
Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2013, Article ID 609807, 5 pages
http://dx.doi.org/10.1155/2013/609807

Research Article
Anisotropic Bulk Viscous String Cosmological Model in
a Scalar-Tensor Theory of Gravitation

D. R. K. Reddy,1 Ch. Purnachandra Rao,1 T. Vidyasagar,2 and R. Bhuvana Vijaya3

1 Department of Engineering Mathematics, MVGR College of Engineering, Vizianagaram 535001, India
2Miracle Educational Society Group of Institutions, Vizianagaram 535001, India
3 Department of Mathematics, JNTU College of Engineering, Anantapur 515002, India

Correspondence should be addressed to D. R. K. Reddy; reddy einstein@yahoo.com

Received 28 August 2013; Accepted 15 October 2013

Academic Editor: Jose Edgar Madriz Aguilar

Copyright © 2013 D. R. K. Reddy et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Spatially homogeneous, anisotropic, and tilted Bianchi type-VI
0
model is investigated in a new scalar-tensor theory of gravitation

proposed by Saez and Ballester (1986) when the source for energy momentum tensor is a bulk viscous fluid containing one-
dimensional cosmic strings. Exact solution of the highly nonlinear field equations is obtained using the following plausible physical
conditions: (i) scalar expansion of the space-time which is proportional to the shear scalar, (ii) the barotropic equations of state for
pressure and energy density, and (iii) a special law of variation for Hubble’s parameter proposed by Berman (1983). Some physical
and kinematical properties of the model are also discussed.

1. Introduction

It is well known that Einstein’s general theory of relativity
has been successful in finding different models for the uni-
verse. Friedmann-Robertson-Walker (FRW)models describe
spatially homogenous and isotropic universes. But, they have
higher symmetries than the real universe and therefore they
are probably poor approximations for very early universe.
The measurements of the cosmic microwave background
(CMB) anisotropy support the existence of anisotropies at the
early universe [1–4]. Hence, in order to understand the early
stages of evolution of the universe, spatially homogeneous
anisotropic and tilted Bianchi type-Vl

0
cosmological models,

are studied. In the tilted cosmological models thematter does
not move orthogonally to the hyper surface of homogeneity.
The general behavior of tilted cosmological models has been
studied by King and Ellis [5], Collins and Ellis [6], and Bali
and Sharma [7].

Sáez and Ballester [8] have developed a new scalar-tensor
theory of gravitation in which the metric is coupled with a
dimensionless scalar field in a simple manner. This coupling
gives a satisfactory description of the weak fields. In spite of
the dimensionless character of the scalar field, an antigravity

regime appears in the theory. Also, this theory suggests a
possible way to solve the “missing matter problem” in nonflat
FRW cosmologies. The field equations given by Sáez and
Ballester for the combined scalar and tensor fields are
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and the scalar field 0 satisfies the following equation:
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Also, we have
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= 0, (3)

which is a consequence of the field equations (1) and (2).
Here, 𝜔 and 𝑛 are constants. 𝑇

𝑖𝑗
is the energy tensor of

the matter, 𝑅
𝑖𝑗
is the Ricci tensor, 𝑅 is the Ricci scalar,

and comma and semicolon denote partial and covariant
derivatives, respectively. Singh and Agrawal [9], Reddy and
Venkateswara Rao [10], Reddy et al. [11], Mohanty and Sahu
[12, 13], Adhav et al. [14], and Tripathy et al. [15] are some
of the authors who have studied several aspects of the Sáez-
Ballester scalar-tensor theory.
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In recent years, there has been a considerable interest
in the investigation of Bianchi-type cosmological models
when the source for energy momentum tensor is a bulk
viscous fluid containing one-dimensional cosmic strings.
Bulk viscosity plays a significant role in the early evolution
of the universe and contributes to the accelerated expansion
phase of the universe popularly known as the inflationary
phase. A review of the universe models with viscosity is given
by Grøn [16]. Strings arise as a random network of stable
line-like topological defects during the phase transition in the
early universe. Massive closed loops of strings serve as seeds
for the formation of large structures like galaxies and cluster
of galaxies at the early stages of evolution of the universe. A
good many authors have investigated about different aspects
of string cosmological models either in the frame work of
Einstein’s theory or in the modified theories gravity [17–25].

Very recently, Reddy et al. [26] have investigated Kaluza-
Klein bulk viscous cosmic string universe in Sáez-Ballester
theory while Naidu et al. [27] have discussed the same uni-
verse in Brans-Dicke [28] scalar-tensor theory of gravitation.
Reddy et al. [29] presented LRS Bianchi type-II universe with
cosmic strings and bulk viscosity in the 𝑓(𝑅, 𝑇) theory of
gravity proposed by Harko et al. [30] while Reddy et al. [31]
have studied Kaluza-Klein bulk viscous cosmic string model
in 𝑓(𝑅, 𝑇) gravity. Naidu et al. [32] have obtained a Bianchi
type-V bulk viscous string model in 𝑓(𝑅, 𝑇) gravity. Reddy
et al. [33] have discussed LRS Bianchi type-II bulk viscous
cosmic string cosmological model in the scale covariant
theory of gravitation formulated by Canuto et al. [34]. Also,
Kiran and Reddy [35] have established the nonexistence of
Bianchi type-III bulk viscous string cosmological models in
𝑓(𝑅, 𝑇) gravity.

Motivated by the above investigations of bulk viscous cos-
mic string Bianchi type models in modified theories of grav-
itation, we, in this paper, investigate spatially homogeneous,
anisotropic, and tilted Bianchi type-VI

0
cosmological model

in the presence of bulk viscous fluid with one-dimensional
cosmic strings. The paper is organized as follows. Section 2
deals with the derivation of the field equations in Sáez-
Ballester theory in Bianchi type-VI

0
space-time when the

source for energy momentum tensor is bulk viscous fluid
with one dimensional cosmic strings. Section 3 is devoted
to the solutions of the nonlinear field equations under some
specific physical conditions. In Section 4, we discuss some
physical and kinematical properties of the cosmological
model. Section 5 contains some conclusions.

2. Metric and Field Equations

We consider the spatially homogenous, anisotropic, and
tilted Bianchi type-VI

0
space-time described by the following

metric:
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where 𝐴, 𝐵, and 𝐶 are functions of cosmic time 𝑡 and 𝛼 is a
constant.

The energy momentum tensor for a bulk viscous fluid
containing one-dimensional cosmic strings is given by
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(5)

where 𝜌 is the rest energy density of the system, 𝜁(𝑡) is the
coefficient of bulk vissocity, 3𝜁𝐻 is usually known as bulk
viscous pressure, 𝐻 is Hubble’s parameter, and 𝜆 is string
tension density.

Also, 𝑢𝑖 = 𝛿𝑖
4
is a four-velocity vector which satisfies
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Here, we, also consider 𝜌, 𝑝, and 𝜆 as functions of time 𝑡 only.
Using comoving coordinates and (5)-(6), Sáez-Ballester

field equations (1)–(3) for the metric (4) take the following
form:
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Here, and in what follows, a subscript 4 after an unknown
function indicates differentiation with respect to 𝑡.

The spatial volume is given by

𝑉 = 𝐴𝐵𝐶 = 𝑎
3
, (14)

where 𝑎(𝑡) is the scale factor of the universe.
The expressions for scalar of expansion 𝜃 and shear scalar
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Hubble parameter𝐻 and the mean anisotropy parameter are
defined as
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3. Solutions and the Model

Equation (12) gives, on integration,

𝐵 = 𝑘𝐶, (17)

where 𝑘 is a constant of integration which can be chosen as
unity without any loss of generality, so that we have

𝐵 = 𝐶. (18)

Using (18), the field equations (7)–(13) reduce to the following
system of independent equations:
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Now, (19)–(22) are a system of four independent equa-
tions in six unknowns𝐴, 𝐵, 𝑝, 0, 𝜌, and 𝜆. Also, the equations
are highly nonlinear. Hence, to find a determinate solution,
we use the following plausible physical conditions.

(i) Variation of Hubble’s parameter proposed by Berman
[36] that yields constant deceleration parametermod-
els of the universe is defined by
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(ii) The shear scalar𝜎2 is proportional to scalar expansion
𝜃 of the space-time (4) so that we can take
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𝑚
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where𝑚 ̸= 0 is a constant (Collins et al. [37]).
(iii) For a barotropic fluid, the combined effects of the

proper pressure and the bulk viscous pressure can be
expressed as
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Now, (23) admits the following solution:
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where 𝑐 ̸= 0 and 𝑑 are constants of integration. This equation
implies that the condition for expansion of the universe is
1 + 𝑞 > 0.

Now from (14), (18), (24), and (26), we obtain metric
potentials as
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Using (27) and by a suitable choice of coordinates and
constants (i.e., taking 𝑑 = 0 and 𝑐 = 1), the metric (4) can
be written as
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4. Physical Discussion of the Model

Equation (28) represents the anisotropic Bianchi type-VI0
bulk viscous string cosmological model in Sáez-Ballester
scalar-tensor theory of gravitation with the following expres-
sions for physical and kinematical parameters which are
significant in the physical discussion of the cosmological
model.
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𝑉
3
= 𝑡
3/(1+𝑞)

. (29)

Scalar expansion is

𝜃 =
3

(1 + 𝑞) 𝑡
. (30)

The mean Hubble parameter is

𝐻 =
1

(1 + 𝑞) 𝑡
. (31)

The mean anisotropy parameter is

𝐴
ℎ
= 2

(𝑚 − 1)
2

(𝑚 + 2)
2
. (32)

The shear scalar is

𝜎
2
= 3

(𝑚 − 1)
2

(𝑚 + 2)
2
(1 + 𝑞)

2
𝑡2
. (33)

Energy density is

8𝜋𝜌 = 𝛼
2
𝑡
−6𝑚/(1+𝑞)(𝑚+2)

−
𝜔

2
0
2

0
𝑡
−6/(1+𝑞)

−
9 (2𝑚 + 1)

(1 + 𝑞)
2

(𝑚 + 2)
2
𝑡2
.

(34)

Isotropic pressure is

8𝜋𝑝 = 𝜀
0
[𝛼
2
𝑡
−6𝑚/(1+𝑞)(𝑚+2)

−
𝜔

2
0
2

0
𝑡
−6/(1+𝑞)

−
9 (2𝑚 + 1)

(1 + 𝑞)
2

(𝑚 + 2)
2
𝑡2
] .

(35)



4 Advances in High Energy Physics

Coefficient of bulk viscosity is
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The scalar field in the model is
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String tension density is
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Using the above results, we now discuss the behavior of
the cosmological model given by (30). The result (29) shows
that the model is expanding with time since 1 + 𝑞 > 0. It can
be observed that the space-time given by (28) has no initial
singularity, that is, at 𝑡 = 0. It can also be observed that 𝜃,𝐻,𝜌,
𝑝, 𝜆, and 𝜁 decrease with time and approach zero as 𝑡 → ∞

and they all diverge at 𝑡 = 0. The scalar field increases with
time and at 𝑡 = 0, it vanishes.

Also, since 𝐴
ℎ
̸= 0 and 𝜎2/𝜃2 ̸= 0, the universe remains

anisotropic throughout the evolution of the universe. It is
also interesting to note from (32) and (33) that when 𝑚 =

1, 𝐴
ℎ
= 0 and 𝜎2 = 0 and hence the universe becomes

isotropic and shear free. Also, when 𝛼 = 0 and 𝑚 = 1, we
observe, from (38), that 𝜆 = 0which shows that strings do not
survive in this particular case. Bulk viscosity, in the model,
decreases as 𝑡 increases which is in accordance with the well-
known fact that bulk viscosity decreases with time and leads
to inflationary model [38].

5. Conclusions

Bulk viscosity, cosmic strings scalar fields, and Bianchi mod-
els play a significant role in the discussion of the early stages of
the evolution of the universe and in inflationary cosmology.
Hence, we have investigated here a spatially homogeneous,
anisotropic, and tilted Bianchi type-VI

0
cosmological model

in the framework of a scalar-tensor theory of gravitation
proposed by Sáez and Ballester [8] in the presence of bulk
viscous fluid containing one-dimensional cosmic strings.
The model is obtained using the special law of variation
for Hubble’s parameter proposed by Berman [36], scalar
expansion of the space-time which is proportional to shear
scalar (Collins [37]), and the barotropic equation of state for
pressure and energy density. It is observed that the model is
expanding, nonsingular, and nonrotating. It is also observed
that all the physical and kinematical parameters of the model
diverge when 𝑡 = 0 and vanish when 𝑡 is infinitely large while

the scalar field vanishes at the initial epoch. Bulk viscosity
in the model decreases with time leading to inflationary
model.Themodel will be useful in the discussion of structure
formation in the early universe in scalar-tensor cosmology.
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