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Abstract Building on an older method used to derive non-
decoupling effects of a heavy Higgs boson in the Standard
Model, we describe a general procedure to integrate out
heavy fields in the path integral. The derivation of the corre-
sponding effective Lagrangian including the one-loop con-
tributions of the heavy particle(s) is particularly transparent,
flexible, and algorithmic. The background-field formalism
allows for a clear separation of tree-level and one-loop effects
involving the heavy fields. Using expansion by regions the
one-loop effects are further split into contributions from large
and small momentum modes. The former are contained in
Wilson coefficients of effective operators, the latter are repro-
duced by one-loop diagrams involving effective tree-level
couplings. The method is illustrated by calculating potential
non-decoupling effects of a heavy Higgs boson in a singlet
Higgs extension of the Standard Model. In particular, we
work in a field basis corresponding to mass eigenstates and
properly take into account non-vanishing mixing between the
two Higgs fields of the model. We also show that a proper
choice of renormalization scheme for the non-standard sector
of the underlying full theory is crucial for the construction
of a consistent effective field theory.
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1 Introduction

After roughly a decade of operation, the Large Hadron Col-
lider (LHC) at CERN has confirmed the validity of the Stan-
dard Model (SM) of particle physics generically up to ener-
gies in the TeV range, without any significant and convincing
deviation from SM predictions. On the other hand, we know
that the SM is incomplete, because it does not include neu-
trino masses nor explain phenomena like Dark Matter or the
matter–antimatter asymmetry in the universe. To fully exploit
the potential of the LHC on its mission to identify the lim-
itations of the SM and to unravel the structure of potential
deviations of experimental results from SM predictions, a
strategy is required that is as model independent as possible
and can be pushed to sufficiently high precision. Of course,
precise SM predictions are the major prerequisite in this task.
However, in order to establish at which accuracy the various
sectors of the SM are tested or to shape observed deviations,
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it is necessary to include non-standard effects in analyses.
Besides dedicated analyses in specific models for physics
beyond the SM (BSM), it is desirable to provide, as far as
possible, model-independent analyses that quantify the com-
patibility of data with the SM before confronting the results
with specific models.

Standard model effective theory (SMEFT) [1,2] (see also
Refs. [3–6] and references therein) is such an approach, in
which it is assumed that the SM is the valid theory up to
an energy scale � much larger than the electroweak (EW)
scale v ≈ 246 GeV and that new particles have masses of
the order of �. Under this assumption the leading BSM
effects are generically suppressed by powers of � and can
be parametrized in terms of Wilson coefficients of (local)
dimension-5 and dimension-6 effective operators which are
added to the SM Lagrangian. Although there is still a long
way towards fully global fits of these Wilson coefficients to
data, larger and larger subsets of operators are being con-
sidered (for up-to-date analyses see e.g. Refs. [7,8]), and
SMEFT predictions are being dressed with QCD and EW
corrections (for recent calculations see e.g. Refs. [9–13]). So
far the results of these fits are such that all Wilson coefficients
are still compatible with zero. Once some coefficients show
significant deviations from zero, the question arises which
BSM effects and which new particles cause them.

To answer this question, one evaluates BSM models at
energies well below the mass scale � of the non-standard
particles. In the effective field theory (EFT) describing this
limit the heavy particles are integrated out, i.e. their fields are
no longer dynamical degrees of freedom, so that the particle
content is the same as in the SM. The effects of the BSM par-
ticles are reproduced by non-vanishing Wilson coefficients of
the higher-dimensional effective operators mentioned above.
There are roughly speaking two types of approaches to com-
pute the relevant Wilson coefficients:

• For the diagrammatic matching a sufficiently large set
of Green functions is evaluated both in the underlying
BSM model (full theory) and the EFT in terms of Feyn-
man diagrams to a given order in the perturbative (loop)
expansion. On the EFT side this requires to first construct
a generic basis of operators (composed of SM fields and
respecting the symmetries of the BSM model) to the order
of interest in the EFT (1/�) expansion. The Wilson coef-
ficients are then fixed by demanding that corresponding
EFT and full-theory amplitudes match up to higher orders
in 1/�.

• Functional matching is based on the path integral defin-
ing the generating functional for Green functions of the
full theory. The functional integration over heavy field
modes related to the BSM effects is performed and
directly results in a 1/� expanded effective action for
the low-energy (SM) degrees of freedom representing

the EFT. No input on the structure of the EFT operators
is required.1 At one-loop order the relevant functional
integrals are of Gaussian type and therefore straightfor-
ward to carry out. Beyond one loop the feasibility of this
method seems unclear.

In this paper we describe a generic functional approach
to integrate out heavy particles, which is a further devel-
opment of the method introduced in Refs. [14,15]. Func-
tional methods for EFT matching have a long history, see
e.g. Refs. [16–18] for early works. Following this way, the
non-decoupling effects of a heavy SM Higgs boson were
computed in Refs. [14,15]. In particular, it was demonstrated
there that using the background-field method (BFM) Refs.
[19–25] leads to a transparent separation of tree-level and
one-loop contributions in the functional derivation of the
effective Lagrangian. The method of [14,15] was further
refined and generalized in Ref. [26] by employing the expan-
sion by regions [27,28] (see also Ref. [29] for a concise
review).

In recent years the interest in functional matching has been
revived in the context of SMEFT by Ref. [30]. This work ini-
tiated the “Universal One-Loop Effective Action” (UOLEA)
program [31–37] which ultimately aims at deriving a master
formula for the one-loop matching of a fully generic BSM
model to SMEFT using functional methods. The basic idea is
that the matching in principle only has to be performed once
and for all. The relevant Wilson coefficients of the SMEFT
operators could then be determined for any specific BSM
model via the master formula by replacing the generic with
the specific full theory parameters. So far, however, this goal
has not been reached. While the UOLEA is not yet available
for the most general case, for example because couplings of
the heavy fields (to be integrated out) involving derivatives
are not accounted for, its complexity already suggests that
it will be limited to SMEFT operators with dimension ≤ 6
in the foreseeable future. For a review on the current status
of the UOLEA program see Ref. [37]. In order to overcome
some of the limitations of the UOLEA approach, there is a
trend towards automation of the matching procedure [38–41].
Due to its algorithmic nature, functional matching turns out
to be well suited for this purpose, especially at the one-loop
level.

In the UOLEA and automation literature quoted above
the EFT expansion is essentially based on a power counting
of dimensionful quantities, i.e. masses and loop momenta
of O(�). However, as noticed already in Ref. [42], some
realistic BSM models feature dimensionless parameters like
couplings or mixing angles with definite � scaling, i.e. they

1 In this respect the term “matching” is actually misleading, because
the Wilson coefficients of a generic EFT Lagrangian are not determined
by matching EFT and full theory predictions.
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must be counted as powers of v/�, where v represents a typ-
ical SM scale. For example, the mixing of a BSM-type with
as SM-type field to form a heavy and a light mass eigen-
state, as it appears in the context of spontaneous symme-
try breaking, requires a mixing angle that is suppressed by
powers of 1/� if the heavy field is supposed to decouple.
We will explicitly address this aspect in the present paper
using a functional method based on Refs. [14,15,26]. We will
also show that combining background-field gauge invariance
with a non-linear representation of the SM Higgs doublet
enables further technical simplifications, because interme-
diate manipulations can be carried out in the unitary gauge,
while full gauge invariance is restored at the end of the calcu-
lation. In this respect we generalize the matching procedure
of Refs. [14,15], where light modes of the heavy field did
not contribute in loops. To account for such contributions we
perform the large-mass (∼ �) expansion according to the
method of regions [27,28], which separates heavy and light
modes in loop integrals as also proposed in Ref. [26]. The
loop effects of the heavy modes are encoded in the Wilson
coefficients of the effective Lagrangian, while the loop effects
of the light modes result from insertions of tree-level effec-
tive couplings in EFT loop diagrams. The whole procedure
is fully algorithmic and flexible in the sense that the under-
lying low-energy need not be specified in advance, i.e. the
method is also applicable beyond the framework of SMEFT,
which assumes the SM as the leading-order (LO) low-energy
theory.

In this article we describe the general framework of our
functional matching method and apply it to integrate out a
non-standard Higgs boson with large mass MH � v in a sin-
glet (Higgs) extension of the SM (SESM), which is defined in
different variants in Refs. [43–50]. To keep the presentation
transparent, we restrict the calculation here to the level of
non-decoupling effects in the bosonic sector, i.e. to terms of
O(M0

H) in the effective Lagrangian, which are non-trivial in
the presence of Higgs mixing. We will deal with the decou-
pling effects at O(M−2

H ) in a follow-up paper. A main focus
of the present paper will be the issue of renormalization of
the BSM sector of the underlying full theory and its con-
sequences for the EFT. We will explain how the choice of
renormalization and tadpole schemes affects the derivation
of the effective Lagrangian, already at the O(M0

H) level.
This aspect, which has mostly been ignored in the exist-
ing literature, generally arises in renormalization schemes
where the loop contribution to a renormalization constant of
a BSM parameter and the parameter itself scale differently
in the large-mass limit. In models with extended Higgs sec-
tors, such effects potentially occur in the interplay of tadpole
renormalization and MS renormalization conditions (see e.g.
Refs. [47,49–54]).

The low-energy limit of different SESM variants has been
studied repeatedly in the past, see e.g. Refs. [30,34,39,42,

55–63].2 In fact, it has become a kind of test model for dif-
ferent matching techniques as well as to analyze the EFT
validity. In the following we give a brief overview of the
most elaborate literature on SESM to SMEFT matching at
O(1/�2) and one-loop level. We focus on matching cal-
culations that take into account contributions to the Wil-
son coefficients from both types of loops: loops that only
involve heavy (virtual) particles as well as mixed heavy–
light particle loops. The latter were omitted in earlier pub-
lications (cf. Refs. [30,31]). In Ref. [34] the matching was
performed using functional (UOLEA) methods. While con-
tributions from loops involving fermions were still neglected
in Ref. [34], they were included later by a calculation based
on Feynman diagrams [61]. The results were confirmed by
purely diagrammatic matching in Ref. [62] and finally repro-
duced with the partly automated functional procedure of
Refs. [39,40]. For a recent fit of experimental data to the
effective Lagrangian of Refs. [39,61,62] see Ref. [63]. The
two different functional approaches [34,39] both make use
of the BFM in combination with the expansion by regions
in order to streamline and simplify the calculations fol-
lowing Refs. [14,15,26] (and so does our method). On the
other hand, none of the quoted one-loop matching references
[34,39,61,62] works in a field basis corresponding to mass
eigenstates, which is the safest way to consistently take into
account the possibility of mixing between the SM-type Higgs
doublet and the additional scalar field in the (broken phase
of the) SESM. This issue was also addressed in Ref. [42],
albeit using an old-fashioned functional method without the
virtues of the BFM and the expansion by regions. Compli-
cations related to SESM renormalization and the treatment
of tadpoles in the presence of mixing were avoided there
by choosing a specific on-shell renormalization and tadpole
scheme, while most renormalization procedures in BSM sec-
tors involve MS conditions to some extent. In the present
article we explore the subtleties arising in different standard
renormalization (e.g. MS) and tadpole schemes.

Our paper is organized as follows: In Sect. 2 we outline
the salient steps and ingredients of the method and highlight
the new features added in this paper. Section 3 describes the
Singlet Higgs Extension of the SM used as test model, the rel-
evant large-mass/low-energy scenario, the formulation of the
model within the BFM, and the non-linear realization of the
Higgs sector. In Sect. 4 we elaborate on the individual steps
of the calculation of the effective Lagrangian: the separation
of heavy and light field modes, the solution of the functional
integral over the heavy quantum field, and the elimination of
the light modes of the heavy Higgs field via its equation of
motion. In Sect. 5 we discuss the renormalization of the full
and the effective theory in detail. Our conclusions are given

2 See Refs. [29,64,65] for the matching of a SM extension with a
charged singlet scalar onto SMEFT.
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in Sect. 6, and Appendix A provides further (pedagogical)
details about the functional integration.

2 Outline of the general method

The method described in the following is a further devel-
opment of the method introduced in Refs. [14,15], where
a heavy Higgs field was integrated out in an SU(2) gauge
theory and the SM, respectively, directly in the path integral.
As already mentioned, some of the generalizations presented
here have already been proposed in Refs. [26] (see also Refs.
[29,39]). Unlike for several other approaches in the literature,
no matching of free parameters between an ansatz for the
effective Lagrangian and explicitly calculated Green func-
tions or amplitudes is involved. Furthermore, the use of the
BFM yields additional benefits. Particular strengths of the
method are:

(i) a clear separation of tree-level and loop effects of the
heavy fields;

(ii) the possibility to fix the (background) gauge in inter-
mediate steps of the calculation and to restore gauge
invariance of the effective Lagrangian at the end;

(iii) transparency in the sense that at each stage of the calcu-
lation it is possible to identify the origin of all contribu-
tions to the effective Lagrangian in terms of Feynman
diagrams;

(iv) flexibility due to the fact that no ansatz is made for the
effective Lagrangian. Actually not even the low-energy
theory has to be specified in advance, it directly emerges
as part of the result;

(v) An automation of the method is possible, since it is fully
algorithmic. In principle, given a Lagrangian, a large-
mass scenario with a corresponding power-counting
scheme, and some details on the renormalization of the
large-mass sector, the actual determination of the effec-
tive Lagrangian at the one-loop level can be carried out
by computer algebra.

Since the individual steps in the whole procedure are quite
non-trivial and involve various tricks, we first sketch the dif-
ferent steps and ingredients before applying the method to a
concrete example in the subsequent sections. This prepara-
tory section will also motivate the splitting of a generic
heavy particle field H into four conceptually different parts,
H → Ĥh + Ĥl + Hh + Hl , which is at the heart of the
proposed method. In the course of this brief outline we also
explain which generalizations and optimizations have been
made in Ref. [26] and are made in this paper with respect to
the original approach of Refs. [14,15]:

1. Background-field formalism and non-linear Higgs real-
ization.
Formulating the theory within the BFM splits all fields
into background (i.e. in some sense semi-classical) and
quantum parts. For a generic heavy field H , this sep-
aration reads H → H̃ = Ĥ + H , with Ĥ being the
background and H the quantum field. Diagrammatically
this step distinguishes between fields occurring on tree
and loop lines in Feynman graphs. For tree-level effects,
quantum fields are not relevant. For one-loop corrections,
only terms in the Lagrangian that are bilinear in quan-
tum fields are relevant. Higher powers of quantum fields
only contribute beyond the one-loop level. Thus, this
step determines the terms in the full-theory Lagrangian
that are needed in the subsequent derivation of the EFT
Lagrangian.
Employing a non-linear representation of the scalar sec-
tor, it is possible to absorb all background Goldstone-
boson fields into the background gauge fields by a
straightforward Stueckelberg transformation [66–69],
which reduces the algebraic amount of work in the sub-
sequent steps considerably. At the same time this frame-
work remains appropriate also for cases in which heavy
Higgs bosons may not decouple completely.

2. Separation of hard and soft field modes.
Considering all fields consistently in momentum space,
it is possible to additively split the quantum parts H of
the heavy fields into field modes with small or large
momenta, which we dub “light (soft) modes” Hl and
“heavy (hard) modes” Hh , respectively, i.e. H = Hl +
Hh . Diagrammatically this splitting expresses the large-
mass expansion of Feynman graphs using the method of
regions [27,28] in the framework of dimensional regular-
ization. Each one-loop diagram with at least one internal
heavy particle line is decomposed into a part with small
and a part with large loop momentum q (carried by Hl

and Hh , respectively). In the large-mass expansion the
former contribution arises from a Taylor expansion of
the loop integrand in q/M, pi/M,mi/M → 0, where
{pi } are the external momenta, mi the small masses in
the theory, and M represents the heavy particle mass. In
the region of large loop momenta one expands the inte-
grand only in pi/M,mi/M → 0 (but not in q/M) and
is thus left with vacuum-type integrals. In the EFT the
small-momentum regions are reproduced by loop dia-
grams with insertions of (higher-dimensional) effective
operators, while the large-momentum contributions are
contained in the loop corrections to the Wilson coeffi-
cients of these operators.
At one loop, the splitting of loop diagrams into two inte-
gration domains of small and large momenta can be inter-
preted as a splitting of the path integral into two functional
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integrals extending over light and heavy field modes. The
consistent mode separation according to the method of
regions is a conceptual generalization of the procedure
of Refs. [14,15], where only heavy field modes appeared
in the calculation of the non-decoupling effects in the
leading-order Lagrangian at one loop. This mode separa-
tion has also been suggested in Ref. [26] (and applied in
Refs. [29,39]) within a procedure to calculate the differ-
ent parts in the effective Lagrangian, but we consider our
formulation in terms of heavy and light modes of back-
ground and quantum fields and their different treatments
in the path integral conceptually more transparent.

3. Integrating out the hard modes of the heavy quantum
fields in the path integral.
Since the part of the Lagrangian that is relevant at one-
loop order is only quadratic in the quantum fields, the
path integral over the heavy field modes Hh of the heavy
quantum field is of Gaussian type and can be done ana-
lytically. The major complication in this step is the fact
that there are also terms that are linear in the heavy quan-
tum fields Hh . As we show below, these terms can be
removed by a field redefinition of the hard quantum field
modes (of the light particles) in a fully algorithmic man-
ner. This means that the resulting part of the Lagrangian
quadratic in the heavy quantum field can be directly iden-
tified based again on a simple power-counting argument.
This algorithmic handling, which has also been realized
in Refs. [26] (see also Ref. [29] and, for a slightly differ-
ent approach, Ref. [39]), establishes an important tech-
nical improvement over the procedure described in Refs.
[14,15], where the “diagonalization” of the Lagrangian
was performed via a non-trivial series of individual field
shifts.
The result of the straightforward (Gaussian) path inte-
gration is a functional determinant that is expanded for
M → ∞. The terms emerging from this expansion
are exactly the vacuum-type integrals from the large-
momentum regions in the large-mass expansion of the
Feynman graphs described above and produce the one-
loop contributions to the Wilson coefficients of the local
effective operators.

4. Equations of motion for the soft modes of the heavy fields
and renormalization.
After the heavy modes Hh of the heavy field have been
integrated out, the effective Lagrangian still involves the
light modes Hl and Ĥl of the quantum and background
fields of the heavy particle. As their momenta are much
smaller than their mass M , they do not represent dynam-
ical degrees of freedom of the EFT. In fact, they can
conveniently be removed from the effective Lagrangian
by applying their equations of motions (EOMs) in the
large-mass expansion. This procedure can be viewed as

a saddle-point approximation in the path integral over the
light modes of the heavy quantum field combined with a
large-mass expansion. It expresses the light modes of the
heavy field in terms of all other light fields. The actual
effect of these modes is revealed at a later stage in the
perturbative evaluation of Green functions when effec-
tive tree-level couplings are inserted into EFT loop dia-
grams.
Like the previous one, this step requires a proper power-
counting of all parameters and fields in the limit M → ∞.
We emphasize that in order to obtain a consistent effec-
tive Lagrangian the large-mass expansion must be care-
fully performed taking into account that the full-theory
renormalization constants may have a different scaling
behaviour for M → ∞ than the corresponding renor-
malized quantities.
As mentioned above, in Refs. [14,15] the light mode Hl

of the heavy SM Higgs field was irrelevant and ignored,
i.e. the insertion of effective tree-level vertices into loops
did not occur at the considered order in the heavy-mass
expansion.

5. Final form of the effective Lagrangian.
The effective Lagrangian resulting from the previous
steps only involves light background and quantum fields,
but none of the modes of the heavy fields H . The
Lagrangian consists of four different types of contribu-
tions:

(i) a tree-level part that depends only on light back-
ground fields;

(ii) a tree-level part that depends both on light back-
ground and quantum fields;

(iii) a part involving renormalization constants and light
background fields;

(iv) a part involving the one-loop corrections (from
heavy loops) to the effective operators built from
light background fields.

Parts (i) and (ii) combine to a single effective Lagrangian
at lowest order in the coupling constants, which can be
used to evaluate tree-level amplitudes at different orders
in the large-mass expansion and one-loop contributions
resulting from insertions of effective vertices in loop dia-
grams (reproducing the soft momentum regions of loops
in the full theory). Parts (iii) and (iv) combine to the one-
loop correction to the effective Lagrangian, i.e. all NLO
contributions to the Wilson coefficients of the effective
operators (reproducing the hard momentum regions of
loops in the full theory).
To obtain a more transparent and compact form of the
final effective Lagrangian two further steps are useful.
Firstly, the EOMs of the light fields might be used to
eliminate redundant effective operators that only influ-
ence off-shell Green functions, but no physical scattering
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amplitudes. This step is, in particular, necessary to bring
the effective Lagrangian into standard SMEFT form. Sec-
ondly, corrections to operators already present in the
(light-particle sector of the) underlying full theory can
be eliminated by absorbing their effect into renormaliza-
tion constants of the low-energy theory as far as possible.
In a decoupling scenario this means that the final effec-
tive Lagrangian differs from the SM only by operators
with dimensions higher than four.

3 Heavy Higgs boson in a Higgs singlet extension of the
standard model

3.1 The singlet Higgs extension

For the formal description of the singlet Higgs extension of
the SM (SESM), which was formulated in slightly different
versions in Refs. [43–50], we follow the notation and con-
ventions of Refs. [49,50] and employ a matrix-valued non-
linear representation of the Higgs doublet as defined in Refs.
[14,15],

� = 1√
2

(v2 + h2)U, U = exp

(
2i

ϕ

v2

)
, ϕ = 1

2
ϕaτa,

(1)

where τa are the Pauli matrices and the usual convention for
the summation over repeated indices is used throughout the
paper. Here, h2 denotes the field of the physical Higgs boson
and v2 the corresponding vacuum expectation value (vev).
The real Goldstone fields ϕa are related to their counterparts
(φ±, χ ) in the linear representation (as used in Refs. [24,25,
70]) by

φ± = 1√
2

(ϕ2 ± iϕ1) , χ = −ϕ3. (2)

The covariant derivative of � (and analogously of U ) reads

Dμ� = ∂μ� − ig2Wμ� − ig1�
τ3

2
Bμ, (3)

with Wμ = Wa
μτa/2 and g2 denoting the SU(2) gauge field

and coupling, respectively, and Bμ, g1 the U(1) gauge field
and coupling. The conventions in the SM part of the SESM
follow Refs. [15,24,25,70]. The Higgs sector of the SESM
Lagrangian is given by

LHiggs = 1

2
tr

[(
Dμ�

)† (
Dμ�

)] + 1

2
μ2

2 tr
[
�†�

]

− 1

16
λ2 tr

[
�†�

]2 + 1

2

(
∂μσ

) (
∂μσ

)

+ μ2
1σ

2 − λ1σ
4 − 1

2
λ12σ

2 tr
[
�†�

]
, (4)

where a new real scalar fieldσ is introduced which transforms
as a singlet under the SM gauge groups. The field σ is split
into its vev v1 and its field excitation h1 according to

σ = v1 + h1. (5)

A Z2 symmetry under the transformation σ → −σ is
assumed, so that only three new parameters, namely the mass
parameter μ2

1, the self-coupling parameter λ1, and the mixed
coupling parameter λ12 occur. In analogy to the Higgs sec-
tor of the SM the mass parameters fulfill μ2

1,2 > 0, and the
coupling parameters are constrained by the vacuum stability
conditions

λ1 > 0, λ2 > 0, λ1λ2 − λ2
12 > 0. (6)

The Higgs fields h, H corresponding to mass eigenstates are
obtained by a rotation with the mixing angle α,(
H
h

)
=

(
cα sα

−sα cα

)(
h1

h2

)
, (7)

where sα ≡ sin(α) and cα ≡ cos(α). The Higgs-boson
masses expressed in terms of the original parameters are

M2
h = 1

2
v2

2λ2 − 2v1v2λ12
sα
cα

,

M2
H = 1

2
v2

2λ2 + 2v1v2λ12
cα

sα
, (8)

where we enforce the mass hierarchy MH > Mh without
loss of generality by choosing the range for the mixing angle
according to

0 ≤ α <
π

2
for λ12 ≥ 0, and − π

2
< α < 0 for λ12 < 0.

(9)

This leaves us with a SM-like Higgs field h with mass Mh and
an additional heavier Higgs field H with mass MH > Mh.3

The reparametrization of the doublet and singlet fields in
Eqs. (1) and (5) leads to the tadpole terms thh and tHH with

th = cαt2 − sαt1, tH = sαt2 + cαt1, (10)

in the Lagrangian, where

t1 = v1

(
2μ2

1 − v2
2λ12 − 4v2

1λ1

)
,

t2 = v2

4

(
4μ2

2 − 4v2
1λ12 − v2

2λ2

)
. (11)

At the bare (tree) level two parameters of the theory (here
v1,2) are fixed by requiring th = tH = 0. At loop level the

3 In principle, it is also possible to identify the heavier state H with
the observed Higgs particle of mass 125 GeV, but we do not consider
this (experimentally disfavoured) possibility here, because we want to
analyze the heavy-mass limit of the second Higgs boson of the SESM.
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tadpole terms play an important role in the course of renor-
malization as described in Sect. 5.

In the definition of a specific scenario for the limit MH →
∞, i.e. in defining the scaling behaviour of the BSM parame-
ters, it is useful to introduce a (dimensionless) power count-
ing parameter ζ ∼ MH/Mh → ∞ that keeps track of the
scaling with the heavy mass MH. Also, it will be more trans-
parent from now on to work with phenomenologically moti-
vated input parameters rather than the fundamental parame-
ters of the Lagrangian, i.e. we express the BSM parameters
{μ2

1, λ1, λ12} in terms of {MH, sα, λ12}. Note that sα is most
directly related to the measured signal strengthsof Higgs pro-
duction cross sections and decay widths, which are defined
by ratios of measured quantities and SM predictions. Before
we define a specific large-MH scenario of the SESM, we
introduce the scaling powers a, l for sα and λ12 as follows,

sα ∼ ζ−a, λ12 ∼ ζ−l . (12)

The effect of this rescaling on the fundamental parame-
ters of the theory can be calculated from their relations to
{MH, sα, λ12}, as given in Eq. (2.15) of Ref. [49], leading to

v1 ∼ ζ 2−a+l , μ2
1 ∼ ζmax{2,−2a,−l},

λ1 ∼ ζmax{2a−2l−2,−2l−4},
v2 ∼ ζ 0, μ2

2 ∼ ζmax{4−2a+l,2−2a,0},
λ2 ∼ ζmax{2−2a,0}. (13)

In the following, we consider the scenario a = 1, l = 0, i.e.

v2, λ1, λ2, λ12 ∼ ζ 0, v2
1, μ2

1, μ
2
2 ∼ ζ 2, (14)

in which all mass parameters of the scalar sector are con-
sidered to be large, with the exception of the vev v2, which
is tied to the known W-boson mass. Self-consistency of the
scaling can be checked by applying Eq. (14) to the relation

s2α

c2α

= 8v1v2λ12

16v2
1λ1 − v2

2λ2
, (15)

following from the diagonalization of the Higgs mass matrix
[49]. This shows that sα is naturally suppressed according
to sα ∼ ζ−1 in agreement with Eq. (12) for a = 1, see
also Ref. [42]. This is a weakly coupled scenario, providing
the minimal suppression that is required to still deliver a
viable description of Higgs data, which show that the above-
mentioned signal strengths are close to one, i.e. sα has to be
small. In particular, due to the ζ−1 suppression of the mixing
angle, h equals the SM-type Higgs field h2 at leading order
in the large-mass expansion.

Other physically interesting limits are conceivable, such
as the strong-coupling scenario

v1, v2 ∼ ζ 0, μ2
1, μ

2
2, λ1, λ2, λ12 ∼ ζ 2, (16)

in which sα ∼ ζ 0, so that (for sα �= 0) the low-energy the-
ory does not coincide with the SM in this case. We will not
consider such scenarios in this paper, although the proposed
method would be capable of handling also such scenarios as
long as perturbativity is guaranteed. For a tree-level study
of the low-energy limit of the SESM in a non-decoupling
scenario see e.g. Ref. [60].

3.2 Background-field formulation and non-linear
realization

Applying the background-field transformation splits each
field φ into a classical background field φ̂ and a quantum
field φ. Gauge and physical Higgs fields are split additively,

φ → φ̃ = φ̂ + φ, (17)

but the non-linearly parametrized matrix of the Goldstone-
boson fields splits multiplicatively as [14,15]

U → Ũ = ÛU. (18)

Owing to the unitarity of Ũ , the combined Lagrangian of the
gauge and Higgs sectors of the SESM can be written as

Lgauge+Higgs = −1

2
tr

[
W̃μνW̃

μν
]

− 1

4
B̃μν B̃

μν

+ 1

4

(
v2 + h̃2

)2
tr

[(
D̃μŨ

)† (
D̃μŨ

)]

+ 1

2

(
∂μh̃2

) (
∂μh̃2

)
+ 1

2
μ2

2

(
v2 + h̃2

)2

− 1

16
λ2

(
v2 + h̃2

)4

+ 1

2

(
∂μh̃1

) (
∂μh̃1

)
+ μ2

1

(
v1 + h̃1

)2

− λ1

(
v1 + h̃1

)4

− 1

2
λ12

(
v2 + h̃2

)2 (
v1 + h̃1

)2
, (19)

where the Goldstone fields occur only in their kinetic term,
but not in the Higgs potential. In the BFM, separate gauge
choices can be made for background and quantum fields. To
eliminate the background Goldstone fields, the unitary gauge
is chosen for the background fields which can be achieved
by a generalized Stueckelberg transformation [66–69]

Ŵμ → Û ŴμÛ
† + i

g2
Û∂μÛ

†, Wμ → ÛWμÛ
†,

B̂μ → B̂μ, Bμ → Bμ. (20)

This transforms the covariant derivative and the field-strength
tensor according to(
D̃μŨ

)
→ Û

(
D̃μU

)
, F̃μν → Û F̃μνÛ

†. (21)
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The inversion of this Stueckelberg transformation, which
restores the background Goldstone fields, is straightforward
(see e.g. Sec. 5 of Ref. [15]). The gauge of the quantum fields
is fixed as in the SM by an explicit gauge-fixing term. We
choose [14,15]

Lfix = − 1

ξW
tr

[(
D̂μ
WWμ + 1

2
ξWg2v2ÛϕÛ †

)2
]

− 1

2ξB

(
∂μBμ + 1

2
ξBg1v2ϕ3

)2

, (22)

where

D̂μ
Wφ = ∂μφ − ig2

[
Ŵμ, φ

]
, (23)

for any field φ in the adjoint representation of SU(2). The
two gauge parameters for the fields Wμ and Bμ are set equal,
ξW = ξB = ξ, to avoid mixing in the tree-level propagators.

4 Integrating out the heavy Higgs boson

4.1 Separation of hard and soft modes of the heavy Higgs
field

Although usually formulated in terms of momentum domains
in Feynman integrals, the expansion by regions [27,28] pro-
vides the ideal framework for separating light and heavy field
modes. At the level of a one-loop Feynman integral I with
loop momentum p, the idea is to divide the integral domain
into two disjunct parts containing small (p ∼ Mh) or large
(p ∼ MH � Mh) momenta,

I =
∫

dDp f (p) =
∫

p∼Mh

dDp f (p) +
∫

p∼MH

dDp f (p),

(24)

where f denotes an arbitrary integrand. In four dimensions
(D = 4), a momentum cutoff MH � � � Mh has to be
introduced to sharply separate the two integration domains. In
dimensional regularization (D �= 4), however, following the
method of regions the separation is effectively implemented
by a strict Taylor expansion of the loop integrand in 1/ζ ∼
Mh/MH before integration, where p ∼ ζ 0 and p ∼ ζ 1 in
the domains of small and large momenta, respectively. To
formalize this, we introduce the Taylor operators Tl(p) and
Th(p) by

Tl(p) f (p, pi , MH,mi , ci )

=
[

exp

(
∂

∂ξl

)
f (ξl p, ξl pi , MH, ξlmi , ξl ci )

]
ξl→0

,

Th(p) f (p, pi , MH,mi , ci )

=
[

exp

(
∂

∂ξh

)
f (p, ξh pi , MH, ξhmi , ξhci )

]
ξh→0

, (25)

where pμ
i generically represents any small external momenta

and mi � MH stands for any small masses. In view of our
functional approach, c.f. Eq. (42), we have generalized the
integrand here to include additional quantities ci ∼ ζ n with
n ≤ 0 like light background fields and their derivatives. The
integral I of Eq. (24), thus, reads

I =
∫

dDp Tl(p) f (p) +
∫

dDp Th(p) f (p). (26)

Formally, the operators can be interpreted as orthogonal pro-
jectors, since they obey the relations

[Tl(p)]k = Tl(p), [Th(p)]k = Th(p), k ∈ N,

Tl(p) + Th(p) = 1,

Tl(p) Th(p) = Th(p) Tl(p) = 0, (27)

where the last relation holds, because the successive appli-
cation of Tl(p) and Th(p) (or vice versa) produces scaleless
integrals which vanish in dimensional regularization.

Carrying the concept over to a generic quantum field vari-
able φ(p) in momentum space, we define

φl(p) = Tl(p) φ(p), φh(p) = Th(p) φ(p), (28)

so that φ(p) = φl(p) + φh(p). We stress that this definition
only makes sense if the momentum p is eventually integrated
over in D dimensions (in the course of a loop calculation).
The separation into light and heavy modes in momentum
space can be translated to the field φ(x) in position space
via Fourier transformation (with unit Jacobian determinant
in the path integral),

φl(x) = μ4−D
∫

dDp

(2π)D
eipx φl(p),

φh(x) = μ4−D
∫

dDp

(2π)D
eipx φh(p), (29)

so that φ(x) = φl(x) + φh(x). The parameter μ denotes
the arbitrary reference scale of dimensional regularization,
which is introduced to keep the mass dimensions of quantities
at the same values as for D = 4. This additive separation
implies a factorization of the path-integral measure of φ into
factors corresponding to light and heavy modes,∫

Dφ =
∫

Dφl

∫
Dφh . (30)
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Finally, we apply this mode separation to the heavy Higgs
field H̃ = H + Ĥ in the BFM,

H̃(x) = H(x) + Ĥ(x)

= Hl(x) + Hh(x) + Ĥl(x) + Ĥh(x), (31)

which gets decomposed into four contributions. Since we
apply the EFT only for energies well below MH, the tree
lines in Feynman diagrams only carry small momenta and
we effectively have Ĥh = 0.

For transparency, we will split the the effective Lagrangian
Leff into the tree-level effective Lagrangian Ltree

eff , which
contains all tree-level effects of the heavy field (resulting
from Ĥl ) and provides the effective couplings to be inserted
in loops (via Hl ), and the one-loop effective Lagrangian
δL1-loop

eff , which contains all the (local) one-loop effects of the
heavy field at large momentum transfer (via Hh). Another,
third part of the Lagrangian, δLct

eff emerges in the course of
renormalization, see Sect. 5.

4.2 Path integral over the hard modes of the heavy quantum
Higgs field

4.2.1 Relevant terms in the Lagrangian

The goal of this section is to carry out the path integral over
the quantum field Hh(x) at the one-loop level. To this end,
we first isolate all terms in the full-theory Lagrangian that
are bilinear in the quantum fields and call the resulting part
of the Lagrangian L1-loop,

L1-loop = −1

2
h2�h2h2 − 1

2
h1�h1h1 + tr

[
Wμ�

μν

W
W ν

]

+ 1

2
Aμ�

μν
A Aν − tr

[
ϕ�ϕϕ

]

+ h1Xh1h2h2 + h2 tr
[
Xμ

h2W
Wμ

]
+ h2 tr

[
Xh2ϕϕ

]

+ tr
[
AμX

μν

AW
W ν

]
+ tr

[
WμX

μ

Wϕ
ϕ
]

+ tr
[
AμX

μ
Aϕϕ

]
+ L1-loop

ghost , (32)

where

W
μ = 1

2

(
Wμ

1 τ1 + Wμ
2 τ2 + Zμτ3

)
(33)

andL1-loop
ghost comprises all relevant terms containing Faddeev–

Popov ghost fields. Since we are not interested in Green func-
tions with external ghost fields, L1-loop

ghost consists of monomi-
als with exactly two quantum ghost fields and any additional
background fields. The Lagrangian L1-loop

ghost will play no role
when integrating out the heavy quantum field H(x), because
ghost fields and H fields can never appear in the loop part of
the same one-loop diagram.

The relevant �- and X -operators in Eq. (32) are given by

�h1 = � − 2μ2
1 + 12λ1

(
v1 + ĥ1

)2 + λ12
(
v2 + ĥ2

)2
,

�h2 = � − μ2
2 + 3

4
λ2

(
v2 + ĥ2

)2 + λ12
(
v1 + ĥ1

)2 − 1

2
g2

2 tr
[
Ĉ2],

�ϕ = D̂μ

(
1 + ĥ2

v2

)2

D̂μ + g2
2

(
1 + ĥ2

v2

)2

Ĉ2

+ ξM2
W

(
1 + s2

w

c2
w
P3

)
,

�
μν

W ,0
= gμν� + 1 − ξ

ξ
∂μ∂ν + gμνM2

W

(
1 + s2

w

c2
w
P3

)
,

Xh1h2 = −2λ12
(
v1 + ĥ1

)(
v2 + ĥ2

)
,

Xμ

h2W
= 2g2

(
1 + ĥ2

v2

)
MWĈμ

(
1 + 1 − cw

cw
P3

)
,

Xh2ϕ = 2g2

(
1 + ĥ2

v2

)(
ig1 B̂μτ3Ŵ

μ − Ĉμ∂μ
)
,

XWϕ,0 = −g2ĥ2

(
2 + ĥ2

v2

)(
1 + 1 − cw

cw
P3

)
∂μ, (34)

where (we suppressed 2 × 2 unit matrices for compactness
and) Ĉ2 = ĈμĈμ with

Ĉμ = Ŵμ + sw

cw
B̂μ τ3

2
= 1

2

(
Ŵμ

1 τ1 + Ŵμ
2 τ2 + 1

cw
Ẑμτ3

)
.

(35)

Moreover, we have introduced the operators Pa projecting
any 2 × 2 matrix M onto the Pauli matrix τa ,

PaM = τa

2
tr [τaM] . (36)

Note that we have not given �A, Xμν

AW
, and Xμ

Aϕ explicitly,
because they will not be needed for our purposes as will
become clear below. Likewise, for �

μν

W
and XWϕ we show

only the leading-order terms indicated by the subscript “0”,
because the rest will not be needed in the derivation of the
effective Lagrangian to O(ζ−2). In fact, for the purpose of
the present paper, where we only aim for the O(ζ 0) effective
Lagrangian, �

μν

W ,0
and XWϕ,0 are not required either.

Since we want to integrate out the heavy field H , we have
to express L1-loop in terms of the Higgs fields corresponding
to mass eigenstates as defined in Eq. (7),

L1-loop = −1

2
H�H H − 1

2
h�hh + tr

[
Wμ�

μν

W
W ν

]

+ 1

2
Aμ�

μν
A Aν − tr

[
ϕ�ϕϕ

]

+ HXHhh + H tr
[
Xμ

HW
Wμ

]
+ h tr

[
Xμ

hW
Wμ

]

+ H tr
[
XHϕϕ

] + h tr
[
Xhϕϕ

]
+ tr

[
AμX

μν

AW
W ν

]
+ tr

[
WμX

μ

Wϕ
ϕ
]

+ tr
[
AμX

μ
Aϕϕ

]
+ L1-loop

ghost , (37)
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where

�H = s2
α�h2 + c2

α�h1 − 2cαsαXh1h2 ,

�h = c2
α�h2 + s2

α�h1 + 2cαsαXh1h2 ,

XHh = cαsα
(
�h1 − �h2

) +
(
c2
α − s2

α

)
Xh1h2 ,

Xμ

HW
= sαX

μ

h2W
, Xμ

hW
= cαX

μ

h2W
,

XHϕ = sαXh2ϕ, Xhϕ = cαXh2ϕ. (38)

Up to this point we have not yet split the quantum fields
into light and heavy modes in the Lagrangian L1-loop =
L1-loop(H, φi ), where φi denotes any quantum field other
than H . At the one-loop level, we can simply write

L1-loop(H, φi ) = L1-loop(Hh, φi,h) + L1-loop(Hl , φi,l),

(39)

because one-loop diagrams split into two contributions cor-
responding to large and small loop momenta. This can also
be understood from Eq. (27). At the same time recall that
all background fields should be interpreted as light modes,
because momenta on external and on tree lines in diagrams
are assumed to be small.

4.2.2 Diagonalization and functional integration

Our next step is to express the Lagrangian L1-loop(Hh, φi,h)

for the heavy modes of the quantum fields in the (“diagonal”)
form

L1-loop(Hh, φi,h) = −1

2
Hh�̃H Hh + L1-loop

rem (φi,h), (40)

where L1-loop
rem (φi,h) does not depend on Hh(x), but only on

the other quantum fields generically denoted φi,h . This can
be achieved by a suitable linear field redefinition of the φi,h

as demonstrated below. Of course, both �̃H and L1-loop
rem also

depend on all background fields including Ĥl(x). The diago-
nalization of L1-loop(Hh, φi,h) w.r.t. Hh transforms the func-
tional integral over Hh(x) into an integral of Gaussian type,
which can be evaluated as

∫
DHh exp

{
− i

2

∫
d4x Hh�̃H Hh

}

∝
{
Det h

[
δ(x − y)�̃H (x, ∂x )

]}− 1
2

= exp

{
−1

2
Tr h

[
ln

(
δ(x − y)�̃H (x, ∂x )

)]}

= exp

{
i μD−4

∫
dDx δL1-loop

eff

}
. (41)

Dropping an irrelevant constant contribution the one-loop
effective Lagrangian δL1-loop

eff describing the hard loop con-

tributions of Hh(x) can thus be obtained by translating
the functional determinant Det h of the differential oper-
ator �̃H (x, ∂x ) into a functional trace Tr h , which in turn
can be evaluated in terms of a hard momentum-space inte-
gral. The subscript h of Det h and Tr h indicates the restric-
tion to the subspace of large-momentum modes. We explain
the details of the corresponding functional manipulations in
Appendix A and proceed with the well-known result

δL1-loop
eff = i

2
μ4−D

∫
dDp

(2π)D
Th(p) ln

(
�̃H (x, ∂x + ip)

)
,

(42)

where Th(p) is defined in Eq. (25). Unlike �̃H the term
L1-loop

rem in Eq. (40) is (by construction) independent of any
hard scale ∼ MH. Diagonalizing it w.r.t. the φi,h and per-
forming the corresponding functional integrations in anal-
ogy to Eq. (42) therefore yields scaleless large-momentum
integrals which vanish in dimensional regularization. The
part L1-loop

rem (φi,h) is therefore irrelevant for the derivation of
δL1-loop

eff . Note that the x dependence of �̃H is only due to
background fields. Thus, ∂x only acts on background fields,
which all carry small momenta, and therefore scales like ζ−1

relative to the large momentum p.
At this point, we need the explicit form of the differential

operator �̃H (x, ∂x ) which results from the diagonalization of
the Lagrangian L1-loop(Hh, φi,h) in Eq. (40). We first formu-
late this diagonalization in a generic way and subsequently
specialize the result to our model Lagrangian. Considering
Eq. (37) and suppressing the subscripts “h” indicating heavy
modes in the following, L1-loop(H, φi ) has the generic form

L1-loop(H, φi ) = −1

2
H�H H + HXHiφi − 1

2
φiAi jφ j

(43)

with implicit summations over the labels i, j of the light fields
φi , φ j which are assumed to be real (φk = φ

†
k ). Taking into

account the hermiticity of L1-loop, the generic operators �H ,
Ai j , and XHi can be assumed to obey the relations

�H = �
†
H , XHi = X †

i H , Ai j = A†
j i . (44)

The following shifts of the light quantum fields,

φi → φi +
(
A−1

)
i j

X j H H, (45)

which are inspired by the field transformations described in
Refs. [14,15], have unit Jacobian in the functional integral
and change the LagrangianL1-loop(H, φi ) only by terms con-
taining H ,

L1-loop(H, φi ) → −1

2
H�̃H H − 1

2
φiAi jφ j (46)
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with

�̃H = �H − XHi

(
A−1

)
i j

X j H . (47)

To evaluate the inverse
(
A−1

)
i j , we split the operators Ai j

into large and small contributions Di j and Xi j , respectively,
in the sense that allXi j are suppressed w.r.t. all diagonal parts
Di i at least by one power of 1/ζ ,

Ai j = Di j − Xi j , Xi i = 0, (48)

so that Di j is invertible (but not necessarily fully diagonal).4

Without loss of generality, we take the diagonal parts of the
Xi j to vanish. Below we will relate the Di j to the �u and
the Xi j to the Xuv of Eq. (37) (with u, v = W , ϕ, H, h, . . .).
The scaling assumption holds because, upon the replacement
∂x → ∂x + ip according to Eq. (42), the kinetic terms in
the �u contain at least one power of the large momentum
p ∼ MH more than the interaction terms Xi j . As realized
also in Ref. [26], the inverse of the operator of Ai j , can then
be expressed as (D−1 times) a Neumann series,

(
A−1)

i j = (
(D − X )−1)

i j = (
D−1 + D−1XD−1

+D−1XD−1XD−1 + . . .
)
i j

= (
D−1)

i j + (
D−1)

ik Xkl
(
D−1)

l j

+ (
D−1)

ik Xkl
(
D−1)

lm Xmn
(
D−1)

nj + · · · .

(49)

Here the intermediate field indices such as k, l, . . . (but not
the external indices i, j) are summed over. This implies that
the Lorentz and internal symmetry group indices of adjacent(
D−1

)
i j and Xi j factors are properly contracted (except for

the left- and rightmost indices).
The application of this generic diagonalization proce-

dure to our model requires a careful identification of the
operators Di j , and Xi j with their concrete realizations in
Eq. (37). Explicitly writing out also the adjoint SU(2) and
Lorentz indices we have the following assignments for the
non-vanishing Di j , which are diagonal in the field type (but
not in the Lorentz and SU(2) indices),

D
W

a
μW

b
ν

= −2 tr
[

τa
2 �

μν

W
τb
2

]
, DAμAν = −�

μν
A ,

Dϕaϕb = 2 tr
[

τa
2 �ϕ

τb
2

]
, Dhh = �h . (50)

For our model the relevant �u expressions on the r.h.s. are
given in Eqs. (34) and (38). The inverse

(
D(x, ∂x + ip)−1

)
i j

required in Eq. (49) can now be easily obtained, again in terms
of a Neumann series, by realizing that its leading-order term
in the ζ expansion is the usual momentum-space propagator

4 This is always possible, because the leading terms of Ai j for large p
correspond to the inverse propagators of the light fields.

of the respective light field with momentum p. Accordingly,
for u = W , ϕ the �u are, at leading order in 1/ζ , proportional
to the unit matrix with fundamental SU(2) indices. Hence,
we can also compute5

(
D−1)

ϕaϕb
= 2 tr

[
τa
2 �−1

ϕ
τb
2

]
,

(
D−1)

W
a
μW

b
ν

= −2 tr
[

τa
2

(
�−1

W

)μν τb
2

]
. (51)

Corresponding expansions to the order required in this work
are given below. For the non-vanishing non-diagonal parts
Xi j (= X †

j i ) we have

XAμWa,ν
= tr

[
τa
2 Xμν

AW

]
, XWa,μϕb

= tr
[

τa
2 Xμ

Wϕ

τb
2

]
,

XAμϕa = tr
[
Xμ
Aϕ

τa
2

]
, XHh = XHh,

XHWa,μ
= tr

[
Xμ

HW
τa
2

]
, XhWa,μ

= tr
[
Xμ

hW
τa
2

]
,

Xhϕa = tr
[
Xhϕ

τa
2

]
, XHϕa = tr

[
XHϕ

τa
2

]
. (52)

4.2.3 Large-mass expansion

Aiming at a final effective Lagrangian δL1-loop
eff that includes

all (non-decoupling) effects of O(M0
H), we need for the cal-

culation of ln
(
�̃H (x, ∂x+ip)

)
in Eq. (42), where p ∼ MH ∼

ζ , all terms of order ζ−4. Since

�̃H (x, ∂x + ip) = −
(
p2 − M2

H

)
+ �(x, p, ∂x ) (53)

with �(x, p, ∂x ) at most of O(ζ 1), the operator �̃H (x, ∂x +
ip) is required to O(ζ−2). The scaling behaviour of the indi-
vidual operators Xuv(x, ∂x + ip) and �u(x, ∂x + ip) (and
hence Xi j and Di j ) can be easily determined from Eqs. (34)

5 Note that defining Ai j , Di j , Xi j in such a way that their indices are
individual SU(2) components rather than complete SU(2) multiplets
(W , ϕ) makes it unnecessary to project onto the subspace of SU(2)
generators when inverting �u as was done in (Sections 3 of) Refs.
[14,15].
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Table 1 Scaling behaviour of
the operators �−1

u (x, ∂x + ip)
and Xuv(x, ∂x + ip) according
to Eqs. (34) and (38) in the
hard-momentum region where
p ∼ MH ∼ ζ , Ĥ ∼ sa ∼ ζ−1

Operator �−1
u=W ,A,ϕ,h,H

XAW XWϕ XAϕ XHh XHW XhW XHϕ Xhϕ

Scaling ζ−2 ζ 1 ζ 1 ζ 0 ζ 1 ζ−1 ζ 0 ζ 0 ζ 1

and (38) and is summarized in Table 1.6 From Eqs. (47)–(50)
we thus obtain

�̃H (x, ∂x + ip) = �H − XHh �−1
h XhH − tr

[
XHϕ

τa
2

]
× 2 tr

[
τa
2 �−1

ϕ
τb
2

]
tr

[
XϕH

τb
2

]
− 2 tr

[
XHϕ

τa
2

]
2 tr

[
τa
2 �−1

ϕ
τb
2

]
tr

[
Xϕh

τb
2

]
× �−1

h XhH − XHh �−1
h tr

[
Xhϕ

τa
2

]
× 2 tr

[
τa
2 �−1

ϕ
τb
2

]
tr

[
Xϕh

τb
2

]
�−1

h XhH + O(ζ−3),

(54)

where the fourth term on the r.h.s. actually represents two
equal contributions, corresponding to the two different orders
XHϕa . . .XhH and XHh . . .Xϕa H of the operator chain.

The operators �u(x, ∂x + ip) and Xuv(x, ∂x + ip) appear-
ing in Eq. (54) can be directly read from Eqs. (34) and (38)
to the needed order in 1/ζ . With these ingredients the indi-
vidual contributions �(κ) of order ζ−κ to �(x, p, ∂x ), as
defined in Eq. (53), follow in a straightforward way, and we
can evaluate ln

(
�H (x, ∂x + ip)

)
as series expansion,

ln
(
�̃H (x, ∂x + ip)

)
= ln(−p2 + M2

H) −
∞∑
n=1

1

n

(
�

p2 − M2
H

)n
,

(55)

where the nth term of the sum contributes at most at order
ζ−n . After that we can drop the Th(p) operator in Eq. (42).
Taking into account that odd powers of pμ integrate to zero
and dropping an irrelevant constant we arrive at7

δL1-loop
eff = i

2
μ4−D

∫
dDp

(2π)D

[
−�(0) + �(2)

p2 − M2
H

− (�(0))2

2(p2 − M2
H)2

]
+ O(ζ−2). (56)

Note that the pμ-even terms ∝ �(−1)�(1) and ∝ �(−1)�(0)

�(−1)(+perm.) with �(−1) = 2ip · ∂x vanish in Eq. (56)

6 Here we anticipate that Ĥl ∼ ζ−1. This scaling behaviour is con-
firmed by the explicit result for the equation of motion of Ĥl in Sect. 4.3,
but can also be directly understood from the scaling of the heavy Higgs
propagator: 〈Hl Hl 〉 ∼ 1/M2

H.
7 In the corresponding diagrammatic calculation the loop integrands,
which are expanded in ζ depend only quadratically on MH and sα (upon
eliminating Ĥ using its EOMs). It is therefore intuitively clear that �(κ)

with odd κ is proportional to odd powers of pμ. This can be easily
verified with the explicit expressions given in Eqs. (54) and (59)–(63).

like total derivatives or because there is no background field
for the partial derivative to act on. The relevant terms of the
�−1

y (x, ∂x + ip) read

�−1
h = − 1

p2 − 1

p4

[
2ip ·∂x + �x + M2

h + 3M2
h

v2
ĥ

+ M2
Hsα
v2

Ĥ + 3(M2
h + M2

Hs
2
α)

2v2
2

ĥ2

− g2
2

2
tr
[
Ĉ2]] + 4

(p ·∂x )2

p6 + O(ζ−5), (57)

�−1
ϕ = − 1

p2

(
1 + ĥ

v2

)−2

1 + O(ζ−3), (58)

where1 is the 2×2 unit matrix. Furthermore we have accord-
ing to Eqs. (34) and (38)

�H = −p2 + M2
H + 2ip ·∂x + �x − g2

2s
2
α

2
tr
[
Ĉ2]

+
[

3s2
α

(
M2

h + s2
αM

2
H

)
2v2

2

+ 6λ2
12v

2
2

M2
H

+ λ12
(
1 − 6s2

α

)]
ĥ2

+
[

2λ12v2

(
s2
α − 3M2

h

M2
H

− 2

)
+ s2

α

(
M2

h − M2
H

(
s2
α − 2

))
v2

]
ĥ

+ 6λ2
12v

2
2

M2
Hs

2
α

Ĥ2 +
[

6λ12v2

sα

(
M2

h

M2
H

− s2
α + 1

)
+ 3M2

Hs
3
α

v2

]
Ĥ

+
(

6λ12sα − 12λ2
12v

2
2

M2
Hsα

)
ĥ Ĥ + O

(
ζ−3), (59)

which corresponds to the contribution from loops involving
heavy Higgs modes only. With Eqs. (57) and (58) the remain-
ing terms in Eq. (54) are

XHh �−1
h XhH = g2

2M
4
Hs

2
α

2p4v2
2

tr
[
Ĉ2]ĥ2

+g2
2M

2
Hs

2
α

p2v2
tr
[
Ĉ2]ĥ − 3M4

Hs
2
α

2p4v4
2

(
M2

h + M2
Hs

2
α

)
ĥ4

−3M2
Hs

2
α

p4v3
2

[
M2

h

(
M2

H + p2
)

+p2
(
M2

Hs
2
α − 2λ12v

2
2

)]
ĥ3
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+M2
Hs

2
α

p4v2
2

[(
2s2

α − 1
)
p2M2

H

−4λ12 p
2v2

2 − M2
h

(
M2

H + 4p2)]ĥ2

−M2
Hsα

p4v3
2

(
M4

Hs
2
α + 4λ12 p

2v2
2

)
ĥ2 Ĥ

+4M2
Hsα
p2

(
2λ12 − M2

Hs
2
α

v2
2

)
ĥ Ĥ

−M4
Hs

2
α

p6v2
2

[
p2ĥ�ĥ + 2ip2 ĥ pμ∂μĥ − 4ĥ(pμ∂μ)2ĥ

]

+O
(
ζ−3), (60)

tr
[
XHϕ

τa
2

]
2 tr

[
τa
2 �−1

ϕ
τb
2

]
tr

[
XϕH

τb
2

]

= −2g2
2s

2
α

p2 pμ pν tr
[
ĈμĈν

] + O
(
ζ−3), (61)

2 tr
[
XHϕ

τa
2

]
2 tr

[
τa
2 �−1

ϕ
τb
2

]
tr

[
Xϕh

τb
2

]
�−1

h XhH

= −4g2
2M

2
Hs

2
α

p4v2
pμ pν tr

[
ĈμĈν

]
ĥ + O

(
ζ−3), (62)

XHh �−1
h tr

[
Xhϕ

τa
2

]
2 tr

[
τa
2 �−1

ϕ
τb
2

]
tr

[
Xϕh

τb
2

]
�−1

h XhH

= −2g2
2M

4
Hs

2
α

p6v2
2

pμ pν tr
[
ĈμĈν

]
ĥ2 + O

(
ζ−3). (63)

At this point the correspondence between the individual
terms in δL1-loop

eff (56) and Feynman graphs in a diagrammatic
calculation is most obvious: The external lines of the dia-
grams are uniquely given by the background fields contained
in each monomial of δL1-loop

eff , the internal lines of the light
fields φi originate from the factors �φi with φi = h, ϕ, . . .,
and the heavy internal H lines correspond to the factors
1/(p2 − M2

H). Note, however, that in general internal loop
lines in diagrams lead to sequences of powers of the cor-
responding propagators owing to the Taylor expansion for
pi � p, MH, where pi stands for external momenta rep-
resented by ∂ operators in δL1-loop

eff . Therefore, the terms in

δL1-loop
eff actually correspond to the individual terms of the

Taylor-expanded Feynman diagrams in the hard momentum
region.

Inserting the results of Eqs. (57)–(63) into Eq. (56) effec-
tively leads to

�(0) =
(

λ12 + M4
Hs

2
α

p2v2
2

)
ĥ2 +

(
2M2

Hs
2
α

v2
− 4λ12v2

)
ĥ

+6λ12v2

sα
Ĥ , (64)

�(2) = − (D−4)g2
2M

4
Hs

2
α

2D p4v2
2

tr
[
Ĉ2]ĥ2

− (D−4)g2
2M

2
Hs

2
α

D p2v2
tr
[
Ĉ2]ĥ

− (D−4)g2
2s

2
α

2D
tr
[
Ĉ2]

+3M4
Hs

2
α

(
M2

h + M2
Hs

2
α

)
2p4v4

2

ĥ4 + 3s2
α

[
M2

h M
4
H

p4v3
2

+M2
H

(
M2

h + M2
Hs

2
α

)
p2v3

2

− 2λ12M2
H

p2v2

]
ĥ3

+s2
α

[
M2

h M
4
H

p4v2
2

+ 4M2
h M

2
H −2M4

Hs
2
α

p2v2
2

+3
M2

h +M2
Hs

2
α

2v2
2

+ λ12

(4M2
H

p2 − 6
)

+ 6λ2
12v

2
2

M2
Hs

2
α

]
ĥ2

+
[

2λ12v2

(
s2
α − 3M2

h

M2
H

)
+ s2

α

(
M2

h − M2
Hs

2
α

)
v2

]
ĥ

+6λ2
12v

2
2

M2
Hs

2
α

Ĥ2 +
[

6λ12v2

(
M2

h

M2
Hsα

− sα

)
+ 3M2

Hs
3
α

v2

]
Ĥ

+
(
M6

Hs
3
α

p4v3
2

+ 4λ12M2
Hsα

p2v2

)
ĥ2 Ĥ

+
[

4M4
Hs

3
α

p2v2
2

+ λ12

(
6sα − 8M2

Hsα
p2

)

−12λ2
12v

2
2

M2
Hsα

]
ĥ Ĥ + (D − 4)M4

Hs
2
α

D p4v2
2

ĥ�ĥ , (65)

under the integral over p in Eq. (56), where we have already
performed the tensor reduction of the pμ pν terms, which for
rank-2 vacuum integrals is achieved by the replacement

pμ pν → p2

D
gμν. (66)

The loop integration over p involves only the very simple
vacuum integrals

Iab = (2πμ)4−D

iπ2

∫
dDp

1

(p2 − M2
H + i0)a(p2 + i0)b

= (4πμ2)(4−D)/2 (−1)a+b �
( D

2 − b
)
�

(
a + b − D

2

)
�(a)�

( D
2

)
× MD−2a−2b

H , (67)

which obey the useful relations

I0b = 0, I11 = I10/M
2
H, I12 = I10/M

4
H,

I21 = I20/M
2
H − I10/M

4
H, I22 = I20/M

4
H − 2I10/M

6
H.

(68)

The integrals I0b vanish, because they are scaleless; the other
relations follow from partial fractioning. We can thus express
δL1-loop

eff solely in terms of I10 and I20 and obtain

δL1-loop
eff = 1

32π2

{
− (D − 4)g2

2s
2
α

2D
I10 tr

[
Ĉ2](1 + ĥ

v2

)2
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+ (D − 4)s2
α

D v2
2

I10 ĥ�ĥ

+
[

1

2
λ2

12 I20 − λ12s2
α

v2
2

(I10 − M2
H I20)

+ s2
α

2v4
2

(
3M2

h I10 + M2
Hs

2
α(I10 + M2

H I20)
)]

ĥ4

−
[

4λ2
12v2 I20 + 2λ12s2

α

v2
(I10 + M2

H I20)

− s2
α

v3
2

(
6M2

h I10 + M2
Hs

2
α(I10 + 2M2

H I20)
)]

ĥ3

+
[

2λ2
12v

2
2

M2
H

(3I10 + 4M2
H I20)

− λ12

(
8M2

Hs
2
α I20 − (1 − 2s2

α)I10

)

+ s2
α

2v2
2

(
13M2

h I10 + 4M4
Hs

2
α I20

+ M2
H(2 − s2

α)I10

)]
ĥ2

+
[
s2
α

v2

(
M2

h + M2
H(2 − s2

α)
)

− 2λ12v2

M2
H

(
3M2

h + M2
H(2 − s2

α)
)]

I10ĥ

+ 6λ2
12v

2
2

M2
Hs

2
α

(I10 + 3M2
H I20)Ĥ

2 + 3

v2

[
M2

Hs
3
α

+ 2λ12v
2
2

M2
Hsα

(
M2

h + M2
H(1 − s2

α)
)]

I10 Ĥ

+ 1

sαv3
2

[
6λ2

12v
4
2 I20 − 2λ12s

2
αv2

2(I10

− 3M2
H I20) + M2

Hs
4
α I10

]
ĥ2 Ĥ

+ 2

M2
Hsαv2

2

(M2
Hs

2
α − 2λ12v

2
2)

[
2M2

Hs
2
α I10

+ 3λ12v
2
2(I10 + 2M2

H I20)
]
ĥ Ĥ

}

+ O
(
ζ−2), (69)

Upon inserting

I10 = M2
H(Lε + 1) + O(ε), I20 = Lε + O(ε), (70)

with

Lε = � + ln

(
μ2

M2
H

)
,

� = 1

ε
− γE + ln(4π), (71)

and expanding in ε = (4 − D)/2 we have

δL1-loop
eff = 1

32π2

{
1

4
g2

2M
2
Hs

2
α tr

[
Ĉ2](1 + ĥ

v2

)2

− M2
Hs

2
α

2v2
2

ĥ�ĥ

+
[

λ2
12

2
Lε + 3M2

h M
2
Hs

2
α

2v4
2

(Lε + 1) + M4
Hs

4
α

2v4
2

(2Lε + 1)

− λ12M2
Hs

2
α

v2
2

]
ĥ4

+
[

6M2
h M

2
Hs

2
α

v3
2

(Lε + 1) + M4
Hs

4
α

v3
2

(3Lε + 1)

− 2λ12M2
Hs

2
α

v2
(2Lε + 1) − 4λ2

12v2Lε

]
ĥ3

+
[

13M2
h M

2
Hs

2
α

2v2
2

(Lε + 1)

+ M4
Hs

2
α

2v2
2

(
3s2

αLε + 2Lε − s2
α + 2

)

+ λ12M
2
H

(
1 − 10s2

αLε + Lε − 2s2
α

)

+ 2λ2
12v

2
2(7Lε + 3)

]
ĥ2

+
[
M2

Hs
2
α

v2

(
M2

h + (2 − s2
α)M2

H

)
(Lε + 1)

− 2λ12v2

(
3M2

h + (2 − s2
α)M2

H

)
(Lε + 1)

]
ĥ

+ 6λ2
12v

2
2

s2
α

(4Lε + 1)Ĥ2 + 3

[
2λ12v2

sα

(
M2

h + (1 − s2
α)M2

H

)

+ M4
Hs

3
α

v2

]
(Lε + 1)Ĥ

+
[
M4

Hs
3
α

v3
2

(Lε + 1) + 2λ12M2
Hsα

v2
(2Lε − 1)

+ 6λ2
12v2

sα
Lε

]
ĥ2 Ĥ

+ 2

sαv2
2

(
M2

Hs
2
α − 2λ12v

2
2

)[
2M2

Hs
2
α(Lε + 1)

+ 3λ12v
2
2(3Lε + 1)

]
ĥ Ĥ

}

+ O(
ζ−2, ε

)
. (72)

This expression represents the bare effective Lagrangian
from integrating out heavy modes at one loop in unitary
(background) gauge. In order to bring δL1-loop

eff into a mani-
festly gauge-invariant form, we can invert the Stueckelberg
transformation in Eq. (20) by replacing

Ĉμ → i

g2
Û †(D̂μÛ

)
. (73)

We emphasize that the (seemingly non-decoupling) δL1-loop
eff

must be properly renormalized, taking into account full-
theory as well as EFT counterterms, before it can be used
to compute physical observables. We will come back to this
point in Sect. 5.
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4.3 Heavy Higgs equation of motion and lowest-order
effective Lagrangian

At the end of Sect. 4.1, we have already outlined how the
final effective Lagrangian Leff breaks up into different parts,

Leff = LSM(φ̂i , φi ) + δLtree
eff (φ̂i , φi )

+ δL1-loop
eff (φ̂i ) + δLct

eff(φ̂i ), (74)

where all field arguments correspond to light field modes.
The arguments of the full SM Lagrangian LSM(φ̂i , φi ) com-
prise all background and quantum fields of the SM, since all
SM particles can propagate along tree and loop lines in EFT
Feynman diagrams.

The part δLtree
eff (φ̂i , φi ) of the effective Lagrangian quan-

tifies all lowest-order couplings between SM fields that are
induced by exchange of a heavy Higgs boson. The terms in
Ltree

eff = LSM+δLtree
eff built from background fields φ̂i only are

sufficient for the construction of all tree-level diagrams con-
tributing to Green functions up to some target order ζ−n . The
effective couplings in δLtree

eff involving (SM) quantum fields
φi give rise to loop diagrams that are related to the small-
momentum regions of full-theory loop diagrams involving
the quantum field H . Note that most of the terms in δLtree

eff
depend on the background and quantum fields only via their
sum φ̃i = φ̂i + φi by construction within the BFM. 8 In this
section we derive δLtree

eff . To this end, we eliminate Ĥl and
Hl from the full SESM Lagrangian by solving the EOM for
the Hl field in terms of a series in inverse powers of ζ . This
is possible, since all derivatives ∂ acting on light field modes
scale as ζ 0 are therefore ζ−1 suppressed compared to the
heavy Higgs mass MH. The effects of the heavy field modes
in hard loops, where ∂ effectively counts as ζ 1, are contained
in δL1-loop

eff (φ̂i ) constructed in the previous section. The last
contribution to the effective Lagrangian, δLct

eff(φ̂i ), which
accounts for counterterm contributions from the renormal-
ization of the heavy-H-boson sector in the full and effective
theory, is constructed in the next section.

To derive the EOM for the light modes Ĥl and Hl , we start
from the dependence of the full-theory Lagrangian on light
and SM field modes, which we summarize in a Lagrangian
dubbed Ltree(φ̂i , φ). This part is given by (with H̃l ∼ ζ−1)

Ltree = LSM − s2
αM

2
H

8v2
2

h̃4 − 1

2
M2

H H̃2
l − sαM2

H

2v2
h̃2 H̃l

+ O
(
ζ−2

)
. (75)

8 The only parts of the BFM quantized full-theory Lagrangian that
do not depend on the sum φ̂i + φi of background and quantum fields
are the gauge-fixing Lagrangian of the quantum fields and the ghost
Lagrangian.

Here and in the following we suppress the subscript l of
the soft modes of light (SM) particles, which represent the
degrees of freedom of the EFT. Since LSM does not depend
on Ĥl and Hl , the EOM resulting from the variation of Hl

reads

0 = M2
H H̃l + sαM2

H

2v2
h̃2 + O

(
ζ−1

)
(76)

with the straightforward solution

H̃l = − sα
2v2

h̃2 + O
(
ζ−3

)
. (77)

Note that this result a posteriori confirms our counting H̃l ∼
ζ−1. Inserting this solution back into Ltree given in Eq. (75)
leads to

Ltree
eff = LSM + δLtree

eff , δLtree
eff = O

(
ζ−2

)
, (78)

showing that there are no non-decoupling effects of the
SESM with a heavy H boson at tree level in the weak-
coupling scenario in Eq. (14). Note, however, that the indi-
vidual Feynman rules of the full theory do not all simply
turn into their SM versions in this limit. The non-standard h̃4

coupling in Ltree, for instance, is rather compensated by the
leading contribution of the four-point interaction of h̃ fields
induced by tree-level H̃ exchange, when the H̃ propagator
shrinks to a point and H̃ is effectively given by Eq. (77).

In order to obtain δL1-loop
eff in Eq. (72) in terms of SM fields,

we have to eliminate the light mode Ĥl of the heavy-Higgs
background field, which proceeds along the same lines as
above using the EOM (76). There are, however, two differ-
ences. Firstly, the dependence of the solution on the quan-
tum field Hl is irrelevant and can be discarded at the one-
loop level, because these terms would only contribute as part
of a second loop. Secondly, the term proportional to Ĥl in
δL1-loop

eff of Eq. (72) has a prefactor scaling like ζ 3, so that
the solution for Ĥl is needed to order ζ−3, i.e. the solution in
Eq. (76) has to be supplemented by further terms. This task
is straightforward and yields

Ĥl = − sα
2v2

ĥ2 + sα
2v2M2

H

(
� − 2M2

h − 2λ12v
2
2 + s2

αM
2
H

)
ĥ2

− sα
2v2

2M
2
H

(
M2

h − s2
αM

2
H + 2λ12v

2
2

)
ĥ3 − sαλ12

4v2M2
H

ĥ4

+ g2
2sα

2M2
H

tr
[
Ĉ2](v2 + ĥ) + O

(
ζ−5). (79)

For later convenience we also derive the EOM for the light
Higgs field h̃,

0 =
(
� + M2

h

)
h̃ − g2

2

2
tr
[
C̃2](v2 + h̃)
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+ 3M2
h

2v2
h̃2 + M2

h + M2
Hs

2
α

2v2
2

h̃3

+ M2
Hsα
v2

h̃ H̃l + O(ζ−2)

=
(
� + M2

h

)
h̃ − g2

2

2
tr
[
C̃2](v2 + h̃)

+ 3M2
h

2v2
h̃2 + M2

h

2v2
2

h̃3 + O(ζ−2), (80)

where the solution Eq. (77) has been inserted for H̃l in the
last line.

5 Renormalization

5.1 Renormalization of the SM

Of course, the one-loop renormalization of the SM is by now
standard, both in the conventional quantization formalism
and in the BFM (see e.g. Refs. [24,25,70] and references
therein). As shown in the previous section, the SM coincides
with the EFT describing the large-MH limit of the SESM at
tree level in the leading order of the large-MH expansion. To
prepare ourselves for the renormalization of the SESM and
the EFT, it is therefore instructive to first recall some aspects
of the SM renormalization. In the formulation below, we
closely follow Ref. [25] both conceptually and concerning
notation and conventions for field-theoretical quantities.

Before renormalization, the defining “bare” Lagrangian
depends on parameters whose physical meaning is obscure
when they are used to parametrize physical observables.
Likewise, the fields occurring in the bare Lagrangian are,
in general, not canonically normalized. In order to introduce
parameters and fields with clear meaning and well-defined
normalization, respectively, the original “bare” quantities are
split into renormalized quantities and renormalization con-
stants. Denoting all bare quantities with subscript “0”, we
write

ci,0 = ci + δci , φ̂i,0 =
(

δi j + 1

2
δZi j

)
φ̂ j , (81)

for generic parameters ci and background fields φ̂i . The
renormalized parameters are denoted by ci and the corre-
sponding renormalization constants by δci . The renormal-
ization constants δci are fixed by renormalization conditions
in order to tie the renormalized parameters to measurable
quantities, which in turn give them their precise physical
meaning. The choice of the field renormalization constants
δZi j , on the other hand, is only a matter of convenience.
The matrix structure of the field renormalization constants
δZi j is conveniently determined by demanding that (at least)

at some specific momentum transfer the renormalized fields
φ̂i do not mix. The renormalization of the (virtual) quantum
fields φi is not necessary.

Specifically, we perform the “renormalization transfor-
mations” for the relevant physical parameters in the SM as
follows:

e0 = (1 + δZe)e, sw,0 = sw + δsw,

M2
W,0 = M2

W + δM2
W, M2

h,0 = M2
h + δM2

h . (82)

This fixes the renormalization of the gauge couplings g1, g2

and the parameters cw, MZ, v2, which are related to the
gauge-boson masses by9

g1 = e

cw
, g2 = e

sw
, c2

w = 1 − s2
w = M2

W

M2
Z

, v2 = 2MW

g2
.

(83)

These relations are valid for bare and renormalized quantities.
This, in particular, implies

δv2 = v2

(
δM2

W

2M2
W

+ δsw

sw
− δZe

)
. (84)

The renormalization of the parameters μ2
2 and λ2 of the Higgs

potential depends on the scheme that is employed to treat the
SM tadpole parameter

th,0 = v2,0

(
μ2

2,0 − 1

4
λ2,0v

2
2,0

)
. (85)

The SM tadpole term th,0h̃0 in LSM is the term linear in the
bare Higgs field h̃0, while v2,0/

√
2 is the constant contribu-

tion from the bare Higgs doublet field. The (squared) bare
Higgs-boson mass is given by

M2
h,0 = −μ2

2,0 + 3

4
λ2,0v

2
2,0, (86)

and for the renormalized Higgs parameters we adopt the
renormalization conditions

μ2
2 = M2

h

2
, λ2 = 2M2

h

v2
2

. (87)

In order to determine the renormalization constants δμ2
2 and

δλ2 in

μ2
2,0 = μ2

2 + δμ2
2,

9 Note that we write the parameters of the SM Higgs potential here with
a subscript “2”, i.e. v2, μ2, λ2, whereas the Higgs field h has no subscript
in order to match the notation for the SM-like part of the SESM in view
of the next sections.
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λ2,0 = λ2
2 + δλ2

2, (88)

we still have to fix the tadpole parameter th. Similar to the
descriptions of Ref. [25] we use two different prescriptions
in parallel: 10

• Parameter-renormalized tadpole scheme (PRTS) [70]:
Demanding that the renormalized vev v2 corresponds
to the true (corrected) minimum of the Higgs potential
implies that the renormalized tadpole parameter vanishes,

th = th,0 − δth = 0. (89)

The tadpole renormalization constant δth is then simply
given by the bare tadpole parameter th,0 in Eq. (85),

δth = th,0 = v2,0

(
μ2

2,0 − 1

4
λ2,0v

2
2,0

)

= v2

(
δμ2

2 − 1

4
δλ2v

2
2 − 1

2
λ2v2δv2

)
. (90)

Together with Eq. (86) this fixes δμ2
2 and δλ2 in terms of

δM2
h , δv2, and δth.

• Fleischer–Jegerlehner tadpole scheme (FJTS) [51]: The
bare tadpole parameter is consistently set to zero, th,0 =
0, so that, according to Eq. (85) v2,0 = 2

√
μ2

2,0/λ2,0, and
no renormalization of the tadpole parameter is performed.
The bare Higgs-boson mass is thus given by

M2
h,0 = 2μ2

2,0 = 1

2
λ2,0v

2
2,0. (91)

This directly fixes δμ2
2 and δλ2, in terms of δM2

h and δv2.
A tadpole counterterm

δth = −M2
h �vh (92)

is effectively generated by a field shift ĥ → ĥ +
�vh in the Lagrangian, which does not affect physical
observables.

In both schemes there is a term δthĥ in the counterterm
Lagrangian, and δth is chosen to compensate explicit tadpole
diagrams in Green functions, i.e.

δth = −T ĥ, (93)

10 Our description differs from the procedure described in Sect. 3.1.6
of Ref. [25] by introducing the bare vev v2,0. In the FJTS our v2,0
effectively plays the same role as the parameter v0 in Ref. [25] for the
FJTS; in the PRTS our v2,0 corresponds to the PRTS parameter v̄ of
Ref. [25]. The formal treatment described here seems somewhat more
generic, but the PRTS and FJTS schemes are fully equivalent to the ones
of Ref. [25].

where T ĥ (= �ĥ) denotes the unrenormalized one-point ver-
tex function of the background Higgs field at one loop. The
tadpole renormalization constant δth also enters many other
contributions in the counterterm Lagrangian. These terms
depend on the tadpole scheme. For the sake of compact nota-
tion we introduce the expressions δtPRTS

h and δtFJTS
h , where

δtPRTS
h equals δth only in the PRTS and is zero in the FJTS,

and vice versa.
The field renormalization can either be performed in the

basis of the gauge multiplets Ŵμ, B̂μ, �̂ or in the basis
spanned by the fields Ŵ±

μ , Âμ, Ẑμ, ĥ that correspond to mass
eigenstates. For our purposes, the gauge field renormaliza-
tion will not play a role. In the following, the only relevant
field renormalization transformation is the one of the Higgs
field, which we formulate directly for ĥ:

ĥ0 =
(

1 + 1

2
δZĥĥ

)
ĥ. (94)

The part of the counterterm Lagrangian δLct
SM that results

from the SM Higgs sector by the renormalization transfor-
mations described above is denoted δLHct

SM and (in compact
notation for both schemes) given by

δLHct
SM = −1

2
δM2

h ĥ2
(

1 + ĥ

v2
+ ĥ2

4v2
2

)

+ δv2

[
g2

2

2
tr
[
Ĉ2](v2 + ĥ) + M2

h

4v2
2

ĥ3
(

2 + ĥ

v2

)]

− 1

2
δZĥĥ ĥ

[
�ĥ − g2

2

2
tr
[
Ĉ2](v2 + ĥ)

+ M2
h ĥ

(
1 + 3ĥ

2v2
+ ĥ2

2v2
2

)]
+ δth ĥ

− δtPRTS
h

ĥ3

2v2
2

(
1 + ĥ

4v2

)
+ δtFJTS

h

[
ĥ2

2v2

(
3 + ĥ

v2

)

− g2
2

2M2
h

tr
[
Ĉ2](v2 + ĥ)

]
. (95)

In the SM, the mass parameters for the W, Z, and Higgs
bosons are usually defined as on-shell (OS) masses, which
determine the locations of the poles in the respective propaga-
tors. This fixes the mass renormalization constants according
to

δM2
W = �Ŵ

T (M2
W), δM2

Z = � Ẑ Ẑ
T (M2

Z),

δM2
h = �ĥ(M2

h ), (96)

where �···
(T)(p

2) denotes the corresponding self-energy (with
“T” indicating its transverse part) for momentum transfer p.
Following the conventions of Ref. [25], at the one-loop

123



  826 Page 18 of 28 Eur. Phys. J. C           (2021) 81:826 

level �···
(T)(p

2) includes the contributions from one-particle-
irreducible (1PI) loop diagrams, explicit tadpole diagrams, as
well as tadpole counterterms, but no contributions from other
renormalization constants. Note that according to Eq. (83)
fixing δM2

W and δM2
Z also fixes δsw.

We complement these OS renormalization conditions by
the OS condition for the electric charge e, where δZe is fixed
by requiring that e does not receive any correction in the
Thomson limit, where a physical charged particle interacts
with a photon of vanishing momentum. The explicit form of
δZe, which involves only loops of charged particles in the
AA and AZ propagators, will not be needed in the follow-
ing, because neutral Higgs bosons do not contribute to δZe at
one loop. The explicit form of the field renormalization con-
stants, which we assume to be fixed in the OS renormalization
scheme, will not be required either. Only their scaling prop-
erties in the considered large-mass limit of the SESM will be
relevant and are quoted below.

5.2 Renormalization of the SESM

Renormalization schemes for the SESM were worked out in
Refs. [47–50,54] in different variants. We follow the propos-
als of Refs. [49,50] which employ the parameters MH, sα ,
and λ12 (or alternatively λ1) as independent parameters in
the BSM sector of the model. We apply the renormalization
transformations

M2
H,0 = M2

H + δM2
H, sα,0 = sα + δsα,

λ12,0 = λ12 + δλ12, (97)

which are supplemented by the renormalization transforma-
tions of the SM-like parameters described in Sect. 5.1. In
Refs. [49,50] several conceptually different renormalization
schemes for the (sine of the) mixing angle (sα) are discussed:

• MS renormalization [49] with the PRTS or FJTS for treat-
ing tadpoles,

• OS renormalization [50] based on the ratio of amplitudes
with external h/H bosons with the PRTS or FJTS for
treating tadpoles,

• symmetry-inspired renormalization [50] based on rigid
(global) and BFM gauge invariance of the model.

The benefits and drawbacks of these schemes for the renor-
malization of sα are discussed in Ref. [50] in detail. In the
present paper, we focus on MS and OS renormalization. In
the OS scheme, the renormalization constant δsα can be cal-
culated from the field renormalization constants of the ĥ/Ĥ
system, which are introduced below, using Eq. (3.13) of Ref.
[50]. The result for δsα in the MS scheme can be obtained

from δsα in the OS scheme upon taking only its ultraviolet
(UV) divergent parts. Explicitly, we have in these schemes

δsα =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O(ζ−1) for the OS/PRTS and MS/PRTS
schemes,

− sα

M2
h v2

T ĥ + O(ζ−1) for the OS/FJTS scheme,

− sα

M2
h v2

T ĥ ∣∣
UV + O(ζ−1) for the MS/FJTS scheme,

(98)

where the “UV” label indicates that only UV-divergent parts
proportional to �, as given in Eq. (71), are absorbed into
δsα . The MS renormalization constants can be deduced from
the corresponding OS counterparts upon dropping the UV-
finite parts. Here and in the following we only give explicit
expressions for the terms in the large-MH expansion that will
be relevant for the final effective Lagrangian to O(ζ 0).

The tadpole contributions from the large-momentum
region of all relevant one-loop tadpole diagrams can be
directly read off the linear Higgs field terms in Eq. (69). At
leading order in the large-mass expansion the explicit expres-
sions are

T ĥ = −2λ12v
2
2 − M2

Hs
2
α

16π2v2
I10 + O(ζ 0),

T Ĥ = 3λ12v2

16π2sα
I10 + O(ζ 1), (99)

for the background light (ĥ) and heavy Higgs (Ĥ ) fields,
respectively, where I10 = O(ζ 2) is given by Eq. (70). The
soft-momentum regions contribute to Eq. (99) only atO(ζ 0).
Like in the SM, the SESM tadpole counterterms are fixed by

δth = −T ĥ, δtH = −T Ĥ , (100)

which applies both in the PRTS and FJTS.
In all SESM renormalization schemes considered here, the

mass MH is on-shell renormalized, and the coupling param-
eter λ12 (or λ1) with the MS prescription. Explicit results
for δM2

H and δλ12 can be obtained in a straightforward way
(see also the explicit results in Ref. [49]), but for our purpose
we actually only need their scaling behaviour as MH → ∞,
namely

δM2
H = � Ĥ (M2

H) = O(ζ 2), δλ12 = O(ζ 0), (101)

both in the PRTS and FJTS.
The renormalization constants of the SM-like parameters

are obtained in full analogy to their counterparts in the SM.
The required leading terms in the large-MH limit are

δM2
h = M2

Hs
2
α + λ12v

2
2

16π2v2
2

I10 + 3

v2
δtFJTS

h + sα
v2

δtFJTS
H

+ O(ζ 0),
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δM2
W = g2

2v2

2M2
h

δtFJTS
h + O(ζ 0),

δsw = O(ζ 0), δZe = O(ζ 0). (102)

The first three terms of δM2
h and the first term of δM2

W can
also be directly read off from the ĥ2 and tr[Ĉ2] terms of
Eqs. (69) and (95).

As for the field renormalization, only the two Higgs fields
and their mixing are of interest in the following,(
Ĥ0

ĥ0

)
=

(
1 + 1

2δZĤ Ĥ δZĤĥ
δZĥ Ĥ 1 + 1

2δZĥĥ

)(
Ĥ
ĥ

)
. (103)

For practical calculations, these field renormalization con-
stants are fixed by OS conditions, which guarantee that the
particle residues in the diagonal propagators are equal to one
and that different field types do not mix on their mass shells;
the explicit prescription for calculating δZ ... from the Higgs
self-energies can, e.g., be found in Eqs. (4.8)–(4.11) of Ref.
[49] (see also Ref. [50]). As a matter of fact, the explicit
form of none of the Higgs field renormalization constants
δZi j will be required for the calculation of the final effective
Lagrangian (not even their scaling behaviour as MH → ∞).
Nevertheless, it is helpful to know some of their leading terms
in the large-MH expansion,

δZĤ Ĥ = O(ζ 0), δZĤĥ = 2sα
v2M2

h

δtFJTS
h + O(ζ−1),

δZĥĥ = O(ζ 0),

δZĥ Ĥ = − 3M2
Hsα

16π2v2
2

Re{B0(M
2
H, 0, 0)} − 2sα

v2M2
h

δtFJTS
h + O(ζ−1).

(104)

The scalar two-point one-loop integral B0 is defined as in
Refs. [25,70] and given by

B0(p
2
1 =M2

H, 0, 0) = Lε + 2 + iπ + O(ε). (105)

The results in Eq. (104) can be easily derived from the one-
loop Higgs-boson self-energies, as e.g. described in Refs.
[49,50], and by applying our power-counting in ζ . They can,
for instance, be used to derive the OS scheme renormalization
constant δsα in Eq. (98) as suggested in Ref. [50].

Before we turn to the renormalization of the EFT and
the contribution of the SESM counterterm Lagrangian to the
effective Lagrangian, we comment on the use of a non-linear
parametrization of the Higgs doublet � and potential impli-
cations on the renormalization procedure. In fact, great care
is mandatory when adopting renormalization schemes that
have been designed for linear realizations of the Higgs dou-
blet. Note that vertex functions even with the same external
field content in general change by switching from a linear
to a non-linear Higgs realization. This also concerns the

structure of UV divergences of vertex functions, and the
differences might be quite drastic. In the non-linear Higgs

realization, for instance, the Higgs self-energy �ĥĥ(p2),
involves UV-divergent terms proportional to p4, which can-
not appear for linearly realized Higgs bosons. This, in par-
ticular, implies that the “renormalized” Higgs self-energy

�ĥĥ
R (p2) = �ĥĥ(p2) − δM2

h + δZĥĥ(p
2 − M2

h ) is not
UV finite. Of course, this does not spoil the UV finiteness of
S-matrix elements, since the theory with non-linearly real-
ized Higgs doublet is still renormalizable. The compensation
of UV divergences simply does not happen inside 1PI vertex
functions (such as the self-energies) after renormalization,
but results from a non-trivial conspiracy of the divergences
between different renormalized vertex functions.

As long as the same renormalization transformations in
the linearly and non-linearly realized theories are used with
the same OS renormalization conditions, the resulting renor-
malized theories are fully equivalent, because OS conditions
make use of properties of S-matrix elements that are indepen-
dent of the nature of the Higgs field realizations. Thus, the
OS renormalization [50] of the mixing angle α works in the
SESM with linear or non-linear Higgs realizations exactly in
the same way. More care is already needed for MS renormal-
ization, where the determination of the renormalization con-
stant δsMS

α has to be carried out based on S-matrix elements
in the non-linear realization, while it is sufficient to consider
some appropriate 1PI vertex function in the linear realiza-
tion, as e.g. in Ref. [49]. A safe way to determine δsMS

α is to
take the UV-divergent part of δsOS

α . On the other hand, the
translation of the symmetry-inspired BFM schemes of Ref.
[50] to the non-linearly realized theory is non-trivial, because
these schemes are based on properties of the UV structure
of specific vertex functions, which drastically differ from the
ones in the non-linear realization. We, therefore, do not con-
sider these symmetry-inspired renormalization schemes in
this paper. Of course, one possibility to apply these schemes
would be to integrate out the heavy Higgs field directly start-
ing from the linearly realized SESM Lagrangian.

5.3 Renormalization of the EFT

In Sect. 4.2 we have integrated out the hard modes from the
SESM at one-loop order. The result is the contribution to
the effective Lagrangian given in Eq. (72), which contains
1/ε singularities of UV and infrared (IR) origin. The UV
divergences are absorbed by the (ζ -expanded) SESM renor-
malization constants of the previous section, while the IR
divergences correspond to UV divergences of the EFT (with
opposite sign) and can thus be interpreted as part of the coun-
terterms of the EFT.

In Sect. 4.3 we have worked out the effective Lagrangian
Ltree

eff describing all tree-level effects of the SESM and found
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that to O(ζ 0) it has the same form as the SM Lagrangian,
see Eq. (78). Using bare parameters and fields in the original
(full-theory) Lagrangian in Eq. (75), this procedure automat-
ically includes the SESM counterterms and yields the effec-
tive Lagrangian Ltree,0

eff . The “0” superscript indicates that

the parameters and fields of Ltree,0
eff are the bare quantities

of Eq. (81), where the δci and δZi are the one-loop SESM
renormalization constants expanded to sufficiently high order
in 1/ζ . As long as the one-loop SESM renormalization con-
stants have the same large-MH scaling behaviour as originally
assumed for the associated renormalized quantities, there is
no further contribution from SESM counterterms to the effec-
tive Lagrangian. Note, in particular, that δM2

H in Eq. (101)
is eliminated at O(ζ 0) together with MH in Ltree

eff upon using
the EOM in Eq. (77).

In Eqs. (98), (102), and (104) we have observed, how-
ever, that, depending on the scheme, some of the renormal-
ization constants are enhanced by positive powers of ζ com-
pared to the scaling assumed for the corresponding renormal-
ized quantities. The associated SESM counterterms thus give
rise to additional contributions to the effective Lagrangian,
which we dub δLSESMct

eff . They are derived in the same way
as Eq. (78), i.e. employing the heavy-Higgs EOM, and also
comprise the tadpole counterterms of Eq. (100) in analogy
to Eq. (95). We find

δLSESMct
eff = δM2

h
3s2

α

4v2
ĥ3

(
1 + 7ĥ

6v2
+ ĥ2

3v2
2

)

+ δv2
s2
α

4v3
2

ĥ

[
ĥ �ĥ2 − g2

2v2 tr
[
Ĉ2](v2

2 − ĥ2)

− v2M
2
h ĥ

2

(
3 + 7ĥ

v2
+ 3ĥ2

v2
2

) ]

+ sαδsα
4v2

2

ĥ

[
− ĥ �ĥ2 − 2g2

2v2 tr
[
Ĉ2](v2 + ĥ)2

+ v2M
2
h ĥ2

(
6 + 7ĥ

v2
+ 2ĥ2

v2
2

) ]

+ δZĥ Ĥ

sα
4v2

ĥ2

[
�ĥ − g2

2

2
tr
[
Ĉ2](v2 + ĥ)

+M2
h ĥ

(
1 + 3ĥ

2v2
+ ĥ2

2v2
2

)]

+ δtPRTS
h

s2
α

v2
2

ĥ3

(
1 + 17ĥ

16v2
+ ĥ2

4v2
2

)

+ δtPRTS
H

sα
M2

H

[
g2

2

2
tr
[
Ĉ2](v2 + ĥ)

− 2M2
h + (1−s2

α)M2
H + 2λ12v

2
2

2v2
ĥ2

− 2M2
h + (2−5s2

α)M2
H + 4λ12v

2
2

4v2
2

ĥ3

− (1−8s2
α)M2

H + 2λ12v
2
2

8v3
2

ĥ4 + M2
Hs

2
α

4v4
2

ĥ5
]

+ δtFJTS
h

s2
α

2v2
2M

2
h

[
ĥ2 �ĥ

+ g2
2v2

2
tr
[
Ĉ2](v2 + ĥ)(v2 + 3ĥ)

− v2M
2
h ĥ

2

(
9

2
+ 7ĥ

v2
+ 5ĥ2

2v2
2

)]
+ O(ζ−2),

(106)

where δv2 obeys Eq. (84) and, according to Eq. (102), scales
like ζ 2 in the FJTS. The other renormalization constants and
tadpole counterterms in Eq. (106) are given in the previous
section. Note that δLSESMct

eff is independent of δZĤ Ĥ , δZĤĥ ,
and δtFJTS

H = −M2
H�vH in analogy to Eq. (92). This is true to

any order in 1/ζ , because these renormalization constants are
connected to field redefinitions of the heavy field Ĥ , which
is eliminated via its EOM. In fact, the EOM effectively elim-
inates the combination Ĥ(1+δZĤ Ĥ/2)+δZĤĥ/2ĥ+�vH.
Similarly, the term in Eq. (106) that is proportional to δZĥ Ĥ

can be removed upon using the EOM (80) for the field ĥ
(again the quantum part h can be dropped here, because it
would only contribute at two loops). Recall that the use of
the EOM for ĥ changes off-shell parts of Green functions,
but not S-matrix elements, so that predictions for observables
remain unaffected.

With Eqs. (72), (78), (106) and the SESM renormalization
constants of Sect. 5.2 we can now write down the complete
“bare” effective Lagrangian:

Leff = Ltree,0
eff + δL1-loop

eff + δLSESMct
eff

= Ltree
eff + δL1-loop,ren

eff + δLct
eff . (107)

In the second line we have reshuffled the terms contributing
to Leff in such a way that Ltree

eff equals Eq. (78), δL1-loop,ren
eff is

finite, and δLct
eff consists of the one-loop EFT counterterms.

Although, the effective Lagrangian in Eq. (107) is already
suitable for phenomenological studies at (fixed) NLO in the
loop expansion, this Lagrangian is “bare” in the sense that it
explicitly includes the UV-divergent counterterms (contain-
ing 1/ε poles) required to render the one-loop corrections to
physical observables based on Ltree

eff finite. The one-loop con-
tributions from hard momentum (∼ MH) modes are encoded
in δL1-loop

eff .

The exact form of Ltree
eff , δL1-loop,ren

eff , and δLct
eff is only

unique after fixing a renormalization scheme for the EFT. In
the course of our derivation, the renormalization scheme for
the parameters and fields of the O(ζ 0) part of Ltree

eff , which
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(here) equals LSM, is initially inherited from the underly-
ing renormalized full theory. For instance, the masses in the
EFT are, according to Sect. 5.2, initially on-shell renormal-
ized. Note, however, that the associated counterterms in δLct

eff
differ in general from the respective SESM counterterms in
δLSESMct

eff , because the contributions from large momentum

modes cancel with terms in δL1-loop
eff . The (bare) Wilson coef-

ficients of the remaining (BSM-type) effective operators are
initially composed of renormalized full-theory parameters.
The renormalization conditions for these Wilson coefficients
are in general not predetermined by the chosen full-theory
renormalization scheme, because the respective operators are
usually not part of the full-theory Lagrangian.

Once the (bare) Leff in Eq. (107) is derived, we can
of course adopt any suitable renormalization scheme for
the Wilson coefficients as well as for the SM-type param-
eters in the EFT by moving finite terms between Ltree

eff +
δL1-loop,ren

eff , and δLct
eff . In particular, to resum large loga-

rithms (∝ ln Mh/MH) via renormalization group equations
(RGEs) one may want to choose a (modified) minimal sub-
traction (MS) scheme for the Wilson coefficients and cou-
plings of the EFT. In that case we write

Ci,0 = Ci (μR) + δCi (μR), (108)

where Ci,0 is the already determined bare coefficient of
some effective operator and μR denotes the renormalization
scale on which the renormalized coefficient as well as its
(one-loop) renormalization constant depend. The boundary
(matching) condition of the corresponding one-loop RGE at
a matching scale μM is then given by

Ci (μM) = Ci,0 − δCi (μM), (109)

where in the MS scheme δCi (μM) equals the (divergent)
terms proportional to � inCi,0, with � as defined in Eq. (71).
The MS matching scale is identified with μ in Eq. (71)
and μM ≡ μ ∼ MH should be chosen to render the log-
arithms in Eq. (72) small. In this way a good convergence
behaviour of the perturbative expansion of Ci (μM) is main-
tained. Solving the one-loop RGE for Ci (μR) then resums
logarithms ∝ (ln μR/μM)n at leading logarithmic order
in renormalization-group-improved perturbation theory.11 In
EFT computations of physical observables μR is fixed to a
typical low-energy scale (∼ Mh).

11 The corresponding one-loop anomalous dimension matrix for all
dimension-6 SMEFT operators was computed in Refs. [71–77].

5.4 Final form of the effective Lagrangian

Finally, to check the decoupling of all BSM effects, we have
to investigate whether

δLBSM
eff ≡ Leff − L0

SM = O(ζ−2), (110)

where L0
SM denotes the “bare” SM Lagrangian including

appropriate one-loop counterterms such that L0
SM cancels

all SM-type operators of Leff . 12 In particular, the part of
the SM counterterm Lagrangian relevant here takes the form
of Eq. (95). Consequently, δLBSM

eff consists of non-SM-type
operators only.

Using Eq. (107) we can thus write

δLBSM
eff = [

δL1-loop
eff + δLSESMct

eff

]BSM
, (111)

where [L]BSM returns only the non-SM-type operators in L.
Subtracting from δLSESMct

eff in Eq. (106) a SM-type term of the
form of Eq. (95) with appropriately adjusted renormalization
constants and tadpole counterterms we have

[
δLSESMct

eff

]BSM =
(

δv2 − δtFJTS
h

M2
h

)
s2
α

4v2
2

ĥ

×
[
−g2

2 tr
[
Ĉ2](v2 + ĥ)(3v2 + ĥ)

+ M2
h ĥ2

(
3 − ĥ2

v2
2

)]

+ (
3δtPRTS

h + δtPRTS
H sα + δM2

h v2
) s2

α

8v2
ĥ3

×
(

6 + 7ĥ

v2
+ 2ĥ2

v2
2

)
− δth

s2
α

16v2
2

ĥ3

×
(

20 + 25ĥ

v2
+ 8ĥ2

v2
2

)

+
(

δsα
sα

− δv2

v2

)
s2
α

4v2
2

×
[

− ĥ2 �ĥ2 − 2g2
2v2 tr

[
Ĉ2]ĥ(ĥ + v2)

2

+ M2
h v2 ĥ

3

(
6 + 7ĥ

v2
+ 2ĥ2

v2
2

) ]
+ O(ζ−2).

(112)

Here we have eliminated the terms involving the field renor-
malization constant δZĥ Ĥ by using the EOM (80) for ĥ as
described below Eq. (106). The remaining (SESM) renor-
malization constants appearing on the r.h.s. of Eq. (112)
are grouped in a way that makes the simultaneous use of

12 This is, e.g., achieved by choosing the same renormalization
scheme(s) for the SM parameters as for the corresponding full theory
quantities and posing corresponding renormalization conditions.
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the PRTS and FJTS particularly simple. The first term in
Eq. (112) does not contribute at the considered order (ζ 0) at
all, because in δv2 as derived from Eqs. (84) and (102) only
the term δtFJTS

h /M2
h contributes at O(ζ 2) which is cancelled

by the explicit δtFJTS
h term. In the second term on the r.h.s.

of Eq. (112), the explicit PRTS tadpole terms and the FJTS
tadpoles implicitly contained in δM2

h combine with the 1PI
parts of δM2

h exactly in the same way, so that the overall
contribution of the second line is independent of the tad-
pole scheme. The third term is given by the same tadpole
term in the PRTS and FJTS. Only the last term on the r.h.s.
of Eq. (112), which involves δsα , depends on the tadpole
scheme as well as on the renormalization scheme chosen for
the (sine of the) mixing angle α in the SESM. Combining δv2

with the scheme-dependent results for δsα given in Eq. (98),
we find that (δsα/sα − δv2/v2)s2

α vanishes at O(ζ 0) in all
but the MS/FJTS scheme, where it is proportional to the

UV-finite part of s2
αT

ĥ/(M2
h v2).

To simplify the final step towards the effective Lagrangian
at O(ζ 0), we now insert the explicit (ζ -expanded) expres-
sions for the SESM renormalization constants and tadpole
counterterms into Eq. (112) everywhere but in the last term
to obtain

[
δLSESMct

eff

]BSM = − M2
Hs

2
α

64π2v3
2

(
M2

Hs
2
α − 2λ12v

2
2

)
ĥ3

×
(

1 + 3ĥ

4v2

)
(Lε + 1) +

(
δsα
sα

− δv2

v2

)
s2
α

4v2
2

×
[

− ĥ2 �ĥ2 − 2g2
2v2 tr

[
Ĉ2]ĥ(ĥ + v2)

2

+ M2
h v2 ĥ

3

(
6 + 7ĥ

v2
+ 2ĥ2

v2
2

) ]
+ O(ζ−2).

(113)

Now, adding δL1-loop
eff of Eq. (72) and again dropping terms

that can be absorbed in the SM counterterm in Eq. (95), we
end up with

δLBSM
eff =

(
δsα
sα

− δv2

v2

)
s2
α

4v2
2

[
− ĥ2 �ĥ2

− 2g2
2v2 tr

[
Ĉ2]ĥ(ĥ + v2)

2

+ M2
h v2 ĥ

3

(
6 + 7ĥ

v2
+ 2ĥ2

v2
2

)]
+ O(ζ−2),

(114)

with the SESM renormalization constants δsα as given in
Eq. (98) and

δv2 = v2
δM2

W

2M2
W

+ O(ζ 0) = δtFJTS
h

M2
h

+ O(ζ 0) (115)

according to Eqs. (84) and (102). Hence, we observe decou-
pling of the heavy Higgs boson H in the SESM for MH → ∞,
i.e.

δLBSM
eff = O(ζ−2), for the schemes OS/PRTS, OS/FJTS, and

MS/PRTS, (116)

but non-decoupling in the MS/FJTS scheme,

δLBSM
eff

∣∣
MS/FJTS = M2

Hs
2
α(2λ12v

2
2 − M2

Hs
2
α)

64π2M2
h v4

2

×
[

ln

(
μ2

M

M2
H

)
+ 1

]

×
[
ĥ2 �ĥ2 + 2g2

2v2 tr
[
Ĉ2]ĥ(ĥ + v2)

2

− M2
h v2 ĥ

3

(
6 + 7ĥ

v2
+ 2ĥ2

v2
2

) ]

+ O(ζ−2). (117)

Here we have used Eqs. (99) and (100), and identified the
reference scale μ of dimensional regularization with the MS
renormalization scale of the full theory, which is in turn inter-
preted as the matching scale μM of the EFT (not to be con-
fused with the EFT renormalization scale μR). Accordingly,
the MS renormalized mixing angle of the SESM depends on
this scale, i.e. sα ≡ s̄α(μ2

M) in Eq. (117).
At first sight, the explicit appearance of the renormal-

ization scale μM in δLeff |MS/FJTS of Eq. (117) seems odd,
because it potentially appears in NLO corrections to observ-
ables without being compensated by some implicit μM

dependence in LO contributions, since the tree-level effec-
tive Lagrangian is just LSM to O(ζ 0) and thus indepen-
dent of sα . To resolve this puzzle, we have to remember
that our weak-coupling scenario in Eq. (14) assumes that
sα ≡ s̄α(μ2

M) = O(ζ−1). Here we have emphasized that the
renormalized parameter sα , in which the perturbative expan-
sion works, is a running parameter s̄α(μ2

M) tied to the SESM
renormalization scale μM. The running of s̄α(μ2

M) follows
from the μM independence of the bare parameter sα,0 and
the UV divergence of the renormalization constant in the
SESM,

∂ s̄α(μ2
M)

∂ ln μ2
M

= βsα , (118)

where the one-loop β-function of sα in the MS/FJTS scheme
can be directly read off Eq. (98):

βsα

∣∣
MS/FJTS = ∂δsα

∂�
= M2

Hsα(2λ12v
2
2 − M2

Hs
2
α)

16π2M2
h v2

2

+ O(ζ−1).

(119)

123



Eur. Phys. J. C           (2021) 81:826 Page 23 of 28   826 

Solving Eq. (118) iteratively to NLO in the loop (λ12 ∼ g2
2)

expansion for MH → ∞, we find

s̄α(μ2
M)

∣∣
MS/FJTS = s̄α(μ̂2

M) + M2
H s̄α(μ̂2

M)
(
2λ12v

2
2 − M2

H s̄α(μ̂2
M)2

)
16π2M2

h v2
2

× ln

(
μ2

M

μ̂2
M

)
+ O(ζ−1), (120)

where μ̂M can take an arbitrary value different from μM.
From Eq. (120) we see that if we start from a specific renor-
malization scale μM for which the assumption s̄α(μ2

M) =
O(ζ−1) holds, this assumption is not fulfilled for s̄α(μ̂2

M)

anymore if μM �= μ̂M. Thus, if we want to change the SESM
renormalization scale, we have to take into account the terms
in Ltree

eff that are promoted from O(ζ−2) to O(ζ 0), when sub-
stituting Eq. (120) for sα and counting the one-loop correc-
tion to sα(μ2

M) as O(ζ 1). Note that two-loop terms have to
be dropped consistently after the replacement. The relevant
terms in Ltree

eff are derived in a straightforward way following
Sect. 4.3 and read (before the substitution)

δLtree
eff = − s̄α(μ2

M)2

8v2
2

[
ĥ2 �ĥ2 + 2g2

2v2 tr
[
Ĉ2]ĥ(ĥ + v2)

2

− M2
h v2 ĥ

3

(
6 + 7ĥ

v2
+ 2ĥ2

v2
2

) ]
+ · · · , (121)

where the ellipses refer to terms that are ofO(ζ−2) even after
incorporating the enhanced one-loop correction of Eq. (120).
Combining δLtree

eff with the one-loop part of δLeff given in
Eq. (117), we can now write the final effective Lagrangian
to O(ζ 0) in the form

δLBSM
eff

∣∣
MS/FJTS = s̄α(M2

H)2

8v2
2

[
−1 + M2

H

(
2λ12v

2
2 − M2

H s̄α(M2
H)2

)
8π2M2

h v2
2

]

×
[
ĥ2 �ĥ2 + 2g2

2v2 tr
[
Ĉ2]ĥ(ĥ + v2)

2

−M2
h v2 ĥ

3

(
6 + 7ĥ

v2
+ 2ĥ2

v2
2

)]

+ O
(
ζ−2), (122)

which is renormalization/matching scale independent at one-
loop order. To compactify the result, we have set μ̂M = MH.
Note that in Eq. (122), and accordingly in Eq. (120), the loop
and large-mass expansions are intertwined in the sense that
one should treat s̄α(μ̂2

M)n to be of O(ζ 2−n) or O(ζ−n) when
it appears in a tree-level or a one-loop term, respectively. This
non-uniform scaling behaviour of sα in the MS/FJTS scheme
continues at higher loop orders and is particularly problem-
atic when it comes to resummation in the EFT (for quantities
where sα appears in the anomalous dimension). Concerning
Eq. (122), we can loosely speaking say that adding the one-
loop corrections to the effective Lagrangian in the MS/FJTS

scheme effectively changes the scale at which s̄α is eval-
uated from μM, where s̄α(μ2

M) is strongly suppressed, to
μ̂M = MH, where s̄α(M2

H) is enhanced by one-loop correc-
tions of O(ζ 1).

Using the EOM of ĥ, given in Eq. (80), but with ĥ inter-
preted as SM Higgs field (i.e. dropping again the quantum
part of h̃), and absorbing some terms into the SM renormal-
ization constants inLHct

SM, the operator appearing in Eqs. (117)
and (122) can be rewritten as

δLBSM
eff

∣∣
MS/FJTS = C��(μ2

M) Q�� + O(ζ−2), (123)

where Q�� is one of the SMEFT operators in the Warsaw
basis [2] usually written as

Q�� = 1

4

(
tr
[
�̂

†
SM�̂SM

])
�

(
tr
[
�̂

†
SM�̂SM

])
= (

φ̂
†
SMφ̂SM

)
�

(
φ̂

†
SMφ̂SM

)
. (124)

Here �̂SM denotes the matrix-valued SM background Higgs
field and φ̂SM is the corresponding two-component SM back-
ground Higgs doublet field in the linear realization, i.e.

φ̂SM =
(

φ̂+
(v2 + ĥ + iχ̂)/

√
2

)
. (125)

Note that we write ĥ instead of ĥ2 for the SM Higgs field. The
background Goldstone-boson fields φ̂± and χ̂ are defined as
in Eq. (2). According to Eq. (122) the Wilson coefficient
C��(μ2

M) in Eq. (123) is

C��(μ2
M) = − s̄α(μ2

M)2

2v2
2

+ M2
H s̄α(μ2

M)2
(
2λ12v

2
2 − M2

H s̄α(μ2
M)2

)
16π2M2

h v4
2

×
[

ln

(
μ2

M

M2
H

)
+ 1

]
+ O(ζ−2)

= s̄α(M2
H)2

2v2
2

[
−1 + M2

H

(
2λ12v

2
2 − M2

H s̄α(M2
H)2

)
8π2M2

h v2
2

]

+ O(ζ−2). (126)

In this simple example, no particular effort was needed to
bring the final result into SMEFT form. In more complicated
cases, we first have to translate the final effective Lagrangian
into a basis of gauge-invariant operators upon inverting the
Stueckelberg transformation in Eq. (20) as described in Refs.
[14,15]. In a second step EOMs for the light fields, in our case
the SM fields, can be used to bring all occurring operators
in the effective Lagrangian into canonical form, which is the
SMEFT basis in our case. We note that despite Q�� being a
dimension-six operator it formally contributes, because of its
Wilson coefficientC��, to the effective Lagrangian atO(ζ 0)

in the MS/FJTS scheme. On the other hand, re-expressing
s̄α(M2

H) in terms of the on-shell renormalized sα and consis-
tently re-expanding to one-loop order renders C�� to be of
O(ζ−2).
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Comparing the different renormalization schemes, we
have to conclude that the MS/FJTS scheme does not reflect
the true nature of the MH → ∞ limit of the SESM in a
sound way. The decoupling behaviour observed in the other
schemes and at tree level is broken at the one-loop level or,
more precisely, decoupling at one loop only happens at the
fine-tuned scale μM = MH/e, with e being Euler’s con-
stant, where C��(μ2

M) is of O(ζ−2). The origin of this odd
behaviour is the fact that the renormalization constant δsα
and thus the one-loop contribution to s̄α(μ2

M) does not scale
in the same way as initially assumed for the bare (tree-level)
parameter sα,0 in the heavy-mass limit. As a result, some
NLO corrections in the SESM tend to get unnaturally large
in the MS/FJTS scheme for large MH, so that this scheme is
not recommendable for the SESM with large MH. In partic-
ular, this scheme does not allow to retain s̄α(μ2

M) (without
loop-order dependent fine-tuning) as a parameter in the EFT
describing the large-mass limit in a consistent way, because
it obscures the power counting.13

Finally, we note that the unpleasant behaviour of the
MS/FJTS scheme is certainly not tied to the specific case
of the SESM. Artificially large corrections in the MS/FJTS
scheme for mixing angles have, for instance, also been
found in scenarios of the Two-Higgs-Doublet Models with
large Higgs-boson masses in Refs. [52,53,78,79]. In gen-
eral, this typically occurs when the full-theory loop expan-
sion of an EFT parameter has non-uniform scaling behaviour
in the heavy-mass limit. Nevertheless a case-by-case study
is always recommended in order to analyse the decoupling
behaviour of each renormalization scheme.

6 Conclusion

Building on earlier work, in this article we have described
a general procedure to integrate out heavy fields directly in
the path integral and to derive an effective Lagrangian at the
one-loop level. The method is based on the background-field
formalism, which implies a natural separation of tree-level
and loop effects of the heavy fields, and on the expansion
by regions, which further separates loop effects into contri-
butions from large and small momentum modes. Combining
these concepts, together with additional technical tricks (non-
linear Higgs realization, field redefinitions, EOMs, etc.),
lends the method some particular strengths:

13 In Ref. [42] an on-shell renormalization scheme was adopted for
the SESM (with linear Higgs realization), so that the results are inde-
pendent of the chosen (“βh”) tadpole scheme. Hence, there are no sub-
tleties connected to tadpole renormalization like the spurious O(ζ 0)

non-decoupling terms in MS/FJTS.

• Transparency:The clear separation of tree-level and loop
effects of the heavy fields and the further decomposition
of field modes into light and heavy degrees of freedom
render the procedure very transparent. At every stage
of our calculation it is possible to identify the origin of
all contributions to the effective Lagrangian in terms of
(combinations of) Feynman diagrams.

• Flexibility: The method for integrating out heavy fields
is fully flexible in the sense that no preknowledge of the
low-energy effective theory is needed, i.e. no ansatz for
the effective Lagrangian is made in advance. The fields
in the full theory just have to be divided into sets of light
fields, providing the dynamical degrees of freedom at low
energies, and heavy fields, which will be integrated out
and the effects of which will appear in effective opera-
tors composed of the light fields. Besides that, given a
large mass scale �, a proper definition of the large-mass
scenario has to be specified by a power-counting scheme
for all model parameters in the limit � → ∞.

• Gauge invariance: In the the background-field method
the gauge of the background fields, which correspond to
the fields on tree lines in Feynman diagrams, can be fixed
independent of the gauge of the quantum fields, which are
the fields appearing inside loops. This feature can, for
instance, be exploited to simplify the explicit calculation
of the effective Lagrangian, by choosing a specific back-
ground gauge in intermediate steps and restoring gauge
invariance at the end. This proves particularly powerful
in combination with a non-linear realization of the SM
Higgs sector.

• Algorithmic organization: The method is fully algorith-
mic and suitable for automation. Given a properly defined
large-mass scenario and some details on the renormaliza-
tion of the large-mass sector, the actual determination of
the effective Lagrangian at the one-loop level can, in prin-
ciple, be carried out by computer algebra. Recently, some
steps in this procedure have already been automated, see
Refs. [40,41].

Compared to other related approaches described in the
literature (such as the UOLEA approach) for integrating out
heavy fields, our presentation might seem somewhat lengthy,
but to a large extent this is due to the fact that our formula-
tion is very close to the actual NLO machinery used in pre-
cision calculations in SM extensions. In the first place this
means that we work in a field basis corresponding to mass
eigenstates by diagonalizing mass matrices involving heavy
fields before integrating out the heavy degrees of freedom.
This procedure does not only avoid doubts on the consis-
tent treatment of mixing effects raised in the literature w.r.t.
other approaches, it also very naturally prepares an appropri-
ate framework to include renormalization prescriptions that
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are designed for phenomenological analyses (e.g. by taking
mixing angles as independent parameters).

We have illustrated the method by considering a singlet
Higgs extension of the Standard Model in which a heavy
Higgs boson H exists in addition to the known Standard-
Model-like Higgs boson h, which is experimentally investi-
gated at the LHC. To be precise, we have calculated potential
non-decoupling effects of H in the limit MH → ∞, assum-
ing a weak coupling scenario in which the mixing angle α

between H and the singlet scalar of the model is suppressed
by a factor ∼ Mh/MH. We have carried out our calcula-
tion in a field basis corresponding to mass eigenstates, in
order to avoid issues in the mixing between fields of light
and heavy particles. In the course of the calculation we have
emphasized the issue of renormalization of the non-standard
sector of the theory – an aspect that is widely ignored in
the literature on the construction of effective Lagrangians
for heavy-particles effects. Non-trivial contributions con-
nected to renormalization appear whenever model param-
eters and the corresponding renormalization constants scale
differently in the heavy-mass limit. Spontaneously broken
gauge theories with extended scalar sectors are particularly
prone to such issues, because heavy Higgs-boson masses
often enhance scalar self-couplings. In this context, the renor-
malization of vacuum expectation values and corresponding
tadpole contributions in the full SESM deserve particular
care. In the specific model with the heavy Higgs singlet H we
observe for example full decoupling for MH → ∞ using an
on-shell renormalization scheme for the Higgs mixing angle
α. For commonly used MS renormalization schemes for α,
on the other hand, we find decoupling or non-decoupling
depending on the treatment of tadpole contributions. In the
latter case the construction of a consistent EFT is problem-
atic.

Owing to its transparent, flexible, and algorithmic struc-
ture the method opens a vast field of applications. The natu-
ral next step is to extend the calculation of all heavy-Higgs
effects associated with the singlet extension considered in
this paper to order 1/M2

H and the determination of the cor-
responding dimension-six SMEFT Lagrangian for various
renormalization schemes. The effects of integrating out the
heavy Higgs field on the fermionic sector of the SESM,
neglected here for brevity, also remain to be analyzed in
detail. These tasks and some phenomenological applications
will be addressed in a forthcoming publication.
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Appendix A: Evaluation of the functional determinant

In this appendix we describe the evaluation of the func-
tional determinant in Eq. (41). Let us first introduce the
Hilbert space version of the heavy-mode projection opera-
tor in Eq. (25):

〈p|Th |φ〉 ≡ 〈p|φh〉 ≡ Th(p)〈p|φ〉 = Th(p) φ(p) = φh(p).

(A.1)

We now write the differential operator �̃H (x, ∂x ), which
operates on functions ψ(x), φ(x) in Minkowski space, as
matrix elements of a linear operator M acting on the ele-
ments |ψ〉, |φ〉 of the corresponding Hilbert space. In the
usual bracket notation, we thus have

|φ〉 = M |ψ〉, ψ(x) = 〈x |ψ〉, φ(x) = 〈x |φ〉, (A.2)

φ(x) =
∫

dDy 〈x |M |y〉ψ(y) = �̃H (x, ∂x ) ψ(x), (A.3)

so that we can identify

〈x |M |y〉 = �̃H (x, ∂x ) δ(x − y) = δ(x − y) �̃H (y, ∂y).

(A.4)

The last relation is obtained via partial integration under the
y-integral and expresses the hermiticity of �̃H . With this
notation we can replace the clumsy expression Det h

[
δ(x −

y)�̃H (x, ∂x )
]

in Eq. (41) by a more accurate one:Det h[M],
which represents the functional determinant of the suboper-
ator of M that acts only on the subspace of hard-momentum
states |Hh〉. We then evaluate the 1-loop part of the EFT
action as

μD−4
∫

dDx δL1-loop
eff = i

2
ln

(
Det h[M]) = i

2
Tr h [ln(M)]

= i

2
Tr [Th ln(M)]

= i

2

∫
dDp

(2π)D
〈p|Th ln(M)|p〉
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= i

2

∫
dDp

(2π)D
Th(p) 〈p| ln(M)|p〉

= i

2

∫
dDp

(2π)D
Th(p)

∫
dDx

×
∫

dD y 〈p|x〉 〈x | ln(M) |y〉 〈y|p〉

= i

2

∫
dDp

(2π)D
Th(p)

∫
dDx

∫
dD y

× e−ipx 〈x | ln(M) |y〉 eipy, (A.5)

where 〈x |p〉 = ei px is the eigenfunction of the deriva-
tive operator −i∂μ

x with eigenvalue pμ and |p〉 denotes the
corresponding momentum eigenstate. The matrix element
〈x | ln(M) |y〉 is evaluated via the usual power series of the
logarithm of the operator M , which we express in terms of
the deviation N from the unit operator 1,

M ≡ 1 − N , ln(M) = −
∞∑
k=1

Nk

k
. (A.6)

Writing the matrix element of N according to Eq. (A.4) as

〈x |N |y〉 = δ(x − y) n(y, ∂y), �̃H = 1 − n, (A.7)

we have

〈x | ln(M) |y〉 = −
∞∑
k=1

1

k
〈x |Nk |y〉

= −
∞∑
k=1

1

k

∫
dDx1 · · ·

∫
dDxk−1

× 〈x |N |x1〉 〈x1|N |x2〉 · · · 〈xk−1|N |y〉

= −
∞∑
k=1

1

k

∫
dDx1 · · ·

∫
dDxk−1

× 〈x |N |x1〉 δ(x1 − x2) n(x2, ∂x2) · · ·

= −
∞∑
k=1

1

k
〈x |N |y〉 n(y, ∂y)

k−1

= −δ(x − y)
∞∑
k=1

n(y, ∂y)k

k

= δ(x − y) ln
[
1 − n(y, ∂y)

] = δ(x − y)

× ln
[
�̃H (y, ∂y)

]
. (A.8)

Inserting this into Eq. (A.5) we obtain for the 1-loop effective
Lagrangian

δL1-loop
eff (x)

= i

2
μ4−D

∫
dDp

(2π)D
Th(p)

∫
dDy e−ipx δ(x − y)

× ln
[
�̃H (y, ∂y)

]
eipy

= i

2
μ4−D

∫
dDp

(2π)D
Th(p) e−ipx ln

[
�̃H (x, ∂x )

]
eipx

= i

2
μ4−D

∫
dDp

(2π)D
Th(p) ln

[
�̃H (x, ∂x + ip)

]
, (A.9)

which is the result given in Eq. (42).
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