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Abstract In this paper, we make a systematical and in-
depth study on the chaotic dynamics of the string around
the conformal black hole. Depending on the characteristic
parameter of the conformal black hole and the initial posi-
tion of the string, there are three kinds of dynamical behav-
iors: ordered, chaotic and being captured, chaotic but not
being captured. A particular interesting observation is that
there is a sharp transition in chaotic dynamics when the black
hole horizon disappears, which is independent of the initial
position of the string. It provides a possible way to probe
the horizon structure of the massive body. We also exam-
ine the generalized MSS (Maldacena, Shenker and Stanford)
inequality, which is proposed in holographic dual field the-
ory, and find that the generalized MSS inequality holds even
in the asymptotically flat black hole background. Especially,
as the initial position of the string approaches the black hole
horizon, the Lyapunov exponent also approaches the upper
bound of the generalized MSS inequality.

1 Introduction

Because of the inherent non-linearity of General Relativity
(GR), the chaotic dynamics has become one of the central
attention in relativistic systems, where the chaotic phenom-
ena have been deeply explored. The simplest dynamics is
the geodesic motion of a test particle around a prescribed
background, which is integrable in the generic Kerr–Newman
background [1]. However, the chaos emerges in some com-
plicated dynamical systems, for example the test particle
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around the Majumdar–Papapetrou geometry [2,3], or par-
ticles near a black hole in a Melvin magnetic universe [4],
or in a perturbed Schwarzschild spacetime [5–7], or in the
accelerating and rotating black holes spacetime [8]. In addi-
tion, the motion of the particle in the certain potential has
also been shown to exhibit chaotic phenomena, for example,
the motion of charged particles in a magnetic field interacting
with gravitational waves [9].

On the other hand, we are interested in the dynamical sys-
tem of the string. Because of the inherent extended nature
of the string, the motion of the string exhibits a more com-
plex behavior. Even on the radially symmetric background,
the dynamics of the string is also chaotic [10–17] . There is
potential significance to explore the cosmic string around the
astrophysical black hole [18]. As pointed out in [18], up to the
leading order thickness approximation, the cosmic string can
be depicted by the Nambu–Goto action. The authors in [10]
study the dynamics of the circular cosmic string in asymptot-
ically flat Schwarzschild black hole. Especially, they discuss
the transition from order to chaos.

Another motivation to study string dynamics arises from
the AdS/CFT (Anti-de Sitter/Conformal Field theory) corre-
spondence [19–22]. By studying the chaotic dynamics of the
ring string around AdS-Schwarzschild (AdS-SS) black hole,
the authors in [11] propose that the positive largest Lyapunov
exponent on the gravity side sets an appropriate bound for the
time scale of Poincare recurrences on the gauge theory side.
Along this direction, the chaotic phenomena arising from
the string motion around more general AdS geometries are
revealed [12–17].

In this paper, we shall study the chaotic dynamics of the
string in the Weyl conformal gravity. The Weyl conformal
gravity is a fourth-order gravity [23,24], which is a possi-
ble alternative to the standard second-order Einstein theory.
The conformal Weyl gravity is invariant under a conformal
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transformation of the metric tensor

gμν = �2gμν, (1)

where � is a function of the spacetime point. The Weyl con-
formal gravity can resolve the problem of flat galactic rota-
tion curves [25]. Further, the Weyl conformal gravity can be
used as an alternative to dark matter and explain the dark
energy related phenomena [26,27]. In addition, there are lots
of the generalized studies of the Weyl conformal gravity,
see for example [24,28–35]. Here, we shall study the string
dynamics in the Weyl conformal gravity and explore the cor-
responding chaotic phenomena.

We organize the paper as what follows. In Sect. 2, we
present a brief review on the Weyl conformal gravity and
the black hole solution. And then, we work out the dynami-
cal system of the string around the conformal black hole in
Sect. 3. In Sect. 4, we numerically solve the dynamical system
and explore the properties of the string dynamics by chaos
indicators. Also we examine the generalized MSS (Malda-
cena, Shenker and Stanford) inequality, which is proposed in
holographic dual field theory. The conclusions and discus-
sions are presented in Sect. 5.

2 The conformal black hole

We start with the following action

S =
∫

d4x
√−gCabcdC

abcd , (2)

where Cabcd is the conformal Weyl tensor. This theory is a
fourth-order gravity theory. It is invariant under a conformal
transformation as have been pointed out in the introduction.
A static and spherically symmetric vacuum solution from the
action (2) is given [36]

ds2 = −B(r)dt2 + dr2

B(r)
+ r2(dθ2 + sin2 θdφ2), (3)

B(r) = 1 − β(2 − 3βγ )

r
− 3βγ + γ r − kr2. (4)

There are three integral constants, γ , β and k in this solu-
tion. When γ = k = 0, the above solution reduces to the
Schwarzschild solution for a spherically symmetric source
of mass β = M0. The last term, i.e., the kr2 term, plays
the role of the effective cosmological constant and becomes
important at cosmological distances. γ is the characteristic
parameter of the conformal black hole, also dubbed as MK
(Mannheim and Kazanas) parameter [36]. When γ = 0,
this solution reduces to the Schwarzschild (Anti-)de Sitter
solution. This theory allows one to describe flat rotation of
galaxies without introducing the dark matte, for which γ is
of the order of the inverse of the Hubble radius.

Depending on the parameters, the conformal black hole
exhibits rich structure.

• When β = 0, the black hole solution (3) is conformally
flat [25].

• When β �= 0, the conformal flatness of the background
is broken. Therefore, the black hole solution (3) can be
seen as a massive body embedded in a conformally flat
space [25].

• The Newtonian term 1/r plays an important role when r
is small and it vanishes as r → ∞, for which the other
terms dominate [25].

In addition, the conformal black hole also has rich horizon
structures: two horizons, one horizon and no horizon depend-
ing on the parameters (see for example Refs. [34,37,38] for
detailed discussions). The Hawking temperature of the con-
formal black hole is given by

T = −2kr3
h + 2β + γ r2

h − 3γβ2

4πr2
h

. (5)

where rh is the event horizon.
We are only interesting in the effect of MK parameter γ

on the chaotic dynamics. So we let k = 0 through this paper.

3 Ring string around the conformal black hole

Now, we consider the motion of a ring string around the
conformal black hole. The ring string can be depicted by the
Polyakov action,

L = − 1

2πα

√−ggμνGab∂μX
a∂νX

b. (6)

The Polyakov action is on-shell equivalent to the Nambu–
Goto action. α is the coupling constant relating the string
length ls by l2s = α. Xa is the coordinates of the target space
and Gab the corresponding metric. The world sheet of the
string is described by the coordinates σμ = (τ, σ ) with the
induced metric gμν on the world sheet. It is convenient to
work in the conformal gauge gμν = ημν . And then, we take
the following ansatz

t = t (τ ), r = r(τ ), θ = θ(τ ), φ = ησ. (7)

The winding number η depicts the differences between
strings and particles. Under the above ansatz, the Polyakov
Lagrangian can be explicitly worked out as

L = ṙ(τ )2

2παB(r)
− B(r)ṫ(τ )2

2πα
+ r2θ̇ (τ )2

2πα
− r2η2 sin2(θ)

2πα
,

(8)
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where the dot denotes the derivative with respect to τ . The
corresponding Hamiltonian is

H = − P2
t πα

2B(r)
+ 1

2
παB(r)P2

r + παP2
θ

2r2 + r2η2 sin2(θ)

2πα
,

(9)

which satisfies the constraint H = 0. {t, Pt }, {r, Pr }, {θ, Pθ }
are the canonical phase space variables with

Pt = − B(r)ṫ(τ )

πα
, Pr = ṙ(τ )

παB(r)
, Pθ = r2θ̇ (τ )

πα
. (10)

Then the canonical equations of motion can be derived by
the Poisson bracket,

ṫ = − πα

B(r)
Pt , (11)

ṙ = παB(r)Pr , (12)

θ̇ = πα

r2 Pθ , (13)

Ṗt = 0, (14)

Ṗr = πα

r3 P2
θ − παB ′(r)

2B(r)2 P2
t − 1

2
παB ′(r)P2

r

−rη2 sin2(θ)

πα
, (15)

Ṗθ = −r2η2 sin(θ) cos(θ)

πα
, (16)

where the prime represents the derivative with respective to
r . Eq. (14) gives a constant of motion Pt = E , which relates
to the energy.

4 Chaotic dynamics of string around the conformal
black hole

4.1 Numerical method

In this section, we shall numerically solve the dynamical sys-
tem of ring string around the conformal black hole described
above. Most nonlinear systems are not integrable, in order
to get a better approximate solution, numerical methods are
needed. High precision numerical solution is crucial to the
chaotic system, the reason for this is that the low precision
numerical solutions will produce pseudo chaos. It is generally
known that forth-order Runge-Kutta algorithm(RK4) is very
effective to deal with the ordinary differential equations, RK4
has the advantages of symmetrical structure, low calculation
amount and convenient to use. But RK4 is not suitable for
long-term integration because of the accumulation of trun-
cation error. As was stated in [17], the original hyper-surface
will be deviated by RK4. Fortunately, it has been reported that
the velocity scaling method [39] is very useful to treat such
problems. Thanks to its strict restraint mechanism, it provides

great control upon the output accuracy. The accuracy can be
guaranteed at any time by evaluating constraint (H = 0).
The constraint represents the energy conservation condition
for the motion of circular ring in the charged black hole back-
ground. The effectiveness of the velocity scaling method has
been verified by large numbers of numerical experiments.
For more details, please see the report in [39].

Although the time evolution can provide a visual picture
of dynamics of a ring string, it is not worth promoting. The
reason for this is that the result is not very effective in the
long-term integration. Therefore, in order to get a better per-
spective of the ring string dynamics, we need other ways,
such as chaos indicators.

Effective chaos indicator is very important to discuss the
evolution of the chaotic system. As the chaotic system is
highly sensitive to their initial conditions, it generates a large
number of chaos indicators. Such as spectrum analysis, bifur-
cations, fractal theory, Poincare sections, Lyapunov expo-
nent, fast Lyapunov indicator, relative finite-time Lyapunov
indicator, smaller alignment index, and generalized align-
ment index, etc. There is a well-documented discussion of
the characteristics of these chaos indicators in the reference
[40], we won’t explore it in this paper. It has been proved
that Lyapunov exponent is not only useful in conservative
systems, but also is effective in dissipative systems [17,40].
According to this, Lyapunov exponent will be used here to
help us explore the dynamics of string motion with Weyl
conformal gravity.

As a popular and powerful chaos indicator, Lyapunov
exponent determining whether an orbit is chaotic or not by
means of measure the average rate of divergence of two
nearby trajectories in phase space. There are two ways to
calculate the Lyapunov exponent, the one is the variational
method, the other is the two particle method. The difference
between the two methods is that the former integrates both
the motion and variational equations at the same time. but the
later integrates the motion equation twice with two nearby
orbit initial values. For an n-dimensional system, it has n Lya-
punov exponents. As long as one of them is greater than zero,
the system is chaotic. However, the Lyapunov exponent is
always replaced by the maximum Lyapunov exponent. That
is because all Lyapunov directions will converge to one tan-
gent vector if the Gram–Schmidt orthogonalization [41] has
not been considered at every step. The form of the maximum
Lyapunov exponent is

λ = lim
τ→∞

1

τ
ln

‖ξ(τ )‖
‖ξ(0)‖ . (17)

ξ(0) and ξ(τ ) denote the distances at the starting point and
time τ . If λ > 0, that is the bounded orbit is chaotic. But
for λ = 0, the orbit is order. It is more effective to use
log − log plot to describe the dynamics. In this conven-
tion, the motion is ordered if log10|λ| decreases linearly with
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(a) (b)

Fig. 1 The string trajectory around the massive body with γ = 0 and β = 0, for which B(r) = 1 is independent of r and the horizon is absent.
Here, we set E = 12, α = 1/π and the initial conditions as r0 = 10, θ0 = 0, pθ0 = 2.5679

(a) (b)

Fig. 2 The string trajectory around the Schwarzschild black hole β = 0.1. Here, we set E = 12, α = 1/π and the initial conditions as r0 = 10,
θ0 = 0, pθ0 = 2.5679

log10(τ ) increasing, while the motion is chaotic if log10|λ|
exponentially changes with log10(τ ). In this paper, we shall
use this formula to depict the dynamics of the string.

Before proceeding to explore the chaotic dynamics of the
string in detail, we want to gain a visual picture of dynamics
of the string by studying the time evolution of R(τ ). To this
end, we can directly solve the canonical equations of motion
(Eqs. (11)–(16)) by the velocity scaling method.

Figures 1 and 2 exhibit the string trajectory around the
black hole with two simple examples. One is B(r) = 1 and
another is the Schwarzschild black hole with β = 0.1. Here,
we set E = 12, α = 1/π and the initial conditions as r0 =
10, θ0 = 0, pθ0 = 2.5679 without loss of generality.

From Fig. 1, we see that the string always oscillates back
and forth around the black hole. The string is in a simple
harmonic vibration and the motion is ordered. For the case

of the Schwarzschild black hole with β = 0.1, we find that
after a finite number of oscillations, the string is captured by
the black hole (Fig. 2).

Just as pointed out above, although the string trajectory can
provide a visual picture, the calculation is time-consuming
and inefficient. It is more efficient to study the chaotic dynam-
ics of the string by the Lyapunov exponent. Here, we use the
two particle method, so that there is no need to compute the
variational equation. The initial distance between the two
nearby orbit is 10−8. For comparison, we calculate the cor-
responding maximum Lyapunov exponents for Figs. 1 and 2,
which are shown in Fig. 3. We find that both curves are almost
the same at the initial phase of the evolution. It means that
there is a finite number of oscillations around the black hole.
As time goes, the string exhibits different dynamical behav-
iors for different parameters. When γ = 0 and β = 0, which
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Fig. 3 The corresponding maximum Lyapunov exponents of the string
trajectory shown in Figs. 1 and 2

is just flat space, we see that log10|λ| decreases linearly with
log10(τ ) increasing (red curve in Fig. 3). It indicates that the
orbit is ordered. But for γ = 0 and β = 0.1, which is the
case of Schwarzschild black hole, the curve exhibits differ-
ent features (black curve in Fig. 3). After undergoing long
period of oscillation, the system automatically terminates the
calculation in the later stage. The accident is due to the dis-
tance between the two adjacent orbits becomes too short with
time. That is, the orbit motion is collapsed, and the string is
captured by the black hole. That is to say, log10|λ| changes
non-linearly with log10(τ ). Therefore, the orbit motion is
chaotic.

As stated in [17], in order to intuitively observe the dif-
ference between different cases, the chaos indicators are
strongly recommended, not the trajectory pictures. The prin-
cipal reason is that it is hard to tell the difference between
the order orbit and the chaotic orbit in the long term integra-
tion. However, the chaos indicators are the powerful ways to
deal with these problems. As shown above, the method of the
maximum Lyapunove exponent exhibits the efficient power
to detect the chaotic effects. So we shall mainly use the max-
imum Lyapunove exponent to study the chaotic behavior in
this paper.

4.2 Chaotic dynamics over Schwarzschild black hole

When γ = 0, the conformal black hole reduces to the
Schwarzschild black hole. There is a special case of β = 0,
for which the Schwarzschild solution is flat. When β �= 0,
the Schwarzschild black hole has an event horizon. We will
further make an exploration on the dynamics of motion over
Schwarzschild black hole.

In [10], the authors explore the different types of trajec-
tories and the fractal dimension as a function of energy, by

which they discuss transition from order to chaos. For com-
pleteness and making comparisons to the chaotic dynamics
over conformal black hole, here we reexamine the chaotic
dynamics of the string over Schwarzschild black hole by the
maximum Lyapunov exponent described in the above sub-
section.

When β = 0, the space is just flat. We show the maximum
Lyapunov exponent log10|λ| as the function of log10(τ ) for
different initial positions r0 in left plot of Fig. 4. It is obvious
that the behaviors are ordered, i.e., integrable. Further, we
summary the behaviors of the string with β = 0 for more r0

in Table 1. We find that indeed in the flat space, the motion
of the string is ordered, which is independent of the initial
position of the string.

Then, we turn to study the case of β = 0.2, which is a
Schwarzschild black hole with the horizon locating at rh =
0.4. We show the maximum Lyapunov exponent log10|λ| as
the function of log10(τ ) for different initial positions r0 in
the right plot of Fig. 4 and also summary the behaviors of
the string with β = 0.2 for more r0 in Table 1. We find that
when the initial position of the string is far away from the
black hole (r0 ≥ 16), the string oscillates around the black
hole and its motion is ordered. As the initial position of the
string approaches the black hole, the motion of the string is
chaotic and finally the string is captured by the black hole.

All the observations here by the maximum Lyapunov
exponents are in agreement with that in [10].

4.3 Chaotic dynamics around conformal black hole

Now, we turn to study the chaotic dynamics around the con-
formal black hole with general MK parameter γ . It is con-
venient to work with dimensionless parameters. So we make
the following rescaling

ds → βds, t → βt, r → βr, γ → γ

β
. (18)

Under this rescaling, we can set β = 1 in what follows.
Depending on the parameters, there are rich horizon struc-
tures (see for example Refs. [34,37,38] for detailed discus-
sions):

• Case I: No horizon for γ < −1/3 and γ > 1. But when
γ < −1/3, B(r) < 0, for which we don’t consider here.

• Case II: Only the black hole event horizon for 0 < γ <

2/3.
• Case III: Two horizons including black hole event hori-

zon and Cauchy horizon for 2/3 < γ < 1.
• Case IV: Two horizons including black hole event hori-

zon and cosmological horizon for −1/3 < γ < 0.

The initial position r0 and the MK parameter γ are the
key ingredients affecting the chaotic dynamics. We show the
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(a) (b)

Fig. 4 Left plot: The maximum Lyapunov exponents of the string motion with different r0 in flat space (γ = 0 and β = 0). Right plot: The
maximum Lyapunov exponents of the string motion with different r0 over the asymptotically flat Schwarzschild black hole (γ = 0 and β = 0.2)

Table 1 The dynamics behaviors of the string with β = 0 and β = 0.2
for sample r0 (γ = 0). “O” and “C” denote “Ordered” and “Chaotic and
being captured”, respectively. These results are given by observing the

behaviors of the maximum Lyapunov exponent log10|λ| as the function
of log10(τ )

r0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

β = 0 O O O O O O O O O O O O O O O O O O O O

β = 0.2 C C C C C C C C C C C C C C C O O O O O

maximum Lyapunov exponents of the string trajectory for
fixed γ with different initial position of the string in Fig. 5.
To more clearly see the effect of the parameter γ , we also
show the maximum Lyapunov exponents for chosen initial
position with different γ in Fig. 6 and summary the dynamics
behaviors of the string in Table 2. In what follows, we shall
discuss the main dynamics characteristics of the string.

For γ in the region of 0 ≤ γ ≤ 0.1, we find that when
the string is placed close to the black hole at the beginning,
the motion of the string is chaotic and finally the string is
captured by the black hole. As the initial position r0 increases,
the captured time also increases. Further increasing r0, we
observe that the system becomes ordered (see panel (a) in
Fig. 5, right pannel in Fig. 6 and Table 2).

Then, by lots of numerical simulations, we find that when
γ in the region of 0.1 < γ ≤ 1, the motion of the string is
chaotic and finally the string is captured by the black hole
even for the initial position being far away from the horizon
of the black hole. We present sample γ in the panels (b), (c),
(d), (e) in Fig. 5 (also see Fig. 6 and Table 2).

Notice that the captured time doesn’t linearly change with
the MK parameter γ . When γ ≤ 0.1, it is easier for the
string to be captured by the black hole with the increase of
γ . But when γ = 0.5, the captured time almost reaches the
maximum value. And then, further increasing γ , the captured

time decreases, which means that it is easier for the string to
be captured by the black hole. But on the whole, it is easier
for the string to be captured by the black hole for the γ being
in the region of γ ≤ 0.1 than that in the region of γ ≥ 0.5.

We are particularly interested in if any sharp transition
in chaotic dynamics of the string happens when geometry
changes qualitatively. To this end, we explore the case for
γ = 2/3, which the critical value dividing the black hole
with one horizon (Case II) between the black hole with two
horizons, and we cannot find any sharp transition in chaotic
dynamics happening. However, once the system develops
into a massive body without horizon (Case I for γ > 1),
the motion of the string is chaotic but is not captured by
the massive body (see pannel (f) in Figs. 5, 6 and Table 2).
Therefore, we conclude that there a sharp transition in chaotic
dynamics when the horizon disappears.

Finally, we present a simple discussion on the case IV
(−1/3 < γ < 0), for which the black hole has two horizons
including black hole event horizon and cosmological hori-
zon. For this case, since we have to consider the boundary
condition at the cosmological horizon if the string touches
it, the calculation becomes subtle. Fortunately, by studying
the maximum Lyapunov exponents of the ring string trajec-
tory with different γ , we find that as long as the initial posi-
tion of the string doesn’t approach the cosmological horizon,
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(a) (b)

(c)
(d)

(e) (f)

Fig. 5 The maximum Lyapunov exponents of the string trajectory for fixed γ with different initial position r0 = 10, 30, 50, 60

the strings are all captured by the black hole such that they
doesn’t touch the cosmological horizon. Indeed, if we place
the sting approaching the cosmological horizon at the begin-
ning, it is possible for the string to touch the cosmological
horizon and then the calculation becomes subtle. For this
case, we leave for future study.

4.4 Chaos bound

Recently a great advance on chaotic dynamics is that there
is a universal upper bound of Lyapunov exponent, which is
also dubbed as MSS bound, in quantum field theories [42].
In quantum field theory, we can calculate the out-of-time-
correlation function (OTOC) to extract the Lyapunov expo-
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(a) (b)

Fig. 6 The maximum Lyapunov exponents of the string trajectory for different γ with fixed r0 (left pannel is for r0=30 and right pannel for
r0 = 60)

Table 2 The dynamics behaviors of the string for different γ and r0.
“O”, “C” and “/C” denote “Ordered”, “Chaotic and being captured”
and “Chaotic but not being captured”, respectively. These results are

given by observing the behaviors of the maximum Lyapunov exponent
log10|λ| as the function of log10(τ )

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

r0 = 10 C C C C C C C C C C /C /C

r0 = 30 C C C C C C C C C C /C /C

r0 = 50 C C C C C C C C C C /C /C

r0 = 60 O C C C C C C C C C /C /C

nent, which is expected as [43]

λ ≤ 2πT, (19)

where T is the temperature of the system. Here, we also call
the above inequality as the MSS inequality. The bound is
saturated by the holographic dual field theory. It is expected
because the black hole is the faster scrambler [44]. An partic-
ular interesting development is that the Sachdev–Ye–Kitaev
(SYK) model [45,46] also saturates the MSS bound, which
bridges physics of black hole and condensed matter theory
(see for example [47–50]).

On the other hand, the authors in [51] study the chaotic
dynamics of particle over an AdS black hole and they find
that the Lyapunov exponent of particle motion is also subject
to the inequality (19). Further, Čubrović studies the chaotic
dynamics of closed strings in AdS black hole background
and they find the following generalized MSS inequality [16]

λ ≤ 2πTη, (20)

holds. Recalling that η is the winding number of the string
in Eq. (7). When the particle or string moves near the black
hole horizon, the Lyapunov exponent λ closely approaches
the upper bound in Eq. (19) or Eq. (20) [16,51].

Here we would like to examine if the above generalized
MSS inequality (20) still holds in the asymptotically flat

black hole background. To this end, we show the maximum
Lyapunov exponents λ/2πηT for different γ with various r0

in Fig. 7. It is obvious that the generalized MSS inequality
holds. Especially, we observe that as the initial position of
the string approaches the black hole horizon, the Lyapunov
exponent λ also approaches the upper bound in Eq. (20). This
observation is similar to that in AdS black hole background
studied in [16]. Therefore, we infer that the inequalities (19)
and (20) hold not only in AdS black hole background but also
in asymptotically flat black hole background. In future, we
shall further examine and prove this observation by numeri-
cal and analytical methods.

5 Conclusions and discussions

In this paper, by calculating the maximum Lyapunov expo-
nent, we explore the chaotic dynamics of the string around
the conformal black hole. We mainly study the effect of the
characteristic parameter γ of the conformal black hole on the
chaotic behaviors. We summary the main properties of the
chaotic behaviors as what follows.

• When γ is in the region of 0 ≤ γ ≤ 0.1, the chaotic
behavior heavily depends on the initial position r0 of the
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Fig. 7 The maximum Lyapunov exponentλ/2πηT for differentγ with
various r0. The dotted line is the MSS bound

string. When the initial position of string approaches to
the black hole at the beginning, the motion of the string
is chaotic and finially the string is captured by the black
hole. Notice that the capture time also increases with r0

increasing. As r0 further increases, the system becomes
ordered.

• When γ in the region of 0.1 < γ ≤ 1, the motion of
the string is chaotic and finally the string is captured by
the black hole even for the initial position being far away
from the horizon of the black hole.

• There is a sharp transition in chaotic dynamics when the
horizon disappears. To be more specific, the motion of
the string is chaotic and finially the string is captured by
the black hole.1 However, once the system develops into
a massive body without horizon, the motion of the string
is chaotic but the string is not captured.

• The generalized MSS inequality holds even in an asymp-
totically flat black hole background. Especially, as the ini-
tial position of the string approaches the black hole hori-
zon, the Lyapunov exponent also approaches the upper
bound of the generalized MSS inequality.

• When the cosmological horizon is included, the calcula-
tion becomes subtle. But for the case of −1/3 < γ < 0
studied here, we find that as long as the initial position
of the string doesn’t approach the cosmological horizon,
the strings are all captured by the black hole such that
they doesn’t touch the cosmological horizon.

In this paper, we let k = 0 and only focus on the effect
of the MK parameter γ . In future, we shall study the joint
effect of γ and k. For k > 0, the black hole shall include
the cosmological horizon, we need develop a new method
to calculate the maximum Lyapunove exponent to study the
chaotic behavior. Another interesting case is for k < 0, which
corresponds an asymptotically AdS spacetime. It is interest-

1 In the region of 0 ≤ γ ≤ 0.1, the motion of the string can be ordered
if the string is placed far away from the black hole.

ing to study the dual interpretation of the ring string around
the conformal black hole.
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