of the beta-function in case A, keeping only the values cor-

responding to SM running below mKK (for diagram j, an extra factor of 1/2 should

be taken as the SM is chiral).
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running yt g′2 g2
2 g2

c y2
t y2

T

a −8/9 −32/3 −24

b+c 17/36 3/4 8/3 3 3

d −1 −3

e+f −1 −3

g 2/9 8/3 6

h+i 17/72 3/8 4/3 3/2 3/2

j 6 18

tot −47/24 −39/8 −4 21/2 9/2

running yT g′2 g2
2 g2

c y2

a 4/9 −8 −32/3 −8

b+c 5/36 11/4 8/3 1 5

d −1 −3

e+f −1 −3

g −1/9 2 8/3 2

h+i 5/72 11/8 4/3 1/2 5/2

j 6 18

tot −35/24 −63/8 −4 3/2 51/2

Table B.5: Coefficients of the beta-functions for yt and yT in case B.



Appendix C
Some calculations for one-loop

β-functions

We present in this appendix some examples of the one - loop calculation for the top

Yukawa couplings for an SU(3) gauge group.

Our fields in the GHU models have KK modes, and they contribute to the RGEs

at the energy scale E = 1/R. Up to this scale the evolution is logarithmic and is

controlled by the evolution of the SM. The contributions of the KK states should

be take into account beyond this state.

When we calculate the renormalisation constants, we usually ignore the mass terms

in the propagators, since they have nothing to do with the divergent part of the

one - loop diagrams. We therefore focus on the UV regime, where we can neglect the

m/µ dependence of β. We use the dimensional regularisation scheme, in order to

calculate the contribution from Figure C.1.(a):

Πµ ν
1 (p, k) =

∫
dDk

(2π)D
y2
t Tr

[
T a T b

]
Tr

[
γ5 (p+ k)µ γ

µ γ5 kνγ
ν

(p+ k)2 k2

]
= −y2

t Tr
[
T a T b

] ∫ dDk

(2π)D
(p+ k)µ kν Tr [γµ γν ] . (C.0.1)

By using the relations Tr
[
T a T b

]
= δa bC(f)nf , and Tr [γµ γν ] = Dgµ ν , the above

integral can be written as:

Πµ ν
1 (p, k) = −y2

t δ
a bC(f)nf D

∫
dDk

(2π)D
1

k2
, (C.0.2)

where nf is the number of generations, and C(f) refers to the fermion contributions.

By multiplying the above integral by (q + k)2/(q + k)2, we get:

Πµ ν
1 (p, k) = −y2

t δ
a bC(f)nf D

∫
dDk

(2π)D
(q + k)2

k2 (q + k)2
. (C.0.3)
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(a) (b)

(c) (d)

Figure C.1: Contributions to the top Yukawa coupling’s RGEs in GHU models in

the Landau gauge. The solid lines correspond to the top quarks, the broken lines

correspond to A5, the wavy lines correspond to the ordinary gauge bosons, while the

wavy lines with a line through them correspond to the higher mode components of

gauge bosons.

Using the Feynman parametrisation

1

AB
=

∫ 1

0
d x

1

[B + (A − B)x]2
, (C.0.4)

we get

Π1 = −y2
t δ

a bC(f)nf D

∫
dDk

(2π)D

∫ 1

0
dx

(q + k)2

[k2 + (q2 + 2 q k)x]2
. (C.0.5)

Now let us introduce a new variable l = k + q x. Thus

Π1 = −y2
t δ

a bC(f)nf D

∫ 1

0
d x

∫
dDl

(2π)D

(
l2 + q2 (1 − x)2

)
[l2 + q2 x(1 − x)]2

. (C.0.6)

Using the following standard integrals:∫
dD l

l2

[l2 + q2 x(1 − x)]2
=

i πD/2 Γ(1 − D/2)D

2 [q2 x (1 − x)](1−D/2)
, (C.0.7)

and ∫
dD l

1

[l2 + q2 x(1 − x)]2
=

i πD/2 Γ(2 − D/2)

[q2 x (1 − x)](2−D/2)
, (C.0.8)
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Equation (C.0.6) become:

Π1 = −y2
t δ

a bC(f)nf D

∫ 1

0

d x

(2π)D

[
i πD/2 Γ(1 − D/2)D

2 [q2 x (1 − x)](1−D/2)

+
i q2 (1 − x)2 πD/2 Γ(2 − D/2)

[q2 x (1 − x)](2−D/2)

]
. (C.0.9)

By integrating over x and substituting D = 4 − ε, we get:

Π1 = −i y2
t δ

a b 4

3
C(f)nf P

2 1

ε

1

16π2
. (C.0.10)

Again, let us use the dimensional regularisation scheme, to calculate the contribution

from Figure C.1.(b). Using the same technique to calculate the contributions of

Figure C.1.(c) and (d):

Π2 = 2 yt g
2
[
T a T b T c

] ∫ dDp

(2π)D

[
γ5 i

6p + 6k
γν

i

6p − 6k
γµ
][

−i gµν
p2 −

(
n
R

)2
]

= 2 i yt g
2
[
T a T b T c

]
γ5

∫
dD p

(2π)D

 (6p + 6k) γν ( 6p − 6k) γµ gµν

(p + k)2 (p − k)2
(
p2 −

(
n
R

)2)
 .

(C.0.11)

By using the relation T a T b T c =
[
C(f) − 1

2 C2(G)
]
T a, where C(f) and C2(G)

refer to fermion and the gauge bosons respectively, Equation (C.0.11) can be written

as:

Π2 = 2

[
C(f) − 1

2
C2(G)

]
T a yt g

2

∫
dDp

(2π)D

 i γ5 (6p + 6k) γν (6p − 6k) γµ gµν

(p + k)2 (p − k)2
(
p2 −

(
n
R

)2)
 .

(C.0.12)

Let us simplify the following term:

γ5 ( 6p + 6k) γν ( 6p − 6k) γµ gµν = −γ5 (p + k)ρ (p − k)σ γ
ν γρ γσ γν , (C.0.13)

where

γν γρ γσ γν = 4 gρσ . (C.0.14)

Then, we can rewrite Equation (C.0.13) as follows:

γ5 ( 6p + 6k) γν ( 6p − 6k) γµ gµν = −4γ5 pρ pσ g
ρσ + linear term in p . (C.0.15)

Replacing pρ pσ by (p2 gρσ/D),

γ5 ( 6p + 6k) γν (6p − 6k) γµ gµν = −4 γ5 p2, (C.0.16)
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and the linear term in pµ vanishes (because of the angular integral). We can then

rewrite Equation (C.0.12) as follows:

Π2 = −8 i

[
C(f) − 1

2
C2(G)

]
γ5 T a yt g

2

∫
dDp

(2π)D
p2[

(p2)2
(
p2 −

(
n
R

)2)] ,
(C.0.17)

by expanding
1

p2 −
(
n
R

)2 for p2 �
( n
R

)2
. This will lead to:

1

p2 −
(
n
R

)2 ' 1

p2
+

(n/R)2

p4
+ O (p−6) , (C.0.18)

and by using this approximation, one can rewrite Equation (C.0.17) as:

Π2 = −8 i

[
C(f) − 1

2
C2(G)

]
γ5 T a yt g

2

∫
dDp

(2π)D

[
1

(p2)2 +
(n/R)2

(p2)3

]
= −8 i2

[
C(f) − 1

2
C2(G)

]
γ5 T a yt g

2 π
D/2

(2π)D

[
Γ

(
2 − D

2

)

+
( n
R

)2 1

2
Γ

(
3 − D

2

)]
. (C.0.19)

Now by using the fact that xΓ(x) = Γ(1 + x)

Π2 = −8 i

[
C(f) − 1

2
C2(G)

]
γ5 T a yt g

2

∫
dDp

(2π)D

[
1

(p2)2 +
(n/R)2

(p2)3

]
= −8 i2

[
C(f) − 1

2
C2(G)

]
γ5 T a yt g

2 π
D/2

(2π)D
Γ

(
2 − D

2

)
×

[
1 +

( n
R

)2 1

2

(
2 − D

2

)]
. (C.0.20)

Let us define ε = 4−D, having cancelled out the singular term, we may let ε → 0,

and the finite renormalised result will be:

Π2 = 8

[
C(f) − 1

2
C2(G)

]
γ5 T a yt g

2 1

16π2

2

ε
. (C.0.21)

Thus

Z1 = 1 − 8

[
C(f) − 1

2
C2(G)

]
γ5 T a yt g

2 1

16π2

2

ε
µε/2, (C.0.22)

where µ is an arbitrary quantity called the renormalisation scale, then

− µ ∂

∂ µ
Z1 = 8

[
C(f) − 1

2
C2(G)

]
γ5 T a yt g

2 1

16π2
. (C.0.23)



Appendix D
Full expression for the decay widths

and cross-section

In this appendix we will determine the decay widths of Z ′ → χχ̄, f f̄ and the cross-

sections for the spin-3/2 DM annihilation into SM fermions χχ̄→ ff̄ .

D.1 Decay widths

The squared matrix element for the mediator Z ′µ decay into χχ̄ and into ff̄ in the

limit when s → m2
Z′ are given by:

|M(Z ′ → χχ̄)|2 =
1

9m4
χ

[
16m6

χ

(
10
(
gAχ
)2 − 9

(
gVχ
)2)

+ 8m4
χm

2
Z′

×
((
gVχ
)2 − 13

(
gAχ
)2)

+ 8m2
χm

4
Z′

(
4
(
gAχ
)2

+
(
gVχ
)2)

− 4m6
Z′

((
gAχ
)2

+
(
gVχ
)2)]

, (D.1.1)

and

|M(Z ′ → ff̄)|2 =
[
8m2

f

(
2
(
gAf
)2 − (gVf )2)− 4m2

Z′

((
gAf
)2

+
(
gVf
)2)]

.

(D.1.2)

Therefore, the decay widths for the mediator Z ′µ decay into χχ̄ and into ff̄ are given

by:

Γ(Z ′ → χχ̄) =
1

108πm4
χmZ′

√
1−

4m2
χ

m2
Z′

[ (
gAχ
)2 (−40m6

χ + 26m4
χm

2
Z′ − 8m2

χm
4
Z′ +m6

Z′
)

+
(
gVχ
)2 (

36m6
χ − 2m4

χm
2
Z′ − 2m2

χm
4
Z′ +m6

Z′
) ]
, (D.1.3)
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and

Γ(Z ′ → ff̄) =
1

12πmZ′

√
1−

4m2
f

m2
Z′

[
2m2

f

((
gVf
)2 − 2

(
gAf
)2)

+m2
Z′

((
gAf
)2

+
(
gVf
)2)]

.

(D.1.4)

D.2 Cross-section

From the Feynman diagram in Figure D.1 we have the amplitude is given as follows

iM =
{
v̄αχ(p2)γµ

(
gVχ − γ5 gAχ

)
uαχ(p1)

}[
−gµν +

pµ pν
m2
Z′

]
×
{
ūβf (p3)γν

(
gVf − γ5 gAf

)
vβf (p4)

}
. (D.2.1)

Therefore, we have

|M|2 =
{
v̄αχ(p2)γµ

(
gVχ − γ5 gAχ

)
uαχ(p1)

} [
−gµν +

pµ pν
m2
Z′

]
×
{
ūβf (p3)γν

(
gVf − γ5 gAf

)
vβf (p4)

}
×
{
v̄bf (p4)γν

′ (
gVf − γ5 gAf

)
ubf (p3)

}[
−gµ′ν′ +

pµ′ pν′

m2
Z′

]
×
{
ūaχ(p1)γµ

′ (
gVχ − γ5 gAχ

)
vaχ(p2)

}
. (D.2.2)

Thus, we have the spin-3/2 polarisation sums are given as:

3/2∑
i=−3/2

uiµ(p)ūiν(p) = −(6p+mχ)
[
gµν −

1

3
γµγν −

2

3m2
χ

6pµ 6pν −
1

3mχ
(γµpν − γνpµ)

]
,

(D.2.3)
3/2∑

i=−3/2

viµ(p)v̄iν(p) = −(6p−mχ)
[
gµν −

1

3
γµγν −

2

3m2
χ

6pµ 6pν +
1

3mχ
(γµpν − γνpµ)

]
.

(D.2.4)

Figure D.1: The Feynman diagram for the spin-3/2 DM annihilation into SM

fermions χχ̄→ Z ′ → ff̄ .
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For the fermion the polarisation sums are given as:

1/2∑
i=−1/2

uif (p)ūif (p) = 6p + mf ;

1/2∑
i=−1/2

vif (p)v̄if (p) = 6p − mf . (D.2.5)

The squared matrix element for the spin-3/2 DM annihilating into SM fermions are

given by

|M
(
χχ̄ → ff̄

)
|2 =

1

27m4
χm

4
Z′
(
m4
Z′ + m2

Z′ (Γ2 − 2 s) + s2
)

× 32

[ (
gAf
)2{(

gAχ
)2{

4m2
f

((
10m6

χ

(
7m4

Z′ − 6m2
Z′ s + 3 s2

))
− 2m4

χ s
(
16m4

Z′ − 6m2
Z′ s + 3 s2

)
− m4

Z′ s
3

+ m2
χ s

2
(
11m4

Z′ − 6m2
Z′ s + 3 s2

))
+ m4

Z′ s

×

(
− 40m6

χ + 26m4
χ s − 8m2

χ s
2 + s3

)}
−
(
gVχ
)2
m4
Z′

×
(
4m2

f − s
) (

36m6
χ − 2m4

χ s − 2m2
χ s

2 + s3
)}

+
(
gVf
)2
m4
Z′
(
2m2

f + s
){ (

gAχ
)2(− 40m6

χ + 26m4
χ s

− 8m2
χ s

2 + s3

)
+
(
gVχ
)2(

36m6
χ − 2m4

χ s − 2m2
χ s

2 + s3

)}]
.

(D.2.6)

The full expressions of the annihilation cross-section of spin-3/2 DM into SM fermions,

in the non-relativistic approximation (s w 4m2
χ + m2

χ v
2) are given by the following

expression:

〈σ(χχ̄→ ff̄)v〉 =
∑
f

Nf

 mχ

√
1− 4m2

f

m2
χ(v2+4)

432πm4
Z′

√
m2
χ (v2 + 4)


[

1(
m2
Z′ −m2

χ (v2 + 4)
)2

+ Γ2m2
Z′

]

×
[
(gAf )2

{
(gAχ )2

{
4m2

f

{
3m4

χ(v2 + 4)2(v4 + 6v2 + 18)

− 6m2
χm

2
Z′(v

2 + 4)(v4 + 6v2 + 18) − m4
Z′(v

6 + v4 − 8v2 − 54)
}

+ m2
χm

4
Z′v

2(v2 + 4)(v4 + 4v2 + 10)
}

+ (gVχ )2m4
Z′(v

6 + 10v4 + 30v2 + 60)(m2
χ(v2 + 4)− 4m2

f )
}

+ (gVf )2m4
Z′

{
(gAχ )2v2(v4 + 4v2 + 10)

+ (gVχ )2(v6 + 10v4 + 30v2 + 60)
}

(2m2
f +m2

χ(v2 + 4))
]
.

(D.2.7)
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The expressions for a and b are given by:

a =
2

√
1− m2

f

m2
χ

9πm4
Z′

((
m2
Z′ − 4m2

χ

)2
+ Γ2m2

Z′

)[9(gAf )2(gAχ )2m2
f

(
m2
Z′ − 4m2

χ

)2
+ 10(gVχ )2(gAf )2m4

Z′
(
m2
χ −m2

f

)
+ 5(gVf )2(gVχ )2m4

Z′
(
m2
f + 2m2

χ

) ]
, (D.2.8)

and

b =
1

108πm2
χm

4
Z′

√
1− m2

f

m2
χ

((
m2
Z′ − 4m2

χ

)2
+ Γ2m2

Z′

)2

×

[
(gAf )2

{
(gAχ )2

{(
m2
Z′ − 4m2

χ

)2
×

{
m4
f

(
−288m4

χ + 144m2
χm

2
Z′ + 22m4

Z′
)

+ 5m2
fm

2
χ

×
(
12m2

χ − 7m2
Z′
) (

12m2
χ +m2

Z′
)

+ 40m4
χm

4
Z′

}

+ Γ2m2
Z′

{
m4
f

(
−2016m4

χ + 576m2
χm

2
Z′ + 22m4

Z′
)

+ m2
f

(
2448m6

χ − 792m4
χm

2
Z′ − 35m2

χm
4
Z′
)

+ 40m4
χm

4
Z′

}}
+ 30(gVχ )2m4

Z′(mχ −mf )(mf +mχ)

×

{
m2
f

(
32m4

χ − 2m2
Z′
(
Γ2 +m2

Z′
))

+ m2
χ

(
16m4

χ − 24m2
χm

2
Z′ + 5m2

Z′
(
Γ2 +m2

Z′
))}}

− 5(gVf )2m4
Z′

{
4(gAχ )2

(
m4
f +m2

fm
2
χ − 2m4

χ

)
×
((
m2
Z′ − 4m2

χ

)2
+ Γ2m2

Z′

)
+ 3(gVχ )2

{
Γ2m2

Z′

×
(
2m4

f + 5m2
fm

2
χ − 10m4

χ

)
−
(
4m2

χ −m2
Z′
)

×

{
8m4

fm
2
χ − 4m2

fm
4
χ +m2

Z′
(
2m4

f + 5m2
fm

2
χ − 10m4

χ

)
+ 8m6

χ

}}}]
. (D.2.9)



Appendix E
The thermal cross-section for

χ S → u g

In this appendix we will derive the annihilation thermal cross section in the case

where the mediator mass is approaching the DM mass. For example, we will take

only the case when the mediator is a scalar χ(p1) S(p2) → u(p3) g(p4), with p2
1 =

m2
χ, p2

2 = m2
S, p2

3 = 0, p2
4 = 0, s = (p1 + p2)2 and t = (p1 − p3)2. Actually the

contributions largely come from six diagrams, and have the following propagators
1(

t − m2
S

)2 ,
1(

t − m2
S

) ,
1(

t − m2
S

)
s

,
1

s2
,

1

s
, 1. In the propagators we replace s and

t by their non-relativistic approximations, namely,

s ' (mχ + mS)2 , t ' − (mχmS) , (E.0.1)

such that

t − m2
S ' −mS (mχ + mS) . (E.0.2)

In which case we can express the differential cross-section as:

d σ

d cos θ
=

(
1

3

)(
1

4

) (
1

32π

) ( ∑
|M|2 d cos θ

λ1/2
(
s, m2

χ, m
2
S

)) , (E.0.3)

where

λ1/2
(
s, m2

χ, m
2
S

)
=
[
s2 + m4

χ + m4
S − 2 sm2

χ − 2 sm2
S − 2m2

χm
2
S

]1/2
. (E.0.4)

In the non-relativistic approximation we only keep the terms proportional to v2,

where v is the relative velocity between the DM χ and the mediator S. As such

s =

(
M +

1

2
µ v2

)2

' M2 + µM v2, (E.0.5)
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where M = mχ + mS, and µ = mχmS/ (mχ + mS), by substituting we get

λ1/2
(
s, m2

χ, m
2
S

)
→ 2mχmS v. (E.0.6)

Therefore

〈σ(χS → u g)|v〉 =

(
1

3

)(
1

4

)(
1

32π

)(
1

2mχmS

) ∫ ∑
|M|2 d cos θ. (E.0.7)

We now replace s by s → (mχ + mS)2 in the expression of
∑
|M|2, by neglecting

the terms proportional to v2. Similarly, we can follow the same strategy for the

case of the dimension-4 and dimension-5 vector mediators. Finally, the annihilation

cross-section for the co-annihilation processes χS(V ) → u g in this limit are give

by:

• For the scalar case

〈σ(χS→ u g)|v〉 =

(
gS
χ

)2
g2
s

1728πΛ2m3
S

[
(mS + mχ)

(
13m2

S + 42mSmχ + 27m2
χ

) ]
.

(E.0.8)

• For the 5-dimension vector case

〈σ(χV→ u g)|v〉 =

(
gV
χ

)2
g2
s

497664πΛ2m5
V (mV + mχ)

[
307m6

V + 5222m5
V mχ + 372m6

χ

+ 7072m4
V m

2
χ + 8742m3

V m
3
χ + 6537m2

V m
4
χ + 2724mV m

5
χ

]
.

(E.0.9)

• Finally, the 4-dimension vector case

〈σ(χV→ u g)|v〉 =

(
cV
χ

)2
g2
s

165888πm7
V (mV + mχ)

[
319m6

V + 2452m5
V mχ + 1164m6

χ

+ 8242m4
V m

2
χ + 12568m3

V m
3
χ + 11403m2

V m
4
χ + 5628mV m

5
χ

]
.

(E.0.10)
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HM and Bai, X and Bailey, AJ and Balajthy, J and Balashov, S and Barry,

MJ and others, “LUX-ZEPLIN (LZ) conceptual design report,” arXiv preprint

arXiv:1509.02910, 2015.



REFERENCES Page 112

[23] E. Aprile et al., “Physics reach of the XENON1T dark matter experiment,”

JCAP, vol. 1604, no. 04, p. 027, 2016.

[24] A. Tan et al., “Dark Matter Results from First 98.7 Days of Data from the

PandaX-II Experiment,” Phys. Rev. Lett., vol. 117, no. 12, p. 121303, 2016.

[25] D. S. Akerib et al., “Results from a search for dark matter in the complete

LUX exposure,” Phys. Rev. Lett., vol. 118, no. 2, p. 021303, 2017.

[26] Z.-H. Yu, J.-M. Zheng, X.-J. Bi, Z. Li, D.-X. Yao, and H.-H. Zhang, “Con-

straining the interaction strength between dark matter and visible matter: II.

scalar, vector and spin-3/2 dark matter,” Nucl. Phys., vol. B860, pp. 115–151,

2012.

[27] R. Ding and Y. Liao, “Spin 3/2 Particle as a Dark Matter Candidate: an

Effective Field Theory Approach,” JHEP, vol. 04, p. 054, 2012.

[28] R. Ding, Y. Liao, J.-Y. Liu, and K. Wang, “Comprehensive Constraints on

a Spin-3/2 Singlet Particle as a Dark Matter Candidate,” JCAP, vol. 1305,

p. 028, 2013.

[29] K. G. Savvidy and J. D. Vergados, “Direct dark matter detection: A spin 3/2

WIMP candidate,” Phys. Rev., vol. D87, no. 7, p. 075013, 2013.

[30] S. Dutta, A. Goyal, and S. Kumar, “Anomalous X-ray galactic signal from 7.1

keV spin-3/2 dark matter decay,” JCAP, vol. 1602, no. 02, p. 016, 2016.

[31] C.-F. Chang, X.-G. He, and J. Tandean, “Exploring Spin-3/2 Dark Matter

with Effective Higgs Couplings,” Phys. Rev., vol. D96, no. 7, p. 075026, 2017.

[32] Donoghue, John F. and Golowich, Eugene and Holstein, Barry R, Dynamics

of the standard model, vol. 35. Cambridge university press, 2014.

[33] S. Weinberg, “Elementary particle theory of composite particles,” Phys. Rev.,

vol. 130, pp. 776–783, 1963.

[34] S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett., vol. 40, pp. 223–226,

1978.

[35] Shifman, Mikhail A. and Vainshtein, Arkady I. and Zakharov, Valentin I.,

“QCD and resonance physics. Theoretical foundations,” Nuclear Physics B,

vol. 147, no. 5, pp. 385–447, 1979.

[36] S. L. Glashow, “Partial Symmetries of Weak Interactions,” Nucl. Phys.,

vol. 22, pp. 579–588, 1961.



REFERENCES Page 113

[37] S. Weinberg, “A. Salam Phys. Rev. Letters, 19 (1967),” in Proc. 8th Nobel

Symp.: Elementary Particle Theory, Almqvist and Wiksell, Stockholm, p. 1264,

1968.

[38] S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett., vol. 19, pp. 1264–1266,

1967.

[39] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector

Mesons,” Phys. Rev. Lett., vol. 13, pp. 321–323, 1964.

[40] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global Conservation Laws

and Massless Particles,” Phys. Rev. Lett., vol. 13, pp. 585–587, 1964.

[41] Goldstone, J. and Salam, Abdus and Weinberg, Steven, “Broken symmetries,”

Physical Review, vol. 127, no. 3, p. 965, 1962.

[42] Goldstone, J., “Nuovo Cim. 19 (1961) 154; J. Goldstone, A. Salam and S.

Weinberg,” Phys. Rev, vol. 127, no. 965, p. 2, 1962.

[43] Goldstone, J., “Nuovo Cim. 19 (1961), 154. Y. Nambu and G. Jona-Lasinio,”

Phys. Rev, vol. 122, no. 345, p. 124, 1961.

[44] Higgs, P. W., “Phys. Letters 12 (1964) 132,” Phys. Rev. Letters, vol. 13,

no. 508, p. 1174, 1964.

[45] Higgs, P. W., “Broken symmetries, massless particles and gauge fields,”

Physics Letters, vol. 12, no. 2, pp. 132–133, 1964.
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[54] C. Csáki and P. Tanedo, “Beyond the Standard Model,” in Proceedings, 2013

European School of High-Energy Physics (ESHEP 2013): Paradfurdo, Hun-

gary, June 5-18, 2013, pp. 169–268, 2015.

[55] West, Peter, Introduction to supersymmetry and supergravity. World Scientific

Publishing Co Inc, 1990.

[56] A. Masiero, S. K. Vempati, and O. Vives, “Flavour physics and grand unifi-

cation,” in Particle physics beyond the standard model. Proceedings, Summer

School on Theoretical Physics, 84th Session, Les Houches, France, August 1-

26, 2005, pp. 1–78, 2005.

[57] S. F. King, A. Merle, S. Morisi, Y. Shimizu, and M. Tanimoto, “Neutrino Mass

and Mixing: from Theory to Experiment,” New J. Phys., vol. 16, p. 045018,

2014.

[58] M. Trodden, “Electroweak baryogenesis: A Brief review,” in Proceedings, 33rd

Rencontres de Moriond 98 electrowek interactions and unified theories: Les

Arcs, France, Mar 14-21, 1998, pp. 471–480, 1998.

[59] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P.

Silva, “Theory and phenomenology of two-Higgs-doublet models,” Phys. Rept.,

vol. 516, pp. 1–102, 2012.

[60] K. R. Dienes, E. Dudas, and T. Gherghetta, “Extra space-time dimensions

and unification,” Phys. Lett., vol. B436, pp. 55–65, 1998.

[61] Bertolini, Matteo, “Lectures on supersymmetry,” Lecture notes given at

SISSA, 2015.

[62] K. R. Dienes, E. Dudas, and T. Gherghetta, “Grand unification at intermedi-

ate mass scales through extra dimensions,” Nucl. Phys., vol. B537, pp. 47–108,

1999.



REFERENCES Page 115

[63] M. Blennow, H. Melbeus, T. Ohlsson, and H. Zhang, “RG running in a minimal

UED model in light of recent LHC Higgs mass bounds,” Phys. Lett., vol. B712,

pp. 419–424, 2012.

[64] M. O. Khojali, A. Goyal, M. Kumar, and A. S. Cornell, “Minimal Spin-3/2

Dark Matter in a simple s-channel model,” Eur. Phys. J., vol. C77, no. 1,

p. 25, 2017.

[65] Khojali, Mohammed Omer and Goyal, Ashok and Kumar, Mukesh and Cor-

nell, Alan S, “Spin-3/2 Dark Matter in a simple t-channel model,” arXiv

preprint arXiv:1705.05149, 2017.

[66] A. Cordero-Cid, H. Novales-Sanchez, and J. J. Toscano, “The Standard Model

with one universal extra dimension,” Pramana, vol. 80, pp. 369–412, 2013.

[67] A. Zee, “Study of the renormalization group for small coupling constants,”

Phys. Rev., vol. D7, pp. 3630–3636, 1973.

[68] A. A. Vladimirov, “Renormalization Group Equations in Different Ap-

proaches,” Theor. Math. Phys., vol. 25, p. 1170, 1976. [Teor. Mat.

Fiz.25,335(1975)].

[69] H. D. Politzer, “Reliable Perturbative Results for Strong Interactions?,” Phys.

Rev. Lett., vol. 30, pp. 1346–1349, 1973.

[70] N. N. Bogolyubov and D. V. Shirkov, “INTRODUCTION TO THE THEORY

OF QUANTIZED FIELDS,” Intersci. Monogr. Phys. Astron., vol. 3, pp. 1–

720, 1959.

[71] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory.

Reading, USA: Addison-Wesley, 1995.

[72] T. P. Cheng, E. Eichten, and L.-F. Li, “Higgs Phenomena in Asymptotically

Free Gauge Theories,” Phys. Rev., vol. D9, p. 2259, 1974.

[73] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equa-

tions in a General Quantum Field Theory (II). Yukawa Couplings,” Nucl.

Phys., vol. B236, pp. 221–232, 1984.

[74] L. Randall and M. D. Schwartz, “Quantum field theory and unification in

AdS5,” JHEP, vol. 11, p. 003, 2001.

[75] H. Georgi and S. L. Glashow, “Unity of All Elementary Particle Forces,” Phys.

Rev. Lett., vol. 32, pp. 438–441, 1974.



REFERENCES Page 116

[76] E. Byckling and K. Kajantie, “Kinematic separation of three-particle channels

in counter experiments,” Nucl. Phys., vol. B14, pp. 355–365, 1969.

[77] Maggiore, Michele, A modern introduction to quantum field theory, vol. 12.

Oxford University Press, 2005.

[78] O. F. Piattella, “Lecture Notes in Cosmology,” 2018.

[79] P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles: Improved

analysis,” Nucl. Phys., vol. B360, pp. 145–179, 1991.

[80] P. S. Bhupal Dev, A. Mazumdar, and S. Qutub, “Constraining Non-thermal

and Thermal properties of Dark Matter,” Front.in Phys., vol. 2, p. 26, 2014.

[81] H. Baer, K.-Y. Choi, J. E. Kim, and L. Roszkowski, “Dark matter production

in the early Universe: beyond the thermal WIMP paradigm,” Phys. Rept.,

vol. 555, pp. 1–60, 2015.

[82] J. Beringer et al., “Review of Particle Physics (RPP),” Phys. Rev., vol. D86,

p. 010001, 2012.

[83] W. Buchmuller, R. D. Peccei, and T. Yanagida, “Leptogenesis as the origin of

matter,” Ann. Rev. Nucl. Part. Sci., vol. 55, pp. 311–355, 2005.

[84] A. Abdalgabar, M. O. Khojali, A. S. Cornell, G. Cacciapaglia, and A. De-

andrea, “Unification of gauge and Yukawa couplings,” Phys. Lett., vol. B776,

pp. 231–235, 2018.

[85] I. Antoniadis, “A Possible new dimension at a few TeV,” Phys. Lett., vol. B246,

pp. 377–384, 1990.

[86] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “New di-

mensions at a millimeter to a Fermi and superstrings at a TeV,” Phys. Lett.,

vol. B436, pp. 257–263, 1998.

[87] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “The Hierarchy problem

and new dimensions at a millimeter,” Phys. Lett., vol. B429, pp. 263–272,

1998.

[88] G. Dvali, G. Gabadadze, and M. Shifman, “Diluting cosmological constant in

infinite volume extra dimensions,” Phys. Rev., vol. D67, p. 044020, 2003.

[89] Y. Hosotani, “Dynamical Mass Generation by Compact Extra Dimensions,”

Phys. Lett., vol. 126B, pp. 309–313, 1983.



REFERENCES Page 117

[90] H. Hatanaka, T. Inami, and C. S. Lim, “The Gauge hierarchy problem and

higher dimensional gauge theories,” Mod. Phys. Lett., vol. A13, pp. 2601–2612,

1998.

[91] G. R. Dvali, S. Randjbar-Daemi, and R. Tabbash, “The Origin of sponta-

neous symmetry breaking in theories with large extra dimensions,” Phys. Rev.,

vol. D65, p. 064021, 2002.

[92] A. Masiero, C. A. Scrucca, M. Serone, and L. Silvestrini, “Nonlocal symmetry

breaking in Kaluza-Klein theories,” Phys. Rev. Lett., vol. 87, p. 251601, 2001.

[93] I. Antoniadis, K. Benakli, and M. Quiros, “Finite Higgs mass without super-

symmetry,” New J. Phys., vol. 3, p. 20, 2001.

[94] C. Csaki, C. Grojean, and H. Murayama, “Standard model Higgs from higher

dimensional gauge fields,” Phys. Rev., vol. D67, p. 085012, 2003.

[95] D. Ghilencea and G. G. Ross, “Unification and extra space-time dimensions,”

Phys. Lett., vol. B442, pp. 165–172, 1998.

[96] D. M. Ghilencea, “Regularization techniques for the radiative corrections of

the Kaluza-Klein states,” Phys. Rev., vol. D70, p. 045011, 2004.

[97] T. Varin, J. Welzel, A. Deandrea, and D. Davesne, “Power law in a gauge-

invariant cut-off regularisation,” Phys. Rev., vol. D74, p. 121702, 2006.

[98] C. A. Scrucca, M. Serone, and L. Silvestrini, “Electroweak symmetry breaking

and fermion masses from extra dimensions,” Nucl. Phys., vol. B669, pp. 128–

158, 2003.

[99] N. Yamatsu, “Gauge coupling unification in gauge–Higgs grand unification,”

PTEP, vol. 2016, no. 4, p. 043B02, 2016.

[100] S. Weinberg, “Phenomenological Lagrangians,” Physica, vol. A96, pp. 327–

340, 1979.

[101] A. Manohar and H. Georgi, “Chiral Quarks and the Nonrelativistic Quark

Model,” Nucl. Phys., vol. B234, pp. 189–212, 1984.

[102] A. S. Cornell, A. Deandrea, L.-X. Liu, and A. Tarhini, “Renormalisation run-

ning of masses and mixings in UED models,” Mod. Phys. Lett., vol. A28,

no. 11, p. 1330007, 2013.

[103] H. Gies, “Renormalizability of gauge theories in extra dimensions,” Phys. Rev.,

vol. D68, p. 085015, 2003.



REFERENCES Page 118

[104] T. R. Morris, “Renormalizable extra-dimensional models,” JHEP, vol. 01,

p. 002, 2005.

[105] R. Contino, L. Pilo, R. Rattazzi, and E. Trincherini, “Running and matching

from five-dimensions to four-dimensions,” Nucl. Phys., vol. B622, pp. 227–239,

2002.

[106] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and T. Shimotani, “Novel

universality and Higgs decay H→ γγ, gg in the SO(5)×U(1) gauge-Higgs uni-

fication,” Phys. Lett., vol. B722, pp. 94–99, 2013.

[107] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, and T. Shimotani, “LHC

signals of the SO(5) × U(1) gauge-Higgs unification,” Phys. Rev., vol. D89,

no. 9, p. 095019, 2014.

[108] S. Funatsu, H. Hatanaka, Y. Hosotani, and Y. Orikasa, “Collider signals of

W ′ and Z ′ bosons in the gauge-Higgs unification,” Phys. Rev., vol. D95, no. 3,

p. 035032, 2017.

[109] M. Carena, T. M. P. Tait, and C. E. M. Wagner, “Branes and orbifolds are

opaque,” Acta Phys. Polon., vol. B33, p. 2355, 2002.

[110] G. Cacciapaglia, C. Csaki, and S. C. Park, “Fully radiative electroweak sym-

metry breaking,” JHEP, vol. 03, p. 099, 2006.

[111] R. Contino, Y. Nomura, and A. Pomarol, “Higgs as a holographic pseudo-

Goldstone boson,” Nucl. Phys., vol. B671, pp. 148–174, 2003.

[112] Y. Hosotani and M. Mabe, “Higgs boson mass and electroweak-gravity hierar-

chy from dynamical gauge-Higgs unification in the warped spacetime,” Phys.

Lett., vol. B615, pp. 257–265, 2005.

[113] Y. Grossman and M. Neubert, “Neutrino masses and mixings in nonfactoriz-

able geometry,” Phys. Lett., vol. B474, pp. 361–371, 2000.

[114] M. O. Khojali and A. S. Cornell, “Evolution of Quark Masses and Flavour

Mixings in 5D for an SU(5) gauge group,” in Proceedings, 61th Annual Con-

ference of the South African Institute of Physics (SAIP2016): Cape Town,

South Africa, July 4-8, 2016, pp. 495–500, 2016.

[115] M. O. Khojali, A. S. Cornell, and A. Deandrea, “The evolution of gauge cou-

plings and the Weinberg angle in 5 dimensions for an SU(3) gauge group,” J.

Phys. Conf. Ser., vol. 802, no. 1, p. 012005, 2017.



REFERENCES Page 119

[116] D. Falcone, “Fermion masses and mixings in gauge theories,” Int. J. Mod.

Phys., vol. A17, pp. 3981–4006, 2002.

[117] H. Fritzsch and Z.-z. Xing, “Mass and flavor mixing schemes of quarks and

leptons,” Prog. Part. Nucl. Phys., vol. 45, pp. 1–81, 2000.

[118] Z.-z. Xing, H. Zhang, and S. Zhou, “Updated Values of Running Quark and

Lepton Masses,” Phys. Rev., vol. D77, p. 113016, 2008.

[119] A. S. Cornell, A. Deandrea, L.-X. Liu, and A. Tarhini, “Scaling of the CKM

Matrix in the 5D MSSM,” Phys. Rev., vol. D85, p. 056001, 2012.

[120] P. H. Chankowski and S. Pokorski, “Quantum corrections to neutrino masses

and mixing angles,” Int. J. Mod. Phys., vol. A17, pp. 575–614, 2002.

[121] A. S. Cornell and L.-X. Liu, “Evolution of the CKM Matrix in the Universal

Extra Dimension Model,” Phys. Rev., vol. D83, p. 033005, 2011.

[122] Cabibbo, Nicola, “Unitary symmetry and leptonic decays,” Physical Review

Letters, vol. 10, no. 12, p. 531, 1963.

[123] Kobayashi, Makoto and Maskawa, Toshihide, “CP-violation in the renormal-

izable theory of weak interaction,” Progress of Theoretical Physics, vol. 49,

no. 2, pp. 652–657, 1973.

[124] Chau, Ling-Lie and Keung, Wai-Yee, “Comments on the parametrization of

the Kobayashi-Maskawa matrix,” Physical Review Letters, vol. 53, no. 19,

p. 1802, 1984.

[125] Wolfenstein, Lincoln, “Parametrization of the Kobayashi-Maskawa matrix,”

Physical Review Letters, vol. 51, no. 21, p. 1945, 1983.

[126] Babu, K.S., “Renormalization-Group analysis of the Kobayashi-Maskawa ma-

trix,” Zeitschrift für Physik C Particles and Fields, vol. 35, no. 1, pp. 69–75,

1987.

[127] L.-X. Liu and A. S. Cornell, “Scaling of Yukawa Couplings and Quark Flavor

Mixings in the UED Model,” PoS, vol. KRUGER2010, p. 045, 2010.

[128] M. O. Khojali, A. S. Cornell, A. Deandrea, and G. Cacciapaglia, “Evolution

of the gauge couplings and Weinberg angle in 5-dimensions for an SU(5) and

flipped SU(5) gauge group,” J. Phys. Conf. Ser., vol. 878, no. 1, p. 012024,

2017.



REFERENCES Page 120

[129] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, “Bounds on universal extra

dimensions,” Phys. Rev., vol. D64, p. 035002, 2001.

[130] H.-C. Cheng, K. T. Matchev, and M. Schmaltz, “Radiative corrections to

Kaluza-Klein masses,” Phys. Rev., vol. D66, p. 036005, 2002.
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