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Resumen

Con esta investigación se pretende aportar humildemente al vasto conocimiento científico cos-

mológico. El problema principal considerado consiste en estudiar la manifestación de la energía

oscura y los majestuosos agujeros negros sobre el espacio-tiempo. Se trabaja dentro de la línea

de investigación con las ecuaciones de Einstein en combinación con el factor de escala a(t) re-

lacionado a la expansión acelerada del universo. Este modelo es aplicado al caso físico de un

agujero negro estático no cargado rodeado de quintaesencia.

Se pone en vigor la interacción del agujero negro con el campo cosmológico de quintaesencia a

través de la colocación directa (sin la obtención matemáticamente rigurosa) del factor de escala

a(t) en los términos espaciales de la parte geométrica de las ecuaciones de Einstein.

Se utiliza como principal antecedente investigativo relativamente reciente, los confiables es-

tudios realizados sobre la misma problemática en [1], donde se obtiene una nueva solución

estática esféricamente-simétrica para un agujero negro rodeado por quintaesencia, utilizando el

tensor de energía-momento de las ecuaciones de Einstein.

Se utiliza como base teórica principal las ecuaciones de Einstein de la Teoría de la Relatividad

General, y sus soluciones del vacío para un agujero negro tipo Schwarzschild. Además se in-

cluye un marco teórico con aspectos generales de energía oscura, y cosmología relacionada al

tema.
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Introducción

Alrededor de 1920 un periodista preguntó al astrofísico británico Arthur Eddington si era verdad

que en el mundo entero solo habían cuatro personas que entendían la Teoría de la Relatividad

General(TRG). Eddington se quedó pensativo durante unos momentos y respondió: “Me estoy

preguntando quíen podría ser el cuarto”. [2]

Aunque es posible que la anécdota sea históricamente correcta, la afirmación de Eddington

ciertamente no lo era, ni ahora, ni entonces. Prueba de ello es la gran cantidad de físicos que

se han puesto a trabajar en la relatividad general y el número de soluciones que fueron halladas

en los años inmediatamente después de la publicación de la teoría en 1915: la acción de Hilbert

(1915), los agujeros negros de Schwarzschild (1916) y Reissner-Nordström (1916 y 1918), los

espacios de De Sitter y anti-De Sitter (1916 y 1917), la clasificación cosmológica de Friedmann

(1922), la onda gravitacional de Brinkmann (1923), las compactificaciones de Kaluza y Klein

(1921 y 1926), los agujeros negros de Kerr (1964) y Kerr-Newman(1964 y 1966) etc. [3]

Aún así la teoría de la relatividad siempre ha tenido fama de contraintuitiva y tremendamente

difícil. Sin embargo, conviene distinguir dos partes dentro de la relatividad general: una parte

física, que describe las ideas básicas de la teoría, y una parte matemática, que nos da el for-

malismo con el cual describir la física. La dificultad de la TRG está en la parte matemática, ya

que contiene análisis tensorial y geometría diferencial, temas que el típico estudiante de física

no encuentra en su curriculum, a no ser para estudiar relatividad general(RG). Por otro lado, la

parte física es relativamente sencilla, no siendo en el fondo nada más que llevar hasta sus últi-

1



INTRODUCCIÓN 2

mas consecuencias lógicas unos pocos principios básicos. Según Rutherford “una buena teoría

física se le puede explicar a una camarera en un bar”. Se puede considerar que (la parte física

de) la RG satisface esta condición (con suficiente tiempo disponible).

La teoría de la relatividad no es solo una teoría moderna de la gravedad, sino también nos

enseña unas lecciones en la frontera entre física y metafísica. Primero, por un lado la relatividad

especial (RE) ha eliminado los conceptos del espacio absoluto, del tiempo absoluto y de la

velocidad absoluta, por no ser observables, mientras por otro lado la RG ha incorporado en la

física el concepto del espacio-tiempo dinámico, como una entidad física, igualmente real que

conceptos como masa, carga, energía o momento angular. El espacio-tiempo ha pasado de ser

un escenario estático donde ocurre la física a ser una parte más de la física que influye sobre

lo que contiene y puede ser influenciado por ello a la vez. No es de extrañar que la TRG sea

uno de los pilares fundamentales de la física actual conocida [4]. De hecho, la cosmología sólo

ha llegado a formar parte de la física cuando, gracias a la RG, se concibió el universo como un

sistema dinámico, regido por las mismas leyes físicas que rigen la materia dentro del universo.

Entonces según esta teoría de la gravitación de A. Einstein, la cual resulta hasta cierto punto

paradigmática, para modelos matemáticos que pretendan describir correctamente la evolución

del universo, la gravitación no es más que una manifestación de la curvatura del espacio-tiempo

tetra-dimensional sobre la materia masiva, y esta materia a su vez dicta las características que

describen la propia curvatura del espacio-tiempo. Dada la naturaleza atractiva de la gravitación,

en un universo que se supone contiene únicamente materia ordinaria,1 la expansión debe ocu-

rrir a un ritmo desacelerado. Sin embargo las recientes observaciones astrofísicas (incluyendo

distancia-luminosidad de supernovas, de aglomeraciones de galaxias y del fondo cósmico de

microondas) concluyen que el universo observable es homogéneo e isótropo a grandes escalas

y que este está expandiéndose aceleradamente [5, 6, 7, 8, 9]. Este descubrimiento sorpresivo

en 1998 sobre este carácter acelerado de la expansión cósmica durante la presente etapa de la

1Ordinaria en el sentido que esta materia cumple con los requerimientos mínimos conocidos como condiciones
de energía y genera gravedad atractiva
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evolución, indica que si la teoría de Einstein es correcta, entonces nuestro universo debe de estar

lleno básicamente de un tipo de materia desconocida cuya gravitación es de carácter repulsivo.

Una de las primeras hipótesis que se propuso de acuerdo a esto fue exactamente suponer la

presencia de un extraño fluido con presión p negativa para contrarrestar los efectos atractivos

gravitacionales, provocando entonces el comportamiento acelerado en la expansión. Este tipo

de materia desconocida satisface que la densidad, ρ v |p|, por lo que se trata de materia no

relativista [10].

Los fluidos que presentan esta propiedad son denominados fluidos tipo energía. Este tipo de

materia además tiene la propiedad de no interactuar con la radiación electromagnética, por lo

que no se puede “ver”,de ahí viene su nombre de “Energía Oscura” (EO). 2

Muchas hipótesis han surgido para intentar dar solución a este problema. La explicación más

simple se remonta a Albert Einstein y consiste en la tan pequeña como innatural constante

cosmológica Λ. El modelo de EO más simple es el modelo Λ− Materia Oscura Fría (MOF)

(Λ-MOF). Estos presentan los llamados problemas del ajuste fino de la constante cosmológica

Λ y el problema de la Coincidencia [11].

Una variante más elaborada de estos modelos es considerar que la EO está compuesta de un

campo escalar, llamado Quintaesencia, siendo este tipo de teorías un caso particular de las

llamadas teorías Escalares-Tensoriales, en las que se introduce un campo escalar adicional en

el sector gravitacional de la acción.

Como habíamos dicho la RG predice una estrecha relación entre la estructura del espacio-

tiempo y su contenido de materia y energía. Es por lo tanto un paso lógico intentar utilizar

las ecuaciones de Einstein para estudiar la dinámica del universo entero: su forma, su contenido

y su evolución. Unas de las más conocidas soluciones de la ecuación de Einstein son soluciones

de agujeros negros (AN). El AN es el más facinante objeto de la RG. Últimamente existen tra-

bajos orientados a investigar estos objetos en relación con la EO. Hay casos donde se analizan

2Alrededor del 73 % del universo está formado por esta forma exótica de energía.
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modelos que contienen nuevas soluciones exactas de las ecuaciones de Einstein, considerando

AN rodeados por quintaesencia. De una configuración así se podrían tener diversos objetivos a

estudiar, entre estos por mencionar algunos, se podría investigar usando leyes termodinámicas

para AN, la termodinámica y Fase de transición del mismo, al variar por ejemplo: temperatu-

ra, capacidad calorífica, entropía; o analizar en estas magnitudes su variación con relación a

diferentes valores del parámetro de estado ωq relacionado a la quintaesencia y la constante de

normalización C relacionada con la densidad de la quintaesencia. Estudios como estos fueron

realizados en [12] para un AN tipo Reissner-Nordström rodeado de quintaesencia, donde ade-

más muestran que al variar la entropía del AN se observa en este una fase de transición y cuando

incrementa la densidad de quintaesencia, el punto de transición se traslada a una baja entropía

y la temperatura del AN decrece.

Es objetivo principal de la tesis aplicar el método perturbativo debido al efecto de expansión

del Universo sobre la métrica del modelo estático esféricamente simétrico, demostrando que

conduce a resultados equivalentes a los obtenidos por el método de introducción de la enrgía

oscura como componente material en el tensor de energia-momento. El trabajo realizado en [1]

se toma como principal antecedente investigativo. En este se presenta una nueva solución exacta

estática esféricamente-simétrica de la ecuación de Einstein para un AN rodeado de quintaesen-

cia.

Teniendo en cuenta que el modelo cosmológico de quintaesencia es consecuente con el carácter

acelerado de la expansión del universo, entonces para conformar una hipótesis general, resulta

consecuente considerar el factor de escala a(t) como función del tiempo cosmológico, 3 en los

términos espaciales de la parte geométrica de las ecuaciones de Einstein, lo que implicaría tomar

en cuenta la expansión o contracción del Universo.

Las consideraciones anteriores enmarcan la línea de trabajo de la tesis. La incertidumbre, de:

3El Postulado de Weyl supone una clase de observadores priviligiados en el universo como un fluido perfecto:
los que están en reposo con respecto al fluido perfecto y cuyo movimiento, por lo tanto, únicamente está deter-
minado por la evolución del universo. A estos observadores se les suele llamar observadores comóviles, para los
cuales se define el tiempo cosmológico, siendo la dirección temporal de un observador comóvil.
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¿cómo se afectará la estructura del espacio-tiempo, al incluir el efecto de expansión del Universo

en la métrica considerada? tiene un grado notable de pertinencia con la tesis. El hecho de incluir

el efecto directo de la expansión del Universo, sobre la solución de vacío de las ecuaciones de

campo de Einstein relacionada con el modelo estático esféricamente simétrico, pone en vigor el

aspecto novedoso de la tesis. La determinación de una nueva variante de la solución estática de

las ecuaciones de Einstein, delimita el más significativo y acuciante problema científico de la

investigación.

Cabe preguntarse si ¿puede la consideración del efecto directo de la expansión del Universo

sobre la solución de vacío de las ecuaciones de campo de Einstein relacionada con el modelo

estático esféricamente simétrico, brindar información coherente con los resultados obtenidos

por otros métodos y reportados en la bibliografía? Esta interrogante científica pretende ser

respondida tras lograr los objetivos específicos de la tesis:

1. Realizar una revisión bibliográfica actualizada sobre los aspectos básicos relacionados

con la TRG.

2. Realizar una revisión actualizada sobre la solución exacta del vacío de materia, relativa al

caso estático y esféricamente simétrico.

3. Actualizar los conceptos relacionados con la expasión del Universo, en particular la ener-

gía oscura en forma de campo cosmológico de quitaesencia.

4. Realizar una revisión bibliográfica sobre los posibles efectos de energía oscura sobre la

métrica de Schwarzschild.

5. Aplicar el método perturbativo a la métrica de Schwarzschild analizando el posible efecto

de la expansión del universo sobre dicha métrica.

No se tratarán con AN cargados ni rotantes en esta investigación, ni se realizará ningún tipo de

análisis termodinámico ya que seria asumir notable complegidad para un inicio de los estudio y
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comprometería la confiabilidad de los resultados.

Para la comprención del lector se mostrarán algunas convenciones utilizadas en la tesis; vienen

dadas por abreviaturas y definiciones conceptuales.

Las abreviaturas empleadas son:

Relatividad General – RG

Relatividad Especial – RE

Teoría de la Relatividad General – TRG.

Friedmann-Robertson-Walker – FRW.

Energía Oscura – EO.

Materia Oscura – MO.

Materia Oscura Fria – MOF

Materia Oscura Caliente – MOC

Λ−Materia Oscura Fría – Λ-MOF

Agujero Negro – AN



INTRODUCCIÓN 7

gµν Métrica Lorentziana

g Determinante de gµν

Γλµν Conexión General Afín{
λ
µν

}
Conexión Levi-Civita

∇µ Derivada covariante respecto a
{
λ
µν

}
∇̄µ Derivada covariante respesto a Γλµν

Rλ
σµν Tensor de Riemann de gµν

Rµν Tensor de Ricci de gµν
(
≡ Rσ

µσν

)
R Escalar de Ricci de gµν

(
≡ g µνRµν

)
S M Acción de la materia

Tµν Tensor de energía-momento
(
≡ − 2

√
−g

δS M
δgµν

)
Los subíndices y superíndices griegos α, β, ..., µ, ν = 0, 1, 2, 3 designan los índices espacio-

temporales 4D, donde el índice 0 representa el índice temporal, mientras que los índices 1, 2, 3

representan los índices espaciales. Los índices latinos en minísculas representan los índices

espaciales tridimensionales ordinarios: i, j, ..., n,m = 1, 2, 3. Es esta tesis, como en cualquier

trabajo que se aborde análisis tensorial se utiliza la regla de suma de Einstein (por índices

mudos repetidos se entiende sumatoria), que matemáticamente se puede resumir de la siguiente

manera:

X...αν...
...µσ...Y

...γµ...
...νβ... ≡

4∑
ν=0

4∑
µ=0

X...αν...
...µσ...Y

...γµ...
...νβ... (1)

en este caso, µ y ν son los índices mudos repetidos. Esta regla es válida independientemente de

la dimensionalidad del espacio-tiempo, o sea, independiente del tipo de índice (griego o latino)

utilizado. También resulta útil definir el tensor de Einstein:

Gµν ≡ Rµν −
1
2

gµνR (2)
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Como definición del tensor de energía-momento consideramos:

Tµν =
2
√
−g

δ

δgµν
(√
−gLm

)
(3)

Se utiliza la siguiente signatura de la métrica: para la métrica de espacio-tiempos 4D

gµν = diag(− + ++) (4)



Capítulo 1

Aspectos básicos de la Teoría de la

Relatividad General

En este capítulo se realiza una breve descripción de los aspectos fundamentales relacionados

con la Teoría de la Relatividad general que son necesarios para desarrollar los demás puntos

de esta tesis. Estos contenidos pueden ampliarse en los diversos textos que se han escrito sobre

este tema. Alguno de ellos que se recomiendan son [4, 13, 14, 15, 16, 17, 18, 19]

1.1 La necesidad de la Teoría de la Relatividad General

En 1907, sólo dos años después de la publicación de la RE, Einstein se dio cuenta de que la

teoría de la gravedad newtoniana y la RE son mutuamente in-compatibles (salvo en el caso de

un campo gravitatorio constante y estático). Hay varias maneras, matemáticas y físicas, de ver

esto.

Matemáticamente, se ve porque la gravedad newtoniana no es invariante bajo el grupo de Lo-

rentz. Según Newton, una partícula en un campo gravitatorio está sometida a una aceleración

9



1.1. LA NECESIDAD DE LA TEORÍA DE LA RELATIVIDAD GENERAL 10

d2~x
dt2 = −~∇Φ, (1.1)

causada por la fuerza gravitatoria, cuyo potencial Φ está relacionado con la densidad de materia

ρm en el universo a través de la ecuación de Poisson

∆Φ = 4πGNρM (1.2)

donde GN es la constante de Newton. Obviamente, ni (1.1), ni (1.2) transforman bien bajo una

transformación de Lorentz [17].

Primero, tanto el lado izquierdo como el derecho de (1.1) son vectores tridimensionales y no

cuadrimensionales. Además, la aceleración está definida como la segunda derivada de la posi-

ción con respecto al tiempo, pero no está claro con respecto al tiempo de qué observador. Para

Newton esto no era ningún problema, puesto que para él existía un solo tiempo absoluto, igual

para todos los observadores. Sin embargo de la teoría de la RE sabemos que cada observador

tiene su tiempo propio particular.

Se podría intentar remediar estos problemas, derivando con respecto al tiempo propio e inten-

tando convertir (1.1) en una ecuación covariante. Pero un problema más gordo nos supone la

otra parte de la teoría de la gravedad newtoniana, la ecuación (1.2). Aquí aparece el laplaciano

∆Φ, en lugar del operador invariante, el d′alambertiano �Φ. Para apreciar las dificultades que

supone este operador en lugar del otro, mencionaremos los argumentos físicos de la incompati-

bilidad.

La ecuación (1.2) dice que el potencial gravitatorio Φ en un punto x está determinado por la

distribución de materia ρM en el universo. Si por lo tanto un observador cambia la distribución

de materia en cierto punto, el efecto en el potencial gravitatorio se nota inmediatamente en todo

el universo. En otras palabras, la fuerza gravitatoria se propaga en la teoría de Newton con una
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velocidad infinita.1|

No solo velocidades mayores que la velocidad de la luz son un problema en la RE, además con-

siderando que un cambio de la distribución de materia en un punto y el cambio del potencial en

otro punto son simultáneos, ya que el efecto se nota de manera inmediata, resulta cuestionarse:

¿para qué observadores ambos sucesos son simultáneos? La simultaneidad de sucesos es algo

que no está bien definido, sino que depende del observador. Si la gravedad newtoniana tiene

que recurrir a un observador especial, para el cual las fórmulas (1.1) y (1.2) son válidas, viola

el Principio de la Relatividad [4].

Si el paso de electrostática a la teoría de Maxwell es grande, el de la gravedad newtoniana a la

relatividad general lo es más aún y a Einstein le costó mucho remediar este problema. Aunque

ya se dio cuenta en 1907 de la incompatibilidad de ambas teorías y de la solución, el Principio

de Equivalencia, tardó hasta 1911 en llegar a una primera formulación matemática y otros 2

años más, hasta 1913, en el Principio de Covariancia. Y no fue hasta 1915, diez años después

de la RE, cuando vino con una versión definitiva de la RG [3].

1.2 Teoría de la Relatividad General

En 1905 Albert Einstein publica su conocida “Teoría Especial de la Relatividad” donde escla-

recía la interconexión entre el espacio y el tiempo y deducía las consecuencias físicas que se

derivaban de ello.

Sin embargono fue hasta 1907 (dos años después) que el matemático alemán Hermann Min-

kowski demostró que las ideas de Einstein podían ser expresadas geométricamente solo si se

consideraba que el espacio físico poseía cuatro dimensiones: una dimensión temporal y tres

dimensiones espaciales.

La idea matemática fue posteriormente utilizada por Einstein, quien a través de su amigo y com-

1Nótese que esto no pasaría si el operador diferencial fuera un d′alambertiano: las soluciones en este caso son
funciones del tipo f (t ± x), los conocidos potenciales retardados y avanzados.
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pañero de la Universidad Marcell Grossmann, ya conocía sobre la existencia de la geometría de

Riemann. Considerando geometría de Riemann en espacios de cuatro dimensiones, Einstein de-

rivó, en 1915, las leyes que rigen la gravitación y que generalizan la ley de Newton para campos

gravitatorios intensos. La idea básica es que la gravitación debe entenderse como curvatura del

espacio-tiempo de cuatro dimensiones avisorado por Minkowski [20]. La relatividad general

está basada en un conjunto de principios fundamentales:

• El principio general de la relatividad: Las leyes de la física deben ser las mismas para

todos los observadores (inerciales o no).

• El principio general de covariancia: Las leyes de la física deben tomar la misma forma en

todos los sistemas de coordenadas.

• El movimiento inercial se realiza a través de trayectorias geodésicas.

• El principio de invariancia local de Lorentz: Las leyes de la relatividad especial se aplican

localmente para todos los observadores inerciales.

• Curvatura del espacio-tiempo: Esto permite explicar los efectos gravitacionales como mo-

vimientos inerciales en un espacio-tiempo curvado.

• La curvatura del espacio-tiempo está creada por la interacción entre la masa y la energía

con el espacio-tiempo. La curvatura del espacio-tiempo puede calcularse a partir de la

densidad de la materia y energía al igual que de las ecuaciones de campo de Einstein.

El principio de equivalencia que había guiado el desarrollo inicial de la teoría es una conse-

cuencia del principio general de la relatividad y del principio del movimiento inercial sobre

trayectorias geodésicas.

Una de las principales consecuencias de la gravedad es su manifestación a través de la geome-

tría local del espacio-tiempo. Las bases matemáticas de la teoría se remontan a los axiomas de
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la geometría euclídea y los muchos intentos de probar, a lo largo de los siglos, el quinto pos-

tulado de Euclides, que dice que las líneas paralelas permanecen siempre equidistantes, y que

culminaron con la constatación por Bolyai y Gauss de que este axioma no es necesariamente

cierto. Las matemáticas generales de la geometría no euclidiana fueron desarrolladas por el dis-

cípulo de Gauss, Riemann, pero no fue hasta después de que Einstein desarrolló la teoría de la

Relatividad especial que la geometría no euclidiana del espacio y el tiempo fue conocida.

Gauss demostró que no hay razón para que la geometría del espacio deba ser euclidiana, lo

que signfica que si un físico pone un patrón, y un cartógrafo permanece a una cierta distancia

y se mide su longitud por triangulación basada en la geometría euclidiana, entonces no está

garantizado que sea dada la misma respuesta si el físico porta el patrón consigo y mide su

longitud directamente.

1.3 Las ecuaciones de campo de Einstein

Se conoce por el Principio de Equivalencia que la gravedad es una manifestación de la curvatura

del espacio, es decir, una propiedad geométrica del espacio-tiempo. Por otro lado sabemos que

la fuente de esta curvartura es la materia de la cual se tiene una descripción tensorial, el llamado

tensor de energía-momento. Teniendo en cuenta lo anterior se puede saber exactamente cómo la

materia interacciona con el espacio-tiempo. Esta interacción viene dada por las ecuaciones de

Einstein. Para llegar a la forma exacta de las ecuaciones de Einstein es conveniente encontrar

como describir de manera cualitativa la interacción entre el espacio-tiempo y la materia. El

Principio de Covariancia nos dice que la ecuación debe ser válida en todos los sistemas de

referencia, y que por lo tanto debe tener una forma tensorial. Concretamente, la ecuación de

Einstein tiene que ser de la forma

Gµν = −kTµν, (1.3)
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donde Gµν es un tensor que describe la curvatura del espacio, Tµν el tensor de energía-momento

y k una constante de proporcionalidad [4, 13].

La problemática se reduce a la identificación del tensor Gµν, el cual debe cumplir ciertas restric-

ciones matemáticas y físicas:

1. Gµν tiene que ser simétrico en los dos índices, ya que Tµν también lo es.

2. Gµν tiene que ser un objeto puramente geométrico. Por lo tanto, tiene que ser una función

solamente de la métrica gµν y sus derivadas.

3. Para el espacio plano, tenemos que Gµν = 0.

4. La ley de conservación de energía ∇µT µν = 0 implica que también ∇µGµν = 0.

5. Se puede identificar la componente g00 de la métrica con el potencial gravitacional newto-

niano Φ = −GNm
r . Para tener una teoría dinámica y para recuperar la ecuación de Poisson

(1.2), Gµν debe contener segundas derivadas de la métrica. La manera más natural, por lo

tanto es a través de las contracciones del tensor de Riemann R λ
µνρ .

6. Para obtener una ecuación diferencial de segundo orden (y no más) en los potenciales

gravitatorios, Gµν tiene que ser lineal en el tensor de Riemann.

Posibles candidatos para Gµν podrían ser la misma métrica gµν, su d′Alambertiano ∇ρ∇ρgµν

o el tensor de Ricci Rµν, pero ninguna de estas posibilidades cumple todas las condiciones

mencionadas arriba. Aunque la métrica tiene el rango y las simetrías adecuadas y satisface
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la condición ∇µgµν = 0, tiene la desventaja de que no cumple la condición 5: la ecuación

gµν = −kTµν no es una ecuación dinámica, ni mucho menos recupera la ecuación de Poisson

(1.2). El d′Alambertiano ∇ρ∇ρgµν sufre del problema opuesto, ya que satisface (casi) todas las

condiciones, pero es idénticamente cero, por el hecho de que la conexión de Levi-Civita es

compatible con la métrica. Finalmente, Rµν no satisface la condicón 4, sino ∇µRµν = 1
2∂

νR. Por

lo tanto, la ley de conservación de energía impondría que las únicas métricas permitidas serían

las que tienen ∂R = 0 [4].

En realidad las condiciones 1 - 6 determinan el tensor Gµν unívocamente; se puede demostrar

que la expresión más general para un tensor simétrico de rango (0,2), construido de la métrica

y sus derivadas y lineal en Rµνρλ es de la forma:

Gµν = Rµν + αgµνR + gµνΛ(x), (1.4)

con α una constante y Λ(x) una función escalar con dimensiones ML−3. Exigir que ∇µGµν =

0 implica que α = −1
2 y que Λ es una constante, mientras que exigir que Gµν = 0 para el

espacio plano implica que Λ = 0. Por lo tanto el único tensor que satisface todas las condiciones

necesarias es el tensor de Einstein,

Gµν = Rµν +
1
2

gµνR. (1.5)

Una comparación con las fórmulas newtonianas clásicas fija la constante de proporcionalidad

k = 8πGN , donde GN es la constante de Newton, de modo que las ecuaciones de Einstein vienen

dadas por

Rµν +
1
2

gµνR = 8πGNTµν. (1.6)

Las ecuaciones de Einstein forman un sistema de 10 ecuaciones diferenciales parciales no linea-

les acopladas de segundo orden, lo que hace que sean muy difíciles de resolver analíticamente.
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No hay técnicas conocidas para obtener una solución general. Todas las soluciones conocidas

son casos con mucha simetría u obtenidas a través de técnicas específicas [4, 13].

Las ecuaciones de Einstein tienen 10 componentes, pero en realidad la condición ∇µGµν = 0

impone 4 ligaduras, de modo que sólo 6 ecuaciones son realmente independientes. Esto impli-

ca que de las 10 componentes de la métrica sólo 6 están determinadas por las ecuaciones de

Einstein y corresponden a grados de libertad físicos. Las otras 4 componentes son componentes

no-físicas que expresan la libertad de elección de sistema de coordenadas [4].

La gran diferencia conceptual entre las ecuaciones de Einstein y la teoría newtoniana de la gra-

vedad es que las ecuaciones de Einstein describen la gravedad como una teoría de campos. El

concepto de campo físico fue introducido por Faraday y aprovechado por Maxwell en el contex-

to del electromagnetismo, para resolver el problema de la acción a distancia. Donde en la ley de

Newton o de Coulomb las partículas tienen interacciones (gravitacionales o electromagnéticas)

a distancia, en una teoría de campos las partículas interaccionan indirectamente, a través de un

campo que se extiende por el espacio y que sirve de intermediario para la interacción entre las

partículas. Una perturbación se transmite a través del campo a velocidad finita (la velocidad de

la luz en el caso del electromagnetismo y la gravedad). De este modo la RG resuelve el pro-

blema de acción inmediata y a distancia en la gravedad newtoniana, comentado en la sección

1.1.

Pero también hay una gran diferencia conceptual entre la teoría de Maxwell y la RG. En la

teoría de Maxwell el campo intermediario es el campo electromagnético Fµν (o los potenciales

Aµ), que viven en un espacio-tiempo específico, generalmente Minkowski (aunque no necesa-

riamente). Sin embargo en RG, el campo intermediario es justamemente la métrica gµν, el tensor

que resume todas las propiedades geométricas del espacio-tiempo. Esto no sólo implica que el

espacio-tiempo es de cierta forma dinámico, que interacciona con la materia y consigo mismo,

sino también que la geometría no está fija y a priori determinada. En contraste con la teoría de

Maxwell (o sus generalizaciones, como Yang-Mills o el Modelo Estándar), en RG el espacio-
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tiempo no es un escenario estático dentro del cual ocurre la física, sino que es una parte activa

del juego. En cierto modo, en la RE el espacio de Minkowski era un espacio-tiempo absoluto,

en el sentido de que no se contempla la posibilidad de otra geometría, ni de que se vuelva diná-

mico. Aquí la geometría no está determinada a priori, sino por el contenido de energía y materia

y por las condiciones iniciales. Donde la RE eliminó el fantasma del espacio y el tiempo abso-

luto, la relatividad general acabó con la idea del espacio-tiempo estático y la geometría dada a

priori [4].

A veces es útil rescribir las ecuaciones de Einstein sin la traza. Tomando la traza de (1.6), es

decir contrayendo con gµν, encontramos

R = kT, (1.7)

donde T = gµνTµν considerando que gµνgµν = 4 en 4 dimensiones. Sustituyendo esto en (1.6)

vemos que las ecuaciones de Einstein sin traza son de la forma

Rµν = −k(Tµν −
1
2

gµνT ). (1.8)

Esta ecuación es completamente equivalente a (1.6), pero es un poco más fácil a la hora de

buscar soluciones, ya que no hace falta calcular el escalar de Ricci R. Históricamente, esta es la

forma original en que Einstein escribió las ecuaciones, aunque su forma más comun es sin duda

(1.6). Una de las ventajas de (1.8) es que en el vacío, donde Tµν = 0, las ecuaciones se reducen

a

Rµν = 0. (1.9)

Obviamente el espacio de Minkowski es una solución de esta ecuación (la condicón 3 sobre

Gµν), pero (1.9) también es suficientemente complicado para admitir soluciones no-triviales,

como la solución de Schwarzschild o de ondas gravitacionales. Las soluciones de (1.9) son en
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cierto modo el análogo de las ondas electromagnéticas en teoría de Maxwell, que también son

soluciones de las ecuaciones en el vacío. Las métricas que tienen la propiedad (1.9) se llaman

Ricci-planas.

1.4 La acción de Einstein-Hilbert

El problema original relacionado con la teoría de la gravitación de Albert Einstein está asociado

con la llamada accción de Einstein- Hilbert. A partir de esta acción se obtienen las ecuaciones

de campo de Einstein a través de un principio variacional. Con la signatura métrica (- + + +),

la parte propiamente gravitacional de la acción está dada mediante la integral

S = 1
2κ

∫
R
√
−g d4x (1.10)

donde g = det(gµν) es el determinante del tensor métrico, R es el escalar de Ricci, obtenido

mediante la contracción del tensor de Ricci R = gµνRµν, and κ = 8πGc−4 siendo G la constante

gravitacional de la teoría de I. Newton y c es la velocidad de la luz en el vacío. Se asume que la

integral converge en el espacio-tiempo completo. En caso contrario S no está bien definida y se

requiere entonces realizar ciertas modificaciones en la definición donde ahora se integra sobre

dominios extensos y relativamente compactos para que se puedan seguir derivando las ecuacio-

nes de campo de Einstein, concebidas como las ecuaciones de Euler-Lagrange derivadas de la

acción de Einstein-Hilbert aplicando técnicas propias de la Mecánica de los Medios Continuos

y de la Teoría Clásica del Campo [21].

La aplicación del método variacional para derivar las ecuaciones a partir de la acción es ven-

tajoso en general. Esta técnica es empleada sistemáticamente en la Mecánica Teórica y en la

Electrodinámica Clásica. Entonces la Teoría General de la Relatividad puede vincularse de ma-

nera natural con estas materias y utilizar sus métodos, firmemente establecidos. En la Teoría
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General de la Relatividad se considera usualmente que la acción es una funcional de la métrica

que se defina, así también como de los campos materiales, y que la conexión de Levi-Civita

(Símbolos de Christoffel) es la que debe ser utilizada. Aquí se pueden distinguir dos formula-

ciones, la de Palatini (la métrica y la conexión son igualmente independientes para la acción) y

la formulación métrica propiamente (donde solo la métrica es la independiente). La formulación

de Palatini es usual en Física de Partículas. En este caso se utilizará la formulación métrica para

el tratamiento que será realizado seguidamente [21].

1.5 Obtención de las ecuaciones del campo de Einstein

Para derivar las ecuaciones de Einstein debe incluirse generalmente la parte de la acción que

refleja el contenido material del Universo. Se supone entonces que la acción requerida para

derivar las ecuaciones de campo de Einstein es la suma de la acción deEinstein-Hilbert y la

acción que describe los campos de materia presentes en el modelo Lm. Entonces se escribe

S =
∫

[ 1
2κR +LM]

√
−g d4x (1.11)

Corresponde realizar la variación de esta acción total con respecto a la inversa de la métrica gµν

la cual es cero

0 = dS (1.12)

0 =
∫ [

1
2κ

δ(
√
−gR)

δgµν +
δ(
√
−gLM)
δgµν

]
δgµνd4x (1.13)

0 =
∫ [

1
2κ

(
δR
δgµν + R

√
−g

δ
√
−g

δgµν

)
+ 1
√
−g

δ(
√
−gLM)
δgµν

]
δgµν
√
−g d4x (1.14)
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El principio variacional se formula sobre la base de que las variaciones δgµν, son linealmente

independiente por lo que

δR
δgµν + R

√
−g

δ
√
−g

δgµν = −2κ 1
√
−g

δ(
√
−gLM)
δgµν (1.15)

resultando la ecuación de Euler-Lagrange o ecuación del movimiento de este problema [21]. El

miembro derecho de esta ecuación es por definición el tensor Energía-Momentum, y representa

la parte material del modelo

Tµν := −2
√
−g

δ(
√
−gLM)
δgµν = −2 δLM

δgµν + gµνLM. (1.16)

En cuanto al otro miembro de la ecuación, se requiere entonces calcular la variación del escalar

de Ricci R y la variación del determinante de la métrica. Esta tarea resulta laboriosa aunque no

difícil. El procedimiento requiere de desdoblar estos escalares hasta llegar a sus componentes

métricos. Debe partirse del concepto de que el determinate del tensor métrico contiene las com-

ponentes de dicho tensor, y que el escalar de Ricci es obtenido por una contracción del tensor de

curvatura covariante de rango dos de Ricci, y que este a su vez se obtiene de una contracción del

tensor de curvatura mixto (3-covariante, 1-contravariante ) de Riemann Rα
µβν, o sea, Rµν = Rα

µαν

donde la repetición de índices indica suma, en este caso desde α = 1 hasta α = 4. Similarmente,

debe recordarse que el tensor de curvatura mixto de Riemann se obtiene a partir de los Símbolos

de Christoffel de segunda clase Γαβγ , como se verá debajo, y que estos finalmente se derivan de

los elementos del tensor métrico (y también con los elementos de su inverso). Por ejemplo,

Γνµλ = gνσ[λµ, σ] = 1
2gνσ

(
∂gσλ
∂xµ +

∂gµσ
∂xλ −

∂gλµ
∂xσ

)
(1.17)

Por tanto, debe comenzarse por el cálculo de la variación del tensor de curvatura de Riemann,
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que se define como

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γ

ρ
µλΓ

λ
νσ − Γ

ρ
νλΓ

λ
µσ. (1.18)

Como se aprecia este tensor depende sólo de los Símbolos de Christoffel, entonces su variación

es

δRρ
σµν = ∂µδΓ

ρ
νσ − ∂νδΓ

ρ
µσ + δΓ

ρ
µλΓ

λ
νσ + Γ

ρ
µλδΓ

λ
νσ − δΓ

ρ
νλΓ

λ
µσ − Γ

ρ
νλδΓ

λ
µσ. (1.19)

Y aplicando la derivada covariante al tensor variación del símbolo de Christoffel se tiene que 2

∇λ(δΓ
ρ
νµ) = ∂λ(δΓ

ρ
νµ) + Γ

ρ
σλδΓ

σ
νµ − ΓσνλδΓ

ρ
σµ − ΓσµλδΓ

ρ
νσ. (1.20)

Lo anterior permite observar, después de aplicar ciertos manejos de índices, que la variación del

tensor de curvatura de Riemann puede escribirse como

δRρ
σµν = ∇µ(δΓ

ρ
νσ) − ∇ν(δΓ

ρ
µσ). (1.21)

Seguidamente se puede obtener la variación del tensor de curvatura de Ricci mediante la con-

tracción de dos índices (el superior y el segundo inferior) en la variación del tensor de curvatura

de Riemann

δRµν ≡ δRρ
µρν = ∇ρ(δΓ

ρ
νµ) − ∇ν(δΓ

ρ
ρµ). (1.22)

2En la expresión anterior debe saberse que al aplicar la derivada covariante, esta se expresa en el miembro
derecho por cuatro términos en este caso: la derivada parcial en el primero, y un segundo término positivo asociado
al índice contravariante ρ, y dos términos negativos asociados a los dos índices covariantes ν y µ.
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Por otro lado, considerando la definición del escalar de Ricci

R = gµνRµν (1.23)

se puede desarrollar la variación del escalar de Ricci con respecto a la métrica inversa gµν y se

obtienen

δR = Rµνδgµν + gµνδRµν

= Rµνδgµν + ∇σ
(
gµνδΓσνµ − gµσδΓρρµ

)
.

(1.24)

En la ecuación anterior se utilizó el resultado obtenido antes para la variación del tensor de

curvatura de Ricci y además se consideró la condición ∇σgµν = 0. En la expresión anterior,

el término de la derivada covariante,∇σ(gµνδΓσνµ − gµσδΓρρµ se puede multiplicar por
√
−g y se

convierte en una derivada total, ya que considerando ciertos elementos básicos sobre tensores,

relacionados con la derivada ordinarias y la derivada covariante se cumple que

√
−gAa

a = (
√
−gAa)a or

√
−g∇µAµ = ∂µ

(√
−gAµ

)
. (1.25)

Seguidamente se puede invocar el teorema de Stokes para argumentar que la variación de la

métrica δgµν se anula en el infinito por lo que el término en cuestión no contribuye a la variación

de la acción, resultando finalmente

δR
δgµν = Rµν. (1.26)

Para calcular la variación del determinante del tensor métrico se puede utilizar la fórmula de

Jacobi para la diferenciación de un determinante, o simplemente se pasa a coordenas princi-

pales el tensor métrico y se le aplica la regla de la derivada de un producto al producto de los
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elementos de la diagonal del tensor, y se encuentra que

δg = δ det(gµν) = ggµνδgµν (1.27)

Entonces, utilizando ese resultado se llega a

δ
√
−g = − 1

2
√
−gδg = 1

2

√
−g(gµνδgµν) = −1

2

√
−g(gµνδgµν) (1.28)

donde se ha utilizado la relación

gµνδgµν = −gµνδgµν (1.29)

la cual se deriva de la regla para la derivada de la inversa de una matriz. En efecto

δgµν = −gµα(δgαβ)gβν (1.30)

Entonces se tiene el resultado buscado

1
√
−g

δ
√
−g

δgµν = −1
2gµν. (1.31)

Seguidamente correponde sustituir todos los resultados anteriores en la ecuación de partida

para tener finalmente la ecuación de Euler-Lagrange o ecuación del movimiento del modelo

cosmológico que se está considerando, esto es,

Rµν −
1
2gµνR = 8πG

c4 Tµν, (1.32)

la cual se conoce como ecuación de campo de Einstein y además κ = 8πG
c4 ha sido elegido de tal



1.5. OBTENCIÓN DE LAS ECUACIONES DEL CAMPO DE EINSTEIN 24

manera que el límite no relativista produce la forma usual de la ley de la gravitación de Newton,

donde G es la constante gravitacional ordinaria. Esta ecuación de carácter tensorial constituye

una formulación covariante de la ecuación de Euler-Lagrange para este problema y en reali-

dad se han de considerar, en general, 16 componentes, o sea, 16 ecuaciones. Sin embargo, las

condiciones de simetría del modelo, la homogeneidad y la isotropía de la métrica, entre otros,

son elementos que contribuyen a la simplificación del problema, ya que varias componentes del

sistema de ecuaciones son idénticamente nulas y no aportan información nueva. En muchos de

los modelos del Universo que se conciben es reducido el número de ecuaciones que se requiere

resolver. Una vez definidos los componentes materiales del modelo queda definido de hecho el

tensor Tµν y definida la métrica, se define entonces el tensor métrico gµν, y a partir de este se

construyen la conexión de Levi-Civita, el tensor de curvatura de Riemann, el tensor de curvatura

de Ricci y el escalar de Ricci, y por tanto, el tensor de Einstein Gµν. Como resultado del análisis

del modelo, en un paso posterior, se obtiene un sistema de ecuaciones donde la función a deter-

minar es el factor de escala a(t). Esta función es la que describe, básicamente, como evoluciona

el Universo con el tiempo [21].

La ecuación de Einstein puede ser modificada, y de hecho Einstein lo hizo, incluyendo una

constante en la ecuación, con el objetivo de buscar ciertas condiciones de equilibrio. Histórica-

mente en este punto juega un papel determinante los resultados de la investigación realizada por

Friedmann. Cuando se incluye la constante cosmológica, la acción de Einstein-Hilbert adopta

la forma

S =
∫ [

1
2κ (R − 2Λ) +LM

] √
−g d4x, (1.33)

y a partir de esta acción, aplicando la técnica del cálculo variacional nuevamente se obtiene la

ecuación de Einstein

Rµν −
1
2gµνR + Λgµν = 8πG

c4 Tµν (1.34)
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Esta constante es importante en relación con las condiciones de equilibrio que pudiera tener el

Universo, o sea, pudiera resultar una expansión o también un recolapso, o permanecer estático.

En general, el signo de esta constante es determinante y se discute aún hoy en día sobre es-

te asunto. Bajo ciertas condiciones se puede asociar esta constante con el comportamiento del

componente cosmológico conocido como energía oscura. Componente que aporta una presión

negativa que contrarresta el efecto gravitatorio y por tanto puede definir la condición observa-

cional de la expansión acelerada del Universo. Existe un número elevado de modelos diversos

que intentan dar explicación a esta aceleración y en todos ellos la idea de la energía oscura con

presión negativa está presente, de muchas formas [21].

1.6 La solución exacta de Schwarzschild

No esperaba que se pudiera obtener una solución exacta de manera tan sencilla.

(A. Einstein, en una carta a K. Schwarzschild)

Ya hemos dicho en varias ocasiones que las ecuaciones de Einstein son muy difíciles de resolver,

debido a su carácter no lineal, de modo que la superposición de dos soluciones no es una nueva

solución. No es difícil entender la razón física para esta no linealidad: sabemos que el espacio

se curva debido a su contenido de masa y energía. Pero la propia curvatura del espacio-tiempo

contiene energía, de modo que la misma curvatura es una fuente de curvatura. En otras palabras,

la gravedad no sólo se acopla a la energía y la materia, sino también a sí misma, lo que resulta

en ecuaciones no lineales.

Einstein mismo creyó inicialmente que sus ecuaciones eran tan complicadas que nunca se en-

contraría una solución exacta. Sin embargo, pocos meses después de la publicación de la re-

latividad general, en 1916, Karl Schwarzschild (1873 - 1916) halló la solución exacta de un

objeto estático con simetría esférica y en los últimos 90 años cientos de soluciones exactas han
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sido encontradas. En este capítulo discutiremos esta solución de Schwarzschild y su significado

físico [4].

Es un hecho notable que la primera solución exacta de la ecuación de Einstein que corresponde

a un caso físico real, fue descubierta solo unos meses después de que apareciera el famoso ar-

tículo de 1915. Su autor, el anteriormente mecionado Karl Schwarzschild, un notable astrónomo

alemán que contaba, entre sus trabajos científicos, los primeros estudios teóricos de los procesos

radiativos en las estrellas, aplicaciones de la fotografía a la astronomía, una teoría pionera de los

espectros atómicos, etc. Al estallar la primera Guerra Mundial, Schwarzschild fue movilizado

por el ejército prusiano al frente oriental. Ahí, en condiciones precarias, contrajo una enferme-

dad infecciosa mortal, por lo que se le permitió regresar a su casa. Fue literalmente en su lecho

de muerte donde leyó el artículo de Einstein de noviembre de 1915. Las ecuaciones parecían ex-

tremadamente complicadas, pero Schwarzschild tuvo la idea de considerar un problema simple,

aunque realista: ¿Cómo deforma al espacio-tiempo una distribución perfectamente esférica de

masa? Evidentemente, el espacio-tiempo resultante debe tener propiedades simétricas alrededor

de la masa considerada; esto simplifica notablemente las ecuaciones, a tal grado que encontró

una solución exacta: el espacio-tiempo de Schwarzschild, un espacio riemanniano que describe

la región externa de un cuerpo esférico con masa M y radio arbitrario [22].

La solución de Schwarzschild es una solución estática de las ecuaciones del vacío, con simetría

esférica. Por lo tanto es una buena descripción para el campo gravitatorio causado por objetos

masivos esféricos, como estrellas y planetas. En particular, son precisamente las geodésicas

de la métrica de Schwarzschild que nos permite calcular correcciones relativistas a las órbitas

planetarias y la deflexión de la luz.
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1.7 Colapso gravitacional y formación de agujeros negros

Existe la pregunta de si los AN tipo Schwarzschild realmente existen en la Naturaleza, o si sólo

son una solución matemática, sin realidad física. La respuesta es un poco ambivalente: realmen-

te se pueden llegar a formar agujeros negros, por ejemplo al final de la vida de estrellas muy

masivas, pero a pesar de que tienen muchas de las características propias de la solución de Sch-

warzschild, no son exactamente como la extensión máxima de la solución. La gran diferencia

está en que los AN en la Naturaleza están formados dinámicamente en un proceso de colapso

gravitacional y por lo tanto no tienen la simetría de inversión temporal de una solución estática.

Ya hemos visto que la solución (3.13) en realidad se corresponde con la parte exterior de un

campo gravitatorio causado por un objeto con masa m en el centro. En circunstancias normales,

la masa ocupa una esfera con un radio R0 mayor que 2GNm/c2, de modo que la solución exterior

es la métrica (3.13) y la interior es la solución interior de Schwarzschild, que mencionamos

antes. Sin embargo, si se comprime la masa en un volumen más pequeño, la gravedad en la

superficie aumentará, ya que el potencial gravitatorio varía como Φ = −GNm/r [4] .3

Al comprimir la masa en un volumen más pequeño, aumentará también la velocidad de escape,

la velocidad inicial necesaria para que una partícula pueda salir del pozo potencial de un objeto

masivo y llegar al infinito. Desde la ley de conservación de energía de la mecánica newtoniana,

se puede calcular que la velocidad de escape ve de un objeto con masa m y radio R viene dada

por

ve =

√
2GNm

R
. (1.35)

En 1795 el matemático francés Pierre Simon Laplace (1749 -1827) se dió cuenta de que la ve-

locidad de escape superaría la velocidad de la luz si se comprimiese toda la masa en un radio

3Esto no implica que la gravedad a distiancia r0 > R0 aumente: el potencial gravitatorio a distancia r0 fuera de
la masa es independiente del volumen que ocupa la masa. Si el Sol colapsara en un AN, la trayectoria de la Tierra
no cambiaría en absoluto.
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R = 2GNm/c2. Escribe en su Traité de la Méchanique Céleste en 1799:Una estrella luminosa de

la misma densidad que la tierra, y cuyo diámetro es 250 veces mayor que el sol, no dejaría llegar

por su atracción ningún rayo hasta nosotros; por lo tanto es posible que los más grandes cuer-

pos luminosos del Universo sean, por esa razón, invisibles para nosotros. Sorprendentemente, el

radio crítico para la velocidad de escape, calculado con métodos puramente newtonianos, coin-

cide exactamente con el radio de Schwarzschild, el radio desde donde la luz ya no puede salir

hacia el exterior. La interpretación, sin embargo es distinta, ya que en la mecánica newtoniana,

la velocidad de la luz no es un límite superior, de modo que la “estrella negra” de Laplace no es

un AN en el sentido estricto de la palabra.

En la RG, más que la velocidad de escape, la cantidad física importante es la curvatura del

espacio-tiempo: cuanto más se comprime la masa, tanto más aumenta la curvatura alrededor del

objeto y una vez que toda la masa está comprimida en un volumen más pequeño que el radio de

Schwarzschild, ya no hay manera de parar el colapso gravitacional. La curvatura es tanta que

la luz se queda atrapada, ya que incluso las geodésicas nulas están dirigidas hacia el centro. Se

forma por lo tanto un horizonte de sucesos y, debido al teorema de Hawking y Penrose, también

una singularidad. Por la estructura causal del espacio-tiempo dentro del horizonte, toda la ma-

teria del objeto original acabará en la singularidad y desaparecerá del espacio-tiempo, tal como

se dió cuenta Oppenheimer en 1939. Por lo tanto no es preciso disponer de una masa grande

para poder formar un AN, por lo menos, en principio. Más que de la masa, la formación de un

AN depende de la densidad: cualquier masa m puede formar un horizonte y una singularidad

si se comprime dentro del radio de Schwarzschild correspondiente a esa masa, es decir en un

volumen r = 2GNm/c2. El radio de Schwarzschild del Sol es aproximadamente 3 km y el de la

Tierra unos 9 mm.

En la práctica no hay fuerza en la Naturaleza capaz de comprimir ni el Sol, ni la Tierra dentro

de sus respectivos radios de Schwarzschild. En el caso de planetas como la Tierra, la repulsión

entre los electrones de los átomos es suficiente para contrarrestar la fuerza gravitatoria y preve-
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nir un colapso gravitacional. En objetos más masivos, como estrellas, la presión gravitacional

hacia dentro es tan grande que la materia forma un plasma tan caliente que hay fisión nuclear.

En grandes líneas, 4 protones se juntan para formar un núcleo de helio. La energía térmica pro-

ducida por estas reacciones nucleares contraresta la presión gravitatoria, de modo que la estrella

se encuentra en un equilibrio térmico-gravitatorio [4].

Sin embargo, cuando a la estrella se le acaba el combustible,ya no es capaz de producir la ener-

gía términa necesaria para mantener el equilibrio. Lo que pasa entonces, depende básicamente

de la masa de la estrella considerada. Para estrellas pequeñas y medianas, como el Sol, la gra-

vedad comprimirá la estrella en un volumen comparable con la Tierra, con una densidad entre

104 hasta 109kg/cm3. Allí la presión del gas degenerado de electrones y átomos completamente

ionizados será lo suficiente para volver a mantener el equilibrio. La estrella se ha convertido en

una enana blanca, llamada así por su tamaño y su color, debido a su alta temperatura. En 1931

el astrofísico Subrahmanyan Chandrasekhar (1910 -1995) demostró que una enana blanca no

puede tener una masa mayor que unos 1,4 masas solares. Para estrellas con masas superiores al

límite de Chandrasekhar, la presión del gas degenerado no es capaz de contrarrestar la fuerza

gravitacional. En este caso, la estrella será comprimida en un radio de unos pocos kilómetros. La

presión gravitatoria es tan fuerte que los electrones están comprimidos dentro de los núcleos de

los átomos y reaccionarán con los protones para formar una bola inmensa de neutrones, llamada

estrella de neutrones. A estas alturas, la única fuerza que puede resistir la presión gravitacional

es la repulsión fermiónica entre los neutrones. La densidad típica de una estrella de neutrones

es de unos 1017kg/cm3.

En 1939 Oppenheimer y collaboradores calcularon el equivalente del límite de Chandrasekhar

para estrellas de neutrones, el llamado límite de Oppenheimer-Volkov y encontraron que la re-

pulsión entre los neutrones no es suficiente para contrarrestar la fuerza gravitatoria en estrellas

de neutrones con masas superiores a unas 2 masas solares. En este caso ya no hay ninguna

fuerza capaz de controlar la compresión gravitacional y la estrella colapsará a su radio de Sch-
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warzschild y más allá ...

Einstein y Eddington, el padre de la teoría de la evolución estelar, se opusieron firmemente a

la idea de que un estrella podría colapsar a un solo punto y renunciaron a dar a la solución de

Schwarzschild algún significado físico. Pero hoy en día sabemos que existen estrellas con masas

de decenas y cientos de veces la del Sol, así que, a pesar de que puedan perder mucha masa a lo

largo de su evolución, es posible que algunas estrellas saturen el límite de Oppenheimer-Volkov

y se conviertan en AN.

Además, la evolución estelar no es la única fuente de AN. Los astrónomos lo sospecharon desde

hace tiempo, pero en los últimos años han encontrado pruebas convincentes de que existen AN

supermasivos en los centros de galaxias, con masas del orden de 109 masas solares y radios de

Schwarzschild del orden de 109km.

Al otro lado de la escala se sospecha que también existen AN primordiales, que no se formaron

en colapsos gravitacionales de estrellas, sino en las primeras fases de la existencia del universo,

debido a las fluctuaciones de densidad. Se calcula que estas AN primordiales tendrían una masa

del orden de 1012kg (en comparación, la Tierra tiene una masa del orden de 1024kg) y un radio

de Schwarzschild de unos 10−14m.

Queda por preguntar ¿qué es lo que pasa con un observador que se cae en un AN? Se sabe

que acabará inevitablemente en la singularidad, pero antes de esto, ¿qué ve y qué siente? El

horizonte geoméricamente hablando es un punto perfectamente regular y que un observador

puntual en caída libre no notaría nada al cruzarlo [4]. Por la estructura causal del espacio-

tiempo está claro que el observador no puede ver la singularidad mientras que está fuera del

radio de Schwarzschild, ya que ninguna señal puede salir del horizonte para advertirle de lo que

le espera. Pero tampoco una vez dentro es capaz de ver la singularidad: de los diagramas de

espacio-tiempo está claro que no pueden salir señales de la singularidad hacia un r < 2GNm/c2.

La coordenada radial es una coordenada temporal para r < 2GNm/c2, así que querer ver la

singularidad una vez dentro del radio de Schwarzschild es como querer ver en el futuro. El
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observador por lo tanto no ve el rostro de la singularidad hasta que da con ella.

Esto no implica que el viaje hacia r = 0 sea agradable, por lo menos no para observadores reales,

es decir, observadores no puntuales. Objetos y observadores con una extensión espacial sufrirán

grandes fuerzas de marea, debido a la inhomogeneidad del campo gravitatorio. En un potencial

gravitatorio que varía como 1/r, la fuerza de marea, es decir la diferencia entre la fuerza a

distancia r y r + ∆r es proporcional a GNm/r3 [4], de modo que cerca de la singularidad, las

fuerzas de marea son inmensas. No sólo la diferencia de la fuerza gravitacional entre la cabeza

y los pies estira y desgarra al observador (o lo que queda de él) longitudinalmente como un

potro de tortura cósmico, también transversalmente le comprime en una superficie r2∆Ω cada

vez menor [4].

Estas fuerzas de marea son muy grandes, cerca de la singularidad, pero esto no necesariamente

implica que lo sean en el horizonte. Para AN estelares y primordiales efectivamente lo son: para

un AN con la masa del Sol, un humano ya no sobreviviría las fuerzas a una distancia de 200 km,

unos 66 radios de Schwarzschild. Pero en un AN supermasivo de 109 masas solares, el radio de

Schwarzschild es 109 veces mayor, de modo que en r = 2GNm/c2 la curvatura y las fuerzas de

marea todavía no son muy grandes. En este caso, el radio crítico de supervivencia está a unos

200.000 km de la singularidad, es decir a unos 66 · 10−6 veces el radio de Schwarzschild. En

general, el tiempo propio máximo que un observador tarda en llegar a la singularidad desde el

radio de Schwarzschild de un AN con masa m es

τmax = 1, 5 · 10−5
m
m�

s, (1.36)

donde m� es la masa del Sol. O sea, unos 10−5s para un AN estelar, pero unas cómodas 4 horas

y pico para un AN supermasivo de 109 masas solares [4].



Capítulo 2

Energía Oscura y expansión del Universo

En este capítulo se realiza una breve descripción de los aspectos fundamentales relacionados

con la expansión del Universo que son necesarios para tener un mínimo de conocimiento sobre

el tema y poder estudiar esta tesis. Estos contenidos pueden ampliarse en los diversos textos que

se han citado a lo largo del capítulo.

2.1 ¿Qué es la energía oscura?

Ya había mencionado en la introducción que la EO es una forma de materia [23, 24, 25] o ener-

gía [26] que estaría presente en todo el espacio, produciendo una presión que tiende a acelerar

la expansión del Universo, resultando en una fuerza gravitacional repulsiva. [24] Considerar la

existencia de la EO es la manera más frecuente de explicar las observaciones recientes de que

el Universo parece estar en expansión acelerada. En el modelo estándar de la cosmología, la

EO aporta casi tres cuartas partes de la masa-energía total del Universo. También se había men-

cionado que la EO para determinado valor del parámetro de estado ω es la llamada constante

cosmológica Λ, una energía de densidad constante que llena el espacio en forma homogénea

[27]. También puede ser un campo cosmológico de quintaesencia para otros valores de ω.

Existen muchos modelos los cuales permiten describir la fase actual de expansión acelerada

32
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del Universo. Algunos de estos modelos incluyen la energía oscura [24], como causante de la

expansión acelerada, y otros modelos no incluyen a la energía oscura.

Una gran variedad de modelos del Universo que contienen únicamente dos componentes (ener-

gía oscura y materia oscura) han sido sugeridos. El más simple de todos es un modelo que

contenga constante cosmológica o energía del vacío cuántico, para representar la energía oscura

[20].

Añadir la constante cosmológica a la Métrica de Friedman-Lemaître-Robertson-Walker (FLRW)

conduce al mencionado modelo Λ-MOF 1, que se conoce como “modelo estándar” de cosmo-

logía debido a su coincidencia precisa con las observaciones.

Para este modelo en particular, al considerar la energía oscura como un fluido, la expresión del

parámetro de estado queda prefijada: ω = p/ρ = −1, donde p y ρ son la presión y la densidad

de energía.

A pesar de ser sencillo, y repreducir bien muchas observaciones, presenta serios problemas

como los que enumeramos a continuación:

1. El Problema de la Constante Cosmológica: Este problema surge cuando se compara el

valor teórico calculado para la constante cosmológica y el valor que se observa. De dicha

comparación resulta que existe una diferencia de 123 órdenes de magnitud entre ambos

[28].

2. El Problema del Ajuste Fino: Para poder describir el Universo que observamos hoy

la constante cosmológica debe ajustarse en un rango comprendido entre −10−47 < Λ <

10−47.

3. El Problema de la Coincidencia: Este problema se puede expresar mediante la siguiente

pregunta.¿Por qué las densidades de materia oscura fría y energía oscura se hacen com-

1En la Bibliografía en Inglés y a veces en español este modelo se encuentra bajo la abreviatura de Λ-CDM,
donde las últimas siglas son: Cold Dark Matter
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parables precisamente en la presente etapa de la evolución del universo y no mucho antes

o después?

Para tratar de resolver los problemas que presenta el modelo con constante cosmológica en

[29] se propone que la energía oscura no es constante, sino que evoluciona con el tiempo.

Para describir la energía oscura los autores proponen un campo de naturaleza escalar. A estos

modelos con campos escalares, que representan una constante cosmológica dinámica, se les

denomina modelos de quintaesencia.

Al ser la constante cosmológica dinámica, en estos modelos se suaviza y hasta se puede evadir

el problema de la constante cosmológica.

En los modelos de quintaesencia la densidad de energía se define como ρφ = φ̇2/2+V(φ), donde

φ representa el campo escalar, φ̇2/2 es la energía cinética del campo escalar, V(φ) es el potencial

de autointeracción y el punto significa la derivada respecto al tiempo cosmológico.

La presión se define como pφ = φ̇2/2− V(φ) , por lo que es conveniente introducir el parámetro

de estado para la quintaesencia:

ωφ =
pφ
ρφ

=
φ̇2/2 − V(φ)
φ̇2/2 + V(φ)

. (2.1)

De la dfinición anterior se puede notar que siempre para la quintaesencia el parámetro de estado

va a tomar los valores (ωφ ≥ −1). Cuando ωφ = −1 se recupera la energía del vacío o constante

cosmológica.

Si se emplean potenciales atractores, o sea; potenciales para los cuales las condiciones iniciales

sobre el campo escalar y sus derivadas no influyen mucho en la evolución actual del universo, el

problema del ajuste no se puede suavizar. Estos modelos de forma general preservan el problema

de la coincidencia [30, 31]

La medición de la ecuación de estado de la EO es uno de los mayores retos de investigación

actual de la cosmología.
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2.2 Otro componente del sector oscuro en la materia del Uni-

verso

No se debe confundir la EO con la MO, ya que, aunque ambas forman la mayor parte de la

masa del Universo, la EO se asocia a un campo escalar que ocupa todo el espacio de manera

omnipresente, mientras que la MO son formas de materia presentes en el Universo, Materia

Oscura Fría y la Materia Oscura Caliente (MOC), la MOF es uno de los tipos de MO propuesto

a principios de los años 1980 para explicar la formación de estructura cósmica en el modelo del

Big Bang.

Partiendo con una cierta distribución para las fluctuaciones iniciales, la manera en que estas se

amplifican y crecen depende de las características de la materia. Modelos que sólo tenían mate-

ria bariónica no predecían correctamente la estructura observada, además que ya se sabía que la

cantidad de materia bariónica era muy baja. En modelos con Materia Oscura Caliente (MOC),

formada por partículas moviéndose a altas velocidades (de ahí “caliente”), las fluctuaciones en

escalas pequeñas eran “borradas” por el movimiento de las partículas calientes. En ese caso las

primeras estructuras en formarse serían de dimensiones de supercúmulos, los que después se

frangmentarían, dando origen a una formación de estructura “de arriba abajo” 2.

Con MOF, en cambio, las fluctuaciones en pequeñas escalas no son borradas, y la materia

colapsa empezando por pequeñas escalas (menores que galaxias), y luego a escalas cada vez

mayores, en una formación “de abajo arriba” 3. Según este modelo, en la época actual la materia

aún está colapsando en las escalas de cúmulos. Durante más de una década la MOF fue la

favorita, y las simulaciones computacionales la favorecían. Sin embargo, en los últimos años

del siglo XX, a medida que las simulaciones computacionales se hacían más detalladas, la

MOF comenzó a tener problemas explicando la estructura a escalas subgalácticas.

2O conocido del inglés como “top-down”, quiere decir que primero serán las formaciones de estructuras de
mayor magnitud en el universo y luego las de menor magnitud a partir de la fragmentación de estas.

3O conocido del inglés como “bottom-up”, quiere decir que primero serán las formaciones de estructuras de
menor magnitud en el universo y luego las de mayor magnutud a partir de la agrupación de estas.
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La MOC es un tipo de MO que estaría constituido por partículas que viajan a velocidad rela-

tivista. El candidato más probable para la MOC es el neutrino. Los neutrinos tienen una masa

insignificante, no tienen carga eléctrica y por lo tanto prácticamente no interaccionan con la

materia, lo cual los convierte en increíblemente difícil de detectar. Estas mismas características,

es también lo que los convierte en buenos candidatos para ser la MOC. La MOC, sin embargo,

no puede explicar cómo se formaron las galaxias individuales a partir del Big Bang. El fondo

cósmico de microondas, tal como ha sido medido por el satélite COBE es uniforme y no puede

explicarse como las partículas de movimiento rápido se agregarían desde este estado inicial.

Para explicar la estructura del universo, se hace necesaria la MOF. La MOC es, en la actualidad,

discutida como una parte de la teoría mixta de la MO.

Información divulgada relativamente reciente basada en el trabajo realizado por la nave espacial

Planck sobre la distribución del universo, obtuvo una estimación más precisa de esta en 68,3 %

de EO, un 26,8 % de MO y un 4,9 % de materia ordinaria [32].

2.3 Breve reseña histórica del concepto de energía oscura

La constante cosmológica fue propuesta por primera vez por Albert Einstein como un medio

para obtener una solución estable de la ecuación del campo de Einstein que llevaría a un Uni-

verso estático, utilizándola para compensar la gravedad. El mecanismo no sólo fue un ejemplo

poco elegante de ajuste fino, pues pronto se demostró que el Universo estático de Einstein sería

inestable porque las heterogeneidades locales finalmente conducirían a la expansión sin control

o a la contracción del Universo. El equilibrio es inestable: si el Universo se expande ligeramen-

te, entonces la expansión libera la energía del vacío, que causa todavía más expansión. De la

misma manera, un Universo que se contrae ligeramente se continuará contrayendo.

Estos tipos de perturbaciones son inevitables, debido a la distribución irregular de materia en

el Universo. Las observaciones realizadas por Edwin Hubble demostraron que el Universo está
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expandiéndose y que no es estático en absoluto. Einstein se refirió a su fallo para predecir un

Universo dinámico, en contraste a un Universo estático, como “su gran error”. Después de esta

declaración, la constante cosmológica fue ignorada durante mucho tiempo como una curiosidad

histórica.

Alan Guth propuso en los años 1970 que un campo de presión negativa, similar en concepto

a la EO, podría conducir a la inflación cósmica en el Universo pre-primigenio. La inflación

postula que algunas fuerzas repulsivas, cualitativamente similar a la EO, da como resultado

una enorme y exponencial expansión del Universo poco después del BB. Tal expansión es una

característica esencial de muchos modelos actuales del BB. Sin embargo, la inflación tiene

que haber ocurrido a una energía mucho más alta que la EO que observamos hoy y se piensa

que terminó completamente cuando el Universo solo tenía una fracción de segundo. No está

claro qué relación (de haber alguna), existe entre la EO y la inflación. Incluso después de que

los modelos inflacionarios hayan sido aceptados, la constante cosmológica se piensa que es

irrelevante en el Universo actual.

El término “energía oscura” fue acuñado por Michael Turner en 1998 [33]. En ese tiempo,

el problema de la masa perdida de la nucleosíntesis primordial y la estructura a gran escala

del Universo fue establecida y algunos cosmólogos habían empezado a teorizar que había un

componente adicional en nuestro Universo. La primera prueba directa de la EO provino de

las observaciones de la aceleración de expansión de las supernovas, por Adam Riess [5]. y

confirmada después por Saul Perlmutter en [34].Esto dio como resultado el modelo Λ-MOF,

que hasta 2006 era consistente con una serie de observaciones cosmológicas. Los primeros

resultados de la SNLS revelaron que el comportamiento medio de la EO se comporta como la

constante cosmológica de Einstein con una precisión del 10 % [35]. Los resultados del Hubble

Space Telescope Higher-Z Team indican que la EO ha estado presente durante al menos 9.000

millones de años y durante el período precedente a la aceleración cósmica.
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2.4 Descubrimiento de la Energía Oscura.

En 1998 las observaciones de supernovas de tipo 1a muy lejanas, realizadas por parte del Super-

nova Cosmology Project en el Laboratorio Nacional Lawrence Berkeley y el High-z Supernova

Search Team, sugirieron que la expansión del Universo presenta el mencionado carácter acelera-

do [5, 34]. Desde entonces, esta aceleración se ha confirmado por varias fuentes independientes:

medidas de la radiación de fondo de microondas, las lentes gravitacionales, nucleosíntesis pri-

migenia de elementos ligeros y la estructura a gran escala del Universo, así como una mejora

en las medidas de las supernovas han sido consistentes con el modelo Λ-MOF [36].

Las supernovas de tipo 1a proporcionan la principal prueba directa de la existencia de la EO.

Según la ley de Hubble, todas las galaxias lejanas se alejan aparentemente de la Vía Láctea,

mostrando un desplazamiento al rojo en el espectro luminoso debido al efecto Doppler. La me-

dición del factor de escala en el momento que la luz fue emitida desde un objeto es obtenida

fácilmente midiendo el corrimiento al rojo del objeto en recesión. Este desplazamiento indica

la edad de un objeto lejano de forma proporcional, pero no absoluta. Por ejemplo, estudiando

el espectro de un quasar se puede saber si se formó cuando el Universo tenía un 20 % o un

30 % de la edad actual, pero no se puede saber la edad absoluta del Universo. Para ello es ne-

cesario medir con precisión la expansión cosmológica. El valor que representa esta expansión

en la actualidad se denomina Constante de Hubble. Para calcular esta constante se utilizan en

cosmología las candelas estándar 4, que son determinados objetos astronómicos con la misma

magnitud absoluta, que es conocida, de tal manera que es posible relacionar el brillo observado,

o magnitud aparente, con la distancia. Sin las candelas estándar, es imposible medir la relación

corrimiento al rojo-distancia de la ley de Hubble. Las supernovas tipo 1a son una de esas can-

delas estándar, debido a su gran magnitud absoluta, lo que posibilita que se puedan observar

incluso en las galaxias más lejanas. En 1998 varias observaciones de estas supernovas en ga-

4En Astrofísica, el término “candela estándar” se usa para referirse a las propiedades físicas de determinados
objetos muy lejanos o procesos que tienen lugar en estos objetos, que permiten estimar la distancia a la que se
encuentran.
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laxias muy lejanas, demostraron que la constante de Hubble no es constante, sino que su valor

varía con el tiempo. Hasta ese momento se pensaba que la expansión del Universo se estaba

frenando debido a la fuerza gravitatoria; sin embargo, se descubrió que se estaba acelerando,

por lo que debía existir algún tipo de fuerza que acelerase el Universo.

La consistencia en magnitud absoluta para supernovas tipo 1a se ve favorecida por el modelo de

una estrella enana blanca vieja que gana masa de una estrella compañera y crece hasta alcanzar

el límite de Chandrasekhar 5 definido de manera precisa. Con esta masa, la enana blanca es

inestable ante fugas termonucleares y explota como una supernova tipo 1a con un brillo carac-

terístico. El brillo observado de la supernova se pinta frente a su corrimiento al rojo y esto se

utiliza para medir la historia de la expansión del Universo. Estas observaciones indican que la

expansión del Universo no se está desacelerando, como sería de esperar para un Universo do-

minado solo por materia ordinaria, sino más bien acelerándose. Estas observaciones se explican

suponiendo que existe un nuevo tipo de energía con presión negativa.

La existencia de la EO, de cualquier forma, es necesaria para reconciliar la geometría medida

del espacio con la suma total de materia en el Universo. Las medidas de la radiación de fondo

de microondas más recientes, realizadas por el satélite WMAP, indican que el Universo está

muy cerca de ser plano. Para que la forma del Universo sea plana, la densidad de masa-energía

del Universo tiene que ser igual a una cierta densidad crítica. Posteriores observaciones de la

radiación de fondo de microondas y de la proporción de elementos formados en el Big Bang han

puesto un límite a la cantidad de materia bariónica y MO que puede existir en el Universo, que

cuenta sólo el 30 % de la densidad crítica. Esto implica la existencia de una forma de energía

adicional que cuenta alrededor del 70 % de la masa-energía restante [36]. Estos estudios indican

que el 73 % de la masa del Universo está formado por la EO, un 23 % es MO (MOF y MOC) y

un 4 % materia bariónica. La teoría de la estructura a gran escala del Universo, que determina la

formación de estructuras en el Universo (estrellas, quasars, galaxias y agrupaciones galácticas),

5El límite de Chandrasekhar es la máxima masa posible de una estrella fría estable. Si se supera este límite la
estrella colapsará para convertirse en un agujero negro o en una estrella de neutrones.
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también sugiere que la densidad de materia en el Universo es solo el 30 % de la densidad crítica.

2.5 Experimentos para probar la existencia de la energía os-

cura

El más conocido es el Sistema de Detección Integrado Sachs-Wolfe, ideado en 1996 por dos

investigadores canadienses y utilizado por primera vez en 2003; propusieron buscar pequeños

cambios en la energía de la luz comparando la temperatura de la radiación con mapas de galaxias

en el universo local. De no existir la EO, no habría correspondencia entre los dos mapas (el de

fondo cósmico de microondas distante y el de la distribución de galaxias relativamente cercano).

Si esta existiera, sin embargo, se podría observar un curioso fenómeno: los fotones del fondo

cósmico de microondas ganarían energía en vez de perderla, al pasar cerca de grandes masas.

El experimento mejoró sus resultados gracias al equipo de Tommaso Giannantonio, quien ha

probado su existencia con una mayor certeza [37].

2.6 Naturaleza de la energía oscura

La naturaleza exacta de la EO es materia de debate. Se sabe que es muy homogénea, no muy

densa, pero no se conoce su interacción con ninguna de las fuerzas fundamentales más que

con la gravedad. Como no es muy densa, unos 10−29g/cm, es difícil realizar experimentos para

detectarla. Pero si está claro que la EO tiene una gran influencia en el Universo, ya que es el

70 % de toda la energía y debido a que ocupa uniformemente el espacio interestelar. Los dos

modelos principales son la quintaesencia y la constante cosmológica Λ.
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2.6.1 Presión negativa

La EO causa la expansión del universo pues ejerce una presión negativa. Una sustancia tiene

una presión positiva cuando empuja la pared del recipiente que lo contiene; este es el caso de los

fluidos ordinarios (líquidos y gases de materia ordinaria). Una presión negativa tiene el efecto

contrario, y un recipiente lleno de una substancia de presión negativa provocaría una presión

hacia dentro del contenedor. De acuerdo con la RG, la presión de una substancia contribuye a

su atracción gravitacional sobre otras cosas igual que hace su masa, de acuerdo con la ecuación

de campo de Einstein:

Rµν −
1
2

R gµν =
8πG
c4 Tµν (2.2)

Si la sustancia es de presión negativa entonces su efecto es una repulsión gravitacional. Si el

efecto gravitacional repulsivo de la presión negativa de la EO es mayor que la atracción gravi-

tacional causada por la propia energía, resulta una expansión del tipo que se ha observado. Por

esa razón, se ha postulado que la expansión acelerada observada podría ser el efecto de pre-

sión negativa de una sustancia exótica conocida como “Energía Oscura”. Otra posibilidad para

explicar la expansión es postular una ecuación de campo con constante cosmológica positiva:

Rµν −
1
2

R gµν + Λ gµν =
8πG
c4 T̂µν (2.3)

Donde ahora el tensor T̂µν sería la parte asociada a materia con presión positiva. Para resolver la

contradicción de que el empuje cause atracción o la contracción cause repulsión se considera

que:

El empuje de la presión positiva y el empuje de la presión negativa son fuerzas no gravitacio-

nales que solamente mueven substancias en torno a su espacio interior sin cambiar el espacio

en sí. La atracción o repulsión gravitacional actúan sobre el propio espacio, disminuyendo (o

incrementando) la cantidad de espacio entre los cuerpos. Esto es lo que determina el tamaño del
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Universo. No hay necesidad de que estos dos efectos actúen en la misma dirección. De hecho,

actúan en direcciones opuestas.

2.6.2 Constante cosmológica

La explicación más simple para la EO es que simplemente es el “costo de tener espacio”; es

decir, un volumen de espacio tiene alguna energía fundamental intrínseca y esta es la constante

cosmológica Λ, si conocemos que la energía y la masa están relacionadas por la ecuación E =

mc2, la TRG predice que tendrá un efecto gravitacional. Algunas veces Λ es llamada energía del

vacío porque su densidad de energía es la misma que la del vacío. De hecho, muchas teorías de

la física de partículas predicen fluctuaciones del vacío que darían al vacío exactamente este tipo

de energía. Los cosmólogos estiman que la constante cosmológica es del orden de 10−29g/cm o

unos 10−120 en unidades de Planck.

La constante cosmológica tiene una presión negativa igual a su densidad de energía, y así causa

que la expansión del Universo se acelere. La razón por la que la constante cosmológica tiene

una presión negativa se puede obtener a partir de la termodinámica clásica. La energía tiene

que perderse desde dentro de un contenedor que se ocupe con el contenido. Un cambio en

el volumen dV necesita el mismo trabajo que para un cambio de energía −pdV , donde p es la

presión. Pero la energía neta en un volumen de energía de vacío realmente se incrementa cuando

el volumen aumenta (dV es positivo), porque la energía es igual a ρV , donde ρ es la densidad de

energía de la constante cosmológica. Por tanto, p es negativa y, de hecho, p = −ρ, significando

que la ecuación de estado tiene la forma: ω = p/ρ = −1 , sin variación temporal.

Un gran problema pendiente es que muchas teorías cuánticas de campos predicen una gran cons-

tante cosmológica a partir de la energía del vacío cuántico, superior a 120 órdenes de magnitud.

Algunas teorías supersimétricas necesitan una constante cosmológica que sea exactamente cero,

lo que no ayuda. El consenso científico actual cuenta con la extrapolación de pruebas empíricas

donde son relevantes las predicciones y el ajuste fino de las teorías hasta que se encuentre una
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solución más elegante. Técnicamente, esto se suma a las teorías de comprobación contra obser-

vaciones macroscópicas. Lamentablemente, como el margen de error conocido en la constante

predice el destino final del Universo más que su estado actual, todavía continúan sin conocerse

muchas preguntas “más profundas”.

Otro problema aparece con la inclusión de la constante cosmológica en el modelo estándar que

es la aparición de soluciones con regiones de discontinuidades con una baja densidad de materia

[38]. La discontinuidad también afecta al signo pasado de la energía del vacío, cambiando la

actual presión negativa a presión positiva (atractiva), de la misma forma que se ve hacia atrás

hacia el Universo primigenio. Este hallazgo debería ser considerado como una deficiencia del

modelo estándar, pero sólo cuando se incluye un término de vacío.

A pesar de sus problemas, la constante cosmológica es en muchos aspectos la solución más

económica al problema de la aceleración de la expansión del Universo. Así, el modelo están-

dar actual de cosmología, Λ-MOF, incluye la constante cosmológica como una característica

esencial.

2.6.3 Quintaesencia

La EO puede convertirse en MO cuando es golpeada por partículas bariónicas, conduciendo así

a excitaciones como de partículas en algún tipo de campo dinámico, conocido como quintae-

sencia. La quintaesencia difiere de la constante cosmológica en que puede variar en el espacio

y en el tiempo. Para que no se agrupen y se formen estructuras como materia, tiene que ser muy

ligero de tal manera que tenga una gran longitud de onda Compton 6.

No se ha encontrado todavía ninguna prueba de la quintaesencia, pero tampoco ha sido descar-

tada. Generalmente predice una aceleración ligeramente más lenta de la expansión del Universo

que la constante cosmológica. Algunos científicos piensan que la mejor prueba de la quintaesen-

6El efecto Compton consiste en el aumento de la longitud de onda de un fotón de rayos X cuando choca con un
electrón libre y pierde parte de su energía. La frecuencia o la longitud de onda de la radiación dispersada depende
únicamente de la dirección de dispersión
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cia vendría a partir de violaciones del principio de equivalencia y la variación de las constantes

fundamentales de Einstein en el espacio o en el tiempo. Los campos escalares son predichos por

el modelo estándar y la teoría de cuerdas, pero un problema análogo al problema de la constante

cosmológica (o el problema de construir modelos de inflación cósmica) ocurre: la teoría de la

renormalización predice que los campos escalares deberían adquirir grandes masas.

El problema de la coincidencia cósmica se pregunta por qué la aceleración cósmica empezó

cuando lo hizo. Si la aceleración cósmica hubiera empezado antes en el Universo, las estructuras

como galaxias nunca habrían tenido tiempo de formarse y permanecer, al menos como se las

conoce; nunca habrían tenido una oportunidad de existir. Sin embargo, muchos modelos de

quintaesencia tienen un llamado “comportamiento rastreador”, que soluciona este problema.

En estos modelos, el campo de la quintaesencia tiene una densidad cercana pero menor que la

densidad de radiación, hasta llegar al punto de igualdad materia-radiación, a partir del cual se

dispara la quintaesencia a comportarse como EO, y finalmente dominando el Universo, provoca

el carácter acelerado a partir de cierto momento. Esto naturalmente establece una baja escala de

energía para la EO.

Algunos casos especiales de la quintaesencia es tambien la energía fantasma con ω = +1, en

que la densidad de energía de la quintaesencia realmente se incrementa con el tiempo y conserva

la peculiar característica de una energía cinética negativa −k, una forma poco convencional de

energía cinética. Pueden tener propiedades inusuales: la energía fantasma, por ejemplo, puede

causar un Big Rip 7.

La nueva quintaesencia es una forma novedosa de energía inherente en el espacio vacío, que

está basada en la constante de Planck. La suma fundamental de energía contenida en el espacio-

tiempo, es representada por la ecuación E = hn, donde h es la constante de Planck y n es el

número de quintaesencia contenido en un volumen de espacio dado, por unidad de tiempo [39].

7El “Gran Desgarramiento” o Teoría de la expansión eterna, llamado en inglés Big Rip, es una hipótesis cos-
mológica sobre el destino final del Universo.
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2.6.4 Otras Ideas Alternativas

Algunos teóricos piensan que la EO y la aceleración cósmica son un fallo de la RG en escalas

muy grandes, mayores que los supercúmulos. Es una tremenda extrapolación pensar que la ley

de la gravedad, que funciona tan bien en el sistema solar, debería trabajar sin corrección a escala

universal. Se han realizado muchos intentos de modificar la RG; sin embargo, han resultado ser

equivalentes a las teorías de la quintaesencia o inconsistentes con las observaciones.

Las ideas alternativas a la EO van desde las teoría de cuerdas, la cosmología brana y el principio

holográfico, pero no han sido probadas todavía tan convincentemente como la quintaesencia y

la constante cosmológica.

Sin embargo, otras proposiciones “radicalmente conservadoras” intentan explicar los datos ob-

servacionales mediante un uso más refinado de las teorías establecidas más que a través de la

introducción de la EO, centrándose, por ejemplo, en los efectos gravitacionales de heterogenei-

dades de la densidad, (asumidas como insignificantes en la aproximación estándar de la métrica

de Friedman-Lemaître-Robertson-Walker y confirmada como insignificante por los estudios de

las anisotropías del fondo cósmico de microondas y las estadísticas de la estructura a gran esca-

la del Universo) o en las consecuencias de la ruptura de la simetría electrodébil en el Universo

primigenio [40].

2.7 La Energía Oscura y el destino del Universo

La consecuencia más directa de la existencia de la EO y la aceleración del Universo es que

este es más antiguo de lo que se creía. Si se calcula la edad del Universo con base en los datos

actuales de la constante de Hubble (714(km/s)), se obtiene una edad de 10.000 millones de

años, menor que la edad de las estrellas más viejas que es posible observar en los cúmulos

globulares, lo que crea una paradoja insalvable. Los cosmólogos estiman que la aceleración

empezó hace unos 9.000 millones de años. Antes de eso, se pensaba que la expansión estaba
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ralentizándose, debido a la influencia atractiva de la MO y los bariones. La densidad de MO

en un Universo en expansión desaparece más rápidamente que la EO y finalmente domina esta.

Específicamente, cuando el volumen del Universo se dobla, la densidad de MO se divide a la

mitad pero la densidad de EO casi permanece sin cambios (exactamente es constante en el caso

de una constante cosmológica). Teniendo en cuenta la EO, la edad del Universo es de unos

13.700 millones de años aproximadamente (de acuerdo con los datos del satélite WMAP en

2003), lo que resuelve la paradoja de la edad de las estrellas más antiguas.

Si la aceleración continúa indefinidamente, el resultado final será que las galaxias exteriores

al Supercúmulo de Virgo se moverán más allá del horizonte de sucesos: no volverán a ser

visibles, porque su velocidad radial será mayor que la velocidad de la luz. Esta no es una viola-

ción de la relatividad especial y el efecto no puede utilizarse para enviar una señal entre ellos.

Realmente no hay ninguna manera de definir la “velocidad relativa” en un espacio-tiempo cur-

vado. La velocidad relativa y la velocidad solo pueden ser definidas con significado pleno en

un espacio-tiempo plano o en regiones suficientemente pequeñas (infinitesimales) de espacio-

tiempo curvado. La Tierra, la Vía Láctea y el Supercúmulo de Virgo, sin embargo, permanece-

rían virtualmente sin perturbaciones mientras el resto del Universo retrocede. En este escenario,

el supercúmulo local finalmente sufriría la muerte caliente, justo como se pensaba para un Uni-

verso plano y dominado por la materia, antes de las medidas de la aceleración cósmica.

El fondo de microondas indica que la geometría del Universo es plana, es decir, el Universo

tiene la masa justa para que la expansión continúe indeterminadamente. Si el Universo, en

vez de plano fuese cerrado, significaría que la atracción gravitatoria de la masa que forma el

Universo es mayor que la expansión del Universo, por lo que éste se volvería a contraer en

lo que es llamado el Big Crunch 8 , tratado en la subsección siguientes de esta sección. Sin

embargo, al estudiar la masa del Universo se detectó muy pronto que faltaba materia para que

el Universo fuese plano. Esta “materia perdida” se denominó como la mencionada MO. Pero

8La “Gran Implosión”, también conocida como “Gran Colapso” o directamente mediante el término inglés Big
Crunch, es una de las teorías cosmológicas que se barajaban en el siglo XX sobre el destino último del universo.
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de igual forma con el descubrimiento de la EO hoy se sabe que el destino del Universo ya

no depende de la geometría del mismo, es decir, de la cantidad de masa que hay en él. En

un principio la expansión del Universo se frenó debido a la gravedad, pero hace unos 4.000

millones de años la EO sobrepasó al efecto de la fuerza gravitatoria de la materia y comenzó la

aceleración de la expansión.

El futuro último del Universo depende de la naturaleza exacta de la EO. Si esta es una constante

cosmológica, el futuro del Universo será muy parecido al de un Universo plano. Sin embar-

go, en los mencionados modelos de quintaesencia, denominados energía fantasma, la densidad

de la EO aumenta con el tiempo, provocando una aceleración exponencial. En algunos mode-

los extremos la aceleración sería tan rápida que superaría las fuerzas de atracción nucleares y

destruiría el Universo en unos 20.000 millones de años, en el llamado Big Rip 9, tratado en la

subsección siguientes de esta sección.

2.7.1 Teorías del Big Crunch y del Big Rip

La teoría de la “Gran Implosión” o Big Crunch propone un universo cerrado. Según esta teoría,

si el universo tiene una densidad crítica superior a 3 átomos por metro cúbico, la expansión del

universo, producida en teoría por el Big Bang irá frenándose poco a poco hasta que finalmente

comiencen nuevamente a acercarse todos los elementos que conforman el universo, volviendo

al punto original en el que todo el universo se comprimirá y condensará en un único punto de

energía como el anterior a la Teoría de Big Bang.

El momento en el cual acabaría por pararse la expansión del universo y empezaría la contracción

depende de la densidad crítica del Universo: a mayor densidad mayor rapidez de frenado y

contracción; y a menor densidad, más tiempo para que se desarrollaran eventos que se prevé

tendrían lugar en un universo en expansión perpetua. Sin embargo, debido a que la naturaleza

9El “Gran Desgarramiento” o Teoría de la expansión eterna, llamado en inglés Big Rip, es una hipótesis cos-
mológica sobre el destino final del Universo.
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de la EO es desconocida, todavía es posible (aunque no respaldado por la observación a la fecha)

que el universo finalmente revierta la marcha y cause un colapso [41].

Esta fase de contracción seguiría inexorablemente, y con ella el aumento de la temperatura de

dicha radiación. Llegaría un momento en que todas las galaxias se fundieran en una (aunque los

choques entre estrellas serían aún raros). Mientras, la temperatura del fondo de radiación iría

subiendo y empezaría a poner en peligro la supervivencia de las formas de vida que existieran

entonces, en un principio las que vivieran en planetas de tipo terrestre. En un momento dado,

dicha temperatura sería de 300 Kelvin, impidiendo a los planetas antes mencionados deshacerse

del calor acumulado y acabando por hacerse inhabitables (un auténtico efecto invernadero a

escala universal). Más adelante, y con una contracción cada vez más acelerada (y junto a ella

un aumento desbocado de la temperatura de la radiación cósmica) el universo se convertiría en

un lugar infernal e inhabitable (al menos para seres como nosotros y sin ayuda tecnológica) con

temperaturas de miles de grados debido a una radiación cósmica a esa temperatura y a colisiones

entre estrellas al disponer estas cada vez de menos espacio.

Al parecer, las estrellas serían en su mayoría destruidas no por colisiones entre ellas sino por el

aumento de temperatura del universo. Este llegaría a estar tan caliente que no podrían deshacerse

del calor acumulado en su interior y pasarían a absorberlo del exterior, hasta acabar por estallar.

Tras ello, sólo quedarían AN (el principal hecho que diferenciaría la fase de contracción de

la de expansión) y un plasma cada vez más caliente 10, en el que el aumento de temperatura

destruiría primero los átomos y luego las propias partículas elementales, sólo dejando quarks,

a la vez que los AN empezaban a fusionarse entre sí y a absorber materia hasta dar lugar a un

único “super” AN que significaría el fin del espacio, del tiempo, y de todo; del mismo modo que

no tiene sentido preguntarse qué había “antes” del Big Bang, tampoco puede preguntarse que

habría “después” del Big Crunch, aunque de la teoría de este último surge la idea de un modelo

10Este plasma sería muy distinto al existente tras el nacimiento del universo debido a que procedería de es-
tructuras ya desaparecidas, por lo cual mostraría una gran asimetría en la densidad que presentara en diferentes
puntos
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de “Universo Oscilante” 11

En el caso del Big Rip, el cumplimiento de esta hipótesis en esencia depende de la cantidad de

EO en el Universo. Si el Universo contiene suficiente EO, podría acabar en un desgarramiento

de toda la materia. El valor clave es la razón entre la presión de la EO y su densidad energética

ω. Si su valor es tal que ω < −1 el Universo acabaría por ser desgarrado. Primero, las galaxias

se separarían entre sí, a 1000 millones de años antes del fin, luego la gravedad sería demasiado

débil para mantener integrada cada galaxia, y 60 millones de años antes del fin, sólo habría

estrellas aisladas. Aproximadamente tres meses antes del fin, los sistemas solares perderían su

cohesión gravitatoria. En los últimos minutos, se desbaratarían estrellas y planetas. El Universo

quedaría en átomos, pero no se habría acabado aún. Los átomos serían destruidos en una frac-

ción de segundo antes del fin del tiempo y sólo quedaría radiación. El Universo sería como el

Big Bang pero casi infinitamente menos denso.

A diferencia del Big Crunch, en el que todo se condensa en un solo punto, en el Big Rip el

Universo se convertiría en partículas subatómicas flotantes que permanecerían por siempre se-

paradas, sin cohesión gravitatoria ni energía alguna.

Los autores de esta hipótesis calculan que el fin del Universo, tal como lo conocemos, ocurriría

aproximadamente 3, 5· 1010 años (35.000 millones de años) después del Big Bang, o dentro de

2, 0· 1010 años (20.000 millones de años).

Debido a que aproximadamente la materia sólo representa el 27 % del Universo y el 73 % res-

tante está formado por la EO, el Big Rip parece ser una de las teorías más aceptadas en la

actualidad del fin del Universo.

Entonces, a modo de resumen, es evidente que hay algunas ideas muy especulativas sobre el

futuro del Universo. Una sugiere que la energía fantasma causa una expansión divergente, que

implicaría que la fuerza efectiva de la EO continúa creciendo hasta que domine al resto de las

11Según esta teoría el universo sería descrito como un Universo oscilante, en el cual, tras el Big Crunch po-
dría tener lugar un nuevo Big Bang; e incluso este universo podría proceder de un universo anterior que también
se comprimió en un Big Crunch. Si esto hubiera ocurrido repetidas veces, nos encontraríamos ante un universo
oscilatorio; donde cada universo termina con un Big Crunch y da lugar a un nuevo universo con un Big Bang.
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fuerzas del Universo. Bajo este escenario, la EO finalmente destrozaría todas las estructuras

gravitacionalmente acotadas, incluyendo galaxias y sistemas solares y finalmente superaría a

las fuerzas eléctrica y nuclear para destrozar a los propios átomos, terminando el Universo en

un Big Rip. Por otro lado, la EO puede disiparse con el tiempo o incluso llegar a ser atractiva.

Tales incertidumbres abren la posibilidad de que la gravedad todavía pueda conducir al Univer-

so que se contrae a sí mismo en un Big Crunch. Algunos escenarios, como el modelo cíclico 12,

sugieren que este podía ser el caso. Mientras que estas ideas no están soportadas por las obser-

vaciones, no pueden ser excluidas. Las medidas de aceleración son cruciales para determinar el

destino final del Universo en la Teoría del Big Bang.

12Un modelo cíclico es cualquiera de los modelos cosmológicos en la que el universo sigue una interminable
cadena de ciclos auto-sostenibles (por ejemplo: una cadena indeterminada de Big Bangs y Big Crunchs).



Capítulo 3

Efecto de la expansión acelerada del

Universo sobre la estructura de la métrica

de Schwarzschild

En este capítulo se realiza primero un trabajo de obtención de la solución original de Schwarzs-

child encontrada en la bibliografía y se muestra además una vía más expedita para la derivación.

Luego, del trabajo realizado en [1], considerado como investigación antecedente de esta tesis, se

analiza lo relacionado al problema de la obtención de nuevas soluciones estáticas esféricamente

simétricas, a través del tensor de enrgía-momento de las ecuaciones de campo de Einstein, y

considerando la energía oscura como un campo cosmológico de quintaesencia. Para finalizar,

considerando el efecto que debe tener la expansión acelerada del Universo, debido a la presen-

cia de la energía oscura, se perturba consecuentemente la métrica de Schwarzschild al incluir

el factor de escala en los términos espaciales de la parte geométrica de las ecuaciones de Eins-

tein. Este trabajo brinda una nueva solución estática esféricamente simétrica que describe la

estructura del espacio-tiempo con una clara dependencia del factor de escala.
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3.1 Derivación de la solución de Schwarzschild

En ausencia de energía y materia, el tensor de energía-momento Tµν es cero y (la parte sin traza

de) las ecuaciones de Einstein se reducen a [4]

Rµν = 0. (3.1)

A primera vista puede resultar extraño que las ecuaciones del vacío admiten soluciones no-

triviales, aparte del espacio de Minkowski. Pero justo gracias a la no linealidad existe una gran

clase de soluciones no-triviales del vacío. Las métricas que satisfacen la ecuaciones del vacío

(3.1) se llaman Ricci-planas. Las soluciones que son Ricci-planas en general no son planas,

pero sí son soluciones del vacío (en ausencia de una constante cosmológica).

La solución de Schwarzschild es la solución no-trivial más sencilla, debido a su gran cantidad

de simetría. Para empezar es estática, lo que significa que no hay evolución en el tiempo y por

lo tanto existe un sistema de coordenadas en que la métrica es independiente de la coordenada

temporal. Además no puede haber términos cruzados del tipo gtidtdi, ya que la presencia de

estos términos rompería la invariancia t → −t de las soluciones estáticas. Luego, la simetría

esférica implica que el espacio tiene una simetría S O(3), es decir, que es invariante bajo rota-

ciones ortogonales en tres dimensiones1. Existen por lo tanto unas coordenadas angulares θ y ϕ

tales que las secciones espaciales t = t0 se puedan escribir como

ds2 = − f (r)dr2 − r2(dθ2 + sin2θdϕ2), (3.2)

donde r es la coordenada radial. En principio el factor delante de la parte angular puede ser una

función arbitraria h2(r), pero con un cambio de coordenadas r̃ = h(r) siempre se puede escribir

la métrica en la forma (3.2).
1Ojo, esto no implica que las secciones espaciales sean R3. La solución de Schwarzschild misma ya es un

contraejemplo, como veremos en breve.
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Sabemos que las ecuaciones de Einstein son demasiado difíciles de resolver directamente, pero

gracias a la simetría de la solución de Schwarzschild podemos escribir una propuesta de la

forma

ds2 = e2A(r)c2dt2 − e2B(r)dr2 − r2(dθ2 + sin2θdϕ2), (3.3)

con A(r) y B(r) dos funciones que quedan por determinar. Nótese cómo la propuesta refleja la

simetría esférica y el hecho de que la solución es estática en la ausencia de términos cruzados y

el hecho de que A y B son funciones de r únicamente. La idea ahora es sustituir esta propuesta

en las ecuaciones del vacío (3.1) para determinar A y B [4].

Los símbolos de Christoffel no-triviales vienen dados por (ejerc.):


Γr

tt = e2(A−B)c2A′, Γθrθ = r−1, Γ
ϕ
θϕ = cot θ,

Γt
tr = A′, Γ

ϕ
rϕ = r−1, Γr

ϕϕ = −r sin2 θe−2B,

Γr
rr = B′, Γr

θθ = −re−2B, Γθϕϕ = − sin θ cos θ,


(3.4)

de modo que las componentes del tensor y el escalar de Ricci que no son cero son (ejerc.):

Rtt = −e2(A−B)c2[A′′ + (A′)2 − A′B′ + 2r−1A′],

Rrr = A′′ + (A′)2 − A′B′ − 2r−1B′,

Rθθ = e−2B[rA′ − rB′ + 1] − 1, (3.5)

Rϕϕ = sin2 θRθθ,

R = −2e−2B[A′′ + (A′)2 − A′B′ + 2r−1(A′ − B′) + r−2] + 2r−2,

donde la prima denota la derivada con respecto a r. Igualar todas las componentes del tensor

de Ricci a cero, como exigen las ecuaciones de Einstein, nos hace resolver un sistema de 4

ecuaciones diferenciales no-lineales acopladas para dos incógnitas. En principio este sistema
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está sobredeterminado y no tiene soluciones, pero veremos que no todas las ecuaciones son

independientes.

Multiplicando Rtt por e−2(A−B)c−2 y sumándolo con Rrr obtenemos que

0 = e−2(A−B)c−2Rtt + Rrr = −2r−1(A′ + B′), (3.6)

de modo que

B′ = −A′, (3.7)

o lo que es lo mismo, B(r) = −A(r) + c0. La constante de integración c0 no tiene significado

físico, ya que se puede absorber en una redefinición de la coordenada temporal t′ = ec0t. Sin

pérdida de generalidad podemos poner c0 = 0 y la solución general de (3.6) es [4]

A(r) = −B(r).. (3.8)

Sustituyendo esta condición en la ecuación para Rrr encontramos

Rrr = A′′ + 2(A′)2 + 2r−1A′ = 0. (3.9)

Haciendo el cambio de variable A′ = α se reduce el orden de (3.8) y queda

α′ + 2α2 + 2r−1α = 0, (3.10)

siendo una ecuación diferencial de tipo Bernoulli, reducible a través de otro cambio de varia-

ble a una ecuación diferencial lineal de primer orden. Integrando directamente dicha ecuación

obtenemos que

e2A(r) = 1 −
C
r
. (3.11)
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donde −C es una constante de integración con dimensión de longitud L.

Se sabe que para soluciones estáticas de la ecuaciones de Einstein y con poca (o sin) curvatura la

componente gtt de la métrica es proporcional al potencial gravitatorio newtoniano Φ = −GNm/r.

Por lo tanto comparando este con gtt de (3.13), se puede identificar dicho potencial newtoniano

Φ = −C/r, donde C = 2c−2GNm siendo 2c−2 el factor de proporcionalidad, por tanto (3.11)

queda ahora de la forma

e2A(r) = 1 −
2
c2

GNm
r

. (3.12)

No es difícil averiguar que (3.12) satisface idénticamente la ecuación (3.9). Por lo tanto la

solución de Schwarzschild viene dada por

ds2 =

(
1 −

rs

r

)
dt2 −

(
1 −

rs

r

)−1
dt2 − r2dΩ2

2, (3.13)

donde rs es el llamado radio de Schwarzschild 2 y dΩ2
2 = dθ2 + sin2 θdϕ2 es el elemento de línea

de las dos-esferas S2.

Es útil dedicar unas palabras a cómo compaginar el hecho de que por un lado la solución de

Schwarzschild es una solución del vacío, en ausencia de masas y energía, y por otra lado su

interpretación es la de un espacio-tiempo con una masa m en el origen. La solución de Sch-

warzschild (3.13), por lo menos la parte con r > R0, corresponde a la parte exterior del campo

gravitatorio causado por un objeto esférico con masa m y radio R0 > 2GNm/c2 y por esto su

nombre más correcto es la solución exterior de Schwarzschild. Claramente el exterior de ese

objeto masivo es vacío y la solución correspondiente es una solución del vacío. Existe tam-

bién otra solución (también encontrada por Karl Schwarzschild en 1916) que describe la parte

interior r < R0 donde se encuentra la estrella o el planeta, llamada solución interior de Sch-

2El radio crítico (tambien llamado por Laplace radio gravitacional) para la velocidad de escape, calculado con
métodos puramente newtonianos, coincide exactamente con el radio de Schwarzschild, el radio desde donde la luz
ya no puede salir hacia el exterior.
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warzschild. El tensor de energía-momento de la solución interior es un fluido perfecto, mientras

la solución exterior, como ya hemos visto, es una solución de vacío. Para el caso de un planeta

o una estrella con radio R0 > 2GNm/c2, las dos soluciones enlazan suavemente en r = R0.

Otra propiedad de la solución de Schwarzschild (3.13), es que para grandes valores de la coor-

denada radial r, el factor GNm/r � 1 y la métrica se aproxima cada vez más a Minkowski en

coordenadas esféricas. En realidad, esto es de esperar a la luz de la interpretación de la solución

como un objeto masivo en el origen. De la ley de Newton sabemos que la fuerza gravitatoria

de un objeto masivo decae como 1/r2, es decir, a grandes distancias la influencia de la presen-

cia del objeto es despreciable y el espacio se reduce a Minkowski. Soluciones que tienen esta

propiedad se llaman asintóticamente planas y se les puede ver como objetos aislados.

Finalmente, existe un teorema de unicidad para la solución de Schwarzschild, llamado el teore-

ma de Birkhoff. Este teorema dice que la solución exterior (3.13) es la única solución esférica-

mente simétrica de las ecuaciones del vacío. En particular, no existen soluciones de vacío con

simetría esférica que no sean estáticas y si una solución de esta clase es estática, es Schwarzs-

child. En otras palabras una bola de materia puede contraerse o una estrella puede explotar

conservando su simetría esférica, la solución exterior siempre será la misma métrica estática

(3.13).

Sin dar detalles a groso modo la demostraciónn de este torema consiste básicamente en de-

mostrar que la propuesta más general con simetría esférica es la propuesta (3.3), sustituyendo

las funciones A(r) y B(r) por A(t, r) y B(t, r). Las ecuaciones de Einstein en seguida restringen

la dependencia de A y B a ser funciones únicamente de r y el resto de la demostración es la

misma que la que hemos hecho antes. El teorema de Birkhoff es un caso especial del teorema

de “no-hair” (no tiene pelo) para AN en general. Este teorema dice que cualquier AN clásico

(no cuántico) está caracterizado por sólo tres cantidades físicas: la masa, la carga eléctrica y el

momento angular. En el caso de soluciones esféricas del vacío, tanto la carga como el momento

angular son cero y por lo tanto solo el valor de m caracteriza la solución[4].
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3.1.1 Una vía expedita de derivación

Aunque se derivó anteriormente la sulución de Schwarzschild fue encontrada en esta investiga-

ción una forma más sencilla de obtenerla.

Retomando que 3.7 se sustituye en Rθθ se obtiene

Rθθ = e−2B (
−2rB′ + 1

)
− 1,

(3.14)

1 = e−2B (
−2rB′ + 1

)
,

donde el mienbro derecho de la última expresión es la derivada de un producto, quedando de la

forma

d
dr

(
re−2B

)
= 1, (3.15)

e integrando directamente queda

e−2B = 1 +
C
r
, (3.16)

donde C = −2GNm
c2 .

3.2 Agujeros Negros y quintaesencia

Se había mencionado que observaciones astronómicas recientes, muestran de una forma convin-

cente la expansión acelerada del universo, insinuando un notable estado de presión negativa. El

origen de esta presión negativa puede ser de dos tipos. El primero es la constante cosmológica,

y el segundo es la llamada quintaesencia con la ecuación de estado dada por la relación entre la
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presión pq y la densidad de energía ρq, siendo pq = ωqρq en el intervalo de −1 < ωq < −1/3,

según cuál sea la causa de la aceleración3. En el caso límite cuando ωq = −1, la extraordinaria

quintaesencia cubre el término de la constante cosmológica.

El horizonte exterior del espacio de Sitter difiere significativamente del horizonte interior de un

AN, el cual tiene asintóticamente un espacio plano muy lejano del AN [1]. EL trabajo realizado

por el autor V.V.Kiselev en [1], es un punto importante de referencia para esta investigación.

Del estudio de la métrica de Robertson-Walker en el horizonte futuro con el factor de escala de

aceleración causado por la quintaesencia en [46, 47], y también de los estudios en [48, 49, 50,

51] se reconoce que la aceleración es un reto para la consecuente teoría de gravedad cuántica.

A raiz de esto se realiza en [1] una investigación de las ecuaciones de Einstein para una AN

estático y esféricamente simétrico, rodeado por quintaesencia y resuelto exactamente para una

opción específica de un parámetro libre, que caracteriza el tensor energía-momento T ν
µ de la

quintaesencia.

Considerando la métrica

ds2 = gtt(r)dt2 − grr(r)dr2 − r2(dθ2 + sin2 θ dφ2), (3.17)

y bajo la simetría esférica de un estado estático podemos escribir una expresión general para las

componentes espaciales y temporales

3La restricción fenomenológica en el valor de ωq está dada en [42, 43, 44, 45]
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T t
t = A(r),

T j
t = 0 (3.18)

T j
i = C(r)rir j + B(r)δ j

i

Luego, promediando adecuadamente se obtiene:

〈T j
i 〉 = D(r)δ j

i , D(r) = −1
3C(r)r2 + B(r). (3.19)

Para la quintaesencia se tiene:

D(r) = −ωqA(r) (3.20)

Por lo tanto se fija el parámetro de estado ωq de la expresión de la función D(r) como combi-

nación de C(r) y B(r), en términos de densidad A(r), aunque ωq por ella misma no proporciona

la información completa de la forma del tensor energía-momento en el caso estático y esférica-

mente simétrico.

El problema con la quintaesencia libre bajo la condición de C(r) ≡ 0 fue considerado en [52] y

en [53, 54, 55, 56]. El resultado fue una métrica, la cual no posee horizonte, “ni pelos”, ni AN;

la métrica no permite “abarcar el término agujero negro”.

En esta investigación se considera C(r) no nulo y proporcional a B(r), para que la solución

exacta con el AN cargado o no cargado sea posible, incluyendo la generalización del espacio

asintóticamente plano o espacio de Sitter. El coeficiente constante apropiado C(r)/B(r) está

definido por la condición de aditividad y linealidad, lo que permite obtener los límites correctos
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para los casos bien conocidos de materia relativista del campo eléctrico, para un AN ωq = 1/3,

para el polvo ωq = 0, y para el extraordinario caso de la quintaesencia ω = −1, la constante

cosmológica.

También se encontraron las soluciones exactas, en coordenadas estáticas y esféricamente simé-

tricas de las ecuaciones de Einstein para la quintaesencia, que producen los horizontes externos

en el intervalo de −1 < ωq < −1/3 tanto en los casos de un estado libre como en el de un AN

rodeado por quintaesencia.

3.3 Solución exacta en coordenadas estáticas

En la investigación en [1] se parte de construir una solución general de las ecuaciones estáticas

esféricamente simétricas de Einstein con quintaesencia que satisface la condición de aditividad

y linealidad, la cual permite tratar los problemas con el AN cargado o no cargado en el espacio

plano o de Sitter.

En las siguientes notaciones de [57], se parametriza el intervalo esféricamente simétrico del

campo estático gravitacional:

ds2 = eνdt2 − eλdr2 − r2(dθ + sin2 θ dφ2), (3.21)

con la función ν = ν(r) y λ = λ(r). Luego, en unidades con la constante gravitacional G

normalizada por 4πG = 1, las ecuaciones de Einstein toman la forma:
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2T t
t = −e−λ

1
r2 −

λ′

r
+

1
r2 ,

2T r
r = −e−λ

1
r2 +

ν′

r
+

1
r2 , (3.22)

2T θ
θ = 2T φ

φ = −
1
2

e−λ
(
ν′′ +

ν′2

2
+
ν′ − λ′

r
−
ν′λ′

2

)
.

La expresión general apropiada para el tensor de energía-momento de la quintaesencia está dada

por:

T t
t = ρq(r), (3.23)

T j
i = ρq(r)α

[
−(1 + 3B)

rir j

rnrn + Bδ j
i

]
, (3.24)

por lo que la parte espacial es proporcional a la componente de tiempo con el parámetro arbi-

trario B dependiendo de la estructura interna de la quintaesencia.

Donde promediando adecuadamente queda,

〈T j
i 〉 = −ρq(r)

α

3
δ

j
i = −pq(r)δ j

i , (3.25)

puesto que rir j = 1
3δ

j
i rnrn. Por lo tanto se derivan las relaciones:

pq = ωqρq, ωq = 1
3α. (3.26)

El estado de la quintaesencia tiene
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−1 < ωq < 0 =⇒ −3 < α < 0. (3.27)

Podemos definir entonces el principio de aditividad y linealidad para la igualdad, considerando

la relación entre los componentes de la métrica,

T t
t = T r

r =⇒ λ + ν = 0, (3.28)

sin pérdida alguna de la generalidad prevista para las coordenadas estáticas del sistema estable-

cido por lo indicado arriba de λ + ν = cte = 0, puesto que la constante puede ser anulada por

una apropiada redefinición del tiempo.

Luego sustituyendo:

λ = −ln(1 + f ) (3.29)

Se obtiene entonces una ecuación diferencial lineal de f , por lo que

T t
t = T r

r = −
1

2r2 ( f + r f ′), (3.30)

T θ
θ = T φ

φ = −
1
4r

(2 f ′ + r f ′′), (3.31)

La condición de aditividad y linealidad establece el parámetro libre del tensor energía-momento

para la materia

B = −
(3ωq + 1)

6ωq
(3.32)

Lo que implica:
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T t
t = T r

r = ρq, (3.33)

T θ
θ = T φ

φ = −
1
2
ρq(3ωq + 1), (3.34)

Haciendo uso de (3.30)-(3.31) con (3.33)-(3.34), deducimos:

(3ωq + 1) f + 3(1 + ωq)r f ′ + r2 f ′′ = 0, (3.35)

con dos soluciones de la forma

fq =
C

r(3ωq+1) , (3.36)

fBH = −
rs

r
, (3.37)

donde C y rs son los factores de normalización. La función de fBH representa la solución ordi-

naria de Schwarzschild con toda la masa del AN centrada en el punto origen, y esto coincide

con la opción particular de materia en forma de polvo con ωq = 0 en fq, lo cual da ρq = 0 en

r , 0.

Si se considera una densidad de energía positiva, ρq > 0, entonces de la fórmula

ρq =
C
2

3ωq

r3(1+ωq) , (3.38)

se deduce que el signo de la constante de normalización podría coincidir con el signo del pará-

metro de estado de la materia,
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C ωq > 0, (3.39)

indicando que C es negativa para la quintaesencia.

La curvatura tiene la forma

R = 2T µ
µ = 3 C ωq

1 − 3ωq

r3(ωq+1) , (3.40)

y esto tiene la singularidad en r = 0, si ωq , {0, 1/3,−1}.

Así de esta manera se ha encontrado una forma de solución exacta esféricamente-simétrica

para las ecuaciones de Einstein que describe un AN rodeado de quintaesencia con el tensor

de energía-momento, la cual satisface la condición de aditividad y linealidad de acuerdo con

ecs.(3.33)-(3.34), tal que la métrica viene dada por

ds2 =

[
1 −

rs

r
−

C
r3ωq+1

]
dt2 −

[
1 −

rs

r
−

C
r3ωq+1

]−1

dr2 − r2(dθ2 − sin2 θ dφ2), (3.41)

donde rs = 2GNm/c2 teniendo en cuenta la velocidad de la luz c , 1, m la masa del AN, y C la

constante de normalización.

3.3.1 Quintaesencia con parámetro de estado ω = −2/3.

Para la solución anterior se pueden analizar los casos límites importantes, en el espacio asintó-

ticamente plano y de Sitter.

Por ejemplo, en el caso de un AN cargado y rodeado por el campo eléctrico estático esféricamente-

simétrico corresponde a el caso con parámetro de estado de la materia relativista ω = 1/3. Para

este caso, la solución general (3.41) da la métrica de Reissner-Nordström o la de Schwarzschild

cuando la carga Q = 0, tal que considerando
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gtt = −
1

grr
, (3.42)

queda

gtt = 1 −
rs

r
+

Q2

r2 , (3.43)

y para Q = 0

gtt = 1 −
rs

r
, (3.44)

También existe el importante caso con quintaesencia, característico por la elección de ωq =

−2/3, estudiado más detalladamente en ([1]), para el cual se obtiene

gtt = 1 −
rs

r
−

C

r3 (− 2
3 )+1

=

[
1 −

rs

r
−

r
C

]
, (3.45)

y en el caso de la quintaesencia libre

gtt = −
1

grr
= 1 −

C

r3 (− 2
3 )+1

=

[
1 −

r
C

]
. (3.46)

3.4 Métrica de Schwarzschild perturbada.

En la investigación en [1] tratada anteriormente, se obtiene a través del tensor de energía-

momento, una solución estática y esféricamente simétrica de la ecuación de Einstein, la cual

describe un AN rodeado de quintaesencia, y satisface la condición de linealidad y aditividad.

Según [12] la métrica del espacio-tiempo para un AN tipo Reissner-Nordström rodeado por

quintaesencia puede escribirse de forma general como

ds2 = f (r)dt2 − f (r)−1dr2 − r2(dθ2 + sin2 θdϕ2), (3.47)
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donde comparando a la vez con (3.3) y con (3.21)

e2A(r) ≡ eν ≡ f (r) = 1 −
rs

r
+

Q2

r2 −
C

r3ωq+1 , (3.48)

Considerando el caso sin carga, o sea para Q = 0, se obtendría la métrica para el espacio-

tiempo de un AN de Schwarzschild rodeado de quintaesencia para una nueva solución estática

esféricamente simétrica dada por:

ds2 = (1 −
rs

r
−

C
r3ωq+1 )dt2 − (1 −

rs

r
−

C
r3ωq+1 )−1dr2 − r2(dθ2 + sin2 θdϕ2), (3.49)

donde ahora

e2A(r) = 1 −
rs

r
−

C
r3ωq+1 . (3.50)

Pero ahora trabajemos desde la parte geométrica de la ecuación de Einstein, es decir se tomará

la propuesta (3.3) y teniendo en cuenta que la EO está presente en el modelo, se debe considerar

consecuentemente en la parte geométrica el factor de escala a(t) relacionado con la expansión

acelerada, de tal forma que (3.3) queda siendo:

ds2 = e2A(r)c2dt2 − a(t)2e2B(r)dr2 − a(t)2r2(dθ2 + sin2 θ dϕ2), (3.51)

con A(r) y B(r) dos funciones que quedan por determinar.

En busca de simplicidad se puede notar que el factor de escala ha sido colocado directamente

en la parte espacial de la propuesta, no es el resultado riguroso de un proceso matemático

formal, pero aún esta forma sencilla lleva a sistemas de gran complejidad que si pueden brindar

información valiosa acorde a la encontrada en la bibliografía.

La idea ahora es sustituir esta nueva propuesta en las ecuaciones del vacío (3.1) para determinar

A y B a través de la parte geométrica de las ecuaciones de Einstein.
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Los símbolos de Christoffel no-triviales están dados por (ejerc.):



Γr
tt = e2(A−B) c2

a2 A′, Γθrθ = r−1, Γ
ϕ
θϕ = cot θ,

Γt
tr = A′, Γ

ϕ
rϕ = r−1, Γr

ϕϕ = −r sin2 θe−2B,

Γr
rr = B′, Γr

θθ = −re−2B, Γθϕϕ = − sin θ cos θ,

Γθtθ = ȧ
a , Γr

tr = ȧ
a , Γt

rr = e2(B−A) aȧ
c2 ,

Γt
ϕϕ = e−2Ar2 sin2 θ aȧ

c2 , Γt
θθ = e−2Ar2 aȧ

c2 , Γ
ϕ
tϕ = ȧ

a ,


(3.52)

de modo que las componentes del tensor de Ricci no nulas son (ejerc.):

Rtt = − c2

a2 A′′e2A−2B − c2

a2 A′ 2e2A−2B + 3ä
a + c2

a2 A′B′e2A−2B − 2
r

c2

a2 A′e2A−2B

Rrr = A′′ + A′ 2 − A′B′ − 2
r B′ − a2

c2 ( ä
a + 2ȧ2

a2 )e2B−2A,

Rθθ = − r2

c2 äae−2A − rB′e−2B + rA′e−2B − 2r2 ȧ2

c2 e−2A + e−2B − 1,

Rϕϕ = sin2 θRθθ,

(3.53)

Ahora, tomando Rtt y Rrr del conjunto (3.53) y haciendo

Rtte−2A+2B a2

c2 + Rrr = 3
ä
a

a2

c2 e−2A+2B − 2r−1A′ −
ä
a

a2

c2 e2B−2A − 2r−1B′ − 2
ȧ2

a2

a2

c2 e2B−2A, (3.54)

queda

Rtte−2A+2B a2

c2 + Rrr = 2
(
ä
a
−

ȧ2

a2

)
a2

c2 e2B−2A − 2r−1(A′ + B′), (3.55)

luego, considerando las relaciones
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H = ȧ
a , Ḣ = ä

a −
ȧ2

a2 = ä
a − H2, Ḣ + H2 = ä

a , (3.56)

se obtiene

Rtte−2A+2B a2

c2 + Rrr = 2Ḣ
a2

c2 e2B−2A − 2r−1(A′ + B′) ≡ 0, (3.57)

si se divide por e2B−2A queda

2Ḣ
a2

c2 − e2A−2B2r−1(A′ + B′) = 0, (3.58)

donde

2Ḣ
a2

c2 = e2A−2B 2r−1(A′ + B′) = −λ = Γ, (3.59)

por tanto

− 2r−1(A′ + B′) = λ e2B−2A (3.60)

y si consideramos el caso sin expansión acelerada y por lo tanto con factor de escala nulo, de la

relación anterior queda λ ≡ 0, se obtiene entonces

− 2r−1(A′ + B′) = 0, (3.61)

que es efectivamente lo obtenido en (3.6) para la obtención de la métrica de Schwarzschild.

De (3.59) también resulta

Γ = −2r−1(A′ + B′)e2A−2B (3.62)

donde
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Γ = cte = 2Ḣ
a2

c2 . (3.63)

Considerando nuevamente las relaciones (3.56) y sustituyendo en Rrr se tiene

Rrr = A′′ + A′ 2 − A′B′ − 2r−1B′ −
a2

c2

(
Ḣ + H2 + 2H2

)
e2B−2A, (3.64)

o mejor, efectuando y considerando (3.59)

Rrr = A′′ + A′ 2 − A′B′ − 2r−1B′ − (
Γ

2
+ 3H2 a2

c2 )e2B−2A, (3.65)

y haciendo

∆ =

(
Γ

2
+ 3H2 a2

c2

)
, (3.66)

queda

(
A′′ + A′ 2 − A′B′ − 2r−1B′

)
e2A−2B = ∆ =

Γ

2
+ 3H2 a2

c2 , (3.67)

donde despejando B′ de (3.59) y sustituyendo en la expresión anterior se obtiene

(
A′′ + 2A′ 2 +

2
r

A′ 2
)

e2A−2B − Γ

(
rA′

2
+ 1

)
= ∆. (3.68)

Utilizando las relaciones anteriores, y modificando Rθθ del conjunto (3.53) por un procedimiento

análogo al realizado anteriormente para Rrr se obtiene

(
2A′

r
+

1
r2

)
e2A−2B −

e2A

r2 = ∆ +
Γ

2
. (3.69)

Las ecuaciones (3.68) y (3.69) conforman el sistema de ecuaciones del modelo considrado, con

A(r) y B(r) como funciones incógnitas a determinar.
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La notable complejidad de este sistema al tener ecuaciones no lineales y de segundo orden,

dificulta la resolución analítica y lleva al tratamiento por métodos numéricos del problema; sin

embargo se realizará una construcción analítica de la expresión (3.69) a partir de la estructura

(3.50) obtenida para e2A(r) ≡ eν(r) en [1], lo cual implicaría la reobtención de los resultados por

una vía diferente a la utilizada en [1], donde se trabajó con el tensor de energía-momento y no

con la parte geométrica de las ecuaciones de Einstein.

Entonces, para el procedimiento de reconstrucción de (3.69) se consideraría

e2A =

(
1 −

rs

r
+ δ

)
= e−2B, (3.70)

por tanto

e2Ae−2B =

(
1 −

rs

r
+ δ

)2
, (3.71)

con δ = δ(r), siendo esta la nueva función incógnita de r a determinar.

De manera consecuente y teniendo en cuenta las relaciones (3.70) y (3.71) se hace
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e2A 2A′ =

(
0 +

rs

r2 + δ′
)
,

A′ =
1
2

( rs

r2 + δ′
) (

1 −
rs

r
+ δ

)−1
,

2A′

r
=

1
r

( rs

r2 + δ′
) (

1 −
rs

r
+ δ

)−1
,

2A′

r
+

1
r2 =

1
r

( rs

r2 + δ′
) (

1 −
rs

r
+ δ

)−1
+

1
r2 ,

(
2A′

r
+

1
r2

)
e2A−2B =

1
r

( rs

r2 + δ′
) (

1 −
rs

r
+ δ

)
+

1
r2

(
1 −

rs

r
+ δ

)2
,

(
2A′

r
+

1
r2

)
e2A−2B −

e2A

r2 =

[
1
r

( rs

r2 + δ′
)
−

1
r2

] (
1 −

rs

r
+ δ

)
+

1
r2

(
1 −

rs

r
+ δ

)2
,

(3.72)

Donde ya en la expresión anterior se ha logrado construir el miembro izquierdo de la ecuación

(3.69), por lo que los términos resultantes en el miembro derecho de (3.72) son además igual al

miembro derecho de la ecuación original (3.69), quedando

[
1
r

( rs

r2 + δ′
)
−

1
r2

] (
1 −

rs

r
+ δ

)
+

1
r2

(
1 −

rs

r
+ δ

)2
= ∆ +

Γ

2
, (3.73)

de donde sigue
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( rs

r2 + δ′
)

+
1
r

(
1 −

rs

r
+ δ

)
−

1
r

=
r
(
∆ + Γ

2

)
1 − rs

r + δ
,

δ′ =
r
(
∆ + Γ

2

)
1 − rs

r + δ
+

1
r
−

1
r

(
1 −

rs

r
+ δ

)
−

rs

r2 ,

δ′ =
r
(
∆ + Γ

2

)(
1 − rs

r + δ
) − δ

r
,

δ′ =
r2

(
∆ + Γ

2

)
− δ

(
1 − rs

r + δ
)(

1 − rs
r + δ

)
r

, (3.74)

donde considerando K = ∆ + Γ/2 y despejando rK queda

(
δ′ +

δ

r

) (
1 −

rs

r
+ δ

)
= rK, (3.75)

la cual es una nueva ecuación diferencial con δ(r) como función incógnita. Esta puede ser

transformada haciendo el cambio de variable u = 1/r que implica las relaciones

du
dr = − 1

r2 = −u2, δ′ = dδ
dr = dδ

du
du
dr = δ̇u2, (3.76)

por lo que

(
u2δ̇ + uδ

)
(1 − urs + δ) =

1
u

K. (3.77)

Las ecuaciones (3.75) y (3.77) son simplemente dos variantes para la determinación de δ(r),

donde según (3.50) δ(r) tiene la forma

δ(r) =
C
rα
, (3.78)
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donde α = 3ωq + 1

Tomando (3.75) y multiplicando por r se obtiene

(
rδ′ + δ

) (
1 −

rs

r
+ δ

)
= r2K, (3.79)

donde se aprecia que (rδ′ + δ) es la derivada de un producto, por lo que

(rδ)′
(
1 −

rs

r
+ δ

)
= r2K, (3.80)

o mejor

(rδ)′ =
r2K(

1 − rs
r + δ

) . (3.81)

Para (3.81) se tratan casos límites de r de importante significado físico, los cuales a su vez

permiten hacer simples aproximaciones favorables para la integración de la expresión.

Por ejemplo tenemos el caso notable de r � rs muy lejos del cuerpo esférico, para el cual

(rδ)′ ≈
r2K

(1 − δ)
. (3.82)

ya que rs/r tomaría un valor despreciable, luego si se considera que C/r α crece, para un α < 0

y considerando que r es muy grande, δ � 1, por lo que se puede escribir

(rδ)′ ≈
r2K
δ
, (3.83)

que multiplicando por r y despejando queda

r δ d(rδ) ≈ r3drK, (3.84)

e integrando,



3.4. MÉTRICA DE SCHWARZSCHILD PERTURBADA. 74

δ ≈ ±

√
K

r2

2
+

2K1

r2 . (3.85)

Siendo (3.85) una de las formas buscadas de δ y como r es muy grande, el termino 2K1/r2 ≈ 0,

quedando

δ ≈ ±

√
K
2

r, (3.86)

donde comparando con (3.78), resulta que α = −1 y C = ±
√

K/2, lo que significa que si

α = (3ω + 1) entonces ω = −2/3, coincidiendo este valor del parámetro de estado ω con el

reportado en [1, Sección 3] en el ejemplo estudiado detalladamente.

Luego teniendo en cuenta (3.70) y (3.86) queda que

e2A ≈

1 − rs

r
±

√
K
2

r

 , (3.87)

donde sin olvidar que r � rs, rs/r ≈ 0, por lo que

e2A ≈

1 ± √
K
2

r

 , (3.88)

quedando la nueva métrica de la forma

ds2 =

1 ± √
K
2

r

 dt2 − a(t)2 1(
1 ±

√
K
2 r

)dr2 − a(t)2 r2( dθ2 + sin2 θ dϕ2), (3.89)



Conclusiones

Tras realizar el trabajo fundamental para cumplir los objetivos propuestos se llega a las conclu-

siones:

1. Al realizar una revisión actualizada sobre la solución exacta del vacío de materia, relativa

al caso estático y esféricamente simétrico se encuentra que finalmente, existe un teore-

ma de unicidad para la solución de Schwarzschild, llamado el teorema de Birkhoff. Este

teorema dice que la solución exterior (3.13) es la única solución esféricamente simétrica

de las ecuaciones del vacío. En particular, no existen soluciones de vacío con simetría es-

férica que no sean estáticas y si una solución de esta clase es estática, es Schwarzschild.

En otras palabras, los resultados obtenidos al perturbar la métrica o considerar la energía

oscura, no son más que variantes de la forma de la clásica solución estática de vacío.

2. Al actualizar los conceptos relacionados con la expasión del Universo, en particular la

energía oscura en forma de campo cosmológico de quitaesencia, se encuentra que defini-

tivamente la expansión es un hecho innegable, que ocurre de forma acelerada debido al

carácter repulsivo de la energía oscura, y afecta todas las regiones del universo jugando

un papel definitivo en el destino del mismo.

3. Al realizar una revisión bibliográfica sobre los posibles efectos de energía oscura sobre la

métrica de Schwarzschild, se encuentran en confiables investigaciones que sirven como

antecedentes de esta, que la consideración de la energía oscura indudablemente transfor-

75
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ma la clásica solución del vacío esféricamente simétrica en nuevas variantes de la forma

de la solución.

4. Al aplicar el método perturbativo a la métrica de Schwarzschild analizando el posible

efecto de la expansión del universo sobre dicha métrica, resulta una nueva variante de

la solución de vacío esféricamente simétrica, la cual se corresponde con los resultados

obtenidos en [1] y [12] para el caso determinado donde el parámetro de estado ω es igual

a −2/3.



Recomendaciones

A medida que se realizó el trabajo en la tesis se reconocieron las posibles vías de trabajo que

pudieran conducir a resultados importantes y no fueron tratadas, entre estas están:

• Se propone la extensión de este trabajo a la métrica de Kerr, donde se incluye la rotación,

acercándose así aún más a la real característica rotaiva de los AN, como el supuesto

presente en el centro de nuestra galaxia.
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