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Abstract

The experimental observation of charged Higgs bosons, H±, which are predicted by several
models with an extended Higgs sector, would indicate physics beyond the Standard Model.
This note presents the results of a search for charged Higgs bosons in 14.7 fb−1 of pp collision
data at

√
s = 13 TeV recorded by the ATLAS detector at the LHC. The search targets the

τ+jets channel in top-quark-associated H± production with a hadronically decaying W boson
and τ lepton in the final state. No evidence of a charged Higgs boson is found. For the mass
range of mH± = 200 − 2000 GeV, upper limits are set on the production cross section of the
charged Higgs boson with the subsequent decay H± → τν in a range of 2.0 to 0.008 pb.
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1 Introduction

Following the discovery of a neutral scalar particle at the Large Hadron Collider (LHC) in 2012 [1, 2],
an important question is whether this new particle is the Higgs boson of the Standard Model (SM) or
part of an extended Higgs sector. Charged Higgs bosons1 appear in several non-minimal scalar sectors,
where a second doublet [3] or triplets [4–8] are added to the SM Higgs doublet. In two-Higgs-doublet
models (2HDM), the production and decay of the charged Higgs boson also depend on the parameter
tan β, defined as the ratio of the vacuum expectation values of the two Higgs doublets, and the mixing
angle α between the two CP-even Higgs bosons. In the alignment limit, where cos(β − α) ' 0, the decay
H+ → τν can have a substantial branching fraction. In a type-II 2HDM, even when the decay H+ → tb
dominates, the branching fraction BR(H+ → τν) can reach 10–15% at large values of tan β [9]. Beyond
tree level, a number of additional parameters affect the Higgs sector, the choice of which defines various
MSSM benchmark scenarios. In some scenarios, such as mmod+

h
[10], the top-squark mixing parameter

is chosen such that the mass of the lightest CP-even Higgs boson, mh , is close to the measured mass
of the Higgs boson that was discovered at the LHC. A different approach is employed in the hMSSM
scenario [11, 12] in which the measured value of mh can be used, with certain assumptions, to predict
the remaining masses and couplings of the MSSM Higgs bosons without explicit reference to the soft
supersymmetry-breaking parameters.

The ATLAS and CMS collaborations have searched for light charged Higgs bosons, produced in top-quark
decays, using proton–proton (pp) collisions at

√
s = 7–8 TeV in the τν [13–17] and cs [18, 19] decay

modes. Using data collected at
√

s = 8 TeV, charged Higgs bosons heavier than the top quark were also
searched for, using final states originating from both the τν and tb decay modes [15, 17, 20]. The search
for the τν final states has been also performed by ATLAS at

√
s = 13 TeV, using the data collected in

2015 [21]. Vector-boson-fusion H+ production was also searched for by ATLAS using the W Z final
state [22]. In parallel to this report, another search based on the data collected in 2015 and 2016, using
the tb final states has been performed by ATLAS [23]. No evidence of a charged Higgs boson was found
in any of these searches.

For mH+ greater than the top-quark mass mtop, the main production mode of a charged Higgs boson at the
LHC is expected to be in association with a top quark [24–26]. The corresponding Feynman diagrams
are shown in Figure 1. When calculating the corresponding cross section in a four-flavour scheme (4FS),
b-quarks are dynamically produced, whereas in a five-flavour scheme (5FS), the b-quark is also considered
as an active flavour in the proton. 4FS and 5FS cross sections are averaged according to Ref. [27].

This note describes a search for charged Higgs bosons in pp collisions at
√

s = 13 TeV using 14.7 fb−1 of
data collected by the ATLAS experiment in 2015 and part of 2016. The production of a charged Higgs
boson in association with a single top quark and its decay via H+ → τν are explored in the mass range
of 200 to 2000 GeV. This analysis uses the fully hadronic decay of the top quark (t → bW → b(qq′)).
The final state is characterised by the presence of a hadronic τ decay and missing transverse momentum
arising from the H+ decay, as well as the absence of high-transverse-momentum electrons and muons.

The SM prediction is compared to the data, and results for the signal cross section times branching
fraction σ(pp→ [b]tH+) × BR(H+ → τν) are presented, together with an interpretation in the hMSSM
benchmark scenario, in which the light CP-even Higgs boson mass mh is set to 125 GeV, without choosing
explicitly the soft-supersymmetry-breaking parameters.

1 In the following, charged Higgs bosons are denoted H+, with the charge-conjugate H− always implied. Similarly, generic
symbols are used for their decay products.
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Figure 1: Leading-order Feynman diagrams for the production of a charged Higgs boson with a mass mH+ > mtop,
in association with a single top quark (left in the 4FS, and right in the 5FS).

2 Data and simulated events

TheATLAS experiment [28] consists of an inner detector with coverage in pseudorapidity2 up to |η | = 2.5,
surrounded by a thin 2 T superconducting solenoid, a calorimeter system extending up to |η | = 4.9 and a
muon spectrometer extending up to |η | = 2.7 that measures the deflection of muon trajectories in the field
of three superconducting toroid magnets. The innermost pixel layer, the insertable B-layer (IBL), was
added between the first and second runs of the LHC, around a new, narrower and thinner beam pipe [29].
A two-level trigger system is used to select events of interest [30]. The integrated luminosity, considering
the data-taking periods of 2015 and a fraction of 2016, in which all relevant detector subsystems were
operational, is 14.7 fb−1 and has an uncertainty of 2.1% (3.7%) for data collected in 2015 (2016). It is
derived following a methodology similar to that detailed in Ref. [31], from a calibration of the luminosity
scale using x–y beam-separation scans performed in August 2015 and May 2016.

Simulated events of H+ production in association with a single top quark are generated in the 4FS at the
next-to-leading order (NLO) of QCD calculations with MadGraph5_aMC@NLO v.2.2.2 [32] using the
NNPDF23LO [33] parton distribution function (PDF) set, interfaced to Pythia v8.186 [34] with the A14
set of tuned parameters (tune) [35] for the underlying event. For the signal generation, the QCD scale is
set according to the latest theory recommendations [36] and reduces the signal acceptance with respect to
the choice of (mtop + mH+ )/3 used in [21].3 In the scenarios explored in this search, the width of H+ is
much smaller than the experimental transverse mass resolution, therefore the narrow-width approximation
is used, which also allows to quote model-independent results.

The SM backgrounds are the production of tt̄ pairs, single top quarks, W+jets, Z/γ∗+jets and electroweak
gauge boson pairs (WW/W Z/Z Z), as well as multi-jet events. While tt̄ production is the main background
in the low mass search (mH+ ≤ mt ), multi-jet events dominate for the mass range considered in this search
(mH+ > 200 GeV). For the generation of tt̄ pairs and single top quarks in the Wt- and s-channels, the
Powheg-Box v2 [37, 38] generator with the CT10 [39, 40] PDF set in the matrix-element calculation is
used. Electroweak t-channel single-top-quark events are generated using Powheg-Box v1. This generator
uses the 4FS for the NLOmatrix-element calculation together with the fixed four-flavour PDF set CT10F4.

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).

3 The acceptance reduction ranges from 22% for mH+ = 200 GeV to <2.5% above 1000 GeV.
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For this process, the top quark is decayed using MadSpin [41], thereby preserving all spin correlations.
For all backgrounds above, the parton shower, the fragmentation and the underlying event are simulated
using Pythia v6.428 [42] with the CTEQ6L1 [43] PDF set and the corresponding Perugia 2012 (P2012)
tune [44]. The top-quark mass is set to 172.5 GeV for all relevant background and signal samples. The
tt̄ cross section is calculated at next-to-next-to-leading order (NNLO), including soft-gluon resummation
to the next-to-next-to-leading logarithmic (NNLL) order, with Top++ v2.0 [45–51]. The single-top-
quark samples are normalised to the approximate NNLO cross sections [52–54]. Events containing a
W or Z boson with associated jets are simulated using MadGraph5_aMC@NLO v.2.2.2 at LO with
the NNPDF23LO PDF set, interfaced to Pythia v8.186 with the A14 underlying-event tune. In these
samples, Photos++ v3.52 [55] is employed for photon radiation from charged leptons. These samples
are normalised to the NNLO cross sections calculated with FEWZ [56–58]. Finally, diboson processes
are simulated using the Powheg-Box v2 generator interfaced to the Pythia v8.186 parton shower model.
The CT10 NLO set is used as the PDF for the hard-scatter process, while the CTEQ6L1 PDF set is used
for the parton shower. The AZNLO tune [59] is used for the QCD modelling. The diboson samples are
normalised to their NLO cross sections, as computed by the event generator.

Simulation of b- and c-hadron decays is done with EvtGen v1.2.0 [60]. Multiple overlaid pp collisions
(pile-up, with 20.5 collisions per bunch-crossing on average) are simulated with the soft QCD processes
of Pythia v8.186 using the MSTW2008LO [61–63] PDF set and the A2 underlying-event tune [64]. All
simulated signal and background samples are processed through a simulation [65] of the detector geometry
and response using Geant4 [66]. Finally, they are processed through the same reconstruction software
as the data. Simulated events are weighted to reproduce the same distribution of number of collisions per
bunch crossing as observed in data.

Backgrounds are categorised based on the truth type of objects reconstructed as the visible decay products4
of the hadronically decaying τ candidate (τhad-vis). Only the simulated events having a true hadronically
decaying τ at generator level (τhad) or with a charged lepton (electron ormuon)misidentified as a τhad-vis are
kept. Backgrounds arising from a jet misidentified as a τhad-vis candidate are estimated with a data-driven
method.

3 Object reconstruction and identification

In the ATLAS experiment, hadronic jets are reconstructed from energy deposits in the calorimeters, using
the anti-kt algorithm [67] with a radius parameter R = 0.4. In the following, jets are required to have a
transverse momentum pT > 25 GeV and |η | < 2.5. A multi-variate technique (Jet Vertex Tagger) relying
on jet energy and tracking variables to determine the likelihood that a given jet originates from pile-up [68]
is applied to jets with pT < 60 GeV and |η | < 2.4. Jets arising from b-hadron decays are identified using
an algorithm that combines impact parameter information with the explicit identification of secondary and
tertiary vertices within the jet into a b-tagging score [69, 70]. The minimal requirement imposed on the
b-tagging score in this analysis corresponds to a 70% efficiency to tag a b-quark-initiated jet in tt̄ events
and rejection factor of about 400 for light-quark initiated jets. The tagging efficiencies from simulation
are corrected based on the results of calibration performed with data [71].

4 This refers to all τ decay products except the neutrinos.
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Candidates for identification as τhad-vis arise from jets that have pT > 10 GeV and for which one or
three charged-particle tracks are found within a cone of size5 ∆R of 0.2 around the axis of the τhad-vis
candidate [72, 73]. These objects are further required to have a visible transverse momentum (pτT) of at
least 40 GeV and to be within |η | < 2.3. The output of boosted decision tree (BDT) algorithm [74] is
used in order to distinguish τhad-vis candidates from jets not initiated by hadronically decaying τ leptons.
This is done separately for decays with one or three charged-particle tracks. In this analysis, a working
point corresponding to a 55% (40%) efficiency for the identification of 1-prong (3-prong) τhad-vis objects
is used, with rejection rates of O(102) for jets.

Electron candidates [75] are reconstructed from energy deposits (clusters) in the electromagnetic calor-
imeter, associated with a reconstructed track in the inner detector. The pseudorapidity range for the
electromagnetic clusters covers the fiducial volume of the inner detector, |η | < 2.47 (the transition region
between the barrel and end-cap calorimeters, 1.37 < |η | < 1.52, is excluded). Quality requirements on
the EM shower and the track, as well as isolation requirements, based on its transverse energy and the
tracking information, are then applied in order to reduce contamination from jets. Muon candidates are
reconstructed from track segments in the muon spectrometer, and matched with tracks found in the inner
detector within |η | < 2.5 [76]. The final muon tracks are refitted using the complete track information
from both detector systems. They must fulfil quality requirements including a pT-dependent track-based
isolation requirement. In this analysis, events with isolated electron or muon candidates with a transverse
energy or momentum above 20 GeV are rejected.

When objects overlap geometrically, the following procedure is applied. Electrons are removed if found
within ∆R of 0.2 around the axis of a muon. Then, every τhad-vis candidate that overlaps with a electron or
muon, within a cone of size ∆R of 0.2, is removed. Finally, reconstructed jets are discarded if an electron
or a τhad−vis candidate fulfilling the selection criteria above is found within a cone of size ∆R of 0.2.

The magnitude Emiss
T of the missing transverse momentum [77] is reconstructed from the negative vector

sum of transverse momenta of reconstructed and fully calibrated objects (collected in the hard term),
as well as from reconstructed tracks associated with the hard-scatter vertex which are not in the hard
term (collected in the soft term). In order to mitigate the effects of pile-up, the Emiss

T is refined by using
object-level corrections for the identified electrons, muons, jets and τhad-vis candidates in the hard term.
As the soft term contains only tracks associated with the hard-scatter vertex, it is robust against pile-up.

4 Event selection

Charged Higgs bosons are searched for in the following topology: pp → [b]tH+ → [b]( j jb)(τhadν), i.e
both the W boson in the top-quark decay and the τ lepton decay hadronically.

Events collected using an Emiss
T trigger with a threshold at 70 (90) GeV for 2015 (2016) data are considered.

After ensuring that no jets are consistent with having originated from instrumental effects or non-collision
background, the following event-level requirements are made:

• One τhad−vis candidate with pτT > 40 GeV (only the highest-pτT object is considered as the τhad
candidate and is required to fulfil the identification criteria described in Section 3);

• Three or more jets with pT > 25 GeV, of which at least one is b-tagged;

5 ∆R =
√

(∆η)2 + (∆φ)2, where ∆η and ∆φ are differences in pseudorapidity and azimuthal angle, respectively.
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• No electron or muon with a transverse energy or momentum above 20 GeV;

• Emiss
T > 150 GeV.

The Emiss
T trigger efficiency is measured in data and then used to reweight the simulated events, rather

than relying on the modeling of Emiss
T trigger in the simulation. This measurement is performed in a

control region of the data that is orthogonal to the signal region described above, while retaining as
many similarities as possible. For this purpose, events passing a single-electron trigger with a transverse
energy threshold at 24 GeV are considered and required to contain exactly one electron matched to the
corresponding trigger object, exactly one τhad-vis and two or more jets, of which at least one is b-tagged.
Both the electron and the τhad-vis fulfil loose identification criteria in order to improve the statistical
precision, with little impact on the measured Emiss

T turn-on curve. The trigger efficiency measurement is
performed separately for two different triggers used in 2015 and 2016.

For the selected events, the transverse mass mT of the τhad-vis and Emiss
T system is used a discriminant

variable for the search, is defined as:

mT =
√
2pτTEmiss

T (1 − cos∆φτ,Emiss
T

), (1)

where ∆φτ,Emiss
T

is the azimuthal angle between the τhad-vis and the direction of the missing transverse
momentum. In the τ+jets channel, this discriminating variable takes values lower than the W boson mass
for W → τν decays in background events and lower than the H+ mass for signal events, in the absence of
detector resolution effects.

A requirement of mT > 50 GeV is applied in order to reject events with mismeasured Emiss
T , where τhad-vis

is nearly aligned with the direction of the missing transverse momentum.

5 Background modelling

In this search, the backgroung processes are tt̄, single-top-quark, W+jets, Z/γ∗+jets, diboson and multi-jet
(MJ) events. Backgrounds are categorised based on the object that gives rise to the identified τhad-vis.

The “jet → τhad-vis” background includes multi-jet events and other processes where a quark- or gluon-
initiated jet is reconstructed and selected as the τhad-vis candidate. This background is estimatedwith a data-
drivenmethod. For this purpose, a control region populated primarily withmisidentified τhad-vis candidates
is defined by using the same requirements as for the τ+jets signal region, except that Emiss

T < 80 GeV
and that the number of b-tagged jets is zero. The fake factor (FF) is defined as the ratio of the number
of misidentified τhad-vis candidates fulfilling the nominal object selection to the number of misidentified
τhad-vis candidates satisfying an “anti-τhad-vis” selection. This anti-τhad-vis selection is defined by inverting
the τhad-vis identification criteria while maintaining a loose requirement on the BDT output score, which
selects the similar kind of objects mimicking τhad-vis candidates as those fulfilling the identification criteria.
The FFs are parameterised as functions of pT and number of tracks in the τhad decay, separately for the data
collected in 2015 and 2016, as illustrated in Figure 2. After subtracting τhad-vis candidates not fulfilling the
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identification criteria but matching a true τhad at generator level, the number of events with a misidentified
τhad-vis in the signal region (Nτhad-vis

fakes ) is derived from the subset of anti-τhad-vis candidates as follows:

Nτhad-vis
fakes =

∑
i

Nanti−τhad-vis (i) × FF(i), (2)

where the index i refers to each bin in terms of pT and number of tracks in the τhad decay (two categories:
1-prong and 3-prong), in which the FF is evaluated. FF’s derived the way described above show a limited
dependence on the average number of collisions per bunch crossing (pileup). It has been checked that,
due to selection bias, the profile of the pileup is not exactly identical in the signal region and the control
region used for FF extraction. A corresponding systematic uncertainty has been attributed.
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Figure 2: Fake factors parameterised as a function of pτT and the number of charged decay products (two categories:
1-prong and 3-prong) as obtained for 2015 data (left) and 2016 data (right).

Backgrounds arising from events in which an isolated electron or muon is misidentified as a τhad-vis only
contribute at the level of 3% to the total background, with misidentified muons contributing about one
order of magnitude less than misidentified electrons. These backgrounds are estimated with simulation
and include contributions from tt, single-top-quark, W/Z+jets and diboson processes. If an electron
is misidentified as a τhad-vis, a correction factor is applied to the event in order to account for the
misidentification rate measured in data in Z → e+e− on-shell events, where one electron is reconstructed
as a τhad-vis.

The backgrounds with a true τhad are estimated using simulation. The two dominant processes, tt̄ and
W → τν, are validated in two dedicated control regions, which differ from the nominal event selection
by the requirements that mT < 100 GeV, and that the number of b-tagged jets be either at least two (for
the control region enriched with tt̄ events) or zero (for the control region enriched with W → τν events).
The mT distributions that are predicted and measured in the above background-enriched control regions
are displayed in Figures 3 and 4. The relative signal contamination in the control region enriched in
W → τν events is about two orders of magnitude smaller than the expected fraction of H+ → τν events
in the signal region. The control region enriched in tt events has a small overlap with the signal region, as
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the expected signal contamination is about one order of magnitude smaller than the expected fraction of
H+ → τν events in the signal region.

 [GeV]Tm

E
v
e
n
ts

 /
 1

0
 G

e
V

0

1000

2000

3000

4000

5000 Data W+jets

τ →MisID j τ → µMisID e/

 & single­toptt Z+jets

Diboson

Data W+jets

τ →MisID j τ → µMisID e/

 & single­toptt Z+jets

Diboson

ATLAS Preliminary
­1 = 13 TeV, 14.7 fbs

 control regionντ →W 

 [GeV]Tm
0 10 20 30 40 50 60 70 80 90 100

D
a
ta

 /
 S

M

0

0.5

1

1.5

2
Uncertainty

Figure 3: Distribution of mT in the τ+jets validation region enriched with W → τν events, which differs from the
nominal event selection by the requirements that mT < 100 GeV and that the number of b-tagged jets be zero. The
W → τν background is normalised to the data through an overall scale factor. The total (statistical and systematic)
uncertainties in the SM prediction are shown in the lower plot.
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Figure 4: Distribution of mT in the τ+jets validation region enriched with tt̄ events, which differs from the nominal
event selection by the requirements that mT < 100 GeV and that the number of b-tagged jets be at least two. The
total (statistical and systematic) uncertainties in the SM prediction are shown in the lower plot.

The expected number of background events in the signal region is shown in Table 1, together with the
contribution expected from a hypothetical charged Higgs boson with a mass of 200 or 1000 GeV, and
with σ(pp → [b]tH+) × BR(H+ → τν) set to the prediction from the hMSSM scenario for tan β = 60
(for a given mass, the expected signal yield increases quadratically with tan β). The calculation of the
production cross section is based on Refs. [9, 36, 78–80], while HDECAY [81, 82] is used for computing
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the branching fraction. The signal acceptance at 200 (1000) GeV is 1.1% (10%), as evaluated with respect
to simulated samples where both the τ-lepton and the associated top quark decay inclusively. The event
yield observed in 14.7 fb−1 of data is also shown in Table 1 and found to be consistent with the expectation
for the background-only hypothesis.

Sample Event yield
True τhad

tt̄ & single-top-quark 2880 ± 770 ± 25
W → τν 265 ± 51 ± 18
Z → ττ 43 ± 6.8 ± 7.6
diboson (WW,W Z, Z Z) 13.8 ± 2.2 ± 1.7

Misidentified e, µ→ τhad-vis 126 ± 24 ± 6.5
Misidentified jet→ τhad-vis 1170 ± 110 ± 16
All backgrounds 4500 ± 800 ± 36
H+ (200 GeV), hMSSM tan β = 60 523 ± 86 ± 4
H+ (1000 GeV), hMSSM tan β = 60 7.5 ± 0.6 ± 0.05
Data 4645

Table 1: Expected event yields for the backgrounds and a hypothetical H+ signal after all selection criteria, and
comparison with 14.7 fb−1 of data. The values shown for the signal assume a charged Higgs boson mass of 200
or 1000 GeV, with a cross section times branching fraction σ(pp → [b]tH±) × BR(H± → τν) corresponding to
tan β = 60 in the hMSSM benchmark scenario. The sytematic and statistical uncertainties are given, respectively.
Sources of systematic uncertainty are correlated amongst backgrounds when evaluating the uncertainty on the total
background.

6 Systematic uncertainties

Several sources of systematic uncertainty, affecting the normalisation of signal and background processes
or the shape of their transverse mass distributions, are considered. The individual sources of systematic
uncertainty are assumed to be uncorrelated. However, when applied to different Monte Carlo samples,
correlations of a given systematic uncertainty are treated as correlated across the processes. All systematic
uncertainties are symmetrised with respect to the nominal value.

All instrumental systematic uncertainties arising from the reconstruction, identification and energy scale
of electrons, muons, (b-tagged) jets and τhad-vis candidates are considered, including their impact on the
reconstructed Emiss

T . The dominant detector-related systematic uncertainties for this search arise from the
jet energy scale, from the reconstruction and identification of τhad-vis candidates, from the τhad-vis energy
scale and from the b-tagging efficiency. Their impacts on the predicted event yield for the dominant
background process (tt̄) are, 11.0%, +5.7/-3.3%, 3.6% and 1.4%. Systematic uncertainties arising from
the reconstruction, identification and energy scale of electrons and muons are very small in this analysis.
The luminosity uncertainties of 2.1% (3.7%) for data collected in 2015 (2016) is applied directly to the
event yields of all simulated events.

The efficiency of the Emiss
T trigger is measured in a control region of the data, as described in Section 4.

The parameterisation of the efficiency shows a small dependence on the identification criteria (loose versus
nominal) for the electron and the τhad-vis candidate, as well as on the minimum number of jets chosen for
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the control region. This results in small variations of the measured fit function. These variations, as well
as the limited statistical precision of the bins used for the fit function and the resulting parameterisation,
are accounted for as systematic uncertainties. In the signal region, the total systematic uncertainty arising
from the Emiss

T trigger efficiency measurement is about 2%.

In the estimation of backgrounds with jets misidentified as τhad-vis, the dominant systematic uncertainties
arise from the requirement on the BDT score in the anti-τhad-vis control sample, from the level of con-
tamination of τhad-vis objects matching a true τhad decay at generator level and fulfilling the anti-τhad-vis
selection (varied by 50%) and from the statistical limitation due to the control sample size. When changing
the BDT score cut, different fractions of gluon- and quark-initiated jets populate the anti-τhad-vis control
region. The event topology (in particular the shape of the Emiss

T and ∆φτ,miss distributions) also depends
on the requirement imposed on the BDT score. The corresponding systematic uncertainty is assessed by
considering the shape of the mT distribution obtained for two alternative cuts on the BDT score, which are
symmetric around the nominal cut value. The impacts of the three systematic uncertainties listed above
on the event yield of the background with jets misidentified as τhad-vis are, respectively, up to 20%, 6%
and 3%.

The dominant background process with a true τhad is the production of tt̄ pairs and single-top-quark
events, for which an overall cross-section uncertainty of 6% is applied, incorporating scale, PDF+αs
and top-quark mass uncertainties [51, 83, 84]. In addition, systematic uncertainties due to the choice of
parton shower and hadronisation models are derived by comparing tt̄ events generated with Powheg-Box
interfaced to either Pythia v6.4 or Herwig++ v2.7.1 [85], which uses the UEEE5 [86] underlying-event
tune. The systematic uncertainties arising from initial- and final-state parton radiation, which modify
the jet production rate, are computed with the same packages as for the baseline tt̄ event generation, by
setting the corresponding parameters in Pythia to a range of values not excluded by the experimental data.
Finally, the uncertainty due to the choice of matrix-element generator is evaluated by comparing samples
generated with MadGraph5_aMC@NLO or Powheg-Box, both using the CT10 PDF set and interfaced
to Herwig++ with CTEQ6L1 and UEEE5 tune. The impacts of the three systematic uncertainties listed
above on the event yield of the tt̄ background are, respectively, 16%, 7% and 15%.

For the sub-leading background process with a true τhad, W → τν, a systematic uncertainty of 5% is
assigned to the overall renormalisation factor, as obtained by changing various selection criteria for the
control region enriched with such background events. For Z+jets and diboson production, theoretical un-
certainties of 5% and 6% are considered, respectively, combining PDF+αs and scale variation uncertainties
in quadrature.

Systematic uncertainties in the H+ signal generation are estimated as follows. The uncertainty arising
from the QCD scale is obtained by varying the factorisation and renormalisation scale up and down by a
factor of two. The largest variation of the signal acceptance is then symmetrised and taken as the scale
uncertainty, 4–8% depending on the mass hypothesis. The variation of the signal acceptance with various
PDF sets is estimated using LHAPDF [87], but is found to be negligible for all signal samples. Finally, the
impact of A14 tune variations on the signal acceptance is estimated by adding in quadrature the excursions
from a subset of tune variations that cover underlying-event and jet-structure effects, as well as different
aspects of extra jet production. This uncertainty amounts to 8–10%.
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7 Results

In order to test the compatibility of the data with the background-only and signal+background hypotheses,
a profile likelihood ratio [88] is used, with mT as the discriminating variable. The statistical analysis
is based on a binned likelihood function for the mT distribution. All systematic uncertainties from
theoretical or experimental sources are implemented as nuisance parameters. The parameter of interest
µ ≡ σ(pp→ [b]tH+)×BR(H+ → τν), and the nuisance parameters are simultaneously fitted bymeans of
a negative log-likelihood minimisation. Expected limits are derived using the asymptotic approximation
of the distribution of the test statistic [89].

Figure 5 shows the mT distribution obtained after a fit with the background-only hypothesis, together with
the mT distributions corresponding to two H+ mass hypotheses: 200 and 1000 GeV. The binning shown
in Figure 5 is also used in the statistical analysis. The SM predictions are found to be consistent with the
data, and exclusion limits are set on σ(pp→ [b]tH+) ×BR(H+ → τν) at the 95% confidence level (CL)
using the CLs procedure [90]. Figure 6 shows the observed and expected exclusion limits as a function of
H+ mass hypothesis. They agree within the uncertainties over the explored H+ mass range. The observed
limits range from 2.0 to 0.008 pb in the mass range 200–2000 GeV. The impact from the various sources of
systematic uncertainty on the expected 95% CL exclusion limits are summarised in Table 2, for H+ mass
hypotheses of 200 and 1000 GeV. The impact is obtained by comparing the nominal expected limit with
the expected limit when a certain set of uncertainties is not included in the limit-setting procedure. The
impact of the systematic uncertainties reported in Section 6 only represents the relative change in event
yields. In the limit-setting procedure, however, mT shape variations are also taken into account, leading to
a different relative importance of the various systematic uncertainties. The systematic uncertainties with
a large impact over the explored mass range are the τhad-vis identification and energy-scale uncertainties,
the tt̄ background modelling uncertainties, and the estimation of the background with a jet misidentified
as a τhad-vis. The total uncertainty is dominated by the statistical uncertainty.

The limits in Figure 6 are presented togetherwith an illustrative signal prediction in the hMSSMbenchmark
scenario. Figure 7 shows the 95% CL exclusion limits on tan β as a function of mH+ in the context of
the hMSSM scenario, compared with the 2015 results reported in Ref. [21]. Values of tan β in the range
42–60 are excluded for a charged Higgs boson mass of 200 GeV. At tan β = 60, above which no reliable
theoretical calculations exist, the H+ mass range from 200 to 540 GeV is excluded. As a result of the new
choice of QCD scale for the H+ signal generation, the expected limit at 200 GeV is not improved relative
to the one obtained in 2015 [21]. However, at high mass, the limit is largely improved.

8 Conclusion

A search for charged Higgs bosons produced in association with a single top quark and subsequently
decaying via H+ → τν is performed, based on fully hadronic final states. The dataset used for this
analysis contains 14.7 fb−1 of pp collisions at

√
s = 13 TeV, recorded in 2015 and 2016 by the ATLAS

detector at the LHC. The background-only hypothesis is found to be in agreement with the data. Upper
limits are set on the production cross section times branching fraction between 2.0 and 0.008 pb for a
charged Higgs boson mass range of 200–2000 GeV. In the context of the hMSSM, values of tan β in the
range 42–60 are excluded for a charged Higgs boson mass of 200 GeV. The H+ mass range from 200 to
540 GeV is excluded at tan β = 60.
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Source of systematic Impact on the expected limit (in %)
uncertainty mH+ = 200 GeV mH+ = 1000 GeV
Experimental

luminosity 1.5 0.9
trigger < 0.1 < 0.1
τhad-vis 1.0 1.4
jet 3.0 0.2
Emiss
T < 0.1 < 0.1

Fake factors 0.8 4.7
Signal and background models

tt̄ modelling 13.2 3.5
H+ signal modelling 1.4 1.4

Table 2: Impact of various sources of uncertainty on the expected 95% CL exclusion limit, for two H+ mass
hypotheses: 200 and 1000 GeV. The impact is obtained by comparing the nominal expected limit with the expected
limit when a certain set of uncertainties is not included in the limit-setting procedure.
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Appendix

Figure 8 shows the 95% CL exclusion limits on tan β as a function of mH+ in the context of the mmod−
h

scenario, compared with the 2015 results reported in Ref. [21]. Values of tan β in the range 43–60 are
excluded for a charged Higgs boson mass of 200 GeV. At tan β = 60, above which no reliable theoretical
calculations exist, the H+ mass range from 200 to 530 GeV is excluded.
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Figure 8: 95% CL exclusion limits on tan β as a function of mH+ , shown in the context of the mmod−
h

, for the regions
in which reliable theoretical calculations exist (tan β ≤ 60). As a comparison, the red curves show the observed
and expected exclusion limits measured at

√
s = 13 TeV in 2015 by ATLAS [21].

The 2015+2016 expected limit can be compared to the one with 2015 data [21]. The comparison is
shown in Figure 9. An improved sensitivity is observed over the full mass range, increasing with the mass
hypothesis and reaching a factor of two at high masses (mH+ > 1000 GeV).
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Figure 9: Comparison of the expected 95% CL exclusion limits for heavy charged Higgs boson production as a
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√
s = 13 TeV pp collision data and in 3.2 fb−1 of

√
s = 13 TeV pp collision data

collected in 2015 [21].
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