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ABSTRACT 

Relations between link polynomials constructed from exactly solvable lattice 

models and topological field theory are reviewed. It is found that the surgery 

formula for a three-sphere S 3 with Wilson lines corresponds to the Markov trace 

constructed from the exactly solvable models. This indicates that knot theory 

intimately relates various important subjects such as exactly solvable models, 

conformal field theories and topological quantum field theories. 

-A· Based on Lectures given at the workshop "Beyond Riemann Surfaces" in Research Institute 
for Theoretical Physics, Hiroshima University, February 1989. 
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1. Introduction 

A general theory has been established [1-6] to construct link polynomials, 

topological invariants for knots and links, from exactly solvable models in sta-

tistical mechanics. The theory, which is applicable to both vertex models and 

IRF models, consists of two steps. First, one makes a representation of the braid 

group from the Boltzmann weights of a solvable model. Second, one constructs 

the Markov trace on the representation. The Markov trace is essentially a trace 

of the braid group representation multiplied by the crossing multiplier of the 

model. 

Recently, E. Witten has shown remarkable relations among three dimensional 

topological quantum field theory, two dimensional conformal field theory and link 

polynomials [7]. This topological field theory is the Chern-Simons gauge theory 

with non abelian gauge group G, whose abelian version is related to the fermi-

bose transmutation and self-linking number [8]. 

Let us recall the formulation of the topological quantum field theory [7]. In a 

closed oriented 3-manifold M, we take a link L which consists of r oriented and 

non-intersecting knots C;, i = 1, 2, · · ·, r. We assign a representation R of group 

G to each C;, and consider the following path integral over all gauge orbits 

Z(M;L) = Z(M;C;,R;) = J DAexp(ikS[A]) iiwR;(C;). (1.1) 
i=l 

Here, S[A] is the Chern-Simons action, 

(1.2) 

is the Wilson line which represents the holonomy around C and k E Z is ( topo-

logically quantized) coupling. 

By the method of geometric quantization, Witten has shown that the physical 

Hilbert space of this theory is isomorphic to the space of conformal blocks of 
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associated Wess-Zumino-Witten model [9] at level k, and hence the Hilbert space 
is of finite dimensions. 

We can give another argument for this important result. Note that the Gauss 
law constraint of the cannonical quantization is essentially equivalent to the 
(anomalous) Ward identity for the currents. We can show that the current Ward 
identity and integrability condition characterize the space of conformal blocks, 
and this space is shown to be of finite dimensions [10]. 

From the knowledge of eigenvalues of braid matrices, Witten has derived 
the skein relation for the expectation value of Wilson lines. For G = SU(N) 
and Wilson lines in fundamental representation, he has explicitly given the skein 
relation defining the Jones polynomial [11-13]. For other gauge groups G = 
SO(N) and Sp(2n), this method can be extended straightforwardly, and yields 
the Kauffman polynomial [14]. 

Using "surgery" technique, Witten has presented the following formula: 

Z(S3;L) = LZ(S2 
X (1.3) 

J 

where Z(S2 X S\ Rj, B) is the partition function on 5 2 X 5 1 of both the braid 
B and a parallel Wilson line in the RJ representation. The quantity Sf is the 
elements of the modular transformation matrix. 

The main aim of this report is to compare Witten's results, m particular, 
the surgery formula (1.3) with the knot theory based on the exactly solvable 
models [15]. In §2, we shall briefly explain the knot theory based on exactly 
solvable models in statistical mechanics. In §3, the significances of the crossing 
symmetry will be exhibited. In §4, the relation between the surgery formula and 
the Markov trace constructed from solvable models is explained. In §5, graph-
state IRF models are introduced to show the ubiquity of the crossing multiplier. 
The last section is devoted to discussions. 
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2. Exactly Solvable Models and Link Polynomials 

We introduce braids to describe knots and links [16]. It is known that any 

oriented link can be expressed by a closed braid [17]. The equivalent braids 

expressing the same link are mutually transformed by successive applications of 

Markov moves, I and II (Fig.1) [18]. Markov trace is a linear functional on the 

representation of the braid group En which has the following properties (the 

Markov properties): 

where 

I. </>(AE) = <f;(EA), 

II. ¢(Abn) = r<f;(A), 

<j;(Ab;;-1 ) = f¢(A), 

r = ¢(b;), 

A,E E En, 

From the Markov trace we obtain a link polynomial. 

(2.1) 

The Boltzmann weight w( a, b, c, d; u) of IRF model is defined for the config-

uration of "spins" around a face (Fig.2), where u is the spectral parameter. The 

Yang-Baxter relation reads as (Fig.3) [19] 

L w(a, b, g,f;u)w(f,g, d, e; u + v)w(g, b, c, d; v) 

g 

= Lw(g,c,d,e;u)w(a,b,d,g;u+v)w(f,a,g,e;v), (2.2) 

g 

In addition to the Yang-Baxter relation, the Boltzmann weights of most of exactly 

solvable IRF models satisfy the following basic relations [19,6]. 

1) standard initial condition 

w( a, b, c, d; u = 0) = 8( a, c), (2.3) 

where 8( a, b) is the Kronecker delta. 
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2) inversion relation 

L w( e, c, d, a; u)w(b, c, e, a; -u) = li(b, d). (2.4) 
' 

3) crossing symmetry (Fig.4) 

(
.,P(a).,P(c)) 1/2 w(a,b,c,d;u) = w(b,c,d,a;A -u) .,P(b).,P(d) , (2.5) 

where { .,P( a)} are the crossing multipliers and A is the crossing parameter. 

4) second inversion relation 

"<;""' .,P(e).,P(b) L.. w(c, e, a, b; A- u)w(a, e, c, d; A+ u) .,P(a).,P(c) = li(b, d). (2.6) 
' 

The crossing multipliers of the model are introduced in the crossing symmetry 
and the second inversion relation. They are important in a general theory to 
construct link polynomials from the exactly solvable models. As will be shown 
in §3, the basic relations correspond to local moves, known as the Reidemeister 
moves, on the link diagrams. 

Let us explain the constraint of the model. Nearest neighboring spins of 
IRF model satisfy the constraint. When spin b is allowed (or admissible) to be 
nearest neighbor of spin a, then we write it as b a. Of course, the Boltzmann 
weight is equal to 0 if the configuration is not admissible. A sequence of spins 
1! = (Ro,£1,· · · ,i!n) is also called admissible R;-J(i = 1, · · · ,n). 

Let us introduce the Yang-Baxter operators and construct representations of 
the braid group. The Yang-Baxter operator X;( u) for IRF models are defined by 
[2] (Fig.5) 

= (rr o::) (.ir o:;), (2.7) 
;=0 J=t+l 

Here and hereafter multi-indicies (po,Ph · · · ,Pn) are assumed to be admissible. 
The Yang-Baxter operator X;(u) is a constituent of the transfer matrix T(u) 
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in a 2-dimensional lattice system. In terms of the Yang-Baxter operator the 
Yang-Baxter relation is written as [19,6] 

Xi(u)Xi+I(u + v)Xi(v) = Xi+I(v)Xi(u + v)Xi+!(u), 

Xi(u)Xj(v) = Xj(v)Xi(u), li- jl;::: 2. (2.8) 

We call this algebra the Yang-Baxter algebra. We see that the defining relations 
of the Yang-Baxter algebra (2.8) are analogous to the braid relations. From the 
Yang-Baxter operators {Xi( u)} we can construct the representation of the braid 
group { Gi} by the following formula [1 J 

G±1 = lim Xi(± u). 
I U-+00 

(2.9) 

The well-definedness of the limit requires that the model is critical, that is, the 
Boltzmann weight is parametrized by trigonometric (or hyperbolic) function. 

Let us construct Markov trace ¢>(-) on the braid group representation. Using 
the crossing multipliers of the model, we introduce a "constrained trace" Tr(A) 
[2]: 

then the Markov trace ¢( ·) is written as 

A _ Tr(A) 
¢( ) - Tr(J(n))' 

(Co :fixed), (2.10a) 

A, J(n) E Bn, (2.10b) 

where J(n) is the identity. The symbol E represents the summataion over admissi-
ble multi-indices with Co being fixed. We also have a formula of the Markov trace 
for vertex models [1,6], which is related to (2.10) by the Wu-Kadanoff-Wegner 
transformation [6,20]. 



We can show that the trace </>(-) defined in (2.10) satisfies the Markov prop-

erties (2.1) by proving the extended Markov property: 

,P(b) L w(a, b, a, c; u) ,P(a) = H(u; .A) 
b-a 

(independent of a, c), 

where the function H ( u; >.) is called the characteristic function [ 6]. 

3. Crossing Symmetry, Temperley-Lieb 
Algebra and Graphical formulation 

(2.11) 

Let us discuss the meanings and consequences of the crossing symmetry: 

It has a remarkable significance to algebraic and graphical approaches in knot 

theory [6]. We use the notation of the factorized S-matrices. It is noted that the 

factorized S-matrices and solvable vertex models are equivalent. The discussion 

also holds for solvable IRF models [6]. 

We denote the amplitude of the scattering process (a, (3) --> (f.l-, v) by S$;( u) 
(Fig.6). The Yang-Baxter relation for the factorized S-matrices reads as (Fig.7) 

L + = L + (3.1) 
ap, ap, 

The relation (3.1), often referred to as the factorization equation, was introduced 

as the consistency condition for the Bethe ansatz wavefunction [21]. The fac-

torized S-matrices represent the elastic scattering of particles in that only the 

exchanges of momenta and the phase shifts occur. 

For the factorized S-matrices, the Yang-Baxter operator X;( u) is defined by 

[1,6] (Fig.S) 

In terms of the Yang-Baxter operator the Yang-Baxter relation (3.1) 1s agam 

expressed as (2.8). 
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Generally, the factorized S-matrices satisfy the following crossing symmetry 

and the standard initial condition. 

1) crossing symmetry (Fig.9) 

S"'v(u) = u) (r(a)r(l-'))1/2 (3.3) 
v"' r(/3)r( v) ' 

where we have introduced the notation a = -O< for "charge conjugation" and 

r( 0<) are the crossing multipliers with a relation r( -O<) = 1/r( 0< ). 

2) standard initial condition (Fig.lO) 

(3.4) 

The above relations have the following physical meanings. We can interepret u 

as the rapidity difference of the scattering particles. Also it can be considered as 

the scattering angle (Fig.6). The standard initial condition indicates that there 

is no scattering between two particles with zero relative velocity. The crossing 

symmetry describes the invariance of the system under 90 degree rotation in 

a 2-dimensional space. Note that from the standard initial condition and the 

crossing symmetry, the inversion relation and the second inversion relation for 

the factorized S-matrices (solvable vertex models) are derived. 

It is important in the critical (vertex and IRF) models with the crossing 

symmetry that the Yang-Baxter operator becomes the Temperley-Lieb operator 

at the point u = .\ [6]. Setting 

E; =X;( .X), (3.5) 

we find that the operators { E;} satisfy the following relations 
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li- jl ::>: 2, (3.6) 

where the quantity q112 is related to the crossing multipliers 7/;( i) (or { r( a)}) by 

" 
= 2.: ,P(b) 

b-a,P(a)' 

for S matrix (vertex model), 

for IRF model. 

(3.7a) 

(3.7b) 

The relations (3.6) are the defining relations of the Temperley-Lieb algebra [21]. 

Furthermore, the relation (3.5) is of importance in an algebraic formulation 
of the knot theory [6]. We only point out two key observations. First, the 
operators {E;, G;} form an braid-monoid algebra. Second, using the Temperley-
Lieb operator E;, we can show that the extended Markov property is equivalent 
to the relation (projection relation) [6] 

X;(u)E; = (J(u)E;. (3.8) 

where (J(u) is a function which is related to the characteristic function H(u; .\) 
by (J(u) = H(.\- u;.\). 

Let us consider the graphical meanings of the relation (3.6) [6]. From the 
crossing symmetry and the standard initial condition we have (Fig.ll) 

"" _ h _ & P 
( 

)) 
1/2 

S13M(.\)- r((J)r(v) S""(O)- r(a)613 · (3.9) 

We can regard the elements r( a )6$ and )Db as the weights for the pair-
annihilation and the pair-creation diagrams, respectively (Fig.l2). Then, the 
Yang-Baxter operator at u = .\ is depicted as the monoid diagram, by which the 
Temperley-Lieb algebra is explained. This way of thinking is consistent with a 
fact that the energy at the point .\ is related to the pair-creation energy. For 
IRF models, the weights (,P(a)f,p(b)) 112 and (,P(c)f,p(b))112 correspond to the 
pair-annihilation and pair-creation diagrams, respectively (Fig.l3) [6]. 
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Let us introduce link diagram L, which is 2-dimensional projection of a link 

L (Fig.14). The writhe w(L) is the sum of signs for all crossings {C;} in the link 

diagram (Fig.15): 

w(L) = 2::: ,( C;), (3.10) 

We can formulate link polynomial directly on link diagrams. First we calcu-

late statistical sum Tr(L) on the diagram L by the rules given in Fig.12 (Fig.13). 

The link polynomial for the link L is calculated as 

(L) = -w(L) Tr(L) 
a c " , 

Tr(Ko) 
(3.11) 

where ko is the link diagram for the trivial knot (a loop) and the constant c is 

defined by 

c = lim {3( u). 
u-oo 

(3.12) 

or by a relation 

G;E; = cE;. (3.13) 

We can confirm a(L) is invariant under the Reidemeister moves of link diagrams 

(Fig.16), and hence a(L) is a topological invariant of the link L. Thus we have 

shown that a model with the crossing symmetry gives a graphical construction 

of the link polynomial. 

To conclude this section, we again emphasize that the crossing symmetry has 

algebraic and graphical significances. Algebraically, it leads to the Temperley-

Lieb algebra and the braid-monoid algebra. Graphically, the pair-creation and 

pair-annihilation diagrams are introduced through the crossing symmetry. 
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4. Modular Transformation, Fusion Rule and Crossing Multiplier 

In this section we study the relation between the surgery formula and the 
Markov trace. In the surgery formula (1.3), modular transformation matrix Sf 
plays an essential role. For WZW model, conformal blocks on the torus are given 
by the characters of the Kac-Moody algebra. The modular transformation matrix 
of the characters is given by [9,23] 

Sjo 2rrip -5 = TrV;(exp-k-), 
00 + g 

( 4.1) 

where p is the half sum of all positive roots, g is the dual Coxeter number, and 
k is the level of the integrable representation whose ground state is irreducible 
representation Vj of group G. 

The quantity defined by (4.1) appears in several places in mathematics and 
physics. In the context of exactly solvable models, it is the crossing multiplier of 
critical8VSOS model [24,19], and its generalizations, A, B, C and D IRF models 
[25]. Explicitly we find that the crossing multiplier and the matrix elements S;i 
are related by 

,P(j) Soj 
,P(O) = Soo ( 4.2) 

For the vertex models [26,1,28,29], the same correspondence also holds. It is 
known that the partition function Z( S 2 X S1 ; Rj, B) on S 2 X S 1 corresponds to 
the trace of the braid matrix 

(Co= O,Cn = j). (4.3) 

This braid matrix B is the monodromy matrix on the conformal blocks on S 2 

For the case of SU(2), the monodromy matrix has been explicitly obtained [29] by 
solving the Knizhnik-Zamolodchikov equation [30], and the monodromy matrix 
is equivalent to the braid matrix appearing from SVSOS model or IRF model 
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associated to SU(2) [2,25]. Recently it has been shown [31] that the above 

equivalence between monodromy matrices in WZW models and the Boltzmann 

weights in IRF models (or the R-matrices in quantum groups) also holds for 

other gauge groups of type A, B, C and D. These facts indicate that the surgery 

formula (1.3) is expressed as [15] 

Z(S3 ;L) = I;z(s2 x S1 ;Rj,B)st 
j 

(eo= o), ( 4.4) 

where the symbol B denotes the constrained trace. Thus, the surgery formula of 

a link Lin S 3 has the same form with the Markov trace given by the constrained 

trace (2.10) for the IRF models [15]. 

The skein relations of the link polynomials constructed from SVSOS and 

A,B,C,D, IRF models can be explained by the conformal weights of the WZW 

models [15]. This fact also agrees with the correspondence between the surgery 

formula and the Markov trace for the IRF model [15]. 

The relation ( 4.2) can be also explained as folows. Recall the fusion algebra 

of the rational conformal field theory [32,33]: 

</>i<I>J = L N;}q,k, ( 4.5) 
k 

where generators { </>;} correspond to primary fields, and N;j counts the multi-

plicity of <f>k appearing in OPE of</>; and </>j· Let us consider one dimensional 

representations E C} of the fusion algebra 

( 4.6) 

By the Verlinde's formula [32], the are given by modular transformation 
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matrix S;j as follows 

),(n) = S;n 
' Son· ( 4.7) 

The value >.1°) = So;/Soo can be seen as the relative dimension [33] of the repre-
sentation space of the chiral algebra. On the other hand, the crossing multipliers 
{ 1/;(j)} of the solvable IRF models are determined by the eigenvalue problem [6] 

2:: '</;(£) = ql/2,pcjJ, ( 4.8) 

where the summation is over all states admissible to j. The admissibility con-
dition can be described by the coefficients N;J for corresponding conformal field 
theory. This fact explains the relation ( 4.2) between the matrix elements of the 
modular transformation and the crossing multipliers. 

For the case of restricted 8VSOS model, the condition ( 4.8) is 

L NM(R) = qlf2,p(j), ( 4.9) 
e 

with 

N e _ ,e .e 
!j - Vj+l + Vj-1· (4.10) 

Here N 15 is nothing but the fusion coefficient for SU(2) WZW model. 
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5. Graph State IRF Models 

The theory to construct link polynomials from exactly solvable models takes 

advantage of the crossing multipliers of the models. To show a wide applicability 

of the theory, we shall present examples of solvable models other than A, B, 

C and D models. In fact, there exist various models with non-trivial crossing 

multipliers from which link polynomials can be constructed. 

Let us introduce graph-state IRF models [6](Fig.17). The constraint on the 

model can be expressed by a graph [34,2,35]. Each point of the graph corresponds 

to a possible spin value of the model. The point for a spin b is connected to the 

point for a spin a, if and only if b is admisssible to a: b a. For any graph in 

any dimensions we consider the following relation [2] 

L 1/J(b) = q112.p(a), (5.1) 
b-a 

where the summation is over all spin values admissible to a. This relation has 

already appeared in (3.7) and ( 4.8). From the solutions of the eigenvalue problem 

(5.1) we have the Temperley-Lieb operators by 

It is easy to see that the operator U; satisfies the defining relations of the 

Temperley-Lieb algebra. Choosing the crossing parameter A by 

2cos.>- = q112, (5.3) 

and from the Temperley-Lieb operator U, , we can construct Yang-Baxter oper-

ator X;( u) by [2] 

sin(.>-- u) sinu 
X;(u)= . A (I+ . (' )U;) 

Slll Slll /\- U 
(5.4) 

Let us give an example. For a graph of the two-dimensional square lattice 



depicted in Fig.l7(f), the crossing multiplier is given by 

,P(a') =sin( a'· ri + wo), (5.5) 

where. the lattice points on the two-dimensional square lattice are expressed in 
terms of 

(5.6) 

and ri = (n1, n2). For this model the quantity q112 is given by 

q112 = 2cosn1 + 2cosn2. (5.7) 

Thus we have shown that we can construct a solvable model for any graph. 
These models are generalizations of the SVSOS models. When a graph has a finite 
size, the graph-state IRF model is a restricted solid-on-solid (RSOS) model. 

Since the extended Markov property (2.11) holds for graph-state model, we 
can construct the Markov trace on the braid group representation. Therefore we 
have link polynomial corresponding to arbitrary graph. In other words, from the 
crossing symmetry, solvable models and then link polynomials are constructed in 
a systeinatic manner. 

6. Discussions 

1) For link polynomial given by the topological quantum field theory, we have 
found that its expression by the surgery formula corresponds to the general con-
struction oflink polynomial based on the exactly solvable models [15]. The cross-
ing multiplier is the keypoint of the latter construction. Crossing multiplier and 
modular transformation matrix is closely related by the fusion algebra. There-
fore, it seems that the construction of link polynomial by the surgery formula is 
as general as the knot theory based on the exactly solvable models. 
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2) An advantage of the knot theory based on the exactly solvable models is that 

the crossing multiplier and the crossing symmetry are naturally introduced. In 

§5, we have shown that from the crossing symmetry with non-trivial crossing 

multipliers solvable models and link polynomials are systematically derived. 

3) We can construct composite solvable models. The key of the construction is 

that the projectors can be made from the Yang-Baxter operators [36,6]. The 

method is called composition method or fusion method. The projectors are con-

sidered as generalized Young operators ["6]. We can construct "3-point vertex" 

using the projectors (Fig.l8). For graph-state models, the projectors consist of 

the crossing multipliers. Further, it has been shown that the projectors satisfy 

the pass-through condition [6] (Fig.l9) and also they are compatible with the 

Markov properties [6]. Therefore by using the projectors we have topological 

invariant for linking graphs. 

4.) The row-to-row transfer matrix T( u) of two-dimensional lattice system is con-

structed from the Yang-Baxter operator as 

where 

T(u) = U(u)V(u), 

U(u) = X1(u)X3(u) · · ·Xzn-l(u), 

V(u) = Xz(u)X4(u)···Xzn(u), 

The partition function of the system is written as 

ZN(u) = Tr((U(u)V(u)t), N = 2n x 2n, 

and then the free energy f per site is given by 

f(u) = lim ]_logZN(u). 
N-ooN 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

We note that if we start from the Yang-Baxter operator for the graph-state model, 
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then the partition function is written as a summation of the crossing multiplers 

of the model. 
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1 •.. n 
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1 · • • n 
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A 

1 • • . n ... I 
A 
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Fig.l Markov moves I and II. 

1 ... n 

I . . . I 

B 
I . . . I 

A 
I . . . I 

1 · · • n n+1 
I · · · I 

A · ... x 
1 . . • n n+l 

. . . I 

A ... x 

Fig.2 Boltzmann weight of IRF model. 
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e 

f 
Fig.3 Yang-Ba.·der relation for IRF model.. 

c 

b 

a 

= [?j;(a)?J;(c)jl/2 a 
1/J(d)?j;(b) 

d 

)1-u 

b 

Fig.4 Crossing of IRF model.. 

c 

u ·--0 1 i -1 i+1 n 
i 

Fig.5 Yang-Baxter operator for IRF model.. 
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l/ 

u 
0: {3 

Fig.6 Scattering amplitude S$;(u). 

l/ l/ 

{3 

p p r 

CT 

Fig.7 Yang-Baxter relation for S-matrix (vertex model). 

¥ ... 
1 i-1 i i+1 i+2 n 

Fig.S Yang-Baxter operator for S-matrix (vertex model). 
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a: 

Fig.9 Crossing symmetry of S-matrix. 

l/ l/ 

0 

a: (3 a: (3 

Fig.lO Standard initial condition. 
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a (3 .a /3 a 

= 

a a 

Fig.ll Scattering with u = ,.\ corresponds to annihilation- creation diagram 

(monoid diagram). 

(ai 

(cJ (d) 

Fig.12 Weights for elements of link diagrams. 

(a) pair-annihilation diagram r(a)5$ . 

(b) pair-creation diagram r(l' )a;. 
(c) braid diagram with w = -1, = Sff:(co). 

(d) braid diagram with w = 1, = Sff:( -co). 
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b 

b 

(al (b) 

(cl (d) 

Fig.l3 Weights for elements of link diagrams. 

(a) pair-annihilation diagram (1/;(a)/'if;(b))l/2. 

(b) pair-creation diagram (1/;(c)/'if;(b))l/2. 

(c) braid diagram with w = -1, G(a, b, c, d; +) = w( a, b, c, d; oo). 

(d) braid diagram with w = 1, G( a, b, c, d;-) = w( a, b, c, d; -oo ). 

L 

Fig.l4 Link diagram i. 
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X X 
Fig.l5 Sign e(C) of crossings C. 

I f 
/ 

II ( 

Ill 

Fig.l6 Reidemeister moves I, II and III. 
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<•> (e) 

0--0-----o--o---o 

(b) 
(f) t t l t 

' ' ' ... . .. 
.... ... 

(c) 
+-· .. 

0---o----< ..... . .... 
(d) ' ' ' + I ; 

-----< 

Fig.17 Graph-state models. (a) restricted SVSOS model (A type), (b) unre-

stricted 8VSOS model, (c) D type model, (d) special S2-generation (D(ll) model, 

(e) periodic 8VSOS model (A(l) type), (f) a two-dimensional square lattice. 

Fig.18 3-point vertex. Circle denotes the projector. 
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Fig.l9 Pass-through condition. 
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