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In this dissertation, we attack the problem of strongly correlated and topologi-

cal systems via a creative variety of approaches in the hopes of extracting and

elucidating meaningful electronic transport phenomena.

In the first part, we study the long-standing puzzle of the anomalously large

and superuniversal correlation length exponent ν in the fractional quantum Hall

effect. To tackle this, we utilize the newly conjectured Chern-Simons dualities as

a powerful non-perturbative tool. By exploring the new descriptions of FQHE

transitions afforded by the dualities, we find that large flavor expansions com-

pare unfavorably to the experimental ν. However, the non-Abelian nature of

these dualities motivated us to try large color expansions. Utilizing duality

techniques in combination with modular transformations, we were able to use

large color expansions to demonstrate superuniversality across FQHE transi-

tions. This was the first theoretical demonstration of superuniversality, as well

as one of the first uses of the non-Abelian Chern-Simons dualities.

In the second part, we critically examine transport features of the strongly-

correlated electron hydrodynamic regime. Electron hydrodynamics has been

claimed to be observed in a number of experiments, generating much excite-

ment. However, clear demonstration of this regime is tricky since direct mea-

surement of the electron-electron scattering length is difficult. Measurements

of non-local transport behavior have been argued to be a signature of viscous



flow and therefore provide indirect evidence of a short electron-electron scatter-

ing length. We begin by showing, on the contrary, that non-local transport be-

havior can occur even for disordered non-interacting fermionic systems which

sits far from the hydrodynamic regime. Therefore, non-local transport is not

unique to hydrodynamics. Furthermore, the linearized Navier-Stokes equation

is structurally equivalent to common momentum-dependent Ohm’s law; disen-

tangling the hydrodynamic contribution requires precise understanding of the

phenomenological parameters. By contrast, the fully nonlinear Navier-Stokes

equation is distinct from the linear Ohm’s law and can give rise to distinctive

signatures. We therefore proposed three experiments to manifest unique non-

linear phenomena well-known in the classical fluids literature - the Bernoulli

effect, Eckart streaming, and Rayleigh streaming. Analysis of experimental pa-

rameters suggests that these proposals are feasible and therefore provide strong

signatures of a hydrodynamic regime. Moreover, as one of the first works to

comprehensively study nonlinear effects, we hope that it would motivate fur-

ther exploration of nonlinear electron fluid dynamics.

In the third part, we look for optical signatures of the chiral anomaly in Weyl

semimetals. Direct detection of the chiral anomaly via a negative longitudinal

magnetoresistance has been difficult as this signature can arise from other mech-

anisms. Other works have proposed anomalous IR reflectance signatures as a

smoking gun for the chiral anomaly in non-mirror-symmetric Weyl semimet-

als. However, they neglected that the presence of a magnetic field, necessary for

the chiral anomaly, will generically break mirror symmetries. We go on to argue

that the background magnetic field can break mirror symmetry strongly enough

in physical systems to yield observable IR signatures of the chiral anomaly, even

for mirror-symmetric crystals.



In the fourth part, we study transport along topological domain wall net-

works in moiré systems. While most excitement around moiré physics have fo-

cused around the moiré miniband, recent experiments have suggest that moiré

systems can also feature sharp domain walls and provide a natural setting to

study networks of 1D topological modes. Previous works focused either on

non-interacting models or utilized interacting models to find gapped correlated

phases by imposing a single-particle gap. However, away from commensurate

fillings we expect intervalley scattering to be suppressed so that a single-particle

gap cannot open. Therefore, we study a triangular network of valley-helical

Luttinger wires where we enforce no intervalley scattering. We find that trans-

port in this network is inherently non-local, distinct from the local diffusive

behavior of a resistor network. In particular, at strong repulsive interactions we

predict a novel orbital antiferromagnetic-ordering phase.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In the past 200 years, technological progress has been marked by our increasing

control over the transport of electronic charge. Beginning with the light bulb,

development of electronic technologies such as the electric motor, the telephone,

radio, television, the computer, and the Internet have revolutionized the world.

One of the crowning achievements of modern condensed matter physics is the

silicon chip, where precise understanding of its band-structure gave rise to the

digital revolution and the Internet age. While we may understand much of

electronic transport, the discovery of superconductivity and the quantum Hall

effect gave rise to a rich host of strongly correlated and topological regimes of

transport still to be fully understood. For instance, two of the holy grails of

condensed matter physics - room-temperature superconductivity and a univer-

sal quantum computer - are both electronic transport phenomena of immense

technological interest but yet to be physically realized.

The fundamental problem of understanding strongly correlated and topo-

logical phenomena is that of scale: from a system with O(1026) degrees of free-

dom, we want to extract a few macroscopic properties. Indeed, the great ef-

fectiveness of band-structure theory comes from the fact that momentum space

simplifies the O(1026) degrees of freedom down to O(1). However, not all sys-

tems are best described by a band structure. Non-interacting topological sys-

tems, such as the integer quantum Hall effect, are characterized by a topological

invariant that is largely independent of band structure details. Furthermore,

1



strongly correlated phases, such as superconductivity, require treatments be-

yond naı̈ve perturbation theory around a given band-structure. Therefore, the

study of strongly correlated and topological phases of matter have engendered

a flurry of novel and creative non-perturbative approaches such as BCS mean

field theory, the Laughlin wavefunction ansatz, the renormalization group, the

ten-fold way, and many others.

In this thesis, we study electronic transport across a number of different

physical systems, primarily employing analytic techniques. Two techniques in

particular - Chern-Simons dualities and hydrodynamics - have been motivated

by work in the high-energy and fluid dynamics communities, respectively. It is

our hope that the work in this thesis contributes to new creative approaches to

strongly correlated problems, both in condensed matter physics and beyond.

1.2 Thesis Roadmap

In chapter 2, we study the superuniversality of the correlation length exponent ν

in fractional quantum Hall (FQH) transitions with the help of the newly conjec-

tured Chern-Simons dualities. We first give a brief review of Chern-Simons field

theory descriptions of the FQH transitions. In section 2.1, we explore the new

phase space of theories afforded by the new Chern-Simons duality transforma-

tions and calculate ν in a large flavor expansion. However, we find that large

flavor computations do not give superuniversality nor a good numerical ap-

proximation of the experimentally measured ν. In section 2.2, we instead take a

large color approach motivated by the non-Abelian nature of the Chern-Simons

dualities. Using the dualities in combination with modular transformations, we
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find exact large color descriptions of the FQH transitions. Calculating ν in a

large color expansion, we find superuniversality in this class of theories.

In chapter 3, we investigate transport features associated with the strongly

interacting electron hydrodynamic regime. In section. 3.1, we begin by critically

re-examining previous experimental claims that observations of non-local “vis-

cous” transport was evidence of the hydrodynamic regime. Taking a disordered

non-interacting fermion model, we compute the conductivity to O(q2) and find

that this model also exhibits non-local “viscous” transport. Ultimately, we real-

ized that qualitative non-local transport features are not distinctive because the

Navier-Stokes equations are equivalent to a momentum-dependent Ohm’s law.

Therefore, in search of sharper signatures of the hydrodynamic regime, in sec-

tion. 3.2 we look at nonlinear phenomena lying outside the purview of linear re-

sponse. We propose three experiments motivated by classic hydrodynamic phe-

nomena - the Bernoulli effect, Eckart streaming, and Rayleigh streaming - driven

by the convective nonlinearity present in the Navier-Stokes equations. Analysis

of experimental parameters suggest that these effects are observable and there-

fore can serve as strong signatures of the electron hydrodynamic regime.

In chapter 4, we search for distinctive signatures of the chiral anomaly in

Weyl semimetals. We begin with a brief introduction to Weyl semimetals and

the chiral anomaly. In section. 4.1, we re-examine previous IR reflectance pro-

posals to observe the chiral anomaly which argued that mirror-symmetric Weyl

semimetals do not host the anomalous IR signature. Finding that they neglected

the symmetry-breaking effect of the applied magnetic field, which is necessarily

present, we argue that mirror-symmetric Weyl semimetals should in fact host

the IR signature. Furthermore, estimates of the symmetry-breaking from the
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magnetic field suggest that mirror-symmetry is sufficiently broken to observ-

able manifest the anomalous IR peaks.

In chapter 5, we study transport in a network of topological 1D edge modes

afforded by moiré systems. We begin with a brief introduction to moiré sys-

tems. In section 5.1, motivated by experimental observations of sharp domain

walls in moiré systems, we consider a triangular network of interacting valley-

helical edge modes. In contrast to previous interacting models which looked

at gapped correlated phases, we forbid intervalley scattering; away from com-

mensurate fillings, intervalley scattering is suppressed due the large momen-

tum separation between valleys. This constraint prevents a single-particle gap

from forming, so our network must remain conductive. By performing a pertur-

bative RG analysis on tunneling operators which conserve particle number and

valley number, we obtain the resulting phase diagram. We find that transport

in this model is non-local, unlike the local diffusive behavior of a resistor net-

work. In particular, at strong repulsive interactions we predict a novel orbital

antiferromagnetic-ordering phase.
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CHAPTER 2

FRACTIONAL QUANTUM HALL SUPERUNIVERSALITY AND

CHERN-SIMONS DUALITIES

The fractional quantum Hall effect (FQHE) is the premier example of a

strongly correlated and topological phase. While its cousin, the integer quan-

tum Hall effect, can be described by a free electron in a magnetic field, the frac-

tionalization present in the FQHE necessitates proper treatment of the Coulomb

interaction. However, this is a difficult many-body problem. The large de-

generacy of the non-interacting Landau levels makes it difficult perturbatively

treat the Coulomb interaction, and even numerical exact diagonalization of this

problem can only treat at most a handful of particles [276]. This motivated

an effective description of FQH phases by Chern-Simons field theories (See

[318, 292, 276] for a review).

We briefly review here Chern-Simons theories. The abelian Chern-Simons

action at level k is given by

S =
k

4π

∫
d3xϵµνρAµ∂νAρ (2.1)

for an abelian background gauge field Aµ. Interpreting Aµ as the physical elec-

tromagnetic field, it couples to physical currents via
∫
d3xAµJ

µ. Using Jµ = δS
δAµ

,

one finds that the conductivity is σxy = k
2π

. For proper quantization of this

theory, we must have k ∈ Z [276]. Therefore, Chern-Simons theories naturally

describe the transport in the integer quantum Hall effect. Furthermore, we can

combine multiple gauge fields to recreate transport in the fractional quantum
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Hall effect. For instance, consider

S =

∫
d3xϵµνρ

[
m

4π
bµ∂νbρ +

1

2π
Aµ∂νbµ

]
(2.2)

=
1

3

1

4π

∫
d3xϵµνρAµ∂νAρ (2.3)

where b is a dynamical gauge field and in the second line we integrate out b to

obtain the effective action. Therefore, this theory describes the fractional quan-

tum Hall 1/m state.1

To describe FQH transitions, one needs a dynamical way to transition be-

tween different values of k. Two simple ways to do this are by providing a

Dirac mass gap or by Higgsing a gauge field. Recall that a free Dirac fermion

S =

∫
d3xψ̄γµ(i∂µ + Aµ)ψ +mψ̄ψ − 1

8π
ϵµνρAµ∂νAρ (2.4)

undergoes a 0 → 1 Hall transition (in the IR) as one tunes the Dirac mass, and

therefore naturally describes a quantum Hall transition.2 Similarly, the bosonic

theory

S =

∫
d3x|(∂µ − iaµ)ϕ|2 +m|ϕ|2 + 1

4π
ϵµνρ [aµ∂νaρ + Aµ∂νaρ] (2.5)

also describes a 0 → 1 Hall transition (in the IR) as one tunes the bosonic mass

m. In the m < 0 Higgs phase, aµ = 0 so the theory is a trivial insulator, but

in the trivial m > 0 phase we can set ϕ = 0 and the remaining action has a

k = 1 Hall conductivity. Generalizations of these theories can therefore describe

generic quantum Hall transitions. The seeming similarity of the fermionic and

1To integrate out b, complete the square and shift b to remove the bdA cross term. We also re-
mark that, strictly speaking, one cannot integrate out b as there will be topological obstructions;
this can be seen in the non-integer 1/m level in the resulting effective theory. Nonetheless, the
Hall conductivity is correct [276].

2The additional half-integer Chern-Simons level is there as a normalization; gapping a sin-
gle Dirac fermion gives a sign(m) 1

8π in the IR, so that the combination is properly normalized.
Strictly speaking, this is a shorthand for the η invariant (see [245]).
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bosonic descriptions was given explicit foundation with the conjecture of the

Chern-Simons (plus matter) dualities. The full duality statements are nicely

summarized in [4] (see also [245, 137, 136]). We will use these dualities to great

effect in what follows.

2.1 Non-Abelian fermionization and fractional quantum Hall

transitions

This section is adapted from a PRB paper [117] with Michael Mulligan and Eun-

Ah Kim.

There has been a recent surge of interest in dualities relating theories of

Chern-Simons gauge fields coupled to either bosons or fermions within the con-

densed matter community, particularly in the context of topological insulators

and the half-filled Landau level. Here, we study the application of one such du-

ality to the long-standing problem of quantum Hall inter-plateaux transitions.

The key motivating experimental observations are the anomalously large value

of the correlation length exponent ν ≈ 2.3 and that ν is observed to be super-

universal, i.e., the same in the vicinity of distinct critical points [S.L. Sondhi et

al., Rev. Mod. Phys. 69, 315 (1997)]. Duality motivates effective descriptions

for a fractional quantum Hall plateau transition involving a Chern-Simons field

with U(Nc) gauge group coupled to Nf = 1 fermion. We study one class of

theories in a controlled limit where Nf ≫ Nc and calculate ν to leading non-

trivial order in the absence of disorder. Although these theories do not yield

an anomalously large exponent ν within the large Nf ≫ Nc expansion, they do

offer a new parameter space of theories that is apparently different from prior
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works involving abelian Chern-Simons gauge fields [X.-G. Wen and Y.-S. Wu,

Phys. Rev. Lett. 70, 1501 (1993); W. Chen. et al., Phys. Rev. B. 48, 13749 (1993)].

2.1.1 Introduction

Phase transitions between different quantum Hall states have long been viewed

as poster-child examples of quantum critical phenomena.[259] The longitudi-

nal resistivity ρxx, the width ∆B of the transition region, and (dρxy/dB)max ex-

hibit scaling collapse in the vicinity of the transition over almost two decades

of temperature,[168, 169, 291, 302, 247, 68] frequency,[69] and current.[290] Fur-

thermore, although each plateau is believed to represent a distinct topologi-

cally ordered phase with (generally) different sets of fractionalized excitations,

inter-plateaux transitions appear to possess the same values for the correla-

tion length exponent ν ≈ 2.3 and dynamical critical exponent z ≈ 1: distinct

critical points exhibit “super-universality.”[144, 250, 259, 125] The anomalously

large value of ν ≈ 2.3 and the apparent super-universality remain a major mys-

tery from the theoretical standpoint, as an accurate description clearly involves

strong interactions as well as some form of translational symmetry breaking,

such as disorder. This problem has been studied from a field-theoretic per-

spective using a theory of flux-attached bosons.[144] However it has been dif-

ficult to make progress due to the fact that the the quantum field theory of

interest (matter coupled to an abelian Chern-Simons gauge field) is strongly

coupled.[144, 177, 78, 323, 322, 239, 99] Controlled approximations to this the-

ory yield correlation length exponents that strongly depend on the particular

quantum Hall transition.[293, 41]
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Duality provides a powerful perspective for studying strongly coupled

quantum field theories that has been used in the past with great success.[47, 189,

184, 242, 244, 123, 1] There are two senses in which different theories are said to

be dual. The first is as an exact equivalence of theories. A familiar example is

bosonization in 1 + 1 dimensions where a self-interacting Dirac fermion can be

equivalently described by the theory of a free boson. [47, 189, 184] The second

type of duality is as an IR equivalence: two theories are IR dual if they belong to

the same universality class. In this paper, we use duality in this second sense. A

famous example is particle-vortex duality in 2 + 1 dimensions.[56, 214, 71] This

duality identifies the IR content of the XY model to that of a lattice superconduc-

tor coupled to a U(1) gauge field, i.e., the Abelian-Higgs model. Historically,

particle-vortex duality was used as a means to understand the Abelian-Higgs

model, as applied to superconductivity; the XY model was relatively well un-

derstood, so duality allowed one to predict the existence of a continuous phase

transition as well as its critical behavior. Similarly, level-rank dualities were dis-

covered, and in fact proven, for pure Chern-Simons theories.[202, 203] As its

name implies, these dualities swap the Chern-Simons level and the rank of the

gauge group (in Yang-Mills regularization) up to U(1) factors.[4]

Recently, generalizations of level-rank duality have been proposed.[86, 3,

7, 4, 109] The conjectured duals relate theories of Chern-Simons gauge fields

coupled to either fermionic or bosonic matter fields and may, in some cases,

be thought of as bosonization in 2 + 1 dimensions. These dualities have been

of particular interest to the condensed matter community[245, 137, 286, 198] in

explaining[285, 193, 307] the T-Pfaffian surface state of a topological insulator

as well as providing a new effective description[257] for the half-filled Landau

level that is manifestly particle-hole symmetric,[200, 254, 131, 83, 197] thereby
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“symmetrizing” the seminal work by Halperin, Lee, and Read.[99]

We suggest that these new dualities could also be useful in understanding

phase transitions between fractional quantum Hall states, as they involve the-

ories that generalize prior effective descriptions consisting of abelian Chern-

Simons gauge fields coupled to matter.[144, 293, 41]

To this end, we expand in this paper upon previous efforts to understand

fractional quantum Hall transitions in field theoretic models without disorder.

In contrast to prior works,[293, 41] the class of theories we study consists of

a Chern-Simons gauge field with non-abelian U(Nc) gauge group for Nc > 1

coupled to Nf Dirac fermions. When Nf = 1, this model is dual to the theory

of a fractional quantum Hall transition first studied by Wen and Wu[293] and

may be viewed as a generalization of the theory studied by Chen, Fisher, and

Wu. [41] Although our model is strongly coupled, it can be reliably studied in

various controlled limits. In this paper, we consider the limit where Nf ≫ Nc ≫

1. In this large Nf ≫ Nc limit, we compute the correlation length exponent

ν to leading non-trivial order. Although we do not find an anomalously large

ν within this expansion, effective theories with non-abelian gauge symmetry

provide a larger parameter space for exploration that could yield new insights.

The remainder of this paper is organized as follows. In section 2.1.2, we

write down our starting theory and discuss its fermonic dual. In section 2.1.3,

we discuss the calculation of the correlation length exponent ν in the fermionic

theory in the large Nf ≫ Nc expansion. In section 2.1.4, we discuss our results.

An appendix contains details on the calculation of ν.
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2.1.2 Dualities

Our starting point is the field theory studied by Wen and Wu[293] that describes

a fractional quantum Hall to insulator transition on a lattice (without disorder)

as a superfluid-Mott transition of composite bosons, tuned by the (repulsive)

onsite lattice potential;[72] the phases are identified via their Hall conductivi-

ties. When these bosons are at unit filling (appropriate to a fractional quantum

Hall transition of electrons), the latter transition has an emergent relativistic

symmetry. As shown in [293], such a model can be generalized to arbitrary

fractional quantum Hall to fractional quantum Hall transitions by adding ad-

ditional abelian gauge fields; in this paper, we choose to focus on the simplest

case. The 2 + 1-dimensional Lagrangian in Euclidean signature is

L = |(∂µ − ie∗Aµ − iaµ)ϕ|2 +m2|ϕ|2 + g|ϕ|4 − i

4πkB
ϵµνλaµ∂νaλ. (2.6)

In this theory, the fluctuating U(1) Chern-Simons gauge field aµ with µ ∈

{1, 2, 3} attaches kB flux quanta to the complex bosonic field ϕ. These flux-

attached bosons are probed by the external electromagnetic gauge field Aµ and

carry charge e∗. The coupling g is understood to take its IR fixed point value.

In Eq. (2.6), the transition is tuned by the renormalized mass m2: in the m2 > 0

phase (where ϕ is gapped), the Hall conductivity σxy = 0; in the m2 < 0 phase

(where ϕ condenses), σxy = − 1
kB

(e∗)2

h
; in both phases, σxx = 0 (σij refers to the

zero-temperature dc conductivity). For the fractional quantum Hall - Mott insu-

lator transition, we must choose kB ∈ Z. For instance, to describe the 0 → 1/3,

transition, one sets e∗ = 1 and kB = 3. We are interested in the critical properties

of Eq. (2.6), so we set m2 = 0 for the remainder of this paper.

We would like to study a dual description of this fractional quantum Hall to

Mott insulator transition using a Chern-Simons theory with U(Nc) gauge sym-
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metry coupled to a fermion. For this, we need to remedy the fact that the Chern-

Simons level (equal to −1/kB) for aµ in Eq. (2.6) is not quantized when kB ∈ Z

is greater than one (see footnote3). Further using a generalized particle-vortex

duality,[276] we arrive at

L = |(∂µ − iâµ)ϕ̂|2 + g|ϕ̂|4 + i

4π
ϵµνλ

(
kBâµ∂ν âλ + Aµ∂ν âλ

)
. (2.7)

Note that ϕ̂ and the U(1) gauge field âµ in Eq. (2.7) are different from the cor-

responding fields in Eq. 2.6. A non-relativistic version of the duality between

Eqs. (2.6) and (2.7) was also proposed by Lee.[154] From this point forth, we

will drop the non-dynamical background gauge field Aµ.

In the hopes of understanding the effects of the strong interactions in

Eq. (2.7), we can generalize the theory in several ways: we enlarge the gauge

symmetry from U(1) → U(NB
c ), where the integer NB

c > 1 is the rank of the

gauge group, and introduce Nf flavors of bosons transforming in the funda-

mental representation of U(NB
c ), i.e., each of the Nf bosons is a vector with

NB
c components. The corresponding three-dimensional parameter space of the-

ories is shown in the left cube in Fig. 2.1. The labels for the axes are chosen

to hold NB
c /k

B finite in the large NB
c limit (within the dimensional regulariza-

tion scheme discussed later). The horizontal axis is on a tan−1 scale to make

it finite in length, while the vertical axis corresponds to the ’t Hooft coupling

NB
c /k

B, whose norm is bounded by 1. The physical theory of interest with

Nf = NB
c = 1 and kB ∈ Z is denoted by a red dot and is located behind the

front face where kB → ∞. Since a generic theory in Fig. 2.1 is strongly inter-

3One can legalize the theory by introducing a new dynamical gauge field b as a constraint,
giving us the Lagrangian

L = |(∂µ − ie∗Aµ − iaµ)ϕ|2 + g|ϕ|4 + i

4π
ϵµνλ

(
−kBbµ∂νbλ + 2aµ∂νbλ

)
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Figure 2.1: A schematic plot of parameter space for Chern-Simons theories with
bosonic and fermionic matter. Note that the orientation of the y-axis is inverted
between the bosonic and fermionic cubes. The double arrows indicate a duality
between the connected points. The pink points refer to free theories and the
yellow points to “infinitely coupled” theories. Previous works have studied the
large color and large flavor theories both in the fermionic and bosonic cases,
labeled in orange and blue.[293, 41, 86, 85, 6] The red dot corresponds to our
physical theory, while our calculation in the Nf ≫ Nc expansion is done in the
green region. All calculations give ν = 1 at leading order,[293, 41, 86, 85, 6]
while experiments give ν ≈ 2.3.[259]

acting, reliable predictions are limited to small regions of the parameter space.

The best understood part is the yellow point in the top-left corner, which cor-

responds to the Wilson-Fisher O(NB
c ) vector model, since kB → ∞ faster than

NB
c and, consequently, completely suppresses the gauge fluctuations. In addi-

tion, large Nf expansions[293] (blue axis) and large NB
c expansions[85] (orange

axis) have been carried out to the subleading order and leading order. The pink

point in the bottom-left corner corresponds to “infinite coupling,” NB
c /k

B = 1

and kB, NB
c →∞.

Remarkably, the recent Chern-Simons plus matter dualities sometimes re-

late a strongly correlated theory to a free one, and thereby constitute a non-

perturbative solution to an interacting problem. Unfortunately, this does not

appear to occur for the theory described by Eq. (2.7). Instead, duality relates the
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IR limit of Eq. (2.7) to the IR limit of the theory of a Chern-Simons gauge field

coupled to a Dirac fermion:

L = |(∂µ − iâµ)ϕ̂|2 + g|ϕ̂|4 + ikB

4π
ϵµνλâµ∂ν âλ

↕ (2.8)

L = ψ̄γµ(∂µ − iãµ)ψ +
ikF

4π
ϵµνλTr

(
ãµ∂ν ãλ +

2

3
ãµãν ãλ

)
.

In the bottom half of (2.8), ψ is a 2-component fermionic field transforming in

the fundamental representation of U(kB − 1), ãµ is a U(kB − 1) gauge field,

kF = −kB + 1/2, and the γ-matrices satisfy {γµ, γν} = 2δµν . The trace in the

non-abelian Chern-Simons term is taken with respect to the fundamental rep-

resentation. Note that we are working within dimensional regularization.4 See

the appendix for further details.

Applying dualities[4, 109] to the generalized bosonic theories with non-

abelian gauge group U(NB
c ) and multiple flavors Nf , we may schematically

write:

U(NB
c )kB ,kB with Nf bosons

↕ (2.9)

U(kB −NB
c )−kB+Nf/2,−kB+Nf/2 with Nf fermions.

The duality in (2.8) is recovered by setting NB
c = Nf = 1. For the dualities

in (2.9), the subscripts on U(N) signify the levels of the SU(N) ⊂ U(N) and

U(1) ⊂ U(N) Chern-Simons gauge fields; we will denote the rank of the gauge

group in the fermionic theory of Eq. (2.9) with the integer NF
c = kB − NB

c .

4By dimensional regularization, we mean that one contracts tensor indices in 3 dimensions,
while analytically continuing integrals to 3−ϵ dimensions. This is sometimes called dimensional
reduction in the literature.[42] An alternative scheme where one regularizes with a small Yang-
Mills term is equivalent to dimensional regularization, up to a constant shift of the SU(N) level,
so we will work exclusively in dimensional regularization for simplicity.
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Armed with the dualities between generalized theories, we can now consider

the three-dimensional parameter space associated with the fermionic theories

(see Fig. 2.1). Duality presents the choice of which representation of the same

physics to study.

Fig. 2.1 depicts the duality mappings in (2.9). We denote dualities between

specific points in Fig. 2.1 with double-headed arrows that relate bosonic the-

ories to fermionic theories. We intentionally chose the vertical axis of the two

cubes to point in opposite directions in order to visually indicate how a strongly

coupled theory on one side can map to a weakly coupled theory. For example,

the yellow point in the bottom left corner represents the theory of a free fermion

maps to an “infinitely coupled” bosonic theory. Similarly, the pink point on the

top-right corner representing the “infinitely coupled” fermionic theory maps to

the O(NB
c → ∞) Wilson-Fisher boson. Unfortunately, the physical bosonic the-

ory of interest (the red point), which is far from any known solvable point in

the bosonic parameter space, maps to another strongly coupled theory on the

fermionic side. Short of being able to directly access the physical theory, largeNf

expansions[41] (blue axis) and large NF
c expansions[86, 85] (orange axis) have

been studied on the purely fermionic side.

In the remainder of this paper, we study the fermionic dual our physical

bosonic theory (red point) using the dualities stated in (2.8). We attempt to

access this strongly coupled fermionic theory by employing a Nf ≫ NF
c expan-

sion, valid within the green region of Fig 2.1. The dualities in (2.9) are only

conjectured to hold when Nf ≤ NB
c [109]: by employing the Nf ≫ NF

c expan-

sion, we are exploring a class of fermionic theories that is different from the

previously studied class of bosonic theories.
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2.1.3 Nf ≫ Nc expansion

We generalize the fermionic side of Eq. (2.8) to an arbitrary number of flavors

Nf so that the Lagrangian becomes

L =

Nf∑
i=j

ψ̄jγ
µ(∂µ − iaµ)ψj

+
ikF

4π
ϵµνλTr

(
aµ∂νaλ +

2

3
aµaνaλ

)
. (2.10)

(We have dropped the tildes on a in Eq. (2.10).) The fermionic dual of the phys-

ical boson theory has Nf = 1, NB
c = 1, NF

c = kB −NB
c and kF = −kB +Nf/2.

We calculate the correlation length exponent ν via the definition ν−1 =

3− [ψ̄ψ(x)], which comes from the fact that the correlation length ξ ∼ m−1 as the

mass m is the critical tuning parameter.[293] To obtain ν, we will compute the

scaling dimension of the (momentum space) mass operator J0(p) = (ψ̄ψ)(p).

Recall that in position space, the scaling dimension δ is defined by the al-

gebraic decay of ⟨J0(x)J0(0)⟩ ∼ x−2δ. Upon Fourier transforming, we have

⟨J0(p)J0(−p)⟩ ∼ p2δ−d, where d = 3 is the spacetime dimension. We control

the calculation in the Nf ≫ NF
c limit taking kF , NF

c , Nf →∞ while keeping the

ratios λ = Nf/k
F and α = NF

c /Nf finite, along with α ≪ 1. Therefore, we cal-

culate perturbatively in α to first subleading order and exactly in λ. Note that λ

can (effectively) take any value in R – it is not the ’t Hooft coupling NF
c /k

F .

This calculation was first investigated in a beautiful paper by Gurucha-

ran and Prakash, where the primary motivation was to find tractable non-

supersymmetric conformal field theories with gravitational duals.[95] Here, we

use Eq. (2.10) to model inter-plateaux transitions and, in the course of our study,

we correct a minor error in Ref. [[95]].
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The leading order piece δ(0) of the scaling dimension of the mass operator J0

in d Euclidean dimensions is related to the leading order decay of the correlator

by

⟨J0(p)J0(−p)⟩leading ∼ p2δ
(0)−d, (2.11)

where p is the momentum inserted at the J0 vertex. Only the tree-level diagram

contributes, which results in δ(0) = 2. To calculate the anomalous dimension δ(1)

of the mass operator J0, we extract the logarithmic divergences of the 2-point

correlator as in, e.g., Ref. [[43]]:

⟨J0J0⟩ = (1− 2δ(1) ln Λ + . . .)⟨J0J0⟩leading. (2.12)

Keeping terms to O(α), we arrive at the result:

[ψ̄ψ] = 2− α 64λ2

64 + π2λ2

(
1

3
+ 2 · 1

2

64− λ2π2

64 + λ2π2

)
(2.13)

= 2− α128λ
2

3

128− π2λ2

(64 + π2λ2)2
. (2.14)

The factor of “2” appearing before the second term in the parentheses above

is the quantitative difference between our result and that in Ref. [[95]], and re-

sults from an additional Feynman diagram. For calculational details, see the

appendix. Therefore, we arrive at the result:

ν = 1− α128λ
2

3

128− π2λ2

(64 + π2λ2)2
. (2.15)

We plot the anomalous dimension correction to ν at O(α) in Fig. 2.2 as a func-

tion of the original bosonic parameters using the relation λ−1 = −kB/Nf + 1/2,

with the y-axis measured in units of α. Note that the correction is positive only

when 1.29 < Nf/k
B < 4.50. In the fermionic variables, this corresponds to

λ > 3.6.

If we want to consider the 0 → 1/3 transition, then we should set Nf = 1,

NB
c = 1, e∗ = 1, and kB = 3. Substituting these values into Eq. (2.14), we find
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Figure 2.2: A plot of the anomalous dimension correction to ν to O(α) in the
original bosonic parameters. The y axis is in units of α. It is positive for 1.29 <
Nf/k

B < 4.50. The parameter λ used in Eq. (2.15) is related to Nf/k
B by λ−1 =

−kB/Nf + 1/2.

ν = 1− .4014. In this case, the correction to ν is negative. The dynamical critical

exponent z = 1 automatically, since our theory is Lorentz-invariant.

Chen, Fisher, and Wu studied the abelian version of Eq. (2.10) given by

L =

Nf∑
i=1

ψ̄iγ
µ(∂µ − iaµ)ψi +

ikF

4π
ϵµνλaµ∂νaλ, (2.16)

where aµ is a U(1) gauge field. We have rescaled aµ to make the comparison

between their theory and ours more transparent. They extract ν from the scaling

dimension [ψ̄ψ] in a large Nf expansion and arrive at the result,

νCFW = 1− 1

Nf

128λ2CFW
3

128− π2λ2CFW
(64 + π2λ2CFW )2

, (2.17)

where λCFW = Nf/k
F . Comparing Eq. (2.15) and Eq. (2.17), we see that the two

expressions formally match. To O(α), our non-abelian extension to U(NF
c ) only

contributes an additional color factor. It turns out that the diagrams contribut-

ing to ν in a Nf ≫ Nc expansion are the same as those of a large Nf expansion
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to subleading order, up to color factors. At higher orders, this equivalence is no

longer expected to be true: the subleading in Nf diagrams are planar because

gauge lines are 1/Nf -suppressed. (This formal equivalence of expansions to

subleading order is likely to be true on the bosonic side as well, though we have

not explicitly verified this.) Note, however, that the two models give different

results when considering a particular fractional quantum Hall transition. For

example, in the 0 → 1/3 transition, our model has NF
c = α = 2 and kF = −5/2,

so ν = 1− .4014. In the model studied by Chen, Fisher, and Wu, they set Nf = 1,

NF
c = 1, e∗ = 1/3 and kF = 3/2,[41, 239] corresponding to “αCFW = 1′′ and

λCFW = 2/3, so that νCFW = 1 − .5012. Although the expressions for ν for-

mally agree, the physical values of the parameters are different, so they should

be thought of as describing different physics. 5

2.1.4 Discussion

The observations of super-universality and the anomalously large correlation

exponent ν associated with quantum Hall inter-plateaux transitions remain a

long-standing conundrum. Duality motivates an exploration of a large space of

theories that may provide new insight. We focused on an effective description

of a fractional quantum Hall transition involving a non-abelian Chern-Simons

gauge field with U(Nc) gauge group and Nf fermions. This theory is dual to

the critical theory of an abelian Chern-Simons gauge field coupled to a boson.

5This conclusion might be further supported by the fact that the bosonization dual of the
model studied by Chen, Fisher, and Wu involves a boson coupled to a Chern-Simons gauge
field with non-abelian gauge group, rather than an abelian gauge field. In particular,

U(1)kB−1/2,kB−1/2 with one fermion↔ U(kB − 1)−kB ,−kB with one boson

.
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We calculated the correlation length exponent ν to first subleading order in the

large Nf ≫ Nc expansion, filling in the green region in Fig. 2.1. We found the

Nf ≫ NF
c expansion to be formally equivalent to a fermionic largeNf expansion

(blue axis) to first subleading order,[41] although the precise values of the ν

inferred differ. Accordingly the exponent ν continues to depend on the pair of

plateaux in question, rather than showing any super-universality. Moreover,

the calculated exponent ν continues to be far below the experimental value.

Clearly there are many aspects of the physical problem that were left out in

our model. It may be that translational symmetry breaking needs to be incor-

porated so as to include the effect of disorder. Also, the thus-far unexplored

subleading correction in the large Nc limit may prove enlightening. However,

it appears plausible that calculating the exponent order by order with respect

to some perturbative control parameter may not be the best strategy. Rather,

it would be interesting to address the apparent super-universality in a more

wholesome manner from the outset.[114]
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2.1.5 Appendix: Calculational Details

The Lagrangian we study is

L =

Nf∑
i=1

ψ̄iγ
µ(∂µ − iaµ)ψi +

ikF

4π
ϵµνλTr

(
aµ∂νaλ +

2

3
aµaνaλ

)
(2.18)

Define light-cone coordinates via analytic continuation to be x± = (x1 ±

ix2)/
√
2, and let x2s = x21+x

2
2 = 2x+x−. We will work in light-cone gauge a− = 0,

which decouples the ghosts and removes the cubic gauge interaction term.[95]

We will also take γi = σi, the Pauli matrices. We normalize our gauge group

generators by TrT aT b = δab/2.

We will regularize our theory by using a momentum-cutoff Λ in the 1-2

plane and dimensional-regularization in the x3 direction, as has been done by

others.[7, 95]

The Feynman rules for the bare propagators and interactions are
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Under duality, we expect ϕ†ϕ ↔ ψ̄ψ. Hence, ν−1 = 3 − [ψ̄ψ].[293] In what

follows, we will be calculating the scaling dimension [ψ̄ψ].

Denote the mass operator in momentum space as J0(p) = (ψ̄ψ)(p), where

p is the momentum inserted into the vertex. The leading order in α term of

⟨J0(p)J0(−p)⟩ ∼ p, and we know that the leading order scaling dimension ∆(0)

of the mass operator J0 is given by ⟨J0(p)J0(−p)⟩leading ∼ p2∆
(0)−d, where d is the

number of spacetime dimensions. Hence, the scaling dimension of J0 at leading

order in (2+1)D is 2. We will calculate the anomalous dimension δ(1) of J0, which

amounts to extracting the logarithmic divergences of the 2-point function as[43]

⟨J0J0⟩ = (1− 2δ(1) ln Λ + . . .)⟨J0J0⟩leading (2.19)

First, let us calculate the exact gauge propagator Gµν to leading order in α,

which we denote by a squiggle. The only diagrams that contribute are strings of

bubble diagrams, and hence satisfies the following Schwinger-Dyson equation

(2.20)
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The 1PI self-energy diagram Σµν at leading order is given by

Σµν(p) = (−1)Tr(T aT b)δabTr
∫

d3q

(2π)3
−i/q
q2

(iγµ)
−i(/p+ /q)

(p+ q)2
(iγν)

= −Nfp

32

(
δµν − pµpν

p2

)
(2.21)

Summing the bubbles via G(p) = (1−DΣ)−1D(p), we get
G33 G3+

G+3 G++


(p) =

1

Nf

2π2p2+
pp4s

64

64 + π2λ2


λ2p2−

8iλ
π
p−p− λ2p−p3

−8iλ
π
p−p− λ2p−p3 −p2sλ2


(2.22)

There are four diagrams at subleading order in α that contribute to ⟨J0J0⟩.

We denote a J0 insertion by a crossed circle.

First, the fermion self-energy contribution.

We focus on the fermion self-energy subdiagram first.

Σψ(p) =
N

2

∫
d3q

(2π)3
(iγµ)

−i(/p+ /q)

(p+ q)2
(iγν)Gµν(q) (2.23)

Using the relations γ+γ− = 1 + γ3, γ−γ+ = 1− γ3, and (γ3)2 = 1, we get that

γµ/pγ
νGµν = G33(p3γ

3−p−γ−−p+γ+)+(G+3+G3+)(p3γ
++p−γ

3)+(G+3−G3+)p−+2G++p−γ
+

(2.24)
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Substituting /p→ /p+ /q in the above equation, we get

Σψ(p) = iα
64π2

64 + π2λ2

∫
d3q

(2π)3
1

(p+ q)2
(Kµγ

µ +KI) (2.25)

where

K− = −p− + q−
4q

λ2 (2.26)

K+ = −p+ + q+
4q

λ2 − (p3 + q3)
q+q3
qq2s

λ2 − 2p−
q2+
qq2s

λ2 − q+
q
λ2 (2.27)

K3 =
p3 + q3
4q

λ2 − p−
q3q+
qq2s

λ2 − q3
2q
λ2 (2.28)

KI = −p−
8i

π

q+
q2s
λ− 4i

π
λ (2.29)

We use Feynman parameters to evaluate these integrals, and we will only

keep the logarithmic divergences. The relevant formulas are∫
d3q

(2π)3
f(q)

q(p+ q)2
=

1

2

∫ 1

0

dx

∫
d3q

(2π)3
(1− x)−1/2 f(q − xp)

(q2 + x(1− x)p2)3/2
(2.30)∫

d3q

(2π)3
f(q)

q2(p+ q)2
=

∫ 1

0

dx

∫
d3q

(2π)3
f(q − xp)

(q2 + x(1− x)p2
(2.31)∫

d3q

(2π)3
f(q3, q⃗s)

q2sq(p+ q)2
=

3

4

∫ 1

0

dy

∫ 1−y

0

dz

∫
d3q

(2π)3
y−1/2

×
f(q3 − z

y+z
p3, q⃗s − zp⃗s)(

q2s + z(1− z)p2s + (y + z)q23 +
yz
y+z

p23

)5/2 (2.32)

The result for the fermionic self-energy is

Σψ(p) = iα
64

64 + π2λ2
λ2

24
(−pµγµ + 6p3γ

3 + 12p+γ
+) lnΛ + . . . (2.33)

Putting this into the two point function at zero external momenta, we can extract

the logarithmic contribution via

1

2
Tr

/p

ip2
Σψ(p) =

1

2
Tr

/p

ip2
iα

64

64 + π2λ2
λ2

24
(−pµγµ + 6p3γ

3 + 12p+γ
+) lnΛ (2.34)

= α
64λ2

64 + π2λ2
λ2

24
(−p2 + 6p23 + 6p2s)

1

p2
ln Λ (2.35)

= α
64λ2

64 + π2λ2
5

24
lnΛ (2.36)
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Since this diagram contributes with a weight of 2, it contributes δ1 =

−α 64λ2

64+π2λ2
5
24

Next, the 1-loop vertex correction.

Note that to extract logarithmic divergences it is easier to calculate the vertex

correction with external momenta 0 than to calculate the full two-loop integral.

Also, since we will combine the two free ends to a single vertex, we only care

about the identity component, which can be extracted by applying 1/2Tr over

the gamma matrices. Hence, the divergence is given by

N

2

1

2
Tr

∫
d3q

(2π)3
(iγµ)

1

−q2
(iγν)Gµν(q) = α

λ2

64 + π2λ2
1

8
lnΛ (2.37)

Each vertex contributes once to the divergence, so there is an overall factor

of 2. In total, this diagram contributes δ2 = −α 64λ2

64+π2λ2
1
8
.

Finally, the last diagrams

These are two-loop vertex corrections, so again it’s simpler to focus only on

the vertex. Note that since we will combine the two free ends to a single vertex,
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we only care about the identity component, which can be extracted by applying

1/2Tr over the gamma matrices. We focus first on the left one.

(−1)Nf
N

4

∫
d3p

(2π)3

∫
d3k

(2π)3
1

2
Tr

(
1

i/p

1

i/p
γσ

1

i(/p+ /k)
γν
)
Tr

(
γµ

1

i/k
γη
)
Gµν(k)Gση(k)

=α
1

2

64

64 + π2λ2
64− π2λ2

64 + π2λ2
ln Λ (2.38)

This diagram contributes with a factor of 2 because there are two ver-

tices. The right diagram also gives the same result because of the relation

Tr γαγβγδ = −Tr γγγβγα. Hence, the two diagrams together contribute δ3 =

−α 64
64+π2λ2

64−π2λ2

64+π2λ2
.

Therefore, the scaling dimension of ψ̄ψ is

[ψ̄ψ] = 2− (δ1 + δ2 + δ3) = 2− α128λ
2

3

128− π2λ2

(64 + π2λ2)2
(2.39)

Note that our answer differs with Gurucharan and Prakash, as they did not

include the last diagram which contributes an extra factor of 2 in δ3.

2.2 Non-Abelian bosonization and modular transformation ap-

proach to superuniversality

This section is adapted from a PRB paper [115] with Eun-Ah Kim and Michael

Mulligan.

Quantum Hall inter-plateaux transitions are physical exemplars of quan-

tum phase transitions. Near each of these transitions, the measured electrical
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conductivity scales with the same correlation length and dynamical critical ex-

ponents, i.e., the critical points are superuniversal. In apparent contradiction

to these experiments, prior theoretical studies of quantum Hall phase transi-

tions within the framework of Abelian Chern-Simons theory coupled to matter

found correlation length exponents that depend on the value of the quantum

critical Hall conductivity. Here, we use non-Abelian bosonization and modu-

lar transformations to theoretically study the phenomenon of superuniversal-

ity. Specifically, we introduce a new effective theory that has an emergent U(N)

gauge symmetry with any N > 1 for a quantum phase transition between an

integer quantum Hall state and an insulator. We then use modular transforma-

tions to generate from this theory effective descriptions for transitions between

a large class of fractional quantum Hall states whose quasiparticle excitations

have Abelian statistics. We find the correlation length and dynamical critical ex-

ponents are independent of the particular transition within a controlled ’t Hooft

large N expansion, i.e., superuniversal! We argue that this superuniversality

could survive away from this controlled large N limit using recent duality con-

jectures.

2.2.1 Introduction

As a two-dimensional electron gas is tuned by a perpendicular magnetic field

from one quantum Hall state to another, the longitudinal electrical resistance

exhibits a peak with a width ∆B ∝ T 1/νz, where ν and z are correlation length

and dynamical critical exponents and T is the temperature; the slope of the Hall

resistance likewise diverges as ∆B as a particular transition is approached 6.
6Similar scaling is observed if the temperature is replaced by frequency, applied current, or

inverse system size.
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The surprising feature is that the observed ν ≈ 7/3 and z ≈ 1 appear to be

insensitive to whether the transition is between integer or fractional Abelian

quantum Hall states [291, 68, 145, 69, 290, 302, 167, 168, 169] (See note 7) Taken

at face value, the implication is that the associated quantum critical points [259,

240] have the same critical indices for comparable observables [152, 125, 144,

185, 76, 250, 25, 88] and are instead distinguished by their critical conductivity

[121, 247, 289] (see 8); this phenomenon is known as superuniversality [250].

The root cause of superuniversality has been a puzzle since its observa-

tion over three decades ago. Numerical studies of the integer quantum Hall

transition, modeled by disordered noninteracting electrons, find a correlation

length exponent in qualitative agreement with experiment [33, 113, 253], how-

ever, these theories have z ≈ 2 and it is challenging to generalize these works

to transitions between fractional quantum Hall states [155]. Theories of Abelian

Chern-Simons gauge fields coupled to matter, i.e., theories of composite bosons

or composite fermions [87, 124, 226, 322, 177, 99, 134], provide a unifying, phys-

ical framework for studying both integer and fractional quantum Hall transi-

tions. Thus far, controlled approximations to these strongly coupled theories,

obtained when the number of fermion or boson flavors is large and there is

no disorder, have failed to yield superuniversal behavior: the calculated cor-

relation length exponent depends on the particular quantum Hall transition

[294, 41, 156, 118]. It is important to determine whether these calculations re-

veal a generic behavior of the field theoretical models or, instead, reflect certain

artifacts of the approximation scheme 9. In this paper, we provide evidence for

7Strictly speaking, the product νz has only been factorized at integer plateau transitions,
however, dimensional analysis suggests z = 1 for both types of transitions if the Coulomb
interaction provides the dominant scale.

8See [217] for an explanation of the low-temperature conductivity in the scaling region in
terms of variable-range hopping.

9Superuniversality has been found in studies of disordered Dirac fermions of various sym-
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the latter.

Figure 2.3: Schematic zero-temperature phase diagram [144] in the space of
Hall ρxy and longitudinal resistivity ρxx. Phases are denoted by their zero-
temperature complex conductivity σ = σxy + iσxx, measured in units of e2/h.
The blue boundary denotes the 1 → 0 integer quantum Hall transition, while
the green boundaries denote transitions we derive from the 1→ 0 transition via
modular transformations.

As a step towards understanding the observed behavior, we focus here on

the fundamental theoretical question raised by the appearance of superuni-

versality, i.e., how distinct interacting critical points can share the same crit-

ical exponents. To this end, we introduce new theories, involving a single

Dirac fermion coupled to a non-Abelian U(N) Chern-Simons gauge field for any

N > 1, that exhibit quantum phase transitions between Abelian quantum Hall

states. Intuitively, the U(N) gauge symmetry of our theories generalizes the

Abelian gauge symmetry implementing flux attachment in familiar compos-

ite boson/fermion theories. In fact, as demonstrated in Appendix 2.2.11, these

U(N) gauge theories are dual to theories with an Abelian group. The advantage

of the enlarged gauge group is that it motivates an alternate approximation to

metry classes in 3 + 1 dimensions [90] and in certain models with long-ranged statistical inter-
actions [82] 2 + 1 dimensions.
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our strongly coupled theories, namely, a controlled ’t Hooft large N expansion

[271] 10, within which we find that superuniversality occurs without the inclu-

sion of disorder.

We emphasize that the theories we consider here have more symmetries

than the physical systems motivating our work; for instance, our theories are

Lorentz-invariant and, in particular, preserve translational invariance. Our

hope is that our theories might represent “parent” theories for more realistic

descriptions of the experimental systems. Consequently, we defer quantitative

questions specific to the particular experimental systems to the future.

The remainder of this paper is organized as follows. In Sec. 2.2.2, we intro-

duce a new description for an integer quantum Hall transition; this theory is in-

spired by fermion particle-vortex duality [257, 285, 193, 137, 243] (see the related

work [131, 83, 307, 198, 197]) and various bosonization dualities in 2 + 1 dimen-

sions [85, 3, 2, 126, 94, 4, 201, 109, 132, 133, 39, 196, 284]. Guided by Ref. [144],

where the phase diagram in Fig. 2.3 was proposed by extending the theory of

two-parameter scaling of the Hall and longitudinal resistivity for the integer

Hall effect [160] to the fractional Hall regime using the “law of corresponding

states” [125, 144], we then derive in Sec. 2.2.3 new effective theories for various

fractional quantum Hall transitions using modular transformations [300]. In

Sec. 2.2.4, we show that the correlation length and dynamical critical exponents

of our theories are insensitive to the particular quantum Hall phase transition

within a controlled ’t Hooft large N limit. In Sec. 2.2.5, we discuss how recent

duality conjectures imply that the physics of our U(N) Chern-Simons coupled

to matter theories is independent of N > 1. This is the crucial feature that allows

10See [73, 295, 223, 288, 81] for earlier applications of the large N expansion in condensed
matter physics. Gauge/gravity duality can provide an alternative framework where large N
naturally appears [57].
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us to argue that critical exponents, calculated in the ’t Hooft large N limit, are

exact at the leading planar order and that superuniversality may persist away

from the controlled ’t Hooft large N limit. In addition, there are six appendices

that discuss details of arguments presented in the main text.

2.2.2 Integer quantum Hall transition

Our starting point is an effective Lagrangian for an integer quantum Hall tran-

sition,

LIQHT(A) = iψ̄ D̸aψ −Mψψ̄ψ −
1

2

1

4π
Tr
[
ada− 2

3
ia3
]

− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdA. (2.40)

The notation is as follows: ψ is a two-component Dirac fermion transform-

ing in the fundamental representation of U(N); a and b are dynamical U(N)

and U(1) Chern-Simons gauge fields; A (above and throughout) is a non-

dynamical Abelian gauge field that we think of as electromagnetism; /Da =

γµ(∂µ − iaµ) for µ ∈ {t, x, y} and γ-matrices satisfying {γµ, γν} = 2ηµν where

ηµν = diag(1,−1,−1); ψ̄ = ψ†γt; N is a positive integer; Abelian Chern-Simons

terms AdB = ϵµνρAµ∂νBρ, and the cubic interaction in the non-Abelian Chern-

Simons term a3 = 1
2
ϵµνρaµaνaρ. For simplicity of presentation, we regularize the

theory in (2.40) by implicitly including a Yang-Mills term for a and Maxwell

term for b [301, 42]. See Appendix 2.2.7 for further explanation of the notation

and for a few pertinent facts about Chern-Simons theories.

Prior work studying Chern-Simons gauge theories coupled to matter sug-

gests that the theory in (2.40) realizes a critical point with conformal symmetry
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[42, 16]. In Appendix 2.2.11, we argue nonperturbatively that this critical point

is in the free Dirac fermion universality class for any integer N ≥ 1.

For the moment, we verify that (2.40) describes a transition between an in-

teger quantum Hall state and an insulator as the fermion mass Mψ is tuned

through zero, consistent with our identification in Appendix 2.2.11 of (2.40)

with the theory of a free Dirac fermion. See Appendix 2.2.8 for additional de-

tails. Remarkably, this demonstration applies for any integer N ≥ 1. In our

theory, the mass Mψ represents an effective control parameter for a particular

quantum phase transition. For definiteness, it may be helpful to think about Mψ

in terms of the analogous tuning parameter that appears in lattice models for

integer quantum Hall transitions [98, 183]. In these latter models, the transition

is controlled by the ratio of the on-site chemical potential to the second nearest-

neighbor hopping. This theory matches the realistic integer quantum Hall tran-

sition insofar that it describes some transition between two integer quantum

Hall states, as is commonly done in the literature.

Our strategy is to identify the insulating and integer quantum Hall states

through their electrical response to the electromagnetic gauge field A. Below

the energy scale of the mass |Mψ|, we can integrate out ψ to obtain:

Leff =
sign(Mψ)− 1

2

1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdA.

(2.41)

In this effective Lagrangian, only relevant and marginal terms in the renormal-

ization group sense are written. If Mψ < 0, rank/level duality [202, 203, 109]

(Appendix 2.2.8) implies that

Leff(Mψ < 0) =
1

4π
AdA, (2.42)
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i.e., the effective electrical response Lagrangian of an integer quantum Hall

state. Consequently, we identify the phase obtained for Mψ < 0 with an integer

quantum Hall state. Integrating out fermions with Mψ > 0, the non-Abelian

Chern-Simons term for a disappears. Only Tr[a] remains in the effective La-

grangian; the SU(N) ⊂ U(N) component of a decouples and we assume it con-

fines [70]. The equation of motion for Tr[a] sets b = 0 [300] and the resulting

effective Lagrangian,

Leff(Mψ > 0) = 0, (2.43)

describes an electrical insulator. We expect the leading irrelevant operator sup-

plementing the effective Lagrangian in Eq. (2.43) to be a Maxwell term for A,

consistent with our identification of the phase obtained when Mψ > 0 with an

insulator.

2.2.3 Generating fractional quantum Hall transitions

We now show how to generate effective descriptions with U(N) gauge symme-

try for fractional quantum Hall transitions using the modular group, PSL(2,Z),

i.e., the group of 2 × 2 matrices with integer entries and unit determinant.

On a complex number, like the complexified zero-temperature dc conductivity
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σ = σxy + iσxx (measured in units of e2/h) 11, the modular group takes

σ 7→ pσ + q

rσ + s
, for


p q

r s


∈ PSL(2,Z). (2.44)

Because the modular group is generated by two elements, T = ( 1 1
0 1 ) and S =

( 0 1
−1 0 ), any element of PSL(2,Z) can be decomposed into a product of T and S

operators.

Ref. [300] showed how the modular group in Eq. (2.44) acts on the La-

grangian of a conformal field theory with U(1) global symmetry. (See [158] for

the effects on higher-spin currents.) Denoting the Lagrangian of an arbitrary

conformal field theory by L(Φ, A), where Φ collectively represents all dynamical

fields and A is a background field coupling to the U(1) symmetry, the modular

group acts as follows:

T : L(Φ, A) 7→ L(Φ, A) + 1

4π
AdA,

S : L(Φ, A) 7→ L(Φ, c)− 1

2π
cdB. (2.45)

Eq. (2.45) induces the action of the modular group on the complexified conduc-

tivity of the U(1) symmetry of L(Φ, A). T simply shifts the Hall conductivity

by one unit; S inverts σ → −1/σ through its replacement of A with a dynam-

ical U(1) gauge field c and introduction of a new background field B via the

coupling − 1
2π
cdB.

Reminiscent of the “law of corresponding states” [144] (see Fig. 2.3) we can

11We define σ = limω→0 limT→0 σ(ω, T ). We only require σ for quantum Hall states described
at long distances by Chern-Simons theory, since we only need to know how the Hall conductiv-
ity changes across a transition. We caution that the order of limits may not generally commute
for either gapped [323] or gapless states [54].
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generate using Eq. (2.45) an effective description for a transition between any

two quantum Hall states related by a modular transformation to either the in-

sulator (σ = 0) or integer quantum Hall state (σ = 1). The pertinent subset of

transformations can be decomposed into two operations:

(i) addition of a Landau level = T ;

(ii) attachment of m units of flux = S−1T −mS.

Any transition from σ = j → j−1 between integer quantum Hall states is found

by adding j−1 Landau levels, i.e., applying T j−1 with j ∈ Z to Eq. (2.40). On the

other hand, the fractional quantum Hall transition, 1/(m + 1) → 0, is obtained

by applying S−1T −mS to Eq. (2.40). We can combine the operations of adding

a Landau level and flux attachment to find a description for the 1/3 → 2/5

transition using S−1T −2ST . The 2/3 → 1 transition – the lowest Landau level

particle-hole conjugate of the 1/3 → 0 transition – is obtained by acting on the

Lagrangian in Eq. (2.40) with T S−1T 2ST −1. Other transitions can be gener-

ated by further iteration of these methods. Hence, modular transformations

formalize the “law of corresponding states” [124, 125, 144]. Because we have

not included effects of disorder, we are, in a sense, effectively considering the

horizontal axis of Fig. 2.3.

In the remainder of the paper, we focus on the 1
m+1
→ 0 transition where the

even integer m ≥ 0; qualitatively similar arguments apply for other transitions.

Applying the modular transformation described above to (2.40), we find the

Lagrangian,

Lm = LIQHT(c) + Lmod(A), (2.46)
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where LIQHT(c) is given in Eq. (2.40) with the replacement A→ c and

Lmod(A) = −
1

2π
cdg − m

4π
gdg +

1

2π
gdA, (2.47)

with dynamical U(1) gauge fields c and g. Thus, the modular transformation

simply introduces additional Chern-Simons gauge fields coupling to the U(1) ⊂

U(N) gauge field Tr[a] inLIQHT. Appendix 2.2.9 lists the corresponding effective

Lagrangians, analogous to Eqs. (2.46) and (2.47), for other simple quantum Hall

transitions. When m = 0, we may integrate out c and g using their equations of

motion to recover the Lagrangian in Eq. (2.40); when m ≥ 2, we can no longer

integrate out g to recover an effective Lagrangian whose Chern-Simons terms

have integer levels.

It is straightforward to check (see Appendix 2.2.10 for details) using the argu-

ments given below Eq. (2.41) that Lm in Eq. 2.46 and its generalizations describe

a large class of fractional quantum Hall phase transitions, tuned by the fermion

mass. We assume these transitions are continuous for any m ≥ 0.

2.2.4 Superuniversality in the ’t Hooft large N limit

Our goal is to determine the correlation length and dynamical critical exponents

exhibited by Lm in Eq. (2.46) for m ≥ 0. The (inverse) correlation length expo-

nent, ν−1 = 1 − γψ̄ψ, measures the anomalous dimension γψ̄ψ of the operator

ψ̄ψ(x) 12, whose coefficientMψ is the tuning parameter for the various fractional

quantum Hall transitions we consider. Since our effective theories are Lorentz-

invariant, z = 1 automatically. Because Lm depends on the rank N of the U(N)

12The anomalous dimension is determined by the decay of the two-point function
⟨ψ̄ψ(x)ψ̄ψ(0)⟩ ∼ |x|−2(1+γψ̄ψ)

36



gauge group of a, it is necessary to choose a particular value of N at which to

evaluate ν. We choose N = ∞ and determine ν in a controlled ’t Hooft large

N limit. In Sec. 2.2.5, we will argue that the physics of Lm is independent of N .

Consequently, N = ∞ represents a reliable value of the parameter N at which

to determine the critical exponents of Lm.

In order to determine the correlation length exponent, it is helpful to first

simplify the Lagrangian Lm as follows: we set the background field A = 0; next,

we integrate out all Abelian gauge fields (i.e., b, c, and g) not minimally coupled

to ψ; finally, we decompose a = aSU(N)+aU(1)I, where aSU(N) is a SU(N) ⊂ U(N)

gauge field, aU(1) is an Abelian gauge field, and I is the N × N identity matrix.

After performing these steps, Lm becomes

Ls = iψ̄ D̸aψ +
kU(1)

4π
aU(1)daU(1) +

kSU(N)

4π
Tr
[
aSU(N)daSU(N) −

2

3
ia3SU(N)

]
, (2.48)

with kU(1) =
N2 −N −Nm
2(N + 1 +m)

and kSU(N) = −
1

2
− N . We included the one-loop

exact correction [301, 42] to the SU(N) ⊂ U(N) Chern-Simons level kSU(N). Al-

though Ls obscures the topological structure of our quantum critical state and

any gapped phase obtained from it when Mψ ̸= 0 13, the perturbative analysis is

unchanged.

To gain some intuition for the possible behavior of Ls (and, therefore, Lm),

suppose the fluctuations of aSU(N) were ignored. Then, Ls would effectively de-

scribe N flavors of fermions interacting with the Abelian Chern-Simons gauge

field aU(1). For such theories, it is known that γψ̄ψ = 1 + O( 1
kU(1)N

) at large N

[41]. Because kU(1) ∝ N as N →∞ for any fixed m, the effects mediated by aU(1)

could then be made arbitrarily small asN →∞. (This is true for the other quan-

13The allowed Wilson loop observables are not manifest in Chern-Simons Lagrangians with
non-quantized levels. If the Chern-Simons theory is to describe a gapped state, additional in-
formation is needed to specify the quasiparticle spectrum.
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tum Hall transitions considered in Appendix 2.2.9.) Consequently, since m only

appears in kU(1), γψ̄ψ would be independent of m at N =∞, i.e., superuniversal.

Our task now is to determine the extent to which this conclusion survives the

inclusion of aSU(N) fluctuations.

The ’t Hooft large N limit [271] (see [48] for a review) provides an expansion

within which to calculate γψ̄ψ. This limit, which is distinct from the limit that ob-

tains within large flavor expansions, is defined by taking the rank of the U(N)

gauge group N → ∞ with the ratios λSU(N) = N/kSU(N) and λU(1) = N/kU(1)

held fixed. Observables like γψ̄ψ are then calculated in an expansion in pow-

ers of 1/N ; the coefficient of a particular power of 1/N is generally a power

series in λSU(N) and λU(1). In addition, there could be non-perturbative λSU(N)

and λU(1) contributions to γψ̄ψ. Our result in this section ignores any such non-

perturbative corrections; our duality argument in the next section indicates such

corrections are absent at least when m = 0.

As an illustrative example of how large N scaling works, Fig. 2.4(a) decom-

poses the aSU(N) and aU(1) one-loop contributions to the fermion self-energy. In

our conventions, vertices scale as N0, while gauge field propagators come with

factors of k−1
SU(N) or k−1

U(1) depending upon whether aSU(N) or aU(1) propagates; ψ

propagators scale as N0. At large N , the aSU(N) contribution in Fig. 2.4(a) scales

as λSU(N), while the aU(1) correction scales as λU(1)/N . (Here, we have assumed

the U(N) coupling constant achieves its fixed point value, proportional to N0.)

Thus, the contribution of aU(1) in Fig. 2.4(a) is subdominant to that of aSU(N) as

N →∞ by a factor of 1/N . This is a general feature: in perturbation theory, the

’t Hooft large N limits of SU(N) and U(N) gauge theories give identical results

for shared observables [48]. For Chern-Simons gauge theories with U(N) gauge
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Figure 2.4: (a) One-loop fermion self-energy decomposed into SU(N) ⊂ U(N)
and U(1) ⊂ U(N) contributions. The closed oriented loop produces the relative
factor of N between the second and third diagrams. (b) The leading Feynman
diagrams contributing to γψ̄ψ in the ’t Hooft large N limit. Directed lines are
fermion propagators; wavy lines are U(N) gauge field propagators; a double
line is a SU(N) gauge field propagator; a dashed line denotes a U(1) gauge field
propagator; insertion of ψ̄ψ is represented by ⊗.

group, this relies on the 1/N suppression of diagrams containing closed loops

of aU(1) relative to the corresponding planar diagrams that instead contain loops

of aSU(N).

So long as |kU(1)| ∝ N as N → ∞, the effects of aU(1) are subdominant by a

factor of 1/N in the ’t Hooft large N limit. In particular, only the fluctuations

of aSU(N) contribute to γψ̄ψ at N = ∞. The planar contribution to γψ̄ψ scales

with N as N0 and consists of an infinite expansion in λSU(N); the first sub-planar

contribution scales as 1/N and consists of an infinite series in λSU(N) and λU(1).

Thus, the ’t Hooft expansion for γψ̄ψ has the form:

γψ̄ψ = f0(λSU(N)) +
1

N
f1(λSU(N), λU(1)) + . . . , (2.49)

where the planar term f0(λSU(N)) is a power series in λSU(N), the first sub-planar
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term f1(λSU(N), λU(1)) is a power series in λSU(N) and λU(1), and . . . represent

higher powers of 1/N which are expected to be subdominant in this expan-

sion. (The assumption that f0 and f1 are power series of their arguments is the

statement that we are ignoring possible non-perturbative contributions to γψ̄ψ.)

Because m only appears in λU(1), through its appearance in the effective Chern-

Simons level kU(1) of aU(1) (see Eq. (2.48) and Appendix 2.2.9), ν is insensitive to

the particular 1/(m + 1) → 0 transition at N = ∞. This is superuniversality in

the ’t Hooft large N limit.

The specific value of ν is determined by f0(λSU(N)) at N =∞. An important

point is that the ’t Hooft large N limits of the theories we consider remain non-

trivial even when N = ∞. For instance, |λSU(N)| = 1 for N = ∞, so that an

infinite number of terms generally need to be summed to determine f0(λSU(N)).

Here, we find γψ̄ψ in a controlled ’t Hooft large N limit, where it is necessary to

continue kSU(N) away from its physical value (given below Eq. (2.48)) such that

λSU(N) ≪ 1 and f0(λSU(N)) can be reliably approximated by the leading terms in

its expansion in λSU(N).

Figure 2.4(b) displays the leading contributions to γψ̄ψ arising from the fluc-

tuations of aSU(N)
14. In [85], it was shown that these two contributions can-

cel, i.e., γψ̄ψ = 0 to two-loop planar order or, equivalently, f0(λSU(N)) = 0 to

O(λ2SU(N)). Thus, at the critical point described by Lm in Eq. (2.46):

ν = 1 +O
(
λ3SU(N)

)
, (2.50)

for any m ≥ 0 in the controlled ’t Hooft large N limit. In perturbation theory,

the dependence on m, i.e., the particular fractional quantum Hall critical point,

14The one-loop vertex diagram, as well as one-loop and two-loop fermion self-energy di-
agrams do not contain logarithmic divergences and, consequently, do not contribute to γψ̄ψ
[42, 16, 85].
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appears at sub-planar order and is unobservable at N =∞.

2.2.5 N independence and duality

We now explore the degree to which the superuniversality of Eq. (2.50) persists

away from this controlled large N limit, i.e., when kSU(N) is continued back to

its physical value given below Eq. (2.48). We will use duality to argue that the

physics described by Lm is independent of the particular value of N appearing

in the Lagrangian and that one consequence of thisN independence is that ν = 1

away from the controlled ’t Hooft large N limit.

In Secs. (2.2.2) and (2.2.3), we showed that the effective Lagrangians describ-

ing the gapped phases that obtain from Lm for Mψ ̸= 0 do not depend on N .

It remains to argue that the physics of the intervening critical point could also

be independent of N . For this, we conjecture a duality that equates the long

wavelength behavior of the theory in (2.40) to that of a free Dirac fermion for

any integer N :

iΨ̄ /DAΨ+
1

2

1

4π
AdA←→ LIQHT(A). (2.51)

Remarkably, this duality implies that the physics described by LIQHT(A) does

not depend on the particular value of N appearing in its Lagrangian. While a

direct proof of Eq. (2.51) is not known, we can show that Eq. (2.51) is a con-

sequence of the web of bosonization dualities in 2 + 1 dimensions [137, 243]

(see Appendices 2.2.11 and 2.2.13 for details). Furthermore, (2.51) is the state-

ment of fermion particle-vortex duality [257, 285, 193, 137, 243] when N = 1.

Consequently, the accumulated evidence for the duality web likewise provides

support for Eq. (2.51). In the remainder, we study the consequences of Eq. (2.51).
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If the duality in Eq. (2.51) holds for all integers N ≥ 1, then ν must be in-

dependent of N for the theory in (2.40) and its “modular descendants,”, i.e.,

the theories of fractional quantum Hall transitions given by Lm in Eq. (2.46).

(See Appendix 2.2.11 for the Abelian Chern-Simons dual of Lm.) Furthermore,

choosing to determine ν at N = ∞, the specific value of ν should be captured

at the leading planar order in the ’t Hooft large N limit. This is because only

planar terms scale as N0 at large N ; sub-planar terms always have an explicit

dependence on N through their 1/N prefactors (recall that both kSU(N) and kU(1)

in Eq. (2.48) scale linearly with N ) and so they should not contribute to ν in any

planar expansion at N =∞.

Since ν = 1 exactly for the theory of a free Dirac fermion, Eq. (2.51) implies

the planar contribution to γψ̄ψ vanishes for the theory in (2.40). In the absence of

non-perturbative corrections to the ’t Hooft expansion in Eq. (2.50) whenm ≥ 2,

ν = 1 should also hold for transitions involving fractional states, e.g., 1
m+1
→ 0

with m ≥ 2, because m only enters sub-planar terms in perturbation theory.

In other words, duality suggests the critical theories considered in this paper

exhibit superuniversality with ν = z = 1.

2.2.6 Conclusion

In this work, we introduced new effective theories with an emergent U(N)

gauge symmetry (N > 1) for various fractional quantum Hall transitions. We

showed that these theories are superuniversal in a controlled ’t Hooft large N

limit and we argued that this conclusion holds more generality using duality.

Our theories function as an example that the effects of electron interactions and
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disorder can be disentangled from the phenomenon of superuniversality. Fur-

thermore, our theories provide examples of new dualities which are of funda-

mental interest and may have applications to other instances of quantum criti-

cality.

There are several directions of further study. It is important to better under-

stand nonperturbative corrections to our theories; for instance, additional study

of the lattice models in [82, 156] could provide useful insight. The theories in

this paper may have direct application to quantum Hall transitions in graphene

that can be controlled by varying an external electronic potential ([325] and ref-

erences therein). Perhaps the most important direction is to incorporate the

effects of disorder, which may account for the difference between the measured

and theoretically determined correlation length exponent.
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2.2.7 Appendix: Chern-Simons conventions

In this appendix, we collect basic facts and definitions for Chern-Simons theo-

ries in 2 + 1 dimensions. The Chern-Simons term for the U(N) gauge field a

is:

Tr
[
ada− 2

3
ia3
]
= Nϵµνρ(aRµ∂νa

R
ρ −

2

3
ifRSTaRµa

S
ν a

T
ρ ), (2.52)

where a = aRµ t
R for U(N) (algebra) generators tR with R ∈ {1, . . . , N2}. Our

normalization convention for these generators is the following: Tr[tRtS] = NδRS

and [tR, tS] = ifRST tT where fRST are the structure constants of U(N). We de-

note Abelian Chern-Simons terms:

AdB = ϵµνρAµ∂νBρ, (2.53)

where ϵtxy = 1.

In the absence of matter fields, only integral linear combinations of the fol-

lowing Chern-Simons terms appearing in Eq. (2.40) make well defined contri-

butions to a 2 + 1-dimensional effective action [62, 218]:

1

4π
Tr
[
ada− 2

3
ia3
]
,

1

4π
Tr[a]dTr[a],

1

2π
Tr[a]db,

1

4π
bdb. (2.54)

Since Tr[a] extracts the U(1) ⊂ U(N) component of a, we can think of Tr[a] as

a U(1) gauge field with 2π-quantized flux. The combination of a single Dirac
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fermion and half-integer Chern-Simons level for a in Eq. (2.40) yields a well

defined term in the path integral [207, 228, 9].

We regularize our effective theories with a Yang-Mills term for a and a

Maxwell term for the Abelian gauge fields. In a Yang-Mills regularization,

the Chern-Simons level k = −1/2 for the SU(N) ⊂ U(N) component of a re-

ceives a one-loop exact shift k → k + sign(k)N [301, 42]. This correction arises

from the interaction between the gauge fields contained in the Yang-Mills term.

If regularized by dimensional reduction [42], the Chern-Simons level is not

shifted (as the Yang-Mills interaction is no longer present). To describe (2.40)

within dimensional reduction, the Chern-Simons level for the SU(N) compo-

nent kDR = k + sign(k)N .

2.2.8 Appendix: Integer quantum Hall state and the insulator

In this appendix, we explain how the effective Lagrangian Eq. (2.41) in the main

text,

Leff [A] =
sign(Mψ)− 1

2

1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdA,

(2.55)

describes an integer quantum Hall state when the fermion mass Mψ < 0 and

a topologically trivial insulator when Mψ > 0. In the effective Lagrangians

written above and below, only relevant and marginal terms, in the renormaliza-

tion group sense, are written; irrelevant operators (like Yang-Mills and Maxwell

terms for the gauge fields) are understood to supplement Leff with a coefficient

that scales inversely with the cutoff of the effective theory.

Our strategy is to identify the integer quantum Hall state and the insulator
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through their electrical response to the U(1), i.e., electromagnetic, gauge field

A. This response is encoded in an effective response Lagrangian, obtained by

integrating out all dynamical degrees of freedom (e.g., ψ, a, and b in Eq. (2.40)).

Consequently, this effective Lagrangian only containsA. Using the relation Jµ =

δLeff [A]
δAµ , where Jµ is the electromagnetic current coupling to A, we can read off

the electrical response to an applied electromagnetic field A. Focusing on the

linear response of the system, we may terminate this effective Lagrangian at

quadratic order in A. As a simple example, consider the effective Lagrangian

LCS = 1
4π
AdA describing the integer quantum Hall state. The relation, Ji =

1
2π
ϵijEj , allows us to read off the Hall conductivity, σxy = 1, of this state, given

in units where e2 = ℏ = 1.

When Mψ < 0, the effective Lagrangian takes the form:

Leff(Mψ < 0) = − 1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdA. (2.56)

We will show how Eq. (2.56) describes an integer quantum Hall state by ap-

plying modular transformations to the rank/level duality U(N)1 ↔ SU(1)N

[202, 203, 109]:

− 1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]dA↔ N

4π
AdA. (2.57)

Note that since SU(1) is trivial, there are no dynamical gauge fields on the right-

hand side. Eq. (2.57) says that U(N) Chern-Simons theory at level k = −1 is

equivalent to the theory of N copies of the ν = 1 integer quantum Hall state,

i.e., a state with Hall conductivity equal toNe2/h. For instance, if the topological

field theory on the left-hand side of the duality in (2.57) (or its dual on the right-

hand side) is placed on a surface with boundary, there will be N chiral Dirac

fermions propagating along the edge. We now sequentially act on both sides of

the duality in (2.57) with ST −N−1, modular transformations defined in Eq. (2.45)
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in the main text. First acting by T −N−1, we obtain:

− 1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]dA− N + 1

4π
AdA↔ − 1

4π
AdA. (2.58)

Then acting by S, we find:

− 1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdA↔ − 1

4π
cdc− 1

2π
cdA.

(2.59)

The theory on the left-hand side of the duality in (2.59) is the effective La-

grangian Leff(Mψ < 0) given in Eq. (2.56). The theory on the right-hand side of

(2.59) is simply the effective hydrodynamic description of the integer quantum

Hall effect [292]. To see this, i.e., to see that the theory exhibits a Hall conduc-

tivity equal to one in units of e2/h, we may integrate out c using its equation of

motion to find:

− 1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdA↔ 1

4π
AdA. (2.60)

When Mψ > 0, the effective Lagrangian,

Leff(Mψ > 0) = − 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdA. (2.61)

The SU(N) ⊂ U(N) component of a is no longer present in the effective La-

grangian. Consequently, at low energies, it decouples from the remaining de-

grees of freedom: we assume that it confines. The U(1) ⊂ U(N) component of

a, i.e., Tr[a], and b remain in Leff(Mψ > 0). The equation of motion for Tr[a] sets

b = 0, up to gauge transformations. Thus,

Leff(Mψ > 0) = 0. (2.62)

This Lagrangian describes a topologically trivial insulator as the Maxwell term

for A is understood to supplement Leff(Mψ > 0).
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A related way to see that Leff(Mψ > 0) describes an insulator is to perform

a PSL(2,Z) field redefinition of the dynamical U(1) gauge fields Tr[a] 7→ ã

and b 7→ b̃ so that Leff(Mψ > 0) = 1
4π
ãdã − 1

4π
b̃db̃ − 1

2π
(ã − b̃)dA for odd N or

Leff(Mψ > 0) = 1
2π
ãdb̃ − 1

2π
ãdA for even N . These effective Lagrangians de-

scribe topologically trivial insulators (if no symmetry is preserved) of fermions

or bosons. There is no contradiction with the duality in (2.51) (or, alternatively,

restriction to odd N ), which says that Eq. (2.40) is dual to a free fermion, if we

allow ourselves to “stabilize” by a trivial insulator of fermions [29].

2.2.9 Appendix: Effective Lagrangians for fractional quantum

Hall transitions

In this appendix, we list the effective Lagrangians of the form given in Eq. (2.46),

Lm = LIQHT(c) + Lmod(A), (2.63)

where LIQHT(c) is given by Eq. (2.40) with the replacement A → c and Lmod(A)

is determined by the particular modular transformation for a few other frac-

tional quantum Hall transitions. Because LIQHT(c) is the same in each effective

Lagrangian, we only specify Lmod(A). We also determine the effective Chern-

Simons level for aU(1) which scales as |kU(1)| ∝ N for N →∞.
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σ = 1/3→ 2/5 transition

The σ = 1/3 → 2/5 transition is obtained by acting on Eq. (2.40) by S−1T −2ST .

We find:

Lmod(A) =
1

4π
cdc− 1

2π
cdg − 2

4π
gdg +

1

2π
gdA. (2.64)

The corresponding effective Chern-Simons level for aU(1) in (2.48) for this tran-

sition is kU(1) = −
N

2
+

N2

N + 5/3
.

σ = m/(m+ 1)→ 1 transition

The σ = m/(m + 1) → 1 transition is obtained by acting on Eq. (2.40) by

S−1T mST −1. We find:

Lmod(A) = −
1

4π
cdc− 1

2π
cdg +

m

4π
gdg +

1

2π
gdA+

1

4π
AdA. (2.65)

The corresponding effective Chern-Simons level for aU(1) in (2.48) for this tran-

sition is kU(1) = −
N

2
+

N2

N + 1/(m+ 1)
.

2.2.10 Appendix: Fractional quantum Hall state and the insula-

tor

In this appendix, we show how the effective Lagrangian in Eq. (2.46) in the main

text,

Lm = LIQHT(c) + Lmod(A), (2.66)

49



where

LIQHT(c) = iψ̄ D̸aψ −
1

2

1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdc

(2.67)

and

Lmod(A) = −
1

2π
cdg − m

4π
gdg +

1

2π
gdA, (2.68)

describes a 1/(m + 1) → 0 transition when m ≥ 0. Similar to Appendix 2.2.8,

when a fermion mass term Mψψ̄ψ is added, we may integrate it out below the

scale set by |Mψ| to find:

Leff =
sign(Mψ)− 1

2

1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb

− 1

2π
bdc− 1

2π
cdg − m

4π
gdg +

1

2π
gdA. (2.69)

We will show that Eq. (2.69) describes a fractional quantum Hall effect with Hall

conductivity equal to 1/(m+1) (in units of e2/h) when Mψ < 0 and an insulator

when Mψ > 0.

When Mψ < 0,

Leff(Mψ < 0) =− 1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb

− 1

2π
bdc− 1

2π
cdg − m

4π
gdg +

1

2π
gdA. (2.70)

Applying S−1T −mS2T −N−1 to the rank/level dual pair [202, 203, 109] in (2.57),

we find:

− 1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdc− 1

2π
cdg − m

4π
gdg +

1

2π
gdA

↕

− 1

4π
bdb− 1

2π
bdc− 1

2π
cdg − m

4π
gdg +

1

2π
gdA.

(2.71)
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Thus, Lψ(Mψ < 0) (the theory in the top line of (2.71)) is dual to the theory in

the bottom line of (2.71). We now sequentially integrate out b and c so that the

bottom line of (2.71) simplifies to

−m+ 1

4π
gdg +

1

2π
gdA. (2.72)

This is the hydrodynamic effective Lagrangian for the fractional quantum Hall

state with Hall conductivity equal to 1/(m+ 1) [292]. Thus, we find:

− 1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdc− 1

2π
cdg − m

4π
gdg +

1

2π
gdA

↕

−m+ 1

4π
gdg +

1

2π
gdA. (2.73)

When Mψ > 0,

Leff(Mψ > 0) = − 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdc− 1

2π
cdg − m

4π
gdg +

1

2π
gdA.

(2.74)

The SU(N) ⊂ U(N) component of a again decouples and we assume it confines.

The equation of motion for Tr[a] sets b = 0; the equation of motion for c sets

g = 0 and we are left with the effective Lagrangian for an insulator:

Leff(Mψ > 0) = 0. (2.75)

51



2.2.11 Appendix: Duality argument and Abelian Chern-

Simons duals

Duality argument

In the first part of this appendix, we argue that Eq. (2.40) is in the same uni-

versality class as a free fermion. Our demonstration applies the argument of

[137, 243] to the bosonization duality [85, 3, 2, 4, 109],

|DAϕ|2 − |ϕ|4 +
1

4π
AdA

↕ (2.76)

iψ̄Daψ −
1

8π
Tr[ada− 2

3
ia3]− 1

2π
Tr[a]dA− N − 1

4π
AdA,

that relates the theory of a Wilson-Fisher boson ϕ to the theory of a U(N) Chern-

Simons gauge field a coupled to a Dirac fermion ψ. Applying the modular trans-

formation ST −2 to “both sides” of this duality (we introduce c in the Wilson-

Fisher theory and b in the gauged Dirac theory in applying the S transforma-

tion), we find the low-energy equivalence:

|Dcϕ|2 − |ϕ|4 −
1

4π
cdc− 1

2π
cdA↔ LIQHT(A), (2.77)

with LIQHT(A) given in Eq. (2.40). But the gauged Wilson-Fisher theory on the

left-hand side of (2.77) is also dual to the theory of a free Dirac fermion [132,

133, 39, 196]. Thus, we relate the low-energy physics of the theory of a free

Dirac fermion to that of our theory in Eq. (2.40),

iΨ̄ /DAΨ+
1

2

1

4π
AdA↔ LIQHT(A). (2.78)
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2.2.12 Appendix: Abelian Chern-Simons duals

In the second part of this appendix, we provide the Abelian Chern-Simons du-

als for the U(N) Chern-Simons theories studied in the main text and listed in

Appendix 2.2.9 that are implied by the duality in (2.51) (copied below):

iΨ̄ /DAΨ+
1

2

1

4π
AdA↔ LIQHT(A). (2.79)

The strategy is identical to that of [243]: we perform a modular transformation

on each side of the duality (2.79) and then identify the resulting theories. Duality

implies that ’t Hooft largeN limit calculations for the theories with non-Abelian

gauge group can be reinterpreted in terms of their Abelian duals.

Dual pair for the σ = 1/(m+ 1)→ 0 transition

Acting on (2.79) with S−1T −mS, we find the duality:

iΨ̄ /DãΨ+
1

2

1

4π
ãdã− 1

2π
ãdb̃− m

4π
b̃db̃+

1

2π
b̃dA

↕ (2.80)

iψ̄ D̸aψ −
1

2

1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdc

− 1

2π
cdg − m

4π
gdg +

1

2π
gdA

where ã, b̃, b, c, and g are Abelian gauge fields and a is a U(N) gauge field.
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Dual pair for the σ = 1/3→ 2/5 transition

Acting on (2.79) with S−1T −2ST , we find the duality:

iΨ̄ /DãΨ+
3

2

1

4π
ãdã− 1

2π
ãdb̃− 2

4π
b̃db̃+

1

2π
b̃dA

↕ (2.81)

iψ̄ D̸aψ −
1

2

1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdc

+
1

4π
cdc− 1

2π
cdg − 2

4π
gdg +

1

2π
gdA

where ã, b̃, b, c, and g are Abelian gauge fields and a is a U(N) gauge field.

Dual pair for the σ = m/(m+ 1)→ 1 transition

Acting on (2.79) with T S−1T mST −1, we find the duality:

iΨ̄ /DãΨ−
1

2

1

4π
ãdã− 1

2π
ãdb̃+

m

4π
b̃db̃+

1

2π
b̃dA+

1

4π
AdA

↕ (2.82)

iψ̄ D̸aψ −
1

2

1

4π
Tr
[
ada− 2

3
ia3
]
− 1

2π
Tr[a]db− N + 1

4π
bdb− 1

2π
bdc

− 1

4π
cdc− 1

2π
cdg +

m

4π
gdg +

1

2π
gdA+

1

4π
AdA

where ã, b̃, b, c, and g are Abelian gauge fields and a is a U(N) gauge field.

2.2.13 Appendix: Particle-hole transformation within the low-

est Landau level

For the free Dirac theory in the duality in (2.51), the particle-hole transformation

with respect to a filled Landau level can be defined as follows. First, the fields
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are transformed by the anti-unitary (i 7→ −i) transformation that consists of the

product of time-reversal and charge-conjugation which takes t 7→ −t,

Ψ 7→ −γtΨ∗,

(At, Ax, Ay) 7→ (−At, Ax, Ay), (2.83)

and then the Lagrangian is shifted by a filled Landau level using the T transfor-

mation.

The theory of a free Dirac fermion in (2.51) is invariant under a particle-

hole transformation with respect to a filled Landau level. Duality implies that

the theory in Eq. (2.40) likewise enjoys this symmetry; we believe particle-hole

symmetry is realized quantum mechanically and is not visible in the classical

Lagrangian of Eq. (2.40) for N > 1 (see [5] for a recent discussion of this phe-

nomena in related dualities). It would be interesting to see how this symmetry

constrains the conductivity (along with other observables) of different quantum

critical states [239, 93].

There is second anti-unitary transformation that we expect to leave physical

observables invariant even though it is not a symmetry of Eq. (2.40). It is defined

as follows: first, time-reversal acts on the dynamical fields as

ψ 7→ γyψ,

(at, ax, ay) 7→ (at,−ax,−ay),

(bt, bx, by) 7→ (bt,−bx,−by); (2.84)

second, the product of time-reversal and charge-conjugation acts on A as

(At, Ax, Ay) 7→ (−At, Ax, Ay); (2.85)

Finally, the Lagrangian in Eq. (2.40) is shifted by a filled Landau level with the

T transformation. This transformation can be employed to generate alternative
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effective descriptions for the particle-hole conjugate of a given quantum Hall

phase transition.

56



CHAPTER 3

ELECTRON HYDRODYNAMICS

The theory of classical hydrodynamics (e.g. of water) is one of the first histori-

cally successful descriptions of a strongly interacting system. Forgoing an exact

microscopic description of macroscopic number of degrees of freedom, liquids

were instead characterized by a few field quantities subject to conservation laws

(e.g. momentum conservation) and constitutive equations (e.g. stress tensor -

velocity relation). In condensed matter, the (generalized) hydrodynamic ap-

proach is therefore understood to be an effective theory of “conserving approx-

imations,” i.e. where conservation laws are at least approximately obeyed. As

a non-perturbative technique, hydrodynamics and its applicability in strongly-

correlated electronic systems has been of great interest (see [74, 101] for a re-

view).

As our ability to create clean samples improve, experiments are now report-

ing that hydrodynamic descriptions of electronic fluids may be physically real-

izable [52, 17, 146, 147, 266, 195, 89, 97, 159, 96]. In particular, the momentum-

conserving electron-electron scattering length lee is thought to be sufficiently

short such that momentum is at least approximately conserved. However, a key

difficulty in directly observing the hydrodynamic regime is that the electron-

electron scattering length lee is hard to measure. Therefore, to properly iden-

tify the hydrodynamic regime, it is important to disentangle contributions of

lee from other length scales in any purportedly hydrodynamic observable (e.g.

transport). In what follows, we critically examine these issues and search for

sharp signatures of electron hydrodynamics.
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3.1 Quantum aspects of hydrodynamic transport from weak

electron-impurity scattering

This section is adapted from a PRB paper [116] with Vadim Oganesyan and

Eun-Ah Kim.

Recent experimental observations of apparently hydrodynamic electronic

transport have generated much excitement. However, the understanding of the

observed non-local transport (whirlpool) effects and parabolic (Poiseuille-like)

current profiles has largely been motivated by a phenomenological analogy to

classical fluids. This is due to difficulty in incorporating strong correlations in

quantum mechanical calculation of transport, which has been the primary an-

gle for interpreting the apparently hydrodynamic transport. Here we demon-

strate that even free fermion systems, in the presence of (inevitable) disorder,

exhibit non-local conductivity effects such as those observed in experiment be-

cause of the fermionic system’s long-range entangled nature. On the basis of

explicit calculations of the conductivity at finite wavevector, σ(q), for selected

weakly disordered free fermion systems, we propose experimental strategies for

demonstrating distinctive quantum effects in non-local transport at odds with

the expectations of classical kinetic theory. Our results imply that the obser-

vation of whirlpools or other “hydrodynamic” effects does not guarantee the

dominance of electron-electron scattering over electron-impurity scattering.
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3.1.1 Introduction

Recent experimental reports of peculiar transport phenomena in ultraclean

graphene[52, 17, 146, 147, 266] and other materials[195, 89, 97] have generated

much excitement regarding the role of hydrodynamic transport in these ex-

periments. In the absence of microscopic understanding of the hydrodynamic

transport of electrons, these experiments have been interpreted largely through

analogy with classical fluids. Although parabolic velocity profiles[147, 266]

and whirlpools[17] are familiar hydrodynamic phenomena in classical fluids,

reliance on this analogy deprives us of an angle to learn the role of quantum

mechanics in experiment. Most importantly, the question of the role of impuri-

ties, always present in materials, remains open although it has been clear that

they complicate any analysis[10, 161].

Modern interest in the hydrodynamic theory of electronic transport was mo-

tivated by a sore need for a theoretical framework to describe quantum critical

transport in a regime dominated by electron-electron scattering.[54, 256, 241]

Exotic possibilities have been predicted for graphene near the charge neutral-

ity point,[100, 77, 75, 199, 277, 161] and electron viscosity has been linked to

the strange metal normal state of cuprate superconductors[58, 182, 181, 317].

However, a microscopic understanding of such hydrodynamic transport is chal-

lenging due to the inherent theoretical difficulty associated with the strongly

correlated regime. Pioneering works used kinetic theory to calculate the

shear viscosity for graphene[199, 23, 220] and for 2D Fermi liquids[153], yield-

ing non-trivial predictions. However, as the role of (unavoidable) impurity

scattering has primarily been treated phenomenologically via relaxation time

approximations[49, 277, 161, 180, 266], it has not been examined in microscopic

59



detail.

In this paper, we evaluate the effects of impurity scattering, and identify

signatures of the quantum nature of electrons, in the phenomena of whirlpool

formation and parabolic current profiles. To do so, we explicitly calculate the

non-local conductivity σ(q) for free electrons scattering off weak impurities. In

contrast to a classical Maxwell-Boltzmann distributed gas, in which the shear

viscosity is independent of density[191], our principal result is that viscous ef-

fects have a distinctive dependence on carrier concentration. This arises because

Fermi statistics introduces a density-dependent velocity scale vF ∼
√
ne (in 2D)

and restricts scattering to the vicinity of the Fermi surface, so that scattering

is determined by the density of states. We map out experimental strategies to

reveal the quantum nature near the bottom of band and in the vicinity of van

Hove singularity.

3.1.2 Phenomenology and classical hydrodynamics

The phenomenological description of zero-frequency viscous transport[277,

161] extends Drude theory by including the kinematic shear viscosity (i.e. coef-

ficient of momentum diffusion) as

E =A
(
γ − ν∇2

)
J (3.1)

where A is a dimensionful prefactor (m/(nee2) for Drude theory), γ is the cur-

rent scattering rate, and ν is the kinematic shear viscosity. This equation has a

characteristic length scale rd ≡
√
ν/γ, which we dub the viscosity length scale.

Note that in the limit of γ → 0, Eq. 3.1 becomes a linearized Navier-Stokes
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equation (assuming J ∝ p), with ν the usual fluid viscosity. 1 Eq. (3.1) amounts

to a Taylor expansion in momentum of the usual Drude response (at zero fre-

quency). Hence this equation applies to any system with current; it is agnostic

to whether the system is classical or quantum.

The existence of the length scale rd ≡
√
ν/γ, associated with the kinematic

shear viscosity ν, immediately leads to the familiar hydrodynamic phenomena

of parabolic current profiles and whirlpool formation. To see this, one can solve

Eq. (3.1) for the local current density J(r). For no-slip boundary conditions,

the longitudinal flow down a rectangular channel of width W is given by the

formula[277]

Jx(y)W

I
=

(
1−

cosh y
rd

cosh W
2rd

)
1

1− 2rd
W

tanh
(
W
2rd

) (3.2)

As shown in Fig. 3.1a, the flow profile is rectangular for rd ≪ W and parabolic

for rd ≫ W . If one instead injects current laterally across the channel, as shown

in Fig. 3.1b, whirlpools of radius ∼ rd will form.[277, 161]

For a 2D classical (Maxwell-Boltzmann) ideal gas of particles scattering off

of dilute impurities, the velocity is set by temperature T via the equipartition

theorem as v =
√

2kBT/me. Since the mean free path is set by the cross section

σimp and the number density nimp of impurities as lmfp ∼ 1/(nimpσimp),2 the scat-

tering rate is γ = v/lmfp, independent of gas density. Moreover, it is known[172]

that the kinematic shear viscosity for weakly interacting classical gas is given

1Although the definition of shear viscosity in the absence of momentum conservation
is controversial, we take Eq. (3.1) as a phenomenological definition of viscosity following
Refs.[277, 161]

2This is slightly different from Maxwell’s original model [191] of rigid spheres, where lmfp ∼
1/(ngasσgas) since the collisions are with other gas particles.
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(a)

(b)

Figure 3.1: Results from solving Eq. (3.1) with no-slip boundary conditions,
taken from Torre et al.[277] (a) A plot of the flow profile through a rectangular
channel given by Eq. (3.2) for various values of rd/W . For steady flow through a
rectangular channel, the normalized current flow is rectangular for rd ≪ W and
parabolic for rd ≫ W . (b) A heatmap of the potential ϕ and current streamlines
for a current source and sink at x0 and −x0, respectively. White/black stream-
lines correspond to high/low current density. One finds that vortices form on
the scale of rd.

by

ν ∼ vlmfp. (3.3)

Hence in this classical system with impurities, the shear “viscosity” ν (phe-

nomenologically defined in Eq. (3.1)) and the vortex radius rd ∼ lmfp will be

independent of the gas density as sketched in Fig. 3.2a.

Model and Formalism – The finite q conductivity σ(q) is related to the viscosity
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(a) (b)

Figure 3.2: (a) A plot of rd against (electron) gas density for the classical gas with
impurities. The vortex radius is density-independent in this case. (b) The equiv-
alent plot for a degenerate electron gas with a parabolic dispersion, at u = 0.1 ℏ2

ma
.

We measure rd and ne in units of the lattice constant a and a−2, respectively, and
introduced a dimensionless measure of disorder strength ũ = uma

ℏ2 so that the
quantity rdũ2 is independent of disorder strength.

ν by inverting Eq. (3.1), which in the limit of small momenta gives

J =(σ0 − σ2∇2)E (3.4)

where σ0 and σ2 are the O(q0) and O(q2) pieces of σ(q), respectively; the term

linear in q vanishes by inversion symmetry. These new parameters are related

to the collision rate and viscosity of Eq. (3.1) as σ0 = 1/(Aγ) and σ2 = −ν/(Aγ2).

In terms of σ0 and σ2, the viscosity length scale rd is

rd ∼
√
−σ2
σ0

(3.5)

Of course, the conductivity σij is in actuality a rank-2 tensor, and hence (σ2)
ij
αβ

is a rank-4 tensor. We have suppressed the tensor indices because the relevant

components are parametrically equivalent,3 and will be using at −(σ2)xxxx/σxx0 as

our estimate for r2d. Often, transport calculations are done in the q → 0 limit.

3There are subtleties regarding the formal equivalence between σ2 and the shear viscosity
ν which we are ignoring[22] in favor of the phenomenological definition of viscosity given by
Eq. (3.1). Ultimately, we are interested in the experimental observable rd, so the subtleties in the
definition of viscosity do not pertain to us.
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However, obtaining non-local transport phenomena requires calculating at fi-

nite q, in particular σ2 ∝ ν. The presence of finite q significantly complicates the

calculations,[175] as it breaks spatial symmetries and introduces angular depen-

dencies in the integrand.

For our microscopic fermion model with weak impurity scattering, we con-

siderH = Hkin+Himp with the kinetic termHkin and the impurity potentialHimp

given by

Hkin =
1

β

∑
ikn

ξkc
†
k,ikn

ck,ikn , (3.6)

Himp =
1

β

∑
ikn

1

β

∑
iqn

∫
d2q

(2π)2
V (k)c†

k+,ik+n
ck−,ik−n

. (3.7)

Here ξk = ϵk − µ is the dispersion measured relative to the chemical potential,

(k±, ik±n ) = (k± q/2, ikn ± iqn/2) and V (k) is the impurity potential in momen-

tum space. We work in the T → 0 limit. For simplicity, we consider a Gaussian-

distributed impurity potential where ⟨V (x)⟩ = 0 and ⟨V (x)V (y)⟩ = u2δ(x− y).

Thus, the disorder line transfers all momenta with equal weight u2 but transfers

no frequency. For the most part we will be content with only the perturbative

treatment of disorder, which is expected to break down near band edges (dilute

electrons or holes) and at the van Hove singularity.

To calculate the conductivity, we use the Kubo formula

σij(q, ω + i0+) =
i

ω + i0+

[
Πij(q, ω + i0+) +

nee
2

m
δij
]

(3.8)

where ne is the average carrier density andm is the particle mass4. This requires

us to calculate the current-current correlator Πij . As we are interested in DC

non-local response, we will be working in the limit ω → 0 and vF q ≪ γ, where

4The mass generically has tensor structure which we have suppressed here for ease of pre-
sentation, as the diamagnetic piece will not play any significant role throughout this paper
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γ = −2 ImΣ(q, ω) is the scattering rate.5 We can separate contributions to Πij

into self-energy and vertex corrections; vertex corrections are negligible in this

limit, as shown in the Appendix. For the self-energy Σ, we will use first Born

approximation6

Σ(q, iqn) = u2
∫

d2k

(2π)2
G0(k, iqn) (3.9)

where G0(q, iqn) = (iqn − ξq)
−1 is the free Green’s function. In addition, we

will be ignoring the logarithmically UV divergent ReΣ by approximating it as

a constant, in which case it amounts to a shift of µ. We also ignore the crossing

diagrams and self-consistency diagrams of the self-energy.

Since we are only interested in dissipative response, using spectral function

techniques we can rewrite the Kubo formula as

Reσij(q, ω)

=

∫ 0

−ω

dx

4π

d2k

(2π)2
A (k−, x)A (k+, x+ ω)

−ω
vi(k)vj(k) (3.10)

where A(k, ω) is the spectral function and vi(k) =
∂ϵk
∂ki

is the current vertex fac-

tor (or velocity).7 In 3D the relevant integrals can be evaluated via contour

integration,[175] but this approach cannot be extended to 2D. Hence we eval-

uate Eq. 3.10 numerically. To obtain σ0 and σ2 as a function of carrier density ne,

for each fixed density we evaluate σij at fixed small ω (= 10−9 ℏ
ma2
≈ 450 KHz

for a lattice constant a = 5Å) for a number of momenta qa ≪ u2m2a2/ℏ2 and

perform a parabolic fit. For additional details, see the Appendix.

5Although in general this limit requires a self-consistency check, for our disorder configura-
tion Σ is independent of q, the regime always exists for sufficiently small q.

6Recall that the O(u1) piece amounts to a shift of the chemical potential µ, and thus can be
ignored.

7We assume that the diamagnetic term and the paramagnetic piece coming from Im 1/(ω +
iϵ)Re⟨JJ⟩ cancel.
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3.1.3 Hydrodynamic transport and quantum effects

To target the manifestation of Fermi statistics through a density-dependent ve-

locity, we consider a system with Fermi energy near the edge of a band. The

dispersion is well approximated by the parabolic dispersion ϵk = k2/(2m).

The chemical potential µ is measured relative to the band bottom, i.e. ne =

mµ/(2π). In this case, density of states is constant in 2D and the scattering

rate γ = −2 ImΣ(q, ω) = u2m is also a constant. We use Eq. (3.10) to evaluate

Reσij(q, ω → 0). In our approach, σ0 reproduces the known DC conductivity

result σ0 = nee2

mγ
. Extracting the viscosity length scale rd according to Eq. (3.5), we

obtain the result shown in Fig. 3.2b, where we have plotted rdũ2, where ũ = uma
ℏ2

is the dimensionless disorder strength for lattice constant a.

The numerical results follow rd ∼
√
ne, as expected from the fact that the

mean free path lmfp is the only length scale of our model and lmfp ∼ vF/γ ∼
√
ne/(mγ). Such density dependence of the viscosity length scale is in clear con-

trast to the density-independent classical result of Fig. 3.2a. For an experimental

test of our prediction, the order of magnitude of rd needs to be experimentally

accessible. The scale of rd will depend on the disorder strength in general, with

rd ∝ 1/u2 within the first Born approximation. To obtain rd ≈ 1µm, assuming m

is a free electron mass and a ≈ 5Å, we need u ≈ .02 eV Å.

We now turn to the effect of density of states on hydrodynamic transport. To

see this effect in 2D, we propose tuning the Fermi level through the van Hove

singularity. The recently developed experimental tuning parameters such as

twist angle (in Moire systems[312]) and uniaxial strain (in bulk crystals such as

Sr2RuO4[20]) could enable experimental tests of the proposal below. For our

calculation, we work in the limit where the impurity scattering rate is paramet-
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rically smaller than the distance δµ to the van Hove point, i.e. γ ≪ δµ, to have

asymptotic control. In the vicinity of a van Hove singularity, we consider the

model Eq. (3.6-3.7) with the dispersion ξk = (k2x − k2y)/(2m) − δµ, with δµ mea-

suring the distance to the van Hove singularity. This dispersion corresponds to

considering only the vicinity of (π, 0) in the square lattice tight-binding model.

We regulate UV divergences in the continuum dispersion using a square cutoff

|kx|, |ky| < Λ. Now the self-energy is given by

ImΣ(q, ω) = −mu
2

2π
Re coth−1

(
Λ√

−2m|ω + δµ|+ Λ2

)
(3.11)

The logarithmic IR singularity at δµ = ω = 0 in the self-energy Eq. (3.11) cap-

tures the enhancement in impurity scattering due to the logarithmically diverg-

ing density of states near the van Hove singularity.

Fig. 3.3 shows the computational results of the viscosity length scale rd in

the vicinity of the van Hove singularity. To convert from δµ to ne − nvH, one

uses the relation ne − nvH =
∫ δµ
0
ρ(x)|x| dx, where ρ(µ) is the density of states

as a function of chemical potential. The singular suppression of rd reflects a

diverging scattering rate as expected on the grounds of dimensional analysis:

rd ∼ vF/ImΣ, so that rd → 0 as δµ → 0. We expect an appropriate resumma-

tion of self-consistency diagrams to soften the singularity as impurity scattering

blurs out the Fermi surface, and hence the van Hove point. This is expected

of any van Hove effect in real systems. Nevertheless, the suppression of the

viscosity length scale rd is expected in the vicinity of the van Hove point. A con-

firmation of such suppression will be an unmistakable signature of a quantum

effect.

Recent experimental observations of the current flow profile in narrow chan-

nels [147, 266] and of negative non-local resistance from whirlpools [17] indicate

67



Figure 3.3: A plot of rdũ2 against electron density for u = 0.5 ℏ2
ma

, where the
Van Hove singularity is chosen to sit at nea2 = 3. Notice that rd decreases on
approach to the van Hove point due to the scattering enhancement from the
logarithmically diverging density of states. The asymmetry about the van Hove
point is a reflection of the anisotropy of the dispersion; we are only considering
a single van Hove point corresponding to (π, 0) in a square lattice tight-binding
model. The blue shaded region denotes the regime where ne − nvH ≪ γ and we
expect self-consistent resummation of the self-energy to smooth out the singu-
larity.

that the above predictions can be tested. In particular, the ready tunability of

Moire systems such as twisted bilayer graphene[162, 312] would allow access

to the carrier density dependence of the viscosity length scale rd ∼
√
ne and the

suppression of rd in the vicinity of a van Hove singularity.

Finally, we comment on the finite frequency response, shown in the Ap-

pendix. An expansion of the finite frequency conductivity in the low frequency

limit yields ∣∣∣∣σ2(ω)σ0(ω)

∣∣∣∣ ≈ r2d(1 +Bω2). (3.12)

Near the band edge, we find r2d ∼ v2F/γ
2 and B ∼ 1/γ2, so r2d/B ∼ v2F is a

disorder-independent quantity. At frequencies ω ≳ γ, the sign of σ2 changes,

signaling that the current oscillations are out of phase with the drive. For
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graphene, γ has been estimated to be 650 GHz.[17] In this regime, small finite

momentum oscillations enhance rather than suppress the conductivity; we ex-

pect the formation of current stripes.

3.1.4 Summary and Discussion

To summarize, we considered hydrodynamic transport in a microscopic model

of electrons under weak impurity scattering. The motivation was two-fold:

(1) to study the effect of disorder and (2) to reveal quantum aspects. We

have shown that apparently hydrodynamic phenomena such as formation of

a parabolic current profile and a whirlpool can be caused entirely by weak dis-

order scattering. For this, we have explicitly calculated the viscosity length scale

rd, which sets the whirlpool size and the curvature of the current flow profile,

by calculating the non-local conductivity σ(q) and expanding it in powers of q.

Furthermore, we proposed experimental strategies to access quantum aspects

of such transport phenomena by tracking carrier density dependence of rd and

tuning to the vicinity of a van Hove point. These distinctly quantum signatures

arise due to the long-range entangled nature of the free fermion system (i.e. its

statistics).

Our results raise the question of how to distinguish impurity scattering ef-

fects from electron-electron interaction effects in experiments exhibiting hydro-

dynamic transport, namely parabolic current profile and whirlpool formation,

also raised in Ref. [266]. Indeed, viscosity itself needs to be carefully defined

in the presence of impurities as momentum conservation is violated; finite q

conductivity and the stress-strain correlator, both of which give viscosity in the
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clean limit,[22] are not necessarily linked in a dirty system.[28] The role of im-

purity scattering in other hydrodynamic transport phenomena such as unusual

temperature dependence of charge transport such as the Gurzhi effect [60, 146],

thermal transport anomalies [52, 89], and magnetotransport [195] will be topics

of future theoretical studies. Here we focused on delta-function correlated dis-

order; finite-range disorder would introduce a new length scale, and it would be

interesting to understand the influence of this length scale on rd and other trans-

port phenomena. Our results open doors to considering other forms of scatter-

ing, including electron-phonon and umklapp scattering in the future. Another

interesting future direction is the nature of the boundary, which is known to

play an important role in determining viscous transport[143], in the weakly dis-

ordered regime. Last but not least, it would be interesting to revisit ultraclean

two-dimensional electron gases [60] to test our predictions of density depen-

dence of rd.
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3.1.5 Appendix: Feynman Rules

The Feynman rules for our model are the following:

where we’ve defined (k±, ik±n ) ≡ (k ± q
2
, ikn ± iqn

2
). The solid line corresponds

to the free electron propagator G0(k, ikn) =
1

ikn−ξk
. The dashed line corresponds

to the impurity interaction, which transfers all momenta but no frequency, and

is momentum independent. The impurity scattering vertex is just unit; as noted

it transfers momenta but no frequency. The current vertex, with an external

photon line with polarization i, has a current vertex factor corresponding to

velocity.

3.1.6 Appendix: Kubo Formula: Spectral Function

Calculating the current-current correlator involves evaluating diagrams of the

form shown in Fig. 3.4a. In the regime of interest of this paper, namely ω → 0,
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(a) Current-current correla-
tor without vertex correc-
tions

(b) The first Born approxi-
mation of the self-energy

(c) Lowest order vertex cor-
rection

Figure 3.4: Feynman diagrams

vertex corrections can be neglected at q2 order in the conductivity σ, as shown

in Appendix 3.1.8. Therefore, all that remains are self-energy corrections to the

fermion propagator.

When G(k, ikn) has self-energy corrections, i.e. G−1(k, ikn) = ikn − ξk −

Σ(k, ikn), branch cuts pose complications if one wants to perform Matsubara

sums via contour integration. To get around this issue, we use the spectral func-

tion approach, which relies on the identity:

G(k, ikn) =

∫
dx

2π

A(k, x)

ikn − x
(3.13)

A(k, ω) =
−2 ImΣ(k, ω)

[ω − ξk − ReΣ(k, ω)]2 + [ImΣ(k, ω)]2
(3.14)

where A(k, ω) ≡ −2 ImG(k, ω) is called the spectral function. It is a fact that

A(k, ω) ≥ 0.[188] This identity allows us to perform the Matsubara sum, moving

the difficulties of evaluation to the integration. We define k± ≡ k± q
2

for ease of

presentation.
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Παβ(q) =(−1)
∫

d2k

(2π)2
dxdy

(2π)2
A
(
k−, x

)
A
(
k+, y

) nF (x)− nF (y)
iqn + x− y

vα(k)vβ(k)

(3.15)

ImΠαβ(q, ω) =(−1)
∫

d2k

(2π)2
dxdy

(2π)2
A
(
k−, x

)
A
(
k+, y

) [
nF (x)− nF (y)

]
× (−π)δ(ω + x− y)vα(k)vβ(k) (3.16)

=

∫
d2k

(2π)2
dx

4π
A
(
k−, x

)
A
(
k+, x+ ω

) [
nF (x)− nF (x+ ω)

]
vα(k)vβ(k)

(3.17)

In these equations, we suppressed i0+ in the frequency, as we don’t expect this

to play any role due to the presence of an non-zero imaginary self-energy.

To verify this is correct, for the fermion with parabolic dispersion we plotted

the zero-momentum conductivity σ0(ω) and find that it matches precisely with

σ0(ω) =
k2F
4πm

γ
ω2+γ2

, as shown in Fig. 3.5. This corroborates our Drude theory

expectations and that σ0 =
k2F e

2

4πmγ
= nee2

mγ
as stated in the main text.

3.1.7 Appendix: Self-Energy

In the model as stated in the main text, we need to evaluate the integral

Σ(q, iqn) = u2
∫

d2k

(2π)2
G0(k, iqn) (3.18)

corresponding to the diagram shown in Fig. 3.4b.
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Figure 3.5: A plot of the zero-momentum conductivity σ0(ω) for the fermion
with parabolic dispersion, for u = .1 ℏ2

ma
. The blue points are numerical data,

and the red line is not a fit, but the function k2F
4πm

γ
ω2+γ2

.

Parabolic Fermion

The dispersion for the parabolic (spinless) fermion is given by ξk = k2/(2m)−µ.

We recall that the 2D density of states for this case is m/(2π).

Σ(q, iqn) =u
2

∫
d2k

(2π)2
1

ikn − ϵk + µ
(3.19)

=u2
∫
dϵk

m

2π

1

ikn − ϵk + µ
(3.20)

Σ(q, ω + i0+) =u2
m

2π

∫ Λ2/(2m)

0

dϵkP
1

ω + µ− ϵk
− iπδ(ω + µ− ϵk) (3.21)

=u2
m

2π
ln

(
Λ2/(2m)

ω + µ
− 1

)
− iu2m

2
(3.22)

where P denotes the principal value and we take a spherically symmetric cutoff

0 < k < Λ. We find that the real part is logarithmically UV divergent, and the

imaginary part is constant.
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Van Hove Fermion

The dispersion for van Hove fermion is given by ξk = (k2x − k2y)/(2m) − δµ. We

take cutoffs −Λ < kx, ky < Λ. As noted in the main text, and similar to the

parabolic fermion, we ignore ReΣ.

ImΣ(q, ω) =− u2π
∫

d2k

(2π)2
δ(ω + δµ− ϵk) (3.23)

=− m

2π
u2Re coth−1

(
Λ√

−2m|ω + δµ|+ Λ2

)
(3.24)

3.1.8 Appendix: Vertex Corrections

In this section, we consider the lowest order vertex correction diagram, shown

in Fig. 3.4c, and show that the q2 contribution to the conductivity σ must vanish

in the limit of ω → 0. We show this in two ways.

Vertex corrections vanish as ω → 0

We define k±, ik±n ≡ k ± q
2
, ikn ± qn

2
and take a dispersion such that ϵk = ϵ−k.

This even-parity condition is satisfied for both the parabolic and van Hove dis-

persions. Recall that for impurity scattering, the disorder line transfers mo-

menta but no frequency; since the disorder line (and vertex) is momentum-

independent, the amputated vertex Γi(q, iqn; ikn) is independent of the external

fermion momentum k.
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Γi(q, iqn; ikn) =u
2

∫
d2k

(2π)2
G(k+, ik+n )G(k

−, ik−n )k
i (3.25)

=u2
∫

d2k

(2π)2
1

ik+n − ϵk+ − Σ(k+, ik+n )

1

ik−n − ϵk− − Σ(k−, ik−n )
ki

(3.26)

=u2
∫

d2k

(2π)2
1

iqn − ϵk+ + ϵk− − Σ(k+, ik+n ) + Σ(k−, ik−n )

×
[

1

ik−n − ϵk−
− 1

ik+n − ϵk+

]
ki (3.27)

Γi(q, ω + iϵ; ikn) =u
2

∫
d2k

(2π)2
1

ω + iϵ− ϵk+ + ϵk− − Σ(k+, ik+n ) + Σ(k−, ik−n )

×
[

1

ik−n − ϵk−
− 1

ik+n − ϵk+

]
ki (3.28)

In the second to last line we have decomposed via partial fractions. This is valid

as long as the two fractions are never equal to each other (at finite q).

We are interested in the ω → 0 limit, so we take iqn → ω + iϵ and set ω =

0. 8 In this limit, ik±n = ikn ± iϵ. Because we are considering a momentum-

independent disorder strength, the self-energy cannot depend on momentum,

i.e. Σ(k, ikn) = Σ(ikn). We will also take the assumption that lim
ω→0

Σ(ik+n ) =

lim
ω→0

Σ(ik−n ).9 Moreover, because we are working at finite temperature and ω → 0,

we have ik±n − ϵk± = ikn − ϵk± , as we take ϵ → 0 before T → 0. Putting this all

together, we have

Γi(q, ω + iϵ; ikn) =u
2

∫
d2k

(2π)2
1

iϵ− ϵk+ + ϵk−

[
1

ikn − ϵk−
− 1

ikn − ϵk+

]
ki (3.29)

=u2
∫

d2k

(2π)2

(
P

1

−ϵk+ + ϵk−
− iπδ(−ϵk+ + ϵk−)

)
×
[

1

ikn − ϵk−
− 1

ikn − ϵk+

]
ki (3.30)

8Formally ϵ→ 0 first before anything, but we believe this order is fine since it introduces no
divergences.

9For the free fermion, this is trivially true as Σ = 0. If one works in the first Born approxima-
tion, Σ(ikn) = iγ sign(kn), which also satisfies this condition as kn ̸= 0 for any finite T
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where P denotes the principal value.

It is immediately clear that the imaginary part vanishes identically due to

the delta function. For the real part, consider the momentum inversion k →

−k in the integrand. This sends ϵk± → ϵk∓ so that the integrand is odd under

momentum inversion. Because of this, the real part must also vanish. Hence, Γi

is identically zero. Assuming that Γi is regular in ω, this implies that Γi is O(ω)

so that σ(q, ω) is also O(ω).

The q2 component of σ is purely reactive

Alternatively, we will show that the dissipative q2 component of σ, i.e. σ2, is

zero. We first Taylor expand in q.

Γi(q, iqn; ikn) =u
2

∫
d2k

(2π)2
G(k, ik+n )G(k, ik

−
n )k

i

+
[
∂kαG(k, ik

+
n )G(k, ik

−
n )−G(k, ik+n )∂kαG(k, ik−n )

]
qαki

(3.31)

=u2
∫

d2k

(2π)2
[
∂kαG(k, ik

+
n )G(k, ik

−
n )−G(k, ik+n )∂kαG(k, ik−n )

]
qαki

(3.32)

Notice that if we Taylor expand in ω, the O(ω0) term vanishes, so that Γi ∼

O(ω). This implies that the q2 component of the current-current correlator is

O(ω2). However, we know that dissipative response functions, i.e. the current-

current correlator, must be odd in frequency, hence for ω → 0 the q2 component

is purely reactive. Therefore, we know that σ2 vanishes in the limit ω → 0.
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(a) (b)

Figure 3.6: (a) A plot of −σ2/σ0 ∼ r2d against frequency at u = .5 ℏ2
ma

, normal-
ized against the scattering rate γ = u2m. Around ω ∼ γ/2, the sign of −σ2/σ0
changes. (b) A log-log plot of the γ dependence of B, where the blue points are
numerical data and the red line is a linear fit. We find B ∝ γ−2.

3.1.9 Appendix: Frequency Dependence

We remark on frequency-dependent behavior in the electron with parabolic dis-

persion. These characteristics also appear in the van Hove fermion as well. In

Fig. 3.6a, we see that rd changes from positive to negative when ω ≈ γ. As this

corresponds to the fact that the current-current correlator changes sign at high

frequency, this sign change is a reflection of the fact that the current will go out

of phase with the drive. In Fig. 3.6b, we see that for σ2(ω)
σ0(ω)

= r2d(1+Bω
2),B ∝ γ−2.

On dimensional grounds, γ should be the characteristic frequency scale, so this

makes intuitive sense.
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3.2 Beyond Ohm’s law - Bernoulli effect and streaming in elec-

tron hydrodynamics

This section is adapted from a PRB paper [119] with Vadim Oganesyan and

Eun-Ah Kim.

Recent observations of non-local transport in ultraclean two-dimensional

materials raised the tantalizing possibility of accessing hydrodynamic corre-

lated transport of a many-electron state. However, it has been pointed out that

non-local transport can also arise from impurity scattering rather than interac-

tion. At the crux of the ambiguity is the focus on linear effects, i.e. Ohm’s law,

which cannot easily differentiate among different modes of transport. Here we

propose experiments that can reveal rich hydrodynamic features in the system

by tapping into the non-linearity of the Navier-Stokes equation. Three experi-

ments we propose will each manifest a unique phenomenon that is well known

in classical fluids: the Bernoulli effect, Eckart streaming, and Rayleigh stream-

ing. Analysis of known parameters confirms that the proposed experiments are

feasible and the hydrodynamic signatures are within reach of graphene-based

devices. Experimental realization of any one of the three phenomena will pro-

vide a stepping stone to formulating and exploring the notions of nonlinear

electron fluid dynamics with an eye to celebrated examples from classical non-

laminar flows, e.g. pattern formation and turbulence.
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3.3 Introduction

Electron hydrodynamics offers a powerful framework to understand transport

in strongly correlated electron systems. [54, 256, 241, 100, 77, 75, 199, 58, 179, 181,

317, 278, 161, 104, 281, 249] The pursuit of electron hydrodynamics gained new

impetus with the advent of recent experiments in a number of ultraclean 2D

materials[52, 17, 146, 147, 266, 195, 89, 97, 159, 96] making a case for electron hy-

drodynamics through observations of non-local transport, consistent with vis-

cous flows familiar in classical fluids. Observations such as vortices, Poiseuille-

like flow profiles, and unconventional channel width dependencies of resistance

are indeed consistent with viscous effects in a linearized Navier-Stokes equa-

tion. However, these results are all in the linear-response regime, and they can

be ultimately described using a non-local variant of Ohm’s law. Indeed, the

linearized Navier-Stokes equation can be simply recast using a non-local con-

ductivity σ(q).[212, 251, 116] While non-local transport can certainly be couched

in the formalism of hydrodynamics, it is also clear that inherently finite length

scales of a realistic fermionic system can conspire to produce non-local transport

indistinguishable from that implied by the Navier-Stokes equation.[116] Other

ways of accessing electron hydrodynamics are of great interest as we seek to

understand and isolate competing effects.

The overarching goal of this paper is to highlight the existence of nonlin-

ear electron phenomena that may be associated with an effective hydrodynamic

description. With that in mind, we adapt the Navier-Stokes (NS) equations of

classical fluid dynamics by introducing momentum relaxation and Coulomb ef-

fects to make the discussion of the electron phenomenology explicit. We do not

tackle the important and difficult question of a proper microscopic derivation
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(a) (b) (c)

Figure 3.7: Proposed experimental setups and sketches of their observed effects.
(a) The Venturi geometry, comprised of a circular wedge of the hydrodynamic
material in yellow. A nonlinear I − V characteristic with I ∼

√
V0 behavior is

expected, marked in blue. The gray dashed line represents an unstable solution
branch, while the gray region represents a possible instability towards turbulent
and/or intermittent flow. (b) Eckart streaming. A voltage oscillation of zero
mean is driven on one side of a back-gated device, leading to a rectified dc
current I . For large l, the dc current scales as l−1. For small l, oscillations due
to interference with the reflected wave become visible. (c) Rayleigh streaming.
In a similar back-gated geometry of (b), a standing wave of current oscillations
of amplitude u0 and of period λ along x is imposed, leading to an oscillating
magnetic field pattern of period λ/2 along x. These magnetic fields arise due to
the formation of vortical current cells of size λ/4 along x and h/2 along y, shown
in the lower panel.

of NS – indeed, there is evidence that many available electron devices are not

quite in the asymptotic hydrodynamic regime[18, 219]. We do, however, find

strong evidence in known material and device parameters to support the feasi-

bility of our proposals. It is worth emphasizing that while the phenomena we

focus on in this work are leading deviations from linear response, the NS re-

sults we obtain also suggest the presence of instabilities at finite non-linearity.

As in traditional classical hydrodynamics, these different regimes are naturally

demarcated using dimensionless Reynolds numbers.
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In Fig. 3.7, we summarize the three proposals that we discuss in this paper.

The rest of the paper is organized as follows. Section 3.4 sets up the notation and

formalism of NS, paying particular attention to the spectrum of Reynolds num-

bers required to quantify nonlinear phenomena. Here, we also collect Reynolds

number estimates from known parameters for graphene. Section III focuses

on the manifestation of the Bernoulli effect in the nonlinear current-voltage

response of an electron funnel. Section IV derives the generation of down-

converted dc current from a localized finite-frequency excitation, analogous to

Eckart streaming or “quartz wind”. Section V describes the generation of static

electron vortices (akin to Rayleigh streaming) from an extended ac excitation.

Sections II-V are accompanied by Appendixes A-D containing complete details

of calculations. Finally, we close with a summary of results and a discussion of

open problems, including the role of interactions.

3.4 Formalism and Parameters

3.4.1 Equations of fluid dynamics

The hydrodynamics of an electron fluid, as a long-wavelength effective the-

ory, is described by a set of conservation laws for variables that decay slowly

compared to the coarse-graining scale of the system. Although Galilean invari-

ance is not microscopically present in electronic materials (e.g. graphene), the

Navier-Stokes equation has been derived from kinetic theory when momentum-

relaxing processes are weak.[270, 274, 204] The momentum (Navier-Stokes) and

density continuity equations, which will be our primary interest in this paper,
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are10

∂n

∂t
+∇·(nv) = 0 (3.33)

∂(ρv)

∂t
=Fconv −∇p− ρe∇ϕ

+

[
4

D
ν + ζ̃

]
ρ∇∇ · v − ρν∇×∇× v − ργv (3.34)

Fconv ≡−∇ · (ρv ⊗ v) = −ρv · ∇v − v∇ · (ρv) (3.35)

where v is the velocity field, n is the number density field with mass m and

charge e (ρ and ρe are the mass and charge densities, respectively), ν and ζ̃ are

the kinematic shear and bulk viscosities, respectively, and we will be working

in dimension D = 2.11 For graphene specifically, we remark that there are quan-

tatitive corrections to Eq. (3.34) (see Ref. [270]). In particular, the hydrodynamic

mass m is not the quasiparticle mass in the case of graphene, but is an effective

mass related to the local energy density m ∼ ϵ/v2F Moreover, there is a multi-

plicative correction to the convective term. We will approximatem as a constant

and ignore this multiplicative correction, which we justify in Sec. 3.4.1. The con-

vective term Fconv is written to emphasize that it acts as an effective force; this

will be the primary source of nonlinear behavior. The remaining terms may

also be thought of as (generalized) forces, and we can take their ratios for a

particular flow pattern to characterize their relative importance. In addition to

the conventional “viscous” Reynolds number Reν corresponding to shear dis-

sipation, a momentum-relaxation Reynolds number Reγ will be of interest. For

10The curl is interpreted in 3D, so that it sends vectors to vectors.
11In our analysis we follow the standard practice in electron hydrodynamics to ignore non-

linear fluctuation effects, such as long-time tails which are known to be non-convergent in low
dimensions (including two) at finite temperature. While it is an interesting question to delineate
conditions for such nonlinear regimes to be observable in electron fluids, we are not particularly
optimistic in the present context, where disorder and low temperatures are of interest.
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simple non-singular flow profiles, these may be expressed as

Reν ≡
∇ · (ρv ⊗ v)

ρν∇2v
=
vL

ν
=

IL

ρehν
(3.36)

Reγ ≡
∇ · (ρv ⊗ v)

ργv
=

v

Lγ
=

I

ρehLγ
(3.37)

with help of characteristic velocity v, gradient 1/L, channel width h and net

current I = ρehv. In this paper, we primarily focus on the limit of low Reynolds

numbers Reγ,Reν ≪ 1, i.e., leading corrections to linear response12.

Following standard practice, we make a further assumption of local equilib-

rium to write equations of state for p and ϕ, which closes the set of continuity

equations above. We take a back-gated geometry as shown in Fig. 3.7b, where

the hydrodynamic metal and the backgate separated by a distance d have a ca-

pacitance per unit area C = ϵϵ0
d

. Therefore, we take the following local relation-

ships

p =s2FLρ (3.38)

ϕ =ρe/C (3.39)

where sFL is a constant corresponding to the speed of sound in an uncharged,

undamped fluid (i.e. a Fermi liquid). In Eq. 3.39, also called the “gradual chan-

nel approximation,” the long-range Coulomb tail is screened by the gate so that

the longitudinal dispersion is gapless. This approximation is valid when the

distance d between the hydrodynamic metal and the gate is much smaller than

the typical wavelength of oscillations.[65, 274, 277] Therefore, both p and ϕ obey

the same functional form; if the density ρ = ρ(0) is constant, p can be absorbed

into an effective voltage ϕeff ≡ ϕ+ p

ρ
(0)
e

in the momentum equation. In particular,

12The third dimensionless number which captures the relative strength of pressure (and po-
tential) terms to convection turns out to be related to the Mach number.
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as a result of Eq. (3.39) there is also an electronic contribution s2cap = n(0)e2

Cm
to the

undamped speed of sound s0 ≡
√
s2FL + s2cap.

Parameter Estimates

To estimate parameters, as a model system we consider a graphene-hBN stack

with gate-channel separation d = 100 nm and average carrier density n(0) ∼ 1012

cm−2 tuned away from charge neutrality so that we can consider a single band.

In graphene, the relaxation rate γ ∼ 650 GHz and ν ∼ 0.1 m2/s,[17] so that the

viscous length scale rd =
√

ν
γ
∼ 0.4µm.[116] We also will take ζ̃ ∼ 0.[180, 23]

The relative dielectric constant of hBN is ϵ ∼ 3.9,[151, 277] and we approximate

m and e to be the bare electron mass and charge, respectively. Therefore, the

electronic contribution to sound is scap ∼ 0.9 × 106 m/s. The speed of sound

of Fermi liquids is sFL ∼ vF ,[149] and Fermi velocities for metals are gener-

ally vF ∼ 106 m/s.[15] Therefore, we will approximate the undamped speed of

sound s0 ∼ 2× 106 m/s. Using the dispersion relation in Eq. 3.53, for ω = 1 THz

we have the true speed of sound s ∼ 1.9 × 106 m/s and attenuation coefficient

α ∼ 1/(6µm). As a rough estimate, for characteristic lengths h ∼ L ∼ 5µm

the Reynolds numbers are Reν ∼ I/(160µA) and Reγ ∼ I/(26mA). The ra-

tio Reν /Reγ ∼ L2/r2d is controlled by the viscous length scale rd ∼ .4µm, so

current micrometer-scale experiments will be in a regime where Reγ tends to

dominate the nonlinear behavior. We remark that the apparent paradox that

hydrodynamic effects could be dominated by momentum relaxation is due to

linear-response considerations; by tuning the sample width h such that rd ≪ h,

a hydrodynamic description of the material remains valid but becomes indis-

tinguishable from Ohm’s law in the absence of convection.
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Figure 3.8: A topview of the Venturi geometry, with inner radius r0 and outer
radius r1 and total wedge angle θ0.

We now justify our assumptions of m constant and convective correction ξ

negligible for the case of graphene. As shown in Ref. [270], the mass fluctua-

tions δm ∼ m0[O(δn/T ) +O(u2/v2F )]. For our parameters, operating at currents

I ∼ 100µA and channel widths h ∼ 5µm at room temperature T = 300K, the

corrections δm ∼ .01m and are perturbatively small. Keeping any new nonlin-

earities introduced by δm up to second-order, we find that it only introduces

quantitative O(1) corrections to the dissipative terms γ, ν, and ζ . Therefore, m

constant is valid at our level of approximation. For the multiplicative correction

to convection, for our parameters where µ/T ≳ 1 the multiplicative factor is

roughly 1/4; this is only an O(1) quantitative correction and it is valid to ignore

it at our level of approximation.

3.4.2 Electronic Bernoulli effect

We now apply the hydrodynamic formalism to derive a nonlinear contribution

to the I-V characteristic V ∝ I2 in what we call the ‘Venturi’ geometry (see

Fig. 3.8), first analytically in the limit ν → 0. For boundary conditions, we fix

the voltage ϕ(r0) = V0 and ϕ(r1) = 0 and take no-slip (vanishing velocity) at
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the side walls θ = ±θ0/2. We find that the stationary, purely radial ”plug flow”

ansatz v = vr(r)Θ(θ20 − 4θ2)r̂ is a solution (with Θ the Heaviside step-function).

The absence of viscosity is crucial as it allows for a zero-thickness boundary

layer in this highly symmetric flow.13 The Navier-Stokes equation (Eq. (3.34))

reduces to a simple ordinary differential equation

∂

∂r

[
eϕ+

1

2
mv2r

]
+mγvr = 0 , (3.40)

where we have subsumed pressure into ϕ for simplicity.14 We further take

the divergence-free (“incompressible flow”) ansatz vr = I

ρ
(0)
e θ0

1
r
, where the yet-

undetermined constant I is the total current and ρ
(0)
e is the average charge den-

sity. Substituting this ansatz into Eq. (3.40) and integrating from r0 to r1 (see

Fig. 3.8), we obtain the nonlinear I-V characteristic

V0 =
1

σD

[
l ln(h1/h0)

h1 − h0
I − 1

2

(
1

h20
− 1

h21

)
I2

ρeγ

]
(3.41)

where σD = n(0)e2

mγ
is the Drude conductivity, l = r1 − r0 is the length, and

h0 = θ0r0 and h1 = θ0r1 are the widths at the contacts. The first term on the

RHS corresponds to the Ohmic contribution, while the second term is the non-

linear I2 contribution from convection. We emphasize that the nonlinear con-

tribution is strongly geometric, vanishing for typical rectangular geometries[60]

where h0 = h1. To further isolate the nonlinearity, we exploit the parity differ-

ence between the two contributions. Because the nonlinearity is of even parity,

a non-zero symmetrized current Isym(V0) ≡ 1
2
[I(V0) + I(−V0)] provides a direct

signature of the nonlinearity. To estimate this effect, in Fig. 3.9 we plot in blue

13Boundary conditions are effectively inconsequential without viscosity. One could just have
well taken no-stress boundary conditions (while including viscosity as the shear viscosity force
vanishes[249]). The Corbino geometry is therefore smoothly connected to the θ0 → 2π limit, as
the Corbino geometry is equivalent to no-stress boundary condition.

14When the device is gated, including p is equivalent to renormalizing e/m. In the absence
of gating, the long-range Coulomb interaction suppresses density fluctuations, so the pressure
contribution is expected to be negligible.
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Figure 3.9: Main: A parametric plot of the voltage-symmetrized current
Isym(V0) ≡ 1

2
[I(V0)+ I(−V0)] against total current I(V0). Inset: The I-V character-

istic. The solid lines are obtained analytically from Eq. (3.41) in the ν → 0 limit,
and the points are obtained numerically with finite ν. Fixed-voltage boundary
conditions are taken. The inner and outer radius are 5µm and 10µm respec-
tively, with wedge angle θ0 = π/2, with graphene parameters ν = .1 m2/s and
γ = 650 GHz. Since rd ∼ .4µm and lengths are ∼ 10µm, viscous corrections to
the analytic ν → 0 solution should be ∼ 5%.

the current fraction Isym/I and the I-V characteristic of Eq. (3.41) for wedge an-

gle θ0 = π/2 with r0 = 5µm, r1 = 10µm, and graphene-hBN parameters as

discussed in Sec. 3.4.1. To incorporate a finite shear viscosity, which is difficult

to solve analytically (see Appendix 3.4.7), we solve the Navier-Stokes equations

numerically and plot the results as points in Fig. 3.7a. The exact (ν = 0) result

of Eq. (3.41) matches well with the numerical result, as expected because the

viscous length scale rd ≡
√

ν
γ
≪ r0θ0 is small for experimentally relevant pa-

rameters. As demonstrated by Fig. 3.7a, this nonlinear effect (Isym ∼ 400 nA for

I ∼ 200µA) should be experimentally measurable.

This nonlinear I-V characteristic in electronic hydrodynamics is the analog of

the Bernoulli effect in classical hydrodynamics, the prototypical example of con-

vective acceleration, which is traditionally demonstrated using a Venturi tube.
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The Bernoulli effect is typically demonstrated in an inviscid fluid of divergence-

free (incompressible) flow, analogous to our assumptions. In fact, the classical

Bernoulli (energy conservation) equation is analogous to Eq. (3.40); the term in

brackets corresponds to the classical Bernoulli contribution (i.e. when γ = 0),

while the γ term accounts for the additional dissipation from a finite conduc-

tivity. As a result, the nonlinear term of the I-V characteristic Eq. (3.41) can be

calculated exactly by classical Bernoulli considerations.

We turn to the subtle issue of solving for the total current I(V0) given the

input voltage V0, i.e. verifying that the ansatz satisfies the boundary conditions.

Because this requires solving a quadratic equation for I , the solution is gener-

ically multivalued and may not even have a solution. In the limit of small V0,

linear response must provide the correct answer on physical grounds; this se-

lects the solution branch continuously connected to the solution I = 0 at V0 = 0,

where parity was broken by γ. The opposite branch is therefore expected to

be unstable to θ-dependent perturbations. The region where the purely radial

solution does not exist corresponds to particle flow in the divergent direction;

for classical fluids, it is known that divergent flow eventually becomes unsta-

ble and develops turbulence.[150, 238] To estimate the scale of nonlinearity at

which the radial ansatz fails, one can define a Reynolds number

Reγ ≡
∫ r1
r0
drFconv,r

−
∫ r1
r0
drργvr

=
−1
2lh0

I

ρeγ

[
h1
h0
− 1

ln h1
h0

(
1− h20

h21

)]
(3.42)

which is precisely the ratio of the two terms in Eq. (3.41). The instability point

occurs at Reγ = −1/2. We summarize the resolution of these subtleties in

Fig. 3.7a.

Finally, we now highlight three aspects of the Bernoulli non-linearity that

should help identify it unambiguously in experiments. To start, following Eq.
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(3.41) we note that the quadratic term is independent of the momentum relax-

ation parameter γ, and hence may be identified by comparing I-V traces taken at

different temperatures or even from different samples of the same material. Sec-

ondly, the simple charge density-dependence may be probed by varying back-

gate voltage. After factoring out the density-dependent Drude resisitivity 1/σD

(cf. Eq. 3.41), the nonlinear term only has an inverse dependence on charge

density (and its sign depends on the carrier charge). Lastly, Eq. (3.41) has a

distinct geometric dependence interpolating in a somewhat unusual way be-

tween conventional and ballistic transport. For a fixed aspect ratios h1/h0 and

l/h0, we find that the Ohmic resistance contribution scales with the size of the

device as 1/h0 while the nonlinear Bernoulli contribution scales as 1/h20. In ad-

dition, the Ohmic resistance contribution has the conventional linear scaling

with length l, while the nonlinear Bernoulli contribution has the l-independent

hallmark of ballistic transport. This effect therefore stands apart from generic

nonlinearities, which are expected to be inversion-odd when the crystal struc-

ture is inversion-symmetric (e.g in graphene), and from Joule heating effects,

which would also provide inversion-odd nonlinearities and would not have the

l-independent ballistic scaling.

3.4.3 Eckart Streaming: A “Hydrodynamic Solar Cell”

A dramatic effect of nonlinearity occurs upon applying an oscillatory drive:

down-conversion. In a backgated device of length l and width h (see Fig. 3.7b),

we consider setting up a traveling longitudinal (sound) wave by application

of a voltage oscillation ϕ(x = 0) = V0 cosωt at the left contact with the right

contact grounded (ϕ(x = l) = 0). This will result in a DC current via the down-
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conversion sourced by the convective force (Eq. (3.35)). Such a device can be

described as a “hydrodynamic solar cell” providing a DC photocurrent if the

(localized) voltage oscillation is driven by EM radiation. For simplicity, we will

focus on bulk dissipation (i.e. attenuation due to α > 0) contributions to the

convective force and neglect those of boundary dissipation, which only results

in a quantitative underestimate of the DC current (see Appendix 3.4.8). This is

the electronic analog of Eckart streaming in classical hydrodynamics, where the

convective force is primarily generated by bulk dissipation.[66, 208, 173, 299]

To see this, we need to solve the full Navier-Stokes equation (Eq. (3.34)), whose

nonlinearity precludes a single-mode ansatz. To handle this, we will seek a per-

turbative solution in the input voltage amplitude V0 (see Appendix 3.4.8 for full

mathematical detail).

Perturbative Calculation

We begin by expanding the hydrodynamic variables in a power series expan-

sion of V0, e.g. ρ = ρ(0) + ρ(1) + ρ(2) + . . .; ρ(0) corresponds to the equilibrium

mass density, while ρ(1) and ρ(2) are the first and second order solutions. At

leading (linear) order, the single-mode ansatz ϕ(1) ∼ V0e
i(±klx−ωt) along x with

wavenumber kl = k + iα is appropriate. Imposing the fixed-voltage boundary

conditions, the solution of ϕ(1) is a traveling wave with a reflected component;

the grounded edge acts as a mirror. Because of the backgate providing a capaci-

tance per area C, the voltage oscillation of amplitude V0 sets up a charge density

oscillation ρ
(1)
e = Cϕ(1) of amplitude CV0 (see Eq. (3.39)). Via the density conti-

nuity equation (Eq. (3.33)), the density oscillations drive a longitudinal velocity
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oscillation v(1)x , schematically written as

v(1)x ∼ u0ℜ
[
e(ik−α)x−iωt + e(ik−α)(2l−x)−iωt

]
(3.43)

where ℜ denotes real part and u0 = CV0

ρ
(0)
e

ω
|kl|

is the velocity amplitude. We also

take a no-slip boundary condition, which is not satisfied by v
(1)
x . However, as

previously stated we will neglect the boundary corrections to v(1)x for simplicity

(see Appendix 3.4.8).15 As a result, the leading order solution v
(1)
x results in a

DC convective force (see Eq. (3.35))

F
(2)
conv,x =ρ

(0)u20
α sinh[2α(l − x)]− k sin[2k(l − x)]

cosh 2αl − cos 2kl
(3.44)

where the overbar denotes time-average. The first term in the numerator arises

from the bulk dissipation α, while the second term arises from interference

effects; in the limit αl ≫ 1, where interference effects are small, the RHS of

Eq. (3.44) simplifies to αe−2αx. This rectified DC force will result in a DC cur-

rent.

We now solve for the second-order DC current I(2). The DC current density

J(2) ≡ ρ
(0)
e v(2) + ρ

(1)
e v(1) must be divergence-free to satisfy current conservation

(i.e. density continuity Eq. (3.33)). With the ansatz v(2)y = 0, this implies that

the current density J(2) = J
(2)
x (y)x̂ only varies along y. However, the convec-

tive force given by Eq. (3.44) varies along x. This paradox is resolved by static

screening, where the x-dependence of convection will be canceled by contri-

butions from the effective voltage ϕ(2)
eff ≡ ϕ(2) + 1

ρ
(0)
e

p(2). Utilizing separation of

variables in the NS equation (Eq. (3.34)), we can solve for ϕ(2)
eff by applying the

voltage-fixed boundary conditions ϕ(2)(x = 0) = ϕ(2)(x = l) = 0. Therefore, the

15This is effectively equivalent to taking stress-free boundary conditions at leading order; the
choice of boundary condition only weakly modifies the final result (see Eq. (3.46) and subse-
quent footnote on the viscous correction.)
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“screened” convective force (which is no longer spatially dependent) becomes

F
(2)
conv,x − ρ(0)e

∂ϕ
(2)
eff

∂x
=
1

l

∫ l

0

dxF
(2)
conv . (3.45)

Solving NS for the current density J (2)
x and integrating across the channel to get

the total current I(2), we get

I(2) =
I20

ρ
(0)
e h

1

2lγ

[
1− 2− 2 cos 2kl

cosh 2αl − cos 2kl

]
×
(
1− 2rd

h
tanh

h

2rd

)
(3.46)

where I0 ≡ ρ
(0)
e hu0 is the input current amplitude, and we have assumed that

convection provides the dominant DC force (see Appendix 3.4.8). The term in

parentheses is a viscous correction, reflecting the y-dependence of the current

flow due to no-slip.16 The bracketed terms correspond to dissipation and inter-

ference contributions from the convective force (Eq. (3.35)), respectively. The ef-

fect of these contributions is demonstrated in Fig. 3.7b, where we have schemat-

ically plotted the dependence of DC current on the channel length l. In the limit

αl ≪ 1, the interference term dominates, leading to oscillatory behavior con-

trolled by kl. In the opposite limit αl ≫ 1, the interference term becomes neg-

ligible, and the DC current scales as I(2) ∼ l−1. Other than the device length l,

one could also study the frequency dependence of Eq. (3.46) (via kl(ω) = k+ iα),

which is plotted in Fig. 3.10 for a fixed I0.17 Similarly, interference effects appear

at low frequencies and become negligible at high frequencies.

16This is the only effect of the no-slip BC. For stress-free boundary conditions, this correction
will be equal to 1. The DC flow profile will be constant along y, which is equivalent to setting
ν → 0 as there is no shear viscosity force.

17Because I0 = ρ
(0)
e hCV0

ρ
(0)
e

ω
|kl| , perturbation theory will break down for sufficiently low ω. This

happens when ω ≪ γ, i.e. when kl is dominated by γ and tends to a constant.
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Figure 3.10: Main: A plot of I(2) at fixed input current amplitude I0 for device
length l = 30µm and graphene-hBN parameters stated in Sec. 3.4.1, in units of
A0 =

I20

ρ
(0)
e h

1
2lγ

(
1− 2rd

h
tanh h

2rd

)
. We remark that this is also a scaled plot of the

Reynolds number Reγ . Inset: A blowup of the yellow highlighted portion. At
high frequencies, Reγ saturates to a constant A0 = I0

ρ
(0)
e h

1
2lγ

, while at sufficiently
low frequencies the interference oscillations become more visible. The gray box
demarcates the low frequency region ω ≪ γ, where perturbation theory in V0
breaks down for a fixed I0.

Discussion and Estimates

An effect similar to Eckart streaming was previously discussed by Dyakonov

and Shur[64] and extended in Ref. [277]. They envisaged operating with zero

DC current bias I = 0 instead of zero DC voltage drop, so that one generates

a DC voltage instead of a DC current. These theoretical treatments[64, 277]

similarly neglected boundary dissipation, which only leads to quantitative cor-

rections to DC voltage. However, for their case, boundary dissipation leads

to qualitative flow corrections (see Appendix 3.4.8); further discussion is de-

ferred to Sec. 3.4.4. We point out that, in either case, if the voltage oscilla-

tion is driven by an impingent EM wave, the device is a “hydrodynamic so-
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lar cell” generating a DC photocurrent (photovoltage). In contrast to typical

solar cells (e.g. a p-n junction), the hydrodynamic solar cell does not break

parity by construction; parity is intrinsically broken by dissipation, setting the

direction of the photocurrent. Therefore, Eckart streaming provides a novel

mechanism for photocurrent (photovoltage) generation. Signatures of down-

converted DC voltage generation by THz radiation have been measured in ultr-

aclean 2DEGs.[273, 282, 84, 19]

One can define Reynolds numbers to estimate the strength I(2)/I0 of the non-

linearity. The Reynolds number Reγ for this system can be defined as

Reγ ≡
1
l

∫ l
0
F

(2)
conv,x

ρ
(0)
e γu0

=
I0

ρ
(0)
e h

1

2lγ

[
1− 2− 2 cos 2kl

cosh 2αl − cos 2kl

]
(3.47)

which explicitly appears in Eq. (3.46). The viscous Reynolds number can be

similarly defined such that Reν = h2

r2d
Reγ , where we approximate the viscous

gradients to have length scale L = h (see Eq. (3.36)). The contribution from Reν

is hidden within rd; in the limit rd ≫ h where viscous contributions dominate,

Reν can be made manifest by perturbatively expanding Eq. (3.46) in h/rd. Since

rd ≫ h for the experimental systems of interest, the Reynolds number Reγ ∼

I(2)/I0 corresponds to the scale of DC current (up to a small viscous correction).

We now estimate the size the DC current in experiment (see Appendix 3.4.6

for dispersion relations). We take device size l = 50µm and h = 5µm and op-

erate at ω = 1 THz, with graphene-hBN parameters from Sec. 3.4.1; for these

choices, the interference effects are small since αl ∼ 5. Therefore, we find

Reγ ∼ I0/(312mA) and therefore I(2)/nA ∼ (I0/24µA)2. Observing the oscil-

latory effects is more difficult, requiring smaller l and more measurement preci-

sion. Despite this, in an optimistically sized device of length l = 20µm, we plot

the frequency dependence of Reγ in Fig. 3.10. The oscillations are suppressed by
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a factor of 0.01; if one asks for a streaming current I(2) ∼ 1 nA, the oscillations

will be of order 10 pA. We therefore conclude that an Eckart streaming current

should be visible in current experiments, with interference oscillations being a

challenging observable.

3.4.4 Rayleigh Streaming

We now turn to the limit where boundary dissipation dominates, i.e., the bulk

dissipation α is negligible. Here, the no-slip condition is critical. In a rectangular

backgated device of width h (see Fig. 3.7c), we consider setting up a longitudi-

nal standing wave of wavelength λ ≫ α−1 along x. In this case, the system

cannot support a finite DC current due to reflection symmetry in y. There-

fore, down-converted DC current flows sourced by the convective force (see

Eq. (3.35)) must circulate. The circulating current leads to a measurable orbital

magnetization of wavelength λ/2 along x with reflection-symmetric modula-

tion along y (see Fig. 3.7c). This is the analog of Rayleigh streaming in classical

hydrodynamics, where the convective force is primarily generated by bound-

ary dissipation.[173, 208, 234] Remarkably, localized boundary effects lead to

nontrivial flows throughout the bulk (see Appendix 3.4.9 for full mathematical

detail).
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Perturbative Calculation

We begin by working perturbatively in the input current amplitude u0, where

at linear order we take the longitudinal wave ansatz

v
(1)
l,x = u0 sin kx cosωt (3.48)

This is consistent with a current-fixed boundary condition Jx(x = 0) = 0 (i.e.

DC current I = 0). For simplicity, we work in a semi-infinite strip of width h

(i.e. |y| ≤ h/2 and x ≥ 0) with the above current-fixed boundary condition. To

satisfy no-slip, a transverse mode v
(1)
t is necessary to correct the total flow v(1) =

v
(1)
l + v

(1)
t . This transverse correction disperses along y with wavenumber kt =

k′t+ik
′′
t , and hence forms a “boundary layer” of size 1/k′′t exponentially localized

to the wall. We will work in the thin boundary layer and long wavelength limit

k′′−1
t ≪ h≪ λ. In this limit, the resulting convective force (see Eq. (3.35)) can be

schematically written as

F
(2)
conv,x ∼ ρ(0)u20 k e

−k′′t y+ sin 2kx+ (y ↔ −y) (3.49)

where y+ = y + h
2

is the distance from the lower boundary.18 As a result of the

quadratic non-linearity, the wavelength of the convective force is halved to λ/2.

In addition, the convective force is localized to the boundary layer, reflecting the

fact that convection is driven by boundary dissipation. It is therefore convenient

to divide the flow into bulk and boundary-layer regions, stitched together at

the interface. Despite the localized nature of the convective force, its effect will

persist into the bulk by providing a slip boundary condition.

Now, we study the second-order DC flow. We first consider the boundary

layer region, assuming that the viscous length scale rd ≡ ν
γ
≪ h. The convective

18More precisely, this is schematic form of the “screened” convective force with contributions
from the effective voltage ϕ(2)eff = ϕ(2) + 1

ρ(0)
p(2).
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force localized to the boundary layer of size 1/k′′t leads to a localized flow along

x. Because of the shear viscosity ν, the boundary layer momentum propagates

into the bulk with the viscous length scale rd. Therefore, the boundary layer

“screens” the no-slip condition, providing instead a slip velocity for the bulk

flow. This slip velocity can be written as v(2)slip sin 2kx, where schematically v(2)slip ∼
u20k

4γ
e−1/k′′t rd . Equipped with the slip boundary, we now solve the NS equation

(Eq. (3.34)) for the bulk flow where the convective force vanishes, and we obtain

J
(2)
bulk,x =J

(2)
slip sin 2kx

[
h
2rd

cosh y
rd
− sinh h

2rd
h
2rd

cosh h
2rd
− sinh h

2rd

]
(3.50)

J
(2)
bulk,y =J

(2)
slip2krd cos 2kx

[
− h

2rd
sinh y

2rd
+ y

rd
sinh h

2rd
h
2rd

cosh h
2rd
− sinh h

2rd

]
(3.51)

The slip current J (2)
slip ≡ ρ

(0)
e v

(2)
slip results from boundary convection, while the

term in brackets is a geometric factor resulting from satisfying the slip velocity

boundary condition. The DC current flow is plotted in Fig. 3.7c, where it is clear

that the current circulates in cells of length λ/4 and width h/2.

Discussion and Estimates

A previous related proposal by Dyakonov and Shur[64] and its recent

extension[277] discussed downconversion effects with a current-fixed bound-

ary J(x = 0) = 0, similar to this case. However, they instead took a stress-free

boundary condition that has no boundary dissipation. In their case, there is no

circulating current; without boundary-layer contributions, the convective force

only leads to an excess of DC voltage (see Appendix 3.4.9). Therefore, Rayleigh

streaming is qualitatively distinct from previous nonlinear proposals in electron

hydrodynamics.

Since the effect of the convective force is to generate a slip velocity v
(2)
slip,
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we can estimate the scale v
(2)
slip/u0 by an appropriate Reynolds number. The

Reynolds number Reγ is defined in this case to be

Reγ ≡
maxF

(2)
conv

ρ(0)γu0
=

I0

ρ
(0)
e h

k

4γ
f(ω/γ) (3.52)

where f is a dimensionless function of ω/γ described in Appendix 3.4.9.19 We

remark that f develops an interesting resonance at ω =
√
5
2
γ where perturbation

theory breaks down, but we operate away from this point and will not discuss

it further. It turns out Reγ e−1/k′′t rd = v
(2)
slip/u0, i.e. slip velocity is given by the

Reynolds number up to an exponential factor controlled by the viscous length

scale rd. However, the viscous Reynolds number Reν does not contribute to the

effect; in the limit γ → 0, the scale v(2)slip/u0 is instead set by the Mach number

u0k/ω. Despite the necessity of a finite shear viscosity ν to generate a convective

force, Reν does not set the scale v
(2)
slip of the result; this curious fact was first

remarked by Rayleigh[225] (see Appendix 3.4.9 for additional discussion).

We propose that the circulating flow profile could be detected via magne-

tometry. To estimate the effect in realistic systems, we set ω = 2 THz and

channel width h = 5µm with graphene-hBN parameters as in Sec.3.4.1 (see

Appendix 3.4.6 for dispersion relations). We first verify the assumptions we

made: k′′−1
t ≪ h ≪ λ, rd ≪ h, and α ≪ k. These are k′′t h ∼ 13, h/λ ∼ 0.80,

rd/h ∼ .08 and α/k ∼ 0.2, so we expect our solution to be roughly correct. For

the scale of the DC effect, we find Reγ ∼ I0/(23mA) and k′′t rd ∼ 1.1, so that

vslip ∼ (I0/71mA)u0. Since Ampere’s law implies −∇2Bz = µ0∇ × Jδ(z), the

vorticity Ω ≡ ∇ × J acts as a Coulomb-like point source of magnetic field. The

vorticity is plotted for these parameters in Fig. 3.11, where it is concetrated near

the edges since the viscous length scale rd ≪ h is small. To make a rough esti-

19As before, we only consider the “screened” convective force in the above equation, equiva-
lent to including boundary contributions only.
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Figure 3.11: A plot of the bulk vorticity distribution Ω
(2)
bulk ≡ ∇×J

(2)
bulk induced by

Rayleigh streaming for h = 5µm and ω = 2 THz with graphene-hBN parameters
as in Sec. 3.4.1. The local bulk vorticity corresponds to a Coulomb-like point
source of magnetic field due to Ampere’s law.

mate of the magnetic field strength, we take Bz ∼ µ0
z

∫
cell∇ × Ω

(2)
bulk at a height

z from the sample; we approximate the magnetic field to be sourced by the net

circulation in the nearest vortical cell. This givesBz ∼ (I0/9.3µA)2

z/µm ×10−10T. There-

fore, the magnetic fields should be detectable for I0 ∼ 9.3µA by scanning SQUID

magnetometers.

3.4.5 Summary and Outlook

This paper argues for using non-linear DC transport and other manifestations

of convective nonlinearity to identify and study electron hydrodynamics. We

have laid out three electronic analogs of nonlinear classical phenomena - the

Bernoulli effect, Eckart streaming, and Rayleigh streaming - which lead to an

experimentally measurable nonlinear I-V characteristic, down-converted DC

current, and DC current vortices, respectively (see Fig. 3.7). We have opted
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to derive and discuss all three effects using the familiar Navier-Stokes formal-

ism, leaving a more complete microscopic treatment for future work. All three

effects result from the interplay of the non-dissipative and nonlinear convec-

tion force with other dissipative contributions in Navier-Stokes from viscosity

and momentum relaxation. As the convection force is a non-dissipative term

that couples nearby velocity fields, it seems unlikely that such a term could

arise without electron-electron interactions. Therefore, we believe such propos-

als provide strong evidence for the emergence of a hydrodynamic regime.

It is interesting to note that interactions do not play an explicit role in

our results – both convection and momentum relaxation (the dominant form

of relaxation) are well understood in the non-interacting limit of the many-

electron problem. Instead, strong electron-electron interactions justify the

coarse-grained effective description, removing the need to consider the com-

plications of quasi-particle physics. In particular, local equilibration (assumed

throughout) is likely to be violated in the limit of weak interactions, requiring

a more systematic microscopic treatment. This will be required, for example,

before extrapolating our results to low temperatures.

To obtain stronger nonlinear signatures, one would like to make the

Reynolds numbers Reν and Reγ as large as possible. Since the viscous length

scale r2d = ν/γ is typically smaller than the characteristic lengths in experiment,

Reγ is the limiting factor. In addition to reducing the momentum relaxation rate

γ, one could also reduce the density n at fixed current to improve the Reynolds

numbers; particles must move more rapidly to maintain the current. There-

fore, nonlinear effects should be most prominent in clean, low-density hydro-

dynamic materials. Our focus has been away from linear response, which is
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a bedrock foundation of experimental condensed matter physics. Nonlinear

phenomena are comparatively more difficult to interpret and tend to be less ex-

plored, especially with the purpose of extracting basic information, e.g. where

in the phase diagram a given material happens to be. However, since our pri-

mary focus has been on leading deviations from linear response, we are nonethe-

less optimistic that identifying electron hydrodynamics from nonlinear behav-

ior is feasible.

In particular, the detection of the AC-generated static current described

above would provide strong evidence for the presence of hydrodynamic be-

havior. Additionally, hydrodynamic nonlinearities should also generate up-

converted 2f signals, which we leave to future work. This also tantalizingly

suggests the possible utility of hydrodynamic materials as a novel platform for

creating nonlinear electronic devices.[65, 64] The nonlinear I-V characteristic of

the Venturi wedge device clearly displays the onset of instability phenomena far

separated from linear response. Such convective instabilities are a known route

to classical turbulence[150, 238], i.e. in the absence of momentum relaxation.

In the electronic system, where momentum relaxation dominates and viscous

length scale rd is short, we suspect that the behavior may be qualitatively dis-

tinct from turbulence. Band-structure modifications to the Navier-Stokes equa-

tions, such as a density and flow-dependent hydrodynamic mass[270, 274, 204],

and heating effects going beyond our equation-of-state approximations can also

give rise to novel nonlinear effects, which we leave to future work. These and

other nonlinear phenomena[80, 46, 265] pose a fertile frontier for near-term ex-

ploration of electron hydrodynamics.
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3.4.6 Appendix: Oscillatory Hydrodynamic Modes

Here we study the hydrodynamic modes at linear order (without boundary con-

ditions), where the convective term Fconv is neglected. Because of linearity, the

harmonic modes will not mix; the linear-order ansatz v(1) ∝ ei(kx−ωt) is appro-

priate. We eliminate the variables p and ϕ in Navier-Stokes (Eq. (3.34)) by using

density continuity (Eq. (3.33)) as well as the equations of state (Eq. (3.38) and

Eq. (3.39)). The resulting dispersion relation can be separated in longitudinal

(∇× v(1) = 0) and transverse (∇ · v(1) = 0) contributions, which are given by

ω2
l =

(
s20 − iωl

[
2ν + ζ̃

])
k2l − iωlγ (3.53)

ωt =iνk
2
t − iγ (3.54)

where s20 = s2FL + s2cap. The longitudinal dispersion describes a damped sound

wave with undamped speed s0; both pressure and electric forces contribute ad-

ditively to s0 as a result of the equations of state. In particular, the electronic

contribution relies on backgate screening of the Coulomb interaction to achieve

this form. The transverse dispersion describes the propagation of incompress-

ible shear oscillations, whose spatial extent is controlled by the viscous length
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scale rd; a finite shear viscosity is necessary for the transfer of momentum into

adjacent layers. In contrast to the longitudinal case, the transverse modes do

not drive density oscillations and therefore do not generate pressure or electric

forces. Therefore, the transverse result is independent of the equations of state,

and in particular it does not depend on the presence of a backgate.

We remark that measuring the attenuation of longitudinal and transverse

oscillations would provide direct, boundary-independent measures of both

shear and bulk viscosity, as opposed to DC flow profiles which require the

boundary[195, 266, 147] or inhomogenous current injection profiles[17, 159] to

enforce velocity gradients. A careful experimental study of finite-frequency be-

havior of hydrodynamic materials has yet to be done even at linear order, as far

as the authors are aware; in particular, this could provide new cross-checks of

previous viscosity measurements. A proposal for for a shear viscometer utiliz-

ing oscillatory motion was made in Ref. [275].

3.4.7 Appendix: Electronic Venturi Effect - Treating Viscosity

The full problem, with both finite (kinematic) shear viscosity ν and momentum

relaxation γ is challenging. Because viscous effects are controlled by a length-

scale rd =
√

ν
γ

, one expects a crossover from viscous-dominated to relaxation-

dominated flow as a function of local channel width h = rθ0. In particular,

the resistance of the thin h ≪ rd region should scale as 1/h2 (Gurzhi/Poiseuille

regime), while the resistance of the h ≫ rd region should scale as 1/h (Ohmic

regime). Even in the viscous-dominated regime γ → 0, a radial flow assumption

is inconsistent with the fixed-voltage boundary conditions as described in the
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main text; angular components of velocity must contribute. Therefore, for finite

ν we expect the exact solution of Eq. (3.41) to also break down for strong particle

flows in the convergent direction, possibly towards turbulence.

Purely viscous limit - Jeffrey-Hamel flow

In the purely viscous limit γ → 0, the leading order flow is a generalization of

Poiseuille flow to non-parallel walls. This case also admits an exact solution of

the Navier-Stokes equation, known as Jeffrey-Hamel flow.[194, 238, 150] How-

ever, as we are only interested in low-velocity flows, a perturbative treatment

will suffice. In contrast to fixed-voltage boundary conditions, where one can-

not assume purely radial flow and is therefore more difficult to solve, we will

assume fixed-current boundary conditions where the θ-dependent radial flow

v = vr(θ)r̂ is a good ansatz. In addition, we take the divergence-free (incom-

pressible) ansatz v(1)r = F (θ)/r for an as yet undetermined function F . Upon

substitution and integration of the θ̂ NS equation (Eq. (3.34)), we find that the

NS equations give

e

m

∂ϕ(1)

∂r
=
ν

r3
d2F

dθ2
(3.55)

e

m
ϕ(1) =

2ν

r2
F (θ) + S(r) (3.56)

where S(r) is determined from the boundary conditions. Substituting for ϕ(1),

we find that S(r) = K ν
2r2

+const for some constantK by separation of variables.

The leading order solution is

v(1)r =
I

ne

1

r

1

tan θ0 − θ0

(
cos 2θ

cos θ0
− 1

)
(3.57)

e

m
ϕ(1) =

I

ne

2ν

r2
1

tan θ0 − θ0
cos 2θ

cos θ0
(3.58)
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Since v(2)r = 0, the pressure gradient must balance the convective force. There-

fore, the total potential is given by

e

m
ϕ =

νI

ne

1

r2
1

tan θ0 − θ0

(
cos 2θ

cos θ0
+

I

2neν

1

tan θ0 − θ0

(
cos 2θ

cos θ0
− 1

)2
)

(3.59)

We see that ϕ(2) is suppressed by a viscous Reynolds number Reν ∼ I
neν

, as

expected. Analogous to the purely Ohmic case discussed in the main text, it is

known that divergent Jeffrey-Hamel flow is unstable towards turbulence.[150,

238]

3.4.8 Appendix: Eckart Streaming

In this section, we lay out the mathematical calculation of Sec. 3.4.3 in full detail.

Leading order solution

As mentioned in the main text, we take the ansatz that the leading order solu-

tion is described by a longintudinal sound mode with wavevector kl = k + iα

(see Eq. (3.53)). Applying the voltage-fixed boundary conditions and using the

density continuity equation (see Eq. (3.33)), we find

ϕ(1) =V0ℜ
[
e(ik−α)x − e(ik−α)(2l−x)

1− e(ik−α)2l
e−iωt

]
(3.60)

v(1)x =u0ℜ
[
e(ik−α)x + e(ik−α)(2l−x)

1− e(ik−α)2l
e−iArg kle−iωt

]
(3.61)

where u0 = CV0

ρ
(0)
e

ω
|kl|

and ℜ denotes real part. To satisfy the no-slip boundary, we

must also include a divergence-free (incompressible) contribution to the flow

corresponding to a boundary layer correction, as is done in Sec. 3.4.4. We defer
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the discussion of this correction to the end of this section, assuming that its

contribution is small.

Second-order density continuity equation

We now turn to the time-averaged second-order hydrodynamic equations,

where we have assumed v
(2)
y = 0. The density continuity (i.e. current con-

servation) equation (see Eq. (3.33)) gives

∂J
(2)
x

∂x
≡ ∂

∂x

[
ρ(0)e v

(2)
x + ρ

(1)
e v

(1)
x

]
= 0 (3.62)

which tells us that J (2)
x (y) only depends on y. We remark that it is crucial that v(2)

is not divergence-free (incompressible); because the “drift” contribution ρ
(1)
e v

(1)
x

is non-zero and x-dependent, divergence-ful (compressive) contributions of v(2)x

are necessary to satisfy current conservation.

Second-order Navier-Stokes equation - DC forces and screening

Replacing v(2)x in favor of J (2)
x in the Navier-Stokes equation (see Eq. (3.34)), we

get

m

e

[
−ν ∂

2

∂y2
+ γ

]
J
(2)
x =F

(2)
eff (3.63)

−ρ(0)e
∂ϕ

(2)
eff

∂x
+ F

(2)
conv,x + F

(2)
elec,x + F

(2)
comp,x ≡F (2)

eff (3.64)

where we used separation of variables with constant Feff to split the momen-

tum equation, and ρ
(0)
e ϕ

(2)
eff ≡ ρ

(0)
e ϕ(2) + p(2). We remark that Eq. (3.63) is an

Ohmic-Poiseuille equation[278] describing steady, divergence-free (incompress-

ible) flow in a rectangular channel, where Feff can be interpreted as the effective
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force driving the flow. The convective force is defined in Eq. (3.35), while the

terms F (2)
elec,x and F

(2)
comp,x are given by

F
(2)
elec,x =ρ

(1)
e
∂ϕ(1)

∂x
(3.65)

F
(2)
comp,x =(2ν + ζ̃)

ρ(1)∂2v(1)x

∂x2
−
∂2
(
ρ(1)v

(1)
x

)
∂x2

 (3.66)

where in the second line we have used ∂
∂x
(ρ(0)v

(2)
x ) = − ∂

∂x
(ρ(1)v

(1)
x ). These pro-

vide nonlinear contributions to F (2)
eff in addition to the convective force. The first

term comes from the backreaction of the electric force; we remark that the pres-

ence of this nonlinearity was also noted by Ref. [277]. The second term comes

from compressive dissipation. By solving for ϕ(2)
eff with the zero-voltage bound-

ary conditions, we find the simple result

Feff =
1

l

∫ l

0

dxF
(2)
conv,x + F

(2)
elec,x + F

(2)
comp,x (3.67)

The action of the effective voltage is to “screen” all the forces via a spatial av-

erage, rendering the resulting effective force x-independent. We comment that

1
l

∫ l
0
dxF

(2)
elec,x =

CV 2
0

4l
has no α or k dependence, and therefore no interference

behavior; the value of F (2)
elec,x is fixed at the ends by the voltage boundary con-

ditions. By dimensional analysis, these contributions are small relative to the

convective force when
s2capω

2

|kl|2
≪ 1 and (2ν+ζ̃)|kl|2

ω
≪ 1, respectively. For parame-

ters as discussed in the main text, we find that
s2cap|kl|2

ω2 ∼ .24 and (2ν+ζ̃)|kl|2
ω

∼ .06

are small, so that ignoring F (2)
elec,x and F

(2)
comp,x is valid.
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Rectified DC solution

The solution of the Ohmic-Poiseuille equation (Eq. 3.63) is

J
(2)
x =ρ(0)e u0

[
F

(2)
eff

ρ(0)γu0

](
1−

cosh y
rd

cosh h
2rd

)
(3.68)

I(2) =I0

[
F

(2)
eff

ρ(0)γu0

](
1− 2rd

h
tanh

h

2rd

)
(3.69)

The term in square brackets is suggestively written to resemble momentum-

relaxation Reynolds number Reγ , which is indeed true when the convective

force dominates (see Eq. (3.47)). We remark that the convective contribution to

I(2)/I0 is largely α-independent (see Eq. (3.46)); in the limit αl ≫ 1, where the in-

terference term can be neglected, the result is surprisingly α-independent even

though α was necessary to generate convective gradients. Instead, the scale

of the convective gradient is screened, being controlled by the device length

l−1. This α-independence has an analog in Rayleigh streaming, where the shear

viscosity ν does not set the scale of the rectified bulk flow even though it was

necessary to set up convective forces.

Revisiting Boundary Dissipation (Rayleigh Streaming)

We return to the issue of the no-slip condition and boundary-layer corrections

(i.e Rayleigh streaming), which we ignored for the leading order solution. For

simplicity, we will neglect contributions from the reflected wave (i.e. αl ≫ 1).

As discussed in Sec. 3.4.4, boundary layer corrections are described by the trans-

verse mode kt = k′t+ik
′′
t , decaying exponentially from the wall with length 1/k′′t .

For parameters as discussed in the main text, we find k′′t h ∼ 8.2 > 1 so that it is a

good assumption that the boundary layer is thin. Therefore, boundary dissipa-
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tion (i.e. Rayleigh streaming) effects will lead to a non-zero slip velocity for the

bulk flow also in the forward x-direction. Upon solving the Ohmic-Poiseuille

equation (Eq. (3.63)) with a voltage-fixed boundary condition ϕ(x = l) = 0 (as

in the main text), we get an additional contribution

J
(2)
Rayleigh,x =v

(2)
slip

cosh y
rd

cosh h
2rd

(3.70)

I
(2)
Rayleigh =v

(2)
slip tanh

h

2rd
(3.71)

Therefore, the no-slip boundary (i.e. Rayleigh streaming) only provides a quan-

titative correction to the DC current. By estimating v(2)slip ∼ u0e
−1/k′′t rd I0|kl|

ρ
(0)
e hγ

from

the Rayleigh Reynolds number in Eq. (3.52) with exponential decay arising from

the viscous length scale rd, we find that boundary dissipation contributes addi-

tively to the bulk dissipation contribution.

If instead one takes the current-fixed boundary condition J(x = l) = 0, a

rectified DC voltage will develop as discussed in previous works.[64, 277] How-

ever, these previous works did not consider the effect of a no-slip boundary. As

a result of no-slip, we expect only a quantitative change to the DC voltage anal-

ogous to the previous case. However, a qualitative change occurs in the current

flow - a circulating current must develop in the channel as in Sec. 3.4.4. The

length and width of the circulation will be set by the device dimensions, as op-

posed that of Sec. 3.4.4 where the length is set by the wavelength. Surprisingly,

the bulk current density flows in an opposite direction to that of the convective

force; because convective forces are stronger near the boundary than the bulk,

the forward DC flow along x must be near the boundary while the counterflow

is in the bulk.[208] This reversed bulk counterflow would be also be interest-

ing evidence for hydrodynamic behavior, though measuring the local current

density may prove challenging.

110



3.4.9 Appendix: Rayleigh Streaming

In this section, we fill out the mathematical details of Sec. 3.4.4.

Leading order solution - Boundary corrections

Recall that we work in the limit k′′−1
t ≪ h≪ λ of a thin boundary layer and long

wavelength. In this limit, we can separate the flow into bulk and boundary re-

gions, stitching the flow together at the interface. We first focus on the boundary

layer region, concentrating on the lower boundary layer near y = −h/2; flow at

the upper boundary layer is given by reflection symmetry about y = 0. In the

lower boundary layer, the leading-order longitudinal (irrotational) and trans-

verse (incompressible) velocity components of v(1)
wall are

v
(1)
wall,l,x =v

(1)
l,x = u0 sin kxℜeiωt (3.72)

v
(1)
wall,t,x =− u0 sin kxℜ

[
eikty+e−iωt

]
(3.73)

v
(1)
wall,t,y =− u0k cos kxℜ

[(
1− eikty+

) e−iωt
ikt

]
(3.74)

where y+ = y + h
2

is the distance from the lower wall, we take k′′t > 0, and ℜ

denotes real part. Although v
(1)
wall,y is small compared to v

(1)
wall,x, the y-gradients

of v(1)wall,y are large and must be included when computing the convective force.

The longitudinal contribution v
(1)
wall,l,x is inherited from the longitudinal ansatz

of Eq. (3.48). We remark that we have not assumed that v(1)wall is divergence-free

(incompressible) unlike classic discussions[225, 150, 234]; that the divergence-

free (incompressible) ansatz is not correct has been previously pointed out,[296,

208], though it has no consequence in the limit γ → 0. In the limit k′′t y+ ≫ 1,

we find that vwall,x returns to our longitudinal ansatz v(1)l,x as the boundary-layer

corrections exponentially vanish. However, v(1)wall,t,y is non-zero in this limit and
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requires correction in the bulk. We will not concern ourselves with the bulk

corrections to v
(1)
y , as they are small and do not contribute substantially to the

convective force.[208]

Therefore, the convective force in the bulk and boundary layers is

F
(2)
conv, bulk,x =ρ

(0)u20k
1

4
sin 2kx(−2) (3.75)

F
(2)
conv, wall,x =ρ

(0)u20k
1

4
sin 2kx

[
−2 + (3 + e2iθt)eikty+ − 2e−2k′′t y+ cos2 θt

]
(3.76)

where θt ≡ Arg kt.

Second-order Navier-Stokes

We now study the DC second-order flow. We begin by noting that the assump-

tion k′′−1
t ≪ h ≪ λ implies that vy ≪ vx, i.e. flow is primarily along x because

the channel is thin. By using the NS equations (Eq. (3.34)), this implies that the

effective voltage ϕeff = ϕ + 1

ρ
(0)
e

p satisfies ∂ϕeff
∂y
≪ ∂ϕeff

∂x
, i.e. voltage gradients (and

density gradients) are also primarily along x.

Next, we simplify the NS equation (Eq. (3.34)). First, we note that the back-

reactive electric force F
(2)
elec ≡ ρ

(1)
e ∇ϕ(1) = 0. We will also assume that compres-

sional dissipation Fcomp ≡ (2ν+ ζ̃)ρ∇∇·v is negligible, which is consistent with

our assumption that the longitudinal attenuation α is small. Finally, for sim-

plicity we neglect the additional term νρ
(1)
e ∇×∇× v(1) as is done in classical

treatments of Rayleigh streaming;[225, 150, 208, 296, 234] this term depends on

the density dependence of ν, where classical works assumed that the dynamic

viscosity µ ≡ ρν is constant. Therefore, the NS equation becomes

m

e

[
−ν ∂

2

∂y2
+ γ

]
J
(2)
x =F

(2)
conv,x − ρ(0)e

∂ϕ
(2)
eff

∂x
(3.77)
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where we have used k′′−1
t ≪ h ≪ λ to drop the x-derivatives (cf. Eq. (3.63) and

Eq. (3.64)). Note that this form is equivalent to assuming that v(2) is divergence-

free (incompressible).

Since the convective force is only x-dependent in the bulk, we must have

ρ(0)e
∂ϕ

(2)
eff

∂x
=Fconv,bulk,x (3.78)

upon imposing I = 0 (i.e. Jx(x = 0) = 0). More concretely, the boundary

conditions for v(2)x (y = ±h/2) will fix the y-dependent homogeneous solutions

of Eq. (3.77), leaving ϕ(2)
eff to enforce I(2) = 0. Since ∂ϕ

(2)
eff
∂y

is small, this expression

for ϕ(2)
eff is also valid in the boundary layer. Therefore, after “screening” from the

effective voltage, the resultant force is only non-zero in the boundary layer.

Second-order boundary layer solution

We first solve Eq. (3.77) in the boundary layer, where the “screened” convective

force is not negligible. Assuming rd ≪ h, the solution for the lower boundary

layer is

J
(2)
wall,x =ρ

(0)
e u0 sin 2kxℜ

[
vslip

u0
− u0k

4γ

(
−(3 + e2iθt)eikty+

k2t r
2
d + 1

− (2 cos2 θt)e
−2k′′t y+

4k′′2t r
2
d − 1

)]
(3.79)

v
(2)
slip =

u20k

4γ
e
− y+

rd ℜ

[
− (3 + e2iθt)(iω̃ + 2)

4 + ω̃2
− 2 cos2 θt

−3 + 2
√
1 + ω̃2

]
(3.80)

where v(2)slip enforces the no-slip boundary conditions, and we have rewritten k2t r2d

in terms of ω̃ = ω/γ using Eq. 3.54. Away from the wall where the convective

force vanishes, the velocity v
(2)
wall,x → v

(2)
slip sin 2kx achieves a non-zero limiting

value if k′′t rd is sufficiently large; the boundary layer sets up a slip boundary for
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the bulk flow. In the main text, we (optimistically) approximate the size of the

boundary to be 1/k′′t so that we evaluate v(2)slip at y+/rd = 1/(k′′t rd). The resulting

bulk flow is solved from Eq. (3.77) with a vanishing right-hand side and with

the slip boundary generated from the boundary layer; the solution is given in

the main text [Eq. (3.50) and (3.51)].

We make three remarks on vslip. First, in the limit ν → 0, the flow becomes

increasingly singular at the walls so the boundary layer will no longer by de-

scribed by hydrodynamics. Second is the surprising fact that ν is largely ν-

independent. In the limit γ → 0, we recover the classical result vslip = −3u0
8

u0k
ω

which is ν-independent, despite the necessity of ν to set up convective gradi-

ents. Instead of the viscous Reynolds number Reν , the slip velocity is controlled

by the Mach number u0ω/k. This was first noted by Rayleigh in the classi-

cal situation.[225] Finally, vslip has a resonance at ω =
√
5
2
γ corresponding to

−4k′′2t r2d + 1 = 0. We leave further study of this interesting convective instabil-

ity to future work; for this paper, we only work in the limit vslip ≪ u0 where

perturbation theory is valid.
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CHAPTER 4

CHIRAL ANOMALY AND WEYL SEMIMETALS

The recently discovered (3D) Weyl semimetal [310] has been the subject of in-

tense interest as a newly realizable class of gapless topological matter. Though

it is a 3D generalization of the 2D Dirac semimetal as found in graphene, the

odd space dimensionality gives rise to distinctive phenomena. Here, we briefly

review some basic aspects of Weyl semimetals.

The low-energy effective description of a single Weyl point is given by

Hτ = τvFσ · k (4.1)

where τ = ±1 is the chirality, vF is the Fermi velocity, and σ are the Pauli ma-

trices. We emphasize that k = (kx, ky, kz) is in 3D, as opposed to the 2D Dirac

semimetal, which gives rise to new topological effects. For instance, local per-

turbations of Hτ cannot remove the zero-energy Weyl point since the Pauli ma-

trices exhaust the space of 2 × 2 Hamiltonians (up to chemical potential shifts

µI). In particular, applying a magnetic field B · σ will not gap the system unlike

in a Dirac semimetal. This protection of the gap is actually topological; Weyl

points are monopoles of Berry curvature with sign determined by the chirality

τ [311] and as a result are required to come in pairs [205].

The topological effect of interest to us is the famous chiral anomaly. With a

pair of Weyl points H++H−, one would expect that chiral symmetry is present.

However, when one quantizes this theory with an electromagnetic gauge field,

it turns out that the quantization necessarily breaks the classically-present chiral

symmetry (see [213, 262] for a review). Observing the resulting chiral symme-

try breaking has been the subject of intense efforts, but definitively extracting
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the chiral anomaly contribution has proven difficult. In what follows, we re-

examine IR reflectance approaches previously proposed [260, 235, 236] to probe

the chiral anomaly. As opposed to previous works, we argue that IR reflectance

signatures of the chiral anomaly can be found even in mirror-symmetric Weyl

semimetals; this has been recently experimentally confirmed in the mirror-

symmetric Weyl semimetal NbAs [316].

4.1 Optical signatures of the chiral anomaly in mirror-

symmetric Weyl semimetals

This section is adapted from a PRB Rapid Communications paper [120] with Yi

Zhang and Eun-Ah Kim. As opposed to the other works on interacting phases,

this is on a non-interacting topological phase.

The chiral anomaly is a characteristic phenomenon of Weyl fermions, which

has condensed matter realizations in Weyl semimetals. Efforts to observe smok-

ing gun signatures of the chiral anomaly in Weyl semimetals have mostly fo-

cused on a negative longitudinal magnetoresistance in electronic transport. Un-

fortunately, disentangling the chiral anomaly contribution in transport or op-

tical measurements has proven non-trivial. Recent works have proposed an

alternative approach of probing pseudoscalar phonon dynamics for signatures

of the chiral anomaly in non-mirror-symmetric crystals. Here, we show that

such phonon signatures can be extended to scalar phonon modes and mirror-

symmetric crystals, broadening the pool of candidate materials. We show that

the presence of the background magnetic field can break mirror symmetry

strongly enough to yield observable signatures of the chiral anomaly. Specif-

116



ically for mirror-symmetric Weyl semimetals such as TaAs and NbAs, including

the Zeeman interaction at |B| ≈ 10T, we predict that an IR reflectivity peak will

develop with an EIR ·B dependence.

4.1.1 Introduction

The Weyl semimetal has been generating excitement as a new experimentally

realizable class of topological materials in three dimensions.[311, 12] The mate-

rials are so named due to the existence of Weyl points in the momentum space,

where two non-degenerate bands intersect and disperse linearly. Weyl points

are monopoles of Berry curvature and characterized by their chirality, a topo-

logical invariant describing the parallel/anti-parallel (right/left-handed) lock-

ing between their momentum and spin or pseudo-spin. One of the exciting

phenomena predicted in the Weyl semimetal is the condensed matter realiza-

tion of the chiral anomaly: the chiral charge - the population difference between

the left and right-handed Weyl fermions - is not conserved after quantization.

The non-conservation of chiral charge means that, under the application of

parallel E and B fields, particles will be pumped between left-handed and right-

handed Weyl points. Therefore, in the presence of a chiral anomaly, one can

think of the B-field as creating a topologically protected channel of charge be-

tween left and right-handed Weyl points, whose conductivity and direction are

controlled by the magnetic field. The presence of this channel leads to the so-

called chiral magnetic effect,[205, 140, 79, 258, 326] where a current will develop

along the magnetic field in the presence of a chemical potential difference be-

tween Weyl nodes with opposite chirality. In order to balance the charge trans-
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fer, scattering between Weyl nodes is required; this scattering process is rare be-

cause the Weyl nodes are generically well-separated, so this conduction channel

has high conductivity. In the limit of large B, intra-node scattering is suppressed

within each chiral Landau level, consisting only of a single linear branch. The

inter-node scattering time, which is longer than the B = 0 intra-node scattering

time, then controls the conductivity in this limit. Therefore, the chiral anomaly

leads to a B-field dependent enhancement in the conductivity.[205] Negative

longitudinal magnetoresistance was therefore proposed as a signature of the

chiral anomaly in Weyl semimetals.[255, 26, 27]

Indeed, negative magnetoresistance has been observed in a number of Weyl

semimetals;[171, 112, 305, 320, 164, 166, 103, 148, 206, 319, 170] however, neg-

ative magnetoresistance was not unique to Weyl semimetals and could poten-

tially be caused by other effects.[142, 102, 91, 298, 53, 11] For instance, nega-

tive magnetoresistance was also measured in the non-Weyl semimetal materials

PdCoO2, PtCoO2, SrRuO4, and Bi2Se3.[141, 298] To complicate matters further,

the point contacts used for magnetoresistance measurements were susceptible

to current jetting, where the current is focused by a magnetic field, artificially

enhancing the measured conductivity and potentially overwhelming the chiral

anomaly signature.[63, 13] For these reasons, the chiral anomaly interpretation

of electronic transport results has been controversial.

In search of sharper signatures of the chiral anomaly and Weyl semimet-

als, a number of proposals have been put forth.[186, 210, 324, 227, 174, 122,

92, 50, 51, 215, 261, 128, 129] In this paper, we will be particularly interested

in phonon-induced optical signatures. Through an axial (chirality-dependent)

electron-phonon coupling, a phonon can induce a dynamical chemical po-
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tential difference between Weyl points with opposite chirality, which in turn

gives rise to a dynamical realization of the chiral anomaly. Recent works

have found that this can result in anomalous optical features in IR and Raman

spectroscopy.[14, 260, 235, 236] However, based on symmetry considerations, it

was argued that a phonon mode in a 1D representation can only have an ax-

ial coupling if it is pseudoscalar (changes sign under improper rotations).[260]

As the allowed phonon modes are constrained by the crystal symmetry, pseu-

doscalar phonons only exist in crystals where the mirror symmetries are suffi-

ciently broken.[260] Therefore, previous works ruled out such chiral-anomaly

induced optical phenomena in Weyl semimetal candidates with many mirror

planes, such as TaAs and NbAs.[260, 235]

We claim, by contrast, that such optical signatures of the chiral anomaly

can occur in all mirror-symmetric crystals for both scalar and pseudoscalar

phonons, due to the role of a necessary magnetic field. Previous analyses[260,

235] assumed the Weyl points to be locally identical (up to chirality) and the

linear dispersion to be isotropic. If one breaks these assumptions and allows

the Fermi velocities to differ, a scalar phonon can also develop an effective, non-

vanishing axial coupling. Such a difference in Fermi velocities can be induced

by the magnetic field necessarily present in the experiments. Because of this, it

is important to consider the effect of magnetic field on symmetries neglected in

previous analyses.

The magnetic field, a pseudovector, changes sign under improper rotation;

under the reflection x → −x, the magnetic field transforms as (Bx, By, Bz) →

(Bx,−By,−Bz). Therefore, it breaks all mirror symmetries except for the mir-

ror plane normal to it, if such a mirror plane exists. The Zeeman effect and
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the Landau level quantization are examples of such mirror-symmetry-breaking

effects. In the presence of at most one mirror plane, an effective pseudoscalar

phonon is allowed to exist, so the axial component of the phonon coupling for

this mode is generically non-zero. Since optical signatures of the chiral anomaly

require the presence of a static magnetic field, no symmetry restrictions on Weyl

semimetals are required to see this signature. In this paper, by considering a

suitable microscopic model, we show that the Zeeman effect and the Landau

level quantization can result in substantial Fermi velocity asymmetry that can

drive detectable optical signatures of chiral anomaly.

The outline of the paper is as follows: In Section II, we introduce a tight-

binding model Hamiltonian in the same symmetry class as TaAs and NbAs and

analyze the effect of mirror-symmetry-breaking Zeeman effect and Landau level

quantization on the fermion dynamics. In Section III, we discuss the electron-

phonon coupling and its symmetry constraints for optical signatures. In Section

IV, given the magnetic field’s mirror-asymmetric effect on the Fermi velocities,

we estimate the strength and visibility of the IR reflectivity signal corresponding

to the dynamically-driven chiral anomaly. Finally, we conclude our results and

discuss their distinction from multiferroic materials in section V.

4.1.2 Tight-binding model of 3D Weyl fermions with magnetic

field

To quantitatively analyze the symmetry-breaking effect of the magnetic field,

we consider the following 3D electronic tight-binding model with crystal sym-

120



metries identical to the Weyl semimetals TaAs and NbAs:[224]

H0 = t
∑
⟨ij⟩,s

c†iscjs +
∑
i,s

∆ic
†
iscis + iλ

∑
⟨⟨ik⟩⟩,ss′

c†iscks′
∑
j

dijk · σss′ (4.2)

where t is the nearest neighbor hopping, ∆i = ±∆ is a staggered potential

whose sign depends on the sublattice being a Ta(Nb) or As site, and λ is the

amplitude of the spin-orbit interaction between next-nearest neighbors. s =↑, ↓

denotes spin, and σ are the Pauli matrices. The vector dijk = dij × djk, where j

is an intermediate site between i and k, and dij is the displacement vector from

i to j.

In the absence of the magnetic field, the model is time-reversal invariant and

breaks inversion symmetry. Two mirror planes exist in the xz and yz directions.

For large values of λ, the model is a 3D topological insulator; for large values

of ∆, on the other hand, the model is a normal insulator. In between, a time-

reversal-invariant Weyl semimetal exists in a finite phase space, for instance, at

t = 500meV, ∆ = 350meV, λ = 100meV; we will use these parameters through-

out this paper. Comparing this model at B = 0T to DFT calculations of the

TaAs band structure[112, 311, 187] and the measured Fermi velocities around

the Weyl points,[224] we find qualitative agreement. More details on the low-

energy electronic properties of the model can be found in the Appendix.

In the presence of a magnetic field, we generally expect the Hamiltonian

to change in two ways. One modification is the Zeeman effect, describing the

coupling of the electron spin to the magnetic field given by

Hz = gµB
∑
iss′

c†iscis′B · σss′ (4.3)

with g the g-factor, µB the Bohr magneton, and B the magnetic field. We esti-

mate a large g-factor g ≈ 50 for typical topological Weyl semimetal materials
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with strong spin-orbit coupling, such as TaAs and NbAs, by analogy to mea-

surements in related materials.[252, 110] The inclusion of the Zeeman effect at

finite B breaks the time-reversal symmetry and all mirror plane symmetries ex-

cept the mirror plane normal to the magnetic field, if it exists.

The other modification, which we refer to as the Landau level quantization,

comes from the minimal coupling of the electromagnetic vector potential to the

electron current. To incorporate this effect, we perform the Peierls substitution

on the kinetic term and the spin-orbit interaction:

c†iscjs → eiAijc†iscjs

c†iscks′ → eiAikc†iscks′ (4.4)

where Aij and Aik are the electromagnetic vector potentials (integrated) from i

to j and from i to k, respectively. We’ve chosen to set the electron charge e = 1

(and ℏ = 1, as usual). We also use the lattice constants of TaAs to convert the

magnetic flux into the magnetic field in unit of Tesla. As is well known, minimal

coupling to a magnetic field leads to a quantization of the electronic dispersion

into separate Landau bands. In particular, the dispersion normal to the mag-

netic field becomes quantized, so the dispersion becomes one-dimensional with

bandgap controlled by the magnetic field. Similar to the Zeeman effect, Lan-

dau level quantization also breaks time-reversal symmetry and all mirror plane

symmetries except the (possibly existent) mirror plane normal to the magnetic

field.

Let us focus on the impact of magnetic-field-induced mirror symmetry

breaking on the low-energy dispersion of the Weyl nodes near the kz ≈ 0 plane

in the Brillouin zone. For clarity, we will consider the effects of the Zeeman

effect (Eq. 4.2 and 4.3) and the Landau level quantization (Eq. 4.2 and 4.4) sep-
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Figure 4.1: The magnitude of the Fermi velocity as a function of the azimuthal
angle ϕ in the kx − ky plane for a pair of Weyl points, denoted in green and
magenta, originally related by the mirror symmetry at |B| = 0T . The solid
and dashed lines denote the upper and lower branches of the Weyl dispersion,
respectively. For a magnetic field |B| ∼ 10T in the x̂/2 +

√
3ŷ/2 direction, the

differences developed between these curves demonstrate the mirror-symmetry
breaking of the Zeeman effect.

arately.

For the Zeeman interaction, we diagonalize the Hamiltonian H0 + Hz in k⃗

space as Eq. 4.3 preserves lattice translation symmetries. We find that even

with a magnetic field as large as |B| = 10T , the Weyl nodes only displace a

scale ∼ 0.1% of the Brillouin zone (see the Appendix). Therefore, the impact of

the Zeeman effect due to the k-dependence of the electron-phonon coupling is

likely small, and we neglect this contribution. On the other hand, the symme-

try breaking from the magnetic field has a more prominent effect on the Fermi

velocities, especially in topological semimetal models and materials with strong

spin-orbit interactions, so that the Zeeman spin-splitting effect strongly impacts

electron velocity. In Fig. 4.1, we see that the Fermi velocities of the Weyl points
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Figure 4.2: The kx dispersion of the four Landau bands closest to the Weyl node
energy in the presence of the Landau level quantization of a magnetic field |B| ∼
12T in the x̂ direction. The eight gapless linear branches are the chiral Landau
bands descending from the eight Weyl nodes, respectively, and responsible for
the electronic properties at low energy. A finite (indirect) gap separates the other
Landau bands. As an example, the chiral Landau bands in the red circle as the
descendants of a pair of Weyl nodes are illustrated in Fig. 4.3.

connected via mirror symmetries initially identical at zero field clearly become

different when a magnetic field is turned on.

For Landau level quantization, we focus our attention on the linear, chiral

Landau bands. We specialize to B = Bx̂ for simplicity and introduce the elec-

tromagnetic vector potential via Eq. (4.4). Consequently, the dispersion along ky

and kz becomes quenched, and the discrete Landau bands disperse only along

kx, which remains as a good quantum number. Using exact diagonalization for

the Hamiltonian within a magnetic unit cell, we obtain the one-dimensional kx

dispersion - see Fig. 4.2 for an example at |B| ∼ 12T. It is important to note that

the branch of the dispersion that evolves into the chiral Landau band depends

on the chirality of each Weyl node,[205] schematically shown in Fig. 4.3. There-

124



Figure 4.3: (a) A schematic plot of the kx dispersion of a pair of Weyl nodes of
opposite chirality (labeled with blue and red) related by a My mirror symme-
try at zero field, and (b) the chiral and anti-chiral Landau bands selected out
in the presence of a magnetic field along the x-direction. Since the chiral and
anti-chiral Landau levels can generically have distinct Fermi velocities, they ex-
plicitly break the My symmetries and contribute to an effective axial electron-
phonon coupling.

fore, despite the identical zero-field dispersion of a pair of mirror-symmetric

Weyl nodes, the differing chiralities ensure that the chiral and anti-chiral Lan-

dau bands selected out by the magnetic field generally have distinct Fermi ve-

locities. Interestingly, such a difference between the Fermi velocity of the chiral

and anti-chiral Landau bands is a form of mirror-symmetry breaking, depend-

ing on the anisotropy of the original Weyl fermions instead of the strength of

the magnetic field. The remainder of the Landau bands will be gapped by the

magnetic field, so that the chiral branches dominate near the Fermi energy, see

Fig. 4.2. As a result, chiral anomaly effects may become visible if the cyclotron

energy of B is sufficiently large and the Fermi energy sufficiently close to the

Weyl node.

In summary, the mirror symmetry connecting a pair of Weyl nodes is explic-

itly broken by a magnetic field. The magnetic-field-induced difference between

the Weyl nodes’ Fermi velocities, induced by the Zeeman effect and the chiral

selectivity of Landau level quantization, are physical manifestations of the bro-

ken mirror symmetry. We will discuss its phenomenological consequences for
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the dynamical chiral anomaly in Sec. IV.

4.1.3 Electron-phonon Coupling and Symmetry Constraints

To understand the impact of the Weyl fermion dynamics and its symmetry con-

straints on the electron-phonon coupling, we consider the interaction between

phonons and a pair of Weyl nodes with opposite chirality τ = ±1:

Hep =
∑
kq

∑
σσ′τ

(∑
λ

uλσσ′,τ (q)vqλ

)
c†kστck−qσ′τ (4.5)

where vqλ is the phonon displacement operator in mode λ at momentum q and

σ, σ′ describe the pseudospin of the electrons. We have neglected inter-node

electron scattering, since it requires a large momentum transfer q to connect the

well-separated Weyl nodes in the momentum space. Decomposing the electron-

phonon coupling into its irreducible representations,

uλσσ′,τ = uλ00δσσ′ + uλ0 · σσσ′ + τ(uλ0zδσσ′ + uλz · σσσ′) (4.6)

The two latter terms correspond to the (chirality-dependent) axial coupling re-

sponsible for the chiral anomaly. We focus on the axial coupling constant uλ0z

since the contribution from uλz is suppressed by a factor of vτ/c, as we will see

later.

The symmetries of the system impose constraints on the electron-phonon

coupling. In particular, uλz vanishes in the presence of time-reversal symme-

try, while uλ0z vanishes in the presence of two non-coplanar mirror-symmetry

planes.[260, 235, 236] Therefore, it seems that the mirror symmetry in the crys-

tal should be sufficiently broken to host a nontrivial phonon signature as a result

of the chiral anomaly. We find, on the other hand, that the imposed magnetic
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field can break the mirror symmetries sufficiently for the signatures to appear

in a much broader pool of Weyl semimetal candidates.

For our tight-binding model in Eq. (4.2), we expect the magnetic-field-

induced changes to uλσσ′,τ due to the small displacements of the Weyl point lo-

cations to be sub-dominant; instead, the key ingredient that leads to interesting

phonon behavior is the induced change in Fermi velocity, which we discuss

next.

4.1.4 Estimating the Effect of Magnetic field on the Fermi Ve-

locity

In this section, we study the chiral anomaly contribution to the phonon dy-

namics by integrating out the electronic degrees of freedom. The low-energy

effective theory of our tight-binding model, described by Eqs. (4.2-4.4), can be

captured by the following single-particle Hamiltonian

Hτ = vτ (k̂)τσ · (−i∇+ eA)− eA0 (4.7)

which describes a Weyl point with chirality τ = ±1 and anisotropic Fermi ve-

locity vτ (k̂). The terms A0,A are the electromagnetic vector potential.1 Because

phonons do not couple electrons between Weyl nodes, the integration over elec-

tronic degrees of freedom factorizes between Weyl points (at the leading order);

we can restrict our attention to a single pair.

For a pair of Weyl nodes with isotropic and identical Fermi velocity vτ (k̂) =

vF , on integrating out the fermions one finds that the chiral anomaly contributes
1We assume that the energy separation of the Weyl nodes is zero; the momentum separation

is large and presumably irrelevant in the low-energy theory, so it has been dropped.
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to a mode-effective phonon charge δQ, and hence to a dielectric susceptibility

χ:[235]

δQ−qλ(−q0) = i
e2Vc
√
N

π2ℏ2
B

q2
(q0u

λ
0z − vFq · uλ0) (4.8)

χλjj′(q0,q) =
1

MVc
δQqλjδQqλj′

ω2
qλ + iκuλ00q · δQqλ − q20

(4.9)

where (q0,q) is the frequency-momentum vector of the phonon, Vc is the unit

cell volume, M is the total mass of ions in the unit cell, N is the number of

unit cells, and B is the static background magnetic field. κ =
√
N/(Me), q2 =

q20 − v2Fq2, and ωqλ is the bare phonon dispersion of mode λ. Since q0 = cq for

light, the uλ0 term is suppressed by vF/c. When the IR light is on resonance with

the phonon driving the chiral anomaly, the dielectric constant diverges and the

reflectivity develops a peak with a form factor EIR ·B. Also, such chiral anomaly

contribution to χλjj′ clearly depends on a non-zero axial coupling constant uλ0z.

In comparison, our generalized model in Eq. (4.7) takes into account the

anisotropic Fermi velocity around a Weyl node as well as the different Fermi ve-

locities between the Weyl nodes. We consider a totally-symmetric scalar phonon

mode at zero field, where all components of the electron-phonon coupling are

0 except uλ00. For simplicity, this system can be mapped back to the isotropic

case by rescaling the fermions by vτc†τcτ → vF c
†
τcτ , which changes the electron-

phonon coupling and induces components in the non-identity piece:

uλ00 →
vF
2

(
1

v+
+

1

v−

)
uλ00 (4.10)

uλ0z →
vF
2

(
1

v+
− 1

v−

)
uλ00 (4.11)

The rescaling of the fermions also changes A0, but it does not affect the phonon

charge and dielectric susceptibility in Eqs. (4.8) and (4.9) so we neglect the

change. As is manifest after rescaling, the difference of the Fermi velocity is
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Figure 4.4: The relative difference (induced by the Zeeman effect) between the
Fermi velocities of a pair of Weyl nodes as a function of the strength of the
magnetic field B in the x̂/2 +

√
3ŷ/2 direction. The ratio is averaged over all

directions. Assuming that uλ00 is the only non-zero electron-phonon coupling
component at B = 0, this quantity measures the ratio uλ0z/uλ00 generated by the
inclusion of the magnetic field and the broken symmetry between v+ and v−
(see Eqs. (4.10) and (4.11)).

equivalent to an axial component uλ0z in the isotropic setting since uλ0z/u
λ
00 =

|v+ − v−|/(v+ + v−). For the Zeeman effect, a non-zero difference develops be-

tween the Fermi velocities of the pair of Weyl nodes related by the original mir-

ror symmetry. The difference is generally greater at larger magnetic field, see

Fig. 4.4, and uλ0z ∼ 0.02uλ00 at 10T within our model. For Landau level quanti-

zation, on the other hand, the non-zero difference between v+ and v− originates

from the anisotropy of the dispersion around each Weyl point. Also, the dif-

ference is less dependent on B, see Fig. 4.5, as long as B is large enough to

separate the non-chiral Landau bands and suppress their contribution. Landau

level quantization gives uλ0z ∼ 0.3uλ00 within our highly anisotropic model, yet

it is also possible that uλ0z → 0 irrespective of B when the anisotropy vanishes,

e.g. for two isotropic Weyl points.
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Figure 4.5: The relative difference (induced by the Landau level quantization)
between the chiral Landau level Fermi velocities descending from a pair of Weyl
nodes as a function of the magnetic field B along the x̂ direction. Similar to Fig.
4.4, the value of |v+ − v−| / (v+ − v−) measures the ratio uλ0z/uλ00 generated by the
magnetic field. The black dotted line is the value evaluated with the zero-field
dispersion.

Now that we have obtained an estimate for the effective uλ0z, let’s estimate

the strength of the corresponding IR signature. For example, we focus on the

A1 phonon mode in TaAs. We take ω = 8 THz to match the experimental ob-

servation of an A1 phonon mode in TaAs[306], Vc = 125Å, and M = 10−25kg.

We also take uA1
0z ∼ 0.02uA1

00 , which is reasonably obtainable given either the

Zeeman effect with g = 50 at |B| = 10T or Landau level quantization with the

anisotropy in the NbAs and TaAs Weyl dispersion, as previously demonstrated.

We also estimate
√
NuA1

00 ∼ 1Ry/aB on dimensional grounds[235], and neglect

the uz contribution given vF ≪ c. As a result, we obtain |δQ| ≈ .8e. Next, we

calculate the impact of the chiral anomaly on the susceptibility. If we drive the

IR frequency at q0 = 7.9 THz, corresponding to a resonance width of 6.7 cm−1,

we find that χA1
zz = 60ϵ0. Comparing to the experimentally measured zero-field
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Figure 4.6: Proposed experimental setup to measure the IR signature of the chi-
ral anomaly. In the presence of collinear EIR and B fields, a peak in optical
reflectivity is expected for inducing pseudoscalar phonon modes that couple
strongly to the Weyl fermion electrons. Such effect also displays a EIR ·B depen-
dence as one rotates EIR relative to B in experiments.

reflectivity R =
|1−√

ϵr|2
|1+√

ϵr|2 on TaAs crystals[306], the chiral anomaly contribution

to the reflectivity should be of sufficient weight to be observable over the back-

ground of χ ≈ 400ϵ0. Therefore, we propose an EIR · B dependent peak in the

IR reflectivity as a signature of the chiral anomaly following the experimental

setup in Fig. 4.6, even for scalar phonon modes and mirror-symmetric Weyl

semimetals.2

4.1.5 Discussions and Conclusions

In this paper, we have focused on utilizing the mirror-symmetry breaking of the

magnetic field to realize dynamical chiral anomaly in mirror-symmetric crystals

2Note that the proposed signature is a characteristic of the bulk, hence the incident light must
penetrate into the bulk for this effect to manifest.
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and exhibit optical signatures for scalar phonons in IR spectroscopy. We would

like to emphasize that so long as a magnetic field is present, at most one mir-

ror symmetry remains, so that the axial phonon coupling uλ0z is generically al-

lowed from symmetry considerations and a chiral-anomaly induced IR response

should be present. For the specific case where a single mirror plane remains, a

pseudoscalar phonon mode normal to the mirror plane is still allowed[260, 236].

Since both the effective pseudoscalar phonon and the Weyl fermion chirality

change sign under mirror symmetry, the axial component of electron-phonon

coupling is not restricted to zero, and the corresponding IR signature of the dy-

namical chiral anomaly survives.[260, 236]

Inducing changes in dielectric susceptibility via a magnetic field is a mag-

netoelectric effect and not completely new.[235] However, magnetoelectric ef-

fects are typically associated with multiferroic materials (e.g., Cr2O3) and pre-

vious studies have focused on linear magnetoelectric effects (e.g., P ∝ B). For

the chiral anomaly, the effect is cubic with a characteristic E · B signature (i.e.

P ∝ (E ·B)B), and known Weyl semimetals are not multiferroic. Therefore, we

believe that the chiral-anomaly-activated phonon dynamics and IR signatures

should be visible in generic Weyl semimetals.
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4.1.6 Appendix: Low-energy Weyl dispersion and Weyl nodes

of the tight binding model

The tight-binding model of Eq. (4.2) in the main text has four pairs of Weyl

nodes on the kz = 0 plane at |B| = 0T, shown as the red dots in Fig. 4.7 left

panel. These Weyl nodes are related to each other by the reflection planes in

the xz and yz directions. The low-energy electronic dispersion is approximately

linear near each of the Weyl nodes, see Fig. 4.7 right panel.

In the presence of a magnetic field B, these reflection symmetries are gen-

erally broken. As a result, the locations of the Weyl nodes are no longer mir-

ror symmetric. However, with the inclusion of the Zeeman effect (Eq. (4.3)),

the displacements of the Weyl node locations are relatively small at experimen-

tally relevant parameters, and unlikely to impact the electron-phonon coupling

through its k-dependence in a meaningful way.
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Figure 4.7: Left: the momentum-space locations of the Weyl nodes on the kz = 0
plane show the mirror symmetry is broken in the presence of a magnetic field
|B| = 10T along the x̂/2 +

√
3ŷ/2 direction. Note that even for a large g-factor

g = 50 and a large magnetic field of 10T, the Weyl nodes only displaces by a
scale∼ 0.1% of the Brillouin zone. The inset shows a magnified view of the pair
of Weyl points in the orange box. Right: The zero-field dispersion in the ky − kz
plane is approximately linear near the Weyl nodes.
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CHAPTER 5

DOMAIN WALL TRANSPORT IN MOIRÉ SYSTEMS

The field of moiré systems has recently become one of the most trendy topics

in condensed matter physics. By providing either a twist angle or a lattice mis-

match between two layers, a periodic moiré superlattice appears as a result of

incommensuration. This moiré period can be much larger than the intrinsic

lattice constant of the two layers, leading to a small moiré miniband. In par-

ticular, creating moiré patterns provides a straightforward way to change the

band structure and enhance the strength of interactions. Beginning with the

discovery of unconventional superconductivity in bilayer graphene twisted to

a specific magic angle [31], moiré systems have shown to be a burgeoning foun-

tain of strongly correlated phenomena [31, 248, 313, 139, 44, 178, 35, 37, 24, 216,

232, 263, 30, 176, 211, 309, 40, 272, 229, 287, 246, 36, 21]. However, recent ex-

perimental works have demonstrated that bilayers with small twist angles or

small lattice mismatches can atomically reconstruct away from the moiré pat-

tern to form sharp domain walls [268, 269, 308, 315, 111, 8, 129, 233, 192, 267,

237, 297, 163, 138]. This suggests the novel possibility that transport physics

may be dominated by the domain walls, which we explore in what follows.

5.1 Topological moiré domain wall networks - Emergence of or-

bital antiferromagnetic-ordering

This section is currently being written up for publication in a peer-reviewed

journal in collaboration with Eun-Ah Kim.
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Moiré structures have recently been shown to host a plethora of correlated

behavior, with many works focusing on the effects of the moiré miniband. How-

ever, recent experiments suggest that moiré systems can feature sharp domain

walls and therefore provide a natural setting to study networks of 1D topolog-

ical modes. While topological edge physics in moiré systems have been pre-

viously studied, many papers worked with non-interacting models. A few in-

teracting network models have found gapped correlated phases by explicitly

enforcing a single-particle gap. By contrast, we study a triangular network of

valley-helical Luttinger wires where intervalley scattering is suppressed and no

single-particle gap can open. We find that transport in this network is inherently

non-local unlike the local diffusive behavior of a resistor network. In particular,

we predict a novel orbital antiferromagnetic-ordering phase at strong repulsive

interactions.

5.1.1 Introduction

Moiré systems have recently been shown to exhibit a plethora of correlated

behavior.[31, 32, 248, 313, 139, 44, 178, 35, 37, 24, 216, 232, 263, 30, 176, 211, 309,

40, 272, 229, 287, 246, 36, 21] While most have focused on the physics of the

moiré miniband, recent experiments in both homo-bilayer and hetero-bilayer

systems suggest that marginal twist angles and/or small lattice mismatches can

lead to significant atomic reconstruction and the formation of sharp domain

walls.[268, 269, 308, 315, 111, 8, 127, 233, 192, 267, 237, 297, 163, 138] In this

regime, a network of topological edge modes can emerge in the presence of

an appropriate bulk gap; a prototypical example of such a network is shown

in Fig. 5.1a, where domains of staggered Chern number give rise to topolog-
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(a) Domains with staggered Chern
number

(b) Marginally twisted bilayer
graphene realization

Figure 5.1: (a) Domains equipped with a staggered Chern number, giving rise to
topological edge physics. (b) A realization of Fig. 5.1a in marginally twisted bi-
layer graphene, where the AB/BA domains under an out-of-plane electric field
develop a valley Chern number Cv = ±1.

ical edge modes. This network is physically realizable in marginally twisted

bilayer graphene as shown in Fig. 5.1b, where the staggered lattice of AB/BA

stacking provides a staggered valley Chern number in the presence of an out-

of-plane electric field. These domain walls host 1D topological valley-helical

edge modes, i.e. confined electronic states whose direction of propagation is

opposite in opposite valleys.[190, 280, 321, 165, 314, 130] Control of topological

edge modes and their junctions has long been of interest, e.g. for low power

technological applications,[222, 221, 209, 264, 165, 231, 61, 38, 230], though engi-

neering substantial networks of 1D topological modes has proven challenging.

Moiré systems therefore provide a natural setting to produce and study such

networks.

As a natural first step, pioneering works used non-interacting models

to study the 1D valley-helical edge modes in marginally twisted bilayer

graphene.[67, 283, 59, 279, 107, 108] The valley-helical nature of the wires pro-
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Figure 5.2: A plot of the experimental setup in the orbital AF-ordering phase.
All but one of the external wires are grounded, while the remaining wire is held
at a raised voltage V . This leads to a charge current pattern as demonstrated
by the arrows, where the strength of the charge current is equal on every link.
The current injection breaks time-reversal and gives rise to orbital antiferromag-
netism.

vides a strong constraint; approximate conservation of valley number provides

“topological” protection, and thus led to novel predictions for electronic struc-

ture and transport. Interacting network models[45, 304, 34] found gapped corre-

lated phases - e.g. superconductivity and charge density wave (CDW) - reminis-

cent of the phase diagram near commensurate filllings in magic-angle twisted

bilayer graphene. To truly achieve these phases requires generating a single-

particle gap, which is generally suppressed by a large momentum transfer away

from commensurate fillings. In contrast to these previous works, we treat in-

teractions while enforcing time-reversal symmetry and no intervalley scatter-

ing, ensuring that a single-particle gap cannot be opened and valley-helicity is

protected.[280]

In this paper, we study the transport features afforded by a triangular net-

work of interacting valley-helical edge modes without intervalley scattering.
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Figure 5.3: Schematic drawing of the single-scattering site Hamiltonian. Six
Luttinger wires meet at a central junction, with each wire having an ingoing
and outgoing mode. The color of the wire represents the valley (spin) degree of
freedom, where the circulation of red arrows is opposite between the red and
blue domains (and similarly for blue arrows). One can pair wires of opposite
helicity (e.g. adjacent wires) and arrive at the right figure, which is equivalent
to junction of three “spinful” Luttinger liquids.

We find that transport in this network is non-local, unlike that of a resistor net-

work, and argue that a orbital antiferromagnetic (AF)-ordering phase will ap-

pear for sufficiently repulsive electron-electron interactions (see Fig. 5.2). The

rest of the paper is organized as follows. In Sec. II, we provide our model of

a single scattering center and outline the phase diagram. In Sec. III, we briefly

discuss the ballistic phase. In Sec. IV, we propose a novel orbital AF-ordering

phase and argue that this can be observed in the experimental setup of Fig. 5.2.

In Sec. V, we summarize our results and make closing remarks.

5.1.2 Mathematical Setup

We begin by modeling a single scattering center as shown in Fig. 5.3. Each half-

wire is modeled as a Tomonaga-Luttinger liquid of valley-helicity σ = ±1, with
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Hamiltonian

Hσ =

∫
x>0

dx
[
− vF

(
ψL†σ i∂xψ

L
σ − ψ

R†
−σi∂xψ

R
−σ

)
+
λ4
2
(J2
L,σ + J2

R,−σ) + λ2JL,σJR,−σ

]
(5.1)

where ψL/Rσ corresponds to an ingoing/outgoing fermion annihilation operator

of valley index σ = ± and JL/R,σ = ψ
L/R†
σ ψ

L/R
σ are the corresponding density

operators. Valley-helicity is encoded on each fermion operator by the pinning

of L to σ and R to −σ. In addition to enforcing time-reversal symmetry, we also

work away from commensurate fillings and forbid intervalley scattering.1 We

have ignored any “channel” and spin degrees of freedom for simplicity, such as

those present in twisted bilayer graphene;[190, 280] in the absence of intervalley

scattering, we do not expect these degrees of freedom to gap the wire.[280] Six

of these half-wires meet at x = 0 to form the junction of interest as shown in

Fig. 5.3, with the red and blue arrows denoting the two modes in each half-wire.

On this junction, we impose C3 rotational symmetry and inversion symmetry so

that all the half-wires are identical (up to helicity).

It will be convenient to pair the Hamiltonians H+ +H− so that the “folded”

wire is analogous to a “spinful” Luttinger half-wire, as shown in Fig. 5.3 (see also

Ref. [106]). Since our wires are related by a C3 symmetry, this pairing choice en-

joys a “folding symmetry”. Therefore, our model can be mapped onto a junction

of three “spinful” Luttinger liquids. We then bosonize each folded wire in the

standard way, arriving at the following Euclidean action:

S =
∑
r=c,v

3∑
i=1

∫
x>0

dx
vrgr
4π

[
1

v2r
(∂τφi,r)

2 + (∂xφi,r)
2

]
(5.2)

where v refers to the “valley” mode and i the wire index. In our convention,

gc > 1 corresponds to attractive interactions and gc < 1 corresponds to repulsive
1I.e. particle number in each valley is conserved
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Phase Stabilized Tunnelings Stable Regime

Orbital AF-ordering ψR†
j,−σψ

L
i,−σψ

R†
i,σψ

L
j,σ gc < 2/3

Ballistic ψR†
i,σψ

L
j,σ 1/2 < gc < 2

Cooper pair tunneling ψR†
i,σψ

L†
i,−σψ

R
j,−σψ

L
j,σ gc > 3/2

Table 5.1: The three phases in our model and the corresponding stabilized tun-
neling operators. The tunneling operators are written in the folded-wire basis.

interactions.2 Under this folding procedure, our model enforces the condition

gcgv = 1 because valley-helicity constrains the form of interactions on the folded

half-wire. We refer the reader to the Appendix for our bosonization conventions

and additional details.

To complete our model, we specify a boundary condition ϕRi (x = 0, τ) =

Rijϕ
L
j (x = 0, τ) to relate ingoing (L) and outgoing (R) modes. This bound-

ary condition can be physically understood as relating the currents JR,i =

RijJL,j .[105]3 For simplicity, we only consider boundary conditions which de-

couple into charge and valley sectors Rc,Rv. Given a boundary condition Rij ,

we assess our Hamiltonian’s stability under tunneling processes at the bound-

ary; the Hamiltonian is only stable when the boundary operators either have

irrelevant scaling dimension or 0 scaling dimension. We will call a boundary

operator “stabilized” if it has scaling dimension zero for a particular bound-

ary condition. In this paper, we include all single and two-particle tunneling

processes at x = 0 that conserve net particle number and net valley number.4

The phase diagram of a junction of three spinful Luttinger wires with

particle-number and spin-conserving tunneling was studied in Ref. [105], anal-

2In particular, this is the opposite convention of Ref. [304] and Ref. [34]
3This can be shown by taking a time derivative ∂τϕR/L = JR/L.
4Higher-order terms are expected to be irrelevant.
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Figure 5.4: The phase diagram of the triangular network of valley-helical wires.
The shaded regions denote regimes of overlapping stability.

ogous to our model where spin is replaced with valley. Enforcing our constraint

gcgv = 1 on their results, we find three regimes - cooper pair tunneling, bal-

listic, and orbital AF-ordering; we list these in Table 5.1. As seen in the phase

diagram of Fig. 5.4, there are regions where phases have overlapping stability;

determining which fixed point dominates depends on microscopic details and

lies outside the scope of this work. As physical electron-electron interactions are

expected to be repulsive, we will focus on the regime gc < 1 and defer further

discussion of the cooper pair tunneling phase to the Appendix.

5.1.3 Ballistic phase

We begin with a brief discussion of the ballistic phase, stable for interactions of

intermediate strength 1/2 < gc < 2. This phase is a bit subtle, as there are six co-

stable fixed points. One of the fixed points has the boundary condition Rc,ij =

Rv,ij = δij , corresponding to stabilizing complete backscattering ψR†
i,σψ

L
i,σ in each

folded wire.5 Unfolding each of the folded wires, we see that this corresponds

to forming full valley-helical wires by connecting pairs of half-wires. As this

boundary condition is comprised of three decoupled Luttinger wires exhibiting

perfect transmission, this motivates the name “ballistic”. However, this fixed

5While Ref. [105] wrote the boundary conditions in a rotated basis, for this paper it is equiv-
alent to our boundary condition in the unrotated basis. See the Appendix for details.
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(a) Orbital AF-ordering
current profile

(b) Charge current profile (c) Pair-exchange tunneling

Figure 5.5: (a) The current profile of the orbital AF-ordering phase for ingoing
current on one link. Negative numbers signify negative current, or equivalently
a positive hole current (b) The corresponding charge current profile (i.e. red
minus blue). The current strength on each link is the same, but alternates in sign
as one goes around the scattering center. (c) The current profile corresponding
to one of the pair-exchange tunneling terms.

point is not symmetric under folding symmetry; as there are six possible choices

of folding, giving rise to six co-stable fixed points. In physical systems, the

microscopic details will determine which fixed point the system actually adopts,

which lies outside the scope of this work. On a network, long ballistic channels

will form in this phase. Each channel has the usual Luttinger liquid conductance

G = gc
e2

h
. This ballistic behavior is consistent with previous works on non-

interacting network models of TBG, which predicted transport along ballistic

zig-zag modes.[279, 59] For additional discussion of the ballistic phase, see the

Appendix.

5.1.4 Orbital AF-ordering phase

We now consider the orbital AF-ordering phase, corresponding to strong repul-

sive interactions gc < 2/3. The boundary condition of this phase is Rc,ij = δij

and Rv,ij = −δij + 2/3. As before, we unfold the boundary conditions back to
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our six-wire basis to manifestly see the current flow profile. Using the relation

ϕc(v) = [(ϕL,+ + ϕR,+)± (ϕL,− + ϕR,−)]/
√
2, we find

RoAF
ij =δij −

1

3
(−1)i−j (5.3)

where the basis ordering is chosen such that one goes sequentially around the

center. The resulting current profile is shown in Fig. 5.5a for a single wire with

ingoing current. Unlike the ballistic case, this fixed point is independent of the

choice of folding; the currents are the same on the C3-related wires excluding

the wire with incoming current. In Fig. 5.5b, we see that the resulting net charge

current is equal on each wire but alternates in sign as one goes around the scat-

tering center. The currents therefore circulate around each triangular domain in

an alternating pattern, reminiscent of orbital antiferromagnetism. By tiling the

network with the charge current profile, we find the current pattern shown in

Fig. 5.2 with long-range orbital AF order, motivating the name of this phase.

To understand the origin of this peculiar current profile, we rewrite the stabi-

lized (scaling dimension 0) tunneling operators at this fixed point into the 6-wire

basis. These are

PEi,2n+i+1 = ψR†
i,−σψ

L
2n+i+1,−σψ

R†
2n+i+1,σψ

L
i,σ (5.4)

for n ∈ Z, corresponding to pair exchange tunneling from wire i to wire 2n+i+1

as shown in Fig. 5.5c.6 These tunnelings were also considered in Refs. [34] and

[45], where these promoted a CDW phase. One of these tunnelings provides

the current profile shown in Fig. 5.5c, where a pair of ingoing currents of oppo-

site valley number tunnel through the defect. Now we argue in reverse: given

that all of the pair exchange tunnelings are stabilized in this phase, we want to
6The factor 2n+ i+ 1 is to ensure that wire 2n+ i+ 1 is of opposite valley-helicity to that of

wire i, and wire indices are understood modulo 6. We also again remark that σ is a redundant
label, fixed by the choice of direction L/R and the helicity of the corresponding wire.
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reconstruct the boundary condition in Fig. 5.5a. In particular, this means that

we want to reconstruct the two-ingoing-currents picture Fig. 5.5c using the one-

ingoing-current picture of Fig. 5.5a. Let us consider one ingoing red (σ = +)

current as shown in Fig. 5.5a. As the set of tunneling operators enjoys the D3

symmetry i↔ i+2 on each index, the outgoing red currents must have the same

current 1/3 by current conservation. Similarly, the two outgoing blue (σ = −)

currents have the same current b, while the backscattered current has current

−2b. Inversion symmetry gives us the corresponding profile with one ingoing

blue current coming in from the right. When these two profiles added together,

these must recreate Fig. 5.5c. This gives b = −1/3, as in Fig. 5.5a Therefore,

enforcing that the pair exchange tunnelings are stabilized requires the boundary

conditionRoAF .

We then treat the full triangular network as shown in Fig. 5.2, utilizing our

single-site results to compute the current profile and conductance. Rather than

solve the large system of equations provided by the boundary condition R on

each scattering site, we use conservation arguments to quickly obtain the result.

Here we focus on the experimentally-relevant charge current profile; we discuss

the valley current profile in the Appendix. As previously noted, Fig. 5.5b im-

plies that the charge current strength is equal on every link and forms orbital

antiferromagnetic domains as shown in Fig. 5.2. It remains to obtain the corre-

sponding current strength on each link and the network conductance. Without

loss of generality, we consider exactly one external wire hosting ingoing current.

At the input link, the backscattered current fraction b must satisfy 1 − b = I/I0,

where I0 is the current of the ingoing portion of the input link. For the ex-

ternal links, excluding the input link, the valley and charge current strength

are equal as they only carry outgoing modes. Since the sign of the charge cur-
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rent alternates with valley, by valley current conservation we must also have

1 + b = (Next − 1)I/I0. Therefore, this gives us I/I0 = 2/Next.7 To obtain the

conductance tensor, the Kubo formula gives[105]

Gij = gc
e2

h

(
δij −Rnetwork

ij

)
, (5.5)

where Rnetwork
ij is the effective boundary condition relating the currents on the

external wires. The δij corresponds to ingoing current on wire j generated by a

voltage Vj , whileRnetwork
ij is the corresponding outgoing current. Therefore, our

current pattern solution directly gives

Gij = gc
e2

h
σ(i)σ(j)

2

Next
(5.6)

where σ(i) is the helicity of the external wire i.8 Therefore, net current flows

when there is a net voltage difference
∑

i σ(i)Vi, corresponding to a voltage dif-

ference between external wires of differing helicity.

To observe this state, we propose an experiment as shown in Fig. 5.2. This is

almost a rectangular Hall bar geometry, except that we introduce a “point con-

tact” at the bottom edge to bias the voltage of one particular wire. In a typical

Hall bar, where one applies a constant voltage V to the entire bottom edge, we

generically expect net insulating Gxx = 0 behavior; if the bottom edge covers an

even number of wires, parity enforces net zero current. By preferentially biasing

a point contact, we break the helicity symmetry and generate a net current. In

7We remark that the result of current cannot be obtained by linking up nodes of Fig. 5.5b and
using the single site conductance. Internal links host both modes traveling in both directions,
so one must consistently solve for their mode populations. Therefore, one must keep track of
the valley information in order to obtain the correct result. At high temperatures, however,
excitations on the wire will equilibrate and have a well-defined voltage as in the approach of
Ref. [163]. In this regime, the strength of the current will scale as 1/N withN the number of scat-
tering centers. Even so, the antiferromagnetic current pattern will remain (up to temperature
dependent corrections).

8For external wires, a globally-defined helicity is well-defined since ingoing and outgoing
directions are well-defined.
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the proposed geometry of Fig. 5.2, note that current only flows through contacts

covering an odd number of wires. By arranging a series of point contacts, the

long-range orbital antiferromagnetic order will give rise to an alternating se-

quence of ingoing and outgoing currents of equal strength. This is remarkably

different from a resistor network which exhibits diffusive behavior in this ge-

ometry. Moreover, direct detection of the resultant orbital antiferromagnetism

would provide strong evidence of this phase.

5.1.5 Conclusion

In this paper, we have calculated current profiles and conductance of a triangu-

lar network of 1D valley-helical edge modes where intervalley scattering is sup-

pressed. At strong repulsive interactions, we find a novel orbital AF-ordering

phase (see Fig. 5.2), while at weaker repulsive interactions the system devel-

ops 1D ballistic channels. As these phases exhibit a long-range order of cur-

rents, they exhibit non-local transport distinct from the local diffusive behavior

of typical resistor networks. As these phases may be difficult to observe in typ-

ical Hall bar geometries, we propose the geometry of Fig. 5.2 to observe the

nontrivial transport behavior.

We made critical use of forbidding intervalley scattering to obtain our con-

ductive phases. Recent experimental measurements of the the AA defect in

marginally twisted bilayer graphene estimate its size to be ∼ 30Å,[138] which

is substantially larger than the graphene lattice constant 2.46Å.[55] Therefore,

we expect our assumption of no intervalley scattering at the defect to be

good. Moreover, in spin-valley locked systems, intervalley scattering is ex-
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plicitly prevented by time-reversal symmetry.[303] As a result, moiré domain

wall networks involving with strong spin-orbit coupling, such as transition

metal dichalcogenide (TMD) bilayers, may also demonstrate these non-local

edge transport features if one can induce a topological gap. At finite tem-

peratures and voltages, the single-site conductance, and therefore the network

conductance, will acquire power law corrections controlled by the scaling di-

mension of the leading irrelevant boundary operator ∆min from the Luttinger

physics.[135, 106] Observation of this power law behavior would provide pre-

liminary evidence of Luttinger transport and of the applicability of the net-

work model. Detailed analysis of a honeycomb network of spinful Luttinger

liquids has already shown non-Fermi liquid temperature dependence of the

conductivity[157]. We also remark that, since we have restricted ourselves to

boundary conditions which decouple into charge and valley sectors, we have

not exhausted the phase diagram (see also the Appendix). However, our phase

diagram covers −∞ < gc < ∞, so any additional phase must coexist with one

we have already discussed. We leave further exploration of the temperature-

dependence and the phase diagram to future work.
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5.1.6 Appendix: Bosonization and Conventions

In this paper, we follow the bosonization conventions of Ref. [105] and

Ref. [106]. The boson φr and its dual θr satisfy the commutation relation

[ϕ(x), θ(x′)] = −iΘ(x−x′). We can rewrite these into valley-up and valley-down

components via

φσ =
φc + σφv√

2
, θσ =

θc + σθv√
2

(5.7)

The left and right mover representations ϕL,σ and ϕR,σ are given by

ϕLσ =
φσ + θσ

2
, ϕRσ =

φσ − θσ
2

(5.8)

and the charge and valley components are

ϕac =
ϕa+ + ϕa−

2
, ϕav =

ϕa+ − ϕa−√
2

(5.9)

We identify the fermion annihilation operator as

ψaσ ∝ ei
√
2ϕaσ (5.10)

where we have suppressed the Klein factors.

To demonstrate gcgv = 1, we first rewrite the interaction terms in Eq. (5.1) in

terms of charge and valley currents, giving

Hint,i =vF

∫
x>0

dxλ2(JL,cJR,c − JL,vJR,v)

+ λ4(J
2
L,c + J2

R,c + J2
L,v + J2

R,v) (5.11)

Then, we use JL = 1√
2
(∂x+ i∂τ )θ and JR = 1√

2
(∂x− i∂τ )θ to bosonize. Therefore,

we find gc(v) =
√

2πvF+λ4∓λ2
2πvF+λ4±λ2 and obtain the result gcgv = 1. Additionally, we

remark that the expression for gc explicitly shows that gc < 1 corresponds to

repulsive (λ2, λ4 > 0) interactions.
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5.1.7 Appendix: Boundary conditions

The boundary conditions in Ref. [105] are written in a rotated basis ϕ̃ where

φ̃r =
√
grφr is rescaled. Therefore, one generically expects the rotated R̃ to

be distinct from R. However, for boundary conditions which are involutions

R2 = I (i.e. symmetric orthogonal matrices), we in fact find R̃ = R. To see this,

we first consider the following relations
ϕ̃Lc

ϕ̃Ls


=ML


ϕLc

ϕLs


(5.12)


ϕ̃Rc

ϕ̃Rs


=MR


ϕLc

ϕLs


(5.13)

ML =


coshαc 0

0 coshαs


−


sinhαc 0

0 sinhαs


R (5.14)

MR =


coshαc 0

0 coshαs


R−


sinhαc 0

0 sinhαs


(5.15)

where we have used the unrotated boundary conditionR(ϕLc , ϕLv )T = (ϕRc , ϕ
R
v )

T .

These equations tell us that

R̃ =MRM
−1
L (5.16)
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(a) Charge-valley decoupled folding (b) Charge-valley mixed folding

Figure 5.6: Two folding procedures for a ballistic fixed point where the wires
are connected across the defect. (a) A folding where opposite wires across the
junction are paired. We find ϕL1,c = ϕR1,c and ϕL1,v = ϕR1,v, so the charge and valley
boundary conditions are decoupled. (b) A folding where adjacent wires are
paired. We find that ϕL1,c = ϕR1,+ + ϕR3,−. Therefore, this boundary condition
mixes charge and valley.

If R is an involution, then MRR = ML and therefore R̃ = R as previously

claimed. As all the boundary conditions we consider in this paper are invo-

lutions, we we freely translate the boundary conditions of Ref. [105] into the

unrotated basis.

5.1.8 Appendix: The ballistic phase

For the case gcgs = 1 in Ref. [105], there are 4 co-stable fixed points when 2/3 <

gc < 3/2 - namely their NN and three Di
AD

i
A fixed points. There are also two

additional χχ fixed points stable precisely at gc = 1, which we will neglect as

they are stable only a single point. By considering all folding procedures, upon

unfolding there are a total of 6 fixed points, which fall into the three symmetry

classes shown in Fig. 5.7. This shows that the possible fixed points comprise all

possible connections of the wires.
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(a) Symmetric (b) C3-Broken (c) Chiral

Figure 5.7: The three symmetry classes of the fixed point boundary conditions
in the ballistic regime. These correspond to all possible permutations of linking
together the valley-helical wires.

The discrepancy between the 4 co-stable fixed points found by Ref. [105] and

the 6 we find after unfolding is due to their assumption that the boundary con-

dition R can be decoupled into Rc,Rv. The remaining two fixed points lie out-

side this paradigm. To see this, let us consider the fixed point shown in Fig. 5.6

under two separate foldings. We see that under the first folding of Fig. 5.6a,

the boundary conditions are Rc = Rv = I. However, the second folding of

Fig. 5.6b mixes charge and valley. Therefore, to obtain the full phase diagram

one must all potential 6×6 boundary conditions instead of those that are simply

block-diagonal in chargeRc and valleyRv.

5.1.9 Appendix: Valley current profile of the orbital AF-

ordering phase

In the main text, we only considered the charge current profile of the orbital

AF-ordering phase. To complete the solution, we must also solve for the val-

ley current profile. This is subtle since homogeneous solutions are allowed in

the network as shown in Fig. 5.8. Arbitrary valley current loops are allowed
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Figure 5.8: A homogeneous solution in the network of orbital AF-ordering
phase. An arbitrary valley current is allowed to circulate in triangular loops.
However, charge current cannot freely circulate in loops.

to circulate around triangular domains in the bulk, and we expect that its pre-

cise value depends on the time-dependent details of instantiating the system.

However, the external links do not suffer this issue and therefore have a defi-

nite valley current. As argued in the main text, all the grounded external links

have the same valley current Iv, and therefore the ingoing link has valley current

(Next − 1)Iv.

5.1.10 Appendix: Cooper pair tunneling phase

For the cooper pair tunneling phase, the boundary conditions are Rc = I and

Rv = −δij + 2/3. These are precisely the boundary conditions of the orbital

AF-ordering phase, but with charge and valley flipped. Therefore, we can read

off the solution of the cooper pair tunneling phase from that of the orbital AF-

ordering phase by flipping charge and valley. The charge current will allow

for arbitrary charge current loops in the bulk, with external conductance Gij =

gc
e2

h
(2δij − 2/Next).
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graphene moiré superlattice. Nature, 572(7768):215–219, Aug 2019.

[38] Hao Chen, Pinjia Zhou, Jiawei Liu, Jiabin Qiao, Barbaros Oezyilmaz, and
Jens Martin. Gate controlled valley polarizer in bilayer graphene. Nat.
Commun., 11(1202):1–7, Mar 2020.

[39] J.-Y. Chen, J. H. Son, C. Wang, and S. Raghu. Exact Boson-Fermion Duality
on a 3D Euclidean Lattice. Phys. Rev. Lett., 120:016602, Jan 2018.

157



[40] Shaowen Chen, Minhao He, Ya-Hui Zhang, Valerie Hsieh, Zaiyao Fei,
K. Watanabe, T. Taniguchi, David H. Cobden, Xiaodong Xu, Cory R. Dean,
and Matthew Yankowitz. Electrically tunable correlated and topological
states in twisted monolayer–bilayer graphene. Nat. Phys., 17(3):374–380,
Mar 2021.

[41] Wei Chen, Matthew P A Fisher, and Yong-Shi Wu. Mott transition in an
anyon gas. Phys. Rev. B., 48(18):13749–13761, nov 1993.

[42] Wei Chen, Gordon W Semenoff, and Yong-Shi Wu. Two-loop analysis of
non-Abelian Chern-Simons theory. Physical Review D, 46(12):5521–5539,
dec 1992.

[43] Shai M. Chester and Silviu S. Pufu. Anomalous dimensions of scalar op-
erators in $QED 3$. Journal of High Energy Physics, 2016(8):69, Aug 2016.

[44] Youngjoon Choi, Jeannette Kemmer, Yang Peng, Alex Thomson, Harpreet
Arora, Robert Polski, Yiran Zhang, Hechen Ren, Jason Alicea, Gil Refael,
Felix von Oppen, Kenji Watanabe, Takashi Taniguchi, and Stevan Nadj-
Perge. Electronic correlations in twisted bilayer graphene near the magic
angle. Nat. Phys., 15(11):1174–1180, Nov 2019.

[45] Yang-Zhi Chou, Yu-Ping Lin, Sankar Das Sarma, and Rahul M. Nand-
kishore. Superconductor versus insulator in twisted bilayer graphene.
Phys. Rev. B, 100:115128, Sep 2019.

[46] Rodrigo C. V. Coelho, Miller Mendoza, Mauro M. Doria, and Hans J. Her-
rmann. Kelvin-helmholtz instability of the dirac fluid of charge carriers
on graphene. Phys. Rev. B, 96:184307, Nov 2017.

[47] Sidney Coleman. Quantum sine-gordon equation as the massive thirring
model. Phys. Rev. D, 11:2088–2097, Apr 1975.

[48] Sidney Coleman. Aspects of Symmetry. Cambridge University Press, Cam-
bridge, 1985.

[49] S. Conti and G. Vignale. Elasticity of an electron liquid. Phys. Rev. B,
60:7966–7980, Sep 1999.

[50] Alberto Cortijo, Yago Ferreirós, Karl Landsteiner, and Marı́a A. H. Vozme-
diano. Elastic gauge fields in weyl semimetals. Phys. Rev. Lett., 115:177202,
Oct 2015.

158



[51] Alberto Cortijo, Dmitri Kharzeev, Karl Landsteiner, and Maria A. H. Voz-
mediano. Strain-induced chiral magnetic effect in weyl semimetals. Phys.
Rev. B, 94:241405, Dec 2016.

[52] Jesse Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, Achim Harzheim, An-
drew Lucas, Subir Sachdev, Philip Kim, Takashi Taniguchi, Kenji Watan-
abe, Thomas A. Ohki, and Kin Chung Fong. Observation of the dirac
fluid and the breakdown of the wiedemann-franz law in graphene. Sci-
ence, 351(6277):1058–1061, 2016.

[53] Xin Dai, Z. Z. Du, and Hai-Zhou Lu. Negative magnetoresistance without
chiral anomaly in topological insulators. Phys. Rev. Lett., 119:166601, Oct
2017.

[54] Kedar Damle and Subir Sachdev. Nonzero-temperature transport near
quantum critical points. Phys. Rev. B, 56:8714–8733, Oct 1997.

[55] S. Das Sarma, Shaffique Adam, E. H. Hwang, and Enrico Rossi. Electronic
transport in two-dimensional graphene. Rev. Mod. Phys., 83:407–470, May
2011.

[56] C. Dasgupta and B. I. Halperin. Phase Transition in a Lattice Model of
Superconductivity. Phys. Rev. Lett., 47(21):1556–1560, nov 1981.

[57] J. L. Davis, P. Kraus, and A. Shah. Gravity dual of a quantum Hall plateau
transition. Journal of High Energy Physics, 11:020, November 2008.

[58] Richard A. Davison, Koenraad Schalm, and Jan Zaanen. Holographic du-
ality and the resistivity of strange metals. Phys. Rev. B, 89:245116, Jun
2014.

[59] C. De Beule, F. Dominguez, and P. Recher. Aharonov-bohm oscillations
in minimally twisted bilayer graphene. Phys. Rev. Lett., 125:096402, Aug
2020.

[60] M. J. M. de Jong and L. W. Molenkamp. Hydrodynamic electron flow in
high-mobility wires. Phys. Rev. B, 51:13389–13402, May 1995.

[61] Folkert K. de Vries, Jihang Zhu, Elı́as Portolés, Giulia Zheng, Michele
Masseroni, Annika Kurzmann, Takashi Taniguchi, Kenji Watanabe, Al-
lan H. MacDonald, Klaus Ensslin, Thomas Ihn, and Peter Rickhaus. Com-

159



bined minivalley and layer control in twisted double bilayer graphene.
Phys. Rev. Lett., 125:176801, Oct 2020.

[62] Stanley Deser, R. Jackiw, and S. Templeton. Topologically Massive Gauge
Theories. Annals Phys., 140:372–411, 1982.

[63] R D dos Reis, M O Ajeesh, N Kumar, F Arnold, C Shekhar, M Nau-
mann, M Schmidt, M Nicklas, and E Hassinger. On the search for the
chiral anomaly in weyl semimetals: the negative longitudinal magnetore-
sistance. New Journal of Physics, 18(8):085006, 2016.

[64] M. I. Dyakonov and M. S. Shur. Plasma wave electronics: novel terahertz
devices using two dimensional electron fluid. IEEE Transactions on Electron
Devices, 43(10):1640–1645, 1996.

[65] Michael Dyakonov and Michael Shur. Shallow water analogy for a ballis-
tic field effect transistor: New mechanism of plasma wave generation by
dc current. Phys. Rev. Lett., 71:2465–2468, Oct 1993.

[66] Carl Eckart. Vortices and streams caused by sound waves. Phys. Rev.,
73:68–76, Jan 1948.

[67] Dmitry K. Efimkin and Allan H. MacDonald. Helical network model for
twisted bilayer graphene. Phys. Rev. B, 98:035404, Jul 2018.

[68] L. Engel, H.P. Wei, D.C. Tsui, and M. Shayegan. Critical exponent in the
fractional quantum hall effect. Surf. Sci., 229(1):13 – 15, 1990.
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tices. Science, 362(6419):1153–1156, 2018.

[269] Sai S. Sunku, Alexander S. McLeod, Tobias Stauber, Hyobin Yoo, Dorri
Halbertal, Guangxin Ni, Aaron Sternbach, Bor-Yuan Jiang, Takashi
Taniguchi, Kenji Watanabe, Philip Kim, Michael M. Fogler, and D. N.
Basov. Nano-photocurrent mapping of local electronic structure in
twisted bilayer graphene. Nano Letters, 20(5):2958–2964, May 2020.

[270] D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji. Hydrodynamic electron
transport and nonlinear waves in graphene. Phys. Rev. B, 88:245444, Dec
2013.

[271] Gerard ’t Hooft. A Planar Diagram Theory for Strong Interactions. Nucl.
Phys., B72:461, 1974.

[272] Yanhao Tang, Lizhong Li, Tingxin Li, Yang Xu, Song Liu, Katayun Bar-
mak, Kenji Watanabe, Takashi Taniguchi, Allan H. MacDonald, Jie Shan,
and Kin Fai Mak. Simulation of Hubbard model physics in WSe2/WS2
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Molenkamp, and N. E. Hussey. Anisotropic and strong negative mag-
netoresistance in the three-dimensional topological insulator bi2se3. Phys.
Rev. B, 94:081302, Aug 2016.

[299] Martin Wiklund, Roy Green, and Mathias Ohlin. Acoustofluidics 14: Ap-
plications of acoustic streaming in microfluidic devices. Lab Chip, 12:2438–
2451, 2012.

[300] E. Witten. SL(2,Z) Action On Three-Dimensional Conformal Field Theo-
ries With Abelian Symmetry. ArXiv High Energy Physics - Theory e-prints,
July 2003.

[301] Edward Witten. Quantum field theory and the jones polynomial. Comm.
Math. Phys., 121(3):351–399, 1989.

[302] L. W. Wong, H. W. Jiang, N. Trivedi, and E. Palm. Disorder-tuned tran-
sition between a quantum hall liquid and hall insulator. Phys. Rev. B,
51:18033–18036, Jun 1995.

182



[303] Congjun Wu, B. Andrei Bernevig, and Shou-Cheng Zhang. Helical liquid
and the edge of quantum spin hall systems. Phys. Rev. Lett., 96:106401,
Mar 2006.

[304] Xiao-Chuan Wu, Chao-Ming Jian, and Cenke Xu. Coupled-wire descrip-
tion of the correlated physics in twisted bilayer graphene. Phys. Rev. B,
99:161405, Apr 2019.

[305] Jun Xiong, Satya K. Kushwaha, Tian Liang, Jason W. Krizan, Max
Hirschberger, Wudi Wang, R. J. Cava, and N. P. Ong. Evidence for the
chiral anomaly in the dirac semimetal na3bi. Science, 350(6259):413–416,
2015.

[306] B. Xu, Y. M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang, J. Y. Liu, H. Xiao,
G. F. Chen, S. A. Trugman, J.-X. Zhu, A. J. Taylor, D. A. Yarotski, R. P.
Prasankumar, and X. G. Qiu. Temperature-tunable fano resonance in-
duced by strong coupling between weyl fermions and phonons in taas.
Nature Communications, 8:14933, Mar 2017.

[307] Cenke Xu and Yi-Zhuang You. Self-dual quantum electrodynamics as
boundary state of the three-dimensional bosonic topological insulator.
Phys. Rev. B, 92:220416, Dec 2015.

[308] S. G. Xu, A. I. Berdyugin, P. Kumaravadivel, F. Guinea, R. Krishna Kumar,
D. A. Bandurin, S. V. Morozov, W. Kuang, B. Tsim, S. Liu, J. H. Edgar,
I. V. Grigorieva, V. I. Fal’ko, M. Kim, and A. K. Geim. Giant oscillations
in a triangular network of one-dimensional states in marginally twisted
graphene. Nature Communications, 10(1):4008, Sep 2019.

[309] Shuigang Xu, Mohammed M. Al Ezzi, Nilanthy Balakrishnan, Aitor
Garcia-Ruiz, Bonnie Tsim, Ciaran Mullan, Julien Barrier, Na Xin, Ben-
jamin A. Piot, Takashi Taniguchi, Kenji Watanabe, Alexandra Carvalho,
Artem Mishchenko, A. K. Geim, Vladimir I. Fal’ko, Shaffique Adam, An-
tonio Helio Castro Neto, Kostya S. Novoselov, and Yanmeng Shi. Tunable
van Hove singularities and correlated states in twisted monolayer–bilayer
graphene. Nat. Phys., pages 1–8, Feb 2021.

[310] Su-Yang Xu, Ilya Belopolski, Nasser Alidoust, Madhab Neupane, Guang
Bian, Chenglong Zhang, Raman Sankar, Guoqing Chang, Zhujun Yuan,
Chi-Cheng Lee, Shin-Ming Huang, Hao Zheng, Jie Ma, Daniel S. Sanchez,
BaoKai Wang, Arun Bansil, Fangcheng Chou, Pavel P. Shibayev, Hsin Lin,
Shuang Jia, and M. Zahid Hasan. Discovery of a Weyl fermion semimetal
and topological Fermi arcs. Science, 349(6248):613–617, Aug 2015.

183



[311] Binghai Yan and Claudia Felser. Topological materials: Weyl semimetals.
Annual Review of Condensed Matter Physics, 8(1):337–354, 2017.

[312] Wei Yan, Mengxi Liu, Rui-Fen Dou, Lan Meng, Lei Feng, Zhao-Dong Chu,
Yanfeng Zhang, Zhongfan Liu, Jia-Cai Nie, and Lin He. Angle-dependent
van hove singularities in a slightly twisted graphene bilayer. Phys. Rev.
Lett., 109:126801, Sep 2012.

[313] Matthew Yankowitz, Shaowen Chen, Hryhoriy Polshyn, Yuxuan Zhang,
K. Watanabe, T. Taniguchi, David Graf, Andrea F. Young, and Cory R.
Dean. Tuning superconductivity in twisted bilayer graphene. Science,
363(6431):1059–1064, 2019.

[314] Long-Jing Yin, Hua Jiang, Jia-Bin Qiao, and Lin He. Direct imaging of
topological edge states at a bilayer graphene domain wall. Nat. Commun.,
7(11760):1–6, Jun 2016.

[315] Hyobin Yoo, Rebecca Engelke, Stephen Carr, Shiang Fang, Kuan Zhang,
Paul Cazeaux, Suk Hyun Sung, Robert Hovden, Adam W. Tsen, Takashi
Taniguchi, Kenji Watanabe, Gyu-Chul Yi, Miyoung Kim, Mitchell Luskin,
Ellad B. Tadmor, Efthimios Kaxiras, and Philip Kim. Atomic and elec-
tronic reconstruction at the van der waals interface in twisted bilayer
graphene. Nature Materials, 18(5):448–453, May 2019.

[316] Xiang Yuan, Cheng Zhang, Yi Zhang, Zhongbo Yan, Tairu Lyu, Mengyao
Zhang, Zhilin Li, Chaoyu Song, Minhao Zhao, Pengliang Leng, Mykhaylo
Ozerov, Xiaolong Chen, Nanlin Wang, Yi Shi, Hugen Yan, and Faxian Xiu.
The discovery of dynamic chiral anomaly in a Weyl semimetal NbAs. Nat.
Commun., 11(1259):1–7, Mar 2020.

[317] Jan Zaanen. Planckian dissipation, minimal viscosity and the transport in
cuprate strange metals. SciPost Phys., 6:61, 2019.

[318] Anthony Zee. Quantum Hall Fluids. Field Theory, Topology and Condensed
Matter Physics, (1):82, 1995.

[319] Cheng Zhang, Enze Zhang, Weiyi Wang, Yanwen Liu, Zhi-Gang Chen,
Shiheng Lu, Sihang Liang, Junzhi Cao, Xiang Yuan, Lei Tang, Qian Li,
Chao Zhou, Teng Gu, Yizheng Wu, Jin Zou, and Faxian Xiu. Room-
temperature chiral charge pumping in dirac semimetals. Nature Commu-
nications, 8:13741, Jan 2017. Article.

184



[320] Cheng-Long Zhang, Su-Yang Xu, Ilya Belopolski, Zhujun Yuan, Zi-
quan Lin, Bingbing Tong, Guang Bian, Nasser Alidoust, Chi-Cheng Lee,
Shin-Ming Huang, Tay-Rong Chang, Guoqing Chang, Chuang-Han Hsu,
Horng-Tay Jeng, Madhab Neupane, Daniel S. Sanchez, Hao Zheng, Jun-
feng Wang, Hsin Lin, Chi Zhang, Hai-Zhou Lu, Shun-Qing Shen, Titus
Neupert, M. Zahid Hasan, and Shuang Jia. Signatures of the adler-bell-
jackiw chiral anomaly in a weyl fermion semimetal. Nature Communica-
tions, 7:10735, Feb 2016. Article.

[321] Fan Zhang, Allan H. MacDonald, and Eugene J. Mele. Valley chern num-
bers and boundary modes in gapped bilayer graphene. Proceedings of the
National Academy of Sciences, 110(26):10546–10551, 2013.

[322] S. C. Zhang, T. H. Hansson, and S Kivelson. Effective-Field-Theory Model
for the Fractional Quantum Hall Effect. Phys. Rev. Lett., 62(8):980–980, feb
1989.

[323] Shou Cheng Zhang. THE CHERN-SIMONS-LANDAU-GINZBURG
THEORY OF THE FRACTIONAL QUANTUM HALL EFFECT. Interna-
tional Journal of Modern Physics B, 06(05n06):803–804, mar 1992.

[324] Jianhui Zhou, Hao-Ran Chang, and Di Xiao. Plasmon mode as a detection
of the chiral anomaly in weyl semimetals. Phys. Rev. B, 91:035114, Jan 2015.

[325] A. A. Zibrov, C. Kometter, H. Zhou, E. M. Spanton, T. Taniguchi, K. Watan-
abe, M. P. Zaletel, and A. F. Young. Tunable interacting composite fermion
phases in a half-filled bilayer-graphene landau level. Nature, 549:360, Sep
2017.

[326] A. A. Zyuzin and A. A. Burkov. Topological response in weyl semimetals
and the chiral anomaly. Phys. Rev. B, 86:115133, Sep 2012.

185


	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	Thesis Roadmap

	Fractional Quantum Hall Superuniversality and Chern-Simons Dualities
	Non-Abelian fermionization and fractional quantum Hall transitions
	Introduction
	Dualities
	NfNc expansion
	Discussion
	Appendix: Calculational Details

	Non-Abelian bosonization and modular transformation approach to superuniversality
	Introduction
	Integer quantum Hall transition
	Generating fractional quantum Hall transitions
	Superuniversality in the 't Hooft large N limit
	N independence and duality
	Conclusion
	Appendix: Chern-Simons conventions
	Appendix: Integer quantum Hall state and the insulator
	Appendix: Effective Lagrangians for fractional quantum Hall transitions
	Appendix: Fractional quantum Hall state and the insulator
	Appendix: Duality argument and Abelian Chern-Simons duals
	Appendix: Abelian Chern-Simons duals
	Appendix: Particle-hole transformation within the lowest Landau level


	Electron Hydrodynamics
	Quantum aspects of hydrodynamic transport from weak electron-impurity scattering
	Introduction
	Phenomenology and classical hydrodynamics
	Hydrodynamic transport and quantum effects
	Summary and Discussion
	Appendix: Feynman Rules
	Appendix: Kubo Formula: Spectral Function
	Appendix: Self-Energy
	Appendix: Vertex Corrections
	Appendix: Frequency Dependence

	Beyond Ohm's law - Bernoulli effect and streaming in electron hydrodynamics
	Introduction
	Formalism and Parameters
	Equations of fluid dynamics
	Electronic Bernoulli effect
	Eckart Streaming: A ``Hydrodynamic Solar Cell''
	Rayleigh Streaming
	Summary and Outlook
	Appendix: Oscillatory Hydrodynamic Modes
	Appendix: Electronic Venturi Effect - Treating Viscosity
	Appendix: Eckart Streaming
	Appendix: Rayleigh Streaming


	Chiral Anomaly and Weyl Semimetals
	Optical signatures of the chiral anomaly in mirror-symmetric Weyl semimetals
	Introduction
	Tight-binding model of 3D Weyl fermions with magnetic field
	Electron-phonon Coupling and Symmetry Constraints
	Estimating the Effect of Magnetic field on the Fermi Velocity
	Discussions and Conclusions
	Appendix: Low-energy Weyl dispersion and Weyl nodes of the tight binding model


	Domain Wall Transport in Moiré Systems
	Topological moiré domain wall networks - Emergence of orbital antiferromagnetic-ordering
	Introduction
	Mathematical Setup
	Ballistic phase
	Orbital AF-ordering phase
	Conclusion
	Appendix: Bosonization and Conventions
	Appendix: Boundary conditions
	Appendix: The ballistic phase
	Appendix: Valley current profile of the orbital AF-ordering phase
	Appendix: Cooper pair tunneling phase


	Bibliography

