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Abstract

In this thesis we discuss various gauge group structures in the gauge-Higgs unifi-
cation models. The first group we considered was a toy SU(3) model, where it is
possible to have the unification of gauge and top Yukawa couplings, which is an at-
tractive feature of gauge-Higgs unification models in extra-dimensions. This feature
is usually considered difficult to obtain based on simple group theory analyses. We
reconsider several minimal toy models calculating the renormalisation group run-
ning at one loop. Our results show that the gauge couplings unify asymptotically
at high energies, and that this may result from the presence of an UV fixed point.
The Yukawa coupling in our toy models is enhanced at low energies, showing that a

genuine unification of gauge and Yukawa couplings may be achieved.

Furthermore, the evolution of the Cabibbo-Kobayashi-Maskawa matrix elements,
the Jarlskog invariant and the quark mixings are derived for the one-loop renor-
malisation group equations in a five-dimensional models for an SU(3) gauge group
compactified on an S!/Zy orbifold. We have assumed that there is a fermion doublet
and two singlets located at the fixed points of the extra dimension, which pointed
to some interesting phenomenology in this toy model. We then explicitly test in a
simplified 5-dimensional model with SU(5), SU(5) x U(1)" and Gg gauge symme-
tries, the evolution of the gauge couplings, by assuming that all the matter fields
are propagating in the bulk, and consider orbifolds based on Abelian discrete groups
which lead to 5-dimensional gauge theories compactified on an S!/Zs. The gauge
couplings evolution is derived at one-loop level and used to test the impact on lower
energy observables, in particular the Weinberg angle. For our numerical calculations
we have assumed that the fundamental scale is not far from the scope of the Large
Hadron Collider, where we choose the compactification radii to be the following
benchmark values: 1TeV, 4TeV, 5TeV, 8 TeV, 10 TeV, 15TeV and 20 TeV.

As these gauge-Higgs unification models can also contain many additional particles,



we sought to use these particles as dark matter (DM) candidates. As many studies
have already been done on various spin DM particles, we chose to focus on the more
exotic spin-3/2 fermionic DM. We have allowed interactions with standard model
fermions through a vector mediator in the s-channel in our first considerations. An
interesting feature of the spin-3/2 nature of the standard model particles is that
there exists a minimum value of the DM mass for a given coupling and mediator
mass, below which the decay width of the mediator exceeds the mediator mass. We
find that for pure vector couplings almost the entire parameter space in DM and
mediator mass is consistent with the observed relic density, and is ruled out by the
direct detection observations through DM-nucleon elastic scattering cross-section. In
contrast, for pure axial-vector coupling, the most stringent constraints are obtained

from mono-jet searches at the Large Hadron Collider.

We have also considered a spin-3/2 fermionic DM particle interacting with the stan-
dard model quarks through the exchange of a charged and coloured scalar or vector
mediator in a simple ¢-channel model. It is found that for the vector mediator case
almost the entire parameter space allowed by the observed relic density is already
ruled out by the direct detection LUX data. There are no such bounds which exist
on the interaction mediated by scalar particles. Monojet + missing energy searches
at the Large Hadron Collider provide the most stringent bounds on the parameters
of the model for this case. The collider bounds put a lower limit on the allowed DM

1mnasses.

These studies have shown a variety of particle phenomenology beyond the standard
model, where such models can be constrained from both collider and astrophysical

data.
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Chapter

(General context and overview

1.1 Introduction

The coming years could represent a new era of unexpected and exciting discoveries
in high energy physics. For one thing, the CERN Large Hadron Collider (LHC)
has been operating for some time and much experimental data has already been
collected [1, 2]. So far, the greatest achievement of the LHC has been the discovery
of the missing building block of the Standard Model (SM), the Higgs particle (or, at
least, a particle which most likely is the SM Higgs particle) [3, 4]. On the other hand,
no direct evidence of new physics beyond the SM has been found, yet. However,
there are many reasons to believe that new physics should in fact show-up at, or
about, the TeV scale [5, 6, 7].

The ways in which new physics may manifest, could be in the more poorly under-
stood regions of the SM. For example, in the Higgs sector, and may lead to a way of
resolving issues of the Higgs vacuum stability. One model to resolve this instability
is with models like Gauge-Higgs Unification (GHU) in extra dimensions. This offers
a very promising solution to the problem of the radiative stability of the electroweak
scale (Higgs mass), by promoting the Higgs boson to a gauge field component, and
then gauge invariance itself can protect the mass term from divergent radiative cor-
rections [3]. Even though the model is an effective theory with a rather low cut-off,
the finiteness of the Higgs potential allows calculability. Furthermore, we know the

Universe to have dark matter (DM), where this is unexplained by the SM [9].

In order to build a successful GHU model, the first requirement is to find a gauge
group that contains SU(2)z,x U(1)y (and optionally the strong SU(3).) and whose
adjoint representation contains a doublet of SU(2) to be identified with the Higgs
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doublet. The group must have rank at least equal to the SM subgroup, which is
2, because the rank cannot be generally reduced by an orbifold breaking. As such,
we shall consider groups of rank 2 or 4. The second step is to normalise the U(1)
gauge coupling so that the candidate Higgs has the correct hypercharge: this fixes
the value of tan 6y at the cut-off scale and allows us to predict the Z mass at low
energies. Finally, we need to make sure that the proper breaking of the unified group
to the SM with a scalar zero mode for the Higgs doublet can be correctly done: this
last step depends crucially on the symmetries of the orbifold compactification. In
Ref. [10] a survey of the rank 2 groups has been done already, showing that in
many cases the value of tan 6y at the cut-off is too far from the low energy value.
However, even though the cut-off of the theory is small, the presence of many Kaluza-
Klein (KK) levels below the cut-off means that the running is not logarithmic as
in 4-dimensions, but starts showing a power law behaviour. Therefore, very large
corrections are expected and one cannot disregard any possibility without studying
the running. In this thesis we debate the minimal SU(3) model with a bulk triplet,
the evolution of quark masses and flavour mixings in 5-dimensions for an SU(3)
gauge group, as well as the evolution of the gauge couplings and Weinberg angle in

5-dimension for an SU(5), flipped SU(5) and Gy gauge group.

Another great problem in the SM is that there are no strong clues to explain DM.
Any new physics beyond the SM which anticipates the existence of new particles, for
instance the superpartner particles (in supersymmetry) [11], KK particles (in extra
dimensional models) [12, 13], also the techni-particles (such as in compositeness of
the Higgs models), can seek to explain these as DM candidates [14, 15]. In the
case of extra dimensions, we have the lightest KK particles, and if these particles
are stable, these can become candidates for DM [16]. For instance, the spin-3/2
fermions exist in the KK model [17]. One of the additional fermions in the GHU
model can be identified as a dark fermion, and thus, this dark fermion becomes the

DM candidate, and it has to be the lightest of the dark particles.

Many astrophysical and cosmological observations during the last several decades
provide strong evidence for the existence of DM in the Universe. The amount of DM
has been precisely measured by the Planck satellite mission to be Qpyh? = 0.1188+
0.0010 [18], where the cold dark matter (CDM) content is estimated to comprise
roughly 26% of the total energy in the Universe. Investigations into the nature of
DM particles and their interactions has emerged as an important field of research.
Weakly interacting massive particle (WIMP) DM searches constitute an important
programme at the LHC, where the ATLAS and CMS collaborations [19, 20, 21] are

looking for DM signatures involving missing energy accompanied by a single or two
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jet events. It is expected, and there is indeed a real possibility, that the production

of DM particles of any spin at 13 TeV centre-of-mass energy would be detected.

Null results from the direct detection experiments [22, 23, 24, 25], which measure
nuclear-recoil in DM-nucleon elastic scattering, have provided the most stringent
upper bounds on the spin-independent DM-nucleon elastic scattering cross-section
over a wide range of DM masses. This has provided important constraints on the
DM models considered in the literature. In addition there are indirect detection
experiments whose aim is to detect the signature of annihilating or decaying DM

particles into the SM particles.

As such, in this thesis we will also consider a spin-3/2 DM particle as an alternative
to the conventional scalar, vector or spin-1/2 CDM particles. Where this spin-3/2
CDM has been studied in effective field theories (EFT) models and constraints from
the relic density, direct and indirect observations obtained [26, 27, 28, 29]. Spin-3/2,
7.1KeV warm dark matter (WDM) has been considered as a means to provide a
viable explanation from the anomalous 3.1 KeV X-ray line observed by the XMM
Newton [30]. Furthermore, the spin-3/2 DM with a Higgs portal has recently been
investigated [31].

1.2 The Standard Model of Particles physics

The SM of particle physics has been a very successful model in describing most of the
particle phenomenology known so far [32], even though it possesses some problems
whose solution implies physics beyond the SM. The SM is a quantum field theory

model based on two main principles:
(1) The gauge principle.
(2) The spontaneous symmetry breaking mechanism.

In order to obtain a renormalisable theory, we need to construct a Lagrangian in
terms of operators of dimensionality such that the Lagrangian has dimensionality
4. Once we impose the local gauge invariance this will require the existence of the
gauge bosons, which determines the interactions of these gauge bosons with fermions
and also the interactions between the gauge bosons themselves. The combination
of local gauge invariance with the spontaneous symmetry breaking mechanism leads
to the Higgs mechanism, which generates the masses of weak vector bosons and

fermions [33]. In order to determine the gauge theory we need to specify:

(1) The gauge group.
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(2) The field content in terms of its spin and its representations under the SM

gauge groups.

The SM is a non-Abelian gauge theory with gauge group SU(3)c x SU(2)r, x U(1)y,
where the group corresponding to strong interactions is the SU(3)¢ colour group of
quantum chromodynamics (QCD) [32, 34]. QCD describes the strong interaction
between quarks, that arises from the exchange of the eight massless gluons that
couple to the colour charge of the fermions, G, (a=1,2,.....,8) [35]. The electroweak
theory, which describes the electromagnetic and weak interactions between quarks
and leptons, is basically based on the electroweak gauge group SU(2);, x U(1)y [36,

37].

For the sake of completeness, let us now define the SM field content and their

transformations under the SM gauge group, which are illustrated in Table 1.1.

The SM contains fermions also, where we can always write the Dirac spinor corre-
sponding to each SM fermion as a sum of two spinors, one with left chirality P;, and
the other with right chirality Pg:

1 1
\I/:PR\I/+PL\IJ:\IJR—|—\I/L:5(1—’)/5)\114-5(14-’75)\1/ (121)

The left and right-handed components of any fermion are assigned to different rep-
resentations of the SU(2)r, x U(1)y gauge groups [38]. In order to specify the trans-
formation properties under SU(2)y, it is useful to define a new quantum number, the
weak isospin T. Therefore, any particles having a weak isospin different from zero
have an SU(2);, interaction, while those particles with weak isospin which is null
are not sensitive to the SU(2)y, interaction. For instance, the weak isospin of the
fermions of left chirality is T = 1/2, thus the third component of the weak isospin
T3 can take values of +1/2. Correspondingly, the quarks of left chirality are grouped

() 122

where 7 is the family index (i = 1,2,3). The left-handed leptons are grouped into

Li— ( viL > . (1.2.3)
€L

The weak isospin is null for the fermions of right chirality, i.e. the quarks w;g, d;r

into quark doublets,

the lepton doublets also,

and lepton e;g. The weak hypercharge, Y, is the quantum number associated with
the group U(1)y. Thus, the electric charge Q and the third component of the weak

isospin T3 are related by the Gell-Mann-Nishijima formula

Q=Ts+Y. (1.2.4)
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Fields | Lorentz | SU(3)¢c | SU(2); | U(l)y
Qi L 3 2 3
WR R 3 1 2
dir R 3 1 —1
L; L 1 2 -1
CiR R 1 1 -1

Table 1.1: Summary of the SM field content and their quantum numbers.

Therefore, the quark doublets have hypercharge 1/6, the lepton doublets have hy-
percharge -1/2 and the right-handed fermions u;r, d;r and e;r have hypercharge
2/3, -1/3, and -1 respectively. The quarks are triplets under the SU(3)¢ group, and

can interact via strong interactions, while leptons are colour singlets.

For each gauge group there is a gauge coupling associated to that gauge group, where
in the case of the electroweak gauge symmetry group SU(2)y, X U(1)y; there are two
different couplings constant, U(1)y has a gauge coupling ¢’, and SU(2), has a gauge
coupling g. The part of the SM Lagrangian that describes the SU(2)1, x U(1)y gauge

interactions is given by
LS89 =iQ, D" Q; + iR Dy uir + idin D dig
— o 1 1
+iL; D" L; + ie;r Dyt eir — ZWﬁny” — ZBWBW’ (1.2.5)
where W has a self-interacting term because of the non-Abelian nature of the

SU(2)L, group;
Wﬁu = 8,MW5 - &,Wﬁ - geachZleS, (1.2.6)

and
B, = 0,8, — 0,B,. (1.2.7)
The covariant derivative in this case is given as
D, = 0y +igWiT, +ig' B,Y, (1.2.8)

where the T, are identified as the representations of the SU(2);, generators and
are different for left handed and right handed fields. As we will see later, after
spontaneous symmetric breaking, we can write the covariant derivative in terms of

the gauge boson mass eigenstates

W+ Ww, (W —W;
W; =K K Wi — M, (1.2.9)
V2 V2
and
Z 'A A, —4gZ
szg pntgau B, =% "9 (1.2.10)
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Fields | T | Ts| Y| Q
1 1 1
e 3 3| 3|1
0 1 1 1
¢ 317213210

Table 1.2: The quantum number of the Higgs doublet.

1.2.1 The SM Higgs and flavour.

Note that the discussion in this section based on Ref. [32]. A mass term for the
gauge vectors is prevented by the gauge symmetry, therefore, in order for these
gauge vectors to acquire masses, it is implied that somehow the gauge symmetry
must be broken. This can be done through spontaneous symmetry breaking [39],
which is a way for the gauge bosons to acquire masses, as well as the fermions,
whose mass terms are also otherwise forbidden by the gauge symmetry. Note that
the SM fermions in Table 1.1 are in chiral representations, and gauge symmetry
in conjugation with chiral representations forbid fermion mass terms (vector-like

fermions can have mass terms allowed by gauge symmetry).

The SM gauge group contains SU(3)¢ interactions which seem to be conserved, as
long as the gluons are massless, therefore this symmetry should not be broken [410].
We therefore only need to break the other part, SU(2), x U(1)y. In order to sponta-
neously break the gauge symmetry we need to introduce a scalar field in the theory,
which is called the Higgs field, and we need this field to give mass not only to the

gauge bosons but also to the SM fermions. Therefore we can introduce a complex

D= ( ((I; ) , (1.2.11)

where the transformation of this doublet under the SM gauge group is given as:

scalar doublet as

(i) Under SU(3)c it is a singlet

b — P. (1.2.12)

(ii) Under SU(2)y, it is a doublet
D, — U, Py, (1.2.13)
®, and &, are complex scalar doublet and r, s = 1,2. The transformation

matrix U,s € SU(2).
(iii) Under U(1)y the value of hypercharge is Y = 1/2.

Accordingly, the quantum number of these fields are given in the Table 1.2.
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Figure 1.1: The Higgs potential V(®) where: in the left panel, the case where y® > 0,
and the right panel is the case where p?> < 0, as a function of |®|? = ot @,

Therefore, we can write the Lagrangian for the Higgs field as

Ly = (D,®)(D'd) — V(TD), (1.2.14)
where the Higgs potential is given by

V(®Td) = ploie + %(qﬂcp)?. (1.2.15)

The parameter X\ should be non negative, otherwise the potential will not be bounded
from below, and p? should be real, because the Lagrangian is hermitian. p? can be
positive or negative, where in this case the action of the covariant derivative on the
Higgs doublet is given by the following equation

Oq

1
5 . (1.2.16)

D@ =0,® +igWy—®+ ig'BuQ

By minimising the Higgs potential there are two possibilities for the vacuum expec-

tation value (VEV), see Figure 1.1:
(i) p2 > 0 in this case there is no SU(2);, x U(1)y symmetry breaking.
(i) p2 < 0 in this case there is SU(2);, x U(1)y symmetry breaking.
The Higgs potential only depends on the gauge invariant combination r? = ®T®,

therefore we can rewrite the Higgs potential in terms of 72 as

A
V(r) = p*r? + 57-4. (1.2.17)

When we minimise the potential in Equation (1.2.17) one can find

ov

o = 2ur 4 2Xr® = 2r(p? + M) = 0. (1.2.18)
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Thus, in the case when u? < 0, the local and absolute minimum is given by

12

PN =0 =12 = -5 (1.2.19)

which is a positive quantity because u? < 0. This quantity is called the electroweak

symmetry breaking scale squared, and we denote it by v?:
—=——. (1.2.20)

The ground state is degenerate, as there are many possible values of the Higgs VEV

that correspond to the same value
(D) = —. (1.2.21)

Accordingly, any such value of the VEV is possible as a ground state. Moreover
the ground state is not invariant under the SM gauge group, which means that the
SM gauge group is spontaneously broken. As an example, given any (®) such that
(®)| = v/V/2, there exists an SU(2);, transformation U such that

(@)=U\( v |, (1.2.22)

where without loss of the generality, we can then assume that the ground state is of

the form

@@= v |. (1.2.23)

In order to show how the gauge group is broken, let us remember that a generator is

unbroken if the VEV is invariant under the associated (or generated) transformation
Uld) =12), (1.2.24)

with
U=:e%"= Ud)=0. (1.2.25)

The SM gauge group is spontaneously broken, except for the generators correspond-
ing to U(1)em x SU(3)c. Let us call Tl(qs) the SU(3)c generators, 7% the SU(2)L
generators and Y the hypercharge generator. Then the most general generator is

the superposition of all of these,

8 3
T=>"aaT{ + 3 B.T3 + 7Y, (1.2.26)
A=1 a=1
where a4, 8, and v are real, and the generator T' is unbroken only if

T(®) = 0. (1.2.27)
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As we know the Higgs doublet does not feel strong interactions, therefore
7%(®) = 0. (1.2.28)

Thus, this will lead to the following

0=T(®) = (B.T? +~Y)(®) = g ( B; _;ﬁz ) . (1.2.29)
— M3

Accordingly, from the previous equation, we will get
pr—ife=0= p1 = P2 =0,

and

Y—B3=0= =03
Hence, we can rewrite the most general generator as

T = OéATIEXS) +’Y(T3 + Y)

= aaTP +4Q. (1.2.30)

Thus, Equation (1.2.30) shows that the unbroken generators are Tf’) and @, which
are the generators of U(1)em X SU(3)c. Therefore, in the SM the electroweak sym-
metry, if broken, is always correctly broken to U(1)ep, and always v > 0, with VEV
Equation (1.2.23) which do not have any complex relative phase, thus CP is not

spontaneously broken.

1.2.2 The gauge boson masses.

The SM gauge group contains twelve generators, where the number of the unbroken
generators is nine, accordingly, this means that the remaining three generators are
the broken generators. If the symmetry was a global symmetry the spectrum should
contain three massless physical degrees of freedom, the Nambu-Goldstone bosons [41,
42, 43]. Out of the four generators of the electroweak group only one is unbroken,
which means that three are broken. We then expect three vector bosons to acquire
a mass (W5, W, and Z, bosons) and three Higgs real degree of freedom (the
Goldstones) to be eaten up by them. Out of the four real (two complex) Higgs
degrees of freedom, only one then correspond to physical scalar, the Higgs boson [44,
45].

In order to write the spectrum following from spontaneous symmetry breaking, we
should rewrite the Higgs doublet ® in terms of the displacement from the ground
state as follows:

d = (D) + P, (1.2.31)
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and by applying Equation (1.2.16) to the VEV, one can get the following

Du(®) = (@) +igW T2 (@) + ig' B (@)
v [ g(W — i)
- 2\/§< g ) (1.2.32)

Therefore, by substituting D, ® = D, (®) + D,®’ into Equation (1.2.14), we realise
that these gauge bosons acquire a mass, given as:
2
v —
(D (@) (DH(®)) = §[292WM W+ (g% + %) 2, 2]

1
= MpW, W+ 5M%Z,z#. (1.2.33)
The masses of the I/VMi and Z, gauge bosons are given by

’1)2

M2 _9202 M2 = (2 2\ V"
w — ) Z_(g +g)47

I (1.2.34)

where all the other gauge fields associated to the unbroken generators remain mass-

less. We can define an angle 6y € [0, 7/2], called the Weinberg angle, via
g/
tan Oy = PL (1.2.35)

such that .

9 9

The physical bosons observed in interactions are the photon A, VVMjE and Z,, bosons.

cos By = sin Oy = (1.2.36)

Thus the Wj bosons are mass eigenstates,

1 .
Wy = 7 W F W), (1.2.37)

while the W/f and B,, mix to give us two physical bosons A, and Z,,

Z,, = cos HWWS —sinfwB, and A, =sin HWW;:’ + cos 0w B,,. (1.2.38)

The value of v can be fixed from the measurement of the W mass as follows

2M
v=" 0 246GeV. (1.2.39)
g

1.2.3 The fermion masses.
In order to obtain the fermion masses we need to introduce the Yukawa Lagrangian,

which is given by

Ly ukawa = )\% @Lz’ P uRj + )\5 @Li O dg; + /\51&' ®egrj +h.c., (1.2.40)



Section 1.2. The Standard Model of Particles physics Page 11

where @ = i 9®, here we have included all three SM families through the family
indices 4,7 = 1,2,3. Accordingly, each of the three Yukawa couplings in Equa-
tion (1.2.40) is a 3 x 3 complex matrix. Therefore, once the Higgs acquires a VEV,
all the SM fermions acquire a mass also, and these masses are proportional to their
Yukawa couplings. We can rewrite the Higgs field in terms of the unitary gauge,

where in this case the Goldstone bosons are removed from the Higgs fields. Therefore

S=1| v+o¢ |, (1.2.41)

and hence, the Lagrangian becomes
Ly ukawa = LYt wa + L, (1.2.42)

where the first part in Equation (1.2.42) is given by

Vo —— (TR — v
,Cyg]fgwa = ﬁ)\%uamu?i + ﬁ)\gdaszjaL + ﬁ)\,gézRejL + h.C., (1243)
which gives the fermions masses
mg = v/\g, m[]) v)\g, mg = v)\iEj. (1.2.44)

While the second term in Equation (1.2.42) shows the Yukawa interaction of the
Higgs, ¢, with the fermions,
U
Ly = %@u?‘m@ + \[]df‘Rdngo + \f ZReJch +h.c. (1.2.45)

Thus, these interactions are diagonal in the mass eigenstate basis, which diagonalises
)\g, )\D and )\E Therefore, there are no flavour changing Higgs interactions at
the tree level in the SM. Flavour changing interactions are generated at the loop
level in the quark sector, due to quark mixing, but not in the lepton sector. The
individual lepton matrices are in fact conserved in the SM (in the limit in which
neutrinos are massless). Finally, the Higgs squared mass is given by m%{ = \gv?,
and is proportional to the electroweak symmetry breaking scale squared, and to
the Higgs self-coupling Az;. While the electroweak scale has long been known from
the measurement of the Fermi constant G, the Higgs boson has been discovered
only relatively recently, and its mass has been measured to be my ~ (125.5 +
0.5) GeV [2, 3]. The mass matrices in Equation (1.2.44) are in flavour basis, and not
in the mass basis. In order to diagonalise them and define the real mass eigenstates,
we introduce unitary matrices which affect, in the quark sector, the interactions
containing both quark types with W=*. This will lead to a non diagonal term in
the Yukawa Lagrangian which ensures couplings between different type of quark

generations through the CKM matrix (for more details see section 4.2).
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Particles | colour | spin Q mass [v]
e, i, T (1) /2 | —1 e/ V2
Ves Uy, Vr (1) 1/2 0 0
u, ¢, t (3) 1/2 | +2/3 | Auci/V2
s b | () | 12 | 21/3] Me/V2
h (1) 0 0 V2
W+ (1) 1 +1 g/2
Z (1) 1 V% +g?%)/2
A (1) 1 0
G (8) 1 0

Table 1.3: Summary of the SM particles and their quantum numbers.

The neutrinos remain massless in the SM [16, 47, 48]
My, =My, =m,, = 0. (1.2.46)
The neutrino oscillations suggest that the neutrinos mass difference are measured
to be non-zero [19, 50], and the SM thus needs to be extended.
Finally, as a summary, one can write the full renormalisable part of the SM La-
grangian as follows:
Lsy =—iQ;Dyv"Q; — iuir Dy uir — idipDyy*dir — iLi Dy L
— 1 v 1 14 1 v

—ie;rDyY'eir — ZW/;IVWEM - ZB’WBM — ZGg Gaw

+ ()\g @Li ) UupR; + )‘z[]) @Li P de + )\gsz P er; + h.C.)

— (D,®)1(D'®) — \(TD — v?/2)?, (1.2.47)

where i, 7 = 1,2,3. We summarise in Table 1.3 the mass eigenstates of the SM, their

masses in terms of the VEV, as well as their SU(3)c x U(1)em quantum numbers.

1.3 Some Reasons to go Beyond the SM

The SM has been accepted as the current best description we have, and all the
parameters has been measured experimentally, where these tests have been done
with extremely high accuracy. Despite all of its successes, the SM is believed to be

only an effective low energy theory for numerous reasons, such as:

(1) Quantum Gravity and the Dark Matter Puzzle: The SM describes three

out of four fundamental interactions at the quantum level. While gravity is
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Figure 1.2: The one-loop Higgs correction with fermions inside the loop.

only treated classically and therefore, any quantum discussion for gravity has
to be contemplated as an effective field theory, which will only be valid up to
certain scales, smaller than the Planck scale (M, = /Gh/c3 ~ 10'9GeV) [51].
At this scale the quantum effects of gravity have to be included, where at this
scale the Einstein theory has the problem of being a non-renormalisable theory,
and accordingly unable to give us reliable observables beyond this scale. On
the other hand, DM, which makes up one quarter of our universe, also has no

explanation in the SM, and there are no candidates for DM in the SM [52, 53].

The Hierarchy Problem (The Naturalness Problem): Mainly, the hier-
archy problem is the question of why there are totally different energy scales;
(Mew/Mp) ~ 1071° GeV. This problem is also called the naturalness problem,
where in this case the radiative corrections to the Higgs mass are quadratically
divergent, which calls for “magical” cancellations to stabilise the Higgs mass
at its tree level value [53]. In order to understand this problem correctly let

us look for an example in the Higgs potential,
V(H) = |H + A|H|*,  where p* <0. (1.3.1)

As we know from the experimental point of view, the minimisation of such a
potential leads to (H) = \/—u2/2), and it is around 246 GeV. This means
that the bare mass of Higgs is approximately 100 GeV, which implies that
m?%; ~(100 GeV)?2. So we need to look to the radiative corrections, by consid-

ering the SM fermions couplings to the Higgs [54]
— Ly = )\foL fr + h.c.. (1.3.2)

By computing the 2-point function, with fermions running inside the loop, and
two external lines identified as zero momentum for the Higgs, it can be shown

(diagrammatically in Figure 1.2) that

= [ 5| () () 5]

d*p 1 2m?
= — 2\ / + r_|. (1.3.3)
f (2m)4 [pz _ m% <p2 B m?)z
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Therefore, the one-loop correction to the Higgs mass is given as:

2

Amy ~ —— (—2)}), (1.3.4)

where in this case A is the UV cut-off, and naturally it should be around the
TeV scale, because the idea is to protect the Higgs mass. Therefore, the SM
should appear as an effective theory valid up to the E < Mg ~ TeV scale.

(3) The cosmological constant problem: The cosmological constant problem
is the question of why (]\/Mpl)4 ~1071?Y <« 1, where A is called the energy
density of free space time, thus, this puzzle is probably the biggest problem
in theoretical physics, and it is similar to the hierarchy problem, which is an

issue of naturalness [53, 55].

(4) Flavour problem: The flavour problem is the questions of why there are large
mass hierarchy of fermion and are not in the same order, note that the electron
mass is about 0.511 MeV and the top mass is around 173 GeV [56]. Also the
question of why in the SM we have exactly three copies of the fermions [57].
The SM is unable to generate a baryon asymmetry of the Universe of sufficient

size, the Universe is baryon-antibaryon asymmetric [58, 59].

(5) Gauge coupling unification: In the SM, aside from the electroweak (EW)
scale, there is a new scale of order 10'® GeV, called the Grand Unified scale.
It arises from the fact that in the SM we have three gauge couplings which run

according to the following Renormalisation Group Equations (RGEs) [60]:

1 4 bz ( 1% > .
= =—1In|(-+— 1=1,2,3. 1.3.5
ai(p) i) 2\ A (13.5)

Therefore, at the EW scale when pu = My, there is a hierarchy between the
couplings
al(Mz) < Oég(Mz) < Ozg(Mz). (136)

The RGEs will make this hierarchy between the gauge couplings, Equation (1.3.6),
change with the energy scale. In principle, let us assume there are no particles
other than the SM particles, thus at a much higher scale, such as the Grand
Unified scale (Mgyr ~ 10 GeV), all the three couplings tend to unify [61].
We have in the SM the numerical coefficients appearing in Equation (1.3.5),

41 19
bi = \75r " 2 ) 1.3.
(10 : 7) (1.3.7)

and are given by ! [62, 63]:

! These coefficients are derived in Appendix A.
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Figure 1.3: The running of the gauge couplings gs (green), ga (blue), and g1 (red)

in the SM as a function of a scale parameter t.

and accordingly, the running of the SM gauge couplings are shown in Fig-
ure 1.3, where the couplings g1, g2 and g3 are corresponding to U(1)y, SU(2)y,
and SU(3)c gauge groups respectively.

1.4 Some Ideas about Physics Beyond the SM

The SM is not the fundamental theory of the Universe, but is only an effective theory
describing the interactions of the strong, weak and electromagnetic interactions at
low energies. We need to find an extension that may solve some (or all) of the
problems mentioned above in order to generalise the SM. Accordingly, the idea now
is to go beyond the SM, and in order to do that there are several approaches we can
take. For example [51], one way is by adding new particles, or adding interactions
(as we shall do in chapter 7 and chapter 8, where we consider a spin-3/2 fermionic
DM interacting with SM fermions through a vector mediator in the s-channel [64],

as well as the t-channel [65]).

Another way is motivated from our previous discussion of the SM, in that it is mainly
based on two kinds of symmetries. The first one is the internal symmetry, which
is the gauge group of the SM, while the other is the space-time symmetry, or the
Poincare symmetry in 4 dimensions. The Poincare group is the group which contain
rotations and boosts. There are extensions of the 4 dimensional Poincare group,
as well as more general internal symmetries [51], such as supersymmetry (SUSY),

the most attractive aspect of SUSY is that it provides a solution to the hierarchy
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problem due to cancellations between the contributions of bosons and fermions to
electroweak scale, defined by the Higgs mass. As an example, for more general
internal symmetries, we consider the Grand Unification Theories (GUT), where in
this case the SM gauge group is the result of the breaking of a larger symmetry
group as follows [53]

M=~1015GeV M=~102GeV

Gaur Gsm SU(3) x U(1)em, (1.4.1)

where Ggyr is a larger symmetry group and Ggps is the SM gauge group.

1.4.1 Extra spacetime dimensions.
The idea here is to add more dimensions to space-time, in which case the Poincare
symmetries of the SM, and the general coordinate transformations of general rela-

tivity, are significantly enhanced. This leads to the well known KK theories [51, 53].

In order to understand the idea of extra dimensions we shall consider as an example
the scalar field scenario in extra dimensions. For a massless 5-dimensional scalar

field ¢(z#,y), the action is given as:
Ssp = / &z (ansans Ve ¢) , (1.4.2)

where one can presume that the scalar field is a periodic function on this new
coordinate (this new coordinate is compactified as a circle of radius R). Therefore,

we can expand the field ¢(z#,y) in a Fourier expansion along the new coordinate as

oo .
iny
Pzt y) = Z dn(z") exp <R>’ (1.4.3)
n=-—oo
where the Fourier coefficients are functions of the standard 4-dimensional coordi-
nates. Therefore, they are a set of 4-dimensional scalar fields. The infinite number

of Klein Gordon equations for the massive 4-dimensional fields are then given by

n2
M0 pn () — <M2 + RQ%(M)) =0, (1.4.4)
which means that each Fourier mode ¢,, is a 4-dimensional particle with mass
2 2 n?

where R is the compactification radius, the mass eigenstates can be labeled by their
parity assignment with respect to the generators of the symmetry group of the
orbifold and by the KK numbers (n) [66].

As another example, let us presume the Higgs sector, which is comprised of the

following kinetic term, as well as the potential term [66]:

tu= [ ay [(Ow ) (DY ) v (@), )] (140)
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Here an even parity, y — —y, is presumed for the five dimensional Higgs doublet,
the one extra spatial dimension coordinate y is compactified on the orbifold S*/Z,

with radius R. Thus the corresponding KK expansion is given as:

H(z,y) = \/217r7RH(0) (x) + Z \/%H(”)(x) cos (%) (1.4.7)
n=1

Therefore, one can expand the covariant derivative as (D, H) and (D5 H), in terms
of the KK modes, and then by integrating out the y coordinate, we can rewrite the

kinetic term as:

2t R
Linkx = /0 dy {(DM )Y (z,y) (DM H) (m,y)}
= (D, H) " () (D" H) (2) + (D, H)™' (2) (D" H)™ (2)

+ (D5 1) (z) (D H)™ (), (1.4.8)

The repetition of the indices signify a summation. Thus the four dimensional covari-

ant derivative objects (D, H)Y), (D, H)™ and (Ds H)™ are written as follows:

. O-a n)a . Y n n
(D, H)® = DO HO — <292W,5 Ja i B >> H™,
n . o Y n 0
(D, H)™ = DG gom) <zg2 Wi+ ig S B ) HO,
nm . @ n)a . Y n
(Ds H)™ = plmm) grim) _ <1902 wime 4 ig5 B} )> HO, (1.4.9)

where DLO), D,Snm) and Dénm) appearing in the above equation are given by:
0 AT Y
D,S) =0, — zg?WlS Ja _ zg'EB/S),

D(nm) — §nm D(O) _ ATm (iga W}Sr)a + iglz B/(j)) ’

I K 2 2
nm .o r)a Y
Dé ) — _5nm% — Al/nrm <’lgo-2 WES ) + 19/5 Bé )) , (1410)

where A™™ and A’™™ are:

Anrm — L (5r,n+m + 5n,r+m + 5m,n+r)

-5

Alnrm

= — (6" g gt g (1.4.11)

3

The Higgs potential appearing in Equation (1.4.6) is given by:

V= /OQWR dy {,uQ HY(z,y) H(z,y) + s (HW:E,y)H(x,y))Q] , (1.4.12)
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hence, by integrating out the fifth coordinate, we obtain the following:

Vip =2 (H(O)T H(O)) 4 ( O H(O))2 n W 4o (H(O)T H(O))} (H(n)T H(n))
A (H(O)T g o gt H(0)> (H(O)T Je O O H(o>)
+ 2 NA™Y (H(O)T H® 4 gt H(O)) (H(P)T H(Q))

N < g H(p)) (H(q)T H(r))) (1.4.13)
where A\ = A\5/27 R and

ATPIT :1 [5T,n+p+q 4 gntpatr o gntaptr o gntTptg

4 grptatr o gptatr L gandptr | (1.4.14)

Finally, let us have a look to the Abelian gauge field Lagrangian, which is given as

follows
27 R
Egauge = / dy
0

1

1 1
— 4 Bun(z.y) BMN(z,y) — 2 Wiin (@) WMN (z,y)

(1.4.15)

where By (2,y), Wiy (2,y) and G4,y (z,y) are the field strength tensors related
to the five dimensional gauge groups U(1)y, SU(2)r and SU(3)¢ respectively. We
presume that the Af(x,y), where (A = G, W, B), are the components of the five

dimensional gauge fields of even parity y — —y. Thus the KK decomposition are

given by
A (2, y) = ——— Ay 4 i ! () cos (ﬁ) , (1.4.16)
K V2T R “ ] \/7TR R
and therefore, an odd parity is allocated to the A2. A2’s Fourier expansion is
o 4 (4 (4 si (@) 1.4.17
Z ()sin (22), (14.17)

and by integrating out the y coordinate, the effective 4 dimensional Lagrangian is

4D _
‘C gauge ~—

(Bm) BOW 1 B s 4 o B< n) B(n)u5)

»bM—‘»-lkM—wlkM—‘

0)a 0)auv n)a n)apy (n)a n)apud
(W,SV) W (@ap +W,§y) W (map +2W,; W()u)

<GLOV)A GO A GmAw QGgg)A G<n>Aﬂ5> . (1.4.18)
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1.5 Structure of this thesis

The structure of this thesis is as follows: In chapter 2 we shall give a brief summary
for the RGEs, the dimensional regularisation scheme, the cross section for the scat-
tering of two particles into a two particle final states, as well as some basic ideas

about the Boltzmann equation.

In chapter 3 we introduce the model in five-dimensions, compactified on an interval
St/ Zs, with bulk gauge groups SU(3).x SU(3) and a bulk fermion transforming as
a bi-fundamental. In chapter 4 we derive the evolution of the Cabibbo-Kobayashi-
Maskawa matrix elements, the Jarlskog invariant and the quark mixings in a five-
dimensional model for an SU(3) gauge group. In chapter 5 we explore the evolution
of the gauge couplings in five dimensions for SU(5) and flipped SU(5), and will

extend the discussion in chapter 6 for the Go gauge group.

In chapter 7 we consider a spin-3/2 fermionic DM interacting with SM fermions
through a vector mediator in the s-channel, and will extend our discussion for the

t-channel in chapter 8. In chapter 9, we will give our overall conclusions.



Chapter

Mathematical Background

In this chapter we shall discuss the mathematical tools, which we will use during
this thesis, such as RGEs, dimensional regularisation, the averaged cross-section for

scattering, and the Boltzmann equation.

2.1 Renormalisation Group Equations

In this section we are going to introduce the most important object that we need
during this thesis: the g-functions. The crucial role of this object is that we need it in
order to determine the evolution of the coupling constants. Generally, by considering
a theory with n-couplings, g;, we need to solve a coupled set of differential equations

of the following form [(7],
dg; _ dgi
Bi = ,u’di =
n dt
where ¢ = In[u/Mz]. The behaviour of the gauge coupling g; as a function of p,

(2.1.1)

as shown in Equation (2.1.1), is called the renormalisation group flow of g;. In
general the S-functions depend on all the couplings and all the masses in the theory.
However, we can remove all the masses by focusing only on the universal ultra-violet
(UV) relevant coefficients. As an example, one can focus on the Yukawa coupling
evolution equations, where in this case we can write the general term for the Yukawa
interaction of the fermion and the boson as Ay, ¥g ¢. Therefore, let us write the

terms in this coupling as renormalisable quantities, or by rescaling [68]

vr = Z 0k, (2.1.2)
i = Z) W, (2.1.3)
6= 2,%o". (2.1.4)

20
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By using Equations (2.1.2), (2.1.3) and (2.1.4) one can rewrite the Yukawa inter-
action of the fermion and the boson in terms of the renormalisable quantities as

follows:
A &L Yro = )\R Zcoupling &II,% wlg d)R- (215)

Accordingly, from Equation (2.1.5), we can write this as

N = Zooupling Zy, > 7,2 7,12 AR (2.1.6)

While the bare parameters are independent of the renormalisation scale p, we thus

have:

8ln)\R:1 0InZy, 1Iu81nZwL+1 OInZzy 0 1InZeoupling

ou ke au 2 ou ke au K au

. (2.1.7)

where M\ is the renormalised Yukawa coupling constant. Zy, Ly, and Zy,, are called
the wave function renormalisation constants, corresponding to the Higgs boson,
left-handed and right-handed fermions respectively. Generally, the wave function

renormalisation constants have the following form:

Zcoupling =1- ’YW:/e In <li2) ) (218)

where Yyave is the anomalous dimension, and is given as

1 0ln Zyay
Ywave = 5#7“' (2'1'9)

When we calculate these wave function renormalisation constants, we ignore the
mass term in the propagators, since they have nothing to do with the divergent part

of the one loop diagrams [69].

2.2 Dimensional Regularisation Scheme

In this section we will mainly discuss the method of dimensional regularisation, where
this scheme will be a very important tool in our calculations during this thesis. In
QFT there at least three types of divergences: infra-red (IR), UV and collinear;
where here we are going to deal only with the UV divergences. The Feynman
diagrams involving loops lead to divergent integrals, and in order to handle this
type of divergent integral we need to cut them off at some high scale to avoid these
UV divergences. This can be done by giving them a finite upper limit. This way of
regularising infinite integrals is not very convenient in dealing with theories which
have a local symmetry, however, in this thesis we shall use dimensional regularisation,

which preserves the local symmetries.
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In order to understand the dimensional regularisation scheme let us use an example
of the 1-loop 4-point functions. In this scenario the Feynman diagram would have
two propagators and one integral, thus the integral is given as [70]

d*k 1

Ta(p?,m?) = / B (2.2.1)

This integral is logarithmically divergent in 4-space-time dimensions, however, it is
convergent if the space-time dimension is less than four. Accordingly, we will perform
this integration in an arbitrary dimension D, and after obtaining an answer which is
dependent on D, we can continue the result analytically to D = 4. Therefore, the
D-dimensional integral can be written as [71]
D
I ") = / (gw)]; (k2 — m? + ie) ((;— k)2 —m? + i)’

(2.2.2)

In order to tackle the above integral, one useful technique developed by Feynman
(called Feynman parametrisation), deals with the product of two propagators, A

and B, in the denominator, by writing them in one term as follows:

1 1 1
AB:/O dm[AerB(l—x)]?' (2.2.3)

Therefore, we can rewrite Jj in Equation (2.2.1) by using the Feynman parametri-

sation from Equation (2.2.3), namely,

J(p2m2)—/de /1dac ! (2.2.4)
A eMP Jo R+ pra(l—z) —m? + i =
We can now do the k integral in Minkowski space,

k2 = k2 — k2, (2.2.5)

where in this scenario the dimension of k is (D — 1), and the dimension of kg is one.
We can handle the kg integration by using Cauchy’s residue theorem. However, in

this case the poles in the complex plane are located at [71]
k2 — K +pPe(l—2) —m® +ie =0, (2.2.6)

or

ko = ﬁ:\/l_c’2 —p?z(1 —x) + m? + ie. (2.2.7)

If we take the external momentum to be p? > 0 (time-like), the square root is real,
because the + ie shifts the poles. Hence, by considering the contour in Figure 2.1,
and if we used Cauchy’s residue theorem, the integral around this closed contour

gives us zero, because in this case there is no pole inside this closed contour. If we



Section 2.2. Dimensional Regularisation Scheme Page 23

ImK,

> » Re K,

Figure 2.1: The contour we use to handle the integration.

look at the Cy and Cy parts, this goes to zero in the limit R — oo. From the fact
that the total contour integral is zero, this tell us that the integral around the real
axis is the same as the one around the imaginary axis. So by using Cauchy’s residue

theorem one can see [71]

D-1
[aef dko/d ; !
(k2 + p?z(1 — z) — m? + i€]

dD 'k 1
oy ko m 5. (228)
0 —ico (k2 4+ p?x(l — z) — m? + ie]

We can then change the variable kg, by using a Wick rotation kg — tkp. Ja can be

written in terms of the Euclidean integral

dP-1k 1
o[ [ [ e
k‘2 +p2x(l —z) — m2]

where we can now drop the ie. Note that the integration above has rotational

symmetry, which can be used to separate the integral into a radial part, as the

angular part can be done as follows:

D—-1
/ dx/k i Vs - (2.2.10)

)P (k2 + p2x(1 — z) — m?]

where Vgp-1 is the volume of a unit sphere in D-dimensional Euclidean space, and
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is given b
g ' 1% 2m /2 2.2.11
SD—l — W ( /N )

The I'(D/2) is the Gamma function, and is given by:
I(z) = / dte tt*1 Re(z) > 0, (2.2.12)
0

and has the important property that it can be analytically continued to the complex
z-plane. It also has poles at z = 0. In the limit when z — 0, the Gamma-function
behaves like:

1
I'(z) = — + finite term. (2.2.13)
z

We can calculate the radial integral in Equation (2.2.10) with the help of the fol-

lowing general formula:

[eS) u5 o—0§—
/0 W A du = a+1-o L0 1)5((0) o1, (2.2.14)

By using Equation (2.2.14), we can write Equation (2.2.10) as:

_ Vspa D 4—-D\ [! (D—4)/2
)= it (3) 0 (557) [ o= e 22.15)

We now want to continue the result to D = 4. To do this let us take D — 4 = z.

The Gamma function appearing in Vgp-1 is finite, even though the I'(z/2) diverges,
this divergence from Equation (2.2.13) behaves like

r (g) =0 % — v+ O(2), (2.2.16)

where the finite term v = 0.5772... is called the Euler-Macheroni number. It is now
easy to see that as D — 4 (z — 0) Equation (2.2.15) reduces to [71]
11 1

1
I =g 5~ 16 /0 do In[—w(1 = 2)p* +m’]

11 1 /! 2
/ dx [ln m? 4 In (1 —z(l— x)SLQ)] , o (2.2.17)
0

“8r2z 1672

1
where the term (1 / 167r2) / dxz Inm? does not depend on p. This means that:
0

111 ! p?
Ja(p?,m?) = 87r2z1671'2/0 dr In [1 —z(l— a;)mQ] + constant + O(z), (2.2.18)

where to evaluate Jy (p?, m?) when p? = 0 we get

11
Jn(0,m?) = 2 + constant. (2.2.19)
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Equation (2.2.17) can then be written as follows:

2

/01 dz In [1 — (1l — a:)p] . (2.2.20)

JA(p27m2) — Ja(0, m2) = m2

1672

The idea is to determine the finite expression in Equation (2.2.20). Thus we have
to subtract a divergent quantity from Jj, which is not an unique procedure. For
example, we could subtract just the (1 /82 z) from Ju, thus we see that we still
obtain a finite result, however this result should be independent of p. The quantity
which was subtracted is defined by the scheme we employ, and when we subtract
the pole parts only, this renormalisation scheme is called the Minimal Subtraction
scheme (MS) [71].

2.3 The RGEs for the Yukawa couplings in the SM

In this section we will discuss the RGEs for the Yukawa couplings in the SM, where
the tools introduced here will be used extensively in chapter 3. We will write the
most generic formula for the Yukawa evolution equations in the SM, and define the
Yukawa coupling matrices to be y,, y4 and y.. In the SM they run with momentum

according to the following formula [72, 73]:

dy [ 3

167r2d7“ =y |T — Gy + 5 (yLyu —ygyd)} ;
dyq [ 3

16#@ =yq |T — Gq + 3 (yflyd —ylyu>] ; (2.3.1)
d I 3

167T2 (;yte =Ye T_Ge+2ylye:|-

The quantities T, G, G4, and G, are given as follows:

T="Tr |3yl yu + 3yl va + ylye} :

17 9

Gu =150 + 70 + 843, (2.32)
5 9

Gq ZEQ% + 193 + 843,
15 9

Ge :Zg% + Zg%

The relation between the y’s couplings appearing in Equations (2.3.1) and (2.3.2)
and the couplings in Equation (1.2.40) are give by

)\g :diag(yuvycayt)v
A = diag (Ya, ys, vb) » (2.3.3)

)\5 - dlag (y67 Yus yr) .
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The g1, g2 and g3 correspond to the U(1)y, SU(2)r, and SU(3)c gauge couplings
respectively, where the U(1)y should be normalised correctly in the SU(5) normali-
sation. Note that an SU(5) normalisation is required in order have the couplings, as
in the SM, almost tend to unify [74]. This can be done by multiplying the coefficients
in front of g2 by factors of 3/5 [77].

By defining the following variables M, = yl Yu, Mg = yjl yqg and M, = yl Ye, and
then by multiplying both sides of Equation (2.3.1) by yL, yi, and yl respectively, the

left hand side becomes

dy 3

167721/267: =y Yu [T ~Gut (yLyu —yfiyd)] :
dyq 3

16W2yflﬁ nylyd [T - Gq + 3 (yflyd —yLyu)] ; (2.3.4)
dy 3

By taking the Hermitian conjugate of Equation (2.3.1) and then by multiplying both
sides by ., yq and y. respectively, we get

dy} 3

ST A TR PR
dy} 3

16 72 ditdyd =T — Gq + 5 (y:;yd _quTL Z/u)] y:;yd, (2.3.5)
dyl 3

167‘[’2 C:lyte e = T — Ge + 2ylye:| ylye_

Therefore, by adding Equation (2.3.4) to Equation (2.3.5), we get the following

formula,
167r2dyi:;“ =2y yu [T — Gy + 3ylyu} — g{ylyu,yflyd},
16 72 ClyC%ty‘i =2y} ya [T — Gq + 3y} yd} - g{yflyd,yl Yut, (2.3.6)
1679% =2yl ye [T — G| + 3 (ylye)2.
And by defining M; = yj Yi,
167r2d2f“ =2 (T — Gy) M, + 3M?* — g{Mu, My}
16%2% =2 (T — Gyg) My + 3M? — ;{Md, M,} (2.3.7)
16772d§f6 =2(T — G.) M, + 3M?.

At some momentum scale, p, the matrices M, and M, can be diagonalised by using
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two different unitary matrices U, and Uy:
Uy M, Uj =diag (A2, A2, \}), (2.3.8)
Uy Mg U} =diag (A3, A2, A2) . (2.3.9)
Accordingly, the CKM matrix at that scale p will be given as

Vekum = U, UL (2.3.10)

2.4 The cross-section for scattering of 2-particles into

2-particles

To continue our introduction of tools to be used in coming chapters, we now show
how to calculate the averaged cross-section for the scattering of two particles into
two particle final states, which is important for our studies in chapters 7 and 8.
In what follows we will give the formula for the n-particle Lorentz invariant phase

space, and it is defined as follows [70]

n
dLipS(p17p27-~7pn = H (241)

z:1

(2m) 32E

Here we have p; = (E;; p) and E; = (\p]2 + m?) where in this case the correspond-

ing n-particle phase space integral is given as [70]:

Ru(s) = / dLips(p1, p2, -, pn) (27)*0 (P - ZPz) : (2.4.2)

i
s is a Lorentz invariant quantity given by s = p? here, where we now presume
the case of two particles scattering to two particles, A + B — a + b, with four
momentum vectors, pa, Pg, Pa, and py respectively. The s above is the well known

Mandelstam variable, where we define the following Lorentz invariant variables [77]:

(pa + pB)* = (pa + m)°

t = (pa—pa)’ = (p — pB)° (2.4.3)
B
= (pa —m)° = (pa — pB)",
having used the conservation of four-momentum, ps + pp = ps + Pp, to define

the full-set. These Mandelstam variables can be evaluated in any reference frame,
therefore, it will be suitable to work in the centre of mass frame, as in this case
we have pg = —pa and pp = — Pg. Thus, the four momentum of the scattering

process are given by the following formulas:

pa = (Ea:Pa), pB = (EB; —Pa), Pa = (Ea; Pa)s P = (Eb; —Pa)-
(2.4.4)
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It is appropriate to define the magnitudes of the final and initial centre of mass

momenta, and they are defined as follows:
pi =[Pal = [Psl,  pr=IPal = |Psl. (2.4.5)

Therefore the mass shell conditions are given as:

Ea = (p? + m,24)1/2, Eg = (p} + mZB)l/Q, (2.4.6)
and
E.= (03 +m2)"?,  B= (% +mp)" (2.4.7)

From Equation (2.4.4) we have the following,
s = (Es+ Ep)?*, and t=m% +m2 —2E,E, + 2p;ips cosh. (2.4.8)

Using momentum and energy conservation, along with the mass shell condition, in
order to get the expression for the centre of mass frame energies as well as the three
momentum, we arrive at the following formulae [76]:

2

s+ m% — my y

s+ m% — m4

E == E =
A 25 ) B 25 )
2 9 o 9 (2.4.9)
E:s—l—ma my Eb:s—l—mb myg
“ 2./s ’ 2./s ’
and
1 1

A1/2 (8, m?, m2B) , AL/2 (5, m2, mz) . (2.4.10)

a

In the above expressions we have used A!/2 (s, m124, mQB) and \1/2 (s, m2, mz), these

are the square root of the triangle function, which is defined as [77]

M2 (@ y,2) = Va2 + 2 4+ 22 — 22y — 222 — 2y 2. (2.4.11)

We now introduce the total cross section for the scattering of two particles into two

particles in the final states:

1 .
o= - /dLlps 2m)*6* | pa + pp — pr Z|Mfi|2,
4\/(pA.pB) — mim% f f

(2.4.12)
where My; is the invariant scattering amplitude, and it is summed over all the
internal spin degrees of freedom. We shall estimate the spin averaged cross section,
via the summing of the squared matrix element over the initial spin states, then
dividing by (2J4 + 1) (2Jp + 1). Accordingly

do 1 d Rs(s) 1 9
— = Mpl?, (2413
dQ  2AY2(s,m¥,m%) dQ (2Ja + 1)(2Jp + 1) sz:‘ sil ( )
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where (2J4 + 1) (2Jp + 1) is the total number of the initial spin states, Q = (¢, 6)
refers to the centre of mass frame. The ¢ and 6 refer to the azimuthal and polar
angles respectively, where ¢ of particle a in the centre of mass frame corresponds to

the rotation around the z-axis. As such the integral over € is given as:

A s
dQ = 27d 0 = dt. 2.4.14
racos A2 (s, m2, m%) A2 (s, m2, m}) ( )

Therefore, the formula for the cross-section for the scattering of two particles A and

B into a two particles a and b is:

do 1 A/2 (s, mi, mQB) AL/2 (s, m2, mg) 1 )
~ 2 pa— > Myl
dcosf — 2s 167 A (s, m%, m%) (24 + 1) (275 + 1) 45
(2.4.15)
And,
1 1/2 2 2
]- )\ (87 ma) mb) 1 2
- Myi|* | deos.
o= [ \am vt e ann s T 5 Ml | e
(2.4.16)

2.5 The Boltzmann equation

The following section based on Ref. [78]. To get the relic density contributions of the
DM particles, as in chapters 7 and 8, we will need to solve the Boltzmann equation
numerically. Recall that in the early hot Universe the densities of all the particles
were produced from a thermal bath, and consequently the densities swiftly drop
when the temperature of the expanding Universe decreases. This type of behaviour

is described by the Boltzmann equation.

The Boltzmann equation describes the evolution of the phase space distribution
of the particles, for instance, let us say we have a particle A(p, x, t), hence the

Boltzmann equation is given as:
L [A] = C 4], (2.5.1)

where we have the Liouville operator L as given by:

d 9
— 1Y pPpT —.
aze PP G

L =p® (2.5.2)

C is the collision operator, which is described by the interactions which occur be-
tween the particles. For simplicity we will assume that the phase space distribution

is isotropic and homogeneous, this means that A(p, x, t) = A(FE,t). We can then
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consider the metric which describes an isotropic and homogeneous expanding space

time called the Roberston-Walker metric,

ds* = —dt* + a(t)? Gapdx® da? fora, 8 = 0,1,2,3. (2.5.3)
In this space we have a(t), which is the scale factor of the Universe, thus, the affine
connections (Christoffel symbols) are given by:

1o 0 0
w9 Jav 9By 9ap
Lag = 2 98 T a0 T 0w | (25.4)

Accordingly, the Liouville operator acting on A takes the following simple formula:

LA =EZS - 2L (2.5.5)

= A (2.5.6)

By substituting Equation (2.5.5) into (2.5.1), and then multiplying the left-hand side
and the right-hand side by d®p / ((2 77)3 E), followed by integrating with respect to
the full phase space, we get

dp 0 20A &3 C d?
/ pg—A—H p o4 pgz/[/ﬂ b (2.5.7)
(2m)® Ot E OF (27) E (27)
Here we have the following relation:
oF 1 1 D
— = —F——2p = = 2.5.8
oy it T E (2.5.8)
which we can use to rewrite the second term in Equation (2.5.7) as
2 3
p® 0A d°p H 0A 4
H — == = — d’p. 2.5.9
/EaE(QW)?’ enp ) Pop Yt (2.5.9)

We can now integrate out the angular parts of the previous integral, by invoking
the isotropic and homogeneous properties of the space. This will introduce factors
of 47 and p? in the integrand. Using integration by parts on Equation (2.5.9), we
get:

A7 H [*° oA A7 H - 0
(27T7r)3 0 pgﬁipdp - (27;)3 <[p3"4]0 _3/0 p2Adp>- (2.5.10)

Thus, Equation (2.5.7) can be written as:

3
?Z+3Hn:/C[A] d’p

E (2m)*

(2.5.11)
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The number density of particles, n is given by

/ A(p) &®p. (2.5.12)

(2m)°

For simplicities sake let us take the following 2 — 2 interaction A + B < a + b,

therefore, the collision term for the particle A is given by [79]

ClA] &
/ é] (27:;3 _ Z/ [AAAB (14 Ad) (1 £ Ap) IMap_a|?

spin

—Aa Ay (1 £ Ay) (1 + Ag) [Mayosapl?

x (2m)" 6% (pa + pB — Pa — P) dradrp dTodTy, (2.5.13)

where A; is the phase-space densities for the particles 7, and the phase-space inte-
gration factors dr; = d®p; / ((277)3 QEZ-).

As we shall apply the Boltzmann equation to studies of DM candidate particles,
we can avoid calculating the full Boltzmann equation for the number density as a
function of time. As such we shall suppose that some type of interactions keep the
DM candidate generally to be in thermal equilibrium with the SM particles, and
also the DM will be able to annihilate.

In the early Universe the chemical potentials for the all particles are very small,
so they can be neglected, thus the number density in the absence of Bose-Einstein
condensation is given by [30]:

00 2

9x p

272 g dpexp([ﬂgﬂ%—mi]/T) +1

gy is called the number of internal degrees of freedom, 7" is the temperature, and

ny, = (2.5.14)

m, the mass of the relic particle. By defining + = m, /T and £ = p/T, we can

write n, as:

g
ny = 2—;‘2T3 I (), (2.5.15)
with
/ - (2.5.16)
We can use in the following standard 1ntegrat10n
dg ¢ =((n+ 1)T'n+ 1), (2.5.17)
0 65 -1

where ((n) is the Riemann Zeta-function. In the relativistic limit we have m, < T,

and in this limit the integration of Equation (2.5.16) is reduced to

o0 H2
1 o~ . 2.5.1
20 = [ an (25.1)
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Accordingly, for the bosons we have I1(0) = 2((3), and for the fermions we have
I.(0) = 3((3)/4. Thus, we get

3 3/4 fermions
ny, = @gxﬂ / (2.5.19)

2
Q 1 bosons

On the other hand, in the limit m, > T, we have a similar integration formula
for both the fermions as well as the bosons, and in this limit the integration in

Equation (2.5.16) reduces to

oo ,{2

We can then perform a Taylor expansion for the square root in the denominator
(\/ K2 + $2), to lowest order in k. We can use the Taylor expansion to write Equa-
tion (2.5.20) as:

oe] /12 o] 9 5
~ e —Kk*/2x
Ii(x) /0 drk TG~ © /0 dk K™ e
=(2 x)3/2 e_m/ di k2 e ™. (2.5.21)
0

From Equation (2.5.21) we get:

I = \/z ()33 e, (2.5.22)

which implies the following formula for the number density:

Ny = gy <";X7T ) e/ T, (2.5.23)

The effective number of the relativistic degrees of freedom in the thermal equilibrium

case is given by the following expression:

g(T) = > gj+£ S gk (2.5.24)

j =Dbosons k = fermions

Jbosons = 28 and Germions = 90 and hence g, = 106.75.

The relic density for the DM candidate x is defined conventionally to be the ratio of
the current DM mass density py(xzg) = my so Yy (20), and the critical density, which
is given as p. = 3 Hg /8. sp refers to the current values of the entropy and is equal
to 2889.2cm™3 (T/2.725K)? [81, 82], Yy (0) refers to the present relic abundance,
and the critical mass density value equal to 1.0537 x 107°h? GeV em ™ [82]. More
generally the density parameter is defined to be the ratio between the density of the
pertinent substance and the critical density, this relevant substance can be matter,
DM and dark energy. The distribution of this density parameter is Qy = 68.3%,
Qpm = 26.8% and Qv = 4.9% for dark energy, DM and matter respectively [33].



Chapter

Unification of gauge and Yukawa

couplings

In this chapter we shall begin our investigation of GHU models by looking at the
situation in five-dimensions, where the extra-dimension is compactified on an interval
St /Zs, with bulk gauge groups SU(3).x SU(3)y and a bulk fermion transforming as
a bi-fundamental. The content of this chapter is based on our paper Ref. [31]. Our
paper [34] was motivated by the discovery of a Higgs boson at the LHC experiments,
which opened up a new era in particle physics. Aside from being the last missing
particle predicted by the SM, it has allowed a direct probe of the EW symmetry
breaking sector of the SM. In particular, the fact that its mass is close to the EW
scale itself, has materialised the issue of naturalness. Mass terms for scalar fields
are not protected by any quantum symmetry, therefore any new physics sector that
couples to it will feed into the value of the mass. In the SM the EW scale seems
to be shielded from high energy scales, like the Planck one, however, no reason
for this is present in the SM itself. Another intriguing hint for new physics is the
approximate unification of gauge couplings, that occurs at high energies once one
takes into account the renormalisation group evolution of the couplings. This has
lead to the development of GUT. The fact that the mass of the top quark is close to
the EW scale also suggests that the Yukawa coupling of the top may have a similar

origin.

The proposal of low-scale extra-dimensions [35, 86, 87, 88], mainly supported by
string theory constructions, opened new avenues for model building. One of the
most interesting ideas is developed in GHU models [39, 90, 91]. Extra-dimensional

models, in fact, contain a special class of scalar fields, that arise as an additional
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polarisation of vector gauge fields aligned with the extra compact space. If the Higgs
can be identified as such a scalar, its couplings with the fermions (the top quark in
particular) are also related to the gauge coupling. In addition, mass terms for the
Higgs would be forbidden by gauge invariance in the bulk of the extra-dimensions.
If the gauge symmetry is suitably broken by boundary conditions, a massless scalar
emerges in the spectrum, whose potential is then radiatively generated and finite [92,

93].

The GHU models are rather attractive as they address, at the same time, gauge-
Yukawa unification and naturalness. The main challenge is to find a gauge group,
Gcnu, that successfully predicts the values of the SM couplings. The requirement
that it contains the EW gauge symmetry of the SM, i.e. SU(2)z and the U(1)y
of hypercharge, and at the same time broken generators transforming as the Higgs
doublet field, strongly limits the possible choices. Most of these possibilities, though,
would seem to give incorrect predictions [94]. In this chapter we show that this
conclusion is modified once the energy evolution of the couplings is properly taken
into account. In fact, as the extra-dimensions are to be considered as an effective
theory, the unified predictions are only valid at the cut-off of the theory. However,
the experimental values refer to the EW scale, and the couplings may well change
due to the running via renormalisation group equations. This fact is well studied
and understood in extra-dimensional GUTs [60, 95]. Even though the cut-off of the
effective theory may be rather low, the running in extra-dimensions is not logarithmic
but follows a power law [60, 96, 97], thus it is much faster than in four dimensions.
We will show that, taking into account the running, the tree-level predictions are
strongly modified and the low energy values of the SM couplings can match the
experimental values, even if starting from completely different tree-level values. For
the top Yukawa, the running tends to ease the tension due to the largeness of the

top Yukawa at low energy compared to the gauge couplings.

3.1 Minimal SU(3) model with a bulk triplet

We will focus here on the simplest GHU group that allows us to embed both the EW
symmetry and the Higgs: Gonu = SU(3)w [98]. This group, of rank 2 like the EW
symmetry, contains an SU(2)xU(1) subgroup that can be identified with the gauged
EW one. Furthermore, the remaining 4 broken generators correspond to a doublet of
SU(2) with non-vanishing hypercharge, like the Higgs doublet in the SM. Fixing the
hypercharge of the doublet fixes the relation between the SU(2) and U(1) couplings.

Finally, a fermion field in the fundamental representation decomposes into a doublet
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SU@). | Uy | Yuk |SU@).
g g y 9s
SU(3) GHU | ganu | V3 genu | ganu/v?2 -
SM 0.66 0.35 1.0 1.2

Table 3.1: Gauge and Yukawa couplings in the SU(3) GHU model compared to the
SM values at the My scale (for the Yukawa we use the top as a reference even though
in this toy model the Yukawa corresponds to a down-type quark). We also include

for completeness the QCD coupling.

and singlet of the SU(2): once the hypercharge of the Higgs candidate is fixed, the
hypercharges of the doublet and singlet matches those of the left-handed quarks and
the right-handed down-type ones. While we would like to describe the top quark as
a bulk field, we will consider this simple model as a toy to test our idea. Note that
other possible gauge groups which may satisfy these requirements will be explored

in the next three chapters.

We also want to check if the running can enhance the Yukawa coupling at low
energies with respect to the unified value. Note that other SM fermions can be added
as localised degrees of freedom [94, 98], however, their couplings to the bulk Higgs
will be suppressed, thus explaining fermion masses below the EW scale. The SU(3)
predictions for the gauge and Yukawa couplings, in terms of the unified coupling
gcHU, are shown in Table 3.1, together with the SM values of the couplings at the
EW scale (i.e. Myz). For the Yukawa we consider the top Yukawa as our benchmark
value because it is the largest one. It is clear that the tree-level GHU predictions are
different from the SM values, however, they only apply at the cut-off of the effective
theory, which may be very far from the EW scale. We show that the running will
strongly modify the predictions.

We thus study the running effects in a concrete model based on a single extra-
dimension compactified on an interval S!/Zs. The boundary conditions at the two
end points of the interval, x5 = 0 and 25 = 7R (where R is the radius of the extra-
dimension), are such that the GHU group is broken to the EW one. The spectrum
will thus contain massless gauge bosons plus a massless scalar associated to the
broken generators. Furthermore, the bulk fermion transforming as the fundamental
of SU(3)w is assigned boundary conditions such that only two massless fermions
appear and we identify them with the third generation quark doublet and down-
type singlet (the missing SM fermions are assumed to be localised). At low energy,

therefore, the field content matches that of the SM. The running of the couplings
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Gauge coupling constants

0 2 4 6 8 10 12 14
t=In (uMy)

Figure 3.1: Running of the normalised gauge and Yukawa couplings for the SU(3)
GHU model, for 1/R =15 TeV. The first KK mode enters at txg ~ 4.0.

will be affected by the presence of the KK states once the mass thresholds are met,

starting at mgx = 1/R.

In Figure 3.1 we show the running of the couplings as a function of the energy scale

1, normalised to the unified values as in Table 3.1:

g/
{91792793793;}: {\/g).gags;\/éy} . (311)

Detailed calculations for the running of the couplings can be found in Appendix B.
The normalisations simply follow from the group theory structure of the SU(3)y
matrices, while the QCD coupling is, in principle, unrelated. The couplings follow

SM evolutions up to the scale where the first KK resonances appear, i.e.

tKK =In (312)

MzR’

From there on the running is modified by the extra-dimensions, and it features
the expected linear behaviour. The figure clearly shows that the gauge couplings

1 This is more evident from the plot in

asymptotically tend to the same value.
Figure 3.2, where we show, as a function of the energy, a naive estimate of the 5-
dimensional loop factor, obtained by using naive dimensional analysis (NDA) [100,
101]:

2
alPA (1) ~ glg(;‘)ufe. (3.1.3)

While all the couplings run asymptotically to zero, their ratio clearly tends to 1.
Thus it looks as if the unified value of the gauge couplings is an UV attractor of

the one loop running. It may seem surprising that the strong coupling also falls

IThis behaviour for the gauge coupling evolution matches previous results, see for instance
Ref. [99].
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Figure 3.2: 5D NDA loop factor as a function of the energy, for 1/R =5 TeV.

very close. However, the GHU model contains two SU(3) gauge structures, one
associated to QCD and the other to the EW gauge sector, and the bulk fermion is
a bi-fundamental. This allows for the existence of a Zy symmetry between the two
sectors at high energy that implies equal couplings. Note, finally, that the NDA
loop factor, which can be thought of as a 5D 't Hooft coupling (as R counts the
number of KK tiers below energy ), can be used as a marker of the energy, where
the calculability of the extra-dimensional theory is lost. The fact that the values
stay small seems to suggest that the theory under study may have a more extended

validity than previously thought.

The initial value of the Yukawa coupling, corresponding to y(myz) = 0.51, is tuned
to achieve unification in the UV. This value depends only mildly on the scale of the
extra-dimension 1/R. It should be noted that the running of the Yukawa coupling
does not follow the gauge ones at high energy, due to the fact that the compactifi-
cation of the extra-dimension clearly singles out the scalar component of the bulk
gauge field. However, in the UV, the running needs to be replaced by the running
of the 5D gauge coupling. Our results show that the value of the Yukawa coupling
at low energy is larger than the values at unification, y = go/v/2, however the en-
hancement is not enough to explain the Yukawa coupling of the top, y = 1. It
should be remarked that the value we obtain is a solid prediction of this toy model.
Nevertheless two loop corrections, and the embedding of the top in a more realistic
model, may further improve the agreement. One possibility is to replace the bulk
fermion triplet with a larger representation that can contain a singlet with the cor-
rect hypercharge to match the right-handed top: the minimal possibility is to use

a 2-index symmetric representation (sextet). The sextet would contain a doublet
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and singlet matching the quantum numbers of the SM quarks, plus an SU(2) triplet.
Thus, one can define two independent Yukawa couplings. Furthermore, the triplet
acquires a mass by marrying to a localised chiral fermion, which is also needed to
cancel residual 4-dimensional gauge anomalies. We also performed the running in
this model, following the same prescriptions as before. However, we noticed that
the NDA loop factor estimate for the EW gauge couplings run to non-perturbative
values well before unification occurs, thus rendering the perturbative running unre-
liable. This result seems to indicate that only models with small representations of
the bulk gauge symmetries can provide useful predictions for the low energy values

of the couplings in the model.

3.2 The RGEs for an SU(3) toy model

The renormalisation group equations allow us to resum the leading energy-dependent
corrections to any coupling in terms of a differential equation. The solutions are
energy-dependent couplings whose values run with the scale at which the physics
is probed. While in four dimensions the running is logarithmic, in five dimensional
models it becomes linear in the energy. The generic structure of the running of the
gauge couplings at one loop level is given by [6]:

dg;
16ﬂ2AE%—::b§NIg?—%(S(t)——l)b?HLIgf, (3.2.1)

where ¢ = In (u/Myz) and contains the energy scale parameter u. We chose to use
the Z mass as a reference scale, so that for 1 = Mz we have t = 0 and we can fix the
initial conditions of the running. The coefficients biSM and bZ.GHU can be computed
once the field content of the model is specified: the former are equal to the values
in the SM, while the latter include the effects of the KK modes in the bulk of the
extra-dimension. This effect only starts contributing above the mass of the first

mode, equal to the inverse radius mkx = 1/R. The function S(t), defined as

R=Mz;Ré¢  for pu>1/R
S(t)—{“’ zRe for p>1/R, (3.2.2)

l1 for My<pu<l1/R,

encodes the linear running due to the extra-dimension. This continuum approxima-
tion has been tested against the discrete sum over the KK modes, and the results

are in excellent agreement. For the SU(3) GHU model the b coefficients for the SM
gauge couplings, g; = {¢', g, gs}, are

41 19 SU(3)
pSM — [ = _ ] b
¢ 10" 6’ o

[_17 o _”] S (323)

6’ 27 2
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This result can be easily understood: —17/2 is the beta function of the unified
SU(3) model (recall that be(S) has an additional normalisation of 1/3), and the
result matches the fact that each KK tier contains a complete representation of
SU(3). For the hypercharge running the normalisation factor has been taken into

account.
Similarly, the general form of the running of the one loop S-function for the Yukawa
coupling y can be written as [102]:

1672 Z—i =M + (S(t) — 1) Bty (3.2.4)

where
By =1y [Cy v DY d; g?] : (3.2.5)

Computing the coefficients for the Yukawa running is not as straightforward as
for the gauge ones: already at one loop, vertices involving different KK modes
contribute. Thus to simplify the calculation, we assigned the SM values to the new
couplings. Note though that the choice needs to be done in a consistent way. As
such, we decided on the following policy: for couplings between bosons, we always
associate the coupling to a gauge one, while couplings to fermions depend on the
quantum numbers of the boson (thus for doublets we associate the coupling to the
Yukawa)?. We also checked that the numerical results do not depend crucially on

this choice®. For the model under study the coefficients assume the following values

9 21
CSM = 5, CSU(3) == ?7 (326)
and
) 9 35 39
SM _ | _° % _ SUB) _ |22 20y 2
s [ Tt 8}, d: [ -2 ] (3.2.7)

It is interesting to notice that imposing the unification relations between the EW
couplings and the Yukawa, compare to Table 3.1, one would obtain a beta function
of

1
Losuo) 4 g0 4 V0 -y, 32

which is the same value of ng(s) for the QCD contribution. Thus, the running of
the scalar coupling, even in the unification regime, is different from the running of
the vector couplings. This is due to the intrinsic violation of 5D gauge invariance

encoded in the compactification of the extra-dimension.

2Note that for larger bulk representations this is the only physically meaningful choice. For
instance, in the case of a sextet, two Yukawa couplings can be identified that run differently from

each other.
3The detail of the calculation appear in Appendix B and Appendix C.
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The evolution equations for the gauge couplings can be solved analytically as, at one
loop level, they are not coupled. On the other hand, the Yukawa coupling is related
to the gauge couplings, therefore we have performed a numerical calculation, whose

results are given in Figure 3.1.

3.3 The naive dimensional analysis and asymptotic be-

haviour

The asymptotic behaviour of the running of the gauge couplings can be easily un-

NDA

derstood when rewriting Equation (3.2.1) in terms of « (as defined in Equa-

tion (3.1.3))

doNDA SU(3)

b
_ . NDA NDA\2

where we only retain the term proportional to S(¢) that grows with energy. As such,

(3.3.1)

for negative b, the above equation allows for an UV fixed point, where the coupling
stops running, that is

NDA . T . 2

The value above matches the numerical value we found in Figure 3.2 and, as discussed
earlier, it remains perturbative. We also estimated the two loop contribution which

adds to Equation (3.3.1) the following term

pSUG)
2loop , NDA\3
with 65UG3) — 44, The zero of the beta function is marginally corrected and

2loop

now appears at « ~ 0.3. This confirms that the perturbative expansion

NDA‘
uv
is well behaved. The presence of an UV fixed point is less certain, as there are

non-perturbative indications against its presence [103, 104].

3.4 Results and Discussions

Our results show that the running cannot be neglected and is crucial to test the fea-
sibility of gauge-Higgs-Yukawa unification in extra-dimensions. We have performed
a one loop calculation within the approximation of neglecting the finite parts of the
loops. The result can be improved by including the finite contributions, that may
also depend linearly on the energy [105] and thus be non-negligible. For increased
accuracy the two loop running may also be computed. For the purpose of this chap-

ter, the accuracy we achieved at one loop is sufficient to enforce our conclusions.
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Note that the effect of the running on the Yukawa coupling applies to any GHU
model and we expect qualitatively similar results to apply, i.e. an enhancement of
the Yukawa coupling at low energy. Thus the predictions of realistic models, such
as the ones in Refs. [106, 107, 108], will be affected by these running effects, in
particular for the Yukawa couplings. The unification of the couplings should occur
in any GHU model (as long as the running remains perturbative) as we showed that
it is due to an attractor in the UV. The simplicity of this model contrasts previous
attempts made in the literature to address the issue of the mismatch between tree-
level predictions and the low energy SM values. The value of the gauge couplings
can be easily modified by adding an extra gauged U(1)x in the extra-dimension.
The hypercharge is thus identified with a combination of the U(1) contained in the
unified group Ggnu and of the new U(1) x, and the gauge coupling gx can be tuned
to the correct value. Additionally, localised kinetic terms [109] for the SM gauge
subgroups (that are not broken on the boundaries) also modify the unified relation.
The challenge presented by the top Yukawa is more critical. One possibility is to
embed the top in an higher dimensional representation in order to gain a group
theory factor [110] at the price of lowering the cut-off of the theory. Another possi-
bility is to modify the geometry of the extra-dimension by including a curvature: in
such a case, playing with the localisation of the zero mode wave functions, with an
enhanced overlap with the Higgs being obtained. The latter mechanism has been
used in warped space [I11, 112], leading to a revival of composite Higgs models.
Properly taking into account the running, maybe none of the above complications
would be necessary. Note that obtaining the masses of light fermions is rather easy,
as one can use localisation in flat space to suppress the overlap with the Higgs [113],

or include light fermions as degrees of freedom localised on the boundaries [93].

To summarise, in this chapter we have introduced the simplest five-dimensional GHU
scenario, where we have used the gauge symmetry to be SU(3). x SU(3)w, this is
the smallest group that contains SU(2) x U(1) as a maximal subgroup. We have
focused on the EW symmetry and the Higgs, where the gauge boson arises from the
4-dimensional components of the 5-dimensional gauge fields, whilst the Higgs field
arise from the internal components of the SU(3) gauge group. We will study in the
next chapter the evolution of the quark masses and the flavour mixings in 5D for
an SU(3) gauge group which is compactified on an S'/Zs orbifold, where the RGEs

are also derived at one-loop level.



Chapter

Evolution of quark masses and flavour

mixings in 5D for an SU(3) gauge group

4.1 Model construction

This chapter shall discuss the evolution of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements, the Jarlskog invariant as well as the quark mixings in a five-
dimensional model for an SU(3) gauge group compactified on an S!/Zy orbifold.!
Note that this is very similar to the model investigated in chapter 3, with the ex-
ception that in this chapter we will assume that the fermion doublet and the two
singlets are located at the fixed points of the extra-dimension. As such the quark
masses and the flavour mixings are derived at one-loop level [115]. The SM of parti-
cle physics is believed to be an effective low energy theory for a number of reasons,
where one of these reasons is to try and understand the fermion mass hierarchy and
quark mixings. In the SM there is a hierarchy of the quark masses belonging to var-
ious generations of the up-type quark masses (my, m., m,) and also the down-type

quark masses (mp, ms, mg) [116]:
me > Me > My, my > mg > my. (4.1.1)

In gauge theories, the renormalisable fermion masses come from mass terms such as
fM £, and also arise from Yukawa terms like fY f®. For these Yukawa terms, once
the Higgs doublet acquires a VEV, all the SM fermions acquire a mass, where this

mass is proportional to their Yukawa couplings [116]:

My, s,d

View = Lty“ Yosd = (4.1.2)

!The work of this chapter is based on our published conference proceeding [114].
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Y} e and Yy, ¢ 4 are the Yukawa coupling eigenvalues, v is the VEV of the Higgs field,
where this value can be fixed from the measurement of the W boson mass:

v= 2A§W o~ 246GeV. (4.1.3)
In the standard EW model with three quark families, the quark sector contains ten
free parameters, six quark masses and also four flavour mixing parameters [117].
In order to look into the dynamics of fermion mass and flavour mixing, we need
to extend the SM. We expected that any new physics beyond the SM shall appear
above the Mz ~ 91.2 GeV scale. In order to build a mass model of quarks at the
high energy scale, one can use the RGEs. We need this technique to fill in the space
between the predictions of the model at p© > Mz and the experimental ones at
pu < My [118]. Therefore, we are using these RGEs in order to study the asymptotic
behaviour of the Lagrangian parameters, such as Yukawa couplings for both up-type
quarks and down-type quarks and also the mixing angles 09, 613 and 63 [119]. In
order to compute the running of quark masses above the My scale we are going to
use the quark masses and the mixing parameters, which are obtained at the My
scale to determine the Yukawa couplings Y, and Y. After doing this, we need to
solve the RGEs of the Yukawa couplings, in order to get the running of the quark
masses at any energy scale [118]. In order to diagonalise the quark mass matrices,

one can use an unitary matrix as follows [116, 120]:

ur, = (Uy, U], ufy = (Uu%)fu}%, dp, = (Ug,)d}, ¢ = (Ud';%)Tdﬁq-
(4.1.4)
However, this will lead to the following:
(V)" Ya (Uu,)) = diag(yu: ye, ve), (4.1.5)
(Uas,)' Ya(Ua,) = diag(ya, ys, ), (4.1.6)

or equivalently we can diagonalise the quark mass matrices appearing in the La-

grangian of Yukawa interactions by using the bi-unitary transformation [116, 117]:

(UUL)Jr M, (Uu ) = diag(mwmcamt), (4.1.7)

7
(UGlL)]L My (Ud%) = diag(mcb ms, mb)~ (4.1.8)

Accordingly, we use this bi-unitary transformation in order to change all our quark
fields from their flavour eigenstate basis to the basis of mass eigenstates [117]. Let us
assume that we are working in the basis where the Yukawa couplings for the up-type
quark Y, is diagonal, as appears in Equation (4.1.5), then the mass eigenstates of
the down-type quarks are connected to their weak eigenstates by the CKM matrix
Vorw [118]:

Ve YaYdVorenr = diag(2,12,12). (4.1.9)
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For the other way around, that is, if we are working in the basis in which the Yukawa
couplings for the down-type quarks are diagonal, then the mass eigenstates of the

up-type quarks are given by:
Ve YaYid Vs = diag(k3, k2, k). (4.1.10)

Furthermore, we can build the Yukawa couplings for the down-type quarks from

their eigenvalues and also from the CKM matrix [118].

There are many ways to look at the quark mass hierarchy and flavour mixings, we
shall investigate an SU(3) gauge group compactified on an S*/Zs orbifold which has
size R~ = 4 TeV, 8 TeV and 20 TeV.

4.2 The evolution of CKM matrix in 5 dimension for an

SU(3)

The SM of particle physics has been very successful in describing most of the particle
phenomenology known to date [32], but it possesses some problems whose solution
could imply physics beyond the SM. The SM is not like QCD and QED, it is a
theory which violates parity (P), time reversal (T) and charge conjugation (C). The
C and P separately are not a good symmetry of the SM, but the combination CP,
in the case of only one family of matter fields, or even if we have two families, is
a good symmetry. Since we have three families in the SM, CP is also not a good
symmetry. All of the SM Lagrangian is invariant under CP transformations, except

the part where the CKM matrix appears.

In order to study the CKM matrix, let us start with a simple expression ;;v"d;r,

and express it in terms of mass eigenstates, this will be given as
Gy dip = W, (U )y (U Ldf = (U )i (UOE) Lty v P (4.2.1)

Because the above equation the two matrices are different, when we compute the
product of two unitary matrices we still get a unitary matrix. This unitary matrix
is called the CKM matrix

(U"2)ni (UIE)], = Vi (4.2.2)

In order to parameterise the quark sector’s flavour mixing we need the CKM ma-
trix [121]. The CKM matrix can be parameterised in terms of its 9 parameters [122]

as:
em 0 0 etrr 0
V= 0 €™ 0 Vit 0 €92 0 ) (4.2.3)
0 0 €™ 0 0 eo3
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where Vy; is the standard parametrisation and it is given as follows

1 0 0 C13 0 813€i5 C12 512 0
Vse=1 0 o3 o3 0 1 0 —s12 c12 0 |, (4.24)
0 —so3 co3 —813672'6 0 Cc13 0 0 1

where ¢;; = cosb;j, and s;; = sinf;; [123]. From the standard parameterisation,
which appears in Equation (4.2.4), the CKM matrix has the following form [124]

—is
€12€13 512€13 s13e”"

Vot = —8512C23 — C12823513€" C12C23 — S12523513€" 523C13 . (42'5)

)

4 s
512823 — C12€23513€"°  —C12523 — S12C23513€"  C23C13

Thus, from the experimental point of view, we know the following relationship
sin 013 < sinfo3 < sinfy9 K 1, (4.2.6)

and we can express this hierarchy using the Wolfenstein parametrisation [125]:

sin o = Vs , (4.2.7)
V ’Vud‘2 + ‘VuSP
and
VUS
sin 912 == ’ ’ (428)

V ’Vud‘Q + ‘Vus|2‘

The RGEs for the CKM matrix beyond the R~! scale is given as [126]:

dv; k? + k2 2+12
167‘(’2 dtv = 125(t) Z ]{:2 _ k]2 ZEWJ‘GZ‘GV + Z l; . l2 kavjtrv}’YViU ) (4'2'9)
o g J go#y 19

where the energy scale parameter t= In(u/Myz) and S(t) = MzRe®, and as we
mentioned earlier, our renormalisation point is the Z boson mass. Furthermore,
we can introduce the Jarlskog re-phasing invariant parameter J, which is a crucial
object in measuring the CP violation, and it is given through the unitarity properties

of Voxwm, as follows [117]:

Im (Vi VigViisVin) = J > (€kimEaps), (4.2.10)
m,d

where the subscript (k, [ or m) runs over the (u,c,t) quarks and the subscript (c,
B or &) runs over the (d, s,b) quarks. In particular, in this chapter we are using the

following J to present the CP violation phenomena:
J = (Vi Vi V3 V). (4.2.11)
Therefore, one can write its square as:

1
T = Va2 Vs P Vas P Vi -5 (1—|vtb|2—rvcs\?—\vts\2—|vcb12+mb\2m812+\vzsPw?).
(4.2.12)
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We can then define the RGE invariant quantity in the hierarchical limit my > mg
as follows [127]:

ms s

R23 = sin(2923) sinh lln (Wbb)] = R23 = sin 923 COs 923 <:Zb) . (4213)

4.3 Numerical Results

In Figure 4.1 we present the evolution of the mass ratio for the one-loop calculation
for three different compactification scales: R~! = 4 TeV, 8 TeV and 20 TeV. We
expect new physics to come into play when we reach our cut-off, where the cut-off
for our effective theory is when t = 4.1, 4.4, 4.9 for R~' = 4 TeV, 8 TeV, 20 TeV
respectively. In the left panel we present the evolution of m,/m;, in this case one
can see that the SM (the black line) behaves like A%, where A ~ 0.22. Through
the numerical analysis of the one-loop calculation, we observe that when the fifth
dimension contributions switch on, the mass ratio m,/m; decreases whenever the
energy increases, and this creates a significant change of order of A8. In the right
panel we are showing the evolution of m./my, in this case we see that the SM behaves
like A*, and when the fifth dimension KK-modes become kinematically accessible the
mass ratio m./m; decreases with increasing energy, and in this case the change is of
the order of \*.

In Figure 4.2 we plot the evolution of the CKM parameters, in the left panel we
plot |Vg| and in the right panel |Vis|. We see that once the fifth dimension contri-
butions switch on, one can see that there are new contributions coming from the
fifth dimension. Accordingly the evolution of the CKM parameters |Vz| and |V

are rapidly increasing, this significant increase is of order of A\2.

7.x1078 0.0035
6.x107° 0.0030
5.x107° 0.0025

My 4.x107° m¢ 0.0020
my 3.x1078 m; 0.0015
2.x1078 0.0010
1.x107® 0.0005

0 0.0000

2 3 4 5 6 2 3 4 5 6
log (u/GeV) log (L/GeV)

Figure 4.1: Ewvolution of the mass ratio for three different values of the compactifica-
tion radius we have used: 4 TeV (red line), 8 TeV (blue line), 20 TeV (green line);
as a function of the scale parameter t. In the left panel is the evolution of the mass

ratio my, /my, and the right panel is the evolution of the mass ratio m./m;.
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Figure 4.2: The evolution of the CKM elements for three different values of the
compactification radius we have used: 4 TeV (red line), 8 TeV (blue line), 20 TeV
(green line); as a function of the scale parameter t. In the left panel is the evolution

of the CKM element |V|, and the right panel is the evolution of CKM element |Vis|.
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Figure 4.3: In the left panel is the evolution of the Jarlskog re-phasing-invariant
parameter; the right panel is the evolution of Rog, for three different values of the
compactification radius: 4 TeV (red line), 8 TeV (blue line) and 20 TeV (green line);

as a function of the scale parameter t.
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Figure 4.4: Left panel is the evolution of sinfss; the right panel is the evolution of
sin 019, for three different values of the compactification radius: 4 TeV (red line), 8
TeV (blue line), 20 TeV (green line), as a function of the scale parameter t.
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In Figure 4.3, left panel, we plot the Jarlskog invariant parameter. As we mentioned
earlier, this gives us a good indication of the amount of CP violation in the quark
sector. As can be seen, once the fifth dimension contributions are reached, the
value of Jarlskog invariant increases sharply until we reach the cut-off. In the right
panel we present the evolution of the renormalisation invariant Rog, where this
quantity describes the relationship between the mixing angles (sinf23 and cos f23)
and the mass ratio (my/ms) as it appears in Equation (4.2.13). This renormalisation
invariant quantity starts to increase rapidly when the fifth dimension contributions
switch one, therefore, this rapid increase causes increases in the mixing angles, which
is suppressed by the mass ratio my/ms. Similarly, in Figure 4.4, in the left panel,
we present the evolution of the mixing angle sin fo3, and in the right panel we plot
the evolution of the mixing angle sin 615, where in this case after, the fifth dimension
is switched on, the mixing angles sin fo3 and sin 612 increase rapidly. However, this
increase is suppressed by |Vg| and |V,s| respectively, as is shown in Equation (4.2.7)
and Equation (4.2.8).

The discussion in this chapter related to the evolution of the mass ratio (only some
selected mass ratio plots have been shown), the evolution of the CKM elements (such
as |Vg| and |Vis|), the evolution of the Jarlskog re-phasing invariant parameter, the
evolution of Rs3 as well s the evolution of sin 3 and sin 815. We note that when the
fifth dimension KK-modes switch on, all the above mentioned parameters increased
rapidly until we reach the cut-off. Up to this point we have only consider an SU(3)
GHU model (with and without additional fermions), we shall now extend this to
include different bulk gauge groups. As such, in the next chapter we qualitatively
discuss the evolution of the gauge couplings in 5D for an SU(5) as well as the flipped
SU(5) groups.



Chapter

Evolution of the gauge couplings and
Weinberg angle in 5D for an SU(5) and
flipped SU(5) gauge group

In this chapter we extend upon the works of chapters 3 and 4, by now considering
a simplified 5-dimensional model with a SU(5) and SU(5)xU(1)" gauge symmetry.
We will only look at the the evolution of the gauge couplings, where in this scenario
the gauge couplings evolution will be derived at one-loop level and will be used to
test the impact on lower energy observables, in particular the Weinberg angle.! The
idea of GUTs is to embed the SM gauge group (Gsy = SU(3)¢ x SU(2)r x U(1)y)
into a large group G, where as we know the SM group is rank 4, which means that
the gauge group G must be at least rank 4. In this chapter we shall study the non-
supersymmetric extensions of the SM based on the gauge group SU(5) and flipped
SU(5). In particular, we will study higher-dimensional non-supersymmetric orbifold
models [94]. By considering orbifolds based on Abelian discrete groups which lead
to a 5-dimensional gauge theory compactified on an S'/Zy, we will assume that
all matter fields are propagating in the bulk. The extra dimension is compactified
on a circle of radius R with Zs orbifold, therefore, the 5-dimensional KK modes of
the weak doublet (@) and the singlet (g), as well as the gauge fields (A), are given
by [129, 130):

)

\/21777RQ%($)+2\/17§ ; Q'} () cos (g) +Q%(z) sin (?‘;)] , (5.0.1)

'The work of this chapter is based on our published conference proceeding [128].

Qx,y) =

49
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¢(x) cos (Cﬁ;’) + ¢} (x) sin (’;}’)] (5.0.2)

—; xr 1 N X ) COS %
Alz,y) = 27rRA0( )+2M;An( ) <R>, (5.0.3)

where the zero modes are the 4-dimensional SM fields and there is a left- and a

1 R

right-handed KK mode for each SM chiral fermion, whilst the Higgs and the gauge
fields are Zg even fields [129].

The chapter is structured as follows: In section 5.1 we discuss the evolution of the
gauge couplings and Weinberg angle in 5-dimensions for an SU(5) gauge group,
whilst in section 5.2 we discuss the evolution of the gauge couplings and Weinberg

angle in 5-dimensions for an SU(5)x U(1)’ gauge group.

5.1 The gauge coupling evolution equations for an SU(5)

In this section we shall explore the evolution of the gauge couplings and Weinberg
angle in five dimensions for an SU(5) gauge group, in order to have a unified theory
above some energy scale My, with n, generation of fermions, where we need at least
12 new gauge bosons; an SU(2);, doublet, colour triplet and their antiparticles, plus
an SU(2)y, singlet of the Higgs scalars h,, [131]. We put the electroweak doublet and

the colour triplet in the 5-dimensional fundamental representation as follows:

h7’

sp=| n |. (5.1.1)

SU(3)c acts on the first 3 components, and SU(2), acts on the last two, where the
SU(5) gauge group breaks into the SM gauge group, when a scalar field 24y such
as the Higgs field acquires a VEV, and this VEV is proportional to the hypercharge
generator [131]. The Higgs sector is made up of an adjoint 24y, which acquires a
VEV from the spontaneous breaking SU(5) — SU(3)¢ x SU(2)w x U(1)y:

200 0 0
020 0 0
v
<Ug>=—=[002 0 0 5.1.2
"> s (5.1.2)
000 -3 0
000 0 -3
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Therefore, we can write the full SU(3)c x SU(2)z, x U(1)y right handed represen-

tation of the creation operators as follows [132]:

dededetel’ = (3,1,2/3)8(3,1,-1/3) @ (1,1, -1)
®(3,2,-1/6) @ (1,2,1/2). (5.1.3)

The new gauge bosons are called X and Y and they violate baryon and lepton
number and carry flavour and colour. The gauge bosons are given by the adjoint

representation of the SU(5) gauge group:
24— (8,1,0) @ (1,3,0) @ (1,1,0) @ (3,2, —5/6) & (3, 2,5/6), (5.1.4)

where (8,1,0) is identified as the SU(3)c gauge bosons G, (1,3,0) is identified as
the W+ and W° gauge bosons, (1,1,0) is identified as the B gauge boson, (3,2,-5/6)
is identified as the A7 = (X,,Ya) gauge boson and (3,2,5/6) is identified as the
A%‘ = (X4, Ya)T gauge boson. Therefore, the covariant derivative for a fundamental

representation is given by the following formula
24
Dy=0,—igy 5L = Oy — ig Ay, (5.1.5)
a=1

and the matrix of the gauge bosons becomes

G Gy G X, Y, %0 0 0 0
GGy & X, Y, o -Z= 0 o0 o0
A, :\2 Gb GG X, Y, |+ g o o % 0 o0
xroxo o xt Weoow+ o o o Z o0
yroye ytowe - o o o0 o Z
(5.1.6)

The new gauge bosons X and Y are clearly carrying colour, and they have electric
charge 4/3 and 1/3 respectively. The one-loop beta functions for the gauge couplings

in 4-dimensions for SU(5) are given by:

_ 81

16729, By, = 30" (5.1.7)
_ 19

167295 3B,y = ~ 5 (5.1.8)
_ 41

167293 % By = ~ 5 (5.1.9)

While the one-loop beta functions for the gauge couplings in 5-dimension for SU(5)
are given by:

16729, 2B, = (S(t) — 1) <§(1)> : (5.1.10)
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Scenario | t(R1) | t(Rg2) | t(R3)

5D SU(5) | 7.51 | 819 | 8.86

Table 5.1: Summary the cut-offs in 5 dimensions for an SU(5) gauge group for three
different compactification radii R~ = 5, 10 and 20 TeV, where t = In(u/Mz).
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Figure 5.1: Left panel: The evolution of the inverse fine structure constants a;l(,u)
in five dimensions as a function of t, for compactification scale R~' =5 TeV, where
oyl is the (red line), oy is the (blue line) and a3 is the (green line). Right panel:
Evolution of the Weinberg angle sin® Oy, for all matter fields in the bulk, for three
different compactification scales; 5 TeV (red line), 10 TeV (blue line), 20 TeV (green

line) as a function of t.

16725 By, = (S(t) — 1) (Z) : (5.1.11)
1672952 By, = (S(t) — 1) (-2) : (5.1.12)

where ¢ = In(S(t)/MzR), S(t) = pR for Mz < u < 1/R.

In Figure 5.1, left panel, we present the evolution of the inverse fine structure con-
stants in five dimensions for the one-loop beta-function, by assuming that all the
matter fields are in the bulk. We see that ozfl and oy L approximately meet at
log(E/GeV) ~ 3.67, a;* and az ' approximately meet at log(E/GeV) ~ 3.72 and
a;l and a;l approximately meet at log(E/GeV) ~ 3.78. In Figure 5.1, right
panel, we present the evolution of the Weinberg angle sin? @y for the one-loop beta-
function, for different values of compactification radius, for the model discussed
above. Notice that the prediction that the Weinberg angle for an SU(5) gauge
group is sin? Ay ~ 3/8 at My is over-shot by approximately 20%. We have sum-
marised our results, in Table 5.1, of the cut-offs for the case of an SU(5) gauge group

in 5 dimensions, these values correspond to the point where g3 = /5/3 go.
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5.2 The gauge coupling evolution equations for an SU(5) x
Uy

In this section we shall explore the evolution of the gauge couplings and Weinberg
angle in five dimensions for an SU(5)x U(1)" gauge group, where the flipped SU(5)
gauge group is different from SU(5) gauge group in the electric charge generators.
As it does not lie completely in the SU(5) gauge group, the flipped SU(5) is just
an embeding of SU(5) x U(1) into an SO(10) gauge group. Note that the flipped
SU(5) model is a very special GUT [133]. The flipped SU(5) gauge group contains
three generations of quarks and leptons, a (10,10) Higgs boson, and therefore they

have the following representation [134]:
Fuoy) = @, d% v°]; fe) = L, u; I = e, (5.2.1)

and

Huo) = [Qu, dy, P FI(TO) = [Qa,dy, ®al, (5.2.2)
where the components ®, ®7 break the flipped SU(5) gauge group to the SM
gauge group, once P, and ¢ 5 acquires a VEV:

SU(5) x U(1) — SU(3)c x SU(2)L, x U(1)y x U(1), (5.2.3)

and then the gauge group, SU(3)¢ xSU(2),xU(1)y x U(1)’, is spontaneously broken
to SU(3)c X U(1)em, once @5 acquires a VEV:

SU(3)c x SU(2)L, x U(1)y x U(1) = SU(3)¢ x U(1)em. (5.2.4)

The flipped SU(5) gauge group includes SU(5) gauge bosons W+, W3, B, X, Y and
B’, which is a U(1)" gauge boson. The electric charge generator @, in the flipped

SU(5) model, is given as follows:
1., 2.

where Y” is the U(1) inside SU(5) and Y is the one outside SU(5). The hypercharges
of the known quarks, leptons and Higgs field in the flipped SU(5) gauge group are
given as shown in Tabel 5.2 [133, 134].  The one-loop beta functions for the gauge

couplings in 4-dimensions for SU(5)xU(1)" are given by:

_ 53
16729, 3By, = o (5.2.6)
_ 19
167295 > Byy = ~ 5 (5.2.7)
41
167295 % By = ——. (5.2.8)

6
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Fields | SUB3)¢ | SU(2)r | Y5/2
Q 3 2 :
L 1 2 —3
u® 3 1 —%
d 3 1 i
e 1 1 1
i 1 2 i
Hp 3 1 -1

Table 5.2:  Summary of the quarks, leptons and Higgs field content in the flipped

SU(5) model and their quantum numbers.

0.45
60

0.40
50
0.35
“ 5,030
sin“6w

a1 90 ———/Y 0.25

20 0.20
10 0.15
0.10
0 0 1 2 3 4 5 6

Figure 5.2: Left panel: The evolution of the inverse fine structure constants ai_l(u)
in five dimension as a function of log(E/GeV) for compactification scale R™' =5
TeV, where oy is the (red line), oy is the (blue line) and az* is the (green line).
Right panel: FEvolution of the Weinberg angle sin Oy, for all matter fields in the bulk,
for two different compactification scales 1 TeV (red line), 5 TeV (blue line) and 10
TeV (green line) as a function of t.

While the one-loop beta functions for the gauge couplings in 5-dimensions for SU(5) x

U(1)" are given by:

105, %5, = (5(0) - 1) (). (5.2.9)
16725 By, = (S(t) — 1) (—274> , (5.2.10)
167295 By, = (S(t) — 1) (-2) : (5.2.11)

Lin 5-dimensions for

In Figure 5.2, left panel, we show the evolution of the a;
the one-loop beta-function, and in this case one can see that a;', a;' and az’
approximately unify at log(E/GeV) ~ 4.0 for compactification scale R~! = 5 TeV.
In the right panel we present the evolution of the Weinberg angle for the one-loop

beta-function, for different values of compactification scales R~! = 1 TeV and 5
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Scenario t(R1) | t(Re2) | t(R3)

5D flipped SU(5) | 4.55 | 5.08 | 5.55

Table 5.3: The cut-offs in 5 dimensions for the flipped SU(5) gauge group for two
different compactification radiit R~ = 1, 5 and 10 TeV, where t = In(u/Mz).

TeV, for the flipped SU(5) model. As an example, for R™! =5TeV, sin? fy ~ 0.37
at t ~ 5.08.

To summarise, in this chapter we have discussed the evolution of the gauge cou-
plings in 5D for an SU(5) and flipped SU(5) gauge group, where we have derived
these evolutions at one-loop level and used it to test the impact on lower energy
observables, especially the evolution of the Weinberg angle. This chapter has shown
that the evolution of the inverse fine structure constants for both SU(5) and flipped
SU(5) gauge groups tend to almost unify. The Weinberg angle for an SU(5) gauge
group is over-shot by approximately 20% and for the flipped SU(5) it over-shots by

roughly 7%. In the next chapter we shall extend our discussion to the Go gauge

group.



Chapter

Evolution of the gauge couplings and

Weinberg angle in 5D for a Gy gauge
group

We will study in this chapter the evolution of the gauge couplings and Weinberg
angle in 5-dimensions for a G5 gauge group.! Recall that theories which contain light
elementary scalars can look unnatural, because their masses receive quadratically
divergent loop corrections. This problem is known as the hierarchy problem of the
SM, as in this case the masses are pushed up to a cut-off scale [94]. In order to solve
this problem we need to lower the cut-off scale (as was done in the case of large extra
dimensional models), or to embed the Higgs field in a multiplet of a symmetry group
larger than the 4-dimensional Poincare group (such as SUSY) [136]. As we know,
SUSY is a space-time symmetry mapping particles and fields of integer spin (bosons)
into particles and fields of half integer spin (fermions), and vice-versa. Aside from
SUSY there are other extensions of the 4-dimensional Poincare group, the most
natural such choice would be to use the Poincare group of a higher dimensional
gauge theory [91, 137]. A gauge theory defined in more than four dimensions can
have many attractive features, one of these features is that the interactions at low
energies may be truly unified and some of the distinct fields in four dimensions can be
integrated in a single multiplet in higher dimensions, where the Higgs fields could be
a part of the gauge fields. Another feature is that the topology and structure of the
extra-dimension may provide us with new ways of breaking symmetries, accounting
for, at the same time, the hierarchy problem [138]. As such the SM Higgs field may

originate from extra components of a higher dimensional gauge field. We therefore

!The work of this chapter is based on our published conference proceeding [135].

o6
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plan to discuss the evolution equations of the gauge couplings and Weinberg angle
for a Go gauge group. In this model we consider the evolution of the gauge couplings
and Weinberg angle in 5D, we know that the proton decay is a well-known problem
for many gauge-unification model, the model under consideration is a toy model,

thus we do not addressed the proton decay.

The structure of this chapter is as follows: In section 6.1 we outline the Gg model
construction, in section 6.2 we explore the evolution of the gauge couplings and
Weinberg angle for a Go gauge group. Our results and discussions will be given in

section 6.3.

6.1 The Gy Model Construction

In order to build a successful model we are first required to find a gauge group
that contains SU(2)r,x U(1)y (and optionally the strong SU(3).), where the adjoint
representation contains a doublet of SU(2) to be identified with the Higgs doublet.
The second step is to normalise the U(1) gauge coupling so that the candidate Higgs
has the correct hypercharge.

In this section we will explore a simple five-dimensional gauge Higgs unification
scenario, where we use the gauge symmetry to be Gao. The extra dimension is
compactified on a circle of radius R with a Zg orbifolding [139]. This orbifold is given
as Zs : y — —y, so our physical space is in the interval y € [0, 7R] and has two fixed
points at y = 0 and y = 7R [6, 60]. We assume that all matter fields are propagating
in the bulk. The gauge bosons arise from the 4-dimensional components of the 5-
dimensional gauge fields, whilst the Higgs field arises from the internal components

of the gauge group Go compactified on an St /Zy orbifold [6, 139, 140].

The G2 gauge group contains SU(3) as its maximal subgroup, and the decomposition
under SU(3) is given by:
14 =8+3+3. (6.1.1)

Form this we can see that there are two possible doublets, one contained in the
adjoint of SU(3), and the other in the triplets, where in the first case g1 = V3 g2
while in the other case g1 = g2/v/3. The decomposition under SU(2) x U(1) is
given by:

4= (30 + 2+ 2z + 10) + C+ Dy + 1+ 1) 5 (612)
The other maximal subgroup is SU(2) x SU(2) under which:

14 = (1,3) + (3, 1) + (2, 4), (6.1.3)
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where in this case the first SU(2) has to be identified with the one contained in the
SU(3) gauge group, and then in this case we can perform two possible breakings for
the group. That is, either its rotation, which is now breaks Go — SU(3), and hence
the glide to SU(2) x SU(2), or vice-versa. The fundamental representations under
SU(3) decompose as:

7T=3+3+1, (6.1.4)

and the fundamental representations under SU(2) x U(1) decompose as:

T=2+2)5+0+1)_,5+ Lo (6.1.5)

We need the RGEs to fill in the space between the predictions of the model at
1> Mz and the experimental ones at yu < Mz. We can describe the contributions
from the SM and KK modes to the beta-functions in two separate terms, which are

different and independent [60, 111].

6.2 The evolution of the gauge couplings and Weinberg

angle

The evolution of the gauge couplings in 4-dimensions for the Go gauge group at
one-loop is given by:
dgi

= b g3, (6.2.1)

1672

where the numerical coefficients in Equation (6.2.1) are given by:

53 21 63
R e 6.2.2
K3 [ 6 ’ 6 ’ 6 ] ( )
We can then rewrite Equation (6.2.1) in terms of ai_l as follows:

1 dlnoi(p) b
a;(p) dnp 27

(6.2.3)

The one-loop beta functions for the gauge couplings in 5-dimensions for the Go gauge

group are given by:

167?293_3% = —(S(t) - 1) <164> , (6.2.4)
167r292_3% —(S(t)-1) (;4) , (6.2.5)

167r291_3% —(S(t)-1) (5> , (6.2.6)



Section 6.2. The evolution of the gauge couplings and Weinberg angle Page 59
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Figure 6.1: The evolution of the inverse fine structure constants a;l(u) n -
dimensions for one-loop beta-functions as a function of t = In(u/Mz), for com-

pactification scale R™' = 5 TeV, where o' is the (red line), ay* is the (blue line)

ag ! is the (green line).

where S(t) = Mz Re! is the number of KK states, t = In(u/Myz) is the energy
scale parameter, for My < p < 1/R. We have chosen the Z boson mass as the
renormalization point, that is when the energy © = 1/R or S(¢t) = 1, in this case

the whole beta-function reduces to the normal beta-functions [102, 142].

Scenario | t(Ry) | t(R2) | t(R3)

5D Gy | 4.529 | 5.045 | 5.245

Table 6.1: The cut-offs in 5 dimensions for the Go gauge group for three different
compactification radii R~ = 1,5 and 10 TeV, where t = In(u/Mz).
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Figure 6.2: The evolution of the Weinberg angle sin® 6@y for the one-loop beta-
function, for different values of compactification scales, R™* =1 TeV (red), R~ =5
TeV (blue) and R~ =10 TeV (green) as a function of t.

6.3 Results and discussions

We present in Figure 6.1 the evolution of the o 1'in 5-dimensions for the one-loop
beta-function for the Go gauge group. From this one can see that ozfl, oy Land oy !

are approximately unified at t ~ 4.0.

In Figure 6.2 we present the evolution of the Weinberg angle for the one-loop beta-
functions, for different values of compactification scale. As an example, for R~} =
10TeV, sin® Oy ~0.42 at t ~ 5.56. When the fifth dimension KK modes become
kinematically accessible, there are large changes in the Weinberg angle up until we
reach the cut-off scale. We have chosen the cut-off for our effective theory as g1 = go,

as shown in Table 6.1.

In this chapter we have introduced the evolution of the gauge coupling for a G, gauge
group, and it was used to test the impact on lower energy observables, in particular
the evolution of the Weinberg angle. The other possible rank 2 gauge groups that
contain the SU(2) x U(1) EW gauge group is U(1) x U(1), and SO(4). The group
U(1) x U(1) is not large enough to include the SM group, and it only contains two
gauge bosons. While SO(4) ~ SU(2)xSU(2)/Zs group contains the SM group when
one of the SU(2) components is broken, where the adjoint representation (3,1)x (1, 3)

does not contain enough generators, thus this group must be disregarded.

We have discussed models of GHU in previous chapters, where these kinds of models
ensure the existence of a DM candidate. Recall that in the extra-dimension models
we have many additional lightest KK particles, and these can be identified as DM

candidates if they are stable. As such, in the next two chapters we shall start looking
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into the spin-3/2 fermionic DM candidate interacting with SM fermions through a
vector mediator in the s-channel, as well as interacting with the SM quarks through
the exchange of a charged and coloured scalar or vector mediator in a simple t-

channel model.

Note that the spin-3/2 particles exist in several models beyond the SM, namely in
models of supergravity, where the graviton is accompanied by spin-3/2 gravitino
superpartner. Spin-3/2 fermions also exist in KK models, in string theory, and in
models of composite fermions [143, 144, 145, 146, 147]. Recently spin-3/2 CDM has
been studied in EFT models, and constraints from direct and indirect observations

have been obtained [206, 27, 28, 29].



Chapter

Minimal Spin-3/2 Dark Matter in a

simple s-channel model

In this chapter we shall address a spin-3/2 fermionic DM candidate interacting with
SM fermions through a vector mediator in the s-channel, where we will consider a
minimal SM singlet spin-3/2 vector-like fermion y, interacting with the SM particles
through the exchange of a spin-1 mediator, Z’, in a minimal flavour violation (MFV)

s-channel model. This chapter is heavily based on our paper [(4].

A large number of cosmological and astrophysical observations provide strong ev-
idence for the existence of DM in the universe. The amount of CDM has been
precisely estimated from the measurements of the Planck satellite to be Qpyh? =
0.1198 £+ 0.0015 [18]. The nature of DM particles and their properties is the sub-
ject of intense investigation. One of the main physics programmes at the LHC is
devoted to the detection of DM, where there is the real possibility of the production
of DM particles of any spin at 13 TeV centre-of-mass energy. As such, the ATLAS
and the CMS collaborations are closely examining several DM signatures involving
missing energy, Fr, accompanied by a single or two jet events [19]. In addition there
are direct detection experiments, which measure the nuclear-recoil energy and its
spectrum in DM-nucleon elastic scattering. The indirect detection experiments look
for signals of DM annihilation into SM particles in cosmic rays, and have detection

instruments mounted on satellites and ground based telescopes [148, 149].

EFTs in which the DM-SM interactions are mediated by heavy particles, which are
not accessible at the LHC energies, have been analysed in detail with limits from
direct and indirect searches. Recently the need to go beyond these EFT models
has been pointed out, in light of the large energy accessible at the LHC [150].
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Simplified models of DM with interactions to SM particles have emerged as attractive
alternatives to EFT models. In these models the interaction between the DM and
SM particles are mediated by spin-0 and spin-1 particles in the s-channel, which is
the focus of this chapter; whereas in the ¢t-channel models the mediator can be a
scalar, a fermion or a vector particle, which will typically also carry colour or lepton

number, as discussed in chapter 8 [65].

As such we shall now consider a minimal SM singlet spin-3/2 fermion, y, as a
DM candidate, interacting with the SM particles through the exchange of a spin-1
mediator, Z’, in a MFV s-channel model. We shall begin by introducing the spin-3/2
CDM in an MFV s-channel model in section 7.1. Whilst in section 7.2 we discuss
all relevant experimental constraints including the relic density and the signatures

of these DM particles at the LHC. In section 7.3 we summarise our main results.

7.1 Spin-3/2 Singlet DM Model

In this section we extend the SM by including a spin-3/2 particle y. We further
let x be a SM singlet which interacts with the SM particles through the exchange
of a vector particle Z' in the s-channel. Note that this can be done, for example,
by extending the SM gauge symmetry with a new U(1)" gauge symmetry which is
spontaneously broken, such that the mediator obtains a mass myz. We also invoke
a discrete Zs symmetry under which the spin-3/2 DM particle x is odd, whereas all
other SM particles, including the vector mediator Z’, are even. The spin-3/2 free
Lagrangian is given by [151]:

L= xu AN X0, (7.1.1)

with
A = (i = my ) g — i(y"0" +470") + iv" Py + myyHy”. (7.1.2)
Note that x, satisfies A*”x, = 0, and with x, being on mass-shell we have

(i —my)xp = 0" xp = vxu = 0. (7.1.3)

The spin sum for spin-3/2 fermions

3/2

St = Y ul(p)u,(p) (7.1.4)

i=—3/2

and

S = > vi(p)vi(p), (7.1.5)
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are given by [151]:

1 2 1
St =—(f+tm - = - — — — ] 7.1.6
o (P) = = £ M) | Guw = 9 52 Pulo F S (YuPv — V) (7.1.6)
In view of the non-renormalisable nature of interacting spin-3/2 theories, we can
only write a generic set of interactions respecting the SM gauge symmetry between
the singlet Dirac-vector spinor, x,, with SM fermions mediated by a vector particle

Z;, as (see for example [152])

Loz + Lrz O XaV(9y =V 9)x8Z19° + D "9} =+ 9)fZ,, (7.1.7)
f=q,ly

where the sum is over all quarks, charged leptons and neutrinos. The interaction is
not restricted by MFV to be either a pure vector or axial vector. Although the form
of the low energy interactions of spin-3/2 particles should arise from an underlying
theory at high energies, we follow the approach of simplified model theories. The
purpose of a simplified model approach is to characterise the DM production present
in a complete theory, without having to specify the complete theory. In these theories
the mediator provides the link between the SM and DM candidate. In general
this interaction will induce flavour-changing neutral currents (FCNC), which are
strongly constrained by low energy phenomenology. The constraints can be avoided
by imposing a MFV structure on the couplings, or by restricting the interactions to

one generation.

There exists an extensive range of models with an extra U(1)" symmetry (for a review
see [153]). The most stringent indirect constraints on mys arise from the effect of
a Z' coupling to SM fermions in precision electro-weak observables from low energy
weak neutral current experiments [154, 155], and gives a lower limit on my of O(1
TeV); where LHC experiments set strong bounds on the Z’ mass. For a Z’ coupling
with SM particles to be of the order of SM-Z electro-weak coupling this bound is
typically m/, > 2 TeV [150]. This bound is somewhat relaxed (depending on the
model) when Z’ is allowed to decay into DM candidates [154, 156].
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The decay width I'(Z’ — ff + XaXa) is given by !

) 4
T(Z' = [+ XaXa) = D i;mZ/ 1— mn;f [((g}/)2 +(97)%)
7

2m2 m2 4m?2
f V2 AN2 mz X X
—9 1—
+ mQZ, ((gf) (gf) ) + 1087 (m%,) m2Z,

m2/ m4/ ’I?’Lﬁ/
X [(g¥)2<36—2m€ —2—2 4 Z)

YoMy my
2 4 6
+ (g (40 +262 g2 m%) . (7.1.8)
mX mX mX

The sum extends over all SM fermions f that are above the threshold, N, = 3 for
quarks and 1 for leptons. There are several interesting consequences on the DM
mass and couplings arising from the above decay width expressions. If the DM
mass m, > my /2, the only decay channel available to the mediator Z’ is into
SM fermions. Since I'(Z') < my is required for the mediator description to be
perturbatively valid, the vector coupling, for example, should satisfy

3

(9f) <mz = (9f) <5 (7.1.9)

8mZ/
127

Here we consider the coupling to be only to one generation for the purposes of illus-
tration. The qualitative result remains essentially unchanged if all three generations
are taken, except that the top quark mass may not be neglected in comparison to the
mediator mass. This gives I'z//my ~ 2 (g}/)2 /3w, and we have the narrow width
approximation being applicable for g}/ < 1. However, if the DM mass m, < mg /2,
the mediator can decay into DM pairs, and there exists a minimum limit on the DM
mass x for a given value of the mediator mass with the coupling given roughly by

]. mZ/ 4 V.A 2
L : 1. 7.1.10
1087r(mx) (97)" < (7.1.10)

If the DM mass is below this value, the decay width would exceed the mediator

mass.

In what follows we consider universal couplings for simplicity, g;(/ = g}/ and g;? = gj},
and restrict ourselves to one generation of SM fermions. In Figure 7.1 we have plotted
the mediator Z’ decay width as a function of m,, for some benchmark values of pure
vector couplings g;é 2 chiral couplings g;/: == g;{ f and pure axial couplings g)‘a 2
It can be seen from Figure 7.1 that there exists a minimum m, for a given coupling,
where a mass of x less than the limit given in Equation (7.1.10) results in a value of
the decay width more than the value of m,. This feature is peculiar to the spin-3/2
nature of the DM.

!The decay widths for the mediator Z,, decay into x¥ and into ff are given in Appendix D.
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Figure 7.1: Ratio of the mediator decay width to its mass I'/my as a functions of
my/mz for a few benchmark values of the couplings: 0.1, 0.5 and 1.0. The (a)
panel is for the vector couplings g;/’f , and the (b) panel is for the chiral couplings

(g;/’f = :tgﬁf). The (c) panel is for the axial-vector couplings gﬁf.
7.2 Constraints for the spin-3/2 singlet DM model

7.2.1 Relic Density.
In the early universe the DM particles were kept in thermal equilibrium with the
rest of the plasma through the creation and annihilation of x’s. The cross-section

of the annihilation process yx — ff proceeds through Z’, and the spin averaged
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cross-section is given by 2

cr/S— 4mf 1
%
o (xx = f1) = Z 432w mim}, s /s —4m2 (s — mZ, +T2m2,

X [(gf) { 2{4m {1 7mZ, 6mZ,s+35)

— 2mis(16mzl —6m% s+3s ) +mX82 (llm%,

—6m22,5+3s2)—m‘g,s3}+m‘§,s(—40m§+26m;§s
—smls?+5%) L = (o))" miy (4m3 — s) (36}
—2mis—2m2 s+ 5%) L+ (gf) mds (2m3 + 5)

x { (02)” (~40mS + 26mbs — 8m? s + 57)

+ (¢¥)% (36m —2m? s —2m2 s +5)H (7.2.1)

Freeze out occurs when the y’s are non-relativistic (v < ¢). We then have

s~ 4mi + min + O(v?) (7.2.2)
in the lab frame. The cross-section can be expanded in powers of v? as >
ov = a+ bv? 4+ O(vh). (7.2.3)

The relic density contributions of the DM particles can be obtained by numerically
solving the Boltzmann equation:
dn,, 9
e X +3Hn, = —(o|v|) (nx

where (o|v) is the thermally averaged y-annihilation cross-section (o (xx — ff)[v),

— (n$1)?), (7.2.4)

and n, is the number density of the x’s. When we are in thermal equilibrium the

number density is given by

my, T\ >/ m
n{ =4 ( 29; > exp (—%) . (7.2.5)

The Hubble expansion rate is given by

8mp

H= -
3M2

(7.2.6)

where M, = 1.22 x 10 GeV is the Planck mass. The Boltzmann equation is solved
numerically to yield [157]

2 x 1.07 x 10°Xp
Mg (a+ 42)

2The full expressions of the annihilation cross-section of spin-3/2 DM into SM fermions as a

Qparh? ~ (7.2.7)

function of v are given in the Appendix D.
3The expressions for a and b are given in the Appendix D.
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Figure 7.2: The contour plots between the mz and m,, where we have assumed that
the DM x saturates the observed DM density. The (a) and the (c) panels are for
benchmark values of vector and axial-vector couplings respectively. The (b) panel is

for the chiral coupling.

where g, is the number of degrees of freedom at freeze-out temperature T, and is
taken to be 92 for my < Tr < my, Xp = m,/Tr. The freeze-out temperature is

obtained by solving

45 gMplmX ((1 + %)

Xrp=In|c(c+2)y/— ] , (7.2.8)

8 2m3 V g*(XF)\/X7F

where ¢ is taken to be 1/2. For spin-3/2 DM g = 4.

In Figure 7.2 we show the contour graphs between the mass of the mediator my:
and the DM mass m,, by assuming that the DM x saturates the observed DM
density. From the graphs we see that for small couplings g < 0.1, the parameter
space (m,, mz) is consistent with the observed relic density and is thus independent

of the coupling. This can be understood by noting that the leading term in the
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thermally averaged DM annihilation cross-section into SM fermions is given by

. _ 20 g% m? 1
(oOx = fA) = 55— 5

szl mZ/ 47/’/113< 1"2

1- 2 + 2

mZ, mZ,

8 x 10~ ! 2
g (mx ) em3 5L
my

T (mp ITeV)* [ g2\ p2
1= m2 * m2
A A

The annihilation cross-section, being proportional to the fourth power in coupling,

(7.2.9)

falls rapidly for couplings < 0.1, and the freeze out occurs early when the temper-
ature is high. This will result in the relic density falling below the observed value.
The annihilation rate, however, receives resonant enhancement at m, ~ %mzl, in
which case the I'/my term dominates over the pole term in the denominator. Thus
near resonance the annihilation cross-section becomes independent of the coupling
and we get the relic density contour curves almost independent of coupling. In this
situation the observed relic density is obtained for m, ~ %mzr as is evident from

the graphs.

7.2.2 Direct Detection.

Constraints from DM detection experiments can be obtained from the elastic DM-
nucleon cross-section. In the present case, owing to the presence of both vector and
axial-vector couplings, the DM-nucleon scattering has both spin-independent and
spin-dependent components. The corresponding cross-section at zero momentum
transfer can be easily computed [158, 159, 160]. The spin-independent and spin-
dependent sub-dominant cross-sections are given by [161]:

2
2 v Vv
o _iry 0 (ofe))
OyN — =

X ﬂmﬂé, Wm‘é,
2 /300GeV \*
~1.4x 10757 (g¥ 4" 2( H ) 2 7.2.10
X (97 9y) TGV o cm”, ( )
and
52 bu? (g?gA)Q
SO _ _OH" o _ X A + AdY + AsV)?
OYN 37Tm‘é/aN 37Tm‘§, ( u 4 + As )
2 /300GeV \*
~ 4.7 x 1073 (g4 g4 2( H ) 2 7.2.11
X (9797) TonT o cm”, ( )
where
= _MXTMN (7.2.12)

my +my
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Figure 7.3: The spin-independent nucleon-DM cross-section o> (left panel) and
spin-dependent nucleon-DM cross-section o>P (right panel). The predicted cross-
section is shown here for different values of the coupling, and are in agreement with
the relic density constraints. In the plots we show the recent XENONIT data for
o3, and the XENON 100 neutron bounds for oSP.

is the reduced mass. my = (mp+my)/2 ~ 0.939 GeV is the nucleon-mass for direct

detection, with f,, f,, and a,, being given by:

fo=9y (200 +9) fo=gy (29 + 1) (7.2.13)

and

apn = Z g;?qu’”g(’;l. (7.2.14)
q=u,d,s

The coefficients AgP™ depend on the light quark contributions to the nucleon spin [161]:

AuP =Ad" = 0.84 £ 0.02,
AdP =Au" = —0.43 £ 0.02, (7.2.15)
AsP =As™ = —0.09 + 0.02.

The axial-vector term is suppressed by the momentum transfer, or by the DM
velocity, and has been neglected. In Figure 7.3 we show the predictions for the spin-
independent ¢S and spin-dependent 5P cross-sections for benchmark values of the
vector and axial-vector couplings, as a function of DM mass m,,. The corresponding
experimental bounds from XENONIT [23] and XENON100 [162] are also displayed.
The mediator mass mys is set to give the observed relic density for all values of
m, and the couplings. We find that for the vector coupling almost the entire pa-
rameter space (m,,my) is consistent with the observed relic density, and is ruled
out from the XENONIT bound on spin-independent nucleon-DM elastic scattering
cross-sections. The XENON-100 data on the spin-dependent cross-section, on the
other hand, does not place severe constraints on the parameter space, and as such

the allowed parameter space is consistent with the observe relic density.
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Figure 7.4: The prediction for the DM x annihilation rate into bb and TH7~ for

benchmark values of couplings.

vector, chiral and axial couplings respectively.

The top, middle and bottom panels are for pure

The cross-sections are obtained for

(my, myz) values consistent with the observed relic density. Bounds from the Fermi-

LAT experiments are also shown.
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7.2.3 Indirect Detection.

DM annihilation in the universe would result in cosmic ray fluxes which can be
observed by dedicated detectors. The Fermi Large Area Telescope (LAT) collabora-
tion [163, 164] has produced constraints on the DM annihilation cross-section into

some final states, namely ete™, utu=, 777, bb, ua, WHW~ etc. [163, 165].

In Figure 7.4 we show the prediction for the DM annihilation into bb and 77~ for
vector, axial-vector and chiral couplings, as a function of m,.. The predictions shown
here are for benchmark values of couplings and for the DM mass m, consistent with
the observed relic density. We have also shown the bounds from the Fermi-LAT
experiments. It can be seen from these figures that the Fermi-LAT data on the DM
annihilation cross-section, (o(xx — bb, 7777 )|v), is consistent with the benchmark
vector and axial-vector couplings, and for (m,,myz/) parameters obtained from the
observed relic density. However, for the chiral couplings considered in this work
there is only a narrow window in the high DM mass (m, > 400 GeV) range for the
coupling g ~ 1. For small values of the coupling (g < 0.1) Fermi-LAT data does not

provide any stringent bounds on the (m,,myz/) parameter space.

7.2.4 Collider Constraints.

Monojet searches at the LHC with missing transverse energy, £, have been used
by CMS at 8 TeV, based on an integrated luminosity of 19.7 fb=! [166], to put
constraints on the interaction of quarks and DM particles. In the context of a spin-
1/2 DM particle interacting through a vector mediator, with vector and axial-vector
couplings, constraints on the DM mass m, and the mediator mass mz for some
representative values of the coupling have been obtained in the literature [167, 168,
169, 170, 171, 172].

For monojet constraints at the LHC, we use the parameter space (m,,mz) for the
spin-3/2 DM, consistent with the observed DM density for benchmark couplings.
To obtain the cross-section for monojets we generate parton level events of the
process pp — xX + 1j using MadGraph5 [173], where the required model file for
the Lagrangian (7.1.7) is obtained from FeynRules [174]. The cross-sections are
calculated here to obtain bounds by requiring £ > 450 GeV, for which the CMS
results exclude new contributions to the monojet cross-section exceeding 7.8 fb at
95% CL. The resulting monojet cross-section for the vector, axial-vector and chiral
couplings are shown in Figure 7.5, where we find that the vector coupling results
are in agreement with the bounds from the direct detection experiments. In the
case of axial-vector couplings, the monojet search places stronger constraints on
the parameters, in comparison to the constraints from direct and indirect searches,

albeit for g;?f ~ 1.
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Figure 7.5: The monojet cross-section in [pb] at the LHC with missing transverse en-
ergy Br + 1 jet signal, through pp — Z' — xx+1j. The cross-sections are obtained
by considering values of (my, my) consistent with the observed relic density for the
benchmark couplings. The allowed parameter space for spin-3/2 DM candidates lies
below the CMS bound of omonojet = 7.8 fb. The (a), (b) and (c) panels are for pure

vector, chiral and azial-vector couplings respectively.
7.3 Summary and discussion

Presuming a spin-3/2 nature of DM, in addition to the restriction on the coupling
arising from the decay width, there exists a minimum value of the DM mass for
a given coupling and mediator mass. In the case of vector and chiral couplings,
almost the entire parameter space (m,,myz:) is consistent with the observed relic
density, and is ruled out by direct detection through nucleon-DM elastic scattering
bounds given by XENONI1T data. While for the case of a vector mediator with
pure axial-vector coupling there is, in contrast, a different result with respect to the
vector coupling. In this case the parameter space is consistent with the observed

relic density, and is also allowed by the indirect and direct (XENON100 neutron)
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observations.

For the benchmark couplings considered here there are no strong bounds on vector
and chiral couplings from the monojet searches at the LHC, and the results are
in broad agreement with the direct detection experiments. The case of pure axial
coupling is, however, different. Here the monojet search places stronger constraints
on the parameters in comparison to the constraints obtained from the XENON100

neutron observations.

The Fermi-LAT data on the DM annihilation cross-section is consistent with the
vector and axial-vector couplings considered here, and for the (m,,myz/) parameter
values obtained from the relic density. For couplings g < 0.1 the Fermi-LAT data
does not provide stringent bounds on the (m,, myz) parameters. For chiral couplings
the data allows only a narrow window in the DM mass (m,, >400 GeV) and g ~ 1.
In the EFT frame work for pure vector couplings [26, 27] the entire parameter space
10 GeV < m, < 1 TeV, and an effective interaction scale of the order of a few
tens of TeV, though consistent with the observed relic density, is ruled out from the
direct detection observations. For the case of pure axial coupling, bounds from direct
detection do not forbid the DM mass lying in this range. This is in agreement with
our study in a simple s-channel mediator model, except that in the mediator model
the minimum allowed DM mass is consistent with the observed relic density, and is
of order of 100 GeV. In the case of couplings with chiral SM fermions (g}/ = g}?) it
was found that for a spin-3/2 DM mass up to 1 TeV [28], the entire parameter space
is ruled out from direct detection. The monojet + Fp searches at ATLAS rules
out DM masses up to 200 GeV. In contrast the s-channel mediator model monojet
searches at ATLAS are more stringent, and the allowed DM mass limit is raised to
greater than 500 GeV. For DM masses exceeding 1 TeV, there are no direct detection

constraints, but collider and indirect observation constraints still exist.

We will extend our discussion to the simple ¢-channel model in the next chapter by
looking into the spin-3/2 fermionic DM interacting with the SM quarks through the

exchange of a charged and colour scalar or vector mediator.



Chapter

Spin-3/2 Dark Matter in a simple

t-channel model

We will now consider a spin-3/2 fermionic DM particle interacting with the SM
quarks through the exchange of a charged and coloured scalar or vector mediator in
a simple t-channel model. The DM particle in this case is a t-channel annihilator,
and it interacts with the SM particles through the exchange of a scalar (S) or vector
(V) particle. This is in contrast to the s-channel model considered in chapter 7,
where a class of such ¢-channel models for scalar and vector mediator couplings with
a spin-1/2 DM candidate has been considered in Refs. [175, 176, 177, 178]. The

mediators in these ¢-channel models carry colour or leptonic index.

As such we shall describe the model for this study in section 8.1, and in section 8.2
all the relevant experimental constraints. The relic density contributions of the DM
particles is calculated, and assuming that the contribution by these spin-3/2 DM
particles does not exceed the observed relic density, constraints on the parameters
of the model are obtained in section 8.2.1. With these constraints in place we
discuss the compatibility of these constraints from the direct and indirect detection
experiments in section 8.2.2 and section 8.2.3 respectively. In section 8.3 we examine
the signature of these DM particles at the LHC, where a monojet signal with missing
energy is investigated. Section 8.4 is devoted to the summary and discussion of our

main results.
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8.1 The simple t-channel model

The model consists of a SM singlet spin-3/2 particle interacting through the medi-
ation of a scalar (S) or a vector (V#) which carries a baryonic (colour) or lepton
index. In general the mediator couples to right-handed up-type quarks (or leptons),
right-handed down-type quarks (or leptons) or left-handed quark (or lepton) dou-
blets. We consider here the right-handed up-type quark case for simplicity and the
other cases are similar. The spin-3/2 free Lagrangian is given by Equations (7.1.1)
to (7.1.6).

In view of the non-renormalisable nature of interacting spin-3/2 theories, we can
only write generic interactions which respect to the SM gauge symmetry between
the singlet, x, with SM fermions mediated by a scalar or a vector [179]. We will

consider the vector and scalar mediator case separately:

1. Scalar mediator S: For the scalar mediator case, we can write the SM gauge

invariant interaction as:

S\
g — v 1 *
Lint D —(X) Xu g™ uls D, Sf +h.c., (8.1.1)
where ¢ is a generation index and u% = (uR, cr, tr). In this case we do

not have a dimension-4 interaction term. This is because of the nature of
the vector-spinor x,, which on mass-shell satisfies 7* x, = 0, and thus it
is not possible to construct a Lorentz-invariant dimension-4 interaction term

involving X, S and the Dirac field ug.

2. Vector mediator V,: In this case we can write a dimension-4 term, as well as

a dimension-5 interaction term, namely,

Lint D0 (¥)' Xty (VI)* + e, (8.1.2)
and 4
(9)' o
Lint D i X Xn 9" P up Vi +hee.. (8.1.3)

For all calculations we set A = 1 TeV. The interaction Lagrangian for the scalar and

vector can be written as:

Lscalar = (Dy Si)T(D# Si) — m%l Sf Si, (8.1.4)
and
1. .. — —
Evector — _ZVLZV Véw + m%/ VLiVl“ + 140s V}L“-ta VL Gg s (815)

where Vfw = D,Vi, — D, VZ. Therefore, the covariant derivative is given by

1., - 1
DH:8#—|—igstaGZ+ig§?.W#—i—z‘g'EYB#, (8.1.6)
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where g, is the QCD strong coupling constant. Unlike the s-channel mediator, where
a single mediator is required, in the ¢-channel model we require a different mediator
for each generation. In general, the interaction given in Lagrangian (8.1.1), (8.1.2)
and (8.1.3) induce FCNC, which are strongly constrained by low energy phenomenol-
ogy. The FCNC constraints can be avoided by imposing a MFV structure on the
Yukawa couplings. The parameter space will be consist with the DM candidate mass
my, the scalar (vector) couplings (gi)l ((c;g)Z , (g;(/)Z), and the mediator masses m’s
(mi;), for each generation. For simplicity we will set the couplings and mediator
masses for all the generations to be equal. If the mediator mass is in the kine-
matically accessible region of the LHC, the decay of the mediator and the ensuing
signal will become important. The decay width of the scalar and vector mediators

[(S* )Vt — x;), dropping the generation index, are given by:
S\2 .5 2 2
_ (93)" m m My m My
(S — 5 0 A e U T I Y e L
( X) 967TA2m§[ (mg + ms> ] [ (ms mg
2 2
y [1_ my m%]w<1 my mQ>
2 2 v 20 9
ms Mg mg Mg
2 4
L ) ms ([ my (8.1.7)
T 96T AZm2 mé |’ o

since mé,mx >m,, is true for all quarks, except the top quark, and A(a, b, ¢) =

a’> + b2+ —2ab— 2ac — 2be;

V)2 2 2 2 2 2
c m m m
288 my myy ms, 4ms; ms,
_ma my el M ma
2m3 4m%,m§< ’m%,’ mi,
V)2 2\ 2 2 2
c m m m
gi(x) v 1- % b4+ Y > (8.1.8)
288 m mi 4mg,

and

V2 5 2 4 6 2\ 3
_ g m m m 3m m
F(Véxu)—wiv—;{—k%— S+ |1 - =
% m My
my

- 2887 A2 mi miy m

4
5 my, My, Y

6 6
my My

m2 m 3mS m2
X X X X
1+ — + —7 - 6 - — | (8.1.9)

L (aY) md
o 28871:/\2771?<

% My my

for dimension-4 and dimension-5 interaction Lagrangians given in Equations (8.1.2)

and (8.1.3) respectively.
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Figure 8.1: Contour plots in the allowed DM mass m, and the mass splitting ratio
r — 1 (with r = mg(my)/m,) in the left panels, and in the DM mass m,, and
the couplings in the right panels. We have assumed that the DM x saturates the
observed relic density. The top panels are for the dimension-4 interaction term for
the vector mediator case. The middle and the bottom panels are for dimension-5
vector and scalar mediator cases respectively. In the left panels the colour gradient
corresponds to the Yukawa couplings required to give the observed relic density, which
in the right panels, the colour gradient corresponds to the mass splitting consistent

with the observed relic density.
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8.2 The constraints for the simple ¢t-channel model

In this section we examine the constraints on the model parameters m,,mg, my

and the coupling constants from the relic density, direct and indirect observations.!

8.2.1 Relic density.

In the early Universe the DM relic density is determined by the dominant DM an-
nihilation processes xy Y — w @ mediated by the t-channel exchange of scalar/vector
mediators. Since the mediators in this model carry colour and charge co-annihilation
processes like Y S(V) — wg and SS*(VV*) — gg, even though exponentially
suppressed when mass splitting (ms N~ mx) > freeze-out temperature T, will
play an important rule if the DM mass gets closer to the mediator mass. The co-
annihilation processes x S(V) — w g are mediated by ¢-channel exchange of media-
tors as well as by s-channel exchange of gluons and through the four-point interaction
involving the DM, mediator, u-quark and the gluon vertex. These processes will re-
duce the Yukawa coupling needed to generate the required thermal relic abundance.
Self annihilation mediator processes SS*(V V*) — g g are generated by purly gauge
interactions and are independent of the Yukawa couplings and have the potential to

suppress the relic density below the observed value.

At freeze-out the DM and mediator particles are non-relativistic. In the non-
S/V . .
degenerate parameter space, the channel x y /—> u 4 cross-section can be easily

evaluated, and in the limit m,, mg, my > m, are given by

S\4 . 2
S (gx) my 1

~ 2.1

V4

v (<)) 1 4 2
~ 5 — — — 8.2.2
and
vy4 2
L (gx) my 1 1 1

~ 5 _— 8.2.3
<O'(XX — ’U,u)‘v> 7687TA4 (1 n 7“2)2 + 24 (1 I ’]”2)2 ) ( )

for the scalar-mediator and the vector-mediator dimension-4 and dimension-5 in-
teraction Lagrangians (8.1.1), (8.1.2) and (8.1.3) respectively, and the mass ratio
r = (ms /V) /my. The thermal relic density of x’s is obtained by solving the Boltz-

mann equation (7.2.4).

The annihilation cross-section for the co-annihilation processes x S(V) — w g in this

!The work of this chapter is based on our paper [65].
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limit are give by 2

S\2 2
(93)7 92 (1 + 7) 14 13
~ 14+ — = 2.4
(0(x S = ug)lv) = L5 g AL (8.2.4)
()" g2 1

(o(xV = ug)v) ~ 1164 + 56287 + 1140372 + 125681

165888 mm2 r6(1 + )

+ 824271 + 245275 + 319 7«6], (8.2.5)
and

372 + 27241 + 65371 + 8742+

2
(9v)" 92
(V= wgllo) = qoreim A2 7501 £ 1)

+70727r% + 52227° + 3o7r6]. (8.2.6)

To calculate the relic density we have implemented the t-channel scalar and vector
interactions with SM quarks and spin-3/2 DM including the relevant co-annihilation
processes in micrOMEGAS [180], which numerically solves the Boltzmann equation
by taking the full expressions of the annihilation cross-section.> We have checked
the relic abundance in the non-degenerate parameter space for some representative
values of the parameters, and found them to be in agreement with the numerical
calculations done by micrOMEGAS. The necessary model files for micrOMEGAS were
built using FeynRules [174]. In Figure 8.1 we show the contour graphs in the DM
mass and the mass splitting ratio »r — 1. The colour gradients correspond to the
Yukawa couplings in the right panels and to the mass splitting ratio in the left panels
to conform to the observed relic density Qpyh? ~ 0.12. In the parameter space in
which co-annihilation is not important, comparatively large Yukawa couplings are
required to obtain the required relic density. In the co-annihilation region on the
other hand, we find the couplings to be reduced for almost all DM masses both for
the scalar and vector mediator cases. We find that with the increase in DM masses,
the co-annihilation channels take over the DM self annihilation processes and the
co-annihilation channels involving gauge interactions alone are able to depress the
relic density below the observed value. We see from the left-hand panels that there
are two regions in the DM mass, one around 80 GeV < m, < 100 GeV and another
one around 300 GeV < m, < 400 GeV, where the co-annihilation processes result

in a sharp drop in the couplings, required for the requisite relic density.

2In Appendix E we show the annihilation thermal cross section, in the case where the mediator

mass is getting closer to the DM mass.
3The relic density contributed by the DM particles is calculated by taking into account the

co-annihilation processes.
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8.2.2 Direct detection.

Direct detection experiments [22, 23, 24, 25] on elastic nucleon-DM scattering have
provided the most stringent bounds on DM mass and interactions in a large number
of conventional DM models. In the ¢-channel spin-3/2 DM model considered here,
the cross-sections at zero momentum transfer can be easily calculated [158, 159,
[81]. The dominant contribution to the spin-independent cross-section for the vector

mediator case is given by

1 (CV) qu
ST X
™ e ) = ] 5 I, (8.2.7)
mx |:(1 —+ mix - T :|
and .
1 9y 2
SI X
: — — -2.
o 6dn < A ) 5 2 fN? (8 8)
[(1 +ome) - 7“2]
X

where u = (mymy) /(my + my), fn = 4 for protons and 1 for the neutrons, and
we have dropped the terms proportional to the quark mass and momenta in com-
parison to the leading term. The cross-section given in Equations (8.2.7) and (8.2.8)
correspond to the dimension-4 and dimension-5 interaction Lagrangians. The elas-
tic nucleon-DM cross section for the case of scalar mediator is suppressed by terms

proportional to quark momenta, and have not been considered here.

In Figure 8.2 we show the predictions for the spin-independent DM-proton scattering
cross-sections, 051, for the vector mediator case. In the left panels the colour gradient
corresponds to the coupling and in the right panels to the mass splitting r — 1.
In the left panels for every DM mass and mass splitting, the Yukawa coupling is
obtained such that the parameters conform to the observed relic density, whereas in
the right panels the required mass splitting is obtained for a given Yukawa coupling.
We find that for any DM mass, the scattering cross-section generally increases as
the degenerate parameter region is approached. This happens because of resonante
enhancement of ¢! near r = 1. For the case of dimension-5 vector interaction
(bottom panels), we see a drop of several orders of magnitude in the scattering
cross-section around the same DM mass regions, where the co-annihilation results
in a sharp drop in the couplings. In Figure 8.2 we have also shown the current
upper limits from LUX [25], PandaX-II [24] and the projected upper limit for the
XENONIT experiment [23].

8.2.3 Indirect detection.
The Fermi-LAT collaborations [164] have dedicated detectors to measure cosmic ray

fluxes arising from DM annihilation in the Universe. In Figure 8.3 we show the
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Figure 8.2: The spin-independent proton-DM cross-section o5'. The top and the
bottom panels correspond to dimension-4 and dimension-5 vector interactions. In
the left and right panel the colour gradients correspond to the Yukawa couplings and
mass splittings respectively. All parameters are consistent with the observed relic
density. We have also shown the graphs from the observed current upper limits
from LUX [25] and PANDAX-II [2)] experiments. The projected upper limit for
XENONIT [23] has also been shown. Almost the entire parameter space (m,,my)

for the vector mediator case considered here is already ruled out from the LUX data.

prediction for the total DM annihilation into uu for the vector/scalar mediated t-
channel model. The predictions shown here are for the DM mass, mediator mass
and the couplings consistent with the observed relic density. We have also shown
the bounds from the 95% CL upper limits on the thermally-averaged cross-section
for DM particles annihilating into uti Fermi-LAT observations. As expected in the
parameter region where co-annihilation is important (r ~ 1) the y Y annihilation
cross-section in the v« channel is greatly suppressed. Even in the region away from
resonance (r > 1), the Fermi-LAT data does not provide strong bounds on the

mass and coupling parameters in the entire range consistent with Qpyh? = 0.12.
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Figure 8.3: The prediction for the DM x x annihilation rate into uu, as a function of
the DM mass m,.. All the parameters are chosen to be consistent with the observed
relic density. The top and the middle panels are for dimension-4 and dimension-5
vector interactions respectively. The bottom panels are for the scalar interaction.
The colour gradient in the left and right panels correspond to the coupling and mass

splitting respectively. Bounds from the Fermi-LAT experiments are also shown [10/].
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8.3 Collider bounds

The t-channel mediator model considered here has scalar and vector mediators
which carry colour, SU(2);, and U(1) charges. They can thus be singly produced
in association with DM particles, or pair produced if they are light enough at the
LHC. These processes will contribute to the monojet and dijet signals with missing
energy, with distinct signatures that can be searched for in dedicated searches. For
monojet events qg — q x X, these are dominant processes in comparison to qg —
g X X, because of the large parton distribution probability of the gluon, as compared
to quark and antiquark in the proton. The authors of the simplified DM model
document [161] have emphasised that the dominance of the associated production
channels is a distinct feature of t-channel models. The 8 TeV CMS collaboration data
based on an integrated luminosity 19.7fb~! [19, 166] has been used by the authors
of Refs. [177, 182] to put bounds on the coupling of fermionic DM as a function
of the mediator and DM mass for the case of scalar and vector mediators. In the
present study we confine ourselves to constraints arising from the monojet signals
using the parameter space (m,, mg /V) for different values of the couplings (gi)l /
(g}C/)z / (c}(/)l consistent with the observed relic density. The cross-section for monojet
events is obtained by generating parton level events for the process pp — xXJj
using MadGraph [173], where the model file for the Lagrangian is obtained from
FeynRules, and we use CTEQ611 parton distribution function for five flavour quarks
in the initial state. We employ the usual cuts, and the cross-sections are calculated
to put bounds on the parameters of the model by requiring (i) EF* > 250 GeV
and (i) B¢ > 450 GeV, for which the CMS result excludes new contributions to
the monojet cross-section for the scalar and vector mediators as shown in Figure 8.4
as function of m,, for the values of mediator mass mg/my consistent with the relic
density. The results are displayed for some representative values of the couplings.
From Figure 8.4 we find that the collider bounds are much weaker compared to the
bounds from the direct detection experiments for the vector mediator case. The
scalar mediator case is interesting in this case as the collider bound rules out low
mass DM particles. The bounds from the monojet + missing energy cross section
puts a lower limit on the DM particle mass, where the limit depends on the coupling,

and increases with the coupling.
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Figure 8.4: The monojet cross-section in [pb] at the LHC with missing enerqy for
two cases (i) EF% > 250 GeV and (ii) EX¥¢ > 450 GeV. The cross-sections are
obtained for all masses and couplings consistent with the observed relic density. (a)
and (b) correspond to the dimension-4 and dimension-5 vector interactions terms
respectively and (c) for the dimension-5 interaction term for the scalar mediator.
The monojet cross-section from 8 TeV CMS collaboration data [166] based on an

integrated luminosity 19.7fb=1 is shown.
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8.4 Summary and discussion

The direct detection experiments, through DM-nucleon elastic scattering data, pro-
vide the most stringent bounds for the case of a vector mediator. In this case the
entire parameter space allowed by the relic density is already ruled out by the LUX
data. This result is consistent with the earlier studies of spin-3/2 DM in the EFT [26]
frame work for pure vector couplings, as well as in a simplified s-channel model [64].

The co-annihilation is unable to ameliorate this situation.

There are no strong bounds from the the direct detection experiments on the scalar

ST In contrast, in the

mediated interactions due to the velocity suppression of o
EFT frame work, both the scalar as well as vector interactions give rise to dominant
spin-independent nucleon-DM scattering cross-sections and direct detection rules
out scalar interactions for spin-3/2 DM particles of masses lying between 10 GeV
and 1 TeV [26]. The current constraints from indirect searches, like the Fermi-LAT

data, are not sensitive enough to put any meaningful constraints on the parameters.

Monojet searches at the LHC do not provide strong bounds on the vector couplings
in comparison to the bounds from direct detection experiments. However, for the
case of the scalar mediator, where we do not get any strong bounds from the direct
detection experiment, collider bounds put a lower limit on the DM mass which is
my > 300 GeV. This limit rises with the increase in coupling. Finally, it may be
mentioned that bounds from direct detection experiments can, however, be evaded
by foregoing the universal coupling between DM mediators and quarks, and letting
the DM particles interact with only one generation, say with the third generation

quarks (top-philic DM).



Chapter

Conclusion

9.1 Summary of key results

In this thesis we show that the running of couplings from the EW scale to the extra-
dimension scale needs to be taken into account in order to obtain reliable results.
When included, it allows us to obtain simple models of GHU where both the EW
gauge couplings and the top Yukawa unify. We have studied a toy model in five-
dimensions, compactified on an interval S'/Zy, with bulk gauge groups SU(3).x
SU(3)w and a bulk fermion transforming as a bi-fundamental. This simple struc-
ture is enough to describe the EW gauge sector unified in SU(3)y. The fermions
contained in the bulk fermion match a down-type quark, yet the effective Yukawa
coupling is enhanced at low energies thanks to the running. We show that the run-
ning allows us to match the value of the Weinberg angle at the EW scale, as well
as larger than expected Yukawa couplings. Unified values of the couplings appear
as an attractor in the UV, providing an example of asymptotic unification. The
QCD gauge coupling also unifies, suggesting that the double-SU(3) structure may

be symmetric and may be embedded in a larger algebra.

We also derived in this thesis the one-loop RGEs in a five-dimensional GHU model
for an SU(3) gauge group by assuming that the fermion doublet and the two singlets
are located at the fixed points of the fifth dimension. We tested the evolution of the
mass ratios my,/m¢, me/my, the CKM elements |V, |Vis|, the Jarlskog rephasing-
invariant, the renormalisation group invariant Rs3 and the evolution of the mixing
angle sin o3 and sin #12. We observed that when the fifth dimension KK-modes be-
came kinematically accessible all the previous physical observables evolution changed

rapidly. These physical observables evolutions m,,/m:, mc/my, |V, |Vis|, J, Ras,
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sin f93 and sin #15 all over-shot by approximately 14%, 3%, 25%, 26%, 7%, 6%, 12%
and 20% respectively.

The one-loop RGEs in five-dimensions for an SU(5) and SU(5) x U(1)" gauge group
compactified on an S1/Zo have also been derived. We observed that when the fifth
dimension KK-modes became kinematically accessible the evolution of the Weinberg
angle rapidly increased by approximately 20% for SU(5) and 7% for SU(5) x U(1)".
We also explicitly tested, in a simplified 5-dimensional model with a Gy gauge sym-
metry, the evolution of the gauge couplings and Weinberg angle. In this case we
observed that when the fifth dimension KK-modes switch on all the previous physi-
cal observables evolution changed rapidly. The Weinberg angle rapidly increased by
approximately 6% for Go gauge group.

As we know, there is no direct evidence in the SM which explains DM, however, in the
GHU models we can obtain many additional particles. Note that we can seek these
out to use as candidates for DM. Accordingly, we have considered a spin-3/2 DM
particle interacting with SM fermions through a vector mediator in the s-channel.
Assuming MFV we used universal vector and axial-vector couplings and restricted
ourselves to one generation. We also considered a spin-3/2 DM particle interacting
with the SM fermions through the exchange of a scalar or a vector mediator in the
t-channel. Invoking MFV we restricted ourselves to the coupling of DM candidates
with SM singlet right-handed quarks with universal coupling. The thermal relic DM
abundance has been computed by taking into account the co-annihilation processes.
Co-annihilation has the effect of reducing the Yukawa couplings needed to generate
the required DM density. The co-annihilation effects are more pronounced in the
large m,, regime, where mediator self annihilation into gauge bosons has the poten-
tial to suppress the relic density below the observed value. Similar behaviour was
observed in the ¢-channel model for spin-1/2 and scalar DM particles [182]. In both
s-channel and t-channel models, spin independent cross section bounds from direct
detection experiments rule out the parameter space which yields the observed DM

abundance, while other experiments yield typically weaker bounds.

9.2 Aspects for future work

Further study is really crucial in order to see whether the phenomenology will change
or not when we change the gauge group, by focussing on a more pragmatic or realistic
model, such as SO(5) x U(1). In the case of the SO(5) gauge group, it contains
SU(2) x U(1) into two different ways: firstly, we can have a subgroup which is not
a subgroup of SO(4), therefore, in this situation the adjoint representation of SO(5)
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decomposes as 10 = (3,0) + (1,0) + (3, +1), thus there is no doublet which can play
the role of a SM-like Higgs. As such, this choice is not viable. The other possibility
is SO(5) — SU(2) x U(1) € SO(4), where in this case the adjoint representation
decomposes into 10 = (3,0) + (1,0) + (1,£1) + (2,£1/2). In this case there is a
complex doublet which can play the role of the Higgs, and furthermore the three
singlets and the doublet form the adjoint representation of the SO(4) subgroup. The
other gauge group is Fy, where this gauge group is rank 4 and contains as maximal
subgroups SU(3) x SU(3), SU(2) x Spe as well as SO(9). For instance, the SO(5)
gauge group can decompose under the adjoint representation of SU(3) x SU(3) as
52 — (8,1)+(1,8) 4 (6,3) + (6, 3), where in this case the Higgs doublet candidate
can be in the adjoint of both the SU(3) gauge groups. Given these preliminary
possible higher rank, more realistic, GHU models which can be studied, further

investigations are required.

Furthermore we can test GHU models in 6 dimensions by changing the geometry of
the extra-dimensional space. Extensions of our studies to two-loop corrections can

also be made.

With larger gauge groups comes the possibility of more additional particles, which
when viewed from an effective interacting DM perspective can lead to more intricate
phenomenologies. One such further study is to extend the DM into a Higgs portal
model, but instead of looking into thermal spin-3/2 DM it will be interesting to look
into non-thermal spin-3/2 creation, and then see the phenomenological changes, this
creates. We can also study the Sommerfield enhancement for this spin-3/2 DM, all

of which we hope to pursue in up coming works.



Appendix

One-loop correction for gauge coupling

coeflicients in the SM

In this appendix we shall derive the numerical coefficients of the gauge couplings
in the SM. One-loop corrections for gauge coupling coefficients in the SM are given
by [70]:

d g;
1672 290 = pSM g3 (A.0.1)
dt
where the SM numerical coefficients be are given by
(11 4 1
b = (5 TeB(R) - 3ncTr(R) — gnaTu(R) ). (A.0.2)

The coefficients in this expression are
T(R) g, =Tr (T, Ty), (A.0.3)

where np refers to the number of Higgs scalars in the theory and n¢ is the number
of generations. Ty (R), Tp(R) and Tgp(R) are the Higgs scalar, fermionic and
bosonic contributions respectively. As we know, the gauge bosons are in the adjoint
representation of the group G, which mean that for G = SU(N): T (SU(N)) = N.

Hence, the SM numerical coefficients biSM are determined as follows:

A.1 The strong interactions: SU(3)¢

1. Tgp(R): The gluons belong to the adjoint representation of SU(3), which
means that Tgp (SU(3)) = 3.
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2. Tr(R): For one fermionic generation, the contribution is coming from wu, and

du, hence
Tr(1 generation) = Tr(3) + Tr(3) = = 1. (A.1.1)

Recall that if we are dealing with Weyl fermions (ur, ug, dr, dr), then we
must include a 1/2 factor for each helicity, this coming from the fact that
TrL(R) = 1/2, with L(R) = (1 £ 75) /2. Thus

= 1. (A.1.2)

N —
N

Tr(1 generation) = 4.

3. Ty (R): In the SM gauge group there are no coloured scalars, which means
Ty =0.

Finally, we have the numerical coefficient for the strong interaction as:

33 4
= — — -ng, since we have 3 generations = b3 = 7. (A.1.3)

b
573 3

A.2 The weak interactions: SU(2)y,

Te (SU(2)) = 2, Tr(1 generation) = 4.3.3 = 1 (the factor 1/2 is due to the
helicity), and since in the SM we have the standard Higgs doublet, Ty = 1/2.

Finally, we have the numerical coefficient for the weak interaction as:

2 4

by = = — “ng —

19
3 3 since we have 3 generations = by = R (A.2.1)

1
67

A.3 Electromagnetic interactions: U(1)epy

Since there are no boson contributions in the hypercharge coefficient by, therefore
Tep = 0.

10
Tr(1 generation) = Z sz =3 (Qﬁ + Q?l) + 2 (QzQ + Q%) + Qg =3
(A.3.1)
Ty for the SM Higgs is 1/2, therefore
4 10 1 1 41
- | S D o = A.3.2
b1 [ 3 % 5%3 X5 " g G (A.3.2)
By using the SU(5) normalisation: ¢’ = 1/3/5¢;. Thus
41 3 41
b1 = —— X - = (A.3.3)

6 5 10



Appendix

Running of gauge and gauge-scalar

couplings in 5D

In this appendix let us consider a theory based on the gauge group
Gpuik = SU(N)w x SU(N), (B.0.1)

where SU(N)w contains the EW sector and SU(N), contains QCD colour. In our

model we also add a single bulk fermion in the irreducible representation
¥ = (Rw, Rc). (B.0.2)

Accordingly, the one-loop beta-function for the vector couplings can be easily ob-

tained by using the standard formulas for the running of gauge couplings as:

i == 5 C(Gw + 5C(Ghw + 5 T(Rw)d(R.) (B.03
b=~ 5 C(G)e + sC(G)e + T(RA(Rw). (B.0.4)

3 6 3

Note that the formula applies for Dirac fermions and real scalars. The group theory

factors are defined as follows:
fabefbed — O(GY59t,  Tr[TETR) = T(R)6Y, TETE = Cy(R), (B.0.5)

and d(R) is the dimension of the irreducible representation R.

B.1 Running of the gauge-scalar couplings

The running of the gauge-scalars is similar to the one for Yukawa couplings, which

receives contributions from the diagrams in Figure B.1. The result of the calculation

92
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Figure B.1: The diagrams contributing to the running of the gauge-scalar couplings.

can be expressed in a very compact form as follows: We define T} /R 3 the couplings
of the gauge vectors to fermions, h® the couplings of gauge scalars to fermions, and
kg; the couplings of the gauge scalars i—j to the gauge bosons a (note that the gauge
indices cover all the gauge generators of the two groups in the model). Thus, the

contribution of each diagram to the beta function can be written as:

Diagram (a) =gh'3 = —8T¢ - h' - T4, (
Diagram (b+c) =gh'f =T¢ - T8¢ -h' + H - T& - TS, (

Diagram (d) =gh'fs = —2h"* k&K, (
Diagram (e+f) =gh'8 = 2(T¢ - h* — hF - TR) K¢, | (B.14

Diagram (g) =gh'3 = 2™ - h' - K™, (
Diagram (h-+) =gh' 3 — %(hm CRTRE B R T, (

) : 1
Diagram (j) =gh'B = 2Tr[h' - K] K™ <><2 for Weyl> . (B.1.7)

In the model under study: TE/R = gT%, h' = gT", Kij —

tion of each diagram to the beta function of the gauge scalar coupling for SU(N)w

igf* , where the contribu-
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diagram SU(N)w SU(N).
Iy g g 9
a | —8Co(Rmw) +4C(Cw | —8Ca(Re) | —8Ca(Ro) + 4C(G)e | —SCo(Ru)
b+c 2C(Rw) 2C5(R.) 2C2(R.) 2C2(Rw)
d _2C(Q)w i _20(Q), i
ot f —20(G)w i —20(G). i
g 2C2(Rw) — C(G)w 2C2(R.) 202(Re) — C(G)e | 2C2(Rw)
heti Co(Rw) Co(Ry) Co(Ry) Co(Rw)
] 2d(R.) T(Rw) - 2d(Rw) T(R.) -

Table B.1: The contribution of each diagram to the beta-function.

and SU(N). can be computed in a straightforward manner. The results of these

calculations are given in Table B.1.

Therefore, by summing all the contributions from Table B.1, the one-loop beta

functions can be written as:

Bsw =(—3C%(Rw) — C(G)w + 2d(R.) T(Rw))giy — 3C2(R.)g>, (B.1.8)
Bse =(—3C5(R,) — C(G)e + 2d(Ry) T(R.))g? — 3Co(Rw) g3 - (B.1.9)

B.2 SU(@3)w GHU model with bulk triplet

In this section let us consider the case where Ny = N. = 3 and also Ry = R, = 3.
Therefore, in this scenario, C(G) = 3, Cy(R) = 4/3 and T(R) = 1/2, and we find

17
Bw = fe=— 59%0 (B.2.1)

Bsw = Bsc = — 49{2/[/ - 493 . (B'2'2)

To compute the running of the SM gauge couplings and Yukawas, which are embed-
ded in SU(3)w, we can use the formulas developed in the previous section. However,
we assign different values to the gauge couplings depending on the generator they are
associated to. The rules are straightforward for the fermions, where the coupling is
g2 for the 3 generators in SU(2), g1 = ¢’/+/3 for the generator of U(1), and g, = v/2y
for the generators belonging to the doublet. The coupling y will be associated to
the Yukawa (for the bottom, in this specific toy model).

However, an ambiguity arises when considering the scalar couplings. As we are

interested in the running of the coupling of the doublet, the relevant vertices will
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always contain 2 doublets (either 2 scalars or one scalar and one vector) and one in

the SU(2)xU(2) group (either vector or scalar). There are two useful choices:

A) Assign the coupling following the generator associated to the vector in the
vertex. This choice allows for a nice limit: the contribution of the first 4
diagrams can be associated to the SM contribution to the running of the SM
Yukawa, while the last 3 diagrams to the Yukawa contribution to the running
of the Yukawa itself. This fact allows us to cross check the calculation against
the SM results.

B) Assign the coupling to the generators in SU(2) or U(1), i.e. always to the SM
gauge coupling. This choice is more physical: In fact, in models where there
are more than one coupling of the doublet to the fermions (like in the case
Ry = 6), there is an ambiguity to what Yukawa to use in the scalar couplings.

Thus, this choice is the most physically motivated one.
Thus, choice A will be used as a check, choice B for the physical results.

B.2.1 Choice A.

The beta functions for the couplings of the doublet scalar (i.e. a bottom-like Yukawa)
can be extracted by the general formulas by choosing the external generator aligned
with the doublet. The results with coupling assignment A are summarised in Ta-
ble B.2. In bold we indicate the numbers that match to the SM calculation of the

bottom Yukawa coupling.

/2 2 2 2 /

diagram | g 92 9e Y gy 92y
a 4/9 -32/3
b+c 5/36 3/4 8/3 3
d -1/2 | -3/2 —6
e+f -1/2 | -3/2 —6/2 | =32
g —-1/9 8/3
h+i 5/72 3/8 4/3 | 3/2
j 6
tot —11/24 | —=15/8 | —4 | 9/2 | —V6/2 | —=3//2

Table B.2: Coefficients of the beta-function in case A. In bold are the values corre-

sponding to SM values (for diagram j an extra factor of 1/2 should be taken as the
SM is chiral).

Therefore,
_ 52 9, 2, 9 9
By(SM) = =59 — 792 = 8g. + 5y (B.2.3)
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B.2.2 Choice B.

The results with coupling assignment B are summarised in Table B.3.

diagram g go> g> y?

a 4/9 —39/3

btc | 5/36 | 3/4 | 8/3 | 3
d —1 -3

e+f -1 -3
g “1/9 8/3

hti | 5/72 | 3/8 | 4/3 | 3/2
i 6

tot | —35/24 | —39/8 | —4 |21/2

Table B.3: Coefficients of the beta-function in case B.

Therefore,
35 5 39 21
KK)=—"2¢" — g2 — 4% + ==42. B.2.4
By(KK) 519 g% 49+ 5y ( )

B.3 SU(3)w GHU model with bulk sextet

Consider Ny = N, = 3 with R. = 3 and Ry = 6. In this case the group factors
that need to be changed are: Ca2(Rw) = 10/3 and T'(Ry ) = 5/2. Therefore we find:

1

13
B, = — ng, (B.3.2)
Baw =27y — 492, (B.3.3)
Bsc = - gg - 10912/1/ . (B34)

In this model there are 2 couplings of the Higgs doublets to the components of the

sextet:

650 (3)w = 3-1/3 D 2176 D lo/3. (B.3.5)
If we denote v; (i = 1,2,3) with the singlet, doublet and triplet respectively, the
gauge scalar transforming as a doublet (Higgs) couples to the following combinations
of fermions:

9

Nl botps +hoe. = —y, Hnaps — yr Hiorps + hec. (B.3.6)

— gHi1s —
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where y; will play the role of the top Yukawa coupling. Note also that y; = ¢ and
T = g/+/2 at unification.

As there are two couplings of the scalar to fermions, the coupling assignment A
defined in section B.2 is not physical in this case, but simply allows us to calculate

the SM running of the couplings y; and yr.

Note also that the bulk sextet will have a massless chiral colour triplet: to give it
mass and to cancel gauge anomalies, where an opposite chirality partner will need
to be added to one of the extra-dimension boundaries and coupled to give it a mass
M. Thus the SM running of the gauge couplings when M7r < mgg, is modified

by:
4

g )
Putting all this together, the beta functions for the SM gauge couplings below and

5By = 0By =8, 0B, =2. (B.3.7)

above Mr are given by:

[ a1/6 [ —19/6 -7
by _{ w6 0 _{ 2 1 _{ -5 (558

B.3.1 Choice A.

The coefficients, relative to the SM running of the two Yukawa couplings are reported
in Table B.4 (we omitted the coefficients that are not physical). Thus the running
of the two Yukawas below the first KK threshold follow is:

17 29 9, 33,

By (SM +T) = Y T g% 89z + 2.% Ty (B.3.9)
5 0 33, 1, 23
Bur(SM+T) =~ g — g3 862 + v + St (B.3.10)

These equations are valid down to Mr, below which one can integrate out the triplet
and the running goes back to the SM:

17 9 9
g’ —8g2+ 2y, (B.3.11)

By (SM) == 150 1 2

B.3.2 Choice B.

The results with coupling assignment B are summarised in Table B.5. They con-

tribute to the running above the first KK threshold.

AT 5 39 21 , 9

By (KK) = = 579" = ggg —4g° + ?yf +5 y2, (B.3.12)
35 ,5 63 3, 51

Byr(KEK) = = 519" = 9 g5 — A+ Ui + St (B.3.13)
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running of g 2 92> 9z yi ?J%
a —8/9 —32/3
b+c 17/36 3/4 8/3
d —1/2 | —3/2
etf ~1/2 | —3/2
g 6
h+i 3/2 | 3/2
j 3 9
tot —17/12 | —9/4 -8 9/2 | 33/2
running of yp 9/2 92° 9z Y7 Y7
a 4/9 -8 -32/3
b+c 5/36 11/4 8/3
d —1/2 | -3/2
e+f -1/2 —3/2
g 2
h-+i 1/2 | 5/2
j 3 9
tot —5/12 | —33/4 -8 11/2 | 23/2

Table B.4: Coefficients of the beta-function in case A, keeping only the values cor-
responding to SM running below my (for diagram j, an extra factor of 1/2 should
be taken as the SM is chiral).



Section B.3. SU(3)w GHU model with bulk sextet Page 99

running g” 92> 9z Y7 Y7
a ~8/9 ~32/3 —24
b+c 17/36 | 3/4 | 83 | 3 | 3
d -1 -3
e+f -1 -3
g 2/9 8/3 6
hoti 17/72 | 3/8 | 4/3 | 3/2 | 3/2
i 6 | 18
tot “a7/24 | —39/8 | —4 2172 9/2
running yr | g g2° 9 | ¥
N 49 | —8 [-32/3] -8
btc 5/36 | 11/4 | 8/3 | 1 | 5
d -1 -3
e+f -1 -3
g “1/9 | 2 8/3 | 2
h-+i 5/72 | 11/8 | 4/3 | 1/2 | 52
j 6 | 18
tot ~35/24 | —63/8| -4 | 3/2 |51/2

Table B.5: Coefficients of the beta-functions for y, and yr in case B.



Appendix

Some calculations for one-loop

[S-functions

We present in this appendix some examples of the one-loop calculation for the top

Yukawa couplings for an SU(3) gauge group.

Our fields in the GHU models have KK modes, and they contribute to the RGEs
at the energy scale £ = 1/R. Up to this scale the evolution is logarithmic and is
controlled by the evolution of the SM. The contributions of the KK states should

be take into account beyond this state.

When we calculate the renormalisation constants, we usually ignore the mass terms
in the propagators, since they have nothing to do with the divergent part of the
one - loop diagrams. We therefore focus on the UV regime, where we can neglect the
m/p dependence of . We use the dimensional regularisation scheme, in order to

calculate the contribution from Figure C.1.(a):

Pk V(P + )"y ko
1 [ — a b Iz v
00 = [ gt e o] 7o [FRER
Pk )
= —y; Tr [T“Tb} / amp P+ Rk Tr 1] (C.0.1)

By using the relations T'r [T Tb] = 0 C(f)ng,and Tr [y* "] = D g"", the above

integral can be written as:

(24 2 sa b dPk 1
Hl (p7 k) = Y 0 nfD 271' 9. \ND k2 ’ (COZ)
where n is the number of generations, and C( f) refers to the fermion contributions.

By multiplying the above integral by (¢ + k)2/(q + k)%, we get:

) . dPk (g + k)?
" (p, k) = —y26°° C(f)n D/ 2D 12 (g 1 B2 (C.0.3)

100
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(c) (d)

Figure C.1: Contributions to the top Yukawa coupling’s RGEs in GHU models in
the Landau gauge. The solid lines correspond to the top quarks, the broken lines
correspond to As, the wavy lines correspond to the ordinary gauge bosons, while the
wavy lines with a line through them correspond to the higher mode components of

gauge bosons.

Using the Feynman parametrisation

1 ! 1
— =/ d , C.0.4
AB /0 "B+ (A-Ba (€04
we get
D 1 2
I, = —y26%°C( nfD/ 7k / 4 + ) 5 (C.0.5)
0 [k2+(q2+2qk)a:]

Now let us introduce a new variable [l = k£ 4+ gx. Thus

le l2 + q2 (1 — :ZJ)2>
I, = —y26°°C( nfD/ dx/ 2. (C.0.6)
l2 + ¢ z(1 — x)]

Using the following standard integrals:

2 ; +D/2 —
/le l im”?/*T'(1 — D/2)D (C.0.7)

2 4+ @2z(1 — 2) 2[@x(1 — 2)17P/2°

and

: in?’T(2 -~ D/2)
/le 12 4+ ¢2z(1 — gj)]Q - (22 (1 — ;E)](Q—D/Q) ) (C.0.8)
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Equation (C.0.6) become:

inP2T(1 — D/2)D
Hl = —yt25“b nf_D/ [ —
22 (1 — )=
i¢>(1 — z)?7P21(2 — D/2) (C.0.9)
2z (1 — )77 -
By integrating over x and substituting D = 4 — ¢, we get:
4 1 1
-2 sab 2
- _ = 0.1
T = —igf 6702 C(f)ng Aoy (C.0.10)

Again, let us use the dimensional regularisation scheme, to calculate the contribution
from Figure C.1.(b). Using the same technique to calculate the contributions of
Figure C.1.(c) and (d):

M=%fwﬂﬂ/f3[3@f¢?]11%4

R
iy o b e dPp W+ ¥ W - ¥ 9w
=2iy g’ [T TbT] 75/ M2 | () £ k)2 (0 — k)2 <p2 — (M}%)Q)

(C.0.11)

By using the relation T*T°T¢ = [C(f) — 5 C2(G)] T?, where C(f) and C3(G)
refer to fermion and the gauge bosons respectively, Equation (C.0.11) can be written

d | iYW+ )W~ B g
Cm L+ 0 0 - 2 (12 - (3)°)
(C.0.12)

Iy =2 |C(f) — ;CQ(G)] T“ytg2/

Let us simplify the following term:

YW+ -9 =@+ k)@= k)oY v, (C0.13)

where

Y AP ATy, = 4g°7. (C.0.14)
Then, we can rewrite Equation (C.0.13) as follows:
YW+ YW~ ) g = —47° p,pe g°° + linear term in p. (C.0.15)
Replacing p, ps by (p2 9po/ D),

YW+ WY W - )Y g =47, (C.0.16)
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and the linear term in p, vanishes (because of the angular integral). We can then

rewrite Equation (C.0.12) as follows:

= =i [C(7) - 3 (@] P T [ & e
2 = - - 52 t D ’
2 (2m) [@2)2 <p2 _ (%)2)}
(C.0.17)
. 1 2 n\ 2 . .
by expanding STV for p© > (E) . This will lead to:
P’ - (%)
1 1 R)? _
o~ (”/4) + 0P, (C.0.18)
- (x)" P P

and by using this approximation, one can rewrite Equation (C.0.17) as

dPp 1 (n/R)?
@ [@2)2+ <p2>3]

m)
wlC2)

1;)] (C.0.19)
I, — 8i [C(f) - ;CQ(G)} 75T“yt92/ (;l:)pp [(pi)z + (’(‘]Z;)%f]

_ gy [C(f) _ ;C’Q(G)] AP Ty, ¢ (;ri;j) r <2 - 12))

1+ (%)2% (2 - l;) ] (C.0.20)

Let us define ¢ = 4 — D, having cancelled out the singular term, we may let ¢ — 0,

I, = —8i {C(f) - ;CQ(G)} 75T“yt92/

= —8i? [C(f) — ;CQ(G)] Ty g o
B

Now by using the fact that 2 T'(z) = I'(1 + z)

X

and the finite renormalised result will be:

1 2

1 2
= - = . .0.21
I = 8 () - 5 C() 2 (©021)
Thus
1 1 2
Zi=1-8|C(f) — =Co(@)| ¥* Ty ¢° /2, (C.0.22)
2 1672 €
where p is an arbitrary quantity called the renormalisation scale, then
w2z —slow) - Lae)| eyt (C.0.23)
Ma 1= 5 2 Y yt916ﬂ_2- V.



Appendix D

Full expression for the decay widths

and cross-section

In this appendix we will determine the decay widths of Z’ — x¥, ff and the cross-
sections for the spin-3/2 DM annihilation into SM fermions yy — ff.

D.1 Decay widths

The squared matrix element for the mediator ZZL decay into xy and into ff in the

limit when s — m?%, are given by:

IM(Z" = x0)I? = 9;;1( [16mf< (10 (g7 -9 (g¥)2> + 8mim?,
< ((0)* =13 (9)°) + smimb (4 ()" + (%))
—am (o) + (95)2)], (D.1.1)
and
IM(Z' = £DIF = [8m3 (2 (91)" = (6))7) = 4mE ((6)” + (o))7)].
(D.1.2)

Therefore, the decay widths for the mediator Z;L decay into yx and into ff are given
by:

1 4m? 9
/ N x [(,A 6 4,2 2.4 6
INZ — xx) = [087mimy 1-— 2, [(gx) (—40 my + 26 mymz — 8mimy, + m$,)

+ (g¥)2 (36 mi - 2mim22/ - Zmim%/ + m6Z/) ], (D.1.3)
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NZ = 1) =

4m?2
ommg |1 mzzf 2m3 ()" = 2(6)7) +m% ((o1)° + (49)7)]-
(D.1.4)
D.2 Cross-section

From the Feynman diagram in Figure D.1 we have the amplitude is given as follows
7;./\/1_{770‘( ),u v _ 5 A a o Dupv
= {53 (p2)7" (95 — 7 92) uS(P1)} | —guw + s
Z/
x {ﬂ?(ps)'y” (9f —"97) v,ﬁc(m)}-

Therefore, we have

(D.2.1)
—a a PuPv
IM? = {53 (p2)v" (9y — 7° 95) us(p1)} [—g,w + n‘szz]
x {ﬂg(ps)'y” (9f —°97) v?(m)}
b v Vo 5 A\ b _ Py Pv
X QY (97 = 77 97) i) p | =g + =3
Z/
X {ﬂi@lh‘/ (o — 7" 9) v;(pg)}- (D.2.2)
Thus, we have the spin-3/2 polarisation sums are given as:
3/2
Z/: u,zu(p)ﬂrl/(p) = =+ my) [g;w 1'Y,u’Yu - %ﬂulfu - L('Yupy - ’YVpM)i|7
i=—3/2 3 3my, 3my
(D.2.3)
L 1 2 1
v (), (p) = —(F—m )[g v = WV — aa Wby + 5 (Yupy — Wb )}-
i:z;/z i XopPee g e 3m2 7" 3my - p
(D.2.4)
x(p1) fps)
Z'(p)
X(p2) f(pa)
Figure D.1:

The Feynman diagram for the spin-8/2 DM annihilation into SM
fermions xx — Z' — ff.
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For the fermion the polarisation sums are given as:

1/2 1/2
Y wurp) =y + mp Y vip)(p) = — my. (D.2.5)
i=—1/2 i=—1/2

The squared matrix element for the spin-3/2 DM annihilating into SM fermions are

given by

M(xx = f)I? = . !

B 27mi m3, (m3, + m3, (I? — 2s) + 5?)

x 32[@;‘)2 { (¢ {4m§<(10m§ (Tmy — 6m% s + 35°))

3

—2mis (16m%, — 6m% s + 382) — my s

+ mis2 (11m3, — 6m% s + 332)> + mb s

X <—40m§5< + 26mis — Smf(s2 + 33)} — (g;/)2 m%,
X (4m?c — s) (36m§5< — Qmis — 2mi32 + 33)}
)" e ) { 0 (a0 2o

- 8mi82 + 53) + (g¥)2 (36771?< — Qmis — 2mi52 + 83> }]
(D.2.6)

The full expressions of the annihilation cross-section of spin-3/2 DM into SM fermions,

in the non-relativistic approximation (s = 4 mi + mi v?) are given by the following

expression:
4 2
f m\[1 = St 1
<U(X>Z—>ff)v>:ZNf 2 2 (12 2 12,2
¥ 432rm%, \ fm?2 (v? + 4) (m3%, —m2 (v2 4 4))" + I2m3,

< [l {ami{smie + 4200+ 62+ 15)
- Gmim%/ (v? +4)(v* + 602 +18) — m% (v° +v? — 8% — 54)}
+ mim%,vz(vz +4)(v* + 40® + 10)}
+ (g¥)2m (08 + 100" + 3002 + 60) (m2 (v? + 4) — 4m§)}
+ (g}/)QmZ},{(g;?)%Q(v4 + 4v% +10)
+ (9¥)2(0® + 100 + 3007 + 60) }(2m3 + m2 (o2 + 4))]
(D.2.7)
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The expressions for a and b are given by:

2
24/1— o
X

2

2)2

a= ’ - 9(9?)2(g;<4)2m% (mZ, —4m;
9rm7, ((mZ, —4m ) +T mZ,>
+10(9Y)2(g1)2my (m2 —m3) +5(g) )2 (9))?my (m? +2m2) |, (D.2.8)
and
1
b =
2,4 m} 2 2)2 92 \?
1087rmeZ, 1——5 ((mZ, — 4mx) +T mZ,)

2
X
2
X [(g,’?‘)z{(gf)Q{ (m%: — 4m3)
X {m‘} (—288m3 + 144m>m7, + 22m7,) + bmjm?,
X (12m>2( — 7m2Z/) (12mi + mQZ,) + 4Omim4z,}
+ I'?m2, {mjlc (—2016m;, + 576m2m3, + 22m,)
+ mfc (2448771?< - 792m§‘<m2z, — 35mim%,)
+ 40m mzl}}+30(gx) my (my —myg)(my +my)

x {m? (32m}, — 2m%, (I? + m%/))
+ mi (16m§1< — 24mim22/ + 5mQZ, (I‘2 + mzz/)) }}

— 5(gf )*m {4(g§‘)2 (m} +m3m? — 2m?)

X

( m, — 4m g F2m22,> + S(QX)Z{FQmQ

X (me—|—5mfm — 10m? ) (4mi—m22,)
X Sm%mi —4mfm —i—mZ, (me —|—5mfm — 10m? )

+ 8m}}}] | 029



Appendix

The thermal cross-section for

XS — ug

In this appendix we will derive the annihilation thermal cross section in the case
where the mediator mass is approaching the DM mass. For example, we will take
only the case when the mediator is a scalar x(p1)S(p2) — u(p3) g(ps), with p? =
mi, pi =md, pi =0,pF =0,8 = (p1 + p2)2 and t = (p1 — p3)2. Actually the
contributions largely come from six diagrams, and have the following propagators

1 1 1 11
—, 1. In the propagators we replace s and

(t — m%)Q’ (t—md) (t —md)s’ 27 s
t by their non-relativistic approximations, namely,

s~ (my, + mg)?, t ~ —(my,mg), (E.0.1)

such that

t —md ~ —mg(m, + mg). (E.0.2)

In which case we can express the differential cross-section as:
d 1\ /1 1 2d cosf
o _ (1\ (1 > M| d cos ? (F.0.3)
d cosf 3)\4 327 A2 (s, m2, mj)

AL/ (s, mi, m§) = [s* + mi + mg — QSmi — 2smf — 2mim§]1/2. (E.0.4)

where

In the non-relativistic approximation we only keep the terms proportional to v?,

where v is the relative velocity between the DM y and the mediator S. As such

1 2
5 = <M + 2,uv2> ~ M? + uMv?, (E.0.5)
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where M = m, + mg, and u = m, mg/ (m, + mg), by substituting we get
AL/2 (s, mi, m%) — 2my mgv. (E.0.6)

Therefore

(0(xS — ug)lv) = (;) (i) <321W> <2mims> /Z|M|2dcos9. (E.0.7)

We now replace s by s — (m, + mg)? in the expression of 3 |M|?, by neglecting
2

the terms proportional to v*. Similarly, we can follow the same strategy for the
case of the dimension-4 and dimension-5 vector mediators. Finally, the annihilation
cross-section for the co-annihilation processes x S(V) — wg in this limit are give

by:

e For the scalar case

2
(92)” 92
TS = w0 =g 2 g

(ms + my) (13mg + 42mgm, + 27m>2<)].

(E.0.8)
e For the 5-dimension vector case

(o(xV = ug)lv) = (0) "ot
X g 4976647 A2m3; (my + my)

[307m§, + 5222m3 my, + 372mS

+ 7072 myy m? + 8742m m? + 653Tm3 my + 2724 my mil :

(E.0.9)

e Finally, the 4-dimension vector case

()" 92

:1658887Tmz, (my + my)

{exV = ug)lv) [319m6v + 2452m3 my, + 1164 m3

+ 8242 myy m}, 4 12568 myy m;, + 11403m3, my + 5628 my mil .

(E.0.10)
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