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In this dissertation, we attack the problem of strongly correlated and topologi-
cal systems via a creative variety of approaches in the hopes of extracting and
elucidating meaningful electronic transport phenomena.

In the first part, we study the long-standing puzzle of the anomalously large
and superuniversal correlation length exponent v in the fractional quantum Hall
effect. To tackle this, we utilize the newly conjectured Chern-Simons dualities as
a powerful non-perturbative tool. By exploring the new descriptions of FQHE
transitions afforded by the dualities, we find that large flavor expansions com-
pare unfavorably to the experimental v. However, the non-Abelian nature of
these dualities motivated us to try large color expansions. Utilizing duality
techniques in combination with modular transformations, we were able to use
large color expansions to demonstrate superuniversality across FQHE transi-
tions. This was the first theoretical demonstration of superuniversality, as well
as one of the first uses of the non-Abelian Chern-Simons dualities.

In the second part, we critically examine transport features of the strongly-
correlated electron hydrodynamic regime. Electron hydrodynamics has been
claimed to be observed in a number of experiments, generating much excite-
ment. However, clear demonstration of this regime is tricky since direct mea-
surement of the electron-electron scattering length is difficult. Measurements

of non-local transport behavior have been argued to be a signature of viscous



flow and therefore provide indirect evidence of a short electron-electron scatter-
ing length. We begin by showing, on the contrary, that non-local transport be-
havior can occur even for disordered non-interacting fermionic systems which
sits far from the hydrodynamic regime. Therefore, non-local transport is not
unique to hydrodynamics. Furthermore, the linearized Navier-Stokes equation
is structurally equivalent to common momentum-dependent Ohm’s law; disen-
tangling the hydrodynamic contribution requires precise understanding of the
phenomenological parameters. By contrast, the fully nonlinear Navier-Stokes
equation is distinct from the linear Ohm’s law and can give rise to distinctive
signatures. We therefore proposed three experiments to manifest unique non-
linear phenomena well-known in the classical fluids literature - the Bernoulli
effect, Eckart streaming, and Rayleigh streaming. Analysis of experimental pa-
rameters suggests that these proposals are feasible and therefore provide strong
signatures of a hydrodynamic regime. Moreover, as one of the first works to
comprehensively study nonlinear effects, we hope that it would motivate fur-
ther exploration of nonlinear electron fluid dynamics.

In the third part, we look for optical signatures of the chiral anomaly in Weyl
semimetals. Direct detection of the chiral anomaly via a negative longitudinal
magnetoresistance has been difficult as this signature can arise from other mech-
anisms. Other works have proposed anomalous IR reflectance signatures as a
smoking gun for the chiral anomaly in non-mirror-symmetric Weyl semimet-
als. However, they neglected that the presence of a magnetic field, necessary for
the chiral anomaly, will generically break mirror symmetries. We go on to argue
that the background magnetic field can break mirror symmetry strongly enough
in physical systems to yield observable IR signatures of the chiral anomaly, even

for mirror-symmetric crystals.



In the fourth part, we study transport along topological domain wall net-
works in moiré systems. While most excitement around moiré physics have fo-
cused around the moiré miniband, recent experiments have suggest that moiré
systems can also feature sharp domain walls and provide a natural setting to
study networks of 1D topological modes. Previous works focused either on
non-interacting models or utilized interacting models to find gapped correlated
phases by imposing a single-particle gap. However, away from commensurate
tillings we expect intervalley scattering to be suppressed so that a single-particle
gap cannot open. Therefore, we study a triangular network of valley-helical
Luttinger wires where we enforce no intervalley scattering. We find that trans-
port in this network is inherently non-local, distinct from the local diffusive
behavior of a resistor network. In particular, at strong repulsive interactions we

predict a novel orbital antiferromagnetic-ordering phase.
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CHAPTER 1
INTRODUCTION

1.1 Overview

In the past 200 years, technological progress has been marked by our increasing
control over the transport of electronic charge. Beginning with the light bulb,
development of electronic technologies such as the electric motor, the telephone,
radio, television, the computer, and the Internet have revolutionized the world.
One of the crowning achievements of modern condensed matter physics is the
silicon chip, where precise understanding of its band-structure gave rise to the
digital revolution and the Internet age. While we may understand much of
electronic transport, the discovery of superconductivity and the quantum Hall
effect gave rise to a rich host of strongly correlated and topological regimes of
transport still to be fully understood. For instance, two of the holy grails of
condensed matter physics - room-temperature superconductivity and a univer-
sal quantum computer - are both electronic transport phenomena of immense

technological interest but yet to be physically realized.

The fundamental problem of understanding strongly correlated and topo-
logical phenomena is that of scale: from a system with O(10%%) degrees of free-
dom, we want to extract a few macroscopic properties. Indeed, the great ef-
fectiveness of band-structure theory comes from the fact that momentum space
simplifies the O(10%°) degrees of freedom down to O(1). However, not all sys-
tems are best described by a band structure. Non-interacting topological sys-
tems, such as the integer quantum Hall effect, are characterized by a topological

invariant that is largely independent of band structure details. Furthermore,



strongly correlated phases, such as superconductivity, require treatments be-
yond naive perturbation theory around a given band-structure. Therefore, the
study of strongly correlated and topological phases of matter have engendered
a flurry of novel and creative non-perturbative approaches such as BCS mean
tield theory, the Laughlin wavefunction ansatz, the renormalization group, the

ten-fold way, and many others.

In this thesis, we study electronic transport across a number of different
physical systems, primarily employing analytic techniques. Two techniques in
particular - Chern-Simons dualities and hydrodynamics - have been motivated
by work in the high-energy and fluid dynamics communities, respectively. It is
our hope that the work in this thesis contributes to new creative approaches to

strongly correlated problems, both in condensed matter physics and beyond.

1.2 Thesis Roadmap

In chapter 2} we study the superuniversality of the correlation length exponent v
in fractional quantum Hall (FQH) transitions with the help of the newly conjec-
tured Chern-Simons dualities. We first give a brief review of Chern-Simons field
theory descriptions of the FQH transitions. In section we explore the new
phase space of theories afforded by the new Chern-Simons duality transforma-
tions and calculate v in a large flavor expansion. However, we find that large
flavor computations do not give superuniversality nor a good numerical ap-
proximation of the experimentally measured v. In section 2.2, we instead take a
large color approach motivated by the non-Abelian nature of the Chern-Simons

dualities. Using the dualities in combination with modular transformations, we



find exact large color descriptions of the FQH transitions. Calculating v in a

large color expansion, we find superuniversality in this class of theories.

In chapter 3| we investigate transport features associated with the strongly
interacting electron hydrodynamic regime. In section. (3.1} we begin by critically
re-examining previous experimental claims that observations of non-local “vis-
cous” transport was evidence of the hydrodynamic regime. Taking a disordered
non-interacting fermion model, we compute the conductivity to O(¢?) and find
that this model also exhibits non-local “viscous” transport. Ultimately, we real-
ized that qualitative non-local transport features are not distinctive because the
Navier-Stokes equations are equivalent to a momentum-dependent Ohm’s law.
Therefore, in search of sharper signatures of the hydrodynamic regime, in sec-
tion.[3.2lwe look at nonlinear phenomena lying outside the purview of linear re-
sponse. We propose three experiments motivated by classic hydrodynamic phe-
nomena - the Bernoulli effect, Eckart streaming, and Rayleigh streaming - driven
by the convective nonlinearity present in the Navier-Stokes equations. Analysis
of experimental parameters suggest that these effects are observable and there-

fore can serve as strong signatures of the electron hydrodynamic regime.

In chapter 4} we search for distinctive signatures of the chiral anomaly in
Weyl semimetals. We begin with a brief introduction to Weyl semimetals and
the chiral anomaly. In section. we re-examine previous IR reflectance pro-
posals to observe the chiral anomaly which argued that mirror-symmetric Weyl
semimetals do not host the anomalous IR signature. Finding that they neglected
the symmetry-breaking effect of the applied magnetic field, which is necessarily
present, we argue that mirror-symmetric Weyl semimetals should in fact host

the IR signature. Furthermore, estimates of the symmetry-breaking from the



magnetic field suggest that mirror-symmetry is sufficiently broken to observ-

able manifest the anomalous IR peaks.

In chapter |5, we study transport in a network of topological 1D edge modes
afforded by moiré systems. We begin with a brief introduction to moiré sys-
tems. In section motivated by experimental observations of sharp domain
walls in moiré systems, we consider a triangular network of interacting valley-
helical edge modes. In contrast to previous interacting models which looked
at gapped correlated phases, we forbid intervalley scattering; away from com-
mensurate fillings, intervalley scattering is suppressed due the large momen-
tum separation between valleys. This constraint prevents a single-particle gap
from forming, so our network must remain conductive. By performing a pertur-
bative RG analysis on tunneling operators which conserve particle number and
valley number, we obtain the resulting phase diagram. We find that transport
in this model is non-local, unlike the local diffusive behavior of a resistor net-
work. In particular, at strong repulsive interactions we predict a novel orbital

antiferromagnetic-ordering phase.



CHAPTER 2
FRACTIONAL QUANTUM HALL SUPERUNIVERSALITY AND
CHERN-SIMONS DUALITIES

The fractional quantum Hall effect (FQHE) is the premier example of a
strongly correlated and topological phase. While its cousin, the integer quan-
tum Hall effect, can be described by a free electron in a magnetic field, the frac-
tionalization present in the FQHE necessitates proper treatment of the Coulomb
interaction. However, this is a difficult many-body problem. The large de-
generacy of the non-interacting Landau levels makes it difficult perturbatively
treat the Coulomb interaction, and even numerical exact diagonalization of this
problem can only treat at most a handful of particles [276]. This motivated
an effective description of FQH phases by Chern-Simons field theories (See
[318, 292, 276] for a review).

We briefly review here Chern-Simons theories. The abelian Chern-Simons

action at level £ is given by

S = ﬁ / B A,0,A, (2.1)

for an abelian background gauge field A,. Interpreting A, as the physical elec-

tromagnetic field, it couples to physical currents via [ d*z A, J*. Using J,, = 5%,

one finds that the conductivity is 0,, = 5. For proper quantization of this
theory, we must have k € Z [276]. Therefore, Chern-Simons theories naturally
describe the transport in the integer quantum Hall effect. Furthermore, we can

combine multiple gauge fields to recreate transport in the fractional quantum



Hall effect. For instance, consider

1
5= / Ber [%b/ﬁybp—i— A, (2.2)
11 [y
=32 d’ze"PA,0,A, (2.3)

where b is a dynamical gauge field and in the second line we integrate out b to
obtain the effective action. Therefore, this theory describes the fractional quan-

tum Hall 1/m state]]

To describe FQH transitions, one needs a dynamical way to transition be-
tween different values of k. Two simple ways to do this are by providing a

Dirac mass gap or by Higgsing a gauge field. Recall that a free Dirac fermion
_ - 1
S = /d?’m/w“(i@” + A )Y+ mapp — 8_7T€”VPAM8VAP (2.4)

undergoes a 0 — 1 Hall transition (in the IR) as one tunes the Dirac mass, and
therefore naturally describes a quantum Hall transitionﬂ Similarly, the bosonic

theory
1
S = /d3m|(au - iau)¢|2 + m|qf)|2 + Eelwp [auauap + Auauap] (2.5)

also describes a 0 — 1 Hall transition (in the IR) as one tunes the bosonic mass
m. In the m < 0 Higgs phase, a, = 0 so the theory is a trivial insulator, but
in the trivial m > 0 phase we can set ¢ = 0 and the remaining action has a
k = 1 Hall conductivity. Generalizations of these theories can therefore describe

generic quantum Hall transitions. The seeming similarity of the fermionic and

'To integrate out b, complete the square and shift b to remove the bd A cross term. We also re-
mark that, strictly speaking, one cannot integrate out b as there will be topological obstructions;
this can be seen in the non-integer 1/m level in the resulting effective theory. Nonetheless, the
Hall conductivity is correct [276].

The additional half-integer Chern-Simons level is there as a normalization; gapping a sin-
gle Dirac fermion gives a sign(m) <= in the IR, so that the combination is properly normalized.

8
Strictly speaking, this is a shorthand for the 7 invariant (see [245]).



bosonic descriptions was given explicit foundation with the conjecture of the
Chern-Simons (plus matter) dualities. The full duality statements are nicely
summarized in [4] (see also [245] 137, 136]). We will use these dualities to great

effect in what follows.

2.1 Non-Abelian fermionization and fractional quantum Hall

transitions

This section is adapted from a PRB paper [117] with Michael Mulligan and Eun-
Ah Kim.

There has been a recent surge of interest in dualities relating theories of
Chern-Simons gauge fields coupled to either bosons or fermions within the con-
densed matter community, particularly in the context of topological insulators
and the half-filled Landau level. Here, we study the application of one such du-
ality to the long-standing problem of quantum Hall inter-plateaux transitions.
The key motivating experimental observations are the anomalously large value
of the correlation length exponent v ~ 2.3 and that v is observed to be super-
universal, i.e., the same in the vicinity of distinct critical points [S.L. Sondhi et
al., Rev. Mod. Phys. 69, 315 (1997)]. Duality motivates effective descriptions
for a fractional quantum Hall plateau transition involving a Chern-Simons field
with U(N,) gauge group coupled to Ny = 1 fermion. We study one class of
theories in a controlled limit where Ny > N, and calculate v to leading non-
trivial order in the absence of disorder. Although these theories do not yield
an anomalously large exponent v within the large N; > N, expansion, they do

offer a new parameter space of theories that is apparently different from prior



works involving abelian Chern-Simons gauge fields [X.-G. Wen and Y.-S. Wu,
Phys. Rev. Lett. 70, 1501 (1993); W. Chen. et al., Phys. Rev. B. 48, 13749 (1993)].

2.1.1 Introduction

Phase transitions between different quantum Hall states have long been viewed
as poster-child examples of quantum critical phenomena.[259] The longitudi-
nal resistivity p,,, the width AB of the transition region, and (dp,,/dB)max €X-
hibit scaling collapse in the vicinity of the transition over almost two decades
of temperature,[168| 169, 291, 302|247, 68] frequency,[69] and current.[290] Fur-
thermore, although each plateau is believed to represent a distinct topologi-
cally ordered phase with (generally) different sets of fractionalized excitations,
inter-plateaux transitions appear to possess the same values for the correla-
tion length exponent v ~ 2.3 and dynamical critical exponent z ~ 1: distinct
critical points exhibit “super-universality.”[144, 250, 259, [125] The anomalously
large value of v ~ 2.3 and the apparent super-universality remain a major mys-
tery from the theoretical standpoint, as an accurate description clearly involves
strong interactions as well as some form of translational symmetry breaking,
such as disorder. This problem has been studied from a field-theoretic per-
spective using a theory of flux-attached bosons.[144] However it has been dif-
ficult to make progress due to the fact that the the quantum field theory of
interest (matter coupled to an abelian Chern-Simons gauge field) is strongly
coupled.[144, 177, [78, 1323, 322} 239, [99] Controlled approximations to this the-
ory yield correlation length exponents that strongly depend on the particular

quantum Hall transition.[293] 41]



Duality provides a powerful perspective for studying strongly coupled
quantum field theories that has been used in the past with great success.[47,[189,
184],242, 244,123, 1] There are two senses in which different theories are said to
be dual. The first is as an exact equivalence of theories. A familiar example is
bosonization in 1 + 1 dimensions where a self-interacting Dirac fermion can be
equivalently described by the theory of a free boson. [47, 189, [184] The second
type of duality is as an IR equivalence: two theories are IR dual if they belong to
the same universality class. In this paper, we use duality in this second sense. A
famous example is particle-vortex duality in 2 4+ 1 dimensions.[56, 214, 71] This
duality identifies the IR content of the XY model to that of a lattice superconduc-
tor coupled to a U(1) gauge field, i.e., the Abelian-Higgs model. Historically,
particle-vortex duality was used as a means to understand the Abelian-Higgs
model, as applied to superconductivity; the XY model was relatively well un-
derstood, so duality allowed one to predict the existence of a continuous phase
transition as well as its critical behavior. Similarly, level-rank dualities were dis-
covered, and in fact proven, for pure Chern-Simons theories.[202, 203] As its
name implies, these dualities swap the Chern-Simons level and the rank of the

gauge group (in Yang-Mills regularization) up to U(1) factors.[4]

Recently, generalizations of level-rank duality have been proposed.[86] 3|
7,4, [109] The conjectured duals relate theories of Chern-Simons gauge fields
coupled to either fermionic or bosonic matter fields and may, in some cases,
be thought of as bosonization in 2 + 1 dimensions. These dualities have been
of particular interest to the condensed matter community[245, 137, 286, [198] in
explaining[285, 193, 307] the T-Pfaffian surface state of a topological insulator
as well as providing a new effective description[257] for the half-filled Landau

level that is manifestly particle-hole symmetric,[200} 254, 131, 183} [197] thereby



“symmetrizing” the seminal work by Halperin, Lee, and Read.[99]

We suggest that these new dualities could also be useful in understanding
phase transitions between fractional quantum Hall states, as they involve the-
ories that generalize prior effective descriptions consisting of abelian Chern-

Simons gauge fields coupled to matter.[144] 293, 41]

To this end, we expand in this paper upon previous efforts to understand
fractional quantum Hall transitions in field theoretic models without disorder.
In contrast to prior works,[293, 41] the class of theories we study consists of
a Chern-Simons gauge field with non-abelian U(N,) gauge group for N. > 1
coupled to N; Dirac fermions. When N; = 1, this model is dual to the theory
of a fractional quantum Hall transition first studied by Wen and Wu[293] and
may be viewed as a generalization of the theory studied by Chen, Fisher, and
Wu. [41] Although our model is strongly coupled, it can be reliably studied in
various controlled limits. In this paper, we consider the limit where N; > N, >
1. In this large N; > N, limit, we compute the correlation length exponent
v to leading non-trivial order. Although we do not find an anomalously large
v within this expansion, effective theories with non-abelian gauge symmetry

provide a larger parameter space for exploration that could yield new insights.

The remainder of this paper is organized as follows. In section we
write down our starting theory and discuss its fermonic dual. In section
we discuss the calculation of the correlation length exponent v in the fermionic
theory in the large N; > N, expansion. In section[2.1.4) we discuss our results.

An appendix contains details on the calculation of v.
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2.1.2 Dualities

Our starting point is the field theory studied by Wen and Wu[293] that describes
a fractional quantum Hall to insulator transition on a lattice (without disorder)
as a superfluid-Mott transition of composite bosons, tuned by the (repulsive)
onsite lattice potential;[72] the phases are identified via their Hall conductivi-
ties. When these bosons are at unit filling (appropriate to a fractional quantum
Hall transition of electrons), the latter transition has an emergent relativistic
symmetry. As shown in [293], such a model can be generalized to arbitrary
fractional quantum Hall to fractional quantum Hall transitions by adding ad-
ditional abelian gauge fields; in this paper, we choose to focus on the simplest

case. The 2 + 1-dimensional Lagrangian in Euclidean signature is

L= |(8M — 1€ A;L - ZGM)¢|2 + m2|¢|2 + g|¢’4 - 4—EH )\auaua)\- (26)

kB
In this theory, the fluctuating U(1) Chern-Simons gauge field a, with ;1 €
{1,2,3} attaches kP flux quanta to the complex bosonic field ¢. These flux-
attached bosons are probed by the external electromagnetic gauge field A, and
carry charge e*. The coupling g is understood to take its IR fixed point value.
In Eq. (2.6), the transition is tuned by the renormalized mass m?: in the m? > 0
phase (where ¢ is gapped), the Hall conductivity o,, = 0; in the m? < 0 phase
1 (e")?

(where ¢ condenses), 0., = —+5~5; in both phases, 0., = 0 (0;; refers to the

zero-temperature dc conductivity). For the fractional quantum Hall - Mott insu-
lator transition, we must choose kZ € Z. For instance, to describe the 0 — 1 /3,
transition, one sets ¢* = 1 and k” = 3. We are interested in the critical properties

of Eq. (2.6), so we set m? = 0 for the remainder of this paper.

We would like to study a dual description of this fractional quantum Hall to

Mott insulator transition using a Chern-Simons theory with U(V,) gauge sym-
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metry coupled to a fermion. For this, we need to remedy the fact that the Chern-
Simons level (equal to —1/k7) for a, in Eq. (2.6) is not quantized when k” € Z
is greater than one (see footnote’). Further using a generalized particle-vortex

duality,[276] we arrive at
N . (A Ao s .
L =1(0, —ia,)p> + glo|* + Ee" A (/{Bau&,m + Auaya)\) . (2.7)

Note that ¢ and the U(1) gauge field d,, in Eq. are different from the cor-
responding fields in Eq. A non-relativistic version of the duality between
Egs. and was also proposed by Lee.[154] From this point forth, we

will drop the non-dynamical background gauge field A,,.

In the hopes of understanding the effects of the strong interactions in
Eq. (2.7), we can generalize the theory in several ways: we enlarge the gauge
symmetry from U(1) — U(NZP), where the integer N? > 1 is the rank of the
gauge group, and introduce Ny flavors of bosons transforming in the funda-
mental representation of U(N?), i.e., each of the N; bosons is a vector with
N2 components. The corresponding three-dimensional parameter space of the-
ories is shown in the left cube in Fig. The labels for the axes are chosen
to hold N2 /k® finite in the large N7 limit (within the dimensional regulariza-

I scale to make

tion scheme discussed later). The horizontal axis is on a tan™
it finite in length, while the vertical axis corresponds to the 't Hooft coupling
NB/kB, whose norm is bounded by 1. The physical theory of interest with
Ny = NP = 1and kP € Z is denoted by a red dot and is located behind the

front face where k£ — oco. Since a generic theory in Fig. 2.1]is strongly inter-

30One can legalize the theory by introducing a new dynamical gauge field b as a constraint,
giving us the Lagrangian

o i
L=10,—ie*A, —ia,)¢|* + glo|* + Ee” A (—kPbu0,bx + 2a,0,by)
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Figure 2.1: A schematic plot of parameter space for Chern-Simons theories with
bosonic and fermionic matter. Note that the orientation of the y-axis is inverted
between the bosonic and fermionic cubes. The double arrows indicate a duality
between the connected points. The pink points refer to free theories and the
yellow points to “infinitely coupled” theories. Previous works have studied the
large color and large flavor theories both in the fermionic and bosonic cases,
labeled in orange and blue.[293] 41} 86) 185, 6] The red dot corresponds to our
physical theory, while our calculation in the Ny > N, expansion is done in the
green region. All calculations give v = 1 at leading order,[293] 41, 86, 185, 6]
while experiments give v ~ 2.3.[259]

acting, reliable predictions are limited to small regions of the parameter space.
The best understood part is the yellow point in the top-left corner, which cor-
responds to the Wilson-Fisher O(N?) vector model, since k” — oo faster than
N2 and, consequently, completely suppresses the gauge fluctuations. In addi-
tion, large N; expansions[293] (blue axis) and large N expansions[85] (orange
axis) have been carried out to the subleading order and leading order. The pink

point in the bottom-left corner corresponds to “infinite coupling,” NZ/kP = 1

and k%, NP — cc.

Remarkably, the recent Chern-Simons plus matter dualities sometimes re-
late a strongly correlated theory to a free one, and thereby constitute a non-
perturbative solution to an interacting problem. Unfortunately, this does not

appear to occur for the theory described by Eq. (2.7). Instead, duality relates the
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IR limit of Eq. to the IR limit of the theory of a Chern-Simons gauge field

coupled to a Dirac fermion:
A n 2 ~ 4 ZkB /LV}\" N
‘C = |(8,U - Za/¢)¢| + g|¢| + 47T € aual/a/\

1 (2.8)
L = Yy*(0, —ia,)y + 4—6“ Tr | a,0,a) + gaua,,aA )
v

In the bottom half of (2.8), ¥ is a 2-component fermionic field transforming in
the fundamental representation of U(k” — 1), a, is a U(k” — 1) gauge field,
k¥ = —kP +1/2, and the y-matrices satisfy {7*,7"} = 20**. The trace in the
non-abelian Chern-Simons term is taken with respect to the fundamental rep-
resentation. Note that we are working within dimensional regularization[] See

the appendix for further details.

Applying dualities[4, 109] to the generalized bosonic theories with non-
abelian gauge group U(N?) and multiple flavors N;, we may schematically

write:

U(NP)ys x5 with N; bosons

1 (2.9)

U(k? = NP)_x54n, j2,—k5+n, /2 With Ny fermions.

The duality in is recovered by setting N? = N; = 1. For the dualities
in (2.9), the subscripts on U(N) signify the levels of the SU(N) C U(N) and
U(1) c U(N) Chern-Simons gauge fields; we will denote the rank of the gauge
group in the fermionic theory of Eq. with the integer N/ = kP — N5,

4By dimensional regularization, we mean that one contracts tensor indices in 3 dimensions,
while analytically continuing integrals to 3—e dimensions. This is sometimes called dimensional
reduction in the literature.[42] An alternative scheme where one regularizes with a small Yang-
Mills term is equivalent to dimensional regularization, up to a constant shift of the SU (V) level,
so we will work exclusively in dimensional regularization for simplicity.

14



Armed with the dualities between generalized theories, we can now consider
the three-dimensional parameter space associated with the fermionic theories
(see Fig. 2.1). Duality presents the choice of which representation of the same

physics to study.

Fig. P.T| depicts the duality mappings in (2.9). We denote dualities between
specific points in Fig. with double-headed arrows that relate bosonic the-
ories to fermionic theories. We intentionally chose the vertical axis of the two
cubes to point in opposite directions in order to visually indicate how a strongly
coupled theory on one side can map to a weakly coupled theory. For example,
the yellow point in the bottom left corner represents the theory of a free fermion
maps to an “infinitely coupled” bosonic theory. Similarly, the pink point on the
top-right corner representing the “infinitely coupled” fermionic theory maps to
the O(NZ — oo) Wilson-Fisher boson. Unfortunately, the physical bosonic the-
ory of interest (the red point), which is far from any known solvable point in
the bosonic parameter space, maps to another strongly coupled theory on the
fermionic side. Short of being able to directly access the physical theory, large V;
expansions[41] (blue axis) and large N expansions[86) 85] (orange axis) have

been studied on the purely fermionic side.

In the remainder of this paper, we study the fermionic dual our physical
bosonic theory (red point) using the dualities stated in (2.8). We attempt to
access this strongly coupled fermionic theory by employing a N; > N expan-
sion, valid within the green region of Fig The dualities in are only
conjectured to hold when N; < NZ[109]: by employing the N; > N} expan-
sion, we are exploring a class of fermionic theories that is different from the

previously studied class of bosonic theories.
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2.1.3 N;> N.expansion

We generalize the fermionic side of Eq. (2.8) to an arbitrary number of flavors

Ny so that the Lagrangian becomes

Ny
L= Z Uiy (O — i)t

i=j
154 2
+ Z—We’“”\Tr (a#&,aA + gaual,aA) ) (2.10)

(We have dropped the tildes on a in Eq. (2.10).) The fermionic dual of the phys-
ical boson theory has Ny =1, N? =1, N = k% — NP and k¥ = —k® + N;/2.

We calculate the correlation length exponent v via the definition v~ =

3 — [t ()], which comes from the fact that the correlation length £ ~ m~! as the
mass m is the critical tuning parameter.[293] To obtain v, we will compute the
scaling dimension of the (momentum space) mass operator Jy(p) = (¥)(p).
Recall that in position space, the scaling dimension ¢ is defined by the al-
gebraic decay of (Jy(2)Jy(0)) ~ 2=%. Upon Fourier transforming, we have
(Jo(p)Jo(—=p)) ~ p*~?, where d = 3 is the spacetime dimension. We control
the calculation in the N; > NI limit taking k", NI, Ny — oo while keeping the
ratios A = N;/k¥ and o = NF/N; finite, along with o < 1. Therefore, we cal-
culate perturbatively in « to first subleading order and exactly in A. Note that A

can (effectively) take any value in R — it is not the 't Hooft coupling N /kF".

This calculation was first investigated in a beautiful paper by Gurucha-
ran and Prakash, where the primary motivation was to find tractable non-
supersymmetric conformal field theories with gravitational duals.[95] Here, we
use Eq. to model inter-plateaux transitions and, in the course of our study,

we correct a minor error in Ref. [[95]].
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The leading order piece (¥ of the scaling dimension of the mass operator .J;
in d Euclidean dimensions is related to the leading order decay of the correlator
by

(0(P)To( =) eading ~ 7, (2.11)
where p is the momentum inserted at the J, vertex. Only the tree-level diagram
contributes, which results in 6 = 2. To calculate the anomalous dimension §V)
of the mass operator .J;, we extract the logarithmic divergences of the 2-point

correlator as in, e.g., Ref. [[43]]]:
(JoJo) = (1 =260 In A + .. ) {(JoJo)eading- (2.12)

Keeping terms to O(«), we arrive at the result:

_ 6402 (1 . 164 — 22
—9 a2 (9. 2T AT 2.
¥y Y61t 2N (3 MYV /\27r2) (213)
128)2 128 — 72\2
—92-a T (2.14)

3 (64 + 12A2)2°
The factor of “2” appearing before the second term in the parentheses above
is the quantitative difference between our result and that in Ref. [[95]], and re-
sults from an additional Feynman diagram. For calculational details, see the

appendix. Therefore, we arrive at the result:

128)2% 128 — w2 )\?
vr=1—a«a 3 (611 A2 (2.15)

We plot the anomalous dimension correction to v at O(«) in Fig.[2.2|as a func-
tion of the original bosonic parameters using the relation \™' = —k%/N; +1/2,
with the y-axis measured in units of a. Note that the correction is positive only
when 1.29 < N;/kP < 4.50. In the fermionic variables, this corresponds to

A > 3.6.

If we want to consider the 0 — 1/3 transition, then we should set Ny = 1,

NB =1, e* =1, and kP = 3. Substituting these values into Eq. (2.14), we find
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Figure 2.2: A plot of the anomalous dimension correction to v to O(«) in the
original bosonic parameters. The y axis is in units of «. It is positive for 1.29 <
N;/kP < 4.50. The parameter A used in Eq. is related to N;/kP by A\7! =
—kP /Ny +1/2.

v =1 —.4014. In this case, the correction to v is negative. The dynamical critical

exponent z = 1 automatically, since our theory is Lorentz-invariant.

Chen, Fisher, and Wu studied the abelian version of Eq. (2.10) given by

Ny -
- k
L= "0 — ia, ) + ZZL—WEW)‘QH&,@\, (2.16)
i=1

where a, is a U(1) gauge field. We have rescaled a, to make the comparison
between their theory and ours more transparent. They extract v from the scaling

dimension [¢] in a large N; expansion and arrive at the result,

vV, =1-— ,
o Ny 3 (64 + 72AZ pyy)?

(2.17)

where A\cpw = Ny /k¥. Comparing Eq. (2.15) and Eq. (2.17), we see that the two
expressions formally match. To O(«), our non-abelian extension to U(N/') only
contributes an additional color factor. It turns out that the diagrams contribut-

ing to v in a Ny > N, expansion are the same as those of a large N, expansion
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to subleading order, up to color factors. At higher orders, this equivalence is no
longer expected to be true: the subleading in N; diagrams are planar because
gauge lines are 1/Ny-suppressed. (This formal equivalence of expansions to
subleading order is likely to be true on the bosonic side as well, though we have
not explicitly verified this.) Note, however, that the two models give different
results when considering a particular fractional quantum Hall transition. For
example, in the 0 — 1/3 transition, our model has N = o = 2 and k¥ = —5/2,
so v = 1 —.4014. In the model studied by Chen, Fisher, and Wu, they set N; =1,
NI =1, e = 1/3 and k¥ = 3/2,[41} 239] corresponding to “acry = 1” and
Aerw = 2/3, so that vepw = 1 — .5012. Although the expressions for v for-

mally agree, the physical values of the parameters are different, so they should

be thought of as describing different physics. ]

2.1.4 Discussion

The observations of super-universality and the anomalously large correlation
exponent v associated with quantum Hall inter-plateaux transitions remain a
long-standing conundrum. Duality motivates an exploration of a large space of
theories that may provide new insight. We focused on an effective description
of a fractional quantum Hall transition involving a non-abelian Chern-Simons
gauge field with U(N,) gauge group and Ny fermions. This theory is dual to

the critical theory of an abelian Chern-Simons gauge field coupled to a boson.

>This conclusion might be further supported by the fact that the bosonization dual of the
model studied by Chen, Fisher, and Wu involves a boson coupled to a Chern-Simons gauge
field with non-abelian gauge group, rather than an abelian gauge field. In particular,

U(1)k5_1/2,15—1/2 with one fermion < Uk? — 1)_y5,_5 with one boson
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We calculated the correlation length exponent v to first subleading order in the
large Ny > N, expansion, filling in the green region in Fig. We found the
N; > NI expansion to be formally equivalent to a fermionic large N; expansion
(blue axis) to first subleading order,[41] although the precise values of the v
inferred differ. Accordingly the exponent v continues to depend on the pair of
plateaux in question, rather than showing any super-universality. Moreover,

the calculated exponent v continues to be far below the experimental value.

Clearly there are many aspects of the physical problem that were left out in
our model. It may be that translational symmetry breaking needs to be incor-
porated so as to include the effect of disorder. Also, the thus-far unexplored
subleading correction in the large N. limit may prove enlightening. However,
it appears plausible that calculating the exponent order by order with respect
to some perturbative control parameter may not be the best strategy. Rather,
it would be interesting to address the apparent super-universality in a more

wholesome manner from the outset.[114]

Acknowledgements

We would like to thank S. Chakravarty, G.Y. Cho, M. Fisher, T. Hartman, S.
Jain, S. Kivelson, M. Lawler, S. Prakash, S. Sachdev, E. Shimshoni, and S. Sondhi
for helpful discussions and comments. A.H. was supported by the National Sci-
ence Foundation Graduate Research Fellowship under Grant No. DGE-1650441.
M.M. was supported in part by the UCR Academic Senate. M.M. is grateful for
the generous hospitality of the Aspen Center for Physics, which is supported by
the National Science Foundation (NSF) grant PHY-1607611. E.-A.K. was sup-

20



ported by the U.S. Department of Energy, Office of Basic Energy Sciences, Divi-
sion of Materials Science and Engineering under Award DE-SC0010313. E.-A.K.
acknowledges Simons Fellow in Theoretical Physics Award #392182. The au-
thors are also grateful for the hospitality of the Kavli Institute for Theoretical
Physics, under Grant No. NSF PHY-1125915, where some of this work was per-

formed.

2.1.5 Appendix: Calculational Details

The Lagrangian we study is

ik" 2
L= Z@/}Z (0, — ia,)v; + Ee‘“’ATr (a,ﬁ ay + 3%@”@) (2.18)

Define light-cone coordinates via analytic continuation to be z* = (2! £
ir?)/v/2, and let v2 = 22 4+ 22 = 22,2 _. We will work in light-cone gauge a_ = 0,
which decouples the ghosts and removes the cubic gauge interaction term.[95]
We will also take v* = ¢, the Pauli matrices. We normalize our gauge group

generators by Tr T°T? = §%/2.

We will regularize our theory by using a momentum-cutoff A in the 1-2
plane and dimensional-regularization in the z* direction, as has been done by

others.[7,95]

The Feynman rules for the bare propagators and interactions are
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= Am , all others are 0
kpt

Under duality, we expect ¢¢ <> 1. Hence, v~ = 3 — [¢¢].[293] In what

follows, we will be calculating the scaling dimension [)¢)].

Denote the mass operator in momentum space as Jo(p) = (¢¥1)(p), where
p is the momentum inserted into the vertex. The leading order in o term of
(Jo(p)Jo(—p)) ~ p, and we know that the leading order scaling dimension A©)

0 .
280 -d \where d is the

of the mass operator .J, is given by (Jo(p)Jo(—P))teading ~ P
number of spacetime dimensions. Hence, the scaling dimension of .J; at leading
order in (2+1)D is 2. We will calculate the anomalous dimension 6! of J,, which

amounts to extracting the logarithmic divergences of the 2-point function as[43]
(Jodo) = (1 —=26W In A +...) (JoJo)teading (2.19)
First, let us calculate the exact gauge propagator G, to leading order in «,

which we denote by a squiggle. The only diagrams that contribute are strings of

bubble diagrams, and hence satisfies the following Schwinger-Dyson equation

WWQ (2.20)
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The 1P1I self-energy diagram »* at leading order is given by

X (p) = (—1)Tr(T“Tb)(5“bTr/ (;qus ‘iﬁ(w . (i“fﬁ)w)

) ¢ (p+q)?

N¢p pHpY
—— | - — .
32 ( p? (2.21)

Summing the bubbles via G(p) = (1 — DX)"'D(p), we get

G33 G3+ 1 27T 64 /\2 2_ 82)\p p— )\2]7 b3

Nf pp4 64 + m2)\2
Gis Gas 52 p— Np_ps —pIN?

(2.22)

There are four diagrams at subleading order in « that contribute to (JyJy).

We denote a J, insertion by a crossed circle.

First, the fermion self-energy contribution.

We focus on the fermion self-energy subdiagram first.

N —z p + q)
/ )Gl (2.23)

Using the relations vy~ = 1+ 4%, 777" =1 —1+%, and (v°)* = 1, we get that

Vv G = Ga3(psy*—p-v =47 ") +H(Gi3+Gs1) (037 +p-7")+(Gis—Gai )p-+2G 4 p_y*
(2.24)
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Substituting p — p + ¢ in the above equation, we get

647> d3q 1
Su(p) =i K"+ K 22
"l’(p) Za64+ﬂz)\2/(2ﬂ)3 (p+q)2( ;ﬁ + I) ( 5)
where
Koo Pty (2.26)
4q
K, = Dty 40Ty o, e - )
4q qqs qq? q
Ky = BrBy , By &y (2.28)
4q qqz 2q
4
K = —p 8“—’+A——2A (2.29)
T q? T

We use Feynman parameters to evaluate these integrals, and we will only

keep the logarithmic divergences. The relevant formulas are

(27T) p + q (¢° + =1 —z)p?)3> =
/ & / / /(4 —zp) (2.31)
(2m)% ¢ p+q q+x 1—x)p '

3 1-y

/ d°q  f(g3,ds) / dy/ dz/ 71/2
(2m)% g2q(p + q)?
613 - Zp?n qs — Zﬁs)
yt o (2.32)
(qs +2(1=2)pi+ (y+2)a5 + J5p3
The result for the fermionic self-energy is
o6 X ., ; i A
E¢(p) = zamﬂ(—p“”y + 6])3’)/ + 12p+’}/ )hl 4+ ... (233)

Putting this into the two point function at zero external momenta, we can extract

the logarithmic contribution via

1 p 1. p. 64 N 3
iy Ny = —Tria—" T (—p,A* 12p,7T)InA  (2.34
3 T tep) = 5 i e gy (TP Oy 4+ 12p77) In k- (239)
6402 N2 1
a2 6p2 + 6p2)— In A 2.35
Gt gl P TP O S (235
6402 5
N LA N 2.
Y61 reaz2d (2:36)
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Since this diagram contributes with a weight of 2, it contributes §; =

64X2 5

Oz 2

Next, the 1-loop vertex correction.

Note that to extract logarithmic divergences it is easier to calculate the vertex
correction with external momenta 0 than to calculate the full two-loop integral.
Also, since we will combine the two free ends to a single vertex, we only care
about the identity component, which can be extracted by applying 1/2 Tr over

the gamma matrices. Hence, the divergence is given by

N1 d3q 1 A2
_ - yA/H N —_ ey
22 Tr/ (2m)3 ( )—q2 (")Cula) = o5z g A (237)

Each vertex contributes once to the divergence, so there is an overall factor

6402 1

of 2. In total, this diagram contributes d, = —Qgi T s

Finally, the last diagrams

<> <>

These are two-loop vertex corrections, so again it’s simpler to focus only on

the vertex. Note that since we will combine the two free ends to a single vertex,
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we only care about the identity component, which can be extracted by applying

1/2Tr over the gamma matrices. We focus first on the left one.

o B g )
64 — T2\

2 64 + 7T2)\2 64 + m2)\2

In A (2.38)

This diagram contributes with a factor of 2 because there are two ver-
tices. The right diagram also gives the same result because of the relation

Try*y#y°% = —Try7y5y2. Hence, the two diagrams together contribute d; =
64 64-m2\>
64+7r2)\2 64+m2N\2"

Therefore, the scaling dimension of ¢ is

: 12807 128 — m2\2
[y] =2 = (61 + 02 +05) =2 —a— 617 )2 (2.39)

Note that our answer differs with Gurucharan and Prakash, as they did not

include the last diagram which contributes an extra factor of 2 in ds.

2.2 Non-Abelian bosonization and modular transformation ap-
proach to superuniversality

This section is adapted from a PRB paper [115] with Eun-Ah Kim and Michael

Mulligan.

Quantum Hall inter-plateaux transitions are physical exemplars of quan-

tum phase transitions. Near each of these transitions, the measured electrical
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conductivity scales with the same correlation length and dynamical critical ex-
ponents, i.e., the critical points are superuniversal. In apparent contradiction
to these experiments, prior theoretical studies of quantum Hall phase transi-
tions within the framework of Abelian Chern-Simons theory coupled to matter
found correlation length exponents that depend on the value of the quantum
critical Hall conductivity. Here, we use non-Abelian bosonization and modu-
lar transformations to theoretically study the phenomenon of superuniversal-
ity. Specifically, we introduce a new effective theory that has an emergent U(N)
gauge symmetry with any N > 1 for a quantum phase transition between an
integer quantum Hall state and an insulator. We then use modular transforma-
tions to generate from this theory effective descriptions for transitions between
a large class of fractional quantum Hall states whose quasiparticle excitations
have Abelian statistics. We find the correlation length and dynamical critical ex-
ponents are independent of the particular transition within a controlled "t Hooft
large N expansion, i.e., superuniversal! We argue that this superuniversality
could survive away from this controlled large N limit using recent duality con-

jectures.

2.2.1 Introduction

As a two-dimensional electron gas is tuned by a perpendicular magnetic field
from one quantum Hall state to another, the longitudinal electrical resistance
exhibits a peak with a width AB « T'/"?, where v and z are correlation length
and dynamical critical exponents and 7' is the temperature; the slope of the Hall

resistance likewise diverges as AB as a particular transition is approached [f|

%Similar scaling is observed if the temperature is replaced by frequency, applied current, or
inverse system size.
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The surprising feature is that the observed v ~ 7/3 and 2z ~ 1 appear to be
insensitive to whether the transition is between integer or fractional Abelian
quantum Hall states [291] 168 145, 69, 290, 1302, 167, 168, [169] (See note E[) Taken
at face value, the implication is that the associated quantum critical points [259,
240] have the same critical indices for comparable observables [152, [125| [144)
185, 176, 1250, 25, 188] and are instead distinguished by their critical conductivity

[121},247,1289] (see E[) ; this phenomenon is known as superuniversality [250].

The root cause of superuniversality has been a puzzle since its observa-
tion over three decades ago. Numerical studies of the integer quantum Hall
transition, modeled by disordered noninteracting electrons, find a correlation
length exponent in qualitative agreement with experiment [33, 113} 253], how-
ever, these theories have 2 ~ 2 and it is challenging to generalize these works
to transitions between fractional quantum Hall states [155]. Theories of Abelian
Chern-Simons gauge fields coupled to matter, i.e., theories of composite bosons
or composite fermions [87, 124, 226,322, [177,199| 134], provide a unifying, phys-
ical framework for studying both integer and fractional quantum Hall transi-
tions. Thus far, controlled approximations to these strongly coupled theories,
obtained when the number of fermion or boson flavors is large and there is
no disorder, have failed to yield superuniversal behavior: the calculated cor-
relation length exponent depends on the particular quantum Hall transition
[294] 41] 156, 118]. It is important to determine whether these calculations re-
veal a generic behavior of the field theoretical models or, instead, reflect certain

artifacts of the approximation scheme | In this paper, we provide evidence for

"Strictly speaking, the product vz has only been factorized at integer plateau transitions,
however, dimensional analysis suggests z = 1 for both types of transitions if the Coulomb
interaction provides the dominant scale.

8See [217] for an explanation of the low-temperature conductivity in the scaling region in
terms of variable-range hopping.

Superuniversality has been found in studies of disordered Dirac fermions of various sym-
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the latter.

Pzx T ! T T

Pzxy

Figure 2.3: Schematic zero-temperature phase diagram [144] in the space of
Hall p,, and longitudinal resistivity p,,. Phases are denoted by their zero-
temperature complex conductivity o = o, + i0,,, measured in units of e?/h.
The blue boundary denotes the 1 — 0 integer quantum Hall transition, while
the green boundaries denote transitions we derive from the 1 — 0 transition via
modular transformations.

As a step towards understanding the observed behavior, we focus here on
the fundamental theoretical question raised by the appearance of superuni-
versality, i.e., how distinct interacting critical points can share the same crit-
ical exponents. To this end, we introduce new theories, involving a single
Dirac fermion coupled to a non-Abelian U(N) Chern-Simons gauge field for any
N > 1, that exhibit quantum phase transitions between Abelian quantum Hall
states. Intuitively, the U(/N) gauge symmetry of our theories generalizes the
Abelian gauge symmetry implementing flux attachment in familiar compos-
ite boson/fermion theories. In fact, as demonstrated in Appendix these
U(N) gauge theories are dual to theories with an Abelian group. The advantage

of the enlarged gauge group is that it motivates an alternate approximation to

metry classes in 3 + 1 dimensions [90] and in certain models with long-ranged statistical inter-
actions [82] 2 + 1 dimensions.
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our strongly coupled theories, namely, a controlled 't Hooft large N expansion
[271] H within which we find that superuniversality occurs without the inclu-

sion of disorder.

We emphasize that the theories we consider here have more symmetries
than the physical systems motivating our work; for instance, our theories are
Lorentz-invariant and, in particular, preserve translational invariance. Our
hope is that our theories might represent “parent” theories for more realistic
descriptions of the experimental systems. Consequently, we defer quantitative

questions specific to the particular experimental systems to the future.

The remainder of this paper is organized as follows. In Sec. we intro-
duce a new description for an integer quantum Hall transition; this theory is in-
spired by fermion particle-vortex duality [257, 1285|193, 137, 243] (see the related
work [131},183],307], 198, 197]) and various bosonization dualities in 2 + 1 dimen-
sions [85} 3, 12, 126} 94, 4} 201}, [109, 132} 133, 139, 196} 284]. Guided by Ref. [144],
where the phase diagram in Fig. 2.3 was proposed by extending the theory of
two-parameter scaling of the Hall and longitudinal resistivity for the integer
Hall effect [160] to the fractional Hall regime using the “law of corresponding
states” [125, 144], we then derive in Sec. new effective theories for various
fractional quantum Hall transitions using modular transformations [300]. In
Sec. we show that the correlation length and dynamical critical exponents
of our theories are insensitive to the particular quantum Hall phase transition
within a controlled "t Hooft large /V limit. In Sec. we discuss how recent
duality conjectures imply that the physics of our U(/N) Chern-Simons coupled

to matter theories is independent of N > 1. This is the crucial feature that allows

10Gee (73] 1295, [223] [288), [81] for earlier applications of the large N expansion in condensed
matter physics. Gauge/gravity duality can provide an alternative framework where large IV
naturally appears [57].
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us to argue that critical exponents, calculated in the 't Hooft large /N limit, are
exact at the leading planar order and that superuniversality may persist away
from the controlled "t Hooft large /N limit. In addition, there are six appendices

that discuss details of arguments presented in the main text.

2.2.2 Integer quantum Hall transition

Our starting point is an effective Lagrangian for an integer quantum Hall tran-

sition,
- - 11 2.
Ligur(A) = i) Patp = Mytp — 5T [ada — gzag]
1 N+1 1
— —Trfaldb — 2 pdb — —bdA. (2.40)
2 47 2

The notation is as follows: 1 is a two-component Dirac fermion transform-
ing in the fundamental representation of U(N); a and b are dynamical U(N)
and U(1) Chern-Simons gauge fields; A (above and throughout) is a non-
dynamical Abelian gauge field that we think of as electromagnetism; I}, =
(0, — ta,) for p € {t,x,y} and y-matrices satisfying {v*,7"} = 2n"” where
n = diag(1, —1, —1); ¢ = ¥f4!; N is a positive integer; Abelian Chern-Simons
terms AdB = €"?A,,0,B,, and the cubic interaction in the non-Abelian Chern-
Simons term a® = 1e*?a,a,a,. For simplicity of presentation, we regularize the
theory in by implicitly including a Yang-Mills term for a and Maxwell
term for b [301), 42]]. See Appendix for further explanation of the notation

and for a few pertinent facts about Chern-Simons theories.

Prior work studying Chern-Simons gauge theories coupled to matter sug-

gests that the theory in (2.40) realizes a critical point with conformal symmetry
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[42,116]. In Appendix[2.2.11, we argue nonperturbatively that this critical point

is in the free Dirac fermion universality class for any integer NV > 1.

For the moment, we verify that (2.40) describes a transition between an in-

teger quantum Hall state and an insulator as the fermion mass M, is tuned

through zero, consistent with our identification in Appendix [2.2.11] of (2.40)
with the theory of a free Dirac fermion. See Appendix for additional de-
tails. Remarkably, this demonstration applies for any integer N > 1. In our
theory, the mass M, represents an effective control parameter for a particular
quantum phase transition. For definiteness, it may be helpful to think about M,
in terms of the analogous tuning parameter that appears in lattice models for
integer quantum Hall transitions [98,[183]]. In these latter models, the transition
is controlled by the ratio of the on-site chemical potential to the second nearest-
neighbor hopping. This theory matches the realistic integer quantum Hall tran-
sition insofar that it describes some transition between two integer quantum

Hall states, as is commonly done in the literature.

Our strategy is to identify the insulating and integer quantum Hall states
through their electrical response to the electromagnetic gauge field A. Below

the energy scale of the mass |M,|, we can integrate out ¢ to obtain:

Loﬁ' = —Tr

5 gy — —Tr[aldb —

2T T

ada — —=1a

3

sign(My) —1 1 [ 3] 1 N+1

bdb — ibalA.
2T
(2.41)

In this effective Lagrangian, only relevant and marginal terms in the renormal-

ization group sense are written. If M, < 0, rank/level duality [202] 203} [109]
(Appendix 2.2.8) implies that

1
Log(M, < 0) = 1 AdA, (2.42)
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i.e., the effective electrical response Lagrangian of an integer quantum Hall
state. Consequently, we identify the phase obtained for M, < 0 with an integer
quantum Hall state. Integrating out fermions with M, > 0, the non-Abelian
Chern-Simons term for a disappears. Only Tr[a] remains in the effective La-
grangian; the SU(N) C U(N) component of a decouples and we assume it con-
fines [70]. The equation of motion for Tr[a| sets b = 0 [300] and the resulting

effective Lagrangian,
Leg(M, > 0) =0, (2.43)

describes an electrical insulator. We expect the leading irrelevant operator sup-
plementing the effective Lagrangian in Eq. (2.43) to be a Maxwell term for A,
consistent with our identification of the phase obtained when M, > 0 with an

insulator.

2.2.3 Generating fractional quantum Hall transitions

We now show how to generate effective descriptions with U(N) gauge symme-
try for fractional quantum Hall transitions using the modular group, PSL(2,Z),
i.e.,, the group of 2 x 2 matrices with integer entries and unit determinant.

On a complex number, like the complexified zero-temperature dc conductivity
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0 = 04y + 04, (Measured in units of e?/h) EL the modular group takes

po +q
ro -+ s

, for € PSL(2,7Z). (2.44)

Because the modular group is generated by two elements, 7 = (}1) and S =
(% §), any element of PSL(2,Z) can be decomposed into a product of 7 and S

operators.

Ref. [300] showed how the modular group in Eq. acts on the La-
grangian of a conformal field theory with U(1) global symmetry. (See [158] for
the effects on higher-spin currents.) Denoting the Lagrangian of an arbitrary
conformal field theory by £(®, A), where ® collectively represents all dynamical
fields and A is a background field coupling to the U(1) symmetry, the modular

group acts as follows:

T L(®,A) o LD, A4) + - AdA,

™
S:L(P,A) — L(D,c) — QLCCZB. (2.45)
™

Eq. (2.45) induces the action of the modular group on the complexified conduc-
tivity of the U(1) symmetry of £L(®, A). T simply shifts the Hall conductivity
by one unit; S inverts 0 — —1/0 through its replacement of A with a dynam-

ical U(1) gauge field ¢ and introduction of a new background field B via the

coupling —5-cdB.

Reminiscent of the “law of corresponding states” [144] (see Fig. we can

We define o = lim,, o limr_s¢ o(w, T). We only require ¢ for quantum Hall states described
at long distances by Chern-Simons theory, since we only need to know how the Hall conductiv-
ity changes across a transition. We caution that the order of limits may not generally commute
for either gapped [323] or gapless states [54].
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generate using Eq. (2.45) an effective description for a transition between any
two quantum Hall states related by a modular transformation to either the in-
sulator (¢ = 0) or integer quantum Hall state (¢ = 1). The pertinent subset of

transformations can be decomposed into two operations:

(i) addition of a Landau level = T;

(ii) attachment of m units of flux = S~17™S.

Any transition from o = j — j—1 between integer quantum Hall states is found
by adding j—1 Landau levels, i.e., applying 77! with j € Z to Eq. (2.40). On the
other hand, the fractional quantum Hall transition, 1/(m + 1) — 0, is obtained
by applying S~'7 ™S to Eq. (2.40). We can combine the operations of adding
a Landau level and flux attachment to find a description for the 1/3 — 2/5
transition using S!72ST. The 2/3 — 1 transition - the lowest Landau level
particle-hole conjugate of the 1/3 — 0 transition — is obtained by acting on the
Lagrangian in Eq. with 78 '7T2ST . Other transitions can be gener-
ated by further iteration of these methods. Hence, modular transformations
formalize the “law of corresponding states” [124, 125, [144]. Because we have
not included effects of disorder, we are, in a sense, effectively considering the

horizontal axis of Fig.

In the remainder of the paper, we focus on the —= — 0 transition where the
even integer m > 0; qualitatively similar arguments apply for other transitions.
Applying the modular transformation described above to (2.40), we find the

Lagrangian,

/:m = L:IQHT(C) + £mod(A>7 (246)
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where Ligur(c) is given in Eq. (2.40) with the replacement A — c and

1 m 1
A) = —— - — —qgdA 247
Emod( ) 271'Cdg 47ngg + 27ng 9 ( )

with dynamical U(1) gauge fields ¢ and g. Thus, the modular transformation
simply introduces additional Chern-Simons gauge fields coupling to the U(1) C
U(N) gauge field Tr[a] in Liqur. Appendix[2.2.9lists the corresponding effective
Lagrangians, analogous to Egs. and (2.47), for other simple quantum Hall
transitions. When m = 0, we may integrate out c and g using their equations of
motion to recover the Lagrangian in Eq. (2.40); when m > 2, we can no longer
integrate out g to recover an effective Lagrangian whose Chern-Simons terms

have integer levels.

It is straightforward to check (see Appendix|[2.2.10|for details) using the argu-
ments given below Eq. (2.41) that £,,, in Eq. and its generalizations describe
a large class of fractional quantum Hall phase transitions, tuned by the fermion

mass. We assume these transitions are continuous for any m > 0.

2.2.4 Superuniversality in the 't Hooft large N limit

Our goal is to determine the correlation length and dynamical critical exponents
exhibited by £,, in Eq. for m > 0. The (inverse) correlation length expo-
nent, ' = 1 — 7;,, measures the anomalous dimension 7y, of the operator
Y1p ()% whose coefficient M,, is the tuning parameter for the various fractional
quantum Hall transitions we consider. Since our effective theories are Lorentz-

invariant, z = 1 automatically. Because £,, depends on the rank N of the U(N)

2The anomalous dimension is determined by the decay of the two-point function

(W (2)h(0)) ~ || =20+ 750)
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gauge group of q, it is necessary to choose a particular value of N at which to
evaluate v. We choose N = oo and determine v in a controlled 't Hooft large
N limit. In Sec. we will argue that the physics of £,, is independent of V.
Consequently, N = oo represents a reliable value of the parameter N at which

to determine the critical exponents of £,,.

In order to determine the correlation length exponent, it is helpful to first
simplify the Lagrangian £,, as follows: we set the background field A = 0; next,
we integrate out all Abelian gauge fields (i.e., b, ¢, and g) not minimally coupled
to 1; finally, we decompose a = asy(n)+aum)l, where agy(vyisa SU(N) C U(N)
gauge field, ay(1) is an Abelian gauge field, and I is the N x NV identity matrix.

After performing these steps, L,, becomes

- ko ksu(v 2.
Ly =) Dy + 4;)%(1)65%(1) 4 Uy asy(vydasy(ny — §W?§U(N) , (248)
N?2—N—-N 1
with kyy = SN I+ mn)@ and kgyv) = —3 = N. We included the one-loop

exact correction [301} 42] to the SU(N) C U(N) Chern-Simons level kgy(ny. Al-
though L, obscures the topological structure of our quantum critical state and
any gapped phase obtained from it when M, # 0[°} the perturbative analysis is

unchanged.

To gain some intuition for the possible behavior of £, (and, therefore, £,,),
suppose the fluctuations of agy () were ignored. Then, £, would effectively de-

scribe N flavors of fermions interacting with the Abelian Chern-Simons gauge

1
kU(l)N

field ay(1). For such theories, it is known that v;, = 1 + O( ) at large N
[41]. Because ki) o< N as N — oo for any fixed m, the effects mediated by a1

could then be made arbitrarily small as N — oo. (This is true for the other quan-

13The allowed Wilson loop observables are not manifest in Chern-Simons Lagrangians with
non-quantized levels. If the Chern-Simons theory is to describe a gapped state, additional in-
formation is needed to specify the quasiparticle spectrum.
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tum Hall transitions considered in Appendix ) Consequently, since m only
appears in kg (1), 75, would be independent of m at N = oo, i.e., superuniversal.
Our task now is to determine the extent to which this conclusion survives the

inclusion of agy () fluctuations.

The 't Hooft large N limit [271] (see [48] for a review) provides an expansion
within which to calculate ~,,,. This limit, which is distinct from the limit that ob-
tains within large flavor expansions, is defined by taking the rank of the U(N)
gauge group N — oo with the ratios Asy(ny = N/ksuv) and Ayy = N/kuq)
held fixed. Observables like v, are then calculated in an expansion in pow-
ers of 1/N; the coefficient of a particular power of 1/N is generally a power
series in Agy(n) and Ay(1y. In addition, there could be non-perturbative Agy ()
and Ay (1) contributions to 7;,,. Our result in this section ignores any such non-
perturbative corrections; our duality argument in the next section indicates such

corrections are absent at least when m = 0.

As an illustrative example of how large N scaling works, Fig.[2.4(a) decom-
poses the agy () and a1y one-loop contributions to the fermion self-energy. In
our conventions, vertices scale as N°, while gauge field propagators come with
factors of k:gé( ) Or k:g(ll) depending upon whether agy(n) or ay 1) propagates; ¢
propagators scale as N°. At large N, the asy(ny contribution in Fig. a) scales
as Asu(n), while the a1y correction scales as Ay1)/N. (Here, we have assumed
the U(N) coupling constant achieves its fixed point value, proportional to N°.)
Thus, the contribution of ay () in Fig. a) is subdominant to that of asy () as
N — oo by a factor of 1/N. This is a general feature: in perturbation theory, the
"t Hooft large N limits of SU(N) and U(N) gauge theories give identical results
for shared observables [48]. For Chern-Simons gauge theories with U(/N) gauge
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() o

Figure 2.4: (a) One-loop fermion self-energy decomposed into SU(N) C U(N)
and U(1) C U(N) contributions. The closed oriented loop produces the relative
factor of N between the second and third diagrams. (b) The leading Feynman
diagrams contributing to v, in the 't Hooft large N limit. Directed lines are
fermion propagators; wavy lines are U(N) gauge field propagators; a double
lineis a SU(N) gauge field propagator; a dashed line denotes a U(1) gauge field
propagator; insertion of 1) is represented by ®.

group, this relies on the 1/N suppression of diagrams containing closed loops
of ayy) relative to the corresponding planar diagrams that instead contain loops

of ASU(N)-

So long as |ky1)| o< N as N — oo, the effects of ay (1) are subdominant by a
factor of 1/N in the 't Hooft large N limit. In particular, only the fluctuations
of asy(n) contribute to v;, at N = oo. The planar contribution to v, scales
with N as N° and consists of an infinite expansion in Agy(x); the first sub-planar
contribution scales as 1/N and consists of an infinite series in Agy(ny and Ay ).

Thus, the 't Hooft expansion for v, has the form:

1
Yo = fo(Asuvy) + Nfl()\SU(N), Avay) + - (2.49)

where the planar term fy(Asy(x)) is @ power series in Agy(ny, the first sub-planar
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term fi(Asu(v), Au(1)) is a power series in Agy(yy and Ay(r), and ... represent
higher powers of 1/N which are expected to be subdominant in this expan-
sion. (The assumption that f, and f; are power series of their arguments is the
statement that we are ignoring possible non-perturbative contributions to v,,,.)
Because m only appears in Ay(1), through its appearance in the effective Chern-
Simons level kg (1) of ap(y (see Eq. and Appendix[2.2.9), v is insensitive to
the particular 1/(m + 1) — 0 transition at N = oo. This is superuniversality in

the 't Hooft large NV limit.

The specific value of v is determined by fo(Asy(ny) at N = co. An important
point is that the 't Hooft large /V limits of the theories we consider remain non-
trivial even when N = oco. For instance, |Agyv)| = 1 for N = oo, so that an
infinite number of terms generally need to be summed to determine fy(Asy(w))-
Here, we find v, in a controlled 't Hooft large N limit, where it is necessary to
continue kgy(y) away from its physical value (given below Eq. (2.48)) such that
Asuvy < 1and fo(Asy(ny) can be reliably approximated by the leading terms in

its expansion in Agy ().

Figure[2.4(b) displays the leading contributions to v;,, arising from the fluc-
tuations of agy(n In [85], it was shown that these two contributions can-
cel, i.e., 75, = 0 to two-loop planar order or, equivalently, fo(Asy(v)) = 0 to

O(Aéy(n))- Thus, at the critical point described by £,, in Eq. (2.46):
v=1+0 (AgU(N)) , (2.50)

for any m > 0 in the controlled 't Hooft large N limit. In perturbation theory,

the dependence on m, i.e., the particular fractional quantum Hall critical point,

“The one-loop vertex diagram, as well as one-loop and two-loop fermion self-energy di-
agrams do not contain logarithmic divergences and, consequently, do not contribute to v,
[42] 16, 185].

40



appears at sub-planar order and is unobservable at N = oo.

2.2.5 N independence and duality

We now explore the degree to which the superuniversality of Eq. persists
away from this controlled large N limit, i.e., when kg (n) is continued back to
its physical value given below Eq. (2.48). We will use duality to argue that the
physics described by L,, is independent of the particular value of N appearing
in the Lagrangian and that one consequence of this NV independence is that v = 1

away from the controlled 't Hooft large NV limit.

In Secs. (2.2.2) and (2.2.3), we showed that the effective Lagrangians describ-

ing the gapped phases that obtain from £,, for M, # 0 do not depend on N.
It remains to argue that the physics of the intervening critical point could also
be independent of N. For this, we conjecture a duality that equates the long
wavelength behavior of the theory in to that of a free Dirac fermion for

any integer NV:
- 11

Remarkably, this duality implies that the physics described by Ligur(A) does
not depend on the particular value of N appearing in its Lagrangian. While a
direct proof of Eq. (2.51) is not known, we can show that Eq. (2.51) is a con-

sequence of the web of bosonization dualities in 2 + 1 dimensions [137, 243]

(see Appendices 2.2.11{ and [2.2.13| for details). Furthermore, (2.51) is the state-

ment of fermion particle-vortex duality [257, 285, 193] 137, 243] when N = 1.
Consequently, the accumulated evidence for the duality web likewise provides

support for Eq. (2.51). In the remainder, we study the consequences of Eq. (2.51).
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If the duality in Eq. holds for all integers N > 1, then v must be in-
dependent of N for the theory in and its “modular descendants,”, i.e.,
the theories of fractional quantum Hall transitions given by £,, in Eq. (2.46).
(See Appendix for the Abelian Chern-Simons dual of £,,.) Furthermore,
choosing to determine v at N = oo, the specific value of v should be captured
at the leading planar order in the 't Hooft large N limit. This is because only
planar terms scale as N at large N; sub-planar terms always have an explicit
dependence on N through their 1/ prefactors (recall that both kgy(n) and ki)
in Eq. scale linearly with V) and so they should not contribute to v in any

planar expansion at N = oc.

Since v = 1 exactly for the theory of a free Dirac fermion, Eq. implies
the planar contribution to v;,, vanishes for the theory in (2.40). In the absence of
non-perturbative corrections to the ‘'t Hooft expansion in Eq. whenm > 2,
v = 1 should also hold for transitions involving fractional states, e.g., #ﬂ — 0
with m > 2, because m only enters sub-planar terms in perturbation theory.

In other words, duality suggests the critical theories considered in this paper

exhibit superuniversality with v = z = 1.

2.2.6 Conclusion

In this work, we introduced new effective theories with an emergent U(N)
gauge symmetry (N > 1) for various fractional quantum Hall transitions. We
showed that these theories are superuniversal in a controlled 't Hooft large N
limit and we argued that this conclusion holds more generality using duality.

Our theories function as an example that the effects of electron interactions and
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disorder can be disentangled from the phenomenon of superuniversality. Fur-
thermore, our theories provide examples of new dualities which are of funda-
mental interest and may have applications to other instances of quantum criti-

cality.

There are several directions of further study. It is important to better under-
stand nonperturbative corrections to our theories; for instance, additional study
of the lattice models in [82, [156] could provide useful insight. The theories in
this paper may have direct application to quantum Hall transitions in graphene
that can be controlled by varying an external electronic potential ([325] and ref-
erences therein). Perhaps the most important direction is to incorporate the
effects of disorder, which may account for the difference between the measured

and theoretically determined correlation length exponent.
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2.2.7 Appendix: Chern-Simons conventions

In this appendix, we collect basic facts and definitions for Chern-Simons theo-
ries in 2 + 1 dimensions. The Chern-Simons term for the U(N) gauge field a

is:

2 2
Tr [ada - §z’a3} = Ne“”p(af&,af — gifRSTaRaSaT), (2.52)

wov¥p

where a = aft" for U(N) (algebra) generators t" with R € {1,...,N?}. Our
normalization convention for these generators is the following: Tr[t?t5] = N§f*S
and [t 5] = i fR5TtT where fF5T are the structure constants of U(N). We de-

note Abelian Chern-Simons terms:
AdB = €""A,0,B,, (2.53)
where €Y = 1.

In the absence of matter fields, only integral linear combinations of the fol-
lowing Chern-Simons terms appearing in Eq. (2.40) make well defined contri-
butions to a 2 + 1-dimensional effective action [62] 218]:

1 2
ETr [ada — gia?’} ,

iTlr la|dTr[a),

47

1
%TI' [a]db,

ibdb. (2.54)
47

Since Tr[a] extracts the U(1) C U(NN) component of a, we can think of Tr[a] as

a U(1) gauge field with 2r-quantized flux. The combination of a single Dirac
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fermion and half-integer Chern-Simons level for a in Eq. (2.40) yields a well
defined term in the path integral [207, 228, 9].

We regularize our effective theories with a Yang-Mills term for a and a
Maxwell term for the Abelian gauge fields. In a Yang-Mills regularization,
the Chern-Simons level £ = —1/2 for the SU(N) C U(N) component of a re-
ceives a one-loop exact shift & — k + sign(k)N [301} 42]]. This correction arises
from the interaction between the gauge fields contained in the Yang-Mills term.
If regularized by dimensional reduction [42], the Chern-Simons level is not
shifted (as the Yang-Mills interaction is no longer present). To describe
within dimensional reduction, the Chern-Simons level for the SU(N) compo-

nent kpg = k + sign(k)N.

2.2.8 Appendix: Integer quantum Hall state and the insulator

In this appendix, we explain how the effective Lagrangian Eq. (2.41) in the main

text,

sign(My) — 1 iTr[

3} 1 N+1
2 47

— —Tr[a)db —

27 us

1
Log[A] = bdb — —bdA,
T

ada — —ia
3

(2.55)

describes an integer quantum Hall state when the fermion mass M, < 0 and

a topologically trivial insulator when M, > 0. In the effective Lagrangians

written above and below, only relevant and marginal terms, in the renormaliza-

tion group sense, are written; irrelevant operators (like Yang-Mills and Maxwell

terms for the gauge fields) are understood to supplement L. with a coefficient

that scales inversely with the cutoff of the effective theory.
Our strategy is to identify the integer quantum Hall state and the insulator
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through their electrical response to the U(1), i.e., electromagnetic, gauge field
A. This response is encoded in an effective response Lagrangian, obtained by
integrating out all dynamical degrees of freedom (e.g., ¢, a, and b in Eq. (2.40)).

Consequently, this effective Lagrangian only contains A. Using the relation J,, =

0L [A]

<i.—, where J, is the electromagnetic current coupling to A, we can read off

the electrical response to an applied electromagnetic field A. Focusing on the
linear response of the system, we may terminate this effective Lagrangian at
quadratic order in A. As a simple example, consider the effective Lagrangian
Lcs = -AdA describing the integer quantum Hall state. The relation, J; =
%%Ej, allows us to read off the Hall conductivity, o,, = 1, of this state, given

in units where ¢ = i = 1.

When M, < 0, the effective Lagrangian takes the form:

1 2 1 N+1
Leg(My < 0) = —4—Tr [ada — —z'a?’} — —Tr[a]db — il

T 3 2T T

bdb — ibdA. (2.56)
27

We will show how Eq. (2.56) describes an integer quantum Hall state by ap-
plying modular transformations to the rank/level duality U(N); < SU(1)n
[202, 203, [109]:

1 2 . 1 N
—ETI" [ada ~ 3ia } - %Tr[a]d/l “ EAdA. (2.57)

Note that since SU(1) is trivial, there are no dynamical gauge fields on the right-
hand side. Eq. says that U(NN) Chern-Simons theory at level £ = —1 is
equivalent to the theory of N copies of the v = 1 integer quantum Hall state,
i.e., a state with Hall conductivity equal to Ne?/h. For instance, if the topological
tield theory on the left-hand side of the duality in (or its dual on the right-
hand side) is placed on a surface with boundary, there will be N chiral Dirac

fermions propagating along the edge. We now sequentially act on both sides of

the duality in (2.57) with ST V~!, modular transformations defined in Eq. (2.45)
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in the main text. First acting by 7"~!, we obtain:

1 2 1 N+1 1
——T — Zia®| — —TrlaldA — AdA & ——AdA. .
gy r[ada Bza] o r[ald - dA < ym d (2.58)
Then acting by S, we find:
1 2 1 N+1
——T — Zia®| — =T
An r[“da 3“’] o 1t 27r 4 27r
(2.59)

The theory on the left-hand side of the duality in is the effective La-
grangian Lg (M, < 0) given in Eq. (2.56). The theory on the right-hand side of
is simply the effective hydrodynamic description of the integer quantum
Hall effect [292]. To see this, i.e., to see that the theory exhibits a Hall conduc-
tivity equal to one in units of e?/h, we may integrate out ¢ using its equation of

motion to find:

—Tr|a]

3}_1 N+1
T 27T

1 2
——Tr [ada — —a

—A A. .
47 3 47 d (2.60)

When M, > 0, the effective Lagrangian,

N +1
T

1 1
Log(My > 0) = —5—Trla]db — bdb — —bdA. (2.61)

The SU(N) C U(N) component of a is no longer present in the effective La-
grangian. Consequently, at low energies, it decouples from the remaining de-
grees of freedom: we assume that it confines. The U(1) C U(/NN) component of
a, i.e., Tr[a], and b remain in Lg(My > 0). The equation of motion for Tr[a] sets

b = 0, up to gauge transformations. Thus,
Leg(My > 0) = 0. (2.62)

This Lagrangian describes a topologically trivial insulator as the Maxwell term

for A is understood to supplement L.q (M, > 0).
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A related way to see that L.s(M, > 0) describes an insulator is to perform
a PSL(2,Z) field redefinition of the dynamical U(1) gauge fields Tr[a] — a
and b+ b so that Leg(M, > 0) = Lada — L£bdb — 5= (a — b)dA for odd N or
Log(My > 0) = tadb — LadA for even N. These effective Lagrangians de-
scribe topologically trivial insulators (if no symmetry is preserved) of fermions
or bosons. There is no contradiction with the duality in (or, alternatively,
restriction to odd V), which says that Eq. is dual to a free fermion, if we

allow ourselves to “stabilize” by a trivial insulator of fermions [29].

2.2.9 Appendix: Effective Lagrangians for fractional quantum

Hall transitions

In this appendix, we list the effective Lagrangians of the form given in Eq. (2.46),
Ly = Liqur(€) + Linod(A), (2.63)

where Ligur(c) is given by Eq. with the replacement A — ¢ and L,,04(4)
is determined by the particular modular transformation for a few other frac-
tional quantum Hall transitions. Because Liqur(c) is the same in each effective
Lagrangian, we only specify L,,4(A). We also determine the effective Chern-

Simons level for ay (1) which scales as |ky )| o< NV for N — oo.
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o =1/3 — 2/5 transition

The 0 = 1/3 — 2/5 transition is obtained by acting on Eq. (2.40) by S~'7 2ST.
We find:

2
4

1 1 1
—ede — — _
cdc o

EmOd(A) - 47 2T

cdg — —gdg + —gdA. (2.64)

The corresponding effective Chern-Simons level for ay (1) in (2.48) for this tran-

e . N N2
sition is ki) = -3 + N 153

oc=m/(m+ 1) — 1 transition

The ¢ = m/(m + 1) — 1 transition is obtained by acting on Eq. (2.40) by
S1TST 1. We find:

1 1
£mod(A) = _ECCZC — %

m

47

1

1
gdA + —AdA. (2.65)
2 47

cdg + —gdg +
The corresponding effective Chern-Simons level for ay (1) in (2.48) for this tran-
N N?

2 TN  Umr D

sition is ky1) = —

2.2.10 Appendix: Fractional quantum Hall state and the insula-

tor

In this appendix, we show how the effective Lagrangian in Eq. (2.46) in the main

text,

/:m = L:IQHT(C) + Lmod(A>, (266)
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where

Ligur(c) = i) Datp — %%Tr |ada - gmﬂ - %Tr[a]db N ; Lpan %bdc
(2.67)
and
LooalA) =~y — gdg + 5 _gdA, (2.68)
2w 47 o2

describes a 1/(m + 1) — 0 transition when m > 0. Similar to Appendix
when a fermion mass term M,y is added, we may integrate it out below the

scale set by | M| to find:

sign(My) —1 1 [ , 3} 1 N+1
i i 7l —Zid - =T -
Lt 5 ey ada 5la o r[a]db - bdb
1 1 m 1
— —bdec — —cdg — —gdg + —gdA. 2.
o o T Y g—|—27Tg (2.69)

We will show that Eq. (2.69) describes a fractional quantum Hall effect with Hall

conductivity equal to 1/(m + 1) (in units of ¢?/h) when M, < 0 and an insulator

when M, > 0.
When M, <0,

1 2 1 N +1

wa(M. :——T[ ——'3]——T _ ATl

Leg(My < 0) . r|ada 5l 5 r[a]db . bdb
1 1 m 1

— —bdc — —cdg — —gdg + —gdA. 2.7

or o op 47rgg+27rg (270)

Applying ST "S*T V=1 to the rank/level dual pair [202, 203, [109] in (2.57),

we find:

1 2 1 N+1 1 1 m 1
——T[d——’ﬂ——T b — bdb — —bde — —cdg — - gdg + —gd A
47 Flaaa 32@ 21 r[a] ™ 27 ¢ 27TC g 47Tg g+27rg
)

1 1 1 m 1
——bdb — —bdc — —cdg — —qd —qgdA.
A7 21 ¢ 27rC g 47rg 9+ 27Tg
2.71)
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Thus, L,(My < 0) (the theory in the top line of (2.71)) is dual to the theory in
the bottom line of (2.71). We now sequentially integrate out b and c so that the

bottom line of (2.71) simplifies to

This is the hydrodynamic effective Lagrangian for the fractional quantum Hall

state with Hall conductivity equal to 1/(m + 1) [292]. Thus, we find:

1 1 N+1

2. 4
_ETI [ada —gla } — %Tr[a] —gdA
i
1
g + 5 -gdA. (2.73)
When M, > 0,
1 N +1 1
(M. — ——Tr[a]db — — —bde — —cdg — ~~gdg + —gdA.
Leg (M, > 0) o r[a]db y bdb 27Tbclc o cdg gdg + o gd

(2.74)

The SU(N) C U(N) component of a again decouples and we assume it confines.
The equation of motion for Tr[a] sets b = 0; the equation of motion for ¢ sets

g = 0 and we are left with the effective Lagrangian for an insulator:

Leg(My > 0) = 0. (2.75)
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2211 Appendix: Duality argument and Abelian Chern-

Simons duals
Duality argument

In the first part of this appendix, we argue that Eq. (2.40) is in the same uni-
versality class as a free fermion. Our demonstration applies the argument of

[137,243] to the bosonization duality [85] 3} 2, 4, 109],

1
Do — |6* + 4—AdA
T

7 (2.76)

- 1 2 1 N —
i Dgth — 8—7TTr[ada — Zia’] — =—Tr[a]dA —

! AdA,
3 2T 47

that relates the theory of a Wilson-Fisher boson ¢ to the theory of a U (V) Chern-
Simons gauge field a coupled to a Dirac fermion ). Applying the modular trans-
formation ST 2 to “both sides” of this duality (we introduce ¢ in the Wilson-
Fisher theory and b in the gauged Dirac theory in applying the S transforma-

tion), we find the low-energy equivalence:
9 4 1 1
[Def? = 6] = [ede = 3—cdA > Liqu(A). @77)

with Liqur(A) given in Eq. (2.40). But the gauged Wilson-Fisher theory on the
left-hand side of is also dual to the theory of a free Dirac fermion [132,
133] 39, 196]. Thus, we relate the low-energy physics of the theory of a free
Dirac fermion to that of our theory in Eq. (2.40),

= 11
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2.2.12 Appendix: Abelian Chern-Simons duals

In the second part of this appendix, we provide the Abelian Chern-Simons du-
als for the U(N) Chern-Simons theories studied in the main text and listed in

Appendix that are implied by the duality in (2.51)) (copied below):
= 11
m

The strategy is identical to that of [243]: we perform a modular transformation
on each side of the duality (2.79) and then identify the resulting theories. Duality
implies that 't Hooft large N limit calculations for the theories with non-Abelian

gauge group can be reinterpreted in terms of their Abelian duals.

Dual pair for the 0 = 1/(m + 1) — 0 transition

Acting on (2.79) with S~*7 ™S, we find the duality:

= 11 _ 1.~ m+~ 1 ~
WD,V + égada — %adb — Ebdb + %bdA
) (2.80)
- 11 2 1 N +1 1
D, ———T{ ——‘3]——T N+1, 1
i) Datp 5 1t ada 50 o r[a)db g bdb 27dec

1 m 1
——cdg — —qd —qgdA
27TC g 47rg g+27rg

where @, b, b, ¢, and g are Abelian gauge fields and a is a U(N) gauge field.
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Dual pair for the 0 = 1/3 — 2/5 transition

Acting on (2.79) with S™'7 28T, we find the duality:

= 31 _ _ 1 -~ 2 . . 1 -
WD,V + igada — %adb — Ebdb + %bdA
1 (2.81)
1 2 1 N+1 1
it Dt — 54—Tr [ada - gza ) - Q—Tr[a]db _ 47; b — ——bdc
—cdc — —cdg — —gdg + —gdA
47r

where @, b, b, ¢, and g are Abelian gauge fields and a is a U () gauge field.

Dual pair for the 0 = m/(m + 1) — 1 transition

Acting on (2.79) with TS~ 'T"ST !, we find the duality:

11 1 1
iU, — ——ada — —adb + —bdb + —bdA —i— AdA
24m 2m
) (2.82)
11 2 1 N+1
i) Dath — 54—Tr [ada - gm ] - Z—Tr[a] 4+
1
_ede— —cdg+ 2 ~ gdA+ — AdA
47Tcdc o cdg—i—4 gdg+2 gd +4 d

where @, b, b, ¢, and g are Abelian gauge fields and a is a U(N) gauge field.

2.213 Appendix: Particle-hole transformation within the low-

est Landau level

For the free Dirac theory in the duality in (2.51)), the particle-hole transformation

with respect to a filled Landau level can be defined as follows. First, the fields
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are transformed by the anti-unitary (¢ — —i) transformation that consists of the

product of time-reversal and charge-conjugation which takes ¢ — —t,
U — 0,
(A, Ay, Ay) = (AL AL AY), (2.83)

and then the Lagrangian is shifted by a filled Landau level using the 7 transfor-

mation.

The theory of a free Dirac fermion in is invariant under a particle-
hole transformation with respect to a filled Landau level. Duality implies that
the theory in Eq. likewise enjoys this symmetry; we believe particle-hole
symmetry is realized quantum mechanically and is not visible in the classical
Lagrangian of Eq. for N > 1 (see [5] for a recent discussion of this phe-
nomena in related dualities). It would be interesting to see how this symmetry
constrains the conductivity (along with other observables) of different quantum

critical states [239,93].

There is second anti-unitary transformation that we expect to leave physical
observables invariant even though it is not a symmetry of Eq. (2.40). It is defined

as follows: first, time-reversal acts on the dynamical fields as

¥ =,
(at, Gz, ay) — (ar, —az, —ay),

(bt7 b:E7 by) — (bt7 _br7 _by)’ (284)
second, the product of time-reversal and charge-conjugation acts on A as
(Ata Ama Ay) — (_Ata Amv Ay); (285)

Finally, the Lagrangian in Eq. (2.40) is shifted by a filled Landau level with the

T transformation. This transformation can be employed to generate alternative
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effective descriptions for the particle-hole conjugate of a given quantum Hall

phase transition.
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CHAPTER 3
ELECTRON HYDRODYNAMICS

The theory of classical hydrodynamics (e.g. of water) is one of the first histori-
cally successful descriptions of a strongly interacting system. Forgoing an exact
microscopic description of macroscopic number of degrees of freedom, liquids
were instead characterized by a few field quantities subject to conservation laws
(e.g. momentum conservation) and constitutive equations (e.g. stress tensor -
velocity relation). In condensed matter, the (generalized) hydrodynamic ap-
proach is therefore understood to be an effective theory of “conserving approx-
imations,” i.e. where conservation laws are at least approximately obeyed. As
a non-perturbative technique, hydrodynamics and its applicability in strongly-
correlated electronic systems has been of great interest (see [74} [101] for a re-

view).

As our ability to create clean samples improve, experiments are now report-
ing that hydrodynamic descriptions of electronic fluids may be physically real-
izable [52, (17| (146, 147, 266, 195, 189, 97, 159, 96]. In particular, the momentum-
conserving electron-electron scattering length /.. is thought to be sufficiently
short such that momentum is at least approximately conserved. However, a key
difficulty in directly observing the hydrodynamic regime is that the electron-
electron scattering length .. is hard to measure. Therefore, to properly iden-
tify the hydrodynamic regime, it is important to disentangle contributions of
lec from other length scales in any purportedly hydrodynamic observable (e.g.
transport). In what follows, we critically examine these issues and search for

sharp signatures of electron hydrodynamics.
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3.1 Quantum aspects of hydrodynamic transport from weak

electron-impurity scattering

This section is adapted from a PRB paper [116] with Vadim Oganesyan and
Eun-Ah Kim.

Recent experimental observations of apparently hydrodynamic electronic
transport have generated much excitement. However, the understanding of the
observed non-local transport (whirlpool) effects and parabolic (Poiseuille-like)
current profiles has largely been motivated by a phenomenological analogy to
classical fluids. This is due to difficulty in incorporating strong correlations in
quantum mechanical calculation of transport, which has been the primary an-
gle for interpreting the apparently hydrodynamic transport. Here we demon-
strate that even free fermion systems, in the presence of (inevitable) disorder,
exhibit non-local conductivity effects such as those observed in experiment be-
cause of the fermionic system’s long-range entangled nature. On the basis of
explicit calculations of the conductivity at finite wavevector, o(q), for selected
weakly disordered free fermion systems, we propose experimental strategies for
demonstrating distinctive quantum effects in non-local transport at odds with
the expectations of classical kinetic theory. Our results imply that the obser-
vation of whirlpools or other “hydrodynamic” effects does not guarantee the

dominance of electron-electron scattering over electron-impurity scattering.
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3.1.1 Introduction

Recent experimental reports of peculiar transport phenomena in ultraclean
graphene[52] 17, [146| 147, 266] and other materials[195, 189, 97] have generated
much excitement regarding the role of hydrodynamic transport in these ex-
periments. In the absence of microscopic understanding of the hydrodynamic
transport of electrons, these experiments have been interpreted largely through
analogy with classical fluids. Although parabolic velocity profiles[147, 266]
and whirlpools[17] are familiar hydrodynamic phenomena in classical fluids,
reliance on this analogy deprives us of an angle to learn the role of quantum
mechanics in experiment. Most importantly, the question of the role of impuri-
ties, always present in materials, remains open although it has been clear that

they complicate any analysis[10, [161]].

Modern interest in the hydrodynamic theory of electronic transport was mo-
tivated by a sore need for a theoretical framework to describe quantum critical
transport in a regime dominated by electron-electron scattering.[54, 256, 241]]
Exotic possibilities have been predicted for graphene near the charge neutral-
ity point,[100, 77, [75] 199, 277, 161] and electron viscosity has been linked to
the strange metal normal state of cuprate superconductors[58, 182, 181}, 317].
However, a microscopic understanding of such hydrodynamic transport is chal-
lenging due to the inherent theoretical difficulty associated with the strongly
correlated regime. Pioneering works used kinetic theory to calculate the
shear viscosity for graphene[199, 23, 220] and for 2D Fermi liquids[153], yield-
ing non-trivial predictions. However, as the role of (unavoidable) impurity
scattering has primarily been treated phenomenologically via relaxation time

approximations[49, 277, 161}, 180, 266], it has not been examined in microscopic
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detail.

In this paper, we evaluate the effects of impurity scattering, and identify
signatures of the quantum nature of electrons, in the phenomena of whirlpool
formation and parabolic current profiles. To do so, we explicitly calculate the
non-local conductivity o(q) for free electrons scattering off weak impurities. In
contrast to a classical Maxwell-Boltzmann distributed gas, in which the shear
viscosity is independent of density[191], our principal result is that viscous ef-
fects have a distinctive dependence on carrier concentration. This arises because
Fermi statistics introduces a density-dependent velocity scale vy ~ /n. (in 2D)
and restricts scattering to the vicinity of the Fermi surface, so that scattering
is determined by the density of states. We map out experimental strategies to
reveal the quantum nature near the bottom of band and in the vicinity of van

Hove singularity.

3.1.2 Phenomenology and classical hydrodynamics

The phenomenological description of zero-frequency viscous transport[277,
161] extends Drude theory by including the kinematic shear viscosity (i.e. coef-

ficient of momentum diffusion) as
E=A4 (7 — VV2) J (3.1)

where A is a dimensionful prefactor (m/(n.e?) for Drude theory), v is the cur-
rent scattering rate, and v is the kinematic shear viscosity. This equation has a
characteristic length scale 74, = y/v/~, which we dub the viscosity length scale.

Note that in the limit of v — 0, Eq. becomes a linearized Navier-Stokes
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equation (assuming J o p), with v the usual fluid viscosity. E| Eq. (3.1) amounts
to a Taylor expansion in momentum of the usual Drude response (at zero fre-
quency). Hence this equation applies to any system with current; it is agnostic

to whether the system is classical or quantum.

The existence of the length scale r; = \/m, associated with the kinematic
shear viscosity v, immediately leads to the familiar hydrodynamic phenomena
of parabolic current profiles and whirlpool formation. To see this, one can solve
Eq. for the local current density J(r). For no-slip boundary conditions,

the longitudinal flow down a rectangular channel of width W is given by the

formula[277]
L)W _ <1 _ coshd ) ! 62
1 cosh 32 ) 1 — 20 ganpy (QE)

As shown in Fig. the flow profile is rectangular for r, < W and parabolic
for r4 > W. If one instead injects current laterally across the channel, as shown

in Fig. whirlpools of radius ~ r, will form.[277, [161]

For a 2D classical (Maxwell-Boltzmann) ideal gas of particles scattering off
of dilute impurities, the velocity is set by temperature 7" via the equipartition
theorem as v = /2kgT/m.. Since the mean free path is set by the cross section
Oimp and the number density niy, of impurities as lngp ~ 1/(NimpCimp) E| the scat-
tering rate is v = v/lmg, independent of gas density. Moreover, it is known[172]

that the kinematic shear viscosity for weakly interacting classical gas is given

!Although the definition of shear viscosity in the absence of momentum conservation
is controversial, we take Eq. as a phenomenological definition of viscosity following
Refs.[277,[161]

2This is slightly different from Maxwell’s original model [191] of rigid spheres, where Iy, ~
1/(ngas0gas) since the collisions are with other gas particles.

61



—eJ,W/I

<
=IN
1
1

(b)

Figure 3.1: Results from solving Eq. with no-slip boundary conditions,
taken from Torre et al.[277] [(a)] A plot of the flow profile through a rectangular
channel given by Eq. for various values of r4/W. For steady flow through a
rectangular channel, the normalized current flow is rectangular for r; < W and
parabolic for r4 > W.[(b)] A heatmap of the potential ¢ and current streamlines
for a current source and sink at =y and —x, respectively. White/black stream-
lines correspond to high/low current density. One finds that vortices form on
the scale of r,.

by
v~ Ulmgp. (3.3)

Hence in this classical system with impurities, the shear “viscosity” v (phe-
nomenologically defined in Eq. (3.1)) and the vortex radius ry ~ Imgp Will be
independent of the gas density as sketched in Fig.

Model and Formalism — The finite q conductivity o(q) is related to the viscosity
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Figure 3.2:[(a)] A plot of r; against (electron) gas density for the classical gas with
impurities. The vortex radius is density-independent in this case. [(b)] The equiv-
alent plot for a degenerate electron gas with a parabolic dispersion, at u = 0. 12—1.
We measure r, and n. in units of the lattice constant a and a2, respectively, and
introduced a dimensionless measure of disorder strength & = “3* so that the
quantity r,u* is independent of disorder strength.

v by inverting Eq. (3.1)), which in the limit of small momenta gives
J :(O'U - O'QVQ)E (34)

where o and oy are the O(¢°) and O(¢?) pieces of o(q), respectively; the term
linear in ¢ vanishes by inversion symmetry. These new parameters are related
to the collision rate and viscosity of Eq. as oy = 1/(Ay) and oy = —v/(A7?).
In terms of oy and o, the viscosity length scale 7 is

rg~ =22 (3.5)

0o
Of course, the conductivity o% is in actuality a rank-2 tensor, and hence (ag)fjﬂ
is a rank-4 tensor. We have suppressed the tensor indices because the relevant
components are parametrically equivalentf|and will be using at —(0,)?%/o3® as

our estimate for r3. Often, transport calculations are done in the ¢ — 0 limit.

3There are subtleties regarding the formal equivalence between o, and the shear viscosity
v which we are ignoring[22] in favor of the phenomenological definition of viscosity given by
Eq. . Ultimately, we are interested in the experimental observable 4, so the subtleties in the
definition of viscosity do not pertain to us.
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However, obtaining non-local transport phenomena requires calculating at fi-
nite q, in particular o, oc v. The presence of finite q significantly complicates the
calculations,[175] as it breaks spatial symmetries and introduces angular depen-

dencies in the integrand.

For our microscopic fermion model with weak impurity scattering, we con-

sider H = Hyin + Himp with the kinetic term Hy, and the impurity potential Himp

given by
1 i
Hyin :B Z EkChe ik, Chiken s (3.6)
ik
1 1 d*q
Himp :B Z E Z/ (271')2 V(k>CL+’ikj{Ck*,ik;' (37)
ikn iqn

Here & = ex — p is the dispersion measured relative to the chemical potential,
(k*,ikE) = (k + q/2, ik, + ig,/2) and V (k) is the impurity potential in momen-
tum space. We work in the 7" — 0 limit. For simplicity, we consider a Gaussian-
distributed impurity potential where (V(x)) = 0 and (V (x)V(y)) = u*§(x — y).
Thus, the disorder line transfers all momenta with equal weight u? but transfers
no frequency. For the most part we will be content with only the perturbative
treatment of disorder, which is expected to break down near band edges (dilute

electrons or holes) and at the van Hove singularity.

To calculate the conductivity, we use the Kubo formula
2

I19(q 0+ 107) + “

- ]
w+ 10+t m g (38)

c7(q,w +i0%) =

where n, is the average carrier density and m is the particle masg] This requires
us to calculate the current-current correlator II7. As we are interested in DC

non-local response, we will be working in the limit w — 0 and vpq < 7, where

“The mass generically has tensor structure which we have suppressed here for ease of pre-
sentation, as the diamagnetic piece will not play any significant role throughout this paper
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v = —2Im ¥(q,w) is the scattering rateﬂ We can separate contributions to IT%
into self-energy and vertex corrections; vertex corrections are negligible in this
limit, as shown in the Appendix. For the self-energy >, we will use first Born
approximatiorﬁ

2

S(qvig) = [ (;lﬁ’;c:ak, i) (39)

where Go(q,iq,) = (ig, — &)~ " is the free Green’s function. In addition, we
will be ignoring the logarithmically UV divergent Re ¥ by approximating it as
a constant, in which case it amounts to a shift of ;. We also ignore the crossing

diagrams and self-consistency diagrams of the self-energy.

Since we are only interested in dissipative response, using spectral function

techniques we can rewrite the Kubo formula as

Reo”(q,w)
B O dr %k A(kf,;p)A(k+’x+w) i ;
a /_w 47 (27)? W v'(k)v’ (k) (3.10)

Oex

i is the current vertex fac-

where A(k,w) is the spectral function and v;(k) =

tor (or Velocity)ﬂ In 3D the relevant integrals can be evaluated via contour
integration,[175] but this approach cannot be extended to 2D. Hence we eval-
uate Eq. numerically. To obtain o, and o5 as a function of carrier density n.,

for each fixed density we evaluate 0%/ at fixed small w (= 1079-2; ~ 450 KHz

ma?

for a lattice constant a = 5A) for a number of momenta ga < u?m?a?/h? and

perform a parabolic fit. For additional details, see the Appendix.

5Although in general this limit requires a self-consistency check, for our disorder configura-
tion X is independent of q, the regime always exists for sufficiently small g.

®Recall that the O(u') piece amounts to a shift of the chemical potential x, and thus can be
ignored.

"We assume that the diamagnetic term and the paramagnetic piece coming from Im 1/(w +
i€) Re(JJ) cancel.
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3.1.3 Hydrodynamic transport and quantum effects

To target the manifestation of Fermi statistics through a density-dependent ve-
locity, we consider a system with Fermi energy near the edge of a band. The
dispersion is well approximated by the parabolic dispersion e, = k?/(2m).
The chemical potential ;. is measured relative to the band bottom, i.e. n. =
mu/(2m). In this case, density of states is constant in 2D and the scattering
rate v = —2Im X(q,w) = u?m is also a constant. We use Eq. to evaluate

Rec”(q,w — 0). In our approach, oy reproduces the known DC conductivity

result oy = "m—ej Extracting the viscosity length scale r; according to Eq. (3.5), we

obtain the result shown in Fig. where we have plotted ryu?, where @ = %2

is the dimensionless disorder strength for lattice constant a.

The numerical results follow r; ~ /n., as expected from the fact that the
mean free path I, is the only length scale of our model and g ~ vr/y ~
V/e/(my). Such density dependence of the viscosity length scale is in clear con-
trast to the density-independent classical result of Fig. For an experimental
test of our prediction, the order of magnitude of r; needs to be experimentally
accessible. The scale of r; will depend on the disorder strength in general, with
rq o< 1/u® within the first Born approximation. To obtain r; ~ 1ym, assuming m

is a free electron mass and a ~ 5A, we need u ~ .02 eV A.

We now turn to the effect of density of states on hydrodynamic transport. To
see this effect in 2D, we propose tuning the Fermi level through the van Hove
singularity. The recently developed experimental tuning parameters such as
twist angle (in Moire systems[312]) and uniaxial strain (in bulk crystals such as
SroRuO,[20]) could enable experimental tests of the proposal below. For our

calculation, we work in the limit where the impurity scattering rate is paramet-
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rically smaller than the distance dy to the van Hove point, i.e. v < dp, to have
asymptotic control. In the vicinity of a van Hove singularity, we consider the
model Eq. with the dispersion & = (k2 — k2)/(2m) — dp, with 6y mea-
suring the distance to the van Hove singularity. This dispersion corresponds to
considering only the vicinity of (7, 0) in the square lattice tight-binding model.
We regulate UV divergences in the continuum dispersion using a square cutoff

|kz|, |ky| < A. Now the self-energy is given by

mu? A
Im¥(q,w) = ——— Recoth™* 3.11
(@) 27 (\/—2m|w+5u| +A2> (G11)

The logarithmic IR singularity at 6 = w = 0 in the self-energy Eq. (3.11) cap-
tures the enhancement in impurity scattering due to the logarithmically diverg-

ing density of states near the van Hove singularity.

Fig. shows the computational results of the viscosity length scale r; in
the vicinity of the van Hove singularity. To convert from dp to n. — nyy, one
uses the relation n, — nyy = fo(s“ p(x)|x| dz, where p(p) is the density of states
as a function of chemical potential. The singular suppression of r, reflects a
diverging scattering rate as expected on the grounds of dimensional analysis:
rq ~ vp/Im3, so that r;, — 0 as ou — 0. We expect an appropriate resumma-
tion of self-consistency diagrams to soften the singularity as impurity scattering
blurs out the Fermi surface, and hence the van Hove point. This is expected
of any van Hove effect in real systems. Nevertheless, the suppression of the
viscosity length scale r, is expected in the vicinity of the van Hove point. A con-
firmation of such suppression will be an unmistakable signature of a quantum

effect.

Recent experimental observations of the current flow profile in narrow chan-

nels [147, 266] and of negative non-local resistance from whirlpools [17] indicate
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Figure 3.3: A plot of r4a* against electron density for u = 0.5%, where the
Van Hove singularity is chosen to sit at n.a* = 3. Notice that r,; decreases on
approach to the van Hove point due to the scattering enhancement from the
logarithmically diverging density of states. The asymmetry about the van Hove
point is a reflection of the anisotropy of the dispersion; we are only considering
a single van Hove point corresponding to (7, 0) in a square lattice tight-binding
model. The blue shaded region denotes the regime where n. — nyy < v and we
expect self-consistent resummation of the self-energy to smooth out the singu-
larity.

that the above predictions can be tested. In particular, the ready tunability of
Moire systems such as twisted bilayer graphene[162, 312] would allow access

to the carrier density dependence of the viscosity length scale r; ~ /1. and the

suppression of r, in the vicinity of a van Hove singularity.

Finally, we comment on the finite frequency response, shown in the Ap-
pendix. An expansion of the finite frequency conductivity in the low frequency
limit yields

UQ(CU)

() ~ r3(1 + Bw?). (3.12)

Near the band edge, we find 7 ~ v%/7* and B ~ 1/+?% so r3/B ~ v% is a
disorder-independent quantity. At frequencies w 2 v, the sign of o, changes,

signaling that the current oscillations are out of phase with the drive. For
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graphene, v has been estimated to be 650 GHz.[17] In this regime, small finite
momentum oscillations enhance rather than suppress the conductivity; we ex-

pect the formation of current stripes.

3.14 Summary and Discussion

To summarize, we considered hydrodynamic transport in a microscopic model
of electrons under weak impurity scattering. The motivation was two-fold:
(1) to study the effect of disorder and (2) to reveal quantum aspects. We
have shown that apparently hydrodynamic phenomena such as formation of
a parabolic current profile and a whirlpool can be caused entirely by weak dis-
order scattering. For this, we have explicitly calculated the viscosity length scale
r4, which sets the whirlpool size and the curvature of the current flow profile,
by calculating the non-local conductivity ¢(q) and expanding it in powers of g.
Furthermore, we proposed experimental strategies to access quantum aspects
of such transport phenomena by tracking carrier density dependence of r; and
tuning to the vicinity of a van Hove point. These distinctly quantum signatures
arise due to the long-range entangled nature of the free fermion system (i.e. its

statistics).

Our results raise the question of how to distinguish impurity scattering ef-
fects from electron-electron interaction effects in experiments exhibiting hydro-
dynamic transport, namely parabolic current profile and whirlpool formation,
also raised in Ref. [266]. Indeed, viscosity itself needs to be carefully defined
in the presence of impurities as momentum conservation is violated; finite q

conductivity and the stress-strain correlator, both of which give viscosity in the

69



clean limit,[22] are not necessarily linked in a dirty system.[28] The role of im-
purity scattering in other hydrodynamic transport phenomena such as unusual
temperature dependence of charge transport such as the Gurzhi effect [60, 146],
thermal transport anomalies [52,89], and magnetotransport [195] will be topics
of future theoretical studies. Here we focused on delta-function correlated dis-
order; finite-range disorder would introduce a new length scale, and it would be
interesting to understand the influence of this length scale on r; and other trans-
port phenomena. Our results open doors to considering other forms of scatter-
ing, including electron-phonon and umklapp scattering in the future. Another
interesting future direction is the nature of the boundary, which is known to
play an important role in determining viscous transport[143], in the weakly dis-
ordered regime. Last but not least, it would be interesting to revisit ultraclean
two-dimensional electron gases [60] to test our predictions of density depen-

dence of r,.
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3.1.5 Appendix: Feynman Rules

The Feynman rules for our model are the following;:

Go(k, iky)
P ipn
,,,,,,,, u?6(py)
k,ik,
p.0
—_—
______ 1
k -+ p. ik,
k=, ik,
) e
i f'i.(CI- i) = 0(;

+ Lt
k. ik,

where we've defined (k*,ik¥) = (k £ 9, ik, + ). The solid line corresponds

1

to the free electron propagator Go(k, ik,) = ;—¢.

The dashed line corresponds
to the impurity interaction, which transfers all momenta but no frequency, and
is momentum independent. The impurity scattering vertex is just unit; as noted
it transfers momenta but no frequency. The current vertex, with an external
photon line with polarization 4, has a current vertex factor corresponding to

velocity.

3.1.6 Appendix: Kubo Formula: Spectral Function

Calculating the current-current correlator involves evaluating diagrams of the

form shown in Fig. In the regime of interest of this paper, namely w — 0,
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&) -
(a) Current-current correla- (b) The first Born approxi- (c) Lowest order vertex cor-
tor without vertex correc- mation of the self-energy rection
tions

Figure 3.4: Feynman diagrams

vertex corrections can be neglected at ¢* order in the conductivity o, as shown
in Appendix Therefore, all that remains are self-energy corrections to the

fermion propagator.

When G(k, ik,) has self-energy corrections, ie. G7'(k,ik,) = ik, — & —
¥ (k, ik, ), branch cuts pose complications if one wants to perform Matsubara
sums via contour integration. To get around this issue, we use the spectral func-

tion approach, which relies on the identity:

G(k, ik,) = / dr Ak, z) (3.13)

2w ik, — x
—2Im X (k,w)

Ak,w) = 5 5
[w— & — ReX(k,w)]” + [Im X(k,w)]

(3.14)

where A(k,w) = —2Im G(k,w) is called the spectral function. It is a fact that
A(k,w) > 0.[188] This identity allows us to perform the Matsubara sum, moving
the difficulties of evaluation to the integration. We define k* = k =+ ¢ for ease of

presentation.
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Maofa) =(-1) [ (s Gt () A i) "= 200 (g

i+ —y
(3.15)
I Tl ) =(=1) [ 3 A (k2) A (K 0) [mre) = o)
X (—m)0(w + x — y)va(k)vs(k) (3.16)
— / %Z—:A (k,z) A (k"2 +w) [np(x) —np(r+ w)] va(k)vs(k)
(3.17)

In these equations, we suppressed 0" in the frequency, as we don’t expect this

to play any role due to the presence of an non-zero imaginary self-energy.

To verify this is correct, for the fermion with parabolic dispersion we plotted

the zero-momentum conductivity oy(w) and find that it matches precisely with

2
oo(w) = ﬁfn 7 as shown in Fig. H This corroborates our Drude theory
expectations and that oy = fmz S = "Pe as stated in the main text.

3.1.7 Appendix: Self-Energy

In the model as stated in the main text, we need to evaluate the integral
, . [ APk K g 1
2(q,i¢,) = u WGO( 1) (3.18)

corresponding to the diagram shown in Fig.
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Figure 3.5: A plot of the zero-momentum conductivity oy(w) for the fermion
with parabolic dispersion, for u = .1%. The blue points are numerical data,

2
and the red line is not a fit, but the function L

dmm w2+v2°

Parabolic Fermion

The dispersion for the parabolic (spinless) fermion is given by &, = k%/(2m) — p.

We recall that the 2D density of states for this case is m/(27).

d*k 1
3(q, ig,) =u’ 1
2 m 1
=u /dek LT —— (3.20)
| m [A/em 1 |
E(q,w + ZO+) =U % A dEkPm - Z7T5<CL) + " — Ek) (321)
2 M A?/(2m) 2T
2 1) 2™ 3.22
ot ( W+ i ) (3.22)

where P denotes the principal value and we take a spherically symmetric cutoff
0 < k < A. We find that the real part is logarithmically UV divergent, and the

imaginary part is constant.
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Van Hove Fermion

The dispersion for van Hove fermion is given by & = (k2 — k2)/(2m) — op. We
take cutoffs —A < k,,k, < A. As noted in the main text, and similar to the

parabolic fermion, we ignore Re X.

2
Im¥(q,w) = — u27r/ ﬁé(w +op — €x) (3.23)
(2m)?
— — ™2 Re coth™! A (3.24)
2 V—2m|w + | + A2

3.1.8 Appendix: Vertex Corrections

In this section, we consider the lowest order vertex correction diagram, shown
in Fig. and show that the ¢* contribution to the conductivity o must vanish

in the limit of w — 0. We show this in two ways.

Vertex corrections vanish as w — 0

We define k*, ik = k + 4, ik, + % and take a dispersion such that ex = €_y.
This even-parity condition is satisfied for both the parabolic and van Hove dis-
persions. Recall that for impurity scattering, the disorder line transfers mo-
menta but no frequency; since the disorder line (and vertex) is momentum-
independent, the amputated vertex I''(q, ig,; ik,) is independent of the external

fermion momentum k.
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. d?k .
I'(quigiky) = [ GG RGO ik I (3.25)

2 / d’k 1 1 L
B (2m)2 ik} — e — B(k*, k) ik, — e — S(k,ik;)

(3.26)
. / &k 1
B (27)2 g, — e+ + - — N(kt,ikF) + X(k—,ik;)
1 | |
- ki 27
. Lkn 6 ik} — ekJ (3-27)
| &2k 1
Fl .. kn — 2
(ayw -+ i€ ikn) =u / 2r)2w +ic — s + e — S(k, ikt) + S(k—, ik-)
1 | |
- ki .
8 L’kg e ki — ekJ (3.28)

In the second to last line we have decomposed via partial fractions. This is valid

as long as the two fractions are never equal to each other (at finite q).

We are interested in the w — 0 limit, so we take ig, — w + i€ and set w =
0. ﬂ In this limit, zkff = 1k, £ ie. Because we are considering a momentum-
independent disorder strength, the self-energy cannot depend on momentum,
ie. X(k,ik,) = X(ik,). We will also take the assumption that }}E%) Nkt =
}Jii% Y (ik,, )ﬂ Moreover, because we are working at finite temperature and w — 0,

we have ikE — e+ = ik, — e+, as we take ¢ — 0 before T — 0. Putting this all

together, we have

| &2k 1 1 1 '
ré e ik,) —u? - ko (3.29
(q,w + i€ ik,) =u / (27m)2 i€ — €+ + €5 [zkn — e~ ik, — €k+] )

d*k 1
2 P —md(— -
! /(27)2 ( —€x+ + € o~ + & >>
1 1 ;

— k' 3.30
% |:’L]€n — €k ikn — 6k‘*‘:| ( )

8Formally e — 0 first before anything, but we believe this order is fine since it introduces no
divergences.

9For the free fermion, this is trivially true as ¥ = 0. If one works in the first Born approxima-
tion, X(ik,,) = 7y sign(k, ), which also satisfies this condition as k,, # 0 for any finite T
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where P denotes the principal value.

It is immediately clear that the imaginary part vanishes identically due to
the delta function. For the real part, consider the momentum inversion k —
—k in the integrand. This sends e+ — e+ so that the integrand is odd under
momentum inversion. Because of this, the real part must also vanish. Hence, I
is identically zero. Assuming that I'" is regular in w, this implies that I is O(w)

so that o(q, w) is also O(w).

The ¢°> component of o is purely reactive

Alternatively, we will show that the dissipative ¢*> component of o, i.e. 0, is

zero. We first Taylor expand in q.

) A%k )
T(q, iqn; iky) =u? / WG(I{, ik G (k, ik, )K"

+ [0k G (k, ik})G(k, ik, ) — G(k, ik} )0 G(k, ik, )] ¢“ K’

(3.31)

2
:“2/ élwl; (000 Gk, iK7)G (K, k) = Gk, k) O G iy)] 7K

(3.32)

Notice that if we Taylor expand in w, the O(w’) term vanishes, so that I ~
O(w). This implies that the ¢*> component of the current-current correlator is
O(w?). However, we know that dissipative response functions, i.e. the current-
current correlator, must be odd in frequency, hence for w — 0 the ¢> component

is purely reactive. Therefore, we know that o, vanishes in the limit w — 0.
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Figure 3.6: A plot of —0y/0¢ ~ r2 against frequency at u = .5%, normal-
ized against the scattering rate v = u?*m. Around w ~ 7/2, the sign of —o2/0y
changes. [(b)| A log-log plot of the v dependence of B, where the blue points are
numerical data and the red line is a linear fit. We find B o v~ 2.

3.1.9 Appendix: Frequency Dependence

We remark on frequency-dependent behavior in the electron with parabolic dis-
persion. These characteristics also appear in the van Hove fermion as well. In
Fig. we see that r, changes from positive to negative when w ~ . As this
corresponds to the fact that the current-current correlator changes sign at high

frequency, this sign change is a reflection of the fact that the current will go out

of phase with the drive. In Fig.|3.6b| we see that for ‘72—(53 = r2(14+ Bw?), B oc v 2.

oo

On dimensional grounds, v should be the characteristic frequency scale, so this

makes intuitive sense.
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3.2 Beyond Ohm’s law - Bernoulli effect and streaming in elec-

tron hydrodynamics

This section is adapted from a PRB paper [119] with Vadim Oganesyan and
Eun-Ah Kim.

Recent observations of non-local transport in ultraclean two-dimensional
materials raised the tantalizing possibility of accessing hydrodynamic corre-
lated transport of a many-electron state. However, it has been pointed out that
non-local transport can also arise from impurity scattering rather than interac-
tion. At the crux of the ambiguity is the focus on linear effects, i.e. Ohm’s law,
which cannot easily differentiate among different modes of transport. Here we
propose experiments that can reveal rich hydrodynamic features in the system
by tapping into the non-linearity of the Navier-Stokes equation. Three experi-
ments we propose will each manifest a unique phenomenon that is well known
in classical fluids: the Bernoulli effect, Eckart streaming, and Rayleigh stream-
ing. Analysis of known parameters confirms that the proposed experiments are
feasible and the hydrodynamic signatures are within reach of graphene-based
devices. Experimental realization of any one of the three phenomena will pro-
vide a stepping stone to formulating and exploring the notions of nonlinear
electron fluid dynamics with an eye to celebrated examples from classical non-

laminar flows, e.g. pattern formation and turbulence.
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3.3 Introduction

Electron hydrodynamics offers a powerful framework to understand transport
in strongly correlated electron systems. [54,256,241},[100,77,75},199, 58,179,181},
317, 278|161}, (104} 281} 249] The pursuit of electron hydrodynamics gained new
impetus with the advent of recent experiments in a number of ultraclean 2D
materials[52, 17,146, 147,266,195, 89,197,159, 96] making a case for electron hy-
drodynamics through observations of non-local transport, consistent with vis-
cous flows familiar in classical fluids. Observations such as vortices, Poiseuille-
like flow profiles, and unconventional channel width dependencies of resistance
are indeed consistent with viscous effects in a linearized Navier-Stokes equa-
tion. However, these results are all in the linear-response regime, and they can
be ultimately described using a non-local variant of Ohm’s law. Indeed, the
linearized Navier-Stokes equation can be simply recast using a non-local con-
ductivity o(q¢).[212, 1251} [116] While non-local transport can certainly be couched
in the formalism of hydrodynamics, it is also clear that inherently finite length
scales of a realistic fermionic system can conspire to produce non-local transport
indistinguishable from that implied by the Navier-Stokes equation.[116] Other
ways of accessing electron hydrodynamics are of great interest as we seek to

understand and isolate competing effects.

The overarching goal of this paper is to highlight the existence of nonlin-
ear electron phenomena that may be associated with an effective hydrodynamic
description. With that in mind, we adapt the Navier-Stokes (NS) equations of
classical fluid dynamics by introducing momentum relaxation and Coulomb ef-
fects to make the discussion of the electron phenomenology explicit. We do not

tackle the important and difficult question of a proper microscopic derivation
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Figure 3.7: Proposed experimental setups and sketches of their observed effects.
(a) The Venturi geometry, comprised of a circular wedge of the hydrodynamic
material in yellow. A nonlinear I/ — V characteristic with I ~ \/V; behavior is
expected, marked in blue. The gray dashed line represents an unstable solution
branch, while the gray region represents a possible instability towards turbulent
and/or intermittent flow. (b) Eckart streaming. A voltage oscillation of zero
mean is driven on one side of a back-gated device, leading to a rectified dc
current I. For large [, the dc current scales as [='. For small [/, oscillations due
to interference with the reflected wave become visible. (c) Rayleigh streaming.
In a similar back-gated geometry of (b), a standing wave of current oscillations
of amplitude u, and of period X along x is imposed, leading to an oscillating
magnetic field pattern of period \/2 along . These magnetic fields arise due to
the formation of vortical current cells of size \/4 along = and //2 along y, shown
in the lower panel.

of NS — indeed, there is evidence that many available electron devices are not
quite in the asymptotic hydrodynamic regime[18, 219]. We do, however, find
strong evidence in known material and device parameters to support the feasi-
bility of our proposals. It is worth emphasizing that while the phenomena we
focus on in this work are leading deviations from linear response, the NS re-
sults we obtain also suggest the presence of instabilities at finite non-linearity.

As in traditional classical hydrodynamics, these different regimes are naturally

demarcated using dimensionless Reynolds numbers.
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In Fig. we summarize the three proposals that we discuss in this paper.
The rest of the paper is organized as follows. Section[3.4/sets up the notation and
formalism of NS, paying particular attention to the spectrum of Reynolds num-
bers required to quantify nonlinear phenomena. Here, we also collect Reynolds
number estimates from known parameters for graphene. Section III focuses
on the manifestation of the Bernoulli effect in the nonlinear current-voltage
response of an electron funnel. Section IV derives the generation of down-
converted dc current from a localized finite-frequency excitation, analogous to
Eckart streaming or “quartz wind”. Section V describes the generation of static
electron vortices (akin to Rayleigh streaming) from an extended ac excitation.
Sections II-V are accompanied by Appendixes A-D containing complete details
of calculations. Finally, we close with a summary of results and a discussion of

open problems, including the role of interactions.

3.4 Formalism and Parameters

3.4.1 Equations of fluid dynamics

The hydrodynamics of an electron fluid, as a long-wavelength effective the-
ory, is described by a set of conservation laws for variables that decay slowly
compared to the coarse-graining scale of the system. Although Galilean invari-
ance is not microscopically present in electronic materials (e.g. graphene), the
Navier-Stokes equation has been derived from kinetic theory when momentum-
relaxing processes are weak.[270, 274 204] The momentum (Navier-Stokes) and

density continuity equations, which will be our primary interest in this paper,
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Foow=—V:(pv®@Vv)=—pv-Vv—-—vV - (pv) (3.35)

where v is the velocity field, n is the number density field with mass m and
charge e (p and p. are the mass and charge densities, respectively), v and ¢ are
the kinematic shear and bulk viscosities, respectively, and we will be working
in dimension D = 2| For graphene specifically, we remark that there are quan-
tatitive corrections to Eq. (see Ref. [270]). In particular, the hydrodynamic
mass m is not the quasiparticle mass in the case of graphene, but is an effective
mass related to the local energy density m ~ €/v% Moreover, there is a multi-
plicative correction to the convective term. We will approximate m as a constant
and ignore this multiplicative correction, which we justify in Sec. The con-
vective term F ., is written to emphasize that it acts as an effective force; this
will be the primary source of nonlinear behavior. The remaining terms may
also be thought of as (generalized) forces, and we can take their ratios for a
particular flow pattern to characterize their relative importance. In addition to
the conventional “viscous” Reynolds number Re, corresponding to shear dis-

sipation, a momentum-relaxation Reynolds number Re, will be of interest. For

The curl is interpreted in 3D, so that it sends vectors to vectors.

Tn our analysis we follow the standard practice in electron hydrodynamics to ignore non-
linear fluctuation effects, such as long-time tails which are known to be non-convergent in low
dimensions (including two) at finite temperature. While it is an interesting question to delineate
conditions for such nonlinear regimes to be observable in electron fluids, we are not particularly
optimistic in the present context, where disorder and low temperatures are of interest.
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simple non-singular flow profiles, these may be expressed as

V-(pvev) wL IL

Re, = Vv v pohv (3:36)
V-(pvev) v I
Re, =~ WVEV) v _ (3.37)
! pYv Ly pehLy

with help of characteristic velocity v, gradient 1/L, channel width ~ and net
current I = p.hv. In this paper, we primarily focus on the limit of low Reynolds

numbers Re., Re, < 1, i.e,, leading corrections to linear responselﬂ

Following standard practice, we make a further assumption of local equilib-
rium to write equations of state for p and ¢, which closes the set of continuity
equations above. We take a back-gated geometry as shown in Fig. where
the hydrodynamic metal and the backgate separated by a distance d have a ca-
pacitance per unit area C' = <. Therefore, we take the following local relation-

ships

p=sip (3.38)

6 =p./C (3.39)

where sp, is a constant corresponding to the speed of sound in an uncharged,
undamped fluid (i.e. a Fermi liquid). In Eq. also called the “gradual chan-
nel approximation,” the long-range Coulomb tail is screened by the gate so that
the longitudinal dispersion is gapless. This approximation is valid when the
distance d between the hydrodynamic metal and the gate is much smaller than
the typical wavelength of oscillations.[65, 274, 277] Therefore, both p and ¢ obey
the same functional form; if the density p = p(¥) is constant, p can be absorbed

into an effective voltage ¢o = ¢ + 5= in the momentum equation. In particular,
& PO q p

2The third dimensionless number which captures the relative strength of pressure (and po-
tential) terms to convection turns out to be related to the Mach number.
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as a result of Eq. (3.39) there is also an electronic contribution sZ,, = "5.% to the
undamped speed of sound sg =  /s¢; + 52,

Parameter Estimates

To estimate parameters, as a model system we consider a graphene-hBN stack
with gate-channel separation d = 100 nm and average carrier density n(®) ~ 102
cm~? tuned away from charge neutrality so that we can consider a single band.
In graphene, the relaxation rate v ~ 650 GHz and v ~ 0.1 m?/s,[17] so that the
viscous length scale r; = \/g ~ 0.4pm.[116] We also will take ¢ ~ 0.[180, 23]
The relative dielectric constant of hBN is € ~ 3.9,[151, 277] and we approximate
m and e to be the bare electron mass and charge, respectively. Therefore, the
electronic contribution to sound is scp ~ 0.9 X 10° m/s. The speed of sound
of Fermi liquids is sp, ~ vp,[149] and Fermi velocities for metals are gener-
ally vp ~ 10° m/s.[15] Therefore, we will approximate the undamped speed of
sound s ~ 2 x 10° m/s. Using the dispersion relation in Eq. forw =1THz
we have the true speed of sound s ~ 1.9 x 10° m/s and attenuation coefficient
a ~ 1/(6pum). As a rough estimate, for characteristic lengths h ~ L ~ 5um
the Reynolds numbers are Re, ~ [/(160pA) and Re, ~ I/(26mA). The ra-
tio Re, /Re, ~ L?/r} is controlled by the viscous length scale ry ~ .4um, so
current micrometer-scale experiments will be in a regime where Re, tends to
dominate the nonlinear behavior. We remark that the apparent paradox that
hydrodynamic effects could be dominated by momentum relaxation is due to
linear-response considerations; by tuning the sample width i such that ry < h,
a hydrodynamic description of the material remains valid but becomes indis-

tinguishable from Ohm’s law in the absence of convection.
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Figure 3.8: A topview of the Venturi geometry, with inner radius r, and outer
radius r; and total wedge angle 6.

We now justify our assumptions of m constant and convective correction £
negligible for the case of graphene. As shown in Ref. [270], the mass fluctua-
tions dm ~ mo[O(dn/T) + O(u?/v})]. For our parameters, operating at currents
I ~ 100pA and channel widths A ~ 5um at room temperature 7' = 300K, the
corrections 0m ~ .01m and are perturbatively small. Keeping any new nonlin-
earities introduced by dm up to second-order, we find that it only introduces
quantitative O(1) corrections to the dissipative terms v, v, and (. Therefore, m
constant is valid at our level of approximation. For the multiplicative correction
to convection, for our parameters where p/7" 2 1 the multiplicative factor is
roughly 1/4; this is only an O(1) quantitative correction and it is valid to ignore

it at our level of approximation.

3.4.2 Electronic Bernoulli effect

We now apply the hydrodynamic formalism to derive a nonlinear contribution
to the I-V characteristic V' o I? in what we call the ‘Venturi’ geometry (see
Fig. 3.8), first analytically in the limit v — 0. For boundary conditions, we fix

the voltage ¢(r9) = Vp and ¢(r;) = 0 and take no-slip (vanishing velocity) at
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the side walls 6 = +-6,/2. We find that the stationary, purely radial "plug flow”
ansatz v = v,(r)O(02 — 46?)t is a solution (with © the Heaviside step-function).
The absence of viscosity is crucial as it allows for a zero-thickness boundary
layer in this highly symmetric flow["| The Navier-Stokes equation (Eq. (3:34))

reduces to a simple ordinary differential equation

2 [egzﬁ + lmvf} +myv, =0 (3.40)
or 2

where we have subsumed pressure into ¢ for simplicity We further take

the divergence-free (“incompressible flow”) ansatz v, = —#—1, where the yet-

©

pe bo
undetermined constant I is the total current and p!" is the average charge den-
sity. Substituting this ansatz into Eq. (3.40) and integrating from r, to r; (see

Fig.[3.8), we obtain the nonlinear I-V characteristic

1 [lIn(hy/ho) 1/1 1\ I?
Vo=—|——T—=|—=—-——= | — 3.41
" “on | hi—ho 2\h2  h2) poy (341)
where op = %)762 is the Drude conductivity, [ = r — 7, is the length, and

ho = Opro and h; = 0yr; are the widths at the contacts. The first term on the
RHS corresponds to the Ohmic contribution, while the second term is the non-
linear 72 contribution from convection. We emphasize that the nonlinear con-
tribution is strongly geometric, vanishing for typical rectangular geometries[60]
where hy = hy. To further isolate the nonlinearity, we exploit the parity differ-
ence between the two contributions. Because the nonlinearity is of even parity,
a non-zero symmetrized current Ioym (Vo) = 3[1(Vo) + I(—Vp)] provides a direct

signature of the nonlinearity. To estimate this effect, in Fig. 3.9 we plot in blue

3Boundary conditions are effectively inconsequential without viscosity. One could just have
well taken no-stress boundary conditions (while including viscosity as the shear viscosity force
vanishes[249]). The Corbino geometry is therefore smoothly connected to the 6y — 27 limit, as
the Corbino geometry is equivalent to no-stress boundary condition.

4When the device is gated, including p is equivalent to renormalizing e/m. In the absence
of gating, the long-range Coulomb interaction suppresses density fluctuations, so the pressure
contribution is expected to be negligible.
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Figure 3.9: Main: A parametric plot of the voltage-symmetrized current
Iym(Vo) = 3[1(Vo) + I(—Vp)] against total current 1(Vj). Inset: The I-V character-
istic. The solid lines are obtained analytically from Eq. in the v — 0 limit,
and the points are obtained numerically with finite v. Fixed-voltage boundary
conditions are taken. The inner and outer radius are 5um and 10um respec-
tively, with wedge angle 6, = 7/2, with graphene parameters v = .1 m?/s and
v = 650 GHz. Since r4 ~ .4pum and lengths are ~ 10pum, viscous corrections to
the analytic v — 0 solution should be ~ 5%.

the current fraction /iy /I and the I-V characteristic of Eq. for wedge an-
gle 6y = n/2 with ry = 5um, r; = 10pm, and graphene-hBN parameters as
discussed in Sec. To incorporate a finite shear viscosity, which is difficult
to solve analytically (see Appendix[3.4.7), we solve the Navier-Stokes equations
numerically and plot the results as points in Fig. The exact (v = 0) result
of Eq. matches well with the numerical result, as expected because the
viscous length scale r; = \/g < 19b)y is small for experimentally relevant pa-
rameters. As demonstrated by Fig. this nonlinear effect (/gym ~ 400 nA for

I ~ 20014A) should be experimentally measurable.

This nonlinear I-V characteristic in electronic hydrodynamics is the analog of
the Bernoulli effect in classical hydrodynamics, the prototypical example of con-

vective acceleration, which is traditionally demonstrated using a Venturi tube.
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The Bernoulli effect is typically demonstrated in an inviscid fluid of divergence-
free (incompressible) flow, analogous to our assumptions. In fact, the classical
Bernoulli (energy conservation) equation is analogous to Eq. ; the term in
brackets corresponds to the classical Bernoulli contribution (i.e. when v = 0),
while the v term accounts for the additional dissipation from a finite conduc-
tivity. As a result, the nonlinear term of the I-V characteristic Eq. can be

calculated exactly by classical Bernoulli considerations.

We turn to the subtle issue of solving for the total current /(V;) given the
input voltage V), i.e. verifying that the ansatz satisfies the boundary conditions.
Because this requires solving a quadratic equation for I, the solution is gener-
ically multivalued and may not even have a solution. In the limit of small 4,
linear response must provide the correct answer on physical grounds; this se-
lects the solution branch continuously connected to the solution I = 0 at V;, =0,
where parity was broken by 7. The opposite branch is therefore expected to
be unstable to #-dependent perturbations. The region where the purely radial
solution does not exist corresponds to particle flow in the divergent direction;
for classical fluids, it is known that divergent flow eventually becomes unsta-
ble and develops turbulence.[150, 238] To estimate the scale of nonlinearity at

which the radial ansatz fails, one can define a Reynolds number

g h2
ho 0

1——= 3.42
In 2 ( h%)] .

which is precisely the ratio of the two terms in Eq. (3.41). The instability point

f:l dchonv,r - -1 I

0

_ fr’; drpyv, 2l pey

Re,

occurs at Re, = —1/2. We summarize the resolution of these subtleties in
Fig.B-73}

Finally, we now highlight three aspects of the Bernoulli non-linearity that

should help identify it unambiguously in experiments. To start, following Eq.
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we note that the quadratic term is independent of the momentum relax-
ation parameter v, and hence may be identified by comparing I-V traces taken at
different temperatures or even from different samples of the same material. Sec-
ondly, the simple charge density-dependence may be probed by varying back-
gate voltage. After factoring out the density-dependent Drude resisitivity 1/op
(cf. Eq.[3.41), the nonlinear term only has an inverse dependence on charge
density (and its sign depends on the carrier charge). Lastly, Eq. has a
distinct geometric dependence interpolating in a somewhat unusual way be-
tween conventional and ballistic transport. For a fixed aspect ratios h;/ho and
[/ho, we find that the Ohmic resistance contribution scales with the size of the
device as 1/hy while the nonlinear Bernoulli contribution scales as 1/h2. In ad-
dition, the Ohmic resistance contribution has the conventional linear scaling
with length [, while the nonlinear Bernoulli contribution has the /-independent
hallmark of ballistic transport. This effect therefore stands apart from generic
nonlinearities, which are expected to be inversion-odd when the crystal struc-
ture is inversion-symmetric (e.g in graphene), and from Joule heating effects,
which would also provide inversion-odd nonlinearities and would not have the

l-independent ballistic scaling.

3.4.3 Eckart Streaming: A “Hydrodynamic Solar Cell”

A dramatic effect of nonlinearity occurs upon applying an oscillatory drive:
down-conversion. In a backgated device of length I and width  (see Fig.[3.7b),
we consider setting up a traveling longitudinal (sound) wave by application
of a voltage oscillation ¢(x = 0) = Vjcoswt at the left contact with the right

contact grounded (¢(x = [) = 0). This will result in a DC current via the down-
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conversion sourced by the convective force (Eq. (3.35)). Such a device can be
described as a “hydrodynamic solar cell” providing a DC photocurrent if the
(localized) voltage oscillation is driven by EM radiation. For simplicity, we will
focus on bulk dissipation (i.e. attenuation due to o > 0) contributions to the
convective force and neglect those of boundary dissipation, which only results
in a quantitative underestimate of the DC current (see Appendix [3.4.8). This is
the electronic analog of Eckart streaming in classical hydrodynamics, where the
convective force is primarily generated by bulk dissipation.[66] 208, 173, 299]
To see this, we need to solve the full Navier-Stokes equation (Eq. (3.34)), whose
nonlinearity precludes a single-mode ansatz. To handle this, we will seek a per-
turbative solution in the input voltage amplitude V}, (see Appendix for full

mathematical detail).

Perturbative Calculation

We begin by expanding the hydrodynamic variables in a power series expan-
sion of Vp, e.g. p = p@ + pM) + p@ 4 . ; p( corresponds to the equilibrium
mass density, while p®) and p® are the first and second order solutions. At
leading (linear) order, the single-mode ansatz ¢!} ~ Vje!*hz= along z with
wavenumber k; = k + i« is appropriate. Imposing the fixed-voltage boundary
conditions, the solution of ¢(1) is a traveling wave with a reflected component;
the grounded edge acts as a mirror. Because of the backgate providing a capaci-
tance per area C, the voltage oscillation of amplitude Vj sets up a charge density
oscillation pt" = Cp) of amplitude CV} (see Eq. (3.39)). Via the density conti-
nuity equation (Eq. (3.33)), the density oscillations drive a longitudinal velocity
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oscillation v{", schematically written as

US) ~ U()?R [e(ik—a)a}—iwt + 6(ik—a)(2l—;r)—iwt] (343)
where R denotes real part and uy = C(‘O/g) i is the velocity amphtude We also

take a no-slip boundary condition, which is not satisfied by i, However, as
previously stated we will neglect the boundary corrections to v for simplicity
(see Appendix As a result, the leading order solution i results in a
DC convective force (see Eq. (3.35))

O _ o), sasinh[2a(l — x)] — ksin[2k(l — z)]
conv.e =P~ "o cosh 2al — cos 2kl

(3.44)

where the overbar denotes time-average. The first term in the numerator arises
from the bulk dissipation a, while the second term arises from interference
effects; in the limit ol > 1, where interference effects are small, the RHS of
Eq. simplifies to ae 2>, This rectified DC force will result in a DC cur-

rent.

We now solve for the second-order DC current 1. The DC current density
JO = p0v@ 4+ p( 'v() must be divergence-free to satisfy current conservation
(i.e. density continuity Eq (3.33)). With the ansatz v, o = = 0, this implies that
the current density J@ = Jf) (y)X only varies along y. However, the convec-
tive force given by Eq. varies along x. This paradox is resolved by static

screening, where the z-dependence of convection will be canceled by contri-

butions from the effective voltage ¢gf) = @ + ( p®. Utilizing separation of

e

variables in the NS equation (Eq. (3.34)), we can solve for qbeff by applying the

voltage-fixed boundary conditions ¢ (z = 0) = ¢®)(x = [) = 0. Therefore, the

This is effectively equivalent to taking stress-free boundary conditions at leading order; the
choice of boundary condition only weakly modifies the final result (see Eq. (3.46) and subse-
quent footnote on the viscous correction.)
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“screened” convective force (which is no longer spatially dependent) becomes

JE— a (2) 1 l -
Floe — pé“% = / drF2, . (3.45)
0

Solving NS for the current density J and integrating across the channel to get

the total current ?, we get

—_ 16 1 [ 2—2cos2kl
B PO p, 2y cosh 2al — cos 2kl
27’d h
1 — 2 tanh 4
x( - tan 27’d) (3.46)

where Iy = p” huy is the input current amplitude, and we have assumed that
convection provides the dominant DC force (see Appendix [3.4.8). The term in
parentheses is a viscous correction, reflecting the y-dependence of the current
flow due to no-slip[¥| The bracketed terms correspond to dissipation and inter-
ference contributions from the convective force (Eq. (3.39)), respectively. The ef-
fect of these contributions is demonstrated in Fig. where we have schemat-
ically plotted the dependence of DC current on the channel length [. In the limit
al < 1, the interference term dominates, leading to oscillatory behavior con-
trolled by kl. In the opposite limit al > 1, the interference term becomes neg-
ligible, and the DC current scales as I® ~ [~!. Other than the device length [,
one could also study the frequency dependence of Eq. (via kj(w) = k+ia),
which is plotted in Fig. for a fixed [y[”| Similarly, interference effects appear

at low frequencies and become negligible at high frequencies.

1This is the only effect of the no-slip BC. For stress-free boundary conditions, this correction
will be equal to 1. The DC flow profile will be constant along y, which is equivalent to setting
v — 0 as there is no shear viscosity force.

7Because Iy = ph f(‘o/? Tey- perturbation theory will break down for sufficiently low w. This

happens when w < v, i.e. when k; is dominated by + and tends to a constant.
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Figure 3.10: Main: A plot of I® at fixed input current amplitude I, for device
length | = 30pm and graphene-hBN parameters stated in Sec. in units of

Ay = 5L (1 — 24 tanh 2L> We remark that this is also a scaled plot of the
pe h =Y Td

Reynolds number Re,. Inset: A blowup of the yellow highlighted portion. At

. . I 1 . .
high frequencies, Re, saturates to a constant A, = pgo_omm' while at sufficiently

low frequencies the interference oscillations become more visible. The gray box
demarcates the low frequency region w < 7, where perturbation theory in 1
breaks down for a fixed 1.

Discussion and Estimates

An effect similar to Eckart streaming was previously discussed by Dyakonov
and Shur[64] and extended in Ref. [277]. They envisaged operating with zero
DC current bias I = 0 instead of zero DC voltage drop, so that one generates
a DC voltage instead of a DC current. These theoretical treatments[64] 277]
similarly neglected boundary dissipation, which only leads to quantitative cor-
rections to DC voltage. However, for their case, boundary dissipation leads
to qualitative flow corrections (see Appendix [3.4.8); further discussion is de-
ferred to Sec. We point out that, in either case, if the voltage oscilla-

tion is driven by an impingent EM wave, the device is a “hydrodynamic so-
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lar cell” generating a DC photocurrent (photovoltage). In contrast to typical
solar cells (e.g. a p-n junction), the hydrodynamic solar cell does not break
parity by construction; parity is intrinsically broken by dissipation, setting the
direction of the photocurrent. Therefore, Eckart streaming provides a novel
mechanism for photocurrent (photovoltage) generation. Signatures of down-
converted DC voltage generation by THz radiation have been measured in ultr-

aclean 2DEGs.[273], 282, 184}, 119]

One can define Reynolds numbers to estimate the strength (% /I of the non-

linearity. The Reynolds number Re, for this system can be defined as

1t (2 _
Re — fo Feov.z _ I, L 1 — 2 — 2 cos 2kl (3.47)
T O pOp 21y cosh 2al — cos 2kl

which explicitly appears in Eq. (3.46). The viscous Reynolds number can be
similarly defined such that Re, = % Re,, where we approximate the viscous
gradients to have length scale L = h (see Eq. (3.36). The contribution from Re,
is hidden within r4; in the limit r; > h where viscous contributions dominate,
Re, can be made manifest by perturbatively expanding Eq. in h/r4. Since
rq > h for the experimental systems of interest, the Reynolds number Re, ~

I /I, corresponds to the scale of DC current (up to a small viscous correction).

We now estimate the size the DC current in experiment (see Appendix
for dispersion relations). We take device size [ = 50um and h = 5um and op-
erate at w = 1 THz, with graphene-hBN parameters from Sec. for these
choices, the interference effects are small since ol ~ 5. Therefore, we find
Re, ~ I)/(312mA) and therefore 1@ /nA ~ (Iy/24pA)> Observing the oscil-
latory effects is more difficult, requiring smaller / and more measurement preci-

sion. Despite this, in an optimistically sized device of length [ = 20pm, we plot

the frequency dependence of Re, in Fig. The oscillations are suppressed by
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a factor of 0.01; if one asks for a streaming current / (2) ~ 1 nA, the oscillations
will be of order 10 pA. We therefore conclude that an Eckart streaming current
should be visible in current experiments, with interference oscillations being a

challenging observable.

3.4.4 Rayleigh Streaming

We now turn to the limit where boundary dissipation dominates, i.e., the bulk
dissipation « is negligible. Here, the no-slip condition is critical. In a rectangular
backgated device of width % (see Fig.[B.7d), we consider setting up a longitudi-

nal standing wave of wavelength A > o™!

along . In this case, the system
cannot support a finite DC current due to reflection symmetry in y. There-
fore, down-converted DC current flows sourced by the convective force (see
Eq. (3.35)) must circulate. The circulating current leads to a measurable orbital
magnetization of wavelength \/2 along = with reflection-symmetric modula-
tion along y (see Fig.[3.7d). This is the analog of Rayleigh streaming in classical
hydrodynamics, where the convective force is primarily generated by bound-
ary dissipation.[173} 208, 234] Remarkably, localized boundary effects lead to
nontrivial flows throughout the bulk (see Appendix for full mathematical

detail).
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Perturbative Calculation

We begin by working perturbatively in the input current amplitude u,, where

at linear order we take the longitudinal wave ansatz

vl(l) = g sin kx cos wt (3.48)

This is consistent with a current-fixed boundary condition J,(x = 0) = 0 (i.e.
DC current I = 0). For simplicity, we work in a semi-infinite strip of width h
(i.e. |yl < h/2 and = > 0) with the above current-fixed boundary condition. To

)

satisfy no-slip, a transverse mode vt(1 is necessary to correct the total flow v(!) =

vl(l) + v, This transverse correction disperses along y with wavenumber £, =
k;+ik;, and hence forms a “boundary layer” of size 1/k;’ exponentially localized
to the wall. We will work in the thin boundary layer and long wavelength limit

k/~' < h < ). In this limit, the resulting convective force (see Eq. (3.35)) can be

schematically written as
Fc(gr)w@ ~ pOul ke v+ sin 2kx + (y < —y) (3.49)

where y, =y + g is the distance from the lower boundary As a result of the
quadratic non-linearity, the wavelength of the convective force is halved to A\/2.
In addition, the convective force is localized to the boundary layer, reflecting the
fact that convection is driven by boundary dissipation. It is therefore convenient
to divide the flow into bulk and boundary-layer regions, stitched together at
the interface. Despite the localized nature of the convective force, its effect will

persist into the bulk by providing a slip boundary condition.

Now, we study the second-order DC flow. We first consider the boundary

layer region, assuming that the viscous length scale r; = ¥ < h. The convective

BMore precisely, this is schematic form of the “screened” convective force with contributions
from the effective voltage d)é?f) =@ + ﬁ p2).
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force localized to the boundary layer of size 1/} leads to a localized flow along
x. Because of the shear viscosity v, the boundary layer momentum propagates
into the bulk with the viscous length scale r4. Therefore, the boundary layer
“screens” the no-slip condition, providing instead a slip velocity for the bulk

flow. This slip velocity can be written as v(ll)3 sin 2kxz, where schematically Ushfo

%ke*l/ k'ra, Equipped with the slip boundary, we now solve the NS equation

(Eq. (3.34)) for the bulk flow where the convective force vanishes, and we obtain

inh .t
I =T sin 2k 2r; oSt 7, — sinh 5 (3.50)
e Sp # cosh 5~ — sinh 5~
T O %krcos 2k | 2 Smh o, st 3.51
T4 COS 2kx .
bully —slip“™" 4 % cosh - — smh T (3:51)
The slip current JS lip P éhi) results from boundary convection, while the

term in brackets is a geometric factor resulting from satisfying the slip velocity
boundary condition. The DC current flow is plotted in Fig. where it is clear

that the current circulates in cells of length A\/4 and width h/2.

Discussion and Estimates

A previous related proposal by Dyakonov and Shur[64] and its recent
extension[277]] discussed downconversion effects with a current-fixed bound-
ary J(z = 0) = 0, similar to this case. However, they instead took a stress-free
boundary condition that has no boundary dissipation. In their case, there is no
circulating current; without boundary-layer contributions, the convective force
only leads to an excess of DC voltage (see Appendix [3.4.9). Therefore, Rayleigh
streaming is qualitatively distinct from previous nonlinear proposals in electron

hydrodynamics.

2)

Since the effect of the convective force is to generate a slip velocity v,
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we can estimate the scale Uéﬁ; /up by an appropriate Reynolds number. The

Reynolds number Re, is defined in this case to be

(2)
max Fiony Iy k
Y P(O)’Yuo pgo)h 4’Yf( /7) ( )

where f is a dimensionless function of w/~ described in Appendix We
remark that f develops an interesting resonance at w = %>~ where perturbation

theory breaks down, but we operate away from this point and will not discuss

it further. It turns out Re, e~ 1/ki"a = vs(fi; Juo, i.e. slip velocity is given by the
Reynolds number up to an exponential factor controlled by the viscous length
scale r4. However, the viscous Reynolds number Re, does not contribute to the
éﬁ) /ug is instead set by the Mach number

effect; in the limit v — 0, the scale v b

ugk /w. Despite the necessity of a finite shear viscosity v to generate a convective
force, Re, does not set the scale vs(ﬁ; of the result; this curious fact was first

remarked by Rayleigh[225] (see Appendix for additional discussion).

We propose that the circulating flow profile could be detected via magne-
tometry. To estimate the effect in realistic systems, we set w = 2 THz and
channel width A = 5um with graphene-hBN parameters as in Sec[3.4.1] (see
Appendix for dispersion relations). We first verify the assumptions we
made: k' < h < )\, ry < h,and a < k. These are k/h ~ 13, h/\ ~ 0.80,
rq/h ~ .08 and a/k ~ 0.2, so we expect our solution to be roughly correct. For
the scale of the DC effect, we find Re, ~ Iy/(23mA) and kjrq ~ 1.1, so that
vaip ~ (Io/71mA)ug. Since Ampere’s law implies —V?B, = 1oV x Ji(z), the
vorticity 2 = V x J acts as a Coulomb-like point source of magnetic field. The
vorticity is plotted for these parameters in Fig. where it is concetrated near

the edges since the viscous length scale r; < h is small. To make a rough esti-

19 As before, we only consider the “screened” convective force in the above equation, equiva-
lent to including boundary contributions only.
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Figure 3.11: A plot of the bulk vorticity distribution Qt(i)lk =VxJ t(fl)lk induced by
Rayleigh streaming for h = 5pm and w = 2 THz with graphene-hBN parameters
as in Sec. The local bulk vorticity corresponds to a Coulomb-like point
source of magnetic field due to Ampere’s law.

mate of the magnetic field strength, we take B, ~ % [ ¥V x Ql(i)lk at a height
z from the sample; we approximate the magnetic field to be sourced by the net
circulation in the nearest vortical cell. This gives B, ~ %Z%A)Q x 1071°T. There-

fore, the magnetic fields should be detectable for I, ~ 9.31tA by scanning SQUID

magnetometers.

3.4.5 Summary and Outlook

This paper argues for using non-linear DC transport and other manifestations
of convective nonlinearity to identify and study electron hydrodynamics. We
have laid out three electronic analogs of nonlinear classical phenomena - the
Bernoulli effect, Eckart streaming, and Rayleigh streaming - which lead to an
experimentally measurable nonlinear I-V characteristic, down-converted DC

current, and DC current vortices, respectively (see Fig.[3.7). We have opted
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to derive and discuss all three effects using the familiar Navier-Stokes formal-
ism, leaving a more complete microscopic treatment for future work. All three
effects result from the interplay of the non-dissipative and nonlinear convec-
tion force with other dissipative contributions in Navier-Stokes from viscosity
and momentum relaxation. As the convection force is a non-dissipative term
that couples nearby velocity fields, it seems unlikely that such a term could
arise without electron-electron interactions. Therefore, we believe such propos-

als provide strong evidence for the emergence of a hydrodynamic regime.

It is interesting to note that interactions do not play an explicit role in
our results — both convection and momentum relaxation (the dominant form
of relaxation) are well understood in the non-interacting limit of the many-
electron problem. Instead, strong electron-electron interactions justify the
coarse-grained effective description, removing the need to consider the com-
plications of quasi-particle physics. In particular, local equilibration (assumed
throughout) is likely to be violated in the limit of weak interactions, requiring
a more systematic microscopic treatment. This will be required, for example,

before extrapolating our results to low temperatures.

To obtain stronger nonlinear signatures, one would like to make the
Reynolds numbers Re, and Re, as large as possible. Since the viscous length
scale 72 = v/ is typically smaller than the characteristic lengths in experiment,
Re, is the limiting factor. In addition to reducing the momentum relaxation rate
7, one could also reduce the density n at fixed current to improve the Reynolds
numbers; particles must move more rapidly to maintain the current. There-
fore, nonlinear effects should be most prominent in clean, low-density hydro-

dynamic materials. Our focus has been away from linear response, which is

101



a bedrock foundation of experimental condensed matter physics. Nonlinear
phenomena are comparatively more difficult to interpret and tend to be less ex-
plored, especially with the purpose of extracting basic information, e.g. where
in the phase diagram a given material happens to be. However, since our pri-
mary focus has been on leading deviations from linear response, we are nonethe-
less optimistic that identifying electron hydrodynamics from nonlinear behav-

ior is feasible.

In particular, the detection of the AC-generated static current described
above would provide strong evidence for the presence of hydrodynamic be-
havior. Additionally, hydrodynamic nonlinearities should also generate up-
converted 2f signals, which we leave to future work. This also tantalizingly
suggests the possible utility of hydrodynamic materials as a novel platform for
creating nonlinear electronic devices.[65] 64] The nonlinear I-V characteristic of
the Venturi wedge device clearly displays the onset of instability phenomena far
separated from linear response. Such convective instabilities are a known route
to classical turbulence[150, 238]], i.e. in the absence of momentum relaxation.
In the electronic system, where momentum relaxation dominates and viscous
length scale r, is short, we suspect that the behavior may be qualitatively dis-
tinct from turbulence. Band-structure modifications to the Navier-Stokes equa-
tions, such as a density and flow-dependent hydrodynamic mass[270, 274, 204],
and heating effects going beyond our equation-of-state approximations can also
give rise to novel nonlinear effects, which we leave to future work. These and
other nonlinear phenomena[80, 46| 265] pose a fertile frontier for near-term ex-

ploration of electron hydrodynamics.
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3.4.6 Appendix: Oscillatory Hydrodynamic Modes

Here we study the hydrodynamic modes at linear order (without boundary con-
ditions), where the convective term F,,, is neglected. Because of linearity, the
harmonic modes will not mix; the linear-order ansatz v oc e'**=+!) is appro-
priate. We eliminate the variables p and ¢ in Navier-Stokes (Eq. (3.34)) by using
density continuity (Eq. (3.33)) as well as the equations of state (Eq. and
Eq. (3.39)). The resulting dispersion relation can be separated in longitudinal

(V x v = 0) and transverse (V - v() = 0) contributions, which are given by

wi = (sg — W [QV + CND k2 — dwpry (3.53)
w; =ivk? — iy (3.54)

2
cap*

where s3 = s + s2, . The longitudinal dispersion describes a damped sound
wave with undamped speed s(; both pressure and electric forces contribute ad-
ditively to s as a result of the equations of state. In particular, the electronic
contribution relies on backgate screening of the Coulomb interaction to achieve
this form. The transverse dispersion describes the propagation of incompress-

ible shear oscillations, whose spatial extent is controlled by the viscous length
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scale r4; a finite shear viscosity is necessary for the transfer of momentum into
adjacent layers. In contrast to the longitudinal case, the transverse modes do
not drive density oscillations and therefore do not generate pressure or electric
forces. Therefore, the transverse result is independent of the equations of state,

and in particular it does not depend on the presence of a backgate.

We remark that measuring the attenuation of longitudinal and transverse
oscillations would provide direct, boundary-independent measures of both
shear and bulk viscosity, as opposed to DC flow profiles which require the
boundary[195, 266} 147] or inhomogenous current injection profiles[17, [159] to
enforce velocity gradients. A careful experimental study of finite-frequency be-
havior of hydrodynamic materials has yet to be done even at linear order, as far
as the authors are aware; in particular, this could provide new cross-checks of
previous viscosity measurements. A proposal for for a shear viscometer utiliz-

ing oscillatory motion was made in Ref. [275].

3.4.7 Appendix: Electronic Venturi Effect - Treating Viscosity

The full problem, with both finite (kinematic) shear viscosity ¥ and momentum
relaxation v is challenging. Because viscous effects are controlled by a length-
scale r4 = \/%, one expects a crossover from viscous-dominated to relaxation-
dominated flow as a function of local channel width » = rf,. In particular,
the resistance of the thin i < r, region should scale as 1/h? (Gurzhi/Poiseuille
regime), while the resistance of the 7 > r,; region should scale as 1/h (Ohmic
regime). Even in the viscous-dominated regime v — 0, a radial flow assumption

is inconsistent with the fixed-voltage boundary conditions as described in the
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main text; angular components of velocity must contribute. Therefore, for finite
v we expect the exact solution of Eq. (3.41) to also break down for strong particle

flows in the convergent direction, possibly towards turbulence.

Purely viscous limit - Jeffrey-Hamel flow

In the purely viscous limit v — 0, the leading order flow is a generalization of
Poiseuille flow to non-parallel walls. This case also admits an exact solution of
the Navier-Stokes equation, known as Jeffrey-Hamel flow.[194] 238 150] How-
ever, as we are only interested in low-velocity flows, a perturbative treatment
will suffice. In contrast to fixed-voltage boundary conditions, where one can-
not assume purely radial flow and is therefore more difficult to solve, we will
assume fixed-current boundary conditions where the #-dependent radial flow
v = u,(0)r is a good ansatz. In addition, we take the divergence-free (incom-
pressible) ansatz oM = F(#)/r for an as yet undetermined function . Upon
substitution and integration of the § NS equation (Eq. (3.34)), we find that the

NS equations give

e 0oV v ’F

m Or 13 de? (3.55)
e U
m)(” :ﬁF(G) + S(r) (3.56)

where S(r) is determined from the boundary conditions. Substituting for ¢V,
we find that S(r) = K 3% +const for some constant & by separation of variables.

The leading order solution is

11 1 cos 26
1 - = -1 3.57
Ur ner tanfy — 0, (cos 0o ) ( )
e o _ T2 1 cos 20 358
m¢ ne r2 tan 6y — 6, cos Oy (3.58)
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Since v\”) = 0, the pressure gradient must balance the convective force. There-

fore, the total potential is given by

1 2
£¢_I/I 1 <C0829+ I 1 ((20829 1) ) (3.59)

m’  ner?tan Oy — 0y \ cosby  2nevtanfy — 6y \ cosby B

We see that ¢'? is suppressed by a viscous Reynolds number Re, ~ -L as
expected. Analogous to the purely Ohmic case discussed in the main text, it is
known that divergent Jeffrey-Hamel flow is unstable towards turbulence.[150),

238]]

3.4.8 Appendix: Eckart Streaming

In this section, we lay out the mathematical calculation of Sec. in full detail.

Leading order solution

As mentioned in the main text, we take the ansatz that the leading order solu-
tion is described by a longintudinal sound mode with wavevector k; = k + i«
(see Eq. (3.53)). Applying the voltage-fixed boundary conditions and using the
density continuity equation (see Eq. (3.33)), we find

(tk—a)z _ (ik—a)(2l—z)
(1) _ € e —iwt
o =V [ = e } (3.60)
(ik—a)x (tk—a)(2l—x) ] )
ol =ueR [e 1 _ték—a)zz e_lArgkle_m] (3.61)
where uy = %ﬁ and R denotes real part. To satisfy the no-slip boundary, we
pe

must also include a divergence-free (incompressible) contribution to the flow

corresponding to a boundary layer correction, as is done in Sec. We defer
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the discussion of this correction to the end of this section, assuming that its

contribution is small.

Second-order density continuity equation

We now turn to the time-averaged second-order hydrodynamic equations,
where we have assumed v}’ = 0. The density continuity (i.e. current con-

servation) equation (see Eq. (3.33)) gives

07 0 5
= 0 4 0] =0 (3.62)

which tells us that F(y) only depends on y. We remark that it is crucial that v

is not divergence-free (incompressible); because the “drift” contribution pg%é”

is non-zero and z-dependent, divergence-ful (compressive) contributions of v

are necessary to satisfy current conservation.

Second-order Navier-Stokes equation - DC forces and screening

Replacing @ in favor of F in the Navier-Stokes equation (see Eq. (3.34)), we

get
m[ & @ _ 0
; |:—Va—y2 + /Y:| T :Feff (363)
902 ®) ®) ®)
_pEO)—eff + Fconv7x + Felec,m + Fcomp,x =L off (364)

ox

where we used separation of variables with constant Fu to split the momen-
tum equation, and péo)gbgf) = oV 4+ p®@. We remark that Eq. (3.63) is an
Ohmic-Poiseuille equation[278] describing steady, divergence-free (incompress-

ible) flow in a rectangular channel, where Fy can be interpreted as the effective
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force driving the flow. The convective force is defined in Eq. (3.35), while the
(2)

terms Felec , and FC(SB,W are given by
@ _ ndom
Falec =Pe’ 5 (3.65)
. (1) 2 <p(1)v§cl)>
@ _ ~ 020z
Feompa =(2v 4 Q) | PV =5 5= = — 55 (3.66)
where in the second line we have used %(p(o)vff)) = —%(p(l)vg)). These pro-

vide nonlinear contributions to Fe(fo) in addition to the convective force. The first

term comes from the backreaction of the electric force; we remark that the pres-
ence of this nonlinearity was also noted by Ref. [277]. The second term comes
from compressive dissipation. By solving for gzﬁgf) with the zero-voltage bound-

ary conditions, we find the simple result

— 1/
Feff - 7 / dxFC((?I)lV,I + Fe(l2e)c x + Fc((?r)np,m (367)
0

The action of the effective voltage is to “screen” all the forces via a spatial av-
erage, rendering the resulting effective force z-independent. We comment that
1 fo elew = CVO has no « or k dependence, and therefore no interference

behavior; the value of Fe(le)C

is fixed at the ends by the voltage boundary con-
ditions. By dimensional analysis, these contributions are small relative to the

convective force when l“,:"'Q

ters as discussed in the main text, we find that ﬂ .24 and M ~ .06

(2)

elec,z

< 1 and M < 1, respectively. For parame-

are small, so that ignoring F, and Fcomp,x is valid.
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Rectified DC solution

The solution of the Ohmic-Poiseuille equation (Eq.[3.63) is

__ (2) Y
F cosh
T = pOyy | —eft 1— " (3.68)
POy cosh oI
— Y 2r h
@) = cff 1— = tanh — 3.69
PO~y ( n oo 2rq (3.69)

The term in square brackets is suggestively written to resemble momentum-
relaxation Reynolds number Re,, which is indeed true when the convective
force dominates (see Eq. (3.47)). We remark that the convective contribution to
I/, is largely a-independent (see Eq. (3.46)); in the limit o/ >> 1, where the in-
terference term can be neglected, the result is surprisingly a-independent even
though a was necessary to generate convective gradients. Instead, the scale
of the convective gradient is screened, being controlled by the device length
[~'. This a-independence has an analog in Rayleigh streaming, where the shear
viscosity v does not set the scale of the rectified bulk flow even though it was

necessary to set up convective forces.

Revisiting Boundary Dissipation (Rayleigh Streaming)

We return to the issue of the no-slip condition and boundary-layer corrections
(i.e Rayleigh streaming), which we ignored for the leading order solution. For
simplicity, we will neglect contributions from the reflected wave (i.e. al > 1).
As discussed in Sec. boundary layer corrections are described by the trans-
verse mode k; = k;+ik;, decaying exponentially from the wall with length 1/%;'.
For parameters as discussed in the main text, we find k}'h ~ 8.2 > 1 so thatitisa

good assumption that the boundary layer is thin. Therefore, boundary dissipa-
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tion (i.e. Rayleigh streaming) effects will lead to a non-zero slip velocity for the
bulk flow also in the forward z-direction. Upon solving the Ohmic-Poiseuille
equation (Eq. (3.63)) with a voltage-fixed boundary condition ¢(x = [) = 0 (as

in the main text), we get an additional contribution

- Y
©) (2) cosh i
Rayleigh,z — Usli h (3.70)
aylets $'P cosh 3
) @) h
IRayleigh :Uslip tanh 2_7“d (37].)

Therefore, the no-slip boundary (i.e. Rayleigh streaming) only provides a quan-

(2) —1/kVrq Lolki]
sip ~ Uoe TG from

e

titative correction to the DC current. By estimating v
the Rayleigh Reynolds number in Eq. (3.52) with exponential decay arising from
the viscous length scale 74, we find that boundary dissipation contributes addi-

tively to the bulk dissipation contribution.

If instead one takes the current-fixed boundary condition J(x = 1) = 0, a
rectified DC voltage will develop as discussed in previous works.[64}, 277] How-
ever, these previous works did not consider the effect of a no-slip boundary. As
a result of no-slip, we expect only a quantitative change to the DC voltage anal-
ogous to the previous case. However, a qualitative change occurs in the current
flow - a circulating current must develop in the channel as in Sec. The
length and width of the circulation will be set by the device dimensions, as op-
posed that of Sec. where the length is set by the wavelength. Surprisingly,
the bulk current density flows in an opposite direction to that of the convective
force; because convective forces are stronger near the boundary than the bulk,
the forward DC flow along = must be near the boundary while the counterflow
is in the bulk.[208] This reversed bulk counterflow would be also be interest-
ing evidence for hydrodynamic behavior, though measuring the local current

density may prove challenging.
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3.4.9 Appendix: Rayleigh Streaming

In this section, we fill out the mathematical details of Sec.|3.4.4

Leading order solution - Boundary corrections

Recall that we work in the limit &/~ < h < ) of a thin boundary layer and long
wavelength. In this limit, we can separate the flow into bulk and boundary re-
gions, stitching the flow together at the interface. We first focus on the boundary
layer region, concentrating on the lower boundary layer near y = —h/2; flow at
the upper boundary layer is given by reflection symmetry about y = 0. In the
lower boundary layer, the leading-order longitudinal (irrotational) and trans-

. . . 1
verse (incompressible) velocity components of V\(Nézll are

vv(\}inm :U&) = g sin kaRe™! (3.72)

stgll,t,a: = — upsin kxR [e"ktwe”'”t] (3.73)
—iwt

U‘(nguyt,y = — upk cos kxR (1 - e”“*y*) W (3.74)

where y, = y + % is the distance from the lower wall, we take & > 0, and R
1)

wall,z”

denotes real part. Although US,;IL , is small compared to v

1)
Of Uwall,y

the y-gradients

are large and must be included when computing the convective force.
1)

The longitudinal contribution v, .

is inherited from the longitudinal ansatz

of Eq. (3.48). We remark that we have not assumed that o s divergence-free

wall

(incompressible) unlike classic discussions[225} 150, 234]; that the divergence-
free (incompressible) ansatz is not correct has been previously pointed out,[296)

208], though it has no consequence in the limit v — 0. In the limit £y, > 1,

we find that vy,p , returns to our longitudinal ansatz vl(’lx) as the boundary-layer

(1)

wall,t y 1S ION-Z€r0 in this limit and

corrections exponentially vanish. However, v
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requires correction in the bulk. We will not concern ourselves with the bulk

(1)

corrections to vy ’, as they are small and do not contribute substantially to the

convective force.[208]

Therefore, the convective force in the bulk and boundary layers is

Fc((?r)w bulk,z =p' uok sin 2kz(—2) (3.75)

r® =p(0 ugk;z sin 2kz [—2 + (34 200ty _ 972k Y+ g2 et] (3.76)

conv, wall,x

where 6, = Arg k;.

Second-order Navier-Stokes

We now study the DC second-order flow. We begin by noting that the assump-
tion k' < h < X implies that v, < v,, i.e. flow is primarily along = because
the channel is thin. By using the NS equations (Eq. (3.34)), this implies that the
effective voltage ger = ¢ + (O)p satisfies 8¢eff < 8¢eff , 1.e. voltage gradients (and

density gradients) are also primarily along z.

Next, we simplify the NS equation (Eq. (3.34)). First, we note that the back-
reactive electric force Félgc = ! V¢ = 0. We will also assume that compres-

sional dissipation Feomp = (21 + C )pV'V -v is negligible, which is consistent with

our assumption that the longitudinal attenuation « is small. Finally, for sim-

plicity we neglect the additional term vV x ¥V x v(1) as is done in classical
treatments of Rayleigh streaming;[225) 150, 208, 296| 234] this term depends on
the density dependence of v, where classical works assumed that the dynamic
viscosity p = pv is constant. Therefore, the NS equation becomes

. (2)
¢eff
ox

T -Vt F :FC((?IZV,E - ,Oe (377)
e Jy?
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where we have used k; ! < h < ) to drop the z-derivatives (cf. Eq. (3.63) and
Eq. (3:64)). Note that this form is equivalent to assuming that v(?) is divergence-

free (incompressible).

Since the convective force is only z-dependent in the bulk, we must have

o
p r(30) % — L conv,bulk,z (3 . 78)

upon imposing I = 0 (i.e. J,(x = 0) = 0). More concretely, the boundary

conditions for vf)(y = £h/2) will fix the y-dependent homogeneous solutions

— - @
of Eq. (3.77), leaving gzﬁgf) to enforce /(2 = 0. Since af;—z“ is small, this expression
for (,bgf) is also valid in the boundary layer. Therefore, after “screening” from the

effective voltage, the resultant force is only non-zero in the boundary layer.

Second-order boundary layer solution

We first solve Eq. (3.77) in the boundary layer, where the “screened” convective

force is not negligible. Assuming r; < h, the solution for the lower boundary

layer is
N . Uslip Uk (3 4 €20 )ethevs  (2cos? 6, )e ki v+
T2 =g sin 2ka R | =2 — - —
wall.e —Pe 10 S 2R Uo 4ry kir2 +1 4k)*r2 — 1
(3.79)
2k _vx 3+ e%%) (iw + 2 2 cos? 0
o2 M8 | - (3+e )(f;,u—i— ) cos* b (3.80)
P 4y 44+ —34+2V1+a?
where viﬁ; enforces the no-slip boundary conditions, and we have rewritten k7r3

in terms of & = w/v using Eq. Away from the wall where the convective
(2) 2)

wall,z slip

force vanishes, the velocity v — vy, sin 2kz achieves a non-zero limiting

value if £}, is sufficiently large; the boundary layer sets up a slip boundary for
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the bulk flow. In the main text, we (optimistically) approximate the size of the
boundary to be 1/} so that we evaluate vs(ﬁ})) aty,/rq = 1/(k]rq). The resulting
bulk flow is solved from Eq. (3.77) with a vanishing right-hand side and with

the slip boundary generated from the boundary layer; the solution is given in

the main text [Eq. (3.50) and (3.51)].

We make three remarks on vgp. First, in the limit v — 0, the flow becomes
increasingly singular at the walls so the boundary layer will no longer by de-
scribed by hydrodynamics. Second is the surprising fact that v is largely v-
independent. In the limit v — 0, we recover the classical result vy, = —3%7““2—’“
which is v-independent, despite the necessity of v to set up convective gradi-
ents. Instead of the viscous Reynolds number Re,, the slip velocity is controlled

by the Mach number uyw/k. This was first noted by Rayleigh in the classi-

cal situation.[225] Finally, vy;, has a resonance at w = \/757 corresponding to
—4k/*r3 + 1 = 0. We leave further study of this interesting convective instabil-
ity to future work; for this paper, we only work in the limit vy;, < uo where

perturbation theory is valid.
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CHAPTER 4
CHIRAL ANOMALY AND WEYL SEMIMETALS

The recently discovered (3D) Weyl semimetal [310] has been the subject of in-
tense interest as a newly realizable class of gapless topological matter. Though
it is a 3D generalization of the 2D Dirac semimetal as found in graphene, the
odd space dimensionality gives rise to distinctive phenomena. Here, we briefly

review some basic aspects of Weyl semimetals.
The low-energy effective description of a single Weyl point is given by
H, =71vpo -k (4.1)

where 7 = +1 is the chirality, vy is the Fermi velocity, and o are the Pauli ma-
trices. We emphasize that k = (k,, k,, k.) is in 3D, as opposed to the 2D Dirac
semimetal, which gives rise to new topological effects. For instance, local per-
turbations of H. cannot remove the zero-energy Weyl point since the Pauli ma-
trices exhaust the space of 2 x 2 Hamiltonians (up to chemical potential shifts
pl). In particular, applying a magnetic field B - o will not gap the system unlike
in a Dirac semimetal. This protection of the gap is actually topological; Weyl
points are monopoles of Berry curvature with sign determined by the chirality

7 [311] and as a result are required to come in pairs [205]].

The topological effect of interest to us is the famous chiral anomaly. With a
pair of Weyl points H, + H_, one would expect that chiral symmetry is present.
However, when one quantizes this theory with an electromagnetic gauge field,
it turns out that the quantization necessarily breaks the classically-present chiral
symmetry (see [213} 262] for a review). Observing the resulting chiral symme-

try breaking has been the subject of intense efforts, but definitively extracting
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the chiral anomaly contribution has proven difficult. In what follows, we re-
examine IR reflectance approaches previously proposed [260, 235| 236] to probe
the chiral anomaly. As opposed to previous works, we argue that IR reflectance
signatures of the chiral anomaly can be found even in mirror-symmetric Weyl
semimetals; this has been recently experimentally confirmed in the mirror-

symmetric Weyl semimetal NbAs [316].

4.1 Optical signatures of the chiral anomaly in mirror-

symmetric Weyl semimetals

This section is adapted from a PRB Rapid Communications paper [120] with Yi
Zhang and Eun-Ah Kim. As opposed to the other works on interacting phases,

this is on a non-interacting topological phase.

The chiral anomaly is a characteristic phenomenon of Weyl fermions, which
has condensed matter realizations in Weyl semimetals. Efforts to observe smok-
ing gun signatures of the chiral anomaly in Weyl semimetals have mostly fo-
cused on a negative longitudinal magnetoresistance in electronic transport. Un-
fortunately, disentangling the chiral anomaly contribution in transport or op-
tical measurements has proven non-trivial. Recent works have proposed an
alternative approach of probing pseudoscalar phonon dynamics for signatures
of the chiral anomaly in non-mirror-symmetric crystals. Here, we show that
such phonon signatures can be extended to scalar phonon modes and mirror-
symmetric crystals, broadening the pool of candidate materials. We show that
the presence of the background magnetic field can break mirror symmetry

strongly enough to yield observable signatures of the chiral anomaly. Specif-
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ically for mirror-symmetric Weyl semimetals such as TaAs and NbAs, including
the Zeeman interaction at |B| ~ 10T, we predict that an IR reflectivity peak will

develop with an Ejg - B dependence.

41.1 Introduction

The Weyl semimetal has been generating excitement as a new experimentally
realizable class of topological materials in three dimensions.[311} [12] The mate-
rials are so named due to the existence of Weyl points in the momentum space,
where two non-degenerate bands intersect and disperse linearly. Weyl points
are monopoles of Berry curvature and characterized by their chirality, a topo-
logical invariant describing the parallel/anti-parallel (right/left-handed) lock-
ing between their momentum and spin or pseudo-spin. One of the exciting
phenomena predicted in the Weyl semimetal is the condensed matter realiza-
tion of the chiral anomaly: the chiral charge - the population difference between

the left and right-handed Weyl fermions - is not conserved after quantization.

The non-conservation of chiral charge means that, under the application of
parallel E and B fields, particles will be pumped between left-handed and right-
handed Weyl points. Therefore, in the presence of a chiral anomaly, one can
think of the B-field as creating a topologically protected channel of charge be-
tween left and right-handed Weyl points, whose conductivity and direction are
controlled by the magnetic field. The presence of this channel leads to the so-
called chiral magnetic effect,[205, 140, 79, 258, 326] where a current will develop
along the magnetic field in the presence of a chemical potential difference be-

tween Weyl nodes with opposite chirality. In order to balance the charge trans-

117



fer, scattering between Weyl nodes is required; this scattering process is rare be-
cause the Weyl nodes are generically well-separated, so this conduction channel
has high conductivity. In the limit of large B, intra-node scattering is suppressed
within each chiral Landau level, consisting only of a single linear branch. The
inter-node scattering time, which is longer than the B = 0 intra-node scattering
time, then controls the conductivity in this limit. Therefore, the chiral anomaly
leads to a B-field dependent enhancement in the conductivity.[205] Negative
longitudinal magnetoresistance was therefore proposed as a signature of the

chiral anomaly in Weyl semimetals.[255] 26, 27]

Indeed, negative magnetoresistance has been observed in a number of Weyl
semimetals;[171) 112, 305| 320, 164} 166, 103} 148, 206, 319, 170] however, neg-
ative magnetoresistance was not unique to Weyl semimetals and could poten-
tially be caused by other effects.[142} 102, 91} 298, 53| 11] For instance, nega-
tive magnetoresistance was also measured in the non-Weyl semimetal materials
PdCo0O,, PtCoO,, SrRuQ,, and Bi,Se;.[141} 298] To complicate matters further,
the point contacts used for magnetoresistance measurements were susceptible
to current jetting, where the current is focused by a magnetic field, artificially
enhancing the measured conductivity and potentially overwhelming the chiral
anomaly signature.[63] [13] For these reasons, the chiral anomaly interpretation

of electronic transport results has been controversial.

In search of sharper signatures of the chiral anomaly and Weyl semimet-
als, a number of proposals have been put forth.[186, 210, 324, 227, 174} 122,
92, 50, 51} 215} 261}, 128, 129] In this paper, we will be particularly interested
in phonon-induced optical signatures. Through an axial (chirality-dependent)

electron-phonon coupling, a phonon can induce a dynamical chemical po-
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tential difference between Weyl points with opposite chirality, which in turn
gives rise to a dynamical realization of the chiral anomaly. Recent works
have found that this can result in anomalous optical features in IR and Raman
spectroscopy.[14, 260, 235 236] However, based on symmetry considerations, it
was argued that a phonon mode in a 1D representation can only have an ax-
ial coupling if it is pseudoscalar (changes sign under improper rotations).[260]
As the allowed phonon modes are constrained by the crystal symmetry, pseu-
doscalar phonons only exist in crystals where the mirror symmetries are suffi-
ciently broken.[260] Therefore, previous works ruled out such chiral-anomaly
induced optical phenomena in Weyl semimetal candidates with many mirror

planes, such as TaAs and NbAs.[260, 235]

We claim, by contrast, that such optical signatures of the chiral anomaly
can occur in all mirror-symmetric crystals for both scalar and pseudoscalar
phonons, due to the role of a necessary magnetic field. Previous analyses[260),
235] assumed the Weyl points to be locally identical (up to chirality) and the
linear dispersion to be isotropic. If one breaks these assumptions and allows
the Fermi velocities to differ, a scalar phonon can also develop an effective, non-
vanishing axial coupling. Such a difference in Fermi velocities can be induced
by the magnetic field necessarily present in the experiments. Because of this, it
is important to consider the effect of magnetic field on symmetries neglected in

previous analyses.

The magnetic field, a pseudovector, changes sign under improper rotation;
under the reflection + — —xz, the magnetic field transforms as (B, By, B,) —
(B, —B,, —B,). Therefore, it breaks all mirror symmetries except for the mir-

ror plane normal to it, if such a mirror plane exists. The Zeeman effect and
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the Landau level quantization are examples of such mirror-symmetry-breaking
effects. In the presence of at most one mirror plane, an effective pseudoscalar
phonon is allowed to exist, so the axial component of the phonon coupling for
this mode is generically non-zero. Since optical signatures of the chiral anomaly
require the presence of a static magnetic field, no symmetry restrictions on Weyl
semimetals are required to see this signature. In this paper, by considering a
suitable microscopic model, we show that the Zeeman effect and the Landau
level quantization can result in substantial Fermi velocity asymmetry that can

drive detectable optical signatures of chiral anomaly.

The outline of the paper is as follows: In Section II, we introduce a tight-
binding model Hamiltonian in the same symmetry class as TaAs and NbAs and
analyze the effect of mirror-symmetry-breaking Zeeman effect and Landau level
quantization on the fermion dynamics. In Section III, we discuss the electron-
phonon coupling and its symmetry constraints for optical signatures. In Section
IV, given the magnetic field’s mirror-asymmetric effect on the Fermi velocities,
we estimate the strength and visibility of the IR reflectivity signal corresponding
to the dynamically-driven chiral anomaly. Finally, we conclude our results and

discuss their distinction from multiferroic materials in section V.

4.1.2 Tight-binding model of 3D Weyl fermions with magnetic

field

To quantitatively analyze the symmetry-breaking effect of the magnetic field,

we consider the following 3D electronic tight-binding model with crystal sym-
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metries identical to the Weyl semimetals TaAs and NbAs:[224]

N dw Y dgow 42)
(ss 7

Hy=1 Z cjscjs + Z Aclicis + i

(ig).s
where t is the nearest neighbor hopping, A; = +A is a staggered potential
whose sign depends on the sublattice being a Ta(Nb) or As site, and A is the
amplitude of the spin-orbit interaction between next-nearest neighbors. s =1, |
denotes spin, and o are the Pauli matrices. The vector d;;;, = d;; x d;;, where j

is an intermediate site between ¢ and k, and d;; is the displacement vector from

1 to 7.

In the absence of the magnetic field, the model is time-reversal invariant and
breaks inversion symmetry. Two mirror planes exist in the xz and yz directions.
For large values of )\, the model is a 3D topological insulator; for large values
of A, on the other hand, the model is a normal insulator. In between, a time-
reversal-invariant Weyl semimetal exists in a finite phase space, for instance, at
t = 500meV, A = 350meV, A = 100meV; we will use these parameters through-
out this paper. Comparing this model at B = 0T to DFT calculations of the
TaAs band structure[112, 311}, [187] and the measured Fermi velocities around
the Weyl points,[224] we find qualitative agreement. More details on the low-

energy electronic properties of the model can be found in the Appendix.

In the presence of a magnetic field, we generally expect the Hamiltonian
to change in two ways. One modification is the Zeeman effect, describing the
coupling of the electron spin to the magnetic field given by

H, = guB Z Czscis’B * O’ (43)
with ¢ the g-factor, ;5 the Bohr magneton, and B the magnetic field. We esti-

mate a large g-factor ¢ ~ 50 for typical topological Weyl semimetal materials
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with strong spin-orbit coupling, such as TaAs and NbAs, by analogy to mea-
surements in related materials.[252], [110] The inclusion of the Zeeman effect at
tinite B breaks the time-reversal symmetry and all mirror plane symmetries ex-

cept the mirror plane normal to the magnetic field, if it exists.

The other modification, which we refer to as the Landau level quantization,
comes from the minimal coupling of the electromagnetic vector potential to the
electron current. To incorporate this effect, we perform the Peierls substitution

on the kinetic term and the spin-orbit interaction:

.I.

s

iAgj T
CisCjs = €77 C;,Cjs

iAo

clcry = €l cpy (4.4)

where A;; and A;;, are the electromagnetic vector potentials (integrated) from
to j and from i to k, respectively. We’ve chosen to set the electron charge e = 1
(and i = 1, as usual). We also use the lattice constants of TaAs to convert the
magnetic flux into the magnetic field in unit of Tesla. As is well known, minimal
coupling to a magnetic field leads to a quantization of the electronic dispersion
into separate Landau bands. In particular, the dispersion normal to the mag-
netic field becomes quantized, so the dispersion becomes one-dimensional with
bandgap controlled by the magnetic field. Similar to the Zeeman effect, Lan-
dau level quantization also breaks time-reversal symmetry and all mirror plane

symmetries except the (possibly existent) mirror plane normal to the magnetic

field.

Let us focus on the impact of magnetic-field-induced mirror symmetry
breaking on the low-energy dispersion of the Weyl nodes near the k. ~ 0 plane

in the Brillouin zone. For clarity, we will consider the effects of the Zeeman

effect (Eq. #.2land [4.3) and the Landau level quantization (Eq. 4.2|and [4.4) sep-
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Figure 4.1: The magnitude of the Fermi velocity as a function of the azimuthal
angle ¢ in the k, — k, plane for a pair of Weyl points, denoted in green and
magenta, originally related by the mirror symmetry at |B| = 07". The solid
and dashed lines denote the upper and lower branches of the Weyl dispersion,
respectively. For a magnetic field |B| ~ 10T in the #/2 + v/37/2 direction, the
differences developed between these curves demonstrate the mirror-symmetry
breaking of the Zeeman effect.

arately.

For the Zeeman interaction, we diagonalize the Hamiltonian H, + H, in k
space as Eq. preserves lattice translation symmetries. We find that even
with a magnetic field as large as |B| = 107, the Weyl nodes only displace a
scale ~ 0.1% of the Brillouin zone (see the Appendix). Therefore, the impact of
the Zeeman effect due to the k-dependence of the electron-phonon coupling is
likely small, and we neglect this contribution. On the other hand, the symme-
try breaking from the magnetic field has a more prominent effect on the Fermi
velocities, especially in topological semimetal models and materials with strong
spin-orbit interactions, so that the Zeeman spin-splitting effect strongly impacts

electron velocity. In Fig. we see that the Fermi velocities of the Weyl points
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Figure 4.2: The k, dispersion of the four Landau bands closest to the Weyl node
energy in the presence of the Landau level quantization of a magnetic field |B| ~
12T in the z direction. The eight gapless linear branches are the chiral Landau
bands descending from the eight Weyl nodes, respectively, and responsible for
the electronic properties at low energy. A finite (indirect) gap separates the other
Landau bands. As an example, the chiral Landau bands in the red circle as the
descendants of a pair of Weyl nodes are illustrated in Fig.

connected via mirror symmetries initially identical at zero field clearly become

different when a magnetic field is turned on.

For Landau level quantization, we focus our attention on the linear, chiral
Landau bands. We specialize to B = Bz for simplicity and introduce the elec-
tromagnetic vector potential via Eq. (#.4). Consequently, the dispersion along ,
and k. becomes quenched, and the discrete Landau bands disperse only along
k., which remains as a good quantum number. Using exact diagonalization for
the Hamiltonian within a magnetic unit cell, we obtain the one-dimensional &,
dispersion - see Fig. 4.2/ for an example at |B| ~ 12T. It is important to note that
the branch of the dispersion that evolves into the chiral Landau band depends

on the chirality of each Weyl node,[205] schematically shown in Fig. There-
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Figure 4.3: (a) A schematic plot of the k, dispersion of a pair of Weyl nodes of
opposite chirality (labeled with blue and red) related by a M, mirror symme-
try at zero field, and (b) the chiral and anti-chiral Landau bands selected out
in the presence of a magnetic field along the z-direction. Since the chiral and
anti-chiral Landau levels can generically have distinct Fermi velocities, they ex-
plicitly break the M, symmetries and contribute to an effective axial electron-
phonon coupling.

fore, despite the identical zero-field dispersion of a pair of mirror-symmetric
Weyl nodes, the differing chiralities ensure that the chiral and anti-chiral Lan-
dau bands selected out by the magnetic field generally have distinct Fermi ve-
locities. Interestingly, such a difference between the Fermi velocity of the chiral
and anti-chiral Landau bands is a form of mirror-symmetry breaking, depend-
ing on the anisotropy of the original Weyl fermions instead of the strength of
the magnetic field. The remainder of the Landau bands will be gapped by the
magnetic field, so that the chiral branches dominate near the Fermi energy, see
Fig. As a result, chiral anomaly effects may become visible if the cyclotron
energy of B is sufficiently large and the Fermi energy sufficiently close to the

Weyl node.

In summary, the mirror symmetry connecting a pair of Weyl nodes is explic-
itly broken by a magnetic field. The magnetic-field-induced difference between
the Weyl nodes” Fermi velocities, induced by the Zeeman effect and the chiral
selectivity of Landau level quantization, are physical manifestations of the bro-

ken mirror symmetry. We will discuss its phenomenological consequences for
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the dynamical chiral anomaly in Sec. IV.

4.1.3 Electron-phonon Coupling and Symmetry Constraints

To understand the impact of the Weyl fermion dynamics and its symmetry con-
straints on the electron-phonon coupling, we consider the interaction between
phonons and a pair of Weyl nodes with opposite chirality 7 = +1:

Hep = Z Z (Z Uéa',r(Q)qu\) CLarck—qa’T (4.5)

kq o't \ A

where v4, is the phonon displacement operator in mode A at momentum q and
0,0’ describe the pseudospin of the electrons. We have neglected inter-node
electron scattering, since it requires a large momentum transfer ¢ to connect the
well-separated Weyl nodes in the momentum space. Decomposing the electron-

phonon coupling into its irreducible representations,

by by by by A
Uy = Ugloor + Uf * Tgor + T(UG, 000 + U - Tgor) (4.6)

The two latter terms correspond to the (chirality-dependent) axial coupling re-
sponsible for the chiral anomaly. We focus on the axial coupling constant uy,
since the contribution from u; is suppressed by a factor of v, /c, as we will see

later.

The symmetries of the system impose constraints on the electron-phonon

A

z

coupling. In particular, u; vanishes in the presence of time-reversal symme-
try, while v}, vanishes in the presence of two non-coplanar mirror-symmetry
planes.[260, 235, 236] Therefore, it seems that the mirror symmetry in the crys-

tal should be sufficiently broken to host a nontrivial phonon signature as a result

of the chiral anomaly. We find, on the other hand, that the imposed magnetic
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tield can break the mirror symmetries sufficiently for the signatures to appear

in a much broader pool of Weyl semimetal candidates.

For our tight-binding model in Eq. (4.2), we expect the magnetic-field-
induced changes to u),, . due to the small displacements of the Weyl point lo-
cations to be sub-dominant; instead, the key ingredient that leads to interesting
phonon behavior is the induced change in Fermi velocity, which we discuss

next.

4.1.4 Estimating the Effect of Magnetic field on the Fermi Ve-

locity

In this section, we study the chiral anomaly contribution to the phonon dy-
namics by integrating out the electronic degrees of freedom. The low-energy
effective theory of our tight-binding model, described by Eqs. (4.2{4.4), can be

captured by the following single-particle Hamiltonian
H, = v (k)To - (—iV + eA) — eA, (4.7)

which describes a Weyl point with chirality 7 = +1 and anisotropic Fermi ve-
locity v, (k). The terms Ay, A are the electromagnetic vector potential Because
phonons do not couple electrons between Weyl nodes, the integration over elec-
tronic degrees of freedom factorizes between Weyl points (at the leading order);

we can restrict our attention to a single pair.

For a pair of Weyl nodes with isotropic and identical Fermi velocity v, (k) =

vp, on integrating out the fermions one finds that the chiral anomaly contributes

'We assume that the energy separation of the Weyl nodes is zero; the momentum separation
is large and presumably irrelevant in the low-energy theory, so it has been dropped.
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to a mode-effective phonon charge /Q, and hence to a dielectric susceptibility

x:[235]

,eQVC\/N B
PQuap(—a0) = i (o, = vrl - 15) @8)

_ 1 0Qqxj0Qqn"
MV, w2, + ikugyd - 0Qqx — 43

X;\j’ (q0,9) (4.9)

where (qo, q) is the frequency-momentum vector of the phonon, V. is the unit
cell volume, M is the total mass of ions in the unit cell, N is the number of
unit cells, and B is the static background magnetic field. x = VN /(Me), ¢* =
¢ — v#q?, and wqy is the bare phonon dispersion of mode \. Since ¢y = c¢q for
light, the u}) term is suppressed by vr/c. When the IR light is on resonance with
the phonon driving the chiral anomaly, the dielectric constant diverges and the

reflectivity develops a peak with a form factor Ejg - B. Also, such chiral anomaly

contribution to x}; clearly depends on a non-zero axial coupling constant ;.

In comparison, our generalized model in Eq. takes into account the
anisotropic Fermi velocity around a Weyl node as well as the different Fermi ve-
locities between the Weyl nodes. We consider a totally-symmetric scalar phonon
mode at zero field, where all components of the electron-phonon coupling are
0 except up,. For simplicity, this system can be mapped back to the isotropic
case by rescaling the fermions by vrcle, — vpcle,, which changes the electron-

phonon coupling and induces components in the non-identity piece:

Vfr 1 1
Vr 1 1

The rescaling of the fermions also changes A, but it does not affect the phonon
charge and dielectric susceptibility in Egs. and so we neglect the

change. As is manifest after rescaling, the difference of the Fermi velocity is
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Figure 4.4: The relative difference (induced by the Zeeman effect) between the
Fermi velocities of a pair of Weyl nodes as a function of the strength of the
magnetic field B in the /2 + v/3§/2 direction. The ratio is averaged over all
directions. Assuming that u), is the only non-zero electron-phonon coupling
component at B = 0, this quantity measures the ratio u), /uy, generated by the
inclusion of the magnetic field and the broken symmetry between v, and v_

(see Egs. and (4.11)).

equivalent to an axial component u), in the isotropic setting since u}),/u), =
|vy —v_|/(vy + v_). For the Zeeman effect, a non-zero difference develops be-
tween the Fermi velocities of the pair of Weyl nodes related by the original mir-
ror symmetry. The difference is generally greater at larger magnetic field, see
Fig. and u}), ~ 0.02up, at 107 within our model. For Landau level quanti-
zation, on the other hand, the non-zero difference between v and v_ originates
from the anisotropy of the dispersion around each Weyl point. Also, the dif-
ference is less dependent on B, see Fig. as long as B is large enough to
separate the non-chiral Landau bands and suppress their contribution. Landau
level quantization gives uy, ~ 0.3ug, within our highly anisotropic model, yet
it is also possible that u), — 0 irrespective of B when the anisotropy vanishes,

e.g. for two isotropic Weyl points.
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Landau Level Quantization
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Figure 4.5: The relative difference (induced by the Landau level quantization)
between the chiral Landau level Fermi velocities descending from a pair of Weyl
nodes as a function of the magnetic field B along the  direction. Similar to Fig.
the value of [v, — v_| / (v, — v_) measures the ratio v}, /uj), generated by the
magnetic field. The black dotted line is the value evaluated with the zero-field
dispersion.

Now that we have obtained an estimate for the effective u(’}z, let’s estimate
the strength of the corresponding IR signature. For example, we focus on the
A, phonon mode in TaAs. We take w = 8 THz to match the experimental ob-
servation of an A; phonon mode in TaAs[306], V. = 1254, and M = 10-%kg.
We also take uf! ~ 0.02uf, which is reasonably obtainable given either the
Zeeman effect with ¢ = 50 at |B| = 10T or Landau level quantization with the
anisotropy in the NbAs and TaAs Weyl dispersion, as previously demonstrated.
We also estimate v/ Nuj ~ 1Ry/ap on dimensional grounds[235], and neglect
the u, contribution given vy < ¢. As a result, we obtain |§Q| ~ .8¢. Next, we
calculate the impact of the chiral anomaly on the susceptibility. If we drive the

1

IR frequency at ¢y = 7.9 THz, corresponding to a resonance width of 6.7 cm™,

we find that x2! = 60¢y. Comparing to the experimentally measured zero-field

zz
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Figure 4.6: Proposed experimental setup to measure the IR signature of the chi-
ral anomaly. In the presence of collinear Er and B fields, a peak in optical
reflectivity is expected for inducing pseudoscalar phonon modes that couple
strongly to the Weyl fermion electrons. Such effect also displays a Eir - B depen-
dence as one rotates Ej relative to B in experiments.

reflectivity R = H;\/‘/glj on TaAs crystals[306], the chiral anomaly contribution
to the reflectivity should be of sufficient weight to be observable over the back-
ground of x ~ 400¢,. Therefore, we propose an Er - B dependent peak in the
IR reflectivity as a signature of the chiral anomaly following the experimental

setup in Fig. even for scalar phonon modes and mirror-symmetric Weyl

semimetals

4.1.5 Discussions and Conclusions

In this paper, we have focused on utilizing the mirror-symmetry breaking of the

magnetic field to realize dynamical chiral anomaly in mirror-symmetric crystals

ZNote that the proposed signature is a characteristic of the bulk, hence the incident light must
penetrate into the bulk for this effect to manifest.
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and exhibit optical signatures for scalar phonons in IR spectroscopy. We would
like to emphasize that so long as a magnetic field is present, at most one mir-
ror symmetry remains, so that the axial phonon coupling v}, is generically al-
lowed from symmetry considerations and a chiral-anomaly induced IR response
should be present. For the specific case where a single mirror plane remains, a
pseudoscalar phonon mode normal to the mirror plane is still allowed[260, 236].
Since both the effective pseudoscalar phonon and the Weyl fermion chirality
change sign under mirror symmetry, the axial component of electron-phonon
coupling is not restricted to zero, and the corresponding IR signature of the dy-

namical chiral anomaly survives.[260, 236]

Inducing changes in dielectric susceptibility via a magnetic field is a mag-
netoelectric effect and not completely new.[235] However, magnetoelectric ef-
fects are typically associated with multiferroic materials (e.g., CroO3) and pre-
vious studies have focused on linear magnetoelectric effects (e.g., P o< B). For
the chiral anomaly, the effect is cubic with a characteristic E - B signature (i.e.
P « (E - B) B), and known Weyl semimetals are not multiferroic. Therefore, we
believe that the chiral-anomaly-activated phonon dynamics and IR signatures

should be visible in generic Weyl semimetals.
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4.1.6 Appendix: Low-energy Weyl dispersion and Weyl nodes

of the tight binding model

The tight-binding model of Eq. in the main text has four pairs of Weyl
nodes on the k, = 0 plane at |B| = 0T, shown as the red dots in Fig. left
panel. These Weyl nodes are related to each other by the reflection planes in
the zz and yz directions. The low-energy electronic dispersion is approximately

linear near each of the Weyl nodes, see Fig. .7 right panel.

In the presence of a magnetic field B, these reflection symmetries are gen-
erally broken. As a result, the locations of the Weyl nodes are no longer mir-
ror symmetric. However, with the inclusion of the Zeeman effect (Eq. (£.3)),
the displacements of the Weyl node locations are relatively small at experimen-
tally relevant parameters, and unlikely to impact the electron-phonon coupling

through its k-dependence in a meaningful way.
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Figure 4.7: Left: the momentum-space locations of the Weyl nodes on the k., = 0
plane show the mirror symmetry is broken in the presence of a magnetic field
IB| = 10T along the #/2 + /37/2 direction. Note that even for a large g-factor
g = 50 and a large magnetic field of 10T, the Weyl nodes only displaces by a
scale ~ 0.1% of the Brillouin zone. The inset shows a magnified view of the pair
of Weyl points in the orange box. Right: The zero-field dispersion in the &k, — k.
plane is approximately linear near the Weyl nodes.
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CHAPTER 5
DOMAIN WALL TRANSPORT IN MOIRE SYSTEMS

The field of moiré systems has recently become one of the most trendy topics
in condensed matter physics. By providing either a twist angle or a lattice mis-
match between two layers, a periodic moiré superlattice appears as a result of
incommensuration. This moiré period can be much larger than the intrinsic
lattice constant of the two layers, leading to a small moiré miniband. In par-
ticular, creating moiré patterns provides a straightforward way to change the
band structure and enhance the strength of interactions. Beginning with the
discovery of unconventional superconductivity in bilayer graphene twisted to
a specific magic angle [31], moiré systems have shown to be a burgeoning foun-
tain of strongly correlated phenomena [31) 248|313, 139, 44} 178, 35| 37, 24, 216),
232, 263|, 30, 176|, 211}, 309, 140, 272|, 229, 287, 246, 36|, 21]. However, recent ex-
perimental works have demonstrated that bilayers with small twist angles or
small lattice mismatches can atomically reconstruct away from the moiré pat-
tern to form sharp domain walls [268) 269, 308| 315, 111}, 18| 129, 233 192, 267,
237, 297, 1163, [138]]. This suggests the novel possibility that transport physics

may be dominated by the domain walls, which we explore in what follows.

5.1 Topological moiré domain wall networks - Emergence of or-

bital antiferromagnetic-ordering

This section is currently being written up for publication in a peer-reviewed

journal in collaboration with Eun-Ah Kim.
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Moiré structures have recently been shown to host a plethora of correlated
behavior, with many works focusing on the effects of the moiré miniband. How-
ever, recent experiments suggest that moiré systems can feature sharp domain
walls and therefore provide a natural setting to study networks of 1D topolog-
ical modes. While topological edge physics in moiré systems have been pre-
viously studied, many papers worked with non-interacting models. A few in-
teracting network models have found gapped correlated phases by explicitly
enforcing a single-particle gap. By contrast, we study a triangular network of
valley-helical Luttinger wires where intervalley scattering is suppressed and no
single-particle gap can open. We find that transport in this network is inherently
non-local unlike the local diffusive behavior of a resistor network. In particular,
we predict a novel orbital antiferromagnetic-ordering phase at strong repulsive

interactions.

5.1.1 Introduction

Moiré systems have recently been shown to exhibit a plethora of correlated
behavior.[31} 32} 248| 313|139, 44, 178, 35, 37, 24, 216, 232} 263, 30, 176}, 211,309,
40|, 272|229, 287, 246, 36, 21] While most have focused on the physics of the
moiré miniband, recent experiments in both homo-bilayer and hetero-bilayer
systems suggest that marginal twist angles and /or small lattice mismatches can
lead to significant atomic reconstruction and the formation of sharp domain
walls.[268| 269, 308, 1315, 111 18| 127, 233} 192, 267, 237, 297, 163, 138] In this
regime, a network of topological edge modes can emerge in the presence of
an appropriate bulk gap; a prototypical example of such a network is shown

in Fig. where domains of staggered Chern number give rise to topolog-
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(a) Domains with staggered Chern (b) Marginally twisted bilayer
number graphene realization

Figure 5.1: (a) Domains equipped with a staggered Chern number, giving rise to
topological edge physics. (b) A realization of Fig. in marginally twisted bi-
layer graphene, where the AB/BA domains under an out-of-plane electric field
develop a valley Chern number C, = £1.

ical edge modes. This network is physically realizable in marginally twisted
bilayer graphene as shown in Fig. where the staggered lattice of AB/BA
stacking provides a staggered valley Chern number in the presence of an out-
of-plane electric field. These domain walls host 1D topological valley-helical
edge modes, i.e. confined electronic states whose direction of propagation is

opposite in opposite valleys.[190, 280, 321 [165, 314, [130] Control of topological

edge modes and their junctions has long been of interest, e.g. for low power

technological applications,[222] 221),209, 264} 165} 231} 61} 38, 230], though engi-
neering substantial networks of 1D topological modes has proven challenging.

Moiré systems therefore provide a natural setting to produce and study such

networks.

As a natural first step, pioneering works used non-interacting models
to study the 1D valley-helical edge modes in marginally twisted bilayer
graphene.[67, 283] 59| 279, [107, [108] The valley-helical nature of the wires pro-
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Figure 5.2: A plot of the experimental setup in the orbital AF-ordering phase.
All but one of the external wires are grounded, while the remaining wire is held
at a raised voltage V. This leads to a charge current pattern as demonstrated
by the arrows, where the strength of the charge current is equal on every link.
The current injection breaks time-reversal and gives rise to orbital antiferromag-
netism.

vides a strong constraint; approximate conservation of valley number provides
“topological” protection, and thus led to novel predictions for electronic struc-
ture and transport. Interacting network models[45, 304, 34] found gapped corre-
lated phases - e.g. superconductivity and charge density wave (CDW) - reminis-
cent of the phase diagram near commensurate filllings in magic-angle twisted
bilayer graphene. To truly achieve these phases requires generating a single-
particle gap, which is generally suppressed by a large momentum transfer away
from commensurate fillings. In contrast to these previous works, we treat in-

teractions while enforcing time-reversal symmetry and no intervalley scatter-

ing, ensuring that a single-particle gap cannot be opened and valley-helicity is

protected.[280]

In this paper, we study the transport features afforded by a triangular net-

work of interacting valley-helical edge modes without intervalley scattering.
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ﬁ

2%

Figure 5.3: Schematic drawing of the single-scattering site Hamiltonian. Six
Luttinger wires meet at a central junction, with each wire having an ingoing
and outgoing mode. The color of the wire represents the valley (spin) degree of
freedom, where the circulation of red arrows is opposite between the red and
blue domains (and similarly for blue arrows). One can pair wires of opposite
helicity (e.g. adjacent wires) and arrive at the right figure, which is equivalent
to junction of three “spinful” Luttinger liquids.

We find that transport in this network is non-local, unlike that of a resistor net-
work, and argue that a orbital antiferromagnetic (AF)-ordering phase will ap-
pear for sufficiently repulsive electron-electron interactions (see Fig.[5.2). The
rest of the paper is organized as follows. In Sec. II, we provide our model of
a single scattering center and outline the phase diagram. In Sec. III, we briefly
discuss the ballistic phase. In Sec. IV, we propose a novel orbital AF-ordering
phase and argue that this can be observed in the experimental setup of Fig.

In Sec. V, we summarize our results and make closing remarks.

5.1.2 Mathematical Setup

We begin by modeling a single scattering center as shown in Fig.[5.3] Each half-

wire is modeled as a Tomonaga-Luttinger liquid of valley-helicity ¢ = +1, with
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Hamiltonian

A
H, — / da| = vp (VEi0.0F — 6RLi0R, ) + SR+ TR o)+ NaTnoTn o]
>0

(5.1)
where 12/" corresponds to an ingoing/outgoing fermion annihilation operator
of valley index ¢ = + and Jy g, = pE YR are the corresponding density
operators. Valley-helicity is encoded on each fermion operator by the pinning
of L to o and R to —o. In addition to enforcing time-reversal symmetry, we also
work away from commensurate fillings and forbid intervalley scattering[f| We
have ignored any “channel” and spin degrees of freedom for simplicity, such as
those present in twisted bilayer graphene;[190, 280] in the absence of intervalley
scattering, we do not expect these degrees of freedom to gap the wire.[280] Six
of these half-wires meet at z = 0 to form the junction of interest as shown in
Fig.|5.3, with the red and blue arrows denoting the two modes in each half-wire.
On this junction, we impose Cj5 rotational symmetry and inversion symmetry so

that all the half-wires are identical (up to helicity).

It will be convenient to pair the Hamiltonians H, + H_ so that the “folded”
wire is analogous to a “spinful” Luttinger half-wire, as shown in Fig.|5.3|(see also
Ref. [106]]). Since our wires are related by a C5 symmetry, this pairing choice en-
joys a “folding symmetry”. Therefore, our model can be mapped onto a junction
of three “spinful” Luttinger liquids. We then bosonize each folded wire in the
standard way, arriving at the following Euclidean action:

3
vrgr | 1
S=2.2 / dz 49 {—2(0Ts0¢,7«)2 + (Oupir)’ (5.2)
>0 m (%

r=c,v 1=1

where v refers to the “valley” mode and i the wire index. In our convention,

g > 1 corresponds to attractive interactions and g. < 1 corresponds to repulsive

!Le. particle number in each valley is conserved
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Phase Stabilized Tunnelings Stable Regime
. -~ . Ry L Rt L
Orbital AF-ordering (O 1 ge < 2/3
Ballistic Yk, 1/2 < g. <2
Coo Tt T pRE LY R L
per pair tunneling uiﬁwiﬁgd)j’_gwﬁa ge > 3/2

Table 5.1: The three phases in our model and the corresponding stabilized tun-
neling operators. The tunneling operators are written in the folded-wire basis.

interactionsP| Under this folding procedure, our model enforces the condition
9c9» = 1 because valley-helicity constrains the form of interactions on the folded
half-wire. We refer the reader to the Appendix for our bosonization conventions

and additional details.

To complete our model, we specify a boundary condition ¢f(z = 0,7) =
Rij¢f(x = 0,7) to relate ingoing (L) and outgoing (R) modes. This bound-
ary condition can be physically understood as relating the currents Jp;, =
Ri;J L,j'[105E| For simplicity, we only consider boundary conditions which de-
couple into charge and valley sectors R., R,. Given a boundary condition R},
we assess our Hamiltonian’s stability under tunneling processes at the bound-
ary; the Hamiltonian is only stable when the boundary operators either have
irrelevant scaling dimension or 0 scaling dimension. We will call a boundary
operator “stabilized” if it has scaling dimension zero for a particular bound-
ary condition. In this paper, we include all single and two-particle tunneling

processes at x = 0 that conserve net particle number and net valley numberﬁ

The phase diagram of a junction of three spinful Luttinger wires with

particle-number and spin-conserving tunneling was studied in Ref. [105], anal-

’In particular, this is the opposite convention of Ref. [304] and Ref. [34]
3This can be shown by taking a time derivative 0, ¢/ % = J&#/L,
*Higher-order terms are expected to be irrelevant.
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Figure 5.4: The phase diagram of the triangular network of valley-helical wires.
The shaded regions denote regimes of overlapping stability.

ogous to our model where spin is replaced with valley. Enforcing our constraint
gegv = 1 on their results, we find three regimes - cooper pair tunneling, bal-
listic, and orbital AF-ordering; we list these in Table As seen in the phase
diagram of Fig. there are regions where phases have overlapping stability;
determining which fixed point dominates depends on microscopic details and
lies outside the scope of this work. As physical electron-electron interactions are
expected to be repulsive, we will focus on the regime g. < 1 and defer further

discussion of the cooper pair tunneling phase to the Appendix.

5.1.3 Ballistic phase

We begin with a brief discussion of the ballistic phase, stable for interactions of
intermediate strength 1/2 < g. < 2. This phase is a bit subtle, as there are six co-
stable fixed points. One of the fixed points has the boundary condition R.;; =
Ro,ij = 0;j, corresponding to stabilizing complete backscattering wﬁi L, in each
folded wiref| Unfolding each of the folded wires, we see that this corresponds
to forming full valley-helical wires by connecting pairs of half-wires. As this
boundary condition is comprised of three decoupled Luttinger wires exhibiting

perfect transmission, this motivates the name “ballistic”. However, this fixed

>While Ref. [105] wrote the boundary conditions in a rotated basis, for this paper it is equiv-
alent to our boundary condition in the unrotated basis. See the Appendix for details.
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(a) Orbital AF-ordering (b) Charge current profile (c) Pair-exchange tunneling

current profile

Figure 5.5: (a) The current profile of the orbital AF-ordering phase for ingoing
current on one link. Negative numbers signify negative current, or equivalently
a positive hole current (b) The corresponding charge current profile (i.e. red
minus blue). The current strength on each link is the same, but alternates in sign
as one goes around the scattering center. (c) The current profile corresponding
to one of the pair-exchange tunneling terms.

point is not symmetric under folding symmetry; as there are six possible choices
of folding, giving rise to six co-stable fixed points. In physical systems, the
microscopic details will determine which fixed point the system actually adopts,
which lies outside the scope of this work. On a network, long ballistic channels
will form in this phase. Each channel has the usual Luttinger liquid conductance
G = gc%. This ballistic behavior is consistent with previous works on non-
interacting network models of TBG, which predicted transport along ballistic

zig-zag modes.[279, 59] For additional discussion of the ballistic phase, see the

Appendix.

5.1.4 Orbital AF-ordering phase

We now consider the orbital AF-ordering phase, corresponding to strong repul-
sive interactions g. < 2/3. The boundary condition of this phase is R.;; = d;;

and R,;; = —d;; + 2/3. As before, we unfold the boundary conditions back to
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our six-wire basis to manifestly see the current flow profile. Using the relation
Ge(w) = (14 + dr+) £ (- + dr_)]/V2, we find

1 .
R =05 = 3 (=)™ (5.3)

where the basis ordering is chosen such that one goes sequentially around the
center. The resulting current profile is shown in Fig. for a single wire with
ingoing current. Unlike the ballistic case, this fixed point is independent of the
choice of folding; the currents are the same on the Cs-related wires excluding
the wire with incoming current. In Fig. we see that the resulting net charge
current is equal on each wire but alternates in sign as one goes around the scat-
tering center. The currents therefore circulate around each triangular domain in
an alternating pattern, reminiscent of orbital antiferromagnetism. By tiling the
network with the charge current profile, we find the current pattern shown in

Fig.[5.2] with long-range orbital AF order, motivating the name of this phase.

To understand the origin of this peculiar current profile, we rewrite the stabi-
lized (scaling dimension 0) tunneling operators at this fixed point into the 6-wire

basis. These are

R L R L
PE;antit1 = Ui Wb vt —oUnniisroVis (5.4)

for n € Z, corresponding to pair exchange tunneling from wire i to wire 2n+i+1
as shown in Fig. These tunnelings were also considered in Refs. [34] and
[45], where these promoted a CDW phase. One of these tunnelings provides
the current profile shown in Fig. where a pair of ingoing currents of oppo-
site valley number tunnel through the defect. Now we argue in reverse: given

that all of the pair exchange tunnelings are stabilized in this phase, we want to

®The factor 2n + i + 1 is to ensure that wire 2n + i + 1 is of opposite valley-helicity to that of
wire 4, and wire indices are understood modulo 6. We also again remark that o is a redundant
label, fixed by the choice of direction L/R and the helicity of the corresponding wire.
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reconstruct the boundary condition in Fig. In particular, this means that
we want to reconstruct the two-ingoing-currents picture Fig. using the one-
ingoing-current picture of Fig. Let us consider one ingoing red (o = +)
current as shown in Fig. As the set of tunneling operators enjoys the D;
symmetry i <> i+2 on each index, the outgoing red currents must have the same
current 1/3 by current conservation. Similarly, the two outgoing blue (o = —)
currents have the same current b, while the backscattered current has current
—2b. Inversion symmetry gives us the corresponding profile with one ingoing
blue current coming in from the right. When these two profiles added together,
these must recreate Fig. This gives b = —1/3, as in Fig. Therefore,
enforcing that the pair exchange tunnelings are stabilized requires the boundary

condition R°4F,

We then treat the full triangular network as shown in Fig. utilizing our
single-site results to compute the current profile and conductance. Rather than
solve the large system of equations provided by the boundary condition R on
each scattering site, we use conservation arguments to quickly obtain the result.
Here we focus on the experimentally-relevant charge current profile; we discuss
the valley current profile in the Appendix. As previously noted, Fig. im-
plies that the charge current strength is equal on every link and forms orbital
antiferromagnetic domains as shown in Fig. It remains to obtain the corre-
sponding current strength on each link and the network conductance. Without
loss of generality, we consider exactly one external wire hosting ingoing current.
At the input link, the backscattered current fraction b must satisfy 1 — b = 1/1,,
where I, is the current of the ingoing portion of the input link. For the ex-
ternal links, excluding the input link, the valley and charge current strength

are equal as they only carry outgoing modes. Since the sign of the charge cur-
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rent alternates with valley, by valley current conservation we must also have
1+ b = (Nex — 1)I/I,. Therefore, this gives us I /Iy = 2/Nex[| To obtain the
conductance tensor, the Kubo formula gives[105]

62

7 (0 = REF™) (5.5)

Gij = Jc

where R} s the effective boundary condition relating the currents on the
external wires. The ¢;; corresponds to ingoing current on wire j generated by a
voltage V;, while R™™* is the corresponding outgoing current. Therefore, our

current pattern solution directly gives

e? 2
Gij = g.—0(t)o(y
J g () (j)Next

. (5.6)

where (i) is the helicity of the external wire zﬂ Therefore, net current flows
when there is a net voltage difference >, o(i)V;, corresponding to a voltage dif-

ference between external wires of differing helicity.

To observe this state, we propose an experiment as shown in Fig. This is
almost a rectangular Hall bar geometry, except that we introduce a “point con-
tact” at the bottom edge to bias the voltage of one particular wire. In a typical
Hall bar, where one applies a constant voltage V' to the entire bottom edge, we
generically expect net insulating G, = 0 behavior; if the bottom edge covers an
even number of wires, parity enforces net zero current. By preferentially biasing

a point contact, we break the helicity symmetry and generate a net current. In

7We remark that the result of current cannot be obtained by linking up nodes of Fig. and
using the single site conductance. Internal links host both modes traveling in both directions,
so one must consistently solve for their mode populations. Therefore, one must keep track of
the valley information in order to obtain the correct result. At high temperatures, however,
excitations on the wire will equilibrate and have a well-defined voltage as in the approach of
Ref. [163]. In this regime, the strength of the current will scale as 1/N with N the number of scat-
tering centers. Even so, the antiferromagnetic current pattern will remain (up to temperature
dependent corrections).

8For external wires, a globally-defined helicity is well-defined since ingoing and outgoing
directions are well-defined.
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the proposed geometry of Fig. note that current only flows through contacts
covering an odd number of wires. By arranging a series of point contacts, the
long-range orbital antiferromagnetic order will give rise to an alternating se-
quence of ingoing and outgoing currents of equal strength. This is remarkably
different from a resistor network which exhibits diffusive behavior in this ge-
ometry. Moreover, direct detection of the resultant orbital antiferromagnetism

would provide strong evidence of this phase.

5.1.5 Conclusion

In this paper, we have calculated current profiles and conductance of a triangu-
lar network of 1D valley-helical edge modes where intervalley scattering is sup-
pressed. At strong repulsive interactions, we find a novel orbital AF-ordering
phase (see Fig. 5.2), while at weaker repulsive interactions the system devel-
ops 1D ballistic channels. As these phases exhibit a long-range order of cur-
rents, they exhibit non-local transport distinct from the local diffusive behavior
of typical resistor networks. As these phases may be difficult to observe in typ-
ical Hall bar geometries, we propose the geometry of Fig. to observe the

nontrivial transport behavior.

We made critical use of forbidding intervalley scattering to obtain our con-
ductive phases. Recent experimental measurements of the the AA defect in
marginally twisted bilayer graphene estimate its size to be ~ 30A,[138] which
is substantially larger than the graphene lattice constant 2.46A.[55] Therefore,
we expect our assumption of no intervalley scattering at the defect to be

good. Moreover, in spin-valley locked systems, intervalley scattering is ex-
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plicitly prevented by time-reversal symmetry.[303] As a result, moiré domain
wall networks involving with strong spin-orbit coupling, such as transition
metal dichalcogenide (TMD) bilayers, may also demonstrate these non-local
edge transport features if one can induce a topological gap. At finite tem-
peratures and voltages, the single-site conductance, and therefore the network
conductance, will acquire power law corrections controlled by the scaling di-
mension of the leading irrelevant boundary operator A, from the Luttinger
physics.[135, 106] Observation of this power law behavior would provide pre-
liminary evidence of Luttinger transport and of the applicability of the net-
work model. Detailed analysis of a honeycomb network of spinful Luttinger
liquids has already shown non-Fermi liquid temperature dependence of the
conductivity[157]. We also remark that, since we have restricted ourselves to
boundary conditions which decouple into charge and valley sectors, we have
not exhausted the phase diagram (see also the Appendix). However, our phase
diagram covers —oo < g. < 0o, so any additional phase must coexist with one
we have already discussed. We leave further exploration of the temperature-

dependence and the phase diagram to future work.

Acknowledgements We thank Chao-Ming Jian, Kin Fai Mak, Craig Fennie, and
Debdeep Jena for helpful discussions. A.H. was supported by the National Sci-
ence Foundation Graduate Research Fellowship under Grant No. DGE-1650441.
Both A.H. and E.-A K. were supported by the U.S. Department of Energy, Office
of Basic Energy Sciences, Division of Materials Science and Engineering under

Award DE-SC0018946.

148



5.1.6 Appendix: Bosonization and Conventions

In this paper, we follow the bosonization conventions of Ref. [105] and
Ref. [106]. The boson ¢, and its dual 6, satisfy the commutation relation
[p(x),0(z")] = —iO(z — ). We can rewrite these into valley-up and valley-down

components via

Pt 0Py 0 _QC—G—O‘QU

4 ) o 57
¥ 7 7 (5.7)
The left and right mover representations ¢, , and ¢r, are given by
L_SOO'_‘_QU R_Soa_ea
¢o’ - 2 ’ ¢a’ - 2 (5'8)
and the charge and valley components are
¢h + o2 ¢F — o
a _ , Z = 5.9
We identify the fermion annihilation operator as
P2 o V2% (5.10)

where we have suppressed the Klein factors.

To demonstrate g.g, = 1, we first rewrite the interaction terms in Eq. (5.1) in

terms of charge and valley currents, giving

Hint,i :UF/ dx)\z(JL,cJR,c - JL,UJR,U)
>0
+ ML+ Tpet+ Jiy + TR (5.11)

Then, we use J;, = \/%(89; +10,)0 and Jr = \/%(az — 10, )0 to bosonize. Therefore,

we find gc) = H% and obtain the result ¢g.g, = 1. Additionally, we
remark that the expression for g. explicitly shows that g. < 1 corresponds to

repulsive (A2, A4 > 0) interactions.
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5.1.7 Appendix: Boundary conditions

The boundary conditions in Ref. [105] are written in a rotated basis ® where

Or = \/grpr is rescaled. Therefore, one generically expects the rotated R to

be distinct from R. However, for boundary conditions which are involutions

R? = T (i.e. symmetric orthogonal matrices), we in fact find R = R. To see this,

we first consider the following relations

ok o
=My
TL (bL
TR ¢L
=Mp,
R ¢L
cosh o
My =
0
cosh o,
Mg =
0

cosh oy

sinh o,

0 sinh oy

sinh o,

0

sinh ay

(5.12)

(5.13)

(5.14)

(5.15)

where we have used the unrotated boundary condition R(¢L, ¢2)T = (pf ¢F)T.

These equations tell us that

R = MpM;*
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(a) Charge-valley decoupled folding (b) Charge-valley mixed folding

Figure 5.6: Two folding procedures for a ballistic fixed point where the wires
are connected across the defect. (a) A folding where opposite wires across the
junction are paired. We find ¢{ . = ¢f, and ¢7, = ¢f,, so the charge and valley
boundary conditions are decoupled. (b) A folding where adjacent wires are
paired. We find that ¢f, = ¢{', + ¢5_. Therefore, this boundary condition
mixes charge and valley.

If R is an involution, then MpR = M, and therefore R = R as previously
claimed. As all the boundary conditions we consider in this paper are invo-

lutions, we we freely translate the boundary conditions of Ref. [105] into the

unrotated basis.

5.1.8 Appendix: The ballistic phase

For the case g.gs = 1 in Ref. [105], there are 4 co-stable fixed points when 2/3 <
ge < 3/2 - namely their NN and three D’ D, fixed points. There are also two
additional xy fixed points stable precisely at g. = 1, which we will neglect as
they are stable only a single point. By considering all folding procedures, upon
unfolding there are a total of 6 fixed points, which fall into the three symmetry
classes shown in Fig.[5.7] This shows that the possible fixed points comprise all

possible connections of the wires.
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Figure 5.7: The three symmetry classes of the fixed point boundary conditions
in the ballistic regime. These correspond to all possible permutations of linking
together the valley-helical wires.

The discrepancy between the 4 co-stable fixed points found by Ref. [105] and
the 6 we find after unfolding is due to their assumption that the boundary con-
dition R can be decoupled into R., R,. The remaining two fixed points lie out-
side this paradigm. To see this, let us consider the fixed point shown in Fig.
under two separate foldings. We see that under the first folding of Fig.
the boundary conditions are R. = R, = Z. However, the second folding of
Fig. mixes charge and valley. Therefore, to obtain the full phase diagram
one must all potential 6 x 6 boundary conditions instead of those that are simply

block-diagonal in charge R, and valley R,,.

51.9 Appendix: Valley current profile of the orbital AF-

ordering phase

In the main text, we only considered the charge current profile of the orbital
AF-ordering phase. To complete the solution, we must also solve for the val-
ley current profile. This is subtle since homogeneous solutions are allowed in

the network as shown in Fig. Arbitrary valley current loops are allowed
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Figure 5.8: A homogeneous solution in the network of orbital AF-ordering
phase. An arbitrary valley current is allowed to circulate in triangular loops.
However, charge current cannot freely circulate in loops.

to circulate around triangular domains in the bulk, and we expect that its pre-
cise value depends on the time-dependent details of instantiating the system.
However, the external links do not suffer this issue and therefore have a defi-
nite valley current. As argued in the main text, all the grounded external links

have the same valley current /,, and therefore the ingoing link has valley current

(Next — 1)1,,.

5.1.10 Appendix: Cooper pair tunneling phase

For the cooper pair tunneling phase, the boundary conditions are R. = Z and
R, = —d;; + 2/3. These are precisely the boundary conditions of the orbital
AF-ordering phase, but with charge and valley flipped. Therefore, we can read
off the solution of the cooper pair tunneling phase from that of the orbital AF-
ordering phase by flipping charge and valley. The charge current will allow

for arbitrary charge current loops in the bulk, with external conductance G;; =

gc%(Q(sij - 2/Next)-
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