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Abstract

Since around 2000, the Standard Model extensions on extra spatial dimensions have
emerged as attractive alternatives to supersymmetric scenarios. In particular, the class
of warped dimension models with a brane-localized Higgs boson coupled to bulk fermions
(dual to composite Higgs models) can address both the flavor puzzle and the gauge hierarchy
problem. Nevertheless, a key question arises due to the possibility of fermion wave function
discontinuities at the Higgs boundary: how to rigorously build the Lagrangian and calculate
the fermion mass spectrum as well as the effective 4D Yukawa couplings?

In this thesis, we show that the proper treatment does not rely on any Higgs peak
regularization, as usually done in the literature, but may require the presence of specific
bilinear brane terms instead. This result is welcome as the Higgs regularization suffers
from mathematical discrepancies reflected in the amplitude paradox of non-commutativity
in some calculation steps, as debated in the literature. The bilinear brane terms could
allow elaborating an ultra-violet origin of the chiral nature of the Standard Model and
its chirality distribution among quarks/leptons. The introduction of bilinear brane terms
can be replaced by vanishing conditions for probability currents at the interval boundaries.
The current conditions are then implemented through essential boundary conditions to be
contrasted with the natural boundary conditions derived from the action variation. All these
theoretical conclusions are confirmed in particular by the exact converging results of the 4D
versus 5D approaches. The new calculation methods presented, implying the independence
of excited fermion masses and 4D Yukawa couplings on the ‘wrong-chirality’ Yukawa terms,
have impacts on phenomenological results like the relaxing of previously obtained strong
bounds on Kaluza-Klein masses induced by flavor-changing reactions generated by the tree-
level exchanges of the Higgs field.

Then we extend those rigorous approaches from the interval configuration to the dual
S1/Z2 orbifold, which allows, in particular, a strict treatment of the fermion profile discon-
tinuities across the characteristic branes (fixed points and Yukawa coupling brane). We also
show that the Z2 parity transformations in the bulk do not affect the fermion chiralities,
masses, and couplings, in contrast with the EBC and the BBT, but when extended to the
fixed points, they can generate the chiral nature of the theory and even select the Standard
Model chirality setup while fixing as well the fermion masses and couplings.

We have realized that the bilinear brane terms, located at intermediate positions along
the interval, provide an opportunity to explain the existence of flavors (replicas of elementary
particles with identical quantum numbers): the three families in this context correspond
to three different quantum states, of a unique 5D field, localized respectively between such
brane terms. This new generation partition mechanism, along the extra dimension, further
generates fermion mass hierarchies automatically (from different wave function overlaps)
when the Higgs boson profile is exponentially localized towards the so-called TeV-brane to
address the gauge hierarchy problem. The two hierarchy problems are then solved through
the same exponential scalar profile. The partition mechanism also offers a new field theory
method to localize all fermions on a (thick) brane, alternatively to the standard soliton
coupling approach.
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Introduction

The Standard Model of particle physics [4–7], based on the Quantum Field Theory [8–
10], is undoubtedly today the most successful scenario describing the known elementary
particles and fundamental forces of nature. In July 2012, the historical discovery of a
125.5 GeV resonance at CERN-Geneva’s Large Hadron Collider by the ATLAS [11] and
CMS [12] Collaborations, most likely constituting the Higgs boson [13–15], brought the
last missing cornerstone of the SM 1 by confirming the standard Higgs mechanism of Elec-
troWeak Symmetry Breaking. Thanks to an undeniable experimental success, its complete
elementary particle content has been discovered (see Figure 1), and the theoretical pre-
dictions of the SM have been experimentally confirmed with a good accuracy at the Large
Electron-Positron collider, Tevatron and LHC [16].

Figure 1 – Schematic view of the Standard Model of particle physics after the EW sym-
metry breaking [3].

Although the SM is a very successful theory that has offered us some striking agree-
ments between experimental data and theoretical predictions, a variety of statements,
both theoretical and experimental, lead to the undoubted conclusion that the SM should

1. All the abbreviations are presented explicitly in Appendix K.2.
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be only an effective theory of a more fundamental one, leaving several important questions
unanswered.

On the observational side, there is no confirmed interpretation of the dark matter of
the universe [17–19]. Cosmological measurements carried out by the Planck satellite [20]
indicate that approximately 27% of the total energy budget of the universe is made out
of dark matter, which could be constituted by the presence of one or several species of
massive particles permeating the cosmos at nonrelativistic speeds, if those neither carry
electrical charge nor participate in the strong interaction and, most importantly, are stable
on cosmological time scales. Among the rest of ∼ 73%, only 5% is represented by the
ordinary, luminous matter. In contrast, the remaining 68% of the energy density appears
to be made out of the even more mysterious dark energy (Cosmological Constant) and
further raises deep questions about quantum gravity.

Another shortcoming of the SM regarding observations, in particle physics, concerns
the now well measured neutrino flavor oscillations, which imply that at least two of them
must be massive [21]. Nevertheless, in the SM, neutrinos are entirely massless, so that
they should not oscillate from one flavor to another. Thus, one needs to add new physics
to give them a mass. In the fermion sector of the SM, one observes a large mass hierarchy
between the neutrino mass scale and the top quark mass (see Figure 1) to be explained
as well.

The other experimental puzzle has to do with the flavor space: the mysterious mass
hierarchies among most SM fermions [from ∼ 0.5 MeV for the electron to ∼ 170 GeV for the
top quark], the unknown ultra-violet completion fixing the quark/lepton (CKM/PMNS
matrix) mixing angle values, the origin of the three observed fermion generations and
possibly the recent set of deviations from lepton flavour universality measured through
neutral/charged-current semi-leptonic B meson decays. Notice that the mass hierarchies
are protected by the approximate chiral symmetry of the SM and remain therefore quite
stable against radiative corrections.

The SM also suffers from several drawbacks of theoretical origin. First, while strong
(QCD) and electroweak interactions are included in the SM, the SM does not give a
description of gravity which consists of a back-reaction of matter and energy on the space-
time geometry within the Einstein’s theory of General Relativity [22]. Einstein’s theory is
classical and cannot describe the quantum fluctuations of spacetime, so our today’s under-
standing of the physical world lacks a comprehensive global theoretical description. The
inability to consistently incorporate a quantum theory of gravity – with gravitons coupled
to the SM sector – lies in the fact that gravity is then a non-renormalizable theory: at each
order in perturbation theory, new divergences appear, which mandate the introduction of
an infinity of counter-terms in the renormalized Lagrangian (describing gravity). Or, each
counter-term needs to be fixed by experimental measurements, meaning that one has to
perform an infinite number of measurements to give sense to gravity at the quantum level,
which is not consistent.

Another deep question is the origin of the ElectroWeak symmetry breaking and precise
Higgs potential in the SM. The ElectroWeak sector is described by the Glashow-Salam-
Weinberg (GSW) model [5, 6, 23], based on the spontaneous symmetry breaking of gauge
theory. In this framework, one applies the Brout-Englert-Guralnik-Hagen-Higgs-Kibble
mechanism [24–29] where the SM Higgs field H(xµ) is a complex scalar field with a ‘hat’
form potential:

V (H) = m2
H H2 + λH |H|4 , with m2

H < 0 , λH > 0 , (1)

which leads to a non-vanishing Vacuum Expectation Value v ≃ 246 GeV for H(xµ) trig-
gering the spontaneous EW symmetry breaking, while the fluctuations of the field around
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its VEV describe a spin-0 particle, the Higgs boson h(xµ),

H(xµ) = 1√
2

[v + h(xµ)] , with v =

√
−m2

H

λH
, (2)

where the mass of 125.5 GeV was measured in 2012 [11, 12]. Thus, the free Lagrangian
terms of h reads as,

L ∋ 1
2∂µh∂

µh− 1
2m

2
h h

2 , with m2
h = −2×m2

H . (3)

Next, a deep hierarchy problem remains unexplained in the SM: the vast discrepancy
between the EW scale ΛEW ≃ 100 GeV and the Planck scale ΛP ≃ 1019 GeV 2, constituting
the so-called gauge hierarchy problem of the SM. It’s not a problem to the SM itself but
an uncomfortable high sensitivity of the Higgs potential to the UV completion from New
Physics. More precisely, the hierarchy problem appears in the fact that m2

h is very sensitive
to the high-energy behavior of quantum corrections, induced by particles directly (or
indirectly) interacting with the Higgs boson. The hierarchy problem is thus related to the
radiative corrections ∆m2

h that the physical Higgs boson mass receives at the loop-level,

m2
h,phys = m2

h,(bare) + ∆m2
h . (4)

f

f

h h

(a) hf̄f

h h

S

(b) h2S̄S

Figure 2 – One-loop corrections to the Higgs squared mass parameter m2
h,phys, due to (a)

a Dirac fermion f [antiparticle f̄ ], and (b) a complex scalar S [antiparticle S̄].

For example, in Figure 2 (a), one has a correction to m2
h coming from a loop exchanging

a Dirac fermion f with mass mf [antiparticle f̄ ]. If the Higgs field H couples to f via the
Lagrangian term,

−λfHf̄f
SSB−−−→ − λf√

2
hf̄f , (5)

then the Feynman diagram in the Figure 2 (a) yields a correction

∆m2
h ∼ −

λ2
f

8π2 Λ2
UV , (6)

2. Gravity should become important at this scale.
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where ΛUV ≃ ΛP
3 is an ultra-violet cutoff for New Physics regulating the loop integral.

Since the radiative corrections are quadratic in the cutoff, the (squared) Higgs mass is
quadratically sensitive to every new mass scale above ΛEW ≃ 100 GeV [30–32]. Besides,
for a cutoff at the Planck scale, these corrections are roughly 36 orders of magnitude larger
than the value of m2

h,phys ≃ (100GeV)2 required by the EW symmetry breaking. Of course
the bare Higgs mass mh,(bare) can be adjusted to just cancel the radiative corrections, but
such extreme fine-tuning seems technically unnatural as further different at each order of
the calculation perturbation.
The radiative corrections can also receive contributions from any heavy complex scalar
particle S with mass mS [antiparticle S̄] coupled to the Higgs boson via the Lagrangian
term,

−λSH̄HS̄S
SSB−−−→ −λS

2 h2S̄S . (7)

Then the Feynman diagram in Figure 2 (b) yields a one-loop correction,

∆m2
h ∼ + λS

16π2 Λ2
UV . (8)

Thus, the fine-tuning still arises here to reproduce the much smaller measured Higgs
mass. Note that the quadratic divergences in Eq. (6)-(8) occur only for scalar particles as
the masses of fermions and vector bosons are protected by chiral and gauge symmetries,
respectively. In the SM indeed, the fermion and gauge boson physical masses receive
corrections proportional to their bare masses, i.e. mphys − mbare ∝ mbare ln(ΛUV /m),
which is a consequence of chiral (gauge) symmetry in the case of fermions (gauge bosons).
The gauge hierarchy problem has received a lot of attention in the last decades, and in
particular some generic field theory (model-independent) ways out of this problem were
suggested, like absence of heavy particles interacting with the Higgs scalar field up to the
Planck scale,. . . This is because so far no new state has been found around the TeV corner
at the LHC, which could have provide a signature for some SM extension addressing the
gauge hierarchy problem.

Finally, the absence of CP violation effects in strong interactions, described by Quan-
tum ChromoDynamics [33–37], constitutes also an open question since a CP violating
topological term is authorized by the symmetries of the SM.

Many attempts have been undertaken to provide solutions to the main gauge hierar-
chy problem. One of the most famous approaches to address the gauge hierarchy problem
is SUperSYmmetry, which relates fermions to bosons, in the sense that for every known
fermion, there is a bosonic partner (so-called superpartner), which retains the same quan-
tum numbers as the original particle but whose spin differs by 1/2, and vice versa. The
SUSY provides a protection mechanism for the (Higgs) scalar mass. Basically, if each of
the quarks and leptons of the Standard Model is accompanied by a complex scalar with
coupling λS = 2 × λ2

f , then the Λ2
UV quadratic divergence contributions in Figure 2 (a)

and (b) would neatly cancel each other by the extra supersymmetry [38–43]. In this con-
text, the Higgs boson gets paired with its spin-1/2 superpartner, dubbed the Higgsino,
of which the SM scalar ‘inherits’. The Higgsino receives protection from the chiral sym-
metry. One particularly popular version is the Minimal Supersymmetric Standard Model
or MSSM [44]. So far, unfortunately, no superparticle has been discovered, which means
that SUSY is very badly broken.

Supersymmetry benefits from other strong motivations of theoretical nature, like rep-
resenting the first non-trivial extension of the Poincaré group or relying on gravity in

3. Under the assumption that new physics enters at ΛP .
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its local form (supergravity), as well as of phenomenological nature, like allowing gauge
coupling and group unification within a Grand Unified Theory context – the extended
SU(5) gauge group being probably the most famous one – or providing possible Weakly
Interacting Massive Particles being realistic candidates for the dark matter of the universe:
Lightest Supersymmetric Particles (LSP) being stable thanks to the conserved R-parity.

Over the last two decades, an appealing alternative solution to the gauge hierarchy
problem has been developed. In QFT, spacetime is a simple background where fields prop-
agate. In general relativity, spacetime is dynamic and the theory describes how classical
sources backreact on the geometry. In both theories, the number of spacetime dimensions
is not determined by the first principles. On the one hand, compactified timelike extra
dimensions seem to lead to physically inconsistent theories because the KK excitations
of the fields propagating in the extra dimensions are tachyons, which imply violation of
physically reasonable conditions like causality and unitarity [45, 46]. On the other hand,
spacelike extra dimensions have a long history in fundamental physics since the pioneer
works by G. Nordström [47], T. Kaluza [48] and O. Klein [49, 50] who has built the
first consistent EFTs. Possibly, in a complete theory of gravity that describes Planckian
physics, the dimensionality of spacetime can be determined by the dynamics or the consis-
tency of the theory like string theories [51]. Interestingly, both SUSY and extra dimensions
appear as necessary ingredients of superstring theories. In the absence of a particular UV
completion of gravity, one is free to build models adding an arbitrary number of spacetime
dimensions compactified on some geometries with a given topology. The only criteria are
that the higher-dimensional model should be consistent with all the observations indicat-
ing that our Universe appears four-dimensional in current low-energy experiments. These
extra spatial dimensions are thus in general constrained to be typically microscopic (from
several collider physics and gravitational tests) – except in some specific gravity-localized
scenarios (RS2).

The scenario proposed by Arkani-Hamed, Dimopoulos and Dvali [52–54], with com-
pactified Large Extra Dimensions between two branes, beyond the ordinary 4D Minkowski
space, and the SM fields localized on a 3D wall (3-brane), allows to have a higher-
dimensional Planck scale at a few TeV. Consequently, gravity gets diluted in the extra-
dimensional volume, which is why, in such models, gravity appears so weak in the effective
4D description. The 4D Planck scale ΛP is just an effective scale. This model also allows to
generate small Dirac masses for the neutrinos if the right-handed neutrinos are KK modes
of a gauge singlet field propagating into the whole spacetime (the bulk) [55–57]. In the
simplest version with toroidal compactification and with less than seven LEDs motivated
by superstring/M theory, the compactification radii are large compared to the higher-
dimensional Planck length: the gauge hierarchy disappears at the price of introducing a
geometrical hierarchy to stabilize. The ADD proposition is thus a kind of reformulation
of the gauge hierarchy problem.

A popular way to overcome the ADD geometrical hierarchy question is to use a single
warped extra dimension as proposed concretely by Randall and Sundrum [58]: the RS1
model. The SM fields are localized at the boundary of a slice of an AdS5 (5D Anti-
de Sitter) spacetime where the warp factor redshifts the scale at which gravity becomes
strongly coupled (from the Planck scale ΛP ≃ 1019 GeV to the TeV scale) thanks to an
exponentially suppressed scale 4. Quickly, it was realized that only the Higgs field has to

4. Strongly coupled gravity at the TeV scale may generate dangerous brane-localized higher-dimensional
operators inducing proton decay, large Majorana neutrino masses and Flavor Changing Neutral Currents
[53]. The value of these operator Wilson coefficients is suppressed only by the TeV scale, and one has to
add new ingredients to the scenario to forbid them, like gauging some global symmetries of the SM as the
baryon and lepton numbers [59] and other flavor symmetries [60–62], or spreading the brane-localized SM
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be localized (or highly peaked) at the boundary where the effective cut-off is of the order
of the TeV (if the EW scale is to be stabilized by such a geometrical structure), while
gauge bosons and fermions can propagate into the bulk [64–69].

Finally, this RS version provides a totally new physical interpretation [70, 71] for the
origin of the large mass hierarchy prevailing among different flavors and types of SM
fermions 5. The zero modes of the fields are identified with the SM particles: the fermion
zero modes can be localized near one of the two boundaries thanks to 5D Dirac masses.
The wave function of a heavy (light) SM fermion can then have a significant (small)
overlap with the boundary-localized Higgs field. Therefore, without ad hoc hierarchies in
these fundamental 5D masses and Yukawa couplings, one can generate the flavor mass
hierarchy observed in Nature (see for instance Ref. [68, 76]). Such an interpretation of
the whole SM fermion mass hierarchy is attractive, as it does not rely on the presence
of any new symmetry in the short-distance theory, in contrast with the usual Froggatt-
Nielsen mechanism [77] where a flavor symmetry is crucial. This interpretation is purely
geometrical: it is based on the possibility of different localizations for SM fermions along
an extra dimension, depending on their flavor and type 6. In such a scenario, the quark
masses and CKM mixing angles can be effectively accommodated [80–82], as well as the
lepton masses and MNS mixing angles in both cases where neutrinos acquire Majorana
masses (via either dimension five operators [83] or the specific see-saw mechanism [84])
and Dirac masses (see Ref. [85] and [86] for order unity Yukawa couplings leading to mass
hierarchies essentially generated by the higher-dimensional mechanism).

In addition, this RS version with bulk matter turns out to constitute a suitable frame-
work with respect to model building in general and various phenomenological aspects. For
instance, unification of the gauge couplings at a high scale is possible within a Grand Uni-
fied Theory framework [87–91]. Secondly, from the cosmological point of view, there exists
a viable new Weakly Interacting Massive Particle candidate for dark matter – the so-called
Lightest KK Particle (LKP) being stable thanks e.g. to a residual KK-parity [92–94]. The
scenarios with an extra warped dimension also appear to constitute a really new paradigm
in the sense that those are approximately dual, through the Anti-de Sitter / Conformal
Field Theory correspondence, to composite Higgs models which shed a new light on the
origin of the ElectroWeak symmetry breaking mechanism as well as the little hierarchy
problem.

Therefore, in order to develop a clear understanding and study the phenomenology of
higher-dimensional models, it is crucial to have in particular a rigorous field theoretical
treatment of 5D fermions that can accommodate couplings to a brane-localized Higgs field
– a standard geometrical configuration arising in attractive models as discussed above.
This is the first topics we propose to study in this Ph.D. thesis. A few words here on
our general methodology. An higher-dimensional field theory with compactified extra
dimensions can be rewritten as an effective 4D theory by a procedure called Kaluza-Klein
dimensional reduction. An higher-dimensional field gives then rise to an infinite tower of
4D fields: the KK modes. Most of the authors use a perturbative approach [95, 96], which
we call the 4D approach (due to a KK mixing at the 4D field level), where the KK spectrum
and wave functions of the 5D fermion fields are worked out without including immediately
the brane-localized mass terms. An alternative equivalent method is to treat the brane-
localized terms directly when one solves the 5D equations and boundary conditions for the

fermion fields via a finite brane thickness [63].
5. Within the RS context, other higher-dimensional mechanisms [72–75] apply specifically to neutrinos

to explain their lightness compared to the rest of SM fermions.
6. This possibility of fermion localizations along extra dimension(s) was also considered in the context

of large flat extra dimension models, in order to generate quark [78] and lepton [79] masses/mixings.
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fermion wave functions: the called 5D method. The exact matching between these 4D and
5D approaches will constitute a solid validation of several obtained analytical results, one
of which being in contrast with the literature on this topics: many authors were puzzled by
an apparent discontinuity in the KK wave functions at the Higgs field brane, and they have
thus introduced a kind of Higgs profile regularization smoothing or shifting away from the
boundary the brane-localized Higgs boson [96–108]. We will present what we claim to be
the appropriate method to treat the bulk fermion couplings with a brane-localized Higgs
boson. There the non-trivial regularization procedure appears to be useless. Then we will
apply the new approaches developed in the simple interval model to the case of the dual
orbifold model. In particular, we will build a strict mathematical method to treat properly
possible profile jumps along an extra dimension. Those studies will point out the necessity
to introduce some new kinds of fermionic terms that we call the bilinear brane terms.
Based on this resulting statement, we will propose a surprisingly convenient formalism
for higher-dimensional models based on fields defined as distributions rather than simple
functions. The bilinear terms will also turn out to allow us to build scenarios explaining
the existence of SM fermion replicas, namely the flavors. Indeed, in those scenarios, a
replication of 4D fermions, with identical quantum numbers, arises. The original reason
being that the similar 4D fermions – only differing by their quantum position states along a
fifth dimension and hence their masses – originate from a common higher-dimensional field.
These scenarios realize the mixings among quarks/leptons via different fermion partition
mechanisms and further allow to reproduce the SM fermion mass hierarchies for a standard
exponential Higgs profile along the extra dimension, which is interestingly yet required
by the gauge hierarchy problem within a warped version of the present type of model.
Our partition mechanism also allows to build models strictly localising fermions on thick
branes with a controlled width as small as wanted (independently of flavor considerations),
representing thus an original alternative to the usual mechanism based on the fermion
interaction with a solitonic background.

The manuscript of this Ph.D. thesis is organized as follows:
— Part I gives the scheme of holography beyond the Standard Model via extra spatial

dimensions whose purpose is to present regular treatments of 5D model building in
the literature:

— Chapter 1 is a short review of the SM of particle physics and the motivations
for BSM model buildings, insisting on the gauge hierarchy problem.

— Chapter 2 is an introduction to the models with the SM Higgs field localized
at the boundary of a slice of an AdS5 spacetime with bulk fermion and gauge
fields.

— Part II contains the main original research work made during this Ph.D. thesis:
— Chapter 3 describes the method to treat 5D fermions coupled to a boundary

localized Higgs field with a compactification on an interval.
— Chapter 4 contains a generalization of the method of Chapter 3 towards a

compactification on 5D orbifolds, including a Higgs field localized on a brane
away from a boundary and some other brane-localized terms.

— Chapter 5 contains a distribution formalism on the the S1/Z2 orbifold, refor-
mulating Chapter 4.

— Chapter 6 describes our intermediate brane model to reveal a new mechanism
to split fermion generations and realize mass hierarchy simultaneously.

— Our notations & conventions are given in Appendix A.
— The acronyms used in this manuscript are listed on a Glossary page 204.

19



Part I

A Holography Beyond the
Standard Model
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Chapter 1

The Kaluza-Klein Theory of Bulk
Fields

This chapter is to present a general treatment in a simplified model with a flat extra
dimension, which already possesses all the key ingredients to study the delicate brane-
Higgs aspects. Hence, our conclusions can be directly extended to the warped models.

1.1 A Simple Spacetime Geometry

We consider a 5D toy model on the product spacetime geometry, E5 =M4 × I:
(i) M4 represents the usual 4D Minkowski spacetime whose coordinates are denoted

by xµ where µ ∈ J0, 3K is the Lorentz index of the covariant formalism. The metric
conventions are given in Appendix A.

(ii) I is a compact 1D flat interval of the extra spatial dimension, which is denoted by
y ∈ [0, L], with a length, L ∈ R∗, and bounded by two flat 3-branes at y = 0 and
y = L.

(iii) A point of the 5D spacetime E5 is labeled by the coordinates, xM =̂ (xµ, y), M ∈
J0, 4K with the 5D metric is given by,

ds2 = ηMNdx
MdxN ,

where ηMN with M, N ∈ J0, 4K is the 5D Minkowski metric in Eq. (A.2).

1.2 Bulk Scalar Fields
We recall the common approach of performing Hamilton’s principle in a holographic

context of 5D scalar fields of mass dimension 1 following Ref. [109]. We want to describe
a 5D real scalar field H (xµ, y) with quadratic mass terms in a 5D bulk with the extra
dimension compactified on an interval [0, L].

The physical mass spectrum arises when the bulk fermions couple to a Higgs-like scalar
field. In a realistic extension of the SM, this scalar field should be a SU(2)W doublet. In
our toy model, it is enough to take a real scalar field H, with a Z2 symmetry H 7→ −H,
such as only powers of |H|2 appear in the action, like in a realistic extension of the SM.
In contrast to the brane-localized field in Ref. [1], here we consider a bulk real scalar field
H (mass dimension 3/2) [110] such as the Yukawa interactions exist into the whole extra
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dimension I. The 5D action of the field H is

SH =
∫
d4x

[(∫ L

0
dy LH

)
− V0(H)− VL(H)

]
, (1.1)

where LH is the bulk scalar Lagrangian, and V0/L is the scalar potential on the brane at
y = 0/L. Motivated by models where the EWSB occurs only at the boundary of a warped
extra dimension (as in RS models with bulk Higgs in Ref. [110]), we will consider only a
non-quadratic potential on the brane at y = L, and we will comment after what we expect
by relaxing this hypothesis. For our purpose, it is enough to keep only the operator quartic
in H for the self-interaction term, since it is the dominant one. Therefore, we consider a
bulk scalar Lagrangian with no bulk self-interaction of H,

LH = 1
2∂MH∂MH − M2

H

2 H2 , (1.2)

and the boundary-localized potentials:

V0(H) = M0
2 H2

∣∣∣
0
, VL(H) =

(
−ML

2 H2 + λH

4! H
4
)∣∣∣∣

L
, (1.3)

where M2
H , M0/L, λH > 0. MH and M0/L have mass dimension 1, and λH has mass

dimension −2.
We perform Hamilton’s principle by varying the field H, and we get

δSH =
∫
d4x

∫ L

0
dy δH

[
∂LH

∂H
− ∂M

(
∂LH

∂(∂MH)

)]
+
[
δH

∂LH

∂(∂4H)

]∣∣∣∣L
0

−
∫
d4x

[(
δH

∂V0
∂H

)∣∣∣∣
0

+
(
δH

∂VL

∂H

)∣∣∣∣
L

]
. (1.4)

With generic field variations δH at every point of the 5D spacetime, the variations of the
action in the bulk and on the boundaries vanish separately. We get the Euler-Lagrange
equation of H in the bulk:

∀xµ, ∀ y ∈ I = [0, L] ,
(
∂M∂M +M2

H

)
H = 0 , (1.5)

and the natural BC on the branes:

(∂4 −M0)H|0 = 0 , (∂4 −ML)H|L = −λH

3! H
3
∣∣∣∣
L
. (1.6)

In analogy to the Higgs mechanism, the Mexican hat potential VL(H) (1.3) at the brane
y = L makes the scalar field H having a non-vanishing vacuum expectation value v(y) of
mass dimension 3/2 with respect to the spontaneous Z2 symmetry breaking, such as

H(xµ, y) = v(y) + h(xµ, y)√
2

. (1.7)

From the Euler-Lagrange equation (1.5) of H in the bulk, and its BC (1.6), we get the
equation for the VEV in the bulk:(

∂2
4 −M2

H

)
v(y) = 0 , (1.8)

and its BC:
(∂4 −M0) v|0 = 0, (∂4 −ML) v|L = −λH

12 v3
∣∣∣∣
L
, (1.9)
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where we have imposed the xµ independence of v(y) and the 4D asymptotic condition of
h(xµ, y), which is explicitly presented in Appendix B. From the equation (1.8) of the VEV
in the bulk, and the BC for the VEV (1.9) at y = 0, we obtain:

v(y) = Nv

(
eMH y + MH −M0

MH +M0
e−MH y

)
, (1.10)

where Nv is a constant of mass dimension 3/2 fixed by the BC at y = L. It is natural to
take MH ∼ M0 ∼ ML. In this toy model, we choose M0 = MH to simplify the profile of
the VEV (1.10), such as

v(y) = Nv e
MH y . (1.11)

In this case, the BC (1.9) for the VEV at y = L gives

Nv =
√

12
λH

(ML −MH) e−MH L. (1.12)

The VEV is thus peaked at y = L, as in the scenario of Ref. [111]. Note that in this
reference, the authors consider a more general flat extra-dimensional model where the
scalar field has a quartic self-interaction in the bulk and on both branes. The general
profile of the VEV is then more involved. However, as argued in the same article [111],
one can choose a natural regime of parameters where the VEV profile is well approximated
by an exponential function peaked on the brane at y = L. One may notice that the quartic
potential terms (1.3) only exist on the IR brane, the motivation of which would be discussed
in Chapter 2.2.

In the end of this section, we need to give a glance at the 5D scalar field h(xµ, y). From
the Euler-Lagrange equation (1.5) of H in the bulk, and its BC (1.6), one also derives the
EOM for h(xµ, y) in the bulk by 4D dependence and localization comments:

∀xµ, ∀ y ∈ I = [0, L] ,
(
∂M∂M +M2

H

)
h = 0 , (1.13)

and the NBC on the branes:

(∂4 −M0)h|0 = 0 ,
[
(∂4 −ML)h+ λH

4 v2h

]∣∣∣∣
L

= 0 . (1.14)

which is explicitly derived in Appendix B.

1.3 Bulk Fermion Fields
We recall the common approach of performing Hamilton’s principle in a holographic

context of 5D fermion fields following Ref [109], to show disappointing results with the
lack of the BBT. A general bulk action of a 5D Fermion field is developed as:

Sbulk =
∫
d4x

∫ L

0
dy Lbulk , (1.15)

where Lbulk includes the fermion kinetic and the mass terms of the Lagrangian density,
which is integrable over the entire region, I = [0, L]. The 5D fermion fields, F (xµ, y), –
of mass dimension 2 – have the following kinetic terms [entering Eq. (1.15)] which allow
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to recover canonical covariant kinetic terms for the associated fermions in the 4D effective
action (as imposed by the argument of decoupling limit 1):

Lkin = i

2 F̄ΓM←→∂MF , (1.16)

using the standard notations
←→
∂M =

−→
∂M −

←−
∂M , ∂M = ∂/∂xM , xM = (xµ, y) with M ∈ J0, 4K

for the coordinates, xM ∈ E5, and ΓM for the 5D Dirac matrices (cf. Appendix A). In the
used conventions, the 5D Dirac spinor of mass dimension 2 is an irreducible representation
of the Lorentz group as,

F = FL + FR with FL =
(
FL

0

)
= PLF , FR =

(
0
FR

)
= PRF , (1.17)

in terms of the two two-component Weyl spinors FL, FR, L/R standing for the Left/Right
chirality after the chiral projection,

PL/R =̂ 1∓ γ5

2 , (1.18)

and F̄ = F †γ0 as usual. Based on Eq. (1.17), we can rewrite the kinetic terms Lkin in the
bulk Lagrangian of Eq. (1.16) in the following form where the Left/Right chiralities are
obvious:

Lkin = 1
2
(
iF †

Rσ
µ←→∂µFR + iF †

Lσ̄
µ←→∂µFL − F †

R

←→
∂4FL + F †

L

←→
∂4FR

)
= 1

2
(
iĎFRγ

µ←→∂µFR + iĎFLγ
µ←→∂µFL − ĎFR

←→
∂4FL + ĎFL

←→
∂4FR

)
, (1.19)

using the matrices σµ, σ̄µ defined in Appendix A and ĘFL/R = F†
L/Rγ

0.
Besides, we can add bulk mass terms to the bulk terms as additional physical ingredi-

ents,

Lmass = −m̃F F̄F , (1.20)

where m̃F is the bulk mass of the fermion, F , which is a constant such that ∂4m̃F = 0 on
the whole physical domain, y ∈ I. The mass terms, Lmass, can also be rewritten by the
chiral decomposition (1.17) as,

Lmass = −m̃F

(
F †

LFR + F †
RFL

)
= −m̃F

(
ĎFLFR + ĎFRFL

)
. (1.21)

In order to extract the equations of motion and the boundary conditions from the
relevant Lagrangian for the bulk fermions, we apply the least action principle – or Hamil-
ton’s variational principle – for each of them. The least action principle leads to two
relations of the kind, δF̄Sbulk = 0, for the unknown 5D field F , and the corresponding
one, δFSbulk = 0, involving the complex conjugate fields 2, since the elementary field vari-
ations δFα, δF̄α (see Appendix C.1) are generic and hence independent from each other.
Assuming, at a first level, the boundary fields F (xµ, y = {0, L}) =̂ F |0,L to be initially
unknown (unfixed), they should be deduced from the action minimization with respect to

1. From the theoretical consistency and phenomenological points of view, the SM must be approximately
recovered at low-energies in the limit of infinitely heavy KK excitations.

2. The equations of motion and boundary conditions derived from the least action principle for the
fields and their conjugates are trivially related through Hermitian conjugation.
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them, considering thus non-vanishing generic 3 variations δF |0,L ̸= 0 4. In other words,
F |0,L should be then obtained from the so-called Natural Boundary Conditions. Using
compact notations, like for example,

4∑
α=1

δF̄α
∂Lbulk

∂F̄α
=̂ δF̄

∂Lbulk

∂F̄
, (1.22)

we can write in particular 5,

δF̄Sbulk =
∫
d4x

∫ L

0
dy

{
δF̄

∂Lbulk

∂F̄
+ δ

(
∂M F̄

) ∂Lbulk

∂ ∂M F̄

}
=
∫
d4x

∫ L

0
dy

{
δF̄

∂Lbulk

∂F̄
+ ∂M

[
δF̄

∂Lbulk

∂ ∂M F̄

]
− δF̄ ∂M

∂Lbulk

∂ ∂M F̄

}
=
∫
d4x

∫ L

0
dy

{
δF̄

[
∂Lbulk

∂F̄
− ∂M

∂Lbulk

∂ ∂M F̄

]}
+
∫
d4x δF̄

∂Lbulk

∂ ∂4F̄

∣∣∣∣L
0
. (1.23)

Then, a generic 5D Fermion field can be decomposed by the following KK decomposition,

FL/R (xµ, y) = 1√
L

+∞∑
n=0

fn
L/R(y)Fn

L/R (xµ) , (1.24)

where the 4D fields Fn
L/R represent the KK states and satisfy the Dirac-Weyl equations,

∀n ∈ N,

 iσ̄µ∂µF
n
L (xµ)−mF

n F
n
R (xµ) = 0 ,

iσµ∂µF
n
R (xµ)−mF

n F
n
L (xµ) = 0 ,

(1.25)

involving the KK mass eigenvalues mF
n . Besides, the two (for L/R) following ortho-

normalisation conditions over the full domain for non-vanishing profiles,

∀n,m ∈ N,
1
L

∫ L

0
dy fn∗

L/R(y) fm
L/R(y) = δnm , (1.26)

originating from the condition of a canonical form for the 4D effective kinetic terms. The
integer n is defined as being the level index of the fermion mode tower and is chosen to
be non-negative, i.e. n ∈ N; the meaningful feature about the general KK decomposi-
tion (1.24) is rather the infinite summation (possibly also from −∞ to +∞) dictated by
field expressions as Fourier series on a finite interval.

3. A field variation reads as δF (xM ) = ϵ η(xM ) with a generic function η(xM ) and an infinitesimal
parameter ϵ → 0.

4. Then in the final step, once for instance the field F |L is found and fixed by the solution (not initially
fixed as an hypothesis in this considered case), its resulting determined form does not imply δF |L = 0 which
would be incompatible with the starting non-vanishing field variation: there are sometimes confusions in
articles about these chronological aspects of the variational calculus.

5. We omit the global 4-divergence which vanishes in the action integration due to vanishing fields at
the boundaries at infinities. Indeed, when minimising the action, the varied terms must vanish separately
at infinite boundaries, since the non-vanishing field variations at boundaries are independent from each
other and from the bulk ones (see also Ref. [8]). This is realized by the local physics statement which
induces vanishing fields at infinities due to the wave function normalization conditions (see also Ref. [112]).
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1.3.1 Bulk Massless Fermion Fields

Let’s start from the bulk massless case where

Lbulk = Lkin . (1.27)

Based on the Lagrangian Lkin of Eq. (1.19), bulk terms and remaining brane terms can
be calculated:

δF̄Sbulk =
∫
d4x


∫ L

0
dy

[
δF̄
(
iΓM∂MF

)]
+ δF̄

[
−γ

5

2 F
]∣∣∣∣∣

L

0


=
∫
d4x

{∫ L

0
dy

[
δF̄
(
iΓM∂MF

)]
+ 1

2
[
δF †

RFL − δF †
LFR

]∣∣∣∣L
0

}
, (1.28)

where the bulk and the brane variations – respectively the volume and surface terms – must
vanish separately due to independent field variations (no reason to be linked). Besides, all
those field variations are not vanishing (unknown fields) so that we obtain the bulk EOM,

∀xµ, ∀ y ∈ I = [0, L] , iΓM∂MF = 0 , (1.29)

with it’s chiral formula after the chiral projection (1.17), iσ̄µ∂µFL + ∂4FR = 0 ,

iσµ∂µFR − ∂4FL = 0 ,
(1.30)

and the corresponding NBC derived via non-vanishing boundary variations δF †
L/R

∣∣∣
0,L
̸= 0,

FL|0 = FR|0 = FL|L = FR|L = 0 . (1.31)

At this level, we can first solve Eq. (1.30) together with Eq. (1.31) to find out F
fields over the domain, I = [0, L]. Inserting the KK decomposition (1.24) and the 4D
Dirac equations (1.25) into the 5D Euler-Lagrange equations in Eq. (1.30) and BC in
Eq. (1.31), one can directly extract the differential equations for KK wave functions [thanks
to the linear independence of 4D fields, which are mass eigenstates of the 4D Dirac-Weyl
equations in Eq. (1.25)],

∀n ∈ N,

 ∂4f
n
L(y)−mF

n f
n
R(y) = 0 ,

∂4f
n
R(y) +mF

n f
n
L(y) = 0 ,

(1.32)

and the following Dirichlet boundary conditions for profiles of all KK modes,

∀n ∈ N, fn
L/R

∣∣∣
0

= fn
L/R

∣∣∣
L

= 0 . (1.33)

Then, we would argue for the profile vanishing. For the massless mode, the zero mass
mF

0 = 0, combined with the coupled EOM (1.32), would induce the Neumann BC for KK
zero modes both in the left and the right chirality, i.e. ∂4f

0
L/R

∣∣∣
0,L

= 0. For massive modes,
the Dirichlet BC for KK wave functions associated to one chirality (1.33), combined with
the coupled EOM (1.32), would give the Neumann BC for KK wave functions of the other
chirality again.

∀n ∈ N, ∂4f
n
L/R

∣∣∣
0

= ∂4f
n
L/R

∣∣∣
L

= 0 . (1.34)
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Hence, all KK wave functions have both the Dirichlet and the Neumann BC at each
boundary.

The two first order coupled EOM in Eq. (1.32) can be combined into two second order
decoupled equations,

∀n ∈ N,
[
∂2

4 +
(
mF

n

)2
]
fn

L/R(y) = 0 , (1.35)

which are the equations for independent harmonic oscillators whose solutions have the
general formalism in y ∈ [0, L],

∀n ∈ N, fn
L/R(y) = An

L/R cos(mF
n y) +Bn

L/R sin(mF
n y) , (1.36)

where An
L/R, Bn

L/R are complex coefficients, which are related by the coupled equations in
Eq. (1.32) as  An

L = −Bn
R ,

An
R = Bn

L .
(1.37)

for all non-zero modes with mF
n ̸= 0, ∀n ∈ N∗. After considering the factor relations, we

obtain the general solutions (1.36) in a revised formalism,

∀n ∈ N,

 fn
L(y) = −Bn

R cos(mF
n y) +Bn

L sin(mF
n y) ,

fn
R(y) = Bn

L cos(mF
n y) +Bn

R sin(mF
n y) .

(1.38)

The Dirichlet (1.33) and the Neumann BC (1.34) would provide additional constraints for
the coefficients in the general formalism (1.36) 6, so that we obtain

∀n ∈ N , fn
L/R(y) = 0 , ∀ y ∈ I = [0, L] , (1.39)

which conflicts to the ortho-normalization condition in Eq.(1.24) and suspend all KK
modes on the whole I region. Hence, we can conclude the solutions of 5D fields obtained
through this naive method are not physically consistent.

We can do a further mathematical analysis. This problem comes from the fact that
the system is over-constrained at the boundaries. Indeed, the equation set of KK wave
functions in Eq. (1.32) relates fn

L(y) and fn
R(y) on-shell for massive modes: a boundary

condition for fn
L(y) is also a constraint on fn

R(y) and vice versa. Therefore, for zero modes,
f0

L/R(y) depend on one complex coefficient B0
R/L respectively in Eq. (1.38). With respect to

massive KK wave functions, fn
L/R(y) with mF

n ̸= 0 depend on the same three parameters
in Eq. (1.38): the mass mF

n and the two complex coefficients Bn
L/R. The variation of

the action at the boundaries in Eq. (1.28) involves the variations of both FL and FR so
there are two NBC at each boundary. The system is thus over-constrained, it is why
KK wave functions vanish everywhere for all modes, which has been well analyzed in the
literature [1].

1.3.2 Bulk Massive Fermion Fields

After the investigation of bulk massless fields in the last section, we turn to bulk
terms (1.27) including bulk mass terms (1.20),

Lbulk = Lkin + Lmass . (1.40)

6. The EOM of fn
L/R(y) Eq. (1.35) is a second order linear differential equation with constant coefficients

with respect to the extra dimension y for any particular KK mass mF
n , whose solution can be fixed by

the value of the field and its derivative at one point. So, in fact, the existence of both Dirichlet and the
Neumann BC at one point is enough to force the field to vanish.
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The least action principle is applied by the similar process in Eq. (1.28) - leads to the bulk
EOM with the bulk mass m̃F ,(

iΓM∂M − m̃F

)
F = 0 , ∀xµ, ∀ y ∈ I = [0, L] , (1.41)

and the NBC remain identical to Eq. (1.31). Then, inserting the KK decomposition (1.24)
and the 4D Dirac equations (1.25) into the 5D EOM (1.41) and NBC (1.31), one directly
obtains the EOM for the profiles on [0, L]:

∀n ∈ N,

 (∂4 + m̃F ) fn
L(y)−mF

n f
n
R(y) = 0 ,

(∂4 − m̃F ) fn
R(y) +mF

n f
n
L(y) = 0 ,

(1.42)

and the Dirichlet BC for profiles in Eq. (1.33) would be derived again.
The two first order coupled EOM in Eq. (1.42) can be combined into the decoupled

second order equations,

∀n ∈ N, ∂2
4f

n
L/R(y) +

[(
mF

n

)2
− (m̃F )2

]
fn

L/R(y) = 0 , (1.43)

which are regular Sturm-Liouville equations on the interval I = [0, L], and more com-
plicated than that in the bulk massless case of Eq. (1.35). For

(
mF

n

)2
− (m̃F )2 < 0 in

Eq. (1.43), the solutions have the general form on y ∈ [0, L],

fn
L/R(y) = An

L/R exp
(
∆mF

n y
)

+Bn
L/R exp

(
∆mF

n y
)
, (1.44)

where ∆mF
n =̂

√∣∣∣(m̃F )2 − (mF
n )2

∣∣∣ and An
L/R, Bn

L/R are complex coefficients, which are
related by the coupled EOM in Eq. (1.42) as,

n = 0 ,

 A0
L = 0 ,

B0
R = 0 ,

(1.45)

n ̸= 0 ,


(
∆mF

n + m̃F

)
An

L = mF
n A

n
R ,(

−∆mF
n + m̃F

)
Bn

L = mF
n B

n
R .

(1.46)

Then, for
(
mF

n

)2
− (m̃F )2 ≥ 0 in Eq. (1.43), the solutions would have the general form as,

fn
L/R(y) = An

L/R cos
(
∆mF

n y
)

+Bn
L/R sin

(
∆mF

n y
)
, (1.47)

where An
L/R, Bn

L/R are complex coefficients, which satisfy the relationship generated from
the coupled EOM in Eq. (1.42) as, ∆mF

n B
n
L + m̃F A

n
L = mF

n A
n
R ,

−∆mF
n A

n
L + m̃F B

n
L = mF

n B
n
R .

(1.48)

Following the exact same analysis as the bulk massless case, the Dirichlet BC (1.33),
combined with the coupled EOM (1.32), would lead to the Neumann BC(1.34) for all KK
modes both in the left and the right chirality. Hence, all KK wave functions must vanish via
the over-constrained BC – the Dirichlet and the Neumann BC at each boundary. Finally,
this naive bulk massive model can’t provide physical solutions, which is disappointing but
consistent with superficial predictions after the bulk massless case in Section 1.3.1.
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Chapter 2

The Warped Background

In this chapter, we continue our treatments of 5D bulk fermions but in a particularly
warped scenario – the Randall Sundrum Model, which is a direct extension of the flat
geometry in Chapter 1 but with more abundant physical ingredients.

2.1 The Randall-Sundrum Metric

Consider a 5D spacetime xM =̂ (xµ, y), M ∈ J0, 4K embedded in a warped geometry –
AdS5 space,

E5 =M4 × I ,

with an extra dimension compactified on an interval I = [0, L], but now the two 3-branes
have opposite tensions. The gravitational back reaction of the brane tensions is balanced
by the introduction of a negative bulk cosmological constant, Λ5 < 0. A zero effective 4D
cosmological constant is preserved by a fine tuning between opposite tensions at 3-branes
and Λ5 < 0. The 5D metric solution of Einstein’s equations reads,

ds2 = e−2kyηµνdx
µdxν − dy2 =̂ gMNdx

MdxN , (2.1)

where k is the AdS curvature scale and ηµν with µ, ν ∈ J0, 3K is the 4D Minkowski metric
in Eq. (A.1). The determinant of the AdS metric gMN is denoted as,

g =̂ |det gMN | = e−8ky > 0 . (2.2)

The vierbein e A
M , with A ∈ J0, 4K is defined via the relation with the 5D Minkowski

metric ηAB in Eq. (A.2),
gMN = e A

M e B
N ηAB , (2.3)

with an explicit formalism,
e A

M =
(
e−kyδ α

µ , 1
)
, (2.4)

and its inverse is denoted by eM
Ae

B
M = δB

A ,

eM
A =

(
ekyδµ

α, 1
)
. (2.5)

For practical reasons, we also define a determinant as e =
∣∣∣det e A

M

∣∣∣, which satisfies the
relation, e = √g. In this framework, the UV-brane is located at y = 0 and the IR-
brane is at y = L, where the electroweak symmetry breaking occurs. In some cases, it
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is sometimes more convenient to work in a conformally flat framework by making the
coordinate transformation,

z = eky

k
, (2.6)

such that the conformally flat vierbein is

eM
A = kz δM

A and e = (kz)−5 , (2.7)

so
gMN =

( 1
kz

)2
ηMN . (2.8)

while, in this frame by z, the UV-brane is setup at z = 1/k and the IR-brane is at
z = ekL/k, where the electroweak symmetry breaking occurs. If M∗ is the 5D gravity
scale, one should have M∗/k ≳ O(10) such that we are in the classical regime where one
can use the Einstein equations: the AdS5 background metric is well defined. The cut-off on
the UV-brane is usually taken ΛUV ∼M∗ and the one on the IR-brane is ΛIR = e−kLΛUV ,
due to the gravitational redshift induced by the exponential warp factor. If one stays at
ΛIR ∼ O(1) TeV and manipulates an IR-brane localized (or peaked) Higgs field, one can
solve the gauge hierarchy problem of the Higgs sector in the SM.

2.2 Bulk Scalar Fields
Following the methodology in the flat geometry in Chapter 1, we start from the explo-

ration of a 5D bulk real scalar field, which contains quadratic mass terms and potential
terms at 3-branes. The 5D action of the field H should be modified by the AdS metric,

SH =
∫
d4x

[(∫ L

0
dy
√
gLH

)
− √g|0 × V0(H)− √g|L × VL(H)

]
, (2.9)

while the 5D bulk scalar Lagrangian of H should also contain addition physical contribu-
tions from the warped curvature 1,

LH = 1
2 g

MN∂MH∂NH −
M2

H

2 H2 , (2.10)

and the boundary-localized potentials V0,L(H) in Eq. (1.3) would still make sense.
The Hamilton’s principle by varying the field H should be performed as in Eq. (1.4),

but the bulk and the boundary terms should take into account of the contribution from
the volume element √g in Eq. (2.2),

LH →
√
gLH , V |0,L →

√
g V |0,L .

Thus, the independent bulk and the boundary variations should induce the Euler-Lagrange
equation of H in the bulk 2:

∀xµ, ∀ y ∈ I = [0, L] ,
(
∂M∂M +M2

H

)
H +

(
1
√
g
∂4
√
g

)
∂4H = 0 , (2.11)

1. gMN is conventionally defined by gMN gNP = δM
P .

2. ∂M =̂ gMN ∂N .
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which can be rewritten by √g in Eq. (2.2) 3,

e2ky ηµν ∂µ∂νH −
(
∂2

4 − 4k ∂4
)
H +M2

HH = 0 , (2.12)

and the NBC (1.6) on the branes keep valid. Due to the quartic potential terms (1.3) on
the IR brane, a non-vanishing VEV, v(y) in Eq. (1.7) is still expected. The EOM of v(y)
should be abstracted from the EOM (2.11) of H in the bulk according to the 4D spacetime
dependence and asymptotic principle through a similar procedure in Appendix B,(

∂2
4 − 4k ∂4 −M2

H

)
v(y) = 0 , (2.13)

and its BC keep consistent with Eq. (1.9). The bulk EOM of the VEV in Eq. (2.13) would
generate a general formalism of solutions,

v(y) = Nv e
2k y

(
eαk y +Be−αk y

)
, α =

√
4k2 +M2

H

k
, (2.14)

where Nv and B are constants to be determined by the BC for the VEV in Eq. (1.9),
(2k + αk −M0) +B (2k − αk −M0) = 0 ,

(2k + αk −M0) Ωα +B (2k − αk −M0) Ω−α + λH

12
(
NvΩ2)2 (Ωα +BΩ−α)3 = 0 ,

(2.15)
so that one can derive,

B = −(2 + α) k −M0
(2− α) k −M0

,

Nv =
√

[M0 − (2 + α) k] Ω2+α +B [M0 − (2− α) k] Ω2−α

(λH/12) (Ω2+α +BΩ2−α)3 ,

(2.16)

where Ω =̂ ekL is denoted as the warp factor. As the flat case in Eq. (1.10), we can select
M0 = 2k +

√
4k2 +M2

H to simplify the profile of the VEV (2.14), such that

v(y) = Nv e
(2+α)k y , (2.17)

where 
B = 0 ,

Nv =
√

12
λH

[M0 − (2 + α) k] Ω− 4+α
2 ,

(2.18)

and the VEV would be deformed to an exponential profile peaked at y = L again. Note
that the exponential VEV in Eq. (2.17) would exactly recover that in the flat geome-
try (1.11) if we take the limit k → 0.

Here, we need to argue for the simplified quartic potential setup, which has been picked
up in Chapter 1.2. The choice of our simple potential is inspired by the case of models
with a warped extra dimension, which is discussed in Ref. [110]. Indeed, in a RS model,
the AdS geometry implies that scales are red-shifted by the warp factor relying on the
extra dimensional position. This effect is important for the quartic couplings of H4 on
the 4D slides along the extra dimension, which are highly suppressed by powers of the

3. ηµν is conventionally defined by ηµνηνρ = δµ
ρ .
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curvature related to the Plank scale ∼ O
(
Λ−2

P lanck

)
in the bulk and at the UV brane.

While λH at IR brane is significantly warped down to the KK scale ∼ O
(
m−2

KK

)
which

would play a dominant role in the entire space, so authors always can neglect the other
ones for simplicity.

Besides, it is also interesting to comment on the effect of the warp factor on the
localization of the VEV, which has the typical behavior discussed in Ref.[110]. Compare
the VEV in RS model (2.17) and that in the flat scenario (1.11), we can clearly see that
the curvature k provides addition contributions to the exponential behavior and makes
the scalar profile focus on the IR brane more rapidly.

From the Euler-Lagrange equation (2.11) of H in the bulk, and its BC (1.6), one also
derives the EOM for h(xµ, y) following a similar procedure in Chapter 1.2,

e2ky ηµν ∂µ∂νh−
(
∂2

4 − 4k ∂4
)
h+M2

Hh = 0 , ∀xµ, ∀ y ∈ I = [0, L] , (2.19)

and the NBC on the branes is identical to Eq. (1.14).

2.3 Bulk Fermion Fields
A general bulk action of a 5D Fermion field in the AdS is developed as:

Sbulk =
∫
d4x

∫ L

0
dy
√
gLbulk , (2.20)

where Lbulk includes the fermion kinetic and the mass terms of the Lagrangian density,
which is integrable over the entire AdS. The 5D AdS spinor representation would be
constructed from a revised gamma matrices by the inverse vierbein eM

A,{
eM

A ΓA, eN
B ΓB

}
= 2 eM

A e
N

B η
AB = 2gMN . (2.21)

One also needs the covariant derivative to develop kinetic terms,

DM =̂ ∂M + ωM , (2.22)

where ωM is the spin connection [derived precisely in Appendix D],

ωM =
(
i
k

2 e
−kyγµγ

5, 0
)
, γµ = ηµνγ

ν . (2.23)

Now we can replace common derivatives ∂M in Eq. (1.16) by covariant derivatives DM in
Eq. (2.22) and obtain kinetic terms in the AdS,

Lkin = i

2 F̄ e
M

A ΓA←→DMF , (2.24)

where

F̄ eM
A ΓA←→DMF =̂ F̄ eM

A ΓADMF −ĞDMFeM
A ΓAF ,
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using the standard notations ĞDMF = (DMF )† γ0, and the Hermiticity of which can be
proved 4,(

i

2 F̄ e
M

A ΓADMF

)†
= − i2 (DMF )†

(
eM

A ΓA
)†
F̄ † = − i2 (DMF )† γ0γ0

(
eM

A ΓA
)†
γ0F

= − i2
ĞDMFeM

A

(
γ0ΓA†γ0

)
F

= − i2
ĞDMFeM

A ΓAF .

It’s interesting that in the RS metric (2.1), the contribution of the spin connection ωM

cancels in the kinetic Lagraangian of Eq. (2.24),

F̄ eM
A ΓA←→DMF = F̄ eµ

A ΓA←→DµF + F̄ e4
A ΓA←→∂4F

= F̄ eµ
A ΓADµF − ĘDµFe

µ
A ΓAF + F̄ e4

A ΓA←→∂4F

= F̄ eky γµ
(
∂µ + i

k

2 e
−kyγµγ

5
)
F −

(
∂µF + i

k

2 e
−kyγµγ

5F

)†
γ0eky γµF

+ F̄ e4
A ΓA←→∂4F

= F̄ eky γµ∂µF + i
k

2 F̄ γ
µγµγ

5F −
(
∂µF̄

)
eky γµF − i k2 F̄ γ

5γµγ
µF

+ F̄ e4
A ΓA←→∂4F

= F̄ eM
A ΓA←→∂MF ,

and we can now safely return to the common derivative ∂M ,

Lkin = i

2 F̄ e
M

A ΓA←→∂MF , (2.25)

where

F̄ eM
A ΓA←→∂MF = F̄ eM

A ΓA∂MF −
(
∂M F̄

)
eM

A ΓAF .

Based on the chiral decomposition (1.17), we can rewrite the kinetic terms, Lkin of
Eq. (2.24) in the following form where the Left/Right chiralities (1.17) are obvious:

Lkin = 1
2
(
iF †

Re
kyσµ←→∂µFR + iF †

Le
kyσ̄µ←→∂µFL − F †

R

←→
∂4FL + F †

L

←→
∂4FR

)
= 1

2
(
iĎFRe

kyγµ←→∂µFR + iĎFLe
kyγµ←→∂µFL − ĎFR

←→
∂4FL + ĎFL

←→
∂4FR

)
, (2.26)

using the matrices σµ, σ̄µ defined in Appendix A. Then, we can still add bulk mass terms
Lmass of Eq. (1.20) [and its chiral form in Eq. (1.21)] to the bulk terms Lbulk (2.20).

The least action principle by varying the field F (and the corresponding F̄ ) should
be performed as in Eq. (1.4), but the bulk terms should take account of the contribution
from the volume element √g in Eq. (2.2),

Lbulk →
√
gLbulk .

4. The conjugate equation has been inserted,

ΓA† = γ0ΓAγ0 .
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Then, a generic 5D Fermion field can be decomposed by the following KK decomposition
in Eq. (1.24). However, the ortho-normalization conditions should be modeified by the
warp factor,

∀n,m ∈ N,
1
L

∫ L

0
dy
√
g eky fn∗

L/R(y) fm
L/R(y) = δnm , (2.27)

originating from the condition of a canonical form for the 4D effective kinetic terms.

2.3.1 Bulk Massless Fermion Fields

Following the guideline in Chapter 1.3, we still start from the bulk massless case where

Lbulk = Lkin . (2.28)

Based on the Lagrangian Lkin of Eq. (2.25), bulk terms and remaining brane terms can
be calculated:

δF̄Sbulk =
∫
d4x

∫ L

0
dy δF̄

{
i
√
g
[
eM

A ΓADMF
]}

+
∫
d4x δF̄

[
−√g γ

5

2 F
]∣∣∣∣∣

L

0

=
∫
d4x

{∫ L

0
dy δF̄

√
g
[
i eM

A ΓADMF
]

+
√
g

2
[
δF †

RFL − δF †
LFR

]∣∣∣∣L
0

}
, (2.29)

where the independent vanishing of the volume terms would lead to the bulk EOM in the
covariant form,

∀xµ, ∀ y ∈ I = [0, L] , i eM
A ΓADMF = 0 , (2.30)

and it’s explicit form with common derivatives ∂M ,

i ekyγµ∂µF + γ5 (∂4 − 2k)F = 0 , (2.31)

with it’s chiral formula after the chiral projection, i ekyσ̄µ∂µFL + (∂4 − 2k)FR = 0 ,

i ekyσµ∂µFR − (∂4 − 2k)FL = 0 ,
(2.32)

and surface and the corresponding NBC is dentical to Eq. (1.31).
At this level, we can first solve Eq. (2.32) together with Eq. (1.31) to find out F fields

over the domain, I = [0, L]. Inserting the KK decomposition (1.24) and the 4D Dirac
equations (1.25) into the 5D Euler-Lagrange equations in Eq. (2.32) and BC in Eq. (1.31),
one can directly extract the differential equations for KK wave functions,

∀n ∈ N,

 (∂4 − 2k) fn
L(y)−mF

n e
kyfn

R(y) = 0 ,

(∂4 − 2k) fn
R(y) +mF

n e
kyfn

L(y) = 0 ,
(2.33)

and the Dirichlet boundary conditions for profiles of all KK modes in Eq. (1.33).
Here, we would argue for the profile vanishing again. Since the boundary conditions

keep identical to that in the flat case, the Dirichlet and the Neumann BC for the two
chiralities of all KK wave functions would exist at each boundary, through an exactly
same comment in Chapter 1.3.1.

For the zero mode with mF
0 = 0, the EOM (2.33) would be simplified as, (∂4 − 2k) f0

L(y) = 0 ,

(∂4 − 2k) f0
R(y) = 0 ,

(2.34)
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whose solutions have the general formalism in y ∈ [0, L],

f0
L/R(y) = A0

L/R e
2ky , (2.35)

where A0
L/R are complex coefficients, which would be clearly suspended to zero by the

Dirichlet (1.33) and the Neumann BC (1.34). For non-zero modes with mF
n ̸= 0, n ∈ N∗,

the two first order coupled EOM in Eq. (2.33) can be combined into two second order
decoupled equations,

n ∈ N∗, ∂4
(
e−5ky∂4f

n
L/R

)
+
[
6k2e−5ky +

(
mF

n

)2
e−3ky

]
fn

L/R = 0 , (2.36)

which are regular Sturm-Liouville equations and we can solve the general formalism on
y ∈ [0, L] [precise calculations are presented in Appendix E.1] 5,

fn
L/R(y) = e

5
2 ky

[
An

L/R J−/+ 1
2

(
mF

n

k
eky

)
+Bn

L/R Y−/+ 1
2

(
mF

n

k
eky

)]
, (2.37)

where An
L/R, Bn

L/R are complex coefficients, which are related by the coupled equations in
Eq. (2.33),  An

L = An
R ,

Bn
L = Bn

R ,
(2.38)

which is precisely calculated in Appendix E.1. The Dirichlet (1.33) and the Neumann
BC (1.34) would provide additional constraints for the coefficients in the general formal-
ism (2.37), 

An
R J 1

2
(ξ)
∣∣∣
y=0

+Bn
R Y 1

2
(ξ)
∣∣∣
y=0

= 0 ,

An
R ∂ξJ 1

2
(ξ)
∣∣∣
y=0

+Bn
R ∂ξY 1

2
(ξ)
∣∣∣
y=0

= 0 ,
(2.39)

with ξ =̂ mF
n

k
eky, while the linear independence of J 1

2
(ξ) and Y 1

2
(ξ) would induce the

non-zero Wronskian determinant 6 anywhere on y ∈ [0, L],

W =
∣∣∣∣∣ J 1

2
(ξ) Y 1

2
(ξ)

∂ξJ 1
2

(ξ) ∂ξY 1
2

(ξ)

∣∣∣∣∣ ̸= 0 , ∀ y ∈ I = [0, L] , (2.40)

which forces the set of equation (2.39) to generate zero solutions.
Combing the analysis of the zero and non-zero modes above, we obtain the vanishing

of all KK modes on the whole interval I, which is presented explicitly in Eq. (1.39),
which conflicts to the ortho-normalization condition in Eq.(2.27). Hence, we can conclude
the solutions of 5D fermion fields obtained through this naive method are not physically
consistent.

5. Jν and Yν are the Bessel functions of the first and the second kind respectively.
6. To be rigorous, the Wronskian determinant in Eq. (2.40) is originally developed for the variable

ξ = mF
n

k
eky satisfying the Eq. (E.5) [νR = 1

2 ] with respect to the function e− 5
2 kyfn

R.
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2.3.2 Bulk Massive Fermion Fields

Based on the tricks and methodology developed for the bulk massless case in Chap-
ter 2.3.1, we turn to bulk terms (2.28) including bulk mass terms (1.20),

Lbulk = Lkin + Lmass . (2.41)

The least action principle is applied by the similar process in Eq. (2.29) - leads to the
covariant form of the bulk EOM with the bulk mass m̃F ,

∀xµ, ∀ y ∈ I = [0, L] ,
(
i eM

A ΓADM − m̃F

)
F = 0 , (2.42)

and its explict form with common derivatives ∂M ,

i ekyγµ∂µF + γ5 (∂4 − 2k)F − m̃F F = 0 , (2.43)

which generates the chiral formula after the chiral projection, i ekyσ̄µ∂µFL + ∂4FR − (c+ 2) kFR = 0 ,

i ekyσµ∂µFR − ∂4FL − (c− 2) kFL = 0 ,
(2.44)

with c =̂ m̃F /k, while the corresponding NBC derived by the suface term vanishing are
dentical to Eq. (1.31). Then, inserting the KK decomposition (1.24) and the 4D Dirac
equations (1.25) into the 5D EOM (2.44) and NBC (1.31), one directly obtains the EOM
for the profiles on [0, L]:

∀n ∈ N,

 [∂4 + (c− 2) k] fn
L(y)−mF

n f
n
R(y) = 0 ,

[∂4 − (c+ 2) k] fn
R(y) +mF

n f
n
L(y) = 0 ,

(2.45)

and the Dirichlet BC for profiles in Eq. (1.33) would be derived again, combining the the
EOM (2.44), which would induce the Neumann BC for the two chiralities at each boundary
through the comment mentioned in Chapter 1.3.1.

For the zero mode with mF
0 = 0, the EOM (2.45) would be simplified as, [∂4 + (c− 2) k] f0

L(y) = 0 ,

[∂4 − (c+ 2) k] f0
R(y) = 0 ,

(2.46)

whose solutions have the general formalism in y ∈ [0, L],

f0
L/R(y) = A0

L/R e
(2−/+c)ky , (2.47)

where A0
L/R are complex coefficients, which would be clearly suspended to zero by the

Dirichlet (1.33) and the Neumann BC (1.34). For non-zero modes with mF
n ̸= 0,, the two

first order coupled EOM in Eq. (2.45) can be combined into two second order decoupled
equations,

∂4
(
e−5ky∂4f

n
L/R

)
+
[(

6− /+ c− c2
)
k2e−5ky +

(
mF

n

)2
e−3ky

]
fn

L/R = 0 , (2.48)

which are regular Sturm-Liouville equations and we can solve the general formalism on
y ∈ [0, L] [precise calculations are presented in Appendix E.2],

fn
L/R(y) = e

5
2 ky

[
An

L/R Jc−/+ 1
2

(
mF

n

k
eky

)
+Bn

L/R Yc−/+ 1
2

(
mF

n

k
eky

)]
, (2.49)
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where An
L/R, Bn

L/R are complex coefficients, which are related by the coupled equations in
Eq. (2.45),  An

L = An
R ,

Bn
L = Bn

R ,
(2.50)

which is precisely calculated in Appendix E.2. The Dirichlet (1.33) and the Neumann
BC (1.34) would provide additional constraints for the coefficients in the general formal-
ism (2.49), 

An
R Jc+ 1

2
(ξ)
∣∣∣
y=0

+Bn
R Yc+ 1

2
(ξ)
∣∣∣
y=0

= 0 ,

An
R ∂ξJc+ 1

2
(ξ)
∣∣∣
y=0

+Bn
R ∂ξYc+ 1

2
(ξ)
∣∣∣
y=0

= 0 ,
(2.51)

with ξ =̂ mF
n

k
eky, while the linear independence of Jc+ 1

2
(ξ) and Yc+ 1

2
(ξ) would induce the

non-zero Wronskian determinant 7 anywhere on y ∈ [0, L],

W =
∣∣∣∣∣ Jc+ 1

2
(ξ) Yc+ 1

2
(ξ)

∂ξJc+ 1
2

(ξ) ∂ξYc+ 1
2

(ξ)

∣∣∣∣∣ ̸= 0 , ∀ y ∈ I = [0, L] , (2.52)

which forces the set of equation (2.51) to generate zero solutions.
Combing the analysis of the zero and non-zero modes above, we obtain the vanishing

of all KK modes on the whole interval I, which is presented explicitly in Eq. (1.39),
which conflicts to the ortho-normalization condition in Eq.(2.27). Hence, we can conclude
the solutions of 5D fermion fields obtained through this naive method are not physically
consistent.

7. To be rigorous, the Wronskian determinant in Eq. (2.52) is originally developed for the variable
ξ = mF

n
k

eky satisfying the Eq. (E.5) [νR = c + 1
2 ] with respect to the function e− 5

2 kyfn
R.
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Chapter 3

Beyond Regularization of a
Brane-Localized Higgs Field

This chapter is a personal adaptation of Ref. [1] written in collaboration with Andrei
ANGELESCU, Grégory MOREAU and Florian NORTIER.

3.1 Introduction and Motivation
In the present paper, we discuss the rigorous treatment of the other case of a boundary-

localized Higgs scalar field, interacting with bulk quark/leptons propagating on a finite
interval, which presents subtleties that deserve to be looked at more deeply. Such a field
configuration occurs in realistic warped models, potentially addressing the fermion mass
and gauge hierarchy simultaneously. The case of free bulk matter without interactions
will also be studied.

Let us recall some subtle aspects as our basic motivations. First, a question arises about
the correct treatment of the specific object that is the Dirac peak ("function") entering
each Lagrangian term which involves the brane-Higgs boson. Secondly, this Dirac peak
may induce an unusual discontinuity 1 in the wave function along the extra dimension
(at the Higgs boundary where further conditions arise from the Lagrangian variations)
for some of the bulk fermions: the so-called jump problem [97, 101]. These 5D aspects
have motivated the introduction [97, 101] of a process of regularization of the Higgs Dirac
peak (smoothing the peak or shifting it from the boundary) in the calculation of Kaluza-
Klein fermion mass spectra and effective 4D Yukawa couplings. Although there is no
profound theoretical reason to apply such a regularization procedure (forcing interaction-
free boundary conditions for fermions), nowadays all the theoretical and phenomenological
studies of the warped models with brane-Higgs (see e.g. Ref. [95, 100, 102, 105–107]) are
relying on this Higgs peak regularization.

In this paper, we first present the mathematical inconsistencies of this regularization
procedure used in the literature. Then, instead of regularizing, we develop the rigorous
determination of the profiles – taking into account the mathematical nature of the Dirac
peak in the Higgs coupling – which leads to bulk fermion wave functions without disconti-
nuities on the considered extra space. We conclude from this whole approach that neither
profile jump nor particular problem arises when a proper mathematical framework is used
so that there is in fact no motivation to introduce a brane-Higgs regularization.

As a consequence, we can now interpret two non-commutativities of calculation steps

1. Field jumps may arise in other frameworks [113].
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for Higgs production and decay rates [102, 103, 105, 106] or for fermion masses and 4D
Yukawa couplings [96], previously studied in the literature, to be similar effects and con-
firmations of the mathematical inconsistencies in the Higgs peak regularization. Besides,
the debate in the literature about those two non-commutativities is thus closed by the
useless nature of this regularization.

The correct methods without regularization, together with their results, are illustrated
here in the derivation of the KK fermion mass spectrum – same ideas apply to the calcu-
lation of effective 4D Yukawa couplings. This spectrum calculation is done in a simplified
model with a flat extra dimension, the minimal field content (to write down a Yukawa
interaction) and without gauge symmetry. Nevertheless, this toy model already possesses
all the key ingredients to study the delicate brane-Higgs aspects. Hence, our conclusions
can be directly extended to realistic warped models with the bulk SM matter addressing
the fermion flavor and gauge hierarchy.

Several new methods of spectrum calculation are proposed, which further allow con-
firmation of the analytical results. These methods provide alternative implements like the
4D or the 5D approach (one extra dimension case), and the determination of fermion cur-
rents comes from the action variations – we generalize the Noether’s theorem to include
brane-localized terms like the Yukawa couplings – or by manipulating the equations of
motion. Besides, the correct derivation of the standard free fermion mass spectrum (in
the absence of Yukawa interactions) turns out to be a useful starting guide in particular for
the 4D approach or more generically for a solid comprehension of such higher-dimensional
scenarios.

From a historical point of view, the correct method established here arises naturally in
the theory of variational calculus as the Lagrangian boundary term (brane-Higgs coupling
to fermions) is included in a new boundary condition instead of entering the equations
of motion [114] (via a regularization). Furthermore, the present analysis follows the pre-
scription of considering the Dirac delta as a distribution. By the way, the Dirac peak
(distribution formalism) and distributions were formalized and validated mathematically
during the 1940s by L. Schwartz [115, 116] precisely to solve consistently physical prob-
lems. Hence, today it should not be avoided to respect the distribution formalism when
facing a physical problem involving an object like the Dirac delta, as it occurs in the
present higher-dimensional context.

The rigorous results obtained for the KK mass spectrum and effective 4D Yukawa cou-
plings are different from the ones derived in general through the Higgs peak regularization
(see Section 3.5). This difference is physical, affecting then phenomenological studies on
indirect searches of KK states at high-energy colliders (in particular via the Higgs pro-
duction and flavor changing neutral currents), and analytical (vanishing of the Yukawa
coupling with ‘wrong’ fermion chiralities relatively to the SM), which improves the precise
theoretical understanding of the higher-dimensional setup with a brane-localized Higgs
field.

Furthermore, the correct mass spectrum obtained here allows to point out the neces-
sity for bulk fermions (with or without coupling to a brane-localized scalar field) to have
specific bilinear brane terms at boundaries which are fermion mass-like terms from the
point of view of the spinorial structure but do not introduce new (bulk) mass parameters.
Indeed, such terms guarantee the existence of physical solutions (with correct profile nor-
malizations, Hermitian conjugate boundary conditions and satisfying the decoupling limit
argument) derived via the least action principle through the variation calculus. Their
necessary presence is confirmed by the non-trivial exact matching between the 5D and 4D
analytical calculations of the mass spectrum.
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At a brane without Yukawa coupling, instead of including such bilinear brane terms,
we find that one can alternatively impose essential boundary conditions (in contrast with
natural boundary conditions coming from the Lagrangian variations) induced from the
vanishing of fermion currents along the extra dimension at this brane – and exclusively
within the 4D approach in case of a brane with localized Yukawa interactions. Indeed,
the generic reason for the presence of bilinear brane terms is the consistent and complete
geometrical definition of models with a finite extra spatial interval in which the fermionic
matter is stuck. Notice that the choice between the presence of bilinear brane terms
and the vanishing condition of fermion currents relies on the Ultra-Violet completion of
the model. Indeed the vanishing condition of fermion currents permits the existence of
physical solutions alternatively.

Therefore, there are two possible cases for the UV completion:
1) The UV completion generates bilinear brane terms for the fermions on both bound-

aries (those with and without localized Yukawa coupling) of the interval. Then, the
geometrical interval definition (interval boundaries and vanishing 5D fermion cur-
rents at these boundaries) would be completely contained in the action expression
as boundary terms.

2) The UV completion would not induce bilinear brane terms on both boundaries.
Such essential boundary conditions should be imposed at the brane(s) (without
bilinear brane terms) in order to define well the geometrical configuration and to
have acceptable physical solutions.

We can thus conclude that whether the geometrical setup is defined exclusively through
the action expression [leading to the natural boundary conditions] or (also) via additional
essential boundary conditions, depends on the origin of the model at high energies.

In the case 1), at low-energies, the chiral nature of the SM as well as its field chirality
distribution (Left-handed SU(2)L doublets and Right-handed singlets) are entirely induced
by the signs in front of these bilinear brane terms. This new relation shows how the
particular chiral properties of the SM could be explained by an underlying theory through
the bilinear brane term signs. We complete the analysis by a discussion, in this context,
on the appropriate treatment of the cut-off in energy due to the framework of higher-
dimensional models in a non-renormalizable theory.

This chapter is organized as follows. Firstly, we describe the minimal model in Sec-
tion 3.2, before presenting the free case and the 4D treatment of the coupled fermions
in Section 3.4. The 5D approaches are exposed as well, with (Section 3.5) and without
(Section 3.6) regularization. Finally, an overview is provided in Section 3.7, together with
a brief description of phenomenological impacts. We finalize this chapter with a discussion
of generic bilinear brane terms.

3.2 Minimal Consistent Model

3.2.1 Spacetime Structure

We consider a simplified 5D toy model with a flat spacetime E5 =M4 × I:
(i) M4 is the usual 4D Minkowski spacetime manifold, which is characterized by 4-

vector coordinates xµ where µ = 0, 1, 2, 3 is the Lorentz index. The metric and
conventions used are given in Appendix A.

(ii) I is a compact 1D flat extra space. For our purpose, we consider the following simple
case: the interval I =̂ [0, L], with a length L ∈ R∗, parametrized by the continuous
extra coordinate y and bounded by two flat 3-branes at y = 0, L.
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(iii) A point of the whole A point of the 5D spacetime E5 is labeled by the coordinates,
xM =̂ (xµ, y), M ∈ J0, 4K with the 5D metric is given by,

ds2 = ηMNdx
MdxN ,

where ηMN with M, N ∈ J0, 4K is the 5D Minkowski metric in Eq. (A.2).

3.2.2 Bulk Fermions

We consider the minimal spin-1/2 fermion field content allowing to write down the 4D
effective renormalizable SM Yukawa-like coupling between zero-mode fermions (of different
chiralities) and a scalar field (see Section 3.2.5): a pair of fermions – of mass dimension 2
– Q and D. Both are propagating along the extra dimension, as we have in mind a model
extension to a realistic scenario with bulk matter (cf. Section 3.2.6) where Q,D will be
respectively SU(2)L doublet down-component and singlet quark fields in the decoupling
limit 2.

The bulk action Sbulk is developed via the bulk Lagrangian density Lbulk in Eq. (1.15).
The 5D fields Q(xµ, y) and D(xµ, y) have thus the following kinetic terms in the covariant
5D action,

Lkin =
∑

F =Q,D

i

2 F̄ΓM←→∂MF , (3.1)

which have a similar form as generic kinetic terms in Eq. (1.16) but contain two fermion
fields Q and D. In this chapter, we only consider the bulk massless fermions, such that

Lbulk = Lkin . (3.2)

Let us rewrite the bulk action of Eq. (3.1) in a convenient form with the chiral decom-
position in Eq. (1.17) as in Eq. (1.19),

Lkin =
∑

F =Q,D

1
2
(
iF †

Rσ
µ←→∂µFR + iF †

Lσ̄
µ←→∂µFL − F †

R

←→
∂4FL + F †

L

←→
∂4FR

)
. (3.3)

3.2.3 Bilinear Brane Terms

Interestingly, in the absence of vanishing fermion current condition at a boundary of
the considered interval [0, L], the presence at this 3-brane of some bilinear brane terms,
for bulk fermions being either free or coupled to a scalar field on this brane, turns out
to be necessary. Indeed, these bilinear terms ensure the existence of physical solutions
[see Section 3.4 for the 4D approach and Section 3.6 for the 5D one] deduced from the
least action principle. The theoretical reason for the presence of the BBT at the bound-
aries of the interval is the correct geometrical configuration definition for models where
fermions cannot propagate beyond the two boundaries, as will also be precisely described
in Section 3.4 and 3.6. These sections will also point out the 4D/5D approach matching
of the mass spectrum exact result, which constitutes in particular a confirmation for the
necessary presence and the explicit form (including coefficients) of the BBT 3. In summary,
the presence of the BBT has several following justifications:

(i) They allow to avoid physical consistency problems both in the free case (see Sec-
tions 3.3 and 3.3.3) and with Yukawa couplings (Sections 3.6.1 and 3.6.3).

2. From the theoretical consistency and phenomenological points of view, the SM must be approximately
recovered at low energies in the limit of infinitely heavy KK excitations.

3. Here, the opposite sign of BBT in Ref. [1] comes from the different conventions of Γ4 in Appendix A.
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(ii) They play the role of defining well the model compact at the two boundaries both in
the free case (see Sections 3.3.2 and 3.3.3) and with Yukawa couplings (Section 3.6.3).

(iii) They induce the expected matching of the analytical results on the spectrum derived
through the 4D and 5D approaches (see Sections 3.4 and 3.6.3).

To realize the SM configuration, the appropriate formula of the necessary BBT reads
as 4 5,

SB =
∫
d4x (LB|L − LB|0) ,

with LB =
∑

F =Q,D

σF (y)
2 F̄F =

∑
F =Q,D

σF (y)
2

(
F †

LFR + F †
RFL

)
, (3.4)

where we impose the chiral decomposition (1.17) and σF (y) are generic parameters for the
field F (F = Q,D) at y and

σQ
0,L = −σD

0,L = −1 , (3.5)

using compact notations
σF

0,L =̂ σF
∣∣∣
0,L

. (3.6)

The BBT under the configuration (3.5) will indeed lead to the set of boundary conditions
in Eq. (3.28) for the wave functions qn(y), dn(y) of the 5D fields Q,D, which then possess
a non-vanishing normalizable zero-mode (m[n=0] = 0) for only one chirality [L or R as
sin(m[n=0] y) = 0]; hence at low-energies (below the first KK mass eigenvalue m1), only
one chirality of a given 4D field arises in the KK decomposition (1.24) so that one recovers
the chiral nature of the SM.

Furthermore, within an extended realistic model (as described in Section 3.2.6) where
the Q(D) field would be the down-component of an SU(2)L gauge doublet in the SM, the
unique existing chiralities of the zero-mode 4D fields Q(D) 0

L (xµ) and D0
R(xµ) predicted

by Eq. (3.28) via Eq. (1.24) would well correspond to the SM chirality configuration 6.
Notice that Eq. (1.24) [involving KK modes rather than mass eigenstates] and Eq. (3.28)
are valid within the relevant 4D treatment of the localized Yukawa interaction, where it
is explicit that the SM particles (whose mass mainly originates from the EW symmetry
breaking) are indeed mainly composed of the zero-modes (small mixings with the massive
KK states), as imposed by small experimental deviations generally observed with respect
to the theoretical SM predictions.

Therefore, it is remarkable that the BBT allow to make a step towards the UV expla-
nation of the well-known SM chiral properties (chiral nature and chirality configuration)
by directly linking these chiral aspects to explicit signs in front of Lagrangian terms (BBT
signs), as described right above. Then the last step would be to build a UV completion of

4. Similar terms, leading in particular to LB = 1
2(D̄D − Q̄DQD), would hold in a model version

extended to the EW symmetry of the SM, with the Q field promoted to an SU(2)L doublet. In contrast,
terms of the kind Q̄U D (or Q̄D), Q̄U QD or ŪD would obviously not belong to a gauge invariant form.

5. The BBT of Eq. (3.4) is based on natural units. If we return to the unit system of meter, kilogram,
and second (MKS), the BBT read as

SB ∋ 1
c

∫
d4x

1
2 (ℏc) σF

P F̄ F
∣∣
P

, P = 0, L ,

and an explicit dimensional analysis is presented in Appendix I.
6. Taking the opposite sign for the bilinear terms in LB (3.4) would lead to exchanged boundary

conditions between qn(y) and dn(y) relatively to Eq. (3.28) and in turn to another chirality configuration.
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the model to generate these BBT signs. In other words, the absolute control of the chiral
structure by the BBT signs is a new feature that shows how an underlying theory could
produce the SM chiral structure.

For completeness, we mention that the two other BBT sign configurations 7,

S′
B =

∫ L

0
d4x

(
L′

B

∣∣
L − L

′
B

∣∣
0
)
, with L′

B = σF (y)
2 F̄F = σF (y)

2
(
F †

LFR + F †
RFL

)
, (3.7)

where we impose the chiral decomposition (1.17) and

σF
L = −σF

0 = ±1 , (3.8)

via compact notations defined in Eq. (3.6), for 5D fields of the form (1.24) lead to the
two sets (3.29) of boundary conditions and in turn to a vector-like field content, as for
the so-called custodian fermions in custodially protected warped models [117]. Indeed,
Eq. (3.29) leads to the absence of zero-modes (m[n=0] ̸= 0) and hence any KK state has
both Left and Right chiralities. Once again, the control of the vectorial structure by the
BBT signs is a novel characteristic that shows how a UV completion could produce a
vector-like field content. Such massive vector-like states 8 can be used to build custodially
protected warped models [117] and are then called custodians (see for instance Ref. [123]).

What is the direct effect of the BBT (3.4) on the final fermion mass eigenvalues? In the
4D approach and the case without Yukawa interaction (see Section 3.4), these BBT have
no effect on the 4D fermion mass matrix in Eq. (3.43): after injecting the profile solutions,
those BBT vanish due to the induced boundary conditions of Eq. (3.28) which impose
that one of the two wave functions (L or R) 9 entering the BBT 5D fields [cf. Eq. (1.24)] is
equal to zero, at y = 0 [sin(mn 0) = 0] and y = L [sin(mn L) = 0], systematically for each
one of the two Lagrangian BBT (3.4). In contrast, in the 5D approach, the BBT (3.4)
play a numerical and direct rôle in the fermion mass spectrum [and guarantee the diagonal
formula of the 4D effective Lagrangian density], through the boundary conditions coming
from the action variations (see Section 3.6).

In history, this kind of bilinear fermion brane terms (3.4)-(3.7) was first introduced by
hand to derive the more specific AdS/CFT correspondence in the calculation of correlation
functions for spinors [124, 125] – the exact AdS/CFT duality being possibly realized in the
UV completion of warped models (from which the present simplified scenario is inspired).
Then, within this AdS/CFT paradigm, similar boundary terms have been added at the
UV-brane only (y = 0) to guarantee the minimization of the action in the holographic
version of the warped model with bulk fermions [109]. The least action principle was
also invoked in Ref. [126] to justify such bilinear fermion brane terms in the AdS/CFT
context and through the path integral formalism. Equivalently, still in the AdS/CFT
framework, these terms have been motivated in the Lagrangian density from an action
form involving explicitly the Hamiltonian (to obtain a consistent Hamiltonian formulation
when performing the Legendre transformation) [127]. Other boundary-localized terms
were also introduced in a field theory defined on a manifold with boundaries within the
context of gravity: the Gibbons-Hawking boundary terms [128–131]. Those terms are
needed to cancel the variation of the Ricci tensor at the boundaries of the manifold.

The finite geometry setup is defined via either the BBT inclusion or the vanishing
fermion current condition, depending on the considered UV completion of the model.

7. In contrast to the BBT of Eq. (3.4) containing complete fields of the minimal model, here, we just
take one 5D field F as an example in Eq. (3.7).

8. Extensive phenomenology at colliders has been developed about such vector-like particles [118–122].
9. For instance, D̄D = D†

LDR + D†
RDL.
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From the point of view of the effective field theory, it means that it can happen that
the underlying theory does not forbid (through a short-distance mechanism or a residual
symmetry) any possible non-renormalizable Lorentz-invariant operator involving the 5D
fields Q,D (including covariant derivatives) up to dimension 5 – this dimension choice
being motivated in Section 3.2.5 – in the low-energy effective model described in this Sec-
tion 3.2. Then, the present fermionic operators would be those included in the considered
actions (3.3) (dimension 5 operators) and (3.4) (dimension 4 operators): the BBT part.

Notice that bulk mass terms, usually modifying the bulk fermion profiles [see Chap-
ter 1.3.2, 2.3.2 and 6.2.6], bring useless complications [at least for schematic purpose] so
we will not consider them in our present calculations, as the paper conclusions on fermion
couplings to a brane-field can be easily extended [132].

3.2.4 Brane-Localized Scalar Field

In contrast to the bulk scalar field in Section 1.2, to be simplified, here we consider
a 4D real scalar field, H (mass dimension 1), confined on a boundary taken here to be
at y = L (as inspired by the warped scenario addressing the gauge hierarchy problem).
However, the subtle aspects would arise when the fermions couple to this brane-localized
scalar field. The action of this scalar field has the generic form,

SH =
∫
d4x LH , with LH = 1

2 ∂µH∂
µH − V (H) , (3.9)

where the potential V (H) possesses a minimum which generates a non-vanishing vacuum
expectation value for the field developed as

H(xµ) = v + h(xµ)√
2

, (3.10)

in analogy with the SM Higgs boson. Note that the VEV v in Eq. (3.10) doesn’t depend
on the extra dimension, which is definitely different from that in Eq. (1.7).

3.2.5 Yukawa-like Interactions

We focus on the following basic interaction in order to study the subtleties induced by
the brane-scalar field coupling to bulk fermions,

SY =
∫
d4x LY |L , with LY = −Y5 Q

†
LHDR − Y ′

5 Q
†
RHDL + H.c. , (3.11)

which involves H, Q and D, and is up to dimension 5. Note that the coupling constants Y5
and Y ′

5 of Yukawa type, entering these two distinct terms, are independent [i.e. parameters
with possibly different values] as a well-defined 4D chirality holds for the fermion fields on
the 3-brane strictly at y = L (see for instance Ref. [1, 101]),

Y
(′)

5 =̂
∣∣∣Y (′)

5

∣∣∣ eiα
Y (′) with αY (′) ∈ R . (3.12)

In order to avoid the introduction of a new energy scale, one could define the 5D
Yukawa coupling constants by giving their explicit dependence in L:

Y5 = y4 × L and Y ′
5 = y′

4 × L , (3.13)
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where y4, y
′
4 are dimensionless coupling constants of O(1). Then y4 can be identified with

the SM Yukawa coupling constant, as shown when applying the decoupling limit (infinitely
heavy KK masses and any new physics energy scale) 10.

From now on, we restrict our considerations to the VEV of H as the aim is to calculate
the KK fermion mass spectrum, which is unaffected by the interactions of the h(xµ)
fluctuation field with fermions. Hence, we concentrate on the following action issued from
Eq. (3.11),

SX =
∫
d4x LX |L , with LX = −XQ†

LDR −X ′Q†
RDL + H.c. , (3.14)

with the compact notations

X =̂ vY5√
2

and X ′ =̂ vY ′
5√
2
. (3.15)

Based on Eq. (3.10), the complete action reads as, SY = SX + ShQD, with the localized
fermion-scalar interaction terms:

ShQD =
∫
d4x LhQD|L , with LhQD = − Y5√

2
hQ†

LDR −
Y ′

5√
2
hQ†

RDL + H.c. , (3.16)

that allow to work out the 4D effective Yukawa coupling constants.

3.2.6 Model Extension

The toy model considered is thus characterized by the Lagrangian

S5D = Sbulk + Sbranes , (3.17)

where Sbranes represents action terms located at the branes,

Sbranes = SB + SH + SX + ShQD . (3.18)

Nevertheless, the conclusions of the present paper can be directly generalized to realistic
warped models with bulk SM matter solving the fermion mass and gauge hierarchies.
Indeed, working with a warped extra dimension instead of a flat one would not affect the
conceptual subtleties about coupling bulk fermions to a brane-localized scalar field [132].
The boundaries at y = 0 and y = L could then become the Planck and the TeV branes
respectively. Similarly, the scalar potential, V (H), can be extended to any potential [like
the SM Higgs potential breaking the EW symmetry] as long as it still generates a VEV
for the scalar field as here. In this context, the H singlet can be promoted to the Higgs
doublet under the SM SU(2)L gauge group, simply by inserting doublets in the kinetic
term of Eq. (3.9). The whole structure of the coupling of Eq. (3.14) between bulk fermions
and the localized VEV would still remain identical in the case of fermions promoted to SM
SU(2)L doublets: after group contraction of the doublet (QU , QD)t with down/up-quark
singlets D,U , one would obtain two replica of the structure (3.14) with the forms QD†

C DC′

and QU†
C UC′ where C(′) =̂L,R denotes the chirality. Hence, the procedure described in

this chapter should just be applied to both terms separately 11. The same comment holds
for the SM color triplet contraction and the field content extension to the three flavors
of quarks and leptons of the SM. Notice that the flavor mixing would be combined with
the mixing among fermion modes of the KK towers, without any impact on the present
considerations about brane-localized couplings.

10. Note that in the decoupling limit where in particular L → 0, generally Y5 → 0 due to the dimension
of the 5D Yukawa coupling constants.

11. The fermion actions in Eq. (3.3) and (3.4) would be trivially generalized as well to a scenario with
a gauge symmetry.
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3.3 5D Free Bulk Fermions on an Interval
In this part, we calculate the free fermionic mass spectrum in the basic case without

Yukawa interactions in Eq. (3.11) (studied in various references [96–99, 109, 133–138]). Let
us also remark that in this case, there is no need for 4D/5D matching (pure 5D calculation
of the masses). The main interest of this section is to develop a rigorous procedure for
applying the boundary conditions.

3.3.1 Natural Boundary Condition Only

We start by considering simply the bulk action part (1.15),

Sbulk ,

developed from the kinetic terms of Eq. (3.1)-(3.3). Thus, the equations of motion and
the natural boundary conditions for the bulk fermions would be obtained via the least
action principle for each of them (F = Q,D). The stationary action condition can be
split, without loss of generality (the functional variations are generic so that δQ̄ and δD̄
are independent), into action variations with respect to each field Q̄ and D̄

δF̄Sbulk = 0 ,

via the treatment in Eq. (1.23) and (1.28) (F = Q,D). Then, the EOM (1.29)-(1.30) and
the NBC (1.31) would be respectively deduced for F = Q,D.

To develop a 4D effective picture, let us replace the 5D fields by their standard solu-
tions in the form of a KK decomposition in Eq. (1.24) satisfying the ortho-normalization
conditions (1.26), where fn

L/R = qn
L/R or dn

L/R are the dimensionless wave functions along
the extra dimension associated respectively to the 4D fields Fn

L/R = Qn
L/R or Dn

L/R of the
KK excitations tower 12 with the KK masses mF

n
13 labeled by the non-negative integer n.

Inserting the KK decomposition (1.24) into the 5D field EOM (1.30), one can directly
extract this set of differential equations for free profiles:

∀n ∈ N ,



∂4q
n
L(y) = mQ

n q
n
R(y) ,

∂4q
n
R(y) = −mQ

n q
n
L(y) ,

∂4d
n
L(y) = mD

n dn
R(y) ,

∂4d
n
R(y) = −mD

n dn
L(y) ,

(3.19)

which is a double replica (f = q, d) for the generic EOM of profiles in Eq. (1.32). The
set of the first order differential equations (3.19) has been solved via a generic treatment
in Section 1.3, so that the profiles fn

L/R(y) = 0 (∀n ∈ N, f = q, d) vanish again, which
can’t provide physical solutions and aren’t compatible with the two ortho-normalization
conditions in Eq. (1.26) for fn

L/R(y) (f = q, d) 14.
The theoretical inconsistency obtained here for the considered free model reveals a

problem in the treatment of a simple boundary without localized couplings to bulk matter
(which is the case of both boundaries here). The correct treatments, based on either
fermion current conditions at the boundaries or boundary-localized terms (the BBT), are
exposed respectively in the two following sections.

12. Not yet the mass eigenstates in the case of Yukawa interactions.
13. Also mass eigenvalues in the absence of Yukawa interactions.
14. The analysis of the over-constraints has been presented in the end of Section 1.3.
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3.3.2 Introducing the Fermion Current Condition [EBC]

In fact, the free version of the model defined in Section 3.2 (and finite extra dimension
scenario in general) does impose conditions for the bulk fermions at the extra dimension
boundaries, which were not included in the above naive analysis in Section 3.3. These
conditions contribute to define the geometrical field configuration of the considered model,
which will constitute the so-called essential boundary conditions, as imposed by the model
definition, complementary to the NBC already defined in Eq. (1.29) via the least action
principle. Indeed, the NBC come from an integration by part of the initial action with
respect to the fifth dimension over the interval [0, L] and thus take into account the
spacetime structure itself.

Regarding the geometrical field configuration within the present free model, each
fermion field is defined only along the interval [0, L]. This model-building hypothesis,
that fermions neither propagate towards nor come from the outside of a finite range,
translates into the condition of vanishing probability currents at both boundaries for each
independent fermion species separately (without possible compensations).

Formally speaking, after having varied the bulk action constituted by kinetic terms (3.1)
[see Eq. (1.28)] and in turn derived the bulk EOM (1.30) as well as the brane terms in
Eq. (1.28), the application of the Noether’s theorem demonstrated in Appendix F would
suspend the boundary variations δF †

L/R and modify the Dirichlet NBC in Eq. (1.31), which
provides a reasonable solution to avoid the disaster in the naive approach in Section 3.3.

The Noether’s theorem (by using the EOM) 15 gives rise to the two probability cur-
rents (F.5) defined independently for the two bulk fermions 16 represented by the 5D fields
F = Q,D:

jM
Q = −αQ̄ΓMQ , jM

D = −α′D̄ΓMD , (3.20)
associated to the two global U(1)F (F = Q,D) symmetries of the bulk action (1.15)

Sbulk ,

inserted by kinetic terms (3.1)-(3.3) corresponding respectively to the distinct transfor-
mations,  Q 7→ eiαQ,

Q̄ 7→ e−iαQ̄,
and

 D 7→ eiα′
D,

D̄ 7→ e−iα′
D̄,

(3.21)

where α, α′ (∈ R) are continuous parameters entering for instance the infinitesimal field
variations 17:

δQ = iαQ , δQ̄ = −iαQ̄ . (3.22)
Now the four conditions of vanishing probability currents for F = Q,D are thus,

j4
F

∣∣∣
0,L

= −α(′) F̄Γ4F
∣∣∣
0,L

= iα(′)
(
F †

LFR − F †
RFL

)∣∣∣
0,L

= 0 , ∀xµ , (3.23)

where we have used the chiral decomposition (1.17). The most general way out is to make
of Eq. (3.23) a trivial equality by having

FL|0 = 0,
or

FR|0 = 0,
and


FL|L = 0,

or
FR|L = 0,

[EBC] (3.24)

15. Valid trivially in the absence of BBT as well.
16. See Ref. [133] for scalar field currents.
17. We use different notations for the infinitesimal field variations under specific transformations, δF ,

and generic field variations in the variation calculus, δF .
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corresponding to a vanishing coefficient in each term of the condition (3.23):

∀n ∈ N ,


fn

L |0 = 0,
or

fn
R|0 = 0,

and


fn

L |L = 0,
or

fn
R|L = 0,

(3.25)

which consider the linear independence of 4D mass eigenstates, as discussed below Eq. (3.19).
These necessary conditions (3.24) of vanishing fields at boundaries are the EBC and

correspond to some fields initially fixed at boundaries. Having such known fields at boun-
daries imposes [139] to have vanishing functional variations,

δFL|0 = 0,
or

δFR|0 = 0,
and


δFL|L = 0,

or
δFR|L = 0.

(3.26)

which would the contribute to brane terms in Eq. (1.28), since no action minimization
with respect to a field FL/R

∣∣∣
0,L

(relying on δFL/R

∣∣∣
0,L
̸= 0) is needed for such a known

fermion field at a boundary, in contrast to the naive treatment in Section 3.3.1 where
the boundary fields F |0,L were assumed to be initially unknown and then found out the
NBC (1.31) (F = Q,D) through the least action principle.

Some brane terms in Eq. (1.28) would vanish due to the absence of boundary varia-
tions (3.26) which read as,(

δF †
LFR

)∣∣∣
0
−
(
δF †

RFL

)∣∣∣
0

=
(
δF †

LFR

)∣∣∣
L
−
(
δF †

RFL

)∣∣∣
L

= 0 . (3.27)

In other words, when deriving the NBC, before knowing the EBC, one would consider
generically in the action variations (1.28) with all non-vanishing field variations at bound-
aries. However, once the EBC (3.24) are determined and selected (fixing some fields at
boundaries accordingly to Eq. (3.26)), one could keep only non-vanishing variations for
unknown boundary values (i.e. omit to vary the action with respect to known fields).
Then, the resulting NBC and EBC can be combined 18.

Now the general solutions (1.36) of the decoupled equations derived from the EOM (1.30),
once re-injected into the initial equations (3.19) on the profiles, become general solutions
in Eq. (1.38). These solutions are taken to be continuous at the boundaries in order to
have well-defined derivatives appearing in the consistent action (kinetic) (1.15)-(3.1), as
also described in detail in Section 3.5.2.1. Applying the four sets of EBC from Eq. (3.24)-
(3.25) to the solution forms (1.38), it appears that certain constant parameters must be
equal to zero and thus we obtain the following four possible sets of profiles and KK mass
spectrum equation (∀n ∈ N),

1) (−−) : fn
L(y) = Bn

L sin(mF
n y) , (++) : fn

R(y) = Bn
L cos(mF

n y) ; sin(mF
n L) = 0 ,

2) (++) : fn
L(y) = Bn

R cos(mF
n y) , (−−) : fn

R(y) = −Bn
R sin(mF

n y) ; sin(mF
n L) = 0 ,

(3.28)

and,

3) (−+) : fn
L(y) = Bn

L sin(mF
n y) , (+−) : fn

R(y) = Bn
L cos(mF

n y) ; cos(mF
n L) = 0 ,

4) (+−) : fn
L(y) = Bn

R cos(mF
n y) , (−+) : fn

R(y) = −Bn
R sin(mF

n y) ; cos(mF
n L) = 0 .

(3.29)

18. The brane condition in Eq. (3.27) is a special case where no NBC would be deduced. In a more
general situation, some residue NBC would be derived after inserting the EBC.
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Here, we have used the standard BC notations, i.e. − or + for example at y = 0
stands respectively for the Dirichlet or Neumann BC of wave functions: fn

L/R(0) = 0
or ∂yf

n
L/R(0) = 0. For instance, the symbolic notation (−+) denotes Dirichlet (Neumann)

BC at y = 0 (y = L).
The SM-like profile dn

L/R(y) (qn
L/R(y)) taken from line 1 (2) of Eq. (3.28) assigned to

the (singlet/doublet component) quark fields give rise to the chiral nature of the SM and to
its correct chirality configuration, as described in Section 3.2.3. The other solutions (3.29)
lead to KK towers without zero-modes like custodian states [see also the discussion on
Eq. (3.29) in Section 3.2.3].

Notice that the used BC (3.25) must be injected into the equations (3.19) issued from
the EOM as those are valid for any point of the extra dimension including the boundaries
[see the original Eq. (1.29)]. This leads to a new set of BC that we call the complete BC.
These complete BC are well satisfied by the final solutions (3.28) and (3.29).

The constants Bn
L =
√

2 eiαn
L and Bn

R =
√

2 eiαn
R (∀n ∈ N∗) [in the special case n = 0,

the
√

2 factors must all be replaced by the unity] 19, where αn
L/R are real angles, are fixed

by the ortho-normalization condition (1.26). The relation sin(mF
n L) = 0 (F = Q,D) has

the following chosen solutions for the KK mass spectrum,

|mn| =
nπ

L
, n ∈ N , (3.30)

where we define the notation of the common mass spectrum mn as

mn =̂mQ
n = mD

n . (3.31)

Similarly, the relation cos(mF
n L) = 0 has the possible solutions:∣∣∣mF

n

∣∣∣ = (2n+ 1)π
2L , n ∈ N . (3.32)

For instance as the boundary condition 1) and 3) in Eq. (3.28)-(3.29), we would like to
know if the phase of Bn

L is physical. For that purpose, we perform the transformations:

Bn
L 7→ eiθnBn

L =⇒ (fn
L , f

n
R) 7→ (eiθnfn

L , e
iθnfn

R) ,

which let the KK wave functions equations (3.19) and the ortho-normalization condi-
tions (1.26) invariant, thus the phase of Bn

L is not physical and one can take Bn
L = |Bn

L|.
For the boundary conditions 2) and 4), the same method is applied to conclude that the
phase of Bn

R is not physical. We can take Bn
R = |Bn

R|. The constants |Bn
L| and |Bn

R|
are fixed by the ortho-normalization conditions (1.26). The boundary conditions 1) and
2) (3.28) have the non-negative solutions for the KK mass spectrum in Eq. (3.30), the
negative branch is also a reasonable mass spectrum. We will show that the sign of mn is
not physical. One can perform the transformations:{

mF
n 7→ −mF

n ,
F/fn

R 7→ −F/f
n
R or F/fn

L 7→ −F/f
n
L .

Then, the 4D Dirac equations (1.25), the KK wave functions equations (3.19) and the
ortho-normalization conditions (1.26) are invariant. By using the same method as above,
for the boundary conditions 3) and 4) (3.29), one can show that the sign of mF

n is not
physical and take mF

n ≥ 0. For schematic purpose, in Figure 3.1, we give a plot of one

19. For the solution 1), we find B0
L = eiα0

L while B0
R = eiα0

R for the solution 2) [cf. Eq. (3.28)].
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possible set of the KK wave functions along the extra dimension with the real solution
Eq. (3.28).
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Figure 3.1 – Zero-mode and KK dimensionless wave functions q(d)0,1,2
L(R)(y), q(d)1

R(L)(y),
along the interval domain, y ∈ [0, L], free solutions of Eq. (3.28) in the simplified case,
∀n ∈ N, αn

L = αn
R = 0 with non-negative KK masses in Eq. (3.30). The two ending points

at y = 0, L, the BBT, and Dirichlet/Neumann BC, (−)/(+), are indicated on the graph.

We finalize this section with an additional remark on the probability current, which
plays a crucial role of the EBC. Alternatively, one can determine the explicit formula
of the probability current (3.20) directly (without applying the Noether’s theorem to
the Lagrangian density) from a rewriting 20 of each free 5D Dirac equation (1.29)-(1.30)
(F = Q,D) in the bulk.

3.3.3 Introducing the Bilinear Brane Terms [NBC]

As announced at the end of Section 3.3.1, an alternative method 21 with respect to
previous section for finding out the same consistent physical solutions, for the mass spec-
trum and the profiles, is to add the BBT (3.4) to the kinetic terms (3.3) so that the initial
free fermionic action becomes,

Sbulk + SB . (3.33)

20. Subtracting the Dirac equation to its Hermitian conjugate form, with the relevant 5D field and γ0

factors, and using the 5D Dirac matrix rules.
21. One could simultaneously impose the EBC (3.23) above and add the BBT to the action, but this

method would contain some redundancy.
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Let us apply the least action principle using this action as the starting point. We add the
BBT piece (3.4) to the bulk kinetic action based on Eq. (3.3). Without loss of generality,
the stationary action condition

0 = δF̄ (Sbulk + SB) ,

can be split into these two conditions with respect to the two field variations respectively,

δF̄ (Sbulk + SB) =
∫
d4x

{∫ L

0
dy
[
δF †

L (iσ̄µ∂µFL + ∂4FR) + δF †
R (iσµ∂µFR − ∂4FL)

]
+σF

L − 1
2 δF †

LFR

∣∣∣
L

+ σF
L + 1

2 δF †
RFL

∣∣∣
L
− σF

0 − 1
2 δF †

LFR

∣∣∣
0
− σF

0 + 1
2 δF †

RFL

∣∣∣
0

}
, (3.34)

using σF
0,L (F = Q,D) (3.5) for the SM configuration. For generic field variations δF †

L/R

and δF †
L/R

∣∣∣
0,L

, the sum of the first two terms, both in Eq. (3.34), must vanish separately,
leading to the same equations as the EOM (1.30) 22 and in turn via Eq. (1.25) to the
profile equations (3.19) with solutions (1.36). The general solutions (1.36), once injected
into the initial equations (3.19), take the specific forms (1.38). We are thus left with the
NBC: 

σF
L − 1

2 δF †
LFR

∣∣∣
L

= 0,

σF
0 − 1

2 δF †
LFR

∣∣∣
0

= 0,
and


σF

L + 1
2 δF †

RFL

∣∣∣
L

= 0,

σF
0 + 1

2 δF †
RFL

∣∣∣
0

= 0.
(3.35)

Then, using the appropriate constants σF
0,L (F = Q,D) (3.5) for each field and generic

variations δF (†)
L,R

∣∣∣
0,L
̸= 0, it appears clearly that those BC belong to the set of BC (3.24)-

(3.25) whose application on the solution forms (1.38) leads to the two respective sets of
profiles and KK mass spectrum (3.28), as already derived. The structure of the profile
solutions (3.28) corresponds to the chiral nature and configuration of the SM as already
explained in Section 3.2.3.

For completeness, beyond the SM configuration, we take the custodian BBT (3.7) in
the initial action for a given field F ,

Sbulk + S′
B , (3.36)

and the explicit chiral formula reads,

Sbulk + S′
B =

∫
d4x

{∫ L

0
dy
[
iF †

Rσ
µ∂µFR + iF †

Lσ̄
µ∂µFL − F †

R∂4FL + F †
L∂4FR

]
+
[
σF + 1

2 F †
LFR + σF − 1

2 F †
RFL

]∣∣∣∣∣
0

+
[
σF − 1

2 F †
LFR + σF + 1

2 F †
RFL

]∣∣∣∣∣
L

}
.

(3.37)

22. We obtain the Hermitian conjugate EOM and NBC by integrating by part the bulk piece of the
relation δFL,R (Sbulk + SB) = 0 (non-vanishing boundary terms appear due to the integration over the
extra dimension) in order to get rid of the field factors ∂M δFL,R.

52



The stationary action condition can be split into the two following conditions,

0 = δ
F †

L

(
Sbulk + S′

B

)
=

∫
d4x

{∫ L

0
dy
[
δF †

L iσ̄
µ∂µFL + δF †

L ∂4FR

]
+
[
σF − 1

2 δF †
LFR

∣∣∣∣∣
L

+ σF + 1
2 δF †

LFR

∣∣∣∣∣
0

]}
, (3.38)

0 = δ
F †

R

(
Sbulk + S′

B

)
=

∫
d4x

{∫ L

0
dy
[
δF †

R iσ
µ∂µFR − δF †

R ∂4FL

]
+
[
σF + 1

2 δF †
RFL

∣∣∣∣∣
L

+ σF − 1
2 δF †

RFL

∣∣∣∣∣
0

]}
. (3.39)

Once more, the sum of the first two terms in Eq. (3.38) and (3.39), respectively, must
vanish, leading to the same profile equations as the ones deduced from Eq. (3.34) and
hence to the identical bulk solution forms (1.38). Nevertheless, we are now left with the
new NBC:

σF − 1
2 δF †

LFR

∣∣∣∣∣
L

= σF + 1
2 δF †

LFR

∣∣∣∣∣
0

= σF + 1
2 δF †

RFL

∣∣∣∣∣
L

= σF − 1
2 δF †

RFL

∣∣∣∣∣
0

= 0 . (3.40)

Then, for generic variations δF (†)
L,R

∣∣∣
0,L
̸= 0, it is clear that those BC belong to the set of

BC (3.24)-(3.25) whose application on the solution forms (1.38) leads, for σF = +1, to
the set 4) of profiles and KK mass spectrum in Eq. (3.29), and, for σF = −1, to the set 3)
of solutions in Eq. (3.29), as already derived. The control of the BBT sign factor σF , in
Eq. (3.7), on the final solution structure appears here clearly. The profile solutions (3.29)
have a custodian chiral structure as already described in Section 3.2.3. Note that one
could as well combine the two approaches to define the model: add a BBT only on an
interval boundary for a given 5D field (as in this Section 3.3.3) and apply the current
vanishing condition only on the other boundary (as in Section 3.3.2).

In the end of this section, let us now discuss the probability currents. In the presence
of the BBT (3.4) or (3.7) [invariant under the transformations (3.21)], as demonstrated
in the beginning of Appendix F, the application of the Noether’s theorem based on the
bulk EOM (1.30) – derived from the variation of the bulk (kinetic) action (3.1)-(3.3)
invariant under the global U(1)F transformations (3.21) – leads to the same probability
currents (F.5) defined separately for the bulk fermions represented by the 5D fields F =
Q,D, as in Eq. (3.20). Now the NBC (3.35) or (3.40) induced by the BBT, as both
satisfying the BC (3.24), lead to fours conditions of vanishing probability currents of the
exact form (3.23). In other words, the presence of the BBT guarantees (without imposing
any condition) the vanishing of the currents at both boundaries for each independent
fermion species. These BBT-induced conditions contribute to the consistent and complete
definition of the geometrical field configuration for the considered model with a finite extra
spatial interval in which fermionic matter is stuck.

Alternatively, we can derive directly (without the Noether’s theorem) the conservation
relations, ∂MjM

F = 0, for the probability currents (3.20) from a rewriting 23 of each free
5D Dirac equation (1.30) in the bulk. The BBT (3.4) or (3.7) affect only the NBC derived
from variation of the action (3.1)-(3.3).

23. Subtracting the Dirac equation to its Hermitian conjugate form.
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3.4 Brane-localized Yukawa Couplings: 4D Approach

Once the free case is addressed, via the EBC (3.24) in Section 3.3.2 or the NBC (3.35)
[or Eq. (3.40) for custodians] induced by the BBT in Section 3.3.3, the free fermion mass
spectrum and profiles are known. Then, we take into account of the action part SX (3.14)
[induced by the Yukawa interaction SY (3.11)] in the mass spectrum. In this section, we
only describe the two steps of a first method [55, 66, 68, 95, 96, 140–147], that will turn
out to be a correct approach, for including the effects of the Yukawa terms (3.14) on the
final fermion spectrum. The considered action reads thus as,

Sbulk + SX (+SB) , (3.41)

where SB (existing if no EBC are applied) has no direct effect on the mass matrix (3.43)
as explained in Section 3.2.3. First, the free profiles and free spectrum are calculated
within a strict approach whose correct treatment was exposed in detail in Sections 3.3.2
and 3.3.3. Secondly, one can write a mass matrix for the 4D fermion fields involving the
pure KK masses [the free spectrum of the first step] as well as the masses induced by the
Higgs VEV in the Yukawa terms (3.14) [with free profiles of the first step], which mix the
KK modes. The bi-diagonalization of this matrix gives rise to an infinite set of eigenvalues
constituting the physical masses.

The action (3.41) leads – after insertion of the KK decomposition (1.24), use of free
EOM (3.19), the ortho-normalization condition (1.26) and integration over the fifth dimen-
sion – to the canonical kinetic terms for the 4D fermion fields as well as to the following
fermionic 4D effective mass terms in the Lagrangian density (and to independent 4D ef-
fective Higgs-fermion couplings not discussed here),

−χ†
LMχR + H.c. ,

in the combined basis for the left and right-hand (transposed) 4D fields: χt
L(xµ) =

(
Q0t

L , Q
1t
L , D

1t
L , Q

2t
L , D

2t
L , · · ·

)
,

χt
R(xµ) =

(
D0t

R , Q
1t
R , D

1t
R , Q

2t
R , D

2t
R , · · ·

)
.

(3.42)

Notice that there exists only one chirality for the zero-modes as explained below Eq. (3.4).
The infinite mass matrix reads as,

M =



α00 0 α01 0 α02 · · ·
α10 m1 α11 0 α12 · · ·
0 β11 m1 β12 0 · · ·
α20 0 α21 m2 α22 · · ·
0 β21 0 β22 m2 · · ·
...

...
...

...
... . . .


, (3.43)

where mn is the free spectrum (3.30) and the free wave function overlaps with the Higgs-
brane are defined by 24, 

∀(i, j) ∈ N2, αij = X

L
qi

L(L)dj
R(L) ,

∀(i, j) ∈ N∗2, βij = X ′

L
di

L(L)qj
R(L) .

(3.44)

24. To simplify, drop non-physical phases discussed in the end of Section 3.3.2, here we only consider
real wave functions.
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As the profiles are the free ones [profiles and KK mass spectrum solutions (3.28) with SM
chiral structure], only the αij coefficients do not vanish.

The physical fermion mass spectrum is obtained by bi-diagonalizing the mass ma-
trix (3.43). This method is called the perturbation method in the sense that truncating
the mass matrix at a given KK level corresponds to keeping only the dominant contribu-
tions to the lightest mass eigenvalue being the measured fermion mass (higher KK modes
tend to mix less to the zero-mode due to larger mass differences).

Extracting the mass spectrum equation from the characteristic equation for the Hermi-
tian-squared mass matrix (3.43), in the case of infinite KK towers, is not trivial. This
useful exercise was addressed analytically in Ref. [96] for the present toy model but with
a 5D Yukawa coupling constant Y5 (and in turn a X quantity) taken real, i.e. αY = 0 in
Eq. (3.12). The resulting exact equation – without any approximation – was found to be:

∀n ∈ N , tan2(
√
|Mn|2L) = X2 ⇔ tan(

√
|Mn|2L) = ±X . (3.45)

in the case of a real X parameter and positive mn branch from Eq. (3.30). Let us present
here the absolute values of the solutions (physical masses) of this equation:

∀n ∈ N , |Mn| =
∣∣∣∣arctan(X) + (−1)nñ(n)π

L

∣∣∣∣ , (3.46)

where the function ñ(n) is defined by

ñ(n) =


n
2 for n even ,

n+1
2 for n odd ,

(3.47)

so that the positive integer n labelling the mass eigenvalues remains as well the label of
the associated [as in the free case (1.25)] 4D mass eigenstates ψn(xµ) [like in Eq. (1.24)].
Besides, we need to demonstrate that the two different classes ±X in Eq. (3.45) generates
the unique mass spectrum (3.46):

tan(
√
|M+

n |2 L) = +X ⇒ |M+
n | =

arctan(X) + nπ

L
, ∀n ∈ N (3.48)

=
∣∣∣∣arctan(X) + (−1)nñ(n)π

L

∣∣∣∣ , for n even ,

tan(
√
|M−

n |2 L) = −X ⇒ |M−
n | =

− arctan(X) + nπ

L
, ∀n ∈ N∗ (3.49)

=
∣∣∣∣arctan(X) + (−1)nñ(n)π

L

∣∣∣∣ , for n odd ,

so that the two branches of solutions in Eq. (3.48) and (3.49) combine together into a
complete mass spectrum |Mn| in Eq. (3.46), which is presented visually in Figure 3.2.

To check that the counting of states is correct, we observe that, in the realistic case
|X| ≪ 1 (typically small SM masses compared to the KK scale), two consecutive absolute
masses |Mn| (for one odd n and the following even n, with n ∈ N∗) of Eq. (3.46) are
equal at leading order to the corresponding [unique ñ value] absolute mass ñ π/L as in
the free spectrum (3.30). Hence, in the vanishing mixing limit [see matrix (3.43)], the
two associated consecutive mass eigenstates ψn(xµ) tend well to the two free 4D field
components Qñ(xµ) and Dñ(xµ) [of Eq. (1.25)].
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Figure 3.2 – The KK towers with [|Mn| (3.46), |M+
n | (3.48), |M−

n | (3.49)] and without
[|mn| (3.30)] a brane-localized Yukawa coupling.

3.5 5D Treatment: The Regularization Doom
In this part, we work out the fermion mass spectrum in the defined model with the

extended 5D action (3.17) using the alternative 5D approach based on the brane-Higgs
regularization [96–102] and we point out non rigorous patterns of this method.

3.5.1 Mixed Kaluza-Klein Decomposition

As we have just seen in Eq. (3.42)-(3.43), after the EW symmetry breaking, the infinite
Qn

L and Dn
L field towers mix together (as do the Qn

R and Dn
R) to form 4D fields ψn

L (and
ψn

R) representing mass eigenstates. In order to take into account this mixing within the
5D approach, these common 4D fields ψn

L are defined instead of the Qn
L and Dn

L fields (and
similarly for the right-hand fields) in the whole KK decomposition, then called a mixed
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KK decomposition [instead of the free one in Eq. (1.24)] [101], as follows,

QL (xµ, y) = 1√
L

+∞∑
n=0

qn
L(y)ψn

L (xµ) ,

QR (xµ, y) = 1√
L

+∞∑
n=0

qn
R(y)ψn

R (xµ) ,

DL (xµ, y) = 1√
L

+∞∑
n=0

dn
L(y)ψn

L (xµ) ,

DR (xµ, y) = 1√
L

+∞∑
n=0

dn
R(y)ψn

R (xµ) ,

(3.50)

where the 4D fields ψn
L/R (∀n ∈ N) must satisfy the Dirac-Weyl equations, iσ̄µ∂µψ

n
L (xµ)−Mn ψ

n
R (xµ) = 0 ,

iσµ∂µψ
n
R (xµ)−Mn ψ

n
L (xµ) = 0 ,

(3.51)

where the spectrum Mn includes the mass contribution whose origin is the Yukawa cou-
plings (3.14). Note that in contrast with the free case, there is a unique mass spectrum
Mn for a unique 4D field tower ψn

L/R(xµ). In order to guarantee the existence of diagonal
and canonical kinetic terms for those 4D fields ψn

L/R, the associated new profiles must now
obey the two following ortho-normalization conditions,

∀n,m ∈ N,
1
L

∫ L

0
dy [qn∗

C (y)qm
C (y) + dn∗

C (y)dm
C (y)] = δnm , (3.52)

for a chirality index C =̂L/R. These two conditions are different from the four ones of
Eq. (1.26) due to the new mixed KK decomposition (3.50).

3.5.2 Inconsistencies of the Higgs Shift Procedure

Here we highlight the formal problems of the 5D process of shifting the brane-Higgs
field [96, 97, 102] to get the fermion mass tower. Once more the considered fermion terms
of the extended 5D action (3.17) are Sbulk and SX (without SB which was missed in the
relevant literature and that will be taken into account in Section 3.6). The variations of
the studied action lead to the same free BC of Eq. (1.31) (F = Q,D) and to the following
bulk EOM including the Yukawa coupling constants [instead of the free ones in Eq. (1.30)],

iσ̄µ∂µQL + ∂4QR − δ(y − L)XDR = 0 ,

iσµ∂µQR − ∂4QL − δ(y − L)X ′DL = 0 ,

iσ̄µ∂µDL + ∂4DR − δ(y − L)X ′QR = 0 ,

iσµ∂µDR − ∂4DL − δ(y − L)XQL = 0 .

(3.53)

where X and X ′ are taken real. Indeed, in view of regularizing the brane-Higgs field, the
Yukawa interactions must be included in the bulk EOM [96] – as done in the literature.
Inserting the mixed KK decomposition (3.50) in these 5D field EOM (3.53) allows to
factorize out the 4D fields, obeying the 4D Dirac equations (3.51), and obtain the profile
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equations for each excited mode [instead of the free ones in Eq. (3.19)]:

∀n ∈ N,



∂4q
n
R(y) +Mn q

n
L(y) = δ(y − L)Xdn

R(y) ,

∂4q
n
L(y)−Mn q

n
R(y) = − δ(y − L)X ′dn

L(y) ,

∂4d
n
R(y) +Mn d

n
L(y) = δ(y − L)X ′qn

R(y) ,

∂4d
n
L(y)−Mn d

n
R(y) = − δ(y − L)Xqn

L(y) .

(3.54)

Here we underline the first mathematical issue of this usual approach: introducing δ(y−L)
Dirac peaks 25 in these profile equations leads to relations between distributions 26 and
functions which are thus not mathematically consistent [115, 116].

The apparent “ambiguity” noticed in the literature (in the context of a warped extra
dimension) was that the Yukawa terms in Eq. (3.54) are present only at the y = L
boundary and might thus affect the fermion boundary conditions. In order to avoid this
potential problem (like a field vagueness), a regularization of the brane-Higgs coupling
was suggested forcing to maintain the free fermion boundary conditions in the presence of
Yukawa interactions.

3.5.2.1 Regularization I Drawbacks

In the first type of regularization applied in the literature [96, 97, 100], called Regu-
larization I, the BC are considered at the first level of the procedure to be injected in the
EOM (3.54) [96]. The free BC impose dn

L(L) = qn
R(L) = 0 27 [see respectively the first and

fourth solutions in Eq. (3.28)] so that the EOM (3.54) is supposed to become

∀n ∈ N,



∂4q
n
R(y) +Mn q

n
L(y) = δ(y − L)Xdn

R(y) ,

∂4q
n
L(y)−Mn q

n
R(y) = 0 ,

∂4d
n
R(y) +Mn d

n
L(y) = 0 ,

∂4d
n
L(y)−Mn d

n
R(y) = − δ(y − L)Xqn

L(y) .

(3.55)

At this level, we point out a second lack of strictness in this common “standard treatment”:
the two vanishing RHS of Eq. (3.55) originate from the assumption that 0 × δ(0) = 0
whereas the quantity 0 × δ(0) is rigorously undefined 28 which should forbid to continue
this standard method 29. In the next step of this method, the usual mathematical trick
is to shift the brane-Higgs coupling from the brane at y = L (TeV-brane in a warped

25. Strictly speaking, a Dirac peak is a distribution although its historical name is “Dirac delta function”,
which is rigorously treated in Chapter 5.

26. Also called “generalized functions” in mathematical analysis.
27. In the literature, the BC dn

L|0,L = qn
R|0,L = 0 are selected by hand from the NBC (1.33) to realize

the SM chiral configuration but without a clear argument based on the EBC (3.25) [see Section 3.3.2] or
the BBT (3.4)-(3.7) [see Section 3.3.3].

28. This quantity corresponds also to an undefined product, namely 0×∞, within the original simplified
description [148] still used in physics textbooks (together with normalisation conditions):

δ(y − L) =̂
{

0 if y ̸= L ,
∞ if y = L .

29. Such δ(0) divergences are automatically regulated – by the exchange of infinite towers of KK scalar
modes – for a brane-Higgs coupled to bulk scalar fields within a minimal supersymmetric scenario [149].
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framework) by an amount ϵ:

∀n ∈ N,



∂4q
n
R(y) +Mn q

n
L(y) = δ(y − [L− ϵ])Xdn

R(y) ,

∂4q
n
L(y)−Mn q

n
R(y) = 0 ,

∂4d
n
R(y) +Mn d

n
L(y) = 0 ,

∂4d
n
L(y)−Mn d

n
R(y) = − δ(y − [L− ϵ])Xqn

L(y) .

(3.56)

Then the integration of the four relations of Eq. (3.56) over an infinitesimal range, tending
to zero and centered at y = L− ϵ, leads to 30

∀n ∈ N,



qn
R([L− ϵ]+)− qn

R([L− ϵ]−) = Xdn
R(L− ϵ) ,

qn
L([L− ϵ]+)− qn

L([L− ϵ]−) = 0 ,

dn
R([L− ϵ]+)− dn

R([L− ϵ]−) = 0 ,

dn
L([L− ϵ]+)− dn

L([L− ϵ]−) = − Xqn
L(L− ϵ) .

(3.57)

Another inconsistency arising here in the regularization process is the following one. The
first and fourth relations in Eq. (3.57) show that the wave functions qn

R(y) and dn
L(y) possess

a discontinuity at y = L− ϵ. Hence the functions ∂4q
n
R(y) and ∂4d

n
L(y) are not defined at

y = L− ϵ. Two of the integrations performed on Eq. (3.56) to get Eq. (3.57) are thus not
well defined. The fundamental theorem of analysis 31 [150] cannot be applied for functions
undefined on the whole interval of integration. Let us express this problem in other terms;
the functions ∂4q

n
R(y) and ∂4d

n
L(y) being not defined at y = L (in the limit ϵ → 0), the

last two terms of the 5D kinetic action (3.3) – defined along the interval I =̂ [0, L] – are
not well defined 32. Another definition problem appears in this regularization: the brane-
localized Yukawa action (3.14) is ill-defined [115, 116] since the Dirac peak δ(y−L) enters
in particular as a factor of the profiles qn

R(y) and dn
L(y) being not continuous at y = L,

as deduced from Eq. (3.57) – in the limit ϵ → 0 – combined with the free BC imposing
dn

R(L) ̸= 0, qn
L(L) ̸= 0 [see respectively the first and fourth solutions in Eq. (3.28)] 33.

Finally, the qn
R(y) and dn

L(y) jump at y = L, obtained when regularizing the brane-Higgs
coupling, which conflict to the field continuity axiom of the invoked theory of variation
calculus and hence to the Hamilton’s variational principle [114].

In the following steps of this Regularization I, one solves the shifted EOM (3.56) first
in the interval [0, L− ϵ] (bulk EOM without Yukawa couplings) and applies the free BC at
y = 0 on the obtained profiles. Then, one solves similarly on [L− ϵ, L] before applying the
jump and continuity conditions (3.57) at y = L− ϵ on the resulting profiles. The last step
is to apply the free BC at y = L on these profiles and take the limit ϵ→ 0 (to recover the
studied brane-Higgs model) on the written BC. The obtained BC give rise to the equation
whose solutions constitute the fermion mass spectrum:

∀n ∈ N , tan2(MnL) = X2 , (3.58)

30. The integration of Eq. (3.56) could also be performed over the interval [L − ϵ, L]; this variant of the
calculation, suggested in an Appendix of Ref. [97], represents in fact an equivalent regularization process
leading to the same physical results and with identical mathematical inconsistencies.

31. Let (a, b) ∈ R2 and g be a continuous function on [a, b], then g admits continuous primitives on [a, b].
Let G be one of them, then one has:

∫ b

a
dy g(y) = G(b) − G(a).

32. From the current point of view, the conservation condition (F.10) – involving in particular the 5D
probability current component (3.79) – cannot be properly written at any point along the fifth dimension
since qn

R(y) and dn
L(y) have discontinuities at y = L so that derivatives in ∂4j4 are not well defined there.

33. The profiles qn
L(y), dn

R(y) are usually assumed to be continuous at y = L − ϵ while qn
R(y), dn

L(y)
remain unknown exactly at this point.
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which induces the exactly identical mass spectrum in the 4D approach result of Eq. (3.45)-
(3.46).

3.5.2.2 Regularization II Drawbacks

Within the Regularization II [96, 97, 101, 102], the Yukawa coupling is firstly shifted
into the bulk equations (3.54) which become

∀n ∈ N,



∂4q
n
R(y) +Mn q

n
L(y) = δ(y − [L− ϵ])Xdn

R(y) ,

∂4q
n
L(y)−Mn q

n
R(y) = − δ(y − [L− ϵ])X ′dn

L(y) ,

∂4d
n
R(y) +Mn d

n
L(y) = δ(y − [L− ϵ])X ′qn

R(y) ,

∂4d
n
L(y)−Mn d

n
R(y) = − δ(y − [L− ϵ])Xqn

L(y) .

(3.59)

Integrating these four relations over an infinitesimal range centered at y = L− ϵ gives:

∀n ∈ N,



qn
R([L− ϵ]+)− qn

R([L− ϵ]−) = Xdn
R(L− ϵ) ,

qn
L([L− ϵ]+)− qn

L([L− ϵ]−) = − X ′dn
L(L− ϵ) ,

dn
R([L− ϵ]+)− dn

R([L− ϵ]−) = X ′qn
R(L− ϵ) ,

dn
L([L− ϵ]+)− dn

L([L− ϵ]−) = − Xqn
L(L− ϵ) .

(3.60)

which show that the four wave functions undergo a jump at y = L−ϵ so that their derivative
with respect to y are not well-defined at this point [especially for qn

L and dn
R, in contrast

to that in Eq. (3.57)]. Hence, the four integrations performed on Eq. (3.59) to obtain
Eq. (3.60) are not well defined in this regularization, which is a repeated inconsistency in
the Regularization I. Since that, a regularization at y = L − ϵ must be implied and one
can select a standard mean value weighted thanks to a real number, c,

∀n ∈ N,



qn
R([L− ϵ]+)− qn

R([L− ϵ]−) = X
dn

R([L−ϵ]−) + c dn
R([L−ϵ]+)

1+c ,

qn
L([L− ϵ]+)− qn

L([L− ϵ]−) = −X ′ dn
L([L−ϵ]−) + c dn

L([L−ϵ]+)
1+c ,

dn
R([L− ϵ]+)− dn

R([L− ϵ]−) = X ′ qn
R([L−ϵ]−) + c qn

R([L−ϵ]+)
1+c ,

dn
L([L− ϵ]+)− dn

L([L− ϵ]−) = −X qn
L([L−ϵ]−) + c qn

L([L−ϵ]+)
1+c .

(3.61)

Scrutinizing the left-hand sides of those four equations, one observes that jumps may
arise at y = L (under the limit ϵ → 0) for the four profiles [for each excited nth mode].
Determining which profiles are discontinuous requires to consider the free BC at y = L
(before applying the limit ϵ→ 0), the various c values (including infinity) 34 and the four
profiles simultaneously [as they are related through Eq. (3.61)].

The hypothesis that all of the four profiles are continuous at y = L − ϵ (in the limit
ϵ → 0) would lead to the EOM and the vanishing BC for all fields as in the absence of
Yukawa interactions 35 and in turn force all fields to vanish on the interval I = [0, L]
(see Section 1.3.1). This kind of solution was not considered in the literature since it

34. Different values of c correspond to physically equivalent regularizations based on different input
values of the Yukawa coupling constants (different coupling definitions).

35. Free BC for continuous profiles and free version of the bulk equations (3.59) without the jump
conditions (3.61) at y = L − ϵ involving effectively the Yukawa couplings.
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does not provide a physical configuration. Therefore, there must exist at least one profile
discontinuous at y = L, which in turn cannot be derived at this point and leads to an
undefined kinetic term [in the last two terms of 5D kinetic Lagrangian density (3.3)].
Furthermore, the obtained discontinuous [at y = L] profile comes in factor of δ(y − L)
in Eq. (3.14), spoiling the mathematical validity of this action. Besides, once more, this
jump obtained at y = L within the regularization process is not compatible with the field
continuity axiom implicitly used when applying the Hamilton’s variational principle.

In the next steps of Regularization II, the EOM (3.59) is first solved over the domain
[0, L−ϵ] (free bulk EOM) and the free BC at y = 0 are applied on the resulting wave func-
tions. Eq. (3.59) is then solved over [L−ϵ, L] before the jump/continuity conditions (3.61)
at y = L− ϵ are applied on the obtained profiles. Finally, the free BC at y = L are imple-
mented on those profiles and one applies the limit ϵ→ 0 on the expressed BC. These BC
make appear the following fermion mass spectrum equation for c = 1:

∀n ∈ N , tan2(MnL) =
( 4X

4 +XX ′

)2
, (3.62)

which can still be shown [96] to be the same as the result of regularization I in Eq. (3.58)
[with the redefined Yukawa couplings].

3.5.3 Inconsistencies of the Softened Brane-Higgs Coupling

Another type of regularization used in the literature (for warped models) [96, 97, 101,
102, 105–107] consists in replacing the Dirac peak δ(y − L) of Eq. (3.14) by a normalized
square function [a so-called nascent delta function (or delta sequence)],

δϵ(y − L) =


1
ϵ
, y ∈ [L− ϵ, L] ,

0 , otherwise,
(3.63)

which has a vanishing width (ϵ > 0) and an infinite value (1/ϵ) in the limit ϵ→ 0 [which
is not a true function in the mathematical sense] 36 where one expects to recover the
considered model with a brane-Higgs coupling. Nevertheless, we point out here that the
Dirac peak δ(y − L) at the Higgs brane, and in turn the original model, is not rigorously
recovered via a limit, δ(y − L) = lim

ϵ→0
δϵ(y − L), which is only symbolic since a distribution

cannot be defined as the simple direct limit of a basic function 37. Hence, this would-
be regularization is not satisfactory in the sense that it does not strictly reproduce the
studied brane-Higgs scenario. By the way, to give a well-definition to this regularization
procedure, δ(y − L) in Eq. (3.54) should multiply only continuous wave functions.

In addition, the two schemes of Regularization I and II still hold in this framework of
a softened coupling and in the case of Regularization I a problem arises again: some terms
of the profile EOM are taken at zero based on the assumption that 0× δ(0) = 0 whereas
the quantity 0× δ(0) is undefined.

36. The rigorous treatment based on the Dirac distribution formalism is presented in Chapter 5.
37. Strictly speaking, it is the effect of the Dirac peak in the integration of a function f(y) over an

interval covering the point y = L,
∫

δ(y − L)f(y)dy = f(L), which can be reproduced via an integration
of the type, lim

ϵ→0

∫
δϵ(y − L)f(y)dy = f(L), but not the implementation in the present regularization.
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3.5.4 Two Non-Commutativities of Calculation Steps

The analytical differences of the mass spectra found in the Regularisations I and II,
as well as via the softened and shifted brane-Higgs peaks, could be compensated by the
different input values of the Yukawa coupling constant parameters (Y5 and Y ′

5) to get
identical physical mass values.

Nevertheless, the Regularizations I and II are in fact physically different as inducing
the existence of measurable flavor violating effective 4D Yukawa couplings at leading order
in v2/|m1|2, which are generated by the Y ′

5 couplings [101] presented exclusively within
Regularization II (as appears clearly in the 4D approach). This physical difference between
the two schemes of regularization raises the paradoxical question, of which one is the sole
correct analytical scheme to use, and represents thus as a confirmation of the inconsistency
of regularizing the Higgs peak.

These two schemes of regularization are obtained [96] by commuting in the 4D calcu-
lation (of masses and couplings) the ordering of implementation of the two limits ϵ → 0
[the regularizing parameter ϵ defined in Eq. (3.56)] and N →∞ [the upper value N of the
KK level n in Eq. (1.24)]. Therefore, this physical non-commutativity of calculation steps
reflects the inconsistency of the Higgs peak regularization.

Another paradoxical non-commutativity of calculation steps arising in the context of
regularization of a brane-Higgs coupled to bulk fermions was discussed in Ref. [105, 106]:
different results of Higgs production/decay rates when taking ϵ → 0 and then NKK →
∞ 38 [102] or the inverse order [103] in their calculation. We can thus interpret now this
second non-commutativity of calculation steps as being another effect, and in turn another
confirmation, of the problematic Higgs regularization (also expected with a warped extra
dimension). Hence, the theoretical debate in the literature about the origins of those two
non-commutativities (involving ϵ) finds its solution in the mathematically ill-defined (see
above) and unnecessary (see below) Higgs regularization (introducing ϵ).

3.6 New 5D Treatment

In this part, we consider the presence of the Yukawa couplings (3.14) and present the
rigorous 5D method to calculate the fermionic mass spectrum – which does not require
any kind of regularization. We follow the main lines of the methodology developed for the
free case in Section 3.3.

3.6.1 The Naive Approach

For the fermion masses, the relevant part of the considered action (3.17) to start with
is

Sm
5D = Sbulk + SX + S0

B , with S0
B = −

∫
d4x LB|0 , (3.64)

where the first term is based on kinetic terms (3.3) and LB introduced by the BBT of
Eq. (3.4) is imposed only at the brane y = 0 where the Yukawa interaction is absent.
Regarding the free brane at y = 0, we could equivalently apply the EBC (3.23) instead of
including these BBT, as we have exposed in details in Section 3.3.2-3.3.3. Now without

38. Here NKK stands for the number of excited fermion eigenstates exchanged at the loop-level.
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loss of generality, the least action principle leads to the four following conditions,

0 = δ
Q†

L
Sm

5D =
∫
d4x

{∫ L

0
dy δQ†

L [iσ̄µ∂µQL + ∂4QR]

+
[
δQ†

L

(
−XDR −

1
2QR

)]∣∣∣∣
L

+
(
δQ†

LQR

)∣∣∣
0

}
,

0 = δ
Q†

R
Sm

5D =
∫
d4x

{∫ L

0
dy δQ†

R [iσµ∂µQR − ∂4QL] +
[
δQ†

R

(
−X ′DL + 1

2QL

)]∣∣∣∣
L

}
,

0 = δ
D†

L
Sm

5D =
∫
d4x

{∫ L

0
dy δD†

L [iσ̄µ∂µDL + ∂4DR] +
[
δD†

L

(
−X ′∗QR −

1
2DR

)]∣∣∣∣
L

}
,

0 = δ
D†

R
Sm

5D =
∫
d4x

{∫ L

0
dy δD†

R [iσµ∂µDR − ∂4DL]

+
[
δD†

R

(
−X∗QL + 1

2DL

)]∣∣∣∣
L
−
(
δD†

RDL

)∣∣∣
0

}
. (3.65)

Analogy to the studied free case, the non-vanishing field variations δF †
L/R, δF †

L/R

∣∣∣
0,L

are
generic, so that the bulk terms in each of those four relations, must vanish separately,
which leads to the same equations as the 5D EOM (1.30) and hence – via the mixed KK
decomposition (3.50) and 4D Dirac-Weyl equations (3.51) – the profile equations,

∀n ∈ N ,



∂4q
n
R(y)−Mn q

n
L(y) = 0 ,

∂4q
n
L(y) +Mn q

n
R(y) = 0 ,

∂4d
n
R(y)−Mn d

n
L(y) = 0 ,

∂4d
n
L(y) +Mn d

n
R(y) = 0 ,

(3.66)

which are solved in Eq. (1.38) (f = q, d) but via (distinct) KK masses Mn,

∀n ∈ N,

 fn
L(y) = −Bn

R cos(Mn y) +Bn
L sin(Mn y) ,

fn
R(y) = Bn

L cos(Mn y) +Bn
R sin(Mn y) ,

(3.67)

and the NBC resulting from Eq. (3.65) read as: (QR + 2XDR)|L = 0, (DR + 2X ′∗QR)|L = 0, QR|0 = 0,

(QL − 2X ′DL)|L = 0, (DL − 2X∗QL)|L = 0, DL|0 = 0.
(3.68)

Note that QR and DL can’t vanish at y = L. Otherwise, one would obtain the free
mass spectrum independent of Yukawa couplings X(′)[see Eq. (3.30)] via the solutions of
Eq. (3.67) as in Section (3.3.2). Then, the NBC (3.68) leads to the following consistency
conditions on the Lagrangian parameters,

4XX ′∗ = 4X∗X ′ = 1 , (3.69)

and in turn to
4|XX ′| = 1 , and αY ′ = αY + 2kπ , k ∈ Z . (3.70)

We should emphasize that the Yukawa coupling relation (3.69) prevents us from taking
the free limit where X → 0 and X ′ → 0.
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The boundary conditions (3.68), combined with the bulk profile EOM (3.66) [with
solutions (3.67)] taken at y = L, constitute the complete BC. Referring to the dependence
on the quantity X(′), we denote (×) this new class of complete BC at the brane with
a Yukawa coupling (here at y = L) to distinguish them from the Dirichlet BC usually
noted (−) or the Neumann BC noted (+). The BC (3.68) on the 5D fields give rise to the
following conditions on the profiles, through the mixed KK decomposition (3.50),

∀n ∈ N ,

 qn
R(L) + 2Xdn

R(L) = 0, dn
R(L) + 2X ′∗qn

R(L) = 0, qn
R(0) = 0,

qn
L(L)− 2X ′dn

L(L) = 0, dn
L(L)− 2X∗qn

L(L) = 0, dn
L(0) = 0,

(3.71)

since the 4D fermion fields for the mass eigenstates cannot be linearly related – as discussed
below Eq. (3.19). Those profile conditions, once applied on the solutions (3.67), lead to
the form,

∀n ∈ N ,

 qn
L(y) = −Cn

R cos(Mn y), qn
R(y) = Cn

R sin(Mn y),

dn
L(y) = Dn

L sin(Mn y), dn
R(y) = Dn

L cos(Mn y),
(3.72)

together with the relations,

tan(Mn L) = −2X Dn
L

Cn
R

= −2X∗ C
n
R

Dn
L

⇒ tan2(Mn L) = 4|X|2 ,

cot(Mn L) = −2X ′ D
n
L

Cn
R

= −2X ′∗ C
n
R

Dn
L

⇒ cot2(Mn L) = 4|X ′|2 . (3.73)

where the last two mass spectrum relations induced are strictly equivalent thanks to
Eq. (3.69). The obtained mass spectrum allows to further determine for instance the BC
(−×) of the profile dn

L(y): dn
L(0) = 0 and dn

L(L) = Dn
L sin(Mn L).

Let us check the validity of the obtained solutions by physical consistencies. In the
decoupling limit of high KK masses (compared to the typical SM energy scale) applied
to the present model, one expects to recover approximately the SM setup at low-energies.
This decoupling condition is necessary for the theoretical consistency of the model, and it
is generically imposed by the experimental constraints. Firstly, according to Eq. (3.73),
the lightest mode mass is,

|M0| =
1
L

arctan(2|X|) = 1
L

arctan(
√

2|y4Lv|) ∼
|m1|≫|v|

√
2|y4v| , (3.74)

where we have imposed the relation of X, Y5 and y4 in Eq. (3.13)-(3.15) as well as the
first excited KK mass |m1| = π/L [cf. Eq. (3.30)]. This 4D effective fermion mass [cf.
Eq. (3.51)] is well proportional to the Higgs VEV as in the SM. Secondly, the effec-
tive 4D Yukawa coupling constants in the 4D action term involving the lightest modes,
−
∫
d4xY00Hψ

0†
L ψ

0
R +H.c., is obtained by injecting the mixed KK decomposition (3.50) to

the Yukawa action (3.11) and then integrating over y by using the wave functions (3.72)
to take into account the mass mixings induced by the Yukawa couplings (5D method):

y00 = Y5√
2L

q0∗
L (L) d0

R(L) + Y ′∗
5√
2L

d0∗
L (L) q0

R(L)

=
[
Y5√
2L
− Y ′∗

5√
2L

(2X)2
]
q0∗

L (L) d0
R(L)

=
[
Y5√
2L
− Y5√

2L

]
q0∗

L (L) d0
R(L)

= 0 , (3.75)
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where we have invoked the BC (3.71) and Eq. (3.69). So, y00 vanishes, which differs from
the SM framework and in turn breaks the decoupling condition,

The problematic vanishing of the effective 4D Yukawa coupling constant y00 reveals a
problem in the present treatment of the studied model, which results from the invariance
of the action (3.64) under the exchange transformation, Q ↔ D together with Y ∗

5 ↔ Y ′
5

at y = L [symmetry also explicit in EOM (3.66) and the NBC (3.71) of profiles]; this
symmetry will be broken in the correct treatments presented below. A confirmation of
the failure of the present 5D treatment is the non-matching of the obtained spectrum
equation (3.73) with the 4D matrix method result (3.45). Therefore, the naive treatment
of the brane-Higgs coupling in this section should be reconsidered: we present the other
methods in the following two sections.

3.6.2 Introducing the Fermion Current Condition [EBC]

Like in the free case treated in Section 3.3.2, we now try to define well the geomet-
rical field configuration of the considered scenario based on the action Sm

5D of Eq. (3.64)
where the boundary at y = 0 has been constrained by the BBT and additional bound-
ary conditions would be applied at y = L [EBC] 39. In this scenario, the two 5D fields
Q,D propagate only inside the interval I =̂ [0, L]. This setup translates into a condition
of vanishing probability current at both boundaries. Here, the current is the sum of the
two individual currents of type (3.20) for the two species Q,D since those fermions are
mixed through the Yukawa terms (3.14). To find out this current form rigorously, we first
vary the action as at the beginning of Section 3.6.1 and deduce the 5D EOM (1.30) whose
profile solutions were given in Eq. (3.67). Then using the obtained EOM (1.30), we apply
in Appendix F the Noether’s theorem to work out the probability current (F.10) 40 which
reads as,

jM = −α
∑

F =Q,D

F̄ ΓMF , with the local conservation relation ∂MjM = 0 , (3.76)

as dictated by the global U(1) symmetry of the action (3.64) relying on the transforma-
tions,

Q 7→ eiαQ , D 7→ eiαD ,

Q̄ 7→ e−iαQ̄ , D̄ 7→ e−iαD̄ . (3.77)
where α (∈ R) is a continuous parameter [now forced by the invariant terms– Yukawa
couplings (3.14) – to be common for the two fields Q,D] involved for example in the
infinitesimal field variations (F = Q,D),

δFL = iαFL , δF †
L = −iαF †

L . (3.78)
We thus find that the effect of the Yukawa interactions is not to modify the currents but
rather to force one to add them up for having a probability conservation relation (due
to the induced mixing among the Q and D fields). Finally, the condition of vanishing
probability current at the boundary where is located the Yukawa coupling reads as 41,

j4
∣∣∣
L

= −α
∑

F =Q,D

F̄ Γ4F

∣∣∣∣∣∣
L

= iα
∑

F =Q,D

(
F †

LFR − F †
RFL

)∣∣∣∣∣∣
L

= 0 . (3.79)

39. The boundary conditions at y = 0 can be alternatively realized by EBC induced by the probability
currents instead of the BBT at y = 0 included in Sm

5D (3.64), which has been presented in Section 3.3.2-3.3.3.
40. This result holds as well in the case without BBT.
41. The current condition at the other boundary is taken into account through the BBT in the last term

of the action (3.64).
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For a non-trivial transformation with α ̸= 0, the field variation of this relation is

∑
F =Q,D

(
δF †

LFR + F †
LδFR − δF †

RFL − F †
RδFL

)∣∣∣∣∣∣
L

= 0 . (3.80)

The variation calculus chronology here is quite simple as no field is fixed by the EBC (3.79):
the fields [and their respective variations] are instead related via this Eq. (3.79) [and
Eq. (3.80)]. Now the brane part of the variation of the action Sm

5D (3.64), containing the
boundary terms is written explicitly in Eq. (G.1) of the Appendix G. The complementary
variation of the bulk action vanishing separately was already used just above to derive the
5D EOM (1.30). Notice that this variation of the bulk action with respect to the non-
conjugate 5D fields in δFL,R

Sm
5D requires an integration by part to recover the Hermitian

conjugate form of the EOM (1.30) [visible in Eq. (3.65)] and the boundary terms in
δFL,R

Sm
5D [visible in Eq. (G.1)]. One could think of obtaining NBC and their Hermitian

conjugate form respectively from δFL,R
Sm

5D and δ
F †

L,R
Sm

5D [as obtained in Eq. (3.68)], in
Eq. (G.1), but in fact all the field variations are connected via the relation of Eq. (3.80)
so that one can not get rid of those directly.

In order to get some set of boundary conditions, the most trivial way of combining the
NBC (G.1) with the EBC (3.80) is,

QL/R

∣∣∣
L

= DL/R

∣∣∣
L

= 0 . (3.81)

However, in this case, the dependence of the Yukawa couplings disappears from the EOM,
the BC as well as the mass spectrum so that without going into the details, one can
conclude that we will not recover the SM in the decoupling limit. To satisfy the EBC (3.79),
we can also try another tricky mixed boundary condition 42,

X ′ = 0 , (QR +XDR)|L = (DL −X∗QL)|L = 0 , (3.82)

which will also be induced by the BBT approach in Section 3.6.3. However, the remain-
ing NBC at y = L induced via the least action principle of Sm

5D (3.64) [injecting the
EBC (3.82)], ∑

FC=QL/R,DL/R

δ
F †

C
Sm

5D ∋ −
∫
d4x

(
δD†

LDR + δD†
RDL

)∣∣∣∣
L
,

would lead to the vanishing of DL/R

∣∣∣
L

43 and in turn to the boundary conditions (3.81)
again. So, this particular trick (3.82) can’t rescue the situation.

In conclusion, there is no consistent way of combining the NBC (G.1) [even by splitting
it into several vanishing expressions] with the EBC (3.80), except in the particular but
excluded case of Eq. (3.81). The current approach of the configuration with a Yukawa
coupling located at a boundary, based on the vanishing of the fermion current taken as
the EBC, is not yet the correct one. The origin of the problem is that the current (3.76)
does not contain an explicit term that involves the Yukawa coupling constants.

42.

j4∣∣
L

= iα
∑

F =Q,D

(
F †

LFR − F †
RFL

)∣∣∣∣∣
L

= iα
(
−Q†

LXDR + X∗D†
RQL + D†

LDR − D†
RDL

)∣∣
L

= iα
(
−D†

LDR + D†
RDL + D†

LDR − D†
RDL

)∣∣
L

= 0 .

43. δD†
L/R

∣∣∣
L

̸= 0 for unknown fields D†
L/R

.
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3.6.3 Introducing the Bilinear Brane Terms [NBC]

In order to overcome the drawbacks discussed in Section 3.5, analogy to the free case
in Section 3.3.3, we try here to develop a consistent approach, based on the introduction
of the BBT (3.4) at y = 0, L. We consider the fermion part of the action (3.17):

Sbulk + SB + SX , (3.83)

based on the kinetic Lagrangian density (3.3), the BBT (3.4) and the Yukawa terms (3.14).
The boundary fields F |0,L are initially unknown so that their functional variations will
be taken non-vanishing: δF |0,L ̸= 0. Without loss of generality, the stationary action
condition

δF̄ (Sbulk + SB + SX) = 0 ,
can be split into the two following conditions for each field F = Q,D [extending Eq. (3.34)
to include the Yukawa terms],

δQ̄(Sbulk + SX + SB) =
∫
d4x

{∫ L

0
dy δQ̄ iΓM∂MQ (3.84)

+
[
−δQ†

L (QR +XDR)−X ′δQ†
RDL

]∣∣∣
L

+
(
δQ†

LQR

)∣∣∣
0

}
,

δD̄(Sbulk + SX + SB) =
∫
d4x

{∫ L

0
dy δD̄ iΓM∂MD (3.85)

+
[
−X ′∗δD†

LQR + δD†
R (DL −X∗QL)

]∣∣∣
L
−
(
δD†

RDL

)∣∣∣
0

}
.

Once more, the non-vanishing field variations δF †
L/R, δF †

L/R

∣∣∣
0,L

being generic, the bulk
terms (first line) in Eq. (3.84)-(3.85) must vanish separately, which brings in the 5D
EOM (1.30) and in turn – through the mixed KK decomposition (3.50) and 4D Dirac-
Weyl equations (3.51) – the wave function equations (3.66) with solutions as in Eq. (3.67):

∀n ∈ N ,



qn
L(y) = −Bn

R cos(Mn y) +Bn
L sin(Mn y) ,

qn
R(y) = Bn

L cos(Mn y) +Bn
R sin(Mn y) ,

dn
L(y) = −Dn

R cos(Mn y) +Dn
L sin(Mn y) ,

dn
R(y) = Dn

L cos(Mn y) +Dn
R sin(Mn y) ,

(3.86)

using here new constant parameters Bn
L/R, Dn

L/R. The NBC result from the vanishing of
boundary terms in Eq. (3.84)-(3.85) 44: (QR +X DR)|L = 0 , X ′∗ QR|L = 0 , QR|0 = 0 ,

X ′ DL|L = 0 , (DL −X∗ QL)|L = 0 , DL|0 = 0 ,
(3.87)

which can be rewritten without loss of generality as, {(QR +XDR)|L = 0 , (DL −X∗QL)|L = 0 , X ′ = 0 , } or {QR|L = 0 , DL|L = 0 , }

QR|0 = 0 , DL|0 = 0 ,

44. Integrating by part the bulk terms in the other relations

δFL (Sbulk + SB + SX) = δFR (Sbulk + SB + SX) = 0 ,

allows to recover the Hermitian conjugate form of the EOM (1.30) as well as the Hermitian conjugate form
of the NBC (3.87).
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and in turn as,

BC 1 : XDR|L = 0 , X∗QL|L = 0 , QR|L = 0 , DL|L = 0 , QR|0 = 0 , DL|0 = 0 ,
or

BC 2 : (QR +XDR)|L = 0 , (DL −X∗QL)|L = 0 , X ′ = 0 , QR|0 = 0 , DL|0 = 0 .
(3.88)

The lightest fermionic state possesses a mass equal to the α00 element of the 4D mass
matrix (3.43) in the decoupling limit m1 →∞ of the studied high-energy scenario, which
allows to reproduce well the SM mass expression at the low-energy scales. For this purpose,
one must have in particular a non-vanishing Yukawa coupling constant, i.e. X ̸= 0 so that
the BC 1 read as,

BC 1 : DR|L = 0 , QL|L = 0 , QR|L = 0 , DL|L = 0 , QR|0 = 0 , DL|0 = 0 ,

BC at y = L exactly similar to those in Eq. (3.81) which have been ruled out. Hence
we exclude the BC 1. Let us move to the BC 2 which can be expressed in terms of the
profiles, thanks to the relevant mixed KK decomposition (3.50), as follows (together with
the condition X ′ = 0),

BC 2 : ∀n ∈ N ,

 qn
R(L) +Xdn

R(L) = 0 , dn
L(L)−X∗qn

L(L) = 0 ,

qn
R(0) = 0 , dn

L(0) = 0 .

So these BC 2 at y = 0 applied on the solutions (3.86) produce the following profiles,

∀n ∈ N ,

 (+×) : qn
L(y) = An

q cos(Mn y) , (−×) : qn
R(y) = −An

q sin(Mn y) ,

(−×) : dn
L(y) = An

d sin(Mn y) , (+×) : dn
R(y) = An

d cos(Mn y) ,
(3.89)

with the redefined normalization factors An
q,d respect to Eq. (3.86),

An
q =̂ −Bn

R , An
d =̂Dn

L .

One must be careful to avoid some of the mathematical inconsistencies also encoun-
tered in the regularization procedures of Section 3.5: in particular, the existence of any
profile jump at the interval boundaries which would induce an undefined derivative term
in the 5D kinetic action in Eq. (3.3) [last two terms], an ill-defined term in the Yukawa
couplings (3.14) – where the Dirac peak δ(y − L) would come in factor of a profile dis-
continuous at y = L – and finally would conflict with the field continuity axiom of the
invoked theory of variation calculus. Therefore, we are taking all the profiles continuous at
both boundaries, which is the reason why we have applied the BC 2 at y = 0 on the bulk
profiles (3.86). The application of the BC 2 at y = L on the resulting bulk profiles (3.89)
gives rise to the relations [using Mn, B

n
R, D

n
L ̸= 0, ∀n ∈ N, to be checked a posterior],

∀n ∈ N, tan(Mn L) = X
An

d

An
q

= X∗A
n
q

An
d

⇒ tan2(Mn L) = |X|2 , (3.90)

which induces the mass spectrum as

∀n ∈ N, |Mn| =
∣∣∣∣arctan(|X|) + (−1)n ñ(n)π

L

∣∣∣∣ , (3.91)
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using the ñ(n) function already defined in Eq. (3.47). Note that the boundary relation in
Eq. 3.90 shows |An

q | = |An
d |, which – combining with the ortho-normalization conditions

of Eq. (3.52) (n = m) – give the solutions:

∀n ∈ N,
∫ L

0
dy |An

q |2
[
sin2(Mn y) + cos2(Mn y)

]
= L , (3.92)

so that
An

q = eiβn
q and An

d = eiαn
0 ,

with βn
q , αn

0 ∈ R. Moreover, the boundary relations (3.90), together with the mass spec-
trum equation in Eq. (3.90), lead to the following two branches 45:

I : tan(Mn L) = |X| ⇒ An
q = ei(αn

0 +αY ) , An
d = eiαn

0 , (3.93)
II : tan(Mn L) = −|X| ⇒ An

q = ei(αn
0 +αY ±π) , An

d = eiαn
0 , (3.94)

assuming that the generic phase αY of the 5D Yukawa coupling constant defined in
Eq. (3.12). Analogy to the free case in Section 3.3.2, when one changes the sign of Mn,
one goes from the spectrum of Eq. (3.93) to that of Eq. (3.94), which means to perform
the transformation Mn 7→ −Mn ,

ψ/fn
R 7→ −ψ/fn

R or ψ/fn
L 7→ −ψ/fn

L , f = q, d ,
(3.95)

while the 4D Dirac equations (3.51), the KK wave functions equations (3.66), the ortho-
normalization conditions (3.52) and the NBC (3.87) are invariant. One can conclude that
the sign of Mn is not physical and consider only the positive branch spectrum of Eq. (3.91).
The phase αn

0 is not fixed yet. To see if it is physical, we perform the shift αn
0 7→ αn

0 +θn, and
check that the KK wave function equations (3.66) and the ortho-normalization conditions
(3.52) are invariant, so one can take αn

0 = 0 since it is not physical. What about αY ? By
performing the shift αY 7→ αY + θ, we check also that the EOM (3.66) and the ortho-
normalization conditions (3.52) are invariant so we can fix αY = 0. For schematic purpose,
in Figure 3.3, we give a plot of one possible set of the KK wave functions along the extra
dimension with the real solution Eq. (3.89) (∀n ∈ N, αY = αn

0 = 0) 46.

Within the simplified case of a real 5D Yukawa coupling constant (|X| = X), we thus
find that the unique tower (3.91) of absolute values of the physical fermion masses is
matching the one obtained in the 4D approach of Eq. (3.46). This exact 4D-5D matching
confirms the overall consistency of our calculations – without regularizations – and is of
course expected to be reached as well for a complex 5D Yukawa coupling constant.

In particular, the insensitivity of the 4D fermion mass matrix (3.43) to the Y ′
5 coupling

constant [described below Eq. (3.44)] matches interestingly the spectrum independence on
Y ′

5 induced by the result Y ′
5 = 0 obtained in the BC 2 [see Eq. (3.88)] used for the 5D

point of view.
Let us give an intuitive interpretation of the absence of rôle for the Y ′

5 coupling (in-
volved in X ′) in the final spectrum (3.91) which depends only on the X quantity. Starting
with the free action Sbulk +SB, the profiles dn

L(y) and qn
R(y) [∀n ∈ N], defined by Eq. (1.24)

45. It’s just one pattern of splitting the whole mass spectrum.
46. M0 = 1

L
arctan |X| > 0, M1 = 1

L
[arctan |X| − π] < 0, M2 = 1

L
[arctan |X| + π] > 0.
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Figure 3.3 – Zero-mode and KK dimensionless wave functions qn
L/R(y), dn

L/R(y), with
n = 0, 1, 2, along the interval domain, y ∈ [0, L], corresponding to the brane Yukawa
coupled solutions of Eq. (3.89) in the simplified case, ∀n ∈ N, αY = αn

0 = 0 in Eq. (3.93).
The two ending points at y = 0, L, the BBT, the (×) BC and Dirichlet/Neumann BC,
(−)/(+), are indicated on the graph.

and with solutions (3.28), vanish in particular at the boundary y = L. Hence the term
with a X ′ coefficient in the brane-localized Yukawa action piece SX of Eq. (3.14), once
added to Sbulk + SB, is expected to have a vanishing contribution. This argument is only
intuitive as it does not include the possible ‘back reaction’ effect of the X ′ term on the
profiles via modified BC.

Then, let us review the condition for the fermion currents at the boundary y = L.
The BC 2 of Eq. (3.88) exactly recover the tricky BC of Eq. (3.82), which means that
the NBC (3.88) imply the EBC (3.79) [via the current vanishing condition] so that the
geometrical field setup of the present model with matter stuck on an interval is well defined.

Finally, let us calculate, still without any kind of Higgs field regularization, the 4D
effective Yukawa coupling constants between the mass eigenstates ψn

L(xµ) and ψm
R (xµ)

as generated by inserting the mixed KK decomposition (3.50) into the Higgs interac-
tion (3.16), based on the obtained profile solutions (3.89), (3.93)-(3.94):

ShQD =
∫
d4x

+∞∑
n,m=0

(
−ynm hψn†

L ψm
R + H.c.

)
, (3.96)
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thus

ynm =̂ Y5√
2L

qn∗
L (L) dm

R (L)

= ± |Y5|√
2L

ei(αm
0 −αn

0 ) cos(Mn L) cos(Mm L)

= ±(−1)ñ(n)+ñ(m) ei(αm
0 −αn

0 ) |Y5|√
2L(1 + |X|2)

, (3.97)

where ± corresponds to the two branches in Eq. (3.93)-(3.94) respectively with respect to
qn

L and we have used a trigonometric identity 47 to get the last equality. Note that the
modulus of the 4D effective Yukawa couplings reads

|ynm| =
|Y5|√

2L(1 + |X|2)
, (3.98)

which is independent of the KK mixing indexes nm.
In the decoupling limit of extremely heavy KK modes, L → 0, we can then write the

modulus of the lightest mode coupling constant [which recovers the SM content], using
Eq. (3.13)-(3.15), as,

|y00| →
L→0

|Y5|√
2L

= |y4|√
2
, (3.99)

and the absolute mass eigenvalue of the lightest eigenstates [from Eq. (3.91)] via Eq. (3.15)
as,

|M0| →
L→0

|X|
L

= v|Y5|√
2L

→
L→0

v |y00| , (3.100)

so that the SM fermion setup – for the assumed single family – is recovered as expected
from the decoupling condition.

In conclusion, adding the BBT at the brane with the Yukawa coupling to bulk fermions
permits a consistent treatment of the considered scenario and a correct calculation of the
mass spectrum.

3.7 Overview and Implications

3.7.1 The Action Content

In Table 3.1, we summarize the results for the obtained fermion BC at a single 3-
brane. We conclude from this table that for fermions on an interval and coupled or not
to a brane-localized Higgs field, either the BBT should be generated in the action or
conditions should arise on the fermion current (forcing then the 4D treatment in case
of a brane Yukawa coupling) depending on the origin of the model at high energies.
In the same spirit, notice that the UV completion will determine whether the selection
of fermion boundary conditions is imposed or deduced from the action form. The UV
completion should not bring simultaneously the EBC (imposing vanishing currents) and
the BBT (guaranteeing current vanishing) because it would be possible but redundant.
It is interesting to observe anyway that the necessary additional fermionic ingredient,
with respect to the kinetic terms, reveals that limiting the integration domain of the
action does not suffice to define consistently and completely the basic field configuration

47. For n ∈ Z, one has, cos(θ + nπ) = (−1)n cos(θ), and for T ∈ R, cos[arctan(T )] = 1√
1 + T 2

.
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along the interval (or, more generally, over a compactified space). Indeed, without having
a vanishing fermion current at a boundary, one could imagine a source of creation or
a mechanism of absorption for particles at the boundary. Therefore, the present status,
resulting from this analysis and its synthesis, is that the action expression may not contain
all the information (e.g. current conditions) needed to define a higher-dimensional model,
regarding the geometrical setup and field configurations.

No boundary Vanishing current Bilinear brane
characteristic condition [EBC] terms [NBC]

4D approach (Impossible) BC (±) BC (±)

5D approach (Impossible) (Impossible) BC (×)

Table 3.1 – Bulk fermion BC (when a consistent determination exists) at a 3-brane where
the Higgs boson coupled to these fermions is located, for different boundary treatments:
presence of the BBT, vanishing of the probability current or nothing specific. The 4D line
holds as well for the 5D approach of the free brane. As usual, the Dirichlet BC is noted
(−), the Neumann BC (+), and we denote (×) the new BC depending on the Yukawa
coupling constant.

Based on the above results, now we describe the generic methodology to find out the
mass spectrum and KK wave functions (allowing to calculate the 4D effective couplings)
along the extra spatial dimension(s) of a given scenario. For this purpose, we present in
Figure 3.4 a schematic description of the main principles. The figure must be understood
as follows. A given extra-dimensional model must be first defined by its geometrical setup
[spacetime structure and field location configuration], its field content and its internal
(gauge groups,. . . ) as well as other types (the Poincaré group here) of symmetries. These
three types of information determine entirely the action form 48 whose minimization gives
rise to the 5D EOM and the NBC. Besides the geometrical hypotheses of the model,
concerning for instance, the space limits for field propagation may produce probability
current conditions translating into the EBC 49 which must be combined with these NBC.
At this level, a choice of the combined BC obtained can be required (if not determined
automatically by the action structure itself). Then, the KK decomposition (together with
the EOM on the 4D fields) allows us to derive the EOM and the BC for the KK profiles
along the extra dimension(s). The last step is obviously to solve these profile EOM,
coupled to the complete BC, in order to work out the mass spectra.

48. Within a well-understood scenario, all terms of the Lagrangian density should be deduced from
the model definition exclusively: absence of couplings from symmetries, presence of the BBT from the
geometrical setup, etc.

49. The EBC could also originate from the definition of the symmetry of orbifold scenarios (see Sec-
tion 4.3.2).
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Figure 3.4 – Inverse pyramidal picture illustrating the general principles for determining
the wave functions and masses of mixed KK modes within a given model based on extra
dimension(s). Same notations as in the main text are used.

3.7.2 Implementation of the Cut-off on Energy

We have to discuss the cut-off treatment as the framework of higher-dimensional models
is non-renormalizable theories that are valid in a limited domain of energy, up to a par-
ticular scale, set by perturbativity conditions on effective dimensionless couplings. If the
UV completion of such models affects the KK excitation towers and thus the fermion mass
spectrum in an unknown way, then its calculation must include the KK state masses only
up to the cut-off value typically (the UV corrections at low-energies can be parametrized
via higher-dimensional operators). In a case of the absence of (obvious) UV effects on
the specific mass spectrum sector, the whole KK towers should be considered at the mass
calculation level since even the smallest mass eigenvalues can be affected by the mixing
effects of the infinite towers. Now in both situations, only the eigenstates with masses up
to the cut-off scale should be considered for the phenomenological observables (reaction
amplitudes, rates,...) due to the non-renormalizable nature of the theory. Technically, the
implementation of an energy cut-off in the bulk fermion mass calculation and tree-level
Lagrangian construction forces the use of the 4D approach. Indeed, the mixed KK de-
composition (3.50), used in the 5D approach, includes the mixing of the whole tower: the
fields ψn

L,R(xµ) are mass eigenstates.

3.7.3 Phenomenological Impacts

In the appropriate treatment developed in the above sections, without regularization,
the obtained mass spectrum and effective 4D Yukawa couplings depend on Y5 but not on
the Y ′

5 coupling constant. For instance, in Eq. (3.97), one should in fact apply the result
Y ′

5 = 0 as dictated by the relevant BC 2 in Eq. (3.88). Applying an energy cut-off in the
process of mass calculation would not affect this independence on Y ′

5 , as is clear from the
point of view of the 4D approach.

The results for fermion masses and profiles are also correct when one invokes the Higgs
peak Regularization I, which cancels out the Y ′

5 dependence. Hence, the phenomenological
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analyses of the literature based on such results are still valid: see for instance Ref. [76, 95,
100, 121, 147, 151–154]. Those studies apply to the geometrical background with warped
extra dimensions where the KK spectrum independence on Y ′

5 is expected to occur as well.
Note that the results from Regularization I and the correct ones in the approach

without regularization at all, are precisely identical only by accident. Indeed in the Reg-
ularization I, considering first the 5D treatment, the mass spectrum calculation in the
presence of Yukawa couplings suffers from two errors that exactly cancel out each other:
there is no BBT, which affects the resulting spectrum equation by a factor 2 [as seen when
comparing the spectra with the BBT in Eq. (3.91) and without the BBT in Eq. (3.73)],
and a regularization is applied. Now starting from the 4D treatment of Regularization I
and adding the BBT (or the current vanishing conditions) would have no effect on the
4D mass matrix [as described in Section 3.2.3] like avoiding the regularization process [as
there is no analytical effect of Regularization I in which the limit ϵ→ 0 is taken at the first
step [96]]: the results of Regularization I are thus the same as in the correct approach.

In contrast, if the Higgs peak Regularization II is used, the obtained fermion masses
and 4D Yukawa couplings depend on both Y5 and Y ′

5 so that the results differ effectively
from the correct ones. Hence, the phenomenological studies based on these analytical
results (for example Ref. [101, 102, 105–107]) should be reconsidered or redone.

For example, the effective 4D Yukawa couplings to fermions and their KK excitations
affect the main Higgs production mechanism at the LHC: for instance, the gluon-gluon
fusion via triangular loops of (KK) fermions. Hence, the effect of the realistic limit [96]
of vanishing Y ′

5 on the constraints on KK masses derived in the studies [102, 105–107],
within the warped background and based on the Regularization II, should be calculated
precisely.

Besides, the rotation matrices diagonalizing the 4D fermion mass matrix (3.43) do
not diagonalize the effective 4D Yukawa coupling matrix simultaneously since the latter
does not contain matrix elements made of the pure KK masses. Thus, Y ′

5 would also
contribute to the fermion mass-Yukawa shift via mass insertion approximation as shown
diagrammatically in Figure 3.5 [101].

q0
L d0

R

H

Y5
+

dKK
R dKK

L qKK
R qKK

L
q0

L d0
R

H H H

Y5 Y ′
5 Y5

Figure 3.5 – Shift in masses and Yukawa couplings of SM fermions contributed by KK
modes.

Particularly, if we extend to the case of three generations 50, we can see that the induced
flavor violating 4D Yukawa couplings are contributed at leading order by Y ′

5 contributions.
Hence, there exist significant FCNC effects in measured ∆F = 2 processes such as K̄−K,
B̄ − B and D̄ −D mixings, mainly produced by tree-level exchanges of the Higgs boson

50. Generalize the Lagrangian density to 3 replicas for 3 fermion generations.
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via Y ′
5 couplings, which lead to considerable lower bounds on the KK boson mass scale

(in balance via opposite Yukawa coupling dependence with the ones from the tree-level
contribution of the KK gluon exchange) found to be around 6−9 TeV in the analysis [101]
on warped extra dimensions using the Regularization II indeed. Hence, these bounds
should be significantly suppressed in the realistic situation where Y ′

5 → 0; this limit
should undoubtedly be applied since the independence found in the above sections upon
Y ′

5 (extended via flavor indices) remains valid for the case of three flavors, as well as for
fermion bulk masses, as is clear in the 4D approach where the βij-elements (3.44) of the
mass matrix still vanish. The predictions in Ref [101], based on Regularization II, that
FCNC reactions involving Yukawa couplings, like the rare top quark decay t → ch and
exotic Higgs boson decay to charged leptons h → µτ observable at the LHC, deserve
reconsiderations as well when Y ′

5 = 0.

3.8 Summary & Conclusions
For bulk fermions coupled to a brane-Higgs boson, we have shown that the proper

approach of the fermion masse spectrum and effective 4D Yukawa couplings does not rely
on Higgs peak regularizations. The justifications are the following ones:

(i) There are no fermion wave function jumps at the Higgs boundary so that there’s no
motivation to introduce an arbitrary regularization;

(ii) The regularizations suffer from several mathematical discrepancies confirmed by two
known non-commutativities of calculation steps;

(iii) The correct method without any regularization is validated in particular by the
converging results of the 4D versus the 5D treatments.

In the rigorous methods developed for both free and brane-coupled bulk fermions, we have
also pointed out the necessity to either include the BBT in the Lagrangian density, or al-
ternatively impose vanishing conditions for probability currents at the interval boundaries.
Here the arguments go as follows:

(i) The presence of the BBT guarantees the current vanishing conditions which define
the geometrical field configuration of the model;

(ii) The BBT and the current conditions allow for finding physically consistent fermion
masses, bulk profiles, and effective 4D Yukawa couplings (solutions fulfilling the
ortho-normalization constraints, the Hermitian conjugate BC and the decoupling
limit condition);

(iii) The BBT lead to an expected matching between the 4D and the 5D calculation
results.

The BBT represent a possible origin of the chiral nature of the SM as well as of its chirality
distribution among quark/lepton SU(2)L doublets and singlets. Those terms could thus
provide new clues about the UV completion of the SM.

Depending on the UV completion, the general methodology worked out reveals that
the information regarding the definition of a higher-dimensional model is not necessarily
fully contained in the action itself – through the deduced EOM and the NBC – but might
also be partly included in the EBC.

We have finished the analysis by the descriptions of the appropriate energy cut-off
procedure in the present framework and of the phenomenological impacts of the new
calculation method, which predicts the independence of the fermion masses and effective
4D Yukawa couplings on the Y ′

5 parameter of the Lagrangian. This different coupling
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feature, with respect to the Regularization II usually applied in the literature, should
in particular suppress significantly the previously obtained severe bounds on KK masses
induced by FCNC processes generated via flavor violating couplings of the Higgs boson.

3.9 Unique BBT Factors

This section is supplementary content to the published paper [1] in collab-
oration with Grégory MOREAU and Florian NORTIER.

In Section 3.2.3, we have considered a specific BBT form in Eq. (3.4) with a given
numerical factor, in this section, we will answer the question of the unicity of this BBT
form. For this propose, we introduce a BBT with generic factors that we call GBBT:

SGB =
∫
d4x (LGB|L − LGB|0) ,

with LGB =
∑

F =Q,D

µF (y)
2 F̄F =

∑
F =Q,D

µF (y)
2

(
F †

LFR + F †
RFL

)
, (3.101)

where we impose the chiral decomposition (1.17) and µF (y) are generic parameters for the
field F (F = Q,D) at y and define compact notations

µF
0,L =̂ µF

∣∣∣
0,L

. (3.102)

Note that µF ∈ R (F = Q,D) is guaranteed since the Lagrangian density must be Hermi-
tian.

3.9.1 5D Free Bulk Fermions with the GBBT

In this part, we discuss the unicity of the BBT, using the GBBT to realize the profile
solutions (3.28) and the mass spectrum (3.30) presented in Section 3.3.3. We add the
GBBT (3.101) to the kinetic terms (3.3) so that the initial free fermionic action becomes,

Sbulk + SGB . (3.103)

Let us apply the least action principle using this action as the starting point. The sta-
tionary action condition δF̄ (Sbulk + SGB) = 0 can be calculated,

δF̄ (Sbulk + SGB) =
∫
d4x


∫ L

0
dy δF̄

[
iΓM∂MF

]
+ δF̄

[
µF − γ5

2 F

]∣∣∣∣∣
L

0


=
∫
d4x


∫ L

0
dy δF̄

[
iΓM∂MF

]
+
[
δF †

R

µF + 1
2 FL + δF †

L

µF − 1
2 FR

]∣∣∣∣∣
L

0

 ,

(3.104)

where the bulk variation would recover the bulk EOM in Eq. (1.29)-(1.30) for F = Q,D.
The brane terms of Eq. (3.104) would vanish,

µF
L + 1

2 δF †
RFL

∣∣∣∣∣
L

= µF
0 + 1

2 δF †
RFL

∣∣∣∣∣
0

= µF
L − 1

2 δF †
LFR

∣∣∣∣∣
L

= µF
0 − 1

2 δF †
LFR

∣∣∣∣∣
0

= 0 , (3.105)
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and the new NBC would be obtained via non-vanishing boundary variations δF †
L/R

∣∣∣
0,L
̸= 0,

µF
L + 1

2 FL

∣∣∣∣∣
L

= µF
0 + 1

2 FL

∣∣∣∣∣
0

= µF
L − 1

2 FR

∣∣∣∣∣
L

= µF
0 − 1

2 FR

∣∣∣∣∣
0

= 0 , (3.106)

which would lead to the Dirichlet BC for FL/R simultaneously at the brane where µF ̸= ±1
and in turn to the vanishing of all fields on the whole interval I = [0, L] as described in
Section 1.3.1.

Therefore, the GBBT different from the BBT are excluded by the wave function nor-
malization. So, µF

0,L = ±1 for the factor of the GBBT must be fixed to SB in Eq. (3.4)
with µF

0 = µF
L [the SM configuration] or to S′

B in Eq. (3.7) with µF
0 = −µF

L [custodians].

3.9.2 5D Approach: Introducing the GBBT

Analogy to the free case in Section 3.9.1, based on the introduction of the GBBT (3.101)
at y = 0, L, we consider the fermion part of the action (3.17):

Sbulk + SGB + SX , (3.107)

based on the kinetic Lagrangian density (3.3), the GBBT (3.101) and the Yukawa terms (3.14).
The least action principle δF̄ (Sbulk + SGB + SX) = 0 for each field F = Q,D,

δQ̄ (Sbulk + SGB + SX) =
∫
d4x

{∫ L

0
dy δQ̄

[
iΓM∂MQ

]
+
[
δQ†

R

(
µQ

L + 1
2 QL −X ′DL

)
+ δQ†

L

(
µQ

L − 1
2 QR −XDR

)]∣∣∣∣∣
L

−
[
δQ†

R

µQ
0 + 1

2 QL + δQ†
L

µQ
0 − 1

2 QR

]∣∣∣∣∣
0

}
, (3.108)

δD̄ (Sbulk + SGB + SX) =
∫
d4x

{∫ L

0
dy δD̄

[
iΓM∂MD

]
+
[
δD†

R

(
µD

L + 1
2 DL −X∗QL

)
+ δD†

L

(
µD

L − 1
2 DR −X ′∗QR

)]∣∣∣∣∣
L

−
[
δD†

R

µD
0 + 1

2 DL + δD†
L

µD
0 − 1

2 DR

]∣∣∣∣∣
0

}
, (3.109)

would lead to the bulk EOM in Eq. (1.29)-(1.30) for F = Q,D and the vanishing of the
brane terms reads,

δQ†
R

(
µQ

L + 1
2 QL −X ′DL

)∣∣∣∣∣
L

= δQ†
L

(
µQ

L − 1
2 QR −XDR

)∣∣∣∣∣
L

= 0 ,

δQ†
R

µQ
0 + 1

2 QL

∣∣∣∣∣
0

= δQ†
L

µQ
0 − 1

2 QR

∣∣∣∣∣
0

= 0 ,

(3.110)


δD†

R

(
µD

L + 1
2 DL −X∗QL

)∣∣∣∣∣
L

= δD†
L

(
µD

L − 1
2 DR −X ′∗QR

)∣∣∣∣∣
L

= 0 ,

δD†
R

µD
0 + 1

2 DL

∣∣∣∣∣
0

= δD†
L

µD
0 − 1

2 DR

∣∣∣∣∣
0

= 0 ,

(3.111)
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which induce the NBC at y = 0,

µQ
0 + 1

2 QL

∣∣∣∣∣
0

= µQ
0 − 1

2 QR

∣∣∣∣∣
0

= µD
0 + 1

2 DL

∣∣∣∣∣
0

= µD
0 − 1

2 DR

∣∣∣∣∣
0

= 0 , (3.112)

where
µD

0 = −µQ
0 = 1 , (3.113)

must be fixed at y = 0 [the BBT (3.4) sign at y = 0] to realize the SM configuration via
as the boundary conditions at y = 0 of Eq. (3.88) and avoid the vanishing of fields [see
Section 3.9.1]. Note that the NBC at y = L including the Yukawa couplings X and X ′,

(
µQ

L − 1
2 QR −XDR

)∣∣∣∣∣
L

= 0,

(
−X ′∗QR + µD

L − 1
2 DR

)∣∣∣∣∣
L

= 0,

and



(
µQ

L + 1
2 QL −X ′DL

)∣∣∣∣∣
L

= 0,

(
−X∗QL + µD

L + 1
2 DL

)∣∣∣∣∣
L

= 0,

(3.114)
must provide non-zero boundary conditions for QR and DL at y = L. Otherwise, com-
bining with the Dirichlet BC for QR and DL at y = 0, it would lead to a fermion mass
spectrum independent of the Yukawa coupling Y5, which is non-realistic and incompatible
with the decoupling limit. Thus, the two determinants of the Eq. (3.114),

D1 =̂

∣∣∣∣∣∣∣∣
µQ

L − 1
2 −X

−X ′∗ µD
L − 1

2

∣∣∣∣∣∣∣∣ = µQ
L − 1

2
µD

L − 1
2 −XX ′∗ = 0 ,

D2 =̂

∣∣∣∣∣∣∣∣
µQ

L + 1
2 −X ′

−X∗ µD
L + 1

2

∣∣∣∣∣∣∣∣ = µQ
L + 1

2
µD

L + 1
2 −X ′X∗ = 0 ,

(3.115)

must be zero 51, which – combining with µF = µF ∗ – lead to

µQ
L − 1

2
µD

L − 1
2 = µQ

L + 1
2

µD
L + 1

2 ,

so that the relation of µQ
L and µD

L is fixed as,

µQ
L = −µD

L , (3.116)

which – inserting to Eq. (3.115) – provides an explicit constraint for X and X ′ as,

4XX ′∗ = 1−
(
µQ

L

)2
, (3.117)

and X,X ′ have the same phase. Insert Eq. (3.115)-(3.116) to the NBC (3.114), one would
obtain the reduced NBC only including the effective Yukawa coupling X̃ (3.119),

(
QR + X̃DR

)∣∣∣
L

= 0,(
DL − X̃∗QL

)∣∣∣
L

= 0,
(3.118)

51. It is necessary but not sufficient for QR|L , DL|L ̸= 0
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where

X̃ =̂ 2
1− µQ

L

X , Ỹ5 =̂ 2
1− µQ

L

Y5 . (3.119)

So far so good, the NBC in Eq. (3.112)-(3.118) induced by the GBBT (3.101) recover the
similar formula of that deduced by the BBT (3.4) in Eq. (3.88) [BC 2]. Here, we can
directly apply the formula of the mass spectrum in Eq. (3.90) with the effective Yukawa
coupling X̃ (3.119),

tan2(Mn L) =
∣∣∣X̃∣∣∣2 , (3.120)

which induces the mass spectrum as

∀n ∈ N, |Mn| =

∣∣∣∣∣∣
arctan(

∣∣∣X̃∣∣∣) + (−1)n ñ(n)π
L

∣∣∣∣∣∣ , (3.121)

using the ñ(n) function already defined in Eq. (3.47). Then, we need to check the decou-
pling limit, i.e. the consistency to the SM mass-Yukawa relation in Eq. (3.100). The 4D
effective Yukawa couplings ynm defined in Eq. (3.96) can be derived as 52,

ynm = Y5√
2L

qn∗
L (L) dm

R (L) + Y ′∗
5√
2L

dn∗
L (L) qm

R (L)

=
[
Y5√
2L
− Y ′∗

5√
2L

(
X̃
)2
]
qn∗

L (L) dm
R (L)

=
(

1− 1 + µQ
L

1− µQ
L

)
Y5√
2L

qn∗
L (L) dm

R (L)

=
(
−µQ

L

)
× Ỹ5√

2L
qn∗

L (L) dm
R (L) , (3.122)

which leads to the modulus of the lightest mode coupling constant [which corresponds to
the SM particle content], using Eq. (3.15)-(3.119), as,

|y00| →
L→0

∣∣∣−µQ
L

∣∣∣ |Ỹ5|√
2L

=
∣∣∣−µQ

L

∣∣∣× |X̃|
v
, (3.123)

and the absolute mass eigenvalue of the lightest eigenstates [from Eq. (3.121)] via Eq. (3.15)
as,

|M0| →
L→0

|X̃|
L

= v|Ỹ5|√
2L

→
L→0

∣∣∣∣− 1
µQ

∣∣∣∣
L

∣∣∣∣× v |y00| , (3.124)

which is proportional to the the lightest mode coupling constant |y00| with an additional
factor

∣∣∣∣− 1
µQ

∣∣∣∣
L

∣∣∣∣ (µQ
∣∣∣
L
̸= 0). Only the BBT case with µQ

∣∣∣
L

= 1 allows to the SM

proportionality between |y00| and |M0| as imposed by the decoupling criteria. Then, this
conclusion is concluded by the fact that for the GBBT (different from the BBT µQ

∣∣∣
L

= 1),
Eq. (3.117) prevents us to apply the simultaneous limit where X → 0 and X ′ → 0. So,
the decoupling criteria rules out the GBBT different from the BBT.

Another method to show the GBBT can’t be different from the BBT is to use the 4D
approach. Indeed, the 4D approach replies on the free profiles, which have no consistent
solutions in the GBBT different from the BBT.

52. If we set µQ
L = µD

L = 0 at y = L and Eq. (3.113) at y = 0, we can recover the results through the
naive approach in Section 3.6.1 and the vanishing y00 in Eq. (3.75).
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Finally, we add a complementary remark regarding why X ′ has no impact. In the case
of the GBBT, we find that Y ′

5 has no impact, which is a generalization of what we found
in the BBT case. There are two demonstrations for that. First, the new BC in Eq. 3.118-
(3.119) doesn’t include X ′. Neither do the bulk EOM. This is also confirmed by the X ′

disappearing in the action. Inserting the NBC (3.118) to SX + SGB in Eq. (3.107) and
replace QR|L, DL|L with DR|L, QL|L respectively, one can obtain the effective Yukawa
sector using Eq. (3.116),

SX + SGB =
∫
d4x

{
−X̃Q†

LDR

∣∣∣
L

+ H.c.
}
, (3.125)

where

SX =
∫
d4x

{
µQ

L X̃Q
†
LDR

∣∣∣
L

+ H.c.
}
,

SGB =
∫
d4x

{
−
(
µQ

L + 1
)
X̃Q†

LDR

∣∣∣
L

+ H.c.
}
.
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Chapter 4

Rigorous Treatment of the S1/Z2
Orbifold and Profile Jumps

This chapter is a personal adaptation of Ref. [2] written in collaboration with Grégory
MOREAU and Florian NORTIER.

4.1 Introduction
An orbifold O being defined as an extra compact manifold C with so-called fixed points

where the introduced spatial transformation (element from a discrete group G) – letting
the Lagrangian invariant – is just equivalent to the identity. It is noted as O = C/G and
possesses thus singularities, not like a smooth manifold [155, 156]. One can for instance
wind an infinite [non-compact] 1D real axis R1 around a compact S1 circle and define
winding numbers, which indicates a spatial compactification of the Lagrangian density on
R1 as

L(y + n× 2πR) = L(y) ,

with winding numbers n ∈ Z. Note that one must distinguish a compactification of the
Lagrangian density on R1 from a discrete symmetry on a compact space [e.g. the S1

circle].
In this section, we will study the original version [58] of the warped dimension scenario

based on the S1/Z2 orbifold [157, 158] where the extra space is compactified on a circle
respecting a spatial parity of the Lagrangian density. Focusing our attention on the subtle
bulk fermion interactions with the brane-Higgs field localized at a fixed point, we will
analyze the toy model with a flat extra dimension and minimal field content: the results
obtained on the fermion-Higgs coupling structure are directly applicable to the realistic
warped model.

We will clarify the treatment of the bulk fermion couplings to the brane-localized Higgs
boson, within the S1/Z2 orbifold background, by building rigorously the four-dimensional 1

effective Lagrangian of the minimal model, that is by calculating consistently the Kaluza-
Klein tower spectrum of fermion mass eigenvalues and the 4D effective Yukawa couplings
(via the fermion wave functions along the extra dimension).

In particular, following the same methodology of the finite interval scenario in Chap-
ter 3, we will demonstrate that no brane-Higgs regularization [like smoothing the Higgs
Dirac peak] should be applied (not necessary and no theoretical argument for it) in contrast
with the usual regularization procedure of literature (see Ref. [1] and references therein)

1. Including time.
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and that, instead, one must introduce either Essential Boundary Conditions on 5D fields 2,
originating from the Z2 symmetry, or equivalently some BBT in the fundamental 5D La-
grangian density. The exact matching of the fermion mass spectra derived respectively
through the 4D and the 5D treatments will be used in order to confirm our analytical
results. All those statements (except the 4D approach) hold as well for the free case i.e.
without the Yukawa interactions.

This necessity of the presence of the EBC or the BBT (terms with the same form
as in Chapter 3 [see Ref. [1]], in the 4D or the 5D approach, has been found as well in
Section 3.2.3 [see Ref. [1]] in the finite interval scenario (the higher-dimensional framework
of the other warped model version) with identical brane-Higgs couplings to bulk fermions:
this conclusion confirms that a specific treatment is required for point-like interactions
between bulk fermions and brane-Higgs bosons in higher-dimensional spaces.

Besides, we will strictly describe and work out the entire known duality: identical
physical quantities, namely the mass eigenvalues and 4D effective Yukawa couplings, are
obtained in the different S1/Z2 orbifold scenario with the Higgs boson localized at a fixed
point and finite interval geometrical setup with the Higgs field stuck at a boundary.

The choice of The EBC and the BBT (forms including signs), which should originate
from the UV completion of the theory, turns out to induce the chiral nature of the low-
energy effective theory as well as realizing the specific SM fermion chiralities. Indeed, all
these chirality properties are in fact not selected by the remaining sign choices for the 5D
fields transformed via the spatial Z2 group – as the solutions we find within this orbifold
configuration can exhibit twist transformations (sign modification here) of the 5D fields,
à la Scherk-Schwarz [159, 160], through the extra space reflection. We will even show
that the transformation sign choices are just mathematical conventions without physical
impact on the SM field chiralities, the fermion mass spectrum and the 4D effective Yukawa
couplings.

Nevertheless, in order to clarify the chirality aspects, we will also study a different
scenario – considered for example in Ref. [161] – where the Z2 transformation definitions
on the fields cover as well the fixed points themselves. It turns out that the associated
transformation sign choices precisely at these fixed points constitute here additional EBC,
noted as EBC’, that have the capacity to select some of the previous EBC and hence to fix
the chirality setup. Once more, the role of these EBC’ can be played instead by certain of
the above BBT. Interestingly, such an inclusive Z2 symmetry definition can induce by itself
the chiral nature of the theory as well as the SM chirality distribution over the various
fields. This origin for the whole chirality configuration is not offered within the simpler
interval model for instance. In the presence of brane-localized Yukawa couplings, such an
inclusive Z2 scenario can only be treated through the 4D treatment. The fermion masses
and couplings are also affected by this inclusive Z2 symmetry.

The action integral definition and integral domain end-points will be treated carefully.
In particular the decomposition of the action to introduce improper integrals will appear
to be required in the presence of orbifold fixed points or point-like fermion-boson interac-
tions (not located at the boundary of a finite extra space like an interval). Within this new
and appropriate approach of the specific points along the extra dimension of the orbifold,
we find in the free or Yukawa case that some of the obtained consistent solutions exhibit
certain field jumps at these fixed points and localized-interaction point. This interesting
result of the possible existence of consistent profile jumps stands against one’s first intu-
ition [97, 101], but those jumps are only induced by sign flipping and not by point-like

2. Directly imposed by the model definition, in contrast with the Natural Boundary Conditions deduced
from the least action principle.
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changes of the absolute value of the wave function amplitudes.
The analysis of the present orbifold background with brane-localized fermion-scalar

interactions, as well as the previous results on the interval background in Chapter 3,
show that generally speaking the action expression does not systematically contain all the
information allowing to fully define the model: in particular some EBC may be used (in
contrast to the BBT, which are terms in the action) depending on the brane treatment
adopted or on the UV completion of the theory (which could introduce the BBT).

4.2 Minimal S1/Z2 Consistent Model

4.2.1 Geometry and Symmetries: the Proper Action

We consider a 5D spacetime model with the factorizable geometry M4 × S1/Z2 de-
scribed just below:

— M4 represents the usual 4D Minkowski spacetime manifold whose coordinates are
noted as xµ where µ ∈ J0, 3K is the Lorentz index of the covariant formalism. The
metric conventions are given in Appendix A.

— S1/Z2 stands for the extra space orbifold obtained from modding out the circle S1

by the discrete group 3 symmetry Z2.
This circle S1 is characterized by a radius R and its coordinate is y ∈ (−πR, πR], not
double-counting the point y = πR since it is this point, by pure convention, which
is chosen to be the junction point geometrically identified with the point y = −πR
(which we note: −πR ≡ πR) in order to implement the circle periodicity. The
circle could be constructed from the real axis by imposing a periodicity, that is by
identifying geometrically an infinite number of translated regions of size 2πR and
hence by limiting the 1D space to the fundamental domain (−πR, πR] in Figure 4.1.

Figure 4.1 – Translations (solid red arrows) as 1D space group generator. Fundamental
domain of the orbifold (thick gray line). Two end points (red and white diamond) are
identical. Orbifold fixed points (black dots).

The Z2 symmetry on space, y → −y 4, has a representation on a generic 5D field,

∀y ∈ (−πR, 0) ∪ (0, πR) , Φ(xµ,−y) = T Φ(xµ, y) , with T 2 = 1 , (4.1)

which must let the Lagrangian density invariant, by the definition of a symmetry:

∀y ∈ (−πR, 0) ∪ (0, πR) , L [Φ(xµ,−y)] = L [Φ(xµ, y)] . (4.2)

We mention that this equation can define an equivalence class with respect to a
given coordinate y0, defined as [y0] = {y ∈ S1 | y ∼ y0} with y ∼ ±y, as illustrated
schematically in Figure 4.2. Note that two fixed points arise: (y = 0) → (−0 = 0)

3. Factor element, e±i 2π
2 = −1, and the identity element, 1.

4. The convention above, of having taken the coordinate origin at the strict middle of the circle domain
(or fundamental domain), renders the Z2 parity with respect to the origin more explicit and convenient to
study.
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and (y = πR) → (−πR ≡ πR). At these fixed points, the Lagrangian condition of
Eq. (4.2) is automatically satisfied: L [Φ(xµ,−0(πR))] = L [Φ(xµ, 0(πR))] ,

Φ(xµ,−0(πR)) = Φ(xµ, 0(πR)),
(4.3)

since no transformation needs to apply on the fields there [two fixed points are
eliminated in the Z2 symmetry representation of Eq. (4.1)]. In contrast, another
scenario will be analyzed in Section 4.6.

Figure 4.2 – S1/Z2 orbifold picture. The fixed points at y = 0 and y = πR are indicated
by the two black points. The two examples of pairs of points with opposite coordinates,
respectively indicated by the double dashed arrows, correspond to an identical Lagrangian
density (for each pair).

In order to properly write down the initial action, we urge the importance of taking
care of possible field jumps along the extra dimension upon the reader. We are going to
show that the existence of a field jump in field theory can make sense mathematically if the
action integration domain is properly divided at the jump location. Different discontinuity
configurations must be considered. First, the hypothesis of a possible jump at any point
of the bulk would lead to an infinite number of cuts in the action integration region which
would obviously not be treatable leading to unpredictable observables: this assumption is
thus excluded. Secondly, assuming an arbitrary finite number of possible jumps and hence
of mathematical separations in the action domain, outside the fixed points, is not expected
to affect the unique physical results – like the fermion mass spectrum – since none of those
jump points exhibit some specific property: it is thus useless to explore this direction.
Thirdly, the case of possible profile jumps at the two specific points that are the fixed
points of the orbifold – one of those two, y = πR, corresponding as well to the Yukawa
coupling location (see Section 4.2.4) – remains to be studied. The effective presence of such
profile jumps in some of the obtained solutions (see Figures 4.3 and 4.4 respectively for the
free and coupled fermion situations) confirms this possibility. For example in the case of
a profile jump at y = 0 (an identical discussion holds for the other fixed point at y = πR),
regarding a well-defined integral of the Lagrangian density involving 5D fields over the
whole action domain, we simply have to choose between the mathematical definitions of
the left or right continuity for a generic profile function along the extra dimension:

f(0) = f(0−) =̂ lim
ϵ→0

f(0− ϵ) , with ϵ > 0 ,
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or

f(0) = f(0+) =̂ lim
ϵ→0

f(0 + ϵ) , with ϵ > 0 .

This choice is conventional and hence cannot affect numerical results, so let us choose
conveniently  f(0) = f(0+),

f(πR) = f(πR−),
(4.4)

throughout this chapter, in case of jumps at the fixed points. Then, the well-defined global
action of this model must be written as a sum of bulk terms and some brane terms,

S5D = Sbulk + Sbranes , (4.5)

which keeps the same general formula as the interval scenarion in Eq. (3.17). In this
chapter, we only consider bulk massless fermions, so the bulk terms only consist of kinetic
terms as

Sbulk =
∫
d4x

(∫ 0−

−πR+
dy Lkin +

∫ πR

0
dy Lkin

)
, (4.6)

which contains an improper integral [in contrast to the simple interval case in Eq. (1.15)]
due to the discontinuity argument above,∫ 0−

−πR+
dy Lkin =̂ lim

a→0−, b→−πR+

∫ a

b
dy Lkin = lim

ϵ→0

∫ 0−ϵ

−πR+ϵ
dy Lkin , with ϵ > 0 , (4.7)

and a standard integration over different regions covering the whole physical domain of
the circle. Sbranes represents action terms located at the orbifold fixed points, e.g. the
brane-localized BBT (4.18) and the Yukawa interactions (4.14) at the brane y = πR.

Indeed, all the considered fields must be well-defined at the two fixed points via
Eq. (4.4). Besides, the Lagrangian density of kinetic terms Lkin (4.6) constructed by profile
derivatives f ′(y), should be integrable over the entire region y ∈ [0, πR] ∪ [−πR+, 0−] 5,
and profile derivatives f ′(y) must be well-defined over the two regions [−πR+, 0−] and
[0, πR] (see Sections 4.3.2 and 4.5.3 respectively for the free and coupled fermion situa-
tions), which is compatible with Eq. (4.4). For example, f(y) is derivable in the region
[0, πR] at y = 0 if and only if f(y) is right-derivable at y = 0, and the corresponding
right-derivative does not diverge thanks to the first equality of Eq. (4.4).

Notice that from the point of view of the integration by pieces of the action in Eq. (4.6)
precisely over the physical domain, the inclusion (or not) of the single points at y = 0 or
y = πR ≡ −πR does not affect the integral results – given the continuous form of the even
Lkin over the two regions [see Eq.(4.2)] – so that only consistent action definition argues
were considered here.

Finally, the Lagrangian densities of the whole expression (4.5) will respect the Z2
symmetry since the bulk kinetic terms Lkin (4.6) will fulfill the condition (4.2) and the
brane action Sbranes will exclusively involve Lagrangian terms taken at fixed points.

5. To be clear, the integration domain [−πR+, 0−] corresponds to the spatial region along the extra
dimension ] − πR, 0[ ⇔ (−πR, 0) – respectively the Francophone and Anglophone notations – which does
not include the fixed points at y = 0 and y = −πR.
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4.2.2 Bulk Fermion Fields

Analogy to the interval case in Section 3.2.2, let us introduce the minimal spin-1/2
field content which allows to write down a SM Yukawa-like coupling between zero mode
fermions (of different chiralities) and a spin-0 field (see Section 4.2.4). It is constituted
by a pair of fermion fields called Q and D. Those particles propagate along the circle
S1, as we have in mind an extension of this toy model to a realistic scenario with bulk
matter (cf. Section 4.2.5) where Q,D will represent respectively the SU(2)L gauge doublet
down-component quark and the singlet down-quark.

The 5D spinor fields Q(xµ, y) and D(xµ, y) – of mass dimension 2 – have the following
kinetic terms [entering Eq. (4.6)] which allow to recover canonical covariant kinetic terms
for the associated fermions in the 4D effective action (as imposed by the argument of
decoupling limit):

Lkin =
∑

F =Q,D

i

2 F̄ΓM←→∂MF , (4.8)

which keeps the identical formula as the interval case of Eq. (3.1) [chiral formula of Eq. (3.3)
via the chiral decomposition (1.17) (F = Q,D)] but with the discontinuity argument (see
Section 4.2.1) on the domain xM ∈M4 × S1/Z2.

As stated at the start of Section 4.2.1, the bulk Lagrangian density Lkin must obey
the Z2 symmetry condition (4.2). For this purpose, the Z2 symmetry representation (4.1)
on the 5D Dirac spinor fields Q(xµ, y) and D(xµ, y) can take four different forms which
constitute Essential Conditions issued from the model definition:

Type I

 Q (xµ,−y) = −γ5Q (xµ, y) =⇒ QL even, QR odd,

D (xµ,−y) = γ5D (xµ, y) =⇒ DL odd, DR even,
(4.9)

Type II

 Q (xµ,−y) = γ5Q (xµ, y) =⇒ QL odd, QR even,

D (xµ,−y) = −γ5D (xµ, y) =⇒ DL even, DR odd,
(4.10)

Type III

 Q (xµ,−y) = −γ5Q (xµ, y) =⇒ QL even, QR odd,

D (xµ,−y) = −γ5D (xµ, y) =⇒ DL even, DR odd,
(4.11)

Type IV

 Q (xµ,−y) = γ5Q (xµ, y) =⇒ QL odd, QR even,

D (xµ,−y) = γ5D (xµ, y) =⇒ DL odd, DR even,
(4.12)

under which the kinetic Lagrangian density (4.8) is indeed invariant, as appears by using
the properties of the γ5 Dirac matrix and the odd parity of the fifth partial derivative ∂4

6.
Based on the chiral formula of Eq. (3.3), it’s more convenient to see at a glance the even
parity of the kinetic Lagrangian density (4.8), simply by using the occurrence of fixed 5D
field parities, different for the Left/Right chiralities [cf. Eq. (4.9)-(4.12)], and the ∂4 odd
parity.

6. The parity of the derivative can be derived explicitly as,

F |y = ±γ5F
∣∣
−y

,

∂4F |y = lim
ϵ→0

F (y + ϵ) − F (y)
ϵ

= lim
ϵ→0

±γ5 F (−y − ϵ) − F (−y)
ϵ

= ∓γ5 lim
ϵ→0

F (−y) − F (−y − ϵ)
ϵ

= ∓γ5∂4F
∣∣
−y

= ∓γ5∂4F
∣∣
−y

= (−∂4)
(
±γ5F

)∣∣
−y

.
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Notice that the Z2 parity (second order cyclic group) does not allow for complex phase
factors in the transformations:

F |y = eiθF γ5F |−y = eiθF γ5eiθF γ5F |y =
(
eiθF

)2
F |y ,

which indicates eiθF = ±1 as in Eq. (4.9)-(4.12).

4.2.3 Brane-Localized Scalar Field

The questions about the mass calculation arise when the bulk fermions couple to a
single 4D real scalar field H (mass dimension 1) which is confined at a fixed point of the
orbifold, as in the studied interval model in Section 3.2.4 (inspired by the warped scenario
addressing the gauge hierarchy problem). We simply choose this fixed point to be at
y = πR, rather than y = 0, which is a purely mathematical convention since these two
points belong to a circle. The scalar field has an action of the generic form,

SH =
∫
d4x LH , with LH = 1

2 ∂µH∂
µH − V (H) , (4.13)

with a potential V (H) possessing a minimum which generates a non-vanishing VEV for
the field H expanded as in Eq. (3.10). Note that it has an identical formula in Eq. (3.9)
but localizes at the fixed point y = πR of the S1/Z2 orbifold rather than that at the end
of an interval.

4.2.4 Yukawa Interactions

We consider the following Yukawa interactions allowing to study the subtleties induced
by the coupling of the above brane-scalar field (at y = πR) to the introduced bulk fermions,

SY =
∫
d4x LY |πR ,with LY = −Y5 HQ

†
LDR − Y ′

5 HQ
†
RDL + H.c. , (4.14)

where the complex phases αY (′) of the two independent Yukawa couplings Y (′)
5 at the 3-

brane y = πR are defined in Eq. (3.12). Notice that considering operators involving the
fields H, Q, D up to dimension 5 allows to include such a Yukawa coupling as indicated
in Section 3.2.5 for the interval case. Let us recall here that in case of profile jumps at the
fixed point at y = πR, the 5D fields QL/R(xµ, πR), DL/R(xµ, πR) are defined through the
profile convention (4.4), as already described. The studied model with a Yukawa coupling
at a fixed point will turn out to be dual to the interval model including a Yukawa coupling
at a boundary (see Section 4.8).

To avoid the introduction of a new energy scale, in the spirit of the warped model, we
can define the 5D Yukawa coupling constants as

Y5 = y4 × 2πR and Y ′
5 = y′

4 × 2πR , (4.15)

where y4, y
′
4 are dimensionless coupling constants of O(1). Then, y4 can be approximately

identified with the SM Yukawa coupling constant within the decoupling limit [same moti-
vation of Eq. (3.13)], as will be described in Eq. (4.75)-(4.76).

When calculating the tower of excited fermion masses, we restrict our considerations
to the VEV of H via Eq. (3.10) and concentrate our attention on the following part of the
action (4.14),

SX =
∫
d4x LX |πR ,with LX = −XQ†

LDR −X ′Q†
RDL + H.c. , (4.16)
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with the effective couplings X,X ′ defined in Eq. (3.15). Based on Eq. (3.10), the complete
action reads as, SY = SX + ShQD, with the localized fermion-scalar interaction terms:

ShQD =
∫
d4x LhQD|πR ,with LhQD = − Y5√

2
hQ†

LDR −
Y ′

5√
2
hQ†

RDL + H.c. , (4.17)

that allow to work out the 4D effective Yukawa coupling constants.

4.2.5 Bilinear Brane Terms

Introducing all the covariant operators up to mass dimension 5 [like for the Yukawa
couplings (4.14)] in this model, one should consider as well the dimension 4 operators
given just below, that we call the BBT like in Ref. [1]. Furthermore, the presence of the
BBT has several justifications:

(i) They allow to avoid physical consistency problems both in the free case (see Sec-
tions 4.3.1 and 4.3.3) and with Yukawa couplings (Sections 4.5.1 and 4.5.3).

(ii) They play the role of defining well the model at the two orbifold fixed points [partic-
ularly to treat the (possible) discontinuity] both in the free case (see Sections 4.3.2
and 4.3.3) and with Yukawa couplings (Section 4.5.3).

(iii) They induce the expected matching of the analytical results on the spectrum derived
through the 4D and 5D approaches (see Sections 4.4 and 4.5.3).

The following BBT lead to the SM chirality configuration,

SB =
∫
d4x (LB|πR − LB|0) ,

with LB =
∑

F =Q,D

σF (y) F̄F =
∑

F =Q,D

σF (y)
(
F †

LFR + F †
RFL

)
, (4.18)

where we impose the chiral decomposition (1.17) and σF (y) are generic parameters for the
field F (F = Q,D) at y and

σQ
0,πR = −σD

0,πR = −1 , (4.19)
using compact notations

σF
0,πR =̂ σF

∣∣∣
0,πR

. (4.20)

Indeed, without Yukawa couplings, these terms will induce only a non-vanishing profile
q0

L(y) [see line 2 of Eq. (4.41) and Table 4.2 in case of the zero-mode with mass m0 = 0]
in the 5D field QL(xµ, y) so that only the Left-handed 4D field Q0

L(xµ) will exist. This
zero-mode Q0

L(xµ), without KK mass contribution, constitutes the lightest mode of the
KK tower and also the SM state. Hence, we can well recover the SM configuration: a
chiral field content and a Left-handed 4D field potentially representing the SU(2)L quark
doublet in the direct extension to gauge symmetries (and three flavours). Given that,
similarly, the BBT (4.18) will exclusively lead to a Right-handed 4D field D0

R(xµ) [line 1
of Eq. (4.41)] potentially representing the SM down quark type (gauge singlet). When
adding the Yukawa couplings (4.14), this SM chirality setup remains although it is no
more explicit due to the Qn(xµ)-Dn(xµ) mixing, via vector-like KK state mixings, which
induces some vector-like mass eigenstates ψ0

L/R(xµ) for the lightest modes of the tower
(see Sections 4.4 and 4.5.3). In the decoupling limit where heavy KK state mixings tend
to vanish, the SM chirality configuration is recovered as expected.

For completeness, let us underline that in the free case, the different BBT signs, σQ
0,πR

and σD
0,πR, would lead to a chiral setup for the zero-modes but different from the potential

SM chirality configuration, which are listed in Table 4.1.

88



σQ
0,πR σD

0,πR Q D

1 1 Q0
R(xµ) D0

R(xµ)
1 −1 Q0

R(xµ) D0
L(xµ)

−1 1 Q0
L(xµ) D0

R(xµ)
−1 −1 Q0

L(xµ) D0
L(xµ)

Table 4.1 – Chiral setups for the zero-modes of fields Q and D from various different BBT
signs σQ,D

0,πR in Eq. (4.18).

Finally, analogy to the vector-like states of custodians introduced in Section 3.2.3,
such massive vector-like states can be realized by σF

0 = −σF
πR = ±1 (opposite sign for

0 and πR) of the BBT (4.18) [in contrast to that of the chiral solutions in Eq. (4.19)],
which would instead lead to the profile solutions (4.42) with two non-vanishing profiles
for the lightest modes (as m0 ̸= 0) in Sections 4.3.2 and 4.3.3. Of course there exist 8
remaining cases combining the above Lagrangian sign configurations: σQ

0(πR) = +
(−)1, (+)

− 1,
σD

0(πR) = ±1, and, σQ
0(πR) = ±1, σD

0(πR) = +
(−)1, (+)

− 1.
Therefore, it appears clearly that the BBT control the chiral configurations of the

model. The UV completion of the theory can be at the origin of the BBT and hence of
the chirality setup: chiral nature of the theory and specific chiralities of the various fields.

To end up this section, we note that the complete toy model studied in Eq. (4.5) will
respect the Z2 symmetry and the brane action Sbranes will exclusively be characterized by
the action taken at fixed points as

Sbranes = SB + SH + SX + ShQD . (4.21)

The conclusions that will be derived in the present work can be directly extended to the
realistic warped model with SM bulk matter addressing the fermion mass and gauge hier-
archies, along the same lines as the flavor and gauge symmetry generalizations described
in details in Section 3.2.6 (also see Ref. [1]).

4.3 Free Bulk Fermions on the Orbifold
Following the methodology in the interval scenario in Section 3.3, in this section, we

calculate the fermionic mass spectrum for the free case without the Yukawa action piece
SY given by Eq. (4.14). It would provide us a main procedure and technical tools, which
is also suitable for the 5D approach in the Yukawa case in Section 4.5.

4.3.1 Applying the NBC

We start by considering the bulk action part of Eq. (4.6),

Sbulk ,

from the complete action S5D (4.5). We apply the least action principle to it, which leads
to two relations of the kind,

δF̄Sbulk = 0 ,
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one for each of the unknown 5D fields F = Q,D, and two corresponding ones, δFSbulk = 0,
involving the complex conjugate fields 7, since the elementary field variations δQα, δQ̄α,
δDα and δD̄α (see Appendix C.1) are generic and hence independent from each other.
Using compact notations defined in Eq. (1.22), we can write in particular

δF̄Sbulk =
∫
d4x

(∫ 0−

−πR+
+
∫ πR

0

)
dy

{
δF̄

∂Lkin

∂F̄
+ δ

(
∂M F̄

) ∂Lkin

∂ ∂M F̄

}

=
∫
d4x

(∫ 0−

−πR+
+
∫ πR

0

)
dy

{
δF̄

∂Lkin

∂F̄
+ ∂M

[
δF̄

∂Lkin

∂ ∂M F̄

]
− δF̄ ∂M

∂Lkin

∂ ∂M F̄

}

=
∫
d4x

(∫ 0−

−πR+
+
∫ πR

0

)
dy

{
δF̄

[
∂Lkin

∂F̄
− ∂M

∂Lkin

∂ ∂M F̄

]}

+
∫
d4x

(
δF̄

∂Lkin

∂ ∂4F̄

∣∣∣∣0−

−πR+
+ δF̄

∂Lkin

∂ ∂4F̄

∣∣∣∣πR

0

)
, (4.22)

where we omit the global 4-divergence which vanishes in the action integration due to
vanishing fields at the boundaries at infinities via the same comments for Eq. (1.23).
Based on the Lagrangian Lkin of Eq. (4.8), these two bulk terms take the same form (the
first one being calculated explicitly in Eq. (C.6) to clarify the spinor component treatment)
and the two remaining brane terms can be calculated as well:

δF̄Sbulk =
∫
d4x

(∫ 0−

−πR+
+
∫ πR

0

)
dy

{
δF̄
[
iΓM∂MF

]}

+
∫
d4x

δF̄ [−γ5

2 F
]∣∣∣∣∣

πR−

0+

+ δF̄

[
−γ

5

2 F
]∣∣∣∣∣

πR

0

 , (4.23)

where we have further invoked the Z2 transformations (4.9)-(4.12) for the generic 5D field,
Eq. (C.7) for its variation and γ5 properties:

δF̄

[
−γ

5

2 F
]∣∣∣∣∣

0−,−πR+

=
(
∓δF̄ γ5

) [
−γ

5

2
(
±γ5F

)]∣∣∣∣∣
0+,πR−

= − δF̄
[
−γ

5

2 F
]∣∣∣∣∣

0+,πR−

.

Then, thanks to Eq. (4.4) 8 and Eq. (C.4)-(C.5) respectively, the expression (4.23) simplifies
to,

δF̄Sbulk =
∫
d4x


(∫ 0−

−πR+
+
∫ πR

0

)
dy

[
δF̄
(
iΓM∂MF

)]
+ 2 δF̄

[
−γ

5

2 F
]∣∣∣∣∣

πR

0


=
∫
d4x

{(∫ 0−

−πR+
+
∫ πR

0

)
dy

[
δF̄
(
iΓM∂MF

)]
+
[
δF †

RFL − δF †
LFR

]∣∣∣πR

0

}
, (4.24)

where the bulk and the brane variations – respectively the volume and surface terms – must
vanish separately due to independent field variations (no reason to be linked). Besides all
those field variations are not vanishing (unknown fields) so that we get the bulk EOM,

∀xµ, ∀ y ∈ [−πR+, 0−] ∪ [0, πR] , iΓM∂MF = 0 , (4.25)

7. The equations of motion and boundary conditions derived from the least action principle for the
fields and their conjugates are trivially related through Hermitian conjugation.

8. Those continuity relations lead to F̄ |0 = F̄ |0+ , i.e. F̄α|0 = F̄α|0+ [cf. Eq. (C.2)], and in turn to
δF̄α|0 = δF̄α|0+ which can be written as δF̄ |0 = δF̄ |0+ via Eq. (C.3). Similarly we get δF̄ |πR = δF̄ |πR− .
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and it’s chiral formula after the chiral projection (1.17),

∀xµ, ∀ y ∈ [−πR+, 0−] ∪ [0, πR] ,

 iσ̄µ∂µFL + ∂4FR = 0 ,

iσµ∂µFR − ∂4FL = 0 ,
(4.26)

with the corresponding NBC,

FL|0 = FR|0 = FL|πR = FR|πR = 0 . (4.27)

At this level, we can first solve Eq. (4.26) together with Eq. (4.27) to find out the F fields
over the domain, y ∈ [0, πR]. This is precisely what has been done in the interval scenario
where the two exactly identical Eq. (1.30) and (1.31) have been solved over the interval,
y ∈ [0, L] [also cf. Ref. [1]]. Since the fields are continuous over y ∈ [0, πR] [cf. Eq. (4.4)]
like there over y ∈ [0, L], we can thus apply here the results obtained in this reference: the
solutions found for Eq. (4.26)-(4.27) are expressed through the KK decomposition (with
a similar choice of global dimensional factor),

FL/R (xµ, y) = 1√
2πR

+∞∑
n=0

fn
L/R(y)Fn

L/R (xµ) , (4.28)

where the 4D fields Fn
L/R = Qn

L/R, D
n
L/R represent the KK states and satisfy the Dirac-

Weyl equations in Eq. (1.25) with the KK masses mF
n .

However, the only resulting profiles fn
L/R(y) = qn

L/R(y), dn
L/R(y), included respectively

into F = Q,D, are vanishing over y ∈ [0, πR]. Now let us study the profile solutions in
the complementary region, y ∈ [−πR+, 0−]. Inserting the KK decomposition (4.28) into
the first type of Z2 transformation (4.9), one obtains the Z2 transformations directly on
the fn

L/R(y) profiles (∀n ∈ N):

Type I



+∞∑
n=0

[
qn

L(R)(−y) (+)
− qn

L(R)(y)
]
Qn

L(R) (xµ) = 0 ⇒ qn
L(R)(−y) = +

(−)q
n
L(R)(y)

+∞∑
n=0

[
dn

L(R)(−y) +
(−) d

n
L(R)(y)

]
Dn

L(R) (xµ) = 0 ⇒ dn
L(R)(−y) = (+)

− dn
L(R)(y)

(4.29)
where the implications come from the linear independence of mass eigenstates Fn

L/R (xµ).
Similarly, for the three other types of Z2 transformations (4.10)-(4.12), we have the fol-
lowing profile parities:

Type II

 qn
L(R)(−y) = (+)

− qn
L(R)(y)

dn
L(R)(−y) = +

(−)d
n
L(R)(y)

(4.30)

Type III

 qn
L(R)(−y) = +

(−)q
n
L(R)(y)

dn
L(R)(−y) = +

(−)d
n
L(R)(y)

(4.31)

Type IV

 qn
L(R)(−y) = (+)

− qn
L(R)(y)

dn
L(R)(−y) = (+)

− dn
L(R)(y)

(4.32)

Therefore, all the fn
L/R(y) profiles are systematically vanishing on the whole S1/Z2 orbifold

region, y ∈ [−πR+, 0−] ∪ [0, πR]. Such profiles conflict with the two (for L/R) ortho-
normalization conditions over the full domain,

∀n,m ∈ N,
1

2πR

(∫ 0−

−πR+
+
∫ πR

0

)
dy fn∗

L/R(y) fm
L/R(y) = δnm , (4.33)
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originating from the condition of a canonical form for the 4D effective kinetic terms. Hence
the solutions for the fields obtained through this first method are not physically consistent.

4.3.2 Introducing the EBC

In fact, one necessary ingredient was missing in the naive approach in Section 4.3.1.
In order to identify it, we have to study the conserved fermion probability currents cor-
responding, via the Noether’s theorem, to the global U(1)Q and U(1)D symmetries of the
action,

Sbulk ,

involving the bulk kinetic Lagrangian Lkin (4.8). The two independent global U(1)Q,D
transformations of the fields, letting Lkin invariant, act respectively as, Q 7→ eiαQ,

Q̄ 7→ e−iαQ̄,
and

 D 7→ eiα′
D,

D̄ 7→ e−iα′
D̄,

(4.34)

where α, α′ ∈ R are continuous constants entering for instance the infinitesimal field
variations 9:

δQ = iαQ , δQ̄ = −iαQ̄ .

Choosing instead to consider a unique symmetry (α = α′ for any field F ) would cor-
respond to a particular case only, among the general Lagrangian symmetry possibilities.
Besides, this particular case would not provide the maximal information, since one symme-
try would be associated to only one conserved probability current. We thus will consider,
in this section, the transformations (4.34) with independent α and α′, leading to the two
independent U(1)Q,D symmetries. Based on these two symmetries, and the bulk EOM
whose standard structure appears in Eq. (4.22), the Noether’s theorem predicts the local
conservation relation,

∂MjM
F = 0 , (4.35)

for the two probability currents,

jM
Q = −αQ̄ ΓMQ , jM

D = −α′D̄ ΓMD , (4.36)

as derived in details within the Appendix F. This relation holds over the whole S1/Z2 orb-
ifold domain, y ∈ [−πR+, 0−]∪ [0, πR], since the sole bulk terms in the action infinitesimal
variation – under U(1)Q,D transformation – must vanish for any integration sub-region
included inside the entire integration domain of the action precisely defined for the model.
The mathematical consistency of the condition (4.35) imposes necessarily (left/right) con-
tinuous 5-current components over all the model spacetime and in particular a (left/right)
continuous j4

F along y ∈ [−πR+, 0−] ∪ [0, πR] 10.
Notice that a jump of the form, j4

F |0− ̸= j4
F |0, would not determine any field at the

fixed point and thus would not lead to any vanishing variation in Eq. (4.23). Thus, the
Dirichlet BC (4.27) would be preserved and in turn induce non-physical solutions. A
similar argue applies at the other fixed point, y = πR ≡ −πR.

9. Different clear notations are used here for the infinitesimal field variations under specific transfor-
mations, δF , and the above generic field variations in the variation calculus context of the least action
principle, δF [see typically Eq. (C.3)].

10. Notice that this condition is in agreement with Eq. (4.4) which guarantees continuous fields along
y ∈ [−πR+, 0−] ∪ [0, πR].
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Hence, one has to consider the remaining model possibility, j4
F |0− = j4

F |0 and 11

j4
F |−πR+ = j4

F |πR, so that this current component is continuous over all the range, y ∈
[−πR, πR]. In particular, we can now write, j4

F |0− = j4
F |0 = j4

F |0+ ,

j4
F |πR− = j4

F |πR = j4
F |−πR+ .

(4.37)

This obtained relation must be compared with the following one, coming directly from the
Z2 transformations of type (4.9)-(4.12) and γ5 properties,

j4
F

∣∣∣
0−(πR−)

= −α(′) F̄ Γ4F
∣∣∣
0−(πR−)

= −α(′)
(
±γ5F

)†
γ0
[
−iγ5

] (
±γ5F

)∣∣∣∣
0+(−πR+)

= α(′)F †γ0γ5
[
−iγ5

] (
γ5F

)∣∣∣
0+(−πR+)

= α(′) F̄ Γ4F
∣∣∣
0+(−πR+)

= − j4
F

∣∣∣
0+(−πR+)

.

(4.38)

The combination of Eq. (4.37) and Eq. (4.38) gives rise to a vanishing current component
at the fixed point:  j4

F |0− = j4
F |0 = j4

F |0+ = 0 ,

j4
F |πR− = j4

F |πR = j4
F |−πR+ = 0 ,

so that, using the generic chiral decomposition (C.5), we get the following current condi-
tions,

j4
F

∣∣∣
0,πR

= iα(′)
(
F †

LFR − F †
RFL

)∣∣∣
0,πR

= 0 , (4.39)

leading to the minimal boundary conditions,
FL|0 = 0 ,

or
FR|0 = 0 ,

and


FL|πR = 0 ,

or
FR|πR = 0 .

[EBC] (4.40)

These BC induce systematically the vanishing of all the brane terms in the varied action
obtained in Eq. (4.24). Indeed, for example, the fixed value FL|0 = 0 implies F †

L|0 = 0 and
in turn δF †

L|0 = 0 12 [considering more precisely their two respective components as is clear
from Appendix C.1]. Therefore the sole remaining BC are those of Eq. (4.40): there are
no more NBC generated from the brane terms of Eq. (4.24) and we name the BC (4.40) as
EBC since they are imposed by the Z2 transformations (4.38) which contribute to define
the studied model. From the point of view of the methodology, notice interestingly that
it was necessary to consider the fermion probability currents to reveal the existence of the
EBC.

Now, solving the new EBC (4.40) together with the unchanged bulk EOM (4.26) over
the domain, y ∈ [0, πR], was precisely realized in the interval scenario y ∈ [0, L] (see
Section 3.3.2). Once more, since the fields are continuous over y ∈ [0, πR] [see Eq. (4.4)]
like there over y ∈ [0, L], we can apply here the results derived in this previous work:
the profile solutions – inserting the KK decomposition (4.28) to the EOM (4.26) and the

11. A change must occur at both fixed points to cure the problems of the solutions worked out in previous
subsection.

12. Rigorously speaking, the action should not be minimized with respect to the known fixed fields so
that the terms with vanishing field variations should not even appear. In fact, the brane terms of Eq. (4.24)
should originally be written as a generic sum over unfixed fields.
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EBC (4.40) – are given by the following four possible sets of profiles over y ∈ [0, πR]
together with the associated KK mass spectrum equations (∀n ∈ N),

1) (−−) : fn
L(y) = Bn

L sin(mF
n y) , (++) : fn

R(y) = Bn
L cos(mF

n y) ; sin(mF
n πR) = 0 ,

2) (++) : fn
L(y) = Bn

R cos(mF
n y) , (−−) : fn

R(y) = −Bn
R sin(mF

n y) ; sin(mF
n πR) = 0 ,

(4.41)

and,

3) (−+) : fn
L(y) = Bn

L sin(mF
n y) , (+−) : fn

R(y) = Bn
L cos(mF

n y) ; cos(mF
n πR) = 0 ,

4) (+−) : fn
L(y) = Bn

R cos(mF
n y) , (−+) : fn

R(y) = −Bn
R sin(mF

n y) ; cos(mF
n πR) = 0 .

(4.42)

where we use the standard BC notations − or + at y = 0, πR defined below Eq. (3.29),
which make explicit the correspondence between the four EBC (4.40) and the four so-
lutions (4.41)-(4.42). The SM-like profile dn

L/R(y) (qn
L/R(y)) are taken from line 1 (2) of

Eq. (4.41) for the field D (Q), as described in Section 4.2.5.
The equation sin(mF

n πR) = 0 possesses the following solutions for the KK mass spec-
trum,

|mn| =
n

R
, n ∈ N , (4.43)

where we define the notation of the common mass spectrum mn as

mn =̂mQ
n = mD

n . (4.44)

Similarly, the equation cos(mF
n πR) = 0 has the solutions:∣∣∣mF

n

∣∣∣ = 2n+ 1
2R , n ∈ N . (4.45)

The remaining part of the general fn
L/R(y) solutions in the complementary domain y ∈

[−πR+, 0−], is now obtained via the four types of Z2 transformations (4.29)-(4.32). There-
fore, the inclusion of the EBC based on the vanishing probability currents allows to obtain
consistent fermion profile and mass solutions.

In Table 4.2, we present the explicit solutions over the whole orbifold domain for the
SM-like profiles dn

L/R(y) (qn
L/R(y)) taken from line 1 (2) of Eq. (4.41): see the discussion

on SM chirality configuration in Section 4.2.5. The mass spectrum for the 4D KK states is
defined by Eq. (1.25) and it is already determined by Eq. (4.43)-(4.45). Notice in Table 4.2
that the same mn spectrum enters the profile solutions in both regions, y ∈ [0, πR], and,
y ∈ [−πR+, 0−]. In this table, we also give the general values of the Bn

L/R complex
constants in Eq. (4.41), obtained from the ortho-normalization conditions (4.33) 13. We
observe in Table 4.2 that the choice of type of Z2 transformation is just a convention since
it can modify the profile signs but it affects neither the mass spectrum nor the fermion
chirality configuration – as a certain chiral zero-mode profile vanishing on the region
[0, πR] is also systematically vanishing over y ∈ [−πR+, 0−]. In contrast, the chirality
configuration and mass spectrum are fixed by the choice of EBC (4.40) which can lead
either to the two kinds of chiral solutions in Eq. (4.41) or to the vector-like solutions (4.42).

13. Here, thanks to the parity symmetry of profiles, a change of variable, y → −y, could be applied to
recover exclusively the integration domain [0, πR].
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Z2

Fields
Continuity QL/R DL/R

domains
qn

L(y)/eiαn
Q qn

R(y)/eiαn
Q dn

L(y)/eiαn
D dn

R(y)/eiαn
D

[0, πR] Any
√

2 cos(mn y) −
√

2 sin(mn y)
√

2 sin(mn y)
√

2 cos(mn y)

[−πR+, 0−]

I
√

2 cos(mn y) −
√

2 sin(mn y)
√

2 sin(mn y)
√

2 cos(mn y)
II −

√
2 cos(mn y)

√
2 sin(mn y) −

√
2 sin(mn y) −

√
2 cos(mn y)

III
√

2 cos(mn y) −
√

2 sin(mn y) −
√

2 sin(mn y) −
√

2 cos(mn y)
IV −

√
2 cos(mn y)

√
2 sin(mn y)

√
2 sin(mn y)

√
2 cos(mn y)

KK Masses |mn| = n/R, n ∈ N

Table 4.2 – SM-like free fermionic fn
L/R(y) profiles – normalized to the indicated complex

phases – on the two orbifold domains [−πR+, 0−] and [0, πR], corresponding to the solution
of line 1 (2) in Eq. (4.41) for the field D (Q). The associated mass spectrum (4.43)
is included as well for completeness. The profiles are given for the four types of Z2
transformations (4.29)-(4.32). The phases αn

Q/D belong to R. In the special case, n = 0,
the
√

2 factors must all be replaced by the unity.

In Figure 4.3, we draw the first two excitation profiles for each free solution with non-
negative KK masses presented in Table 4.2 within the simple real case, αn

Q,D = 0, and
for two different types of Z2 transformations (4.29)-(4.32). We see clearly in Figure 4.3
that for example under the Type II Z2 transformation, jumps appear for the profiles
q0,1,2

L (y) and d0,1,2
R (y) at the two fixed points at, y = 0, y = πR ≡ −πR, in the scenario

without Yukawa couplings. The presence of profile discontinuities here already justifies
the treatment exposed in Section 4.2.1. The precise prescription (4.4) regarding the action
integration domain, described in this section, renders the jumps of Figure 4.3 consistent
mathematically: the difference, e.g. q1

L(0−) ̸= q1
L(0), is compatible with a well defined

Lagrangian integrand over the action integration domain, y ∈ [−πR+, 0−]∪ [0, πR], where
the profiles are continuous.

4.3.3 Introducing the BBT

As suggested in Section 4.2.5, we can alternatively introduce the dimension 4 operators
of Eq. (4.18) to study their effects with respect to the inconsistencies raised in Section 4.3.1.
Hence, to the action Sbulk from Eq. (4.6), we add now another part and consider:

Sbulk + SB .

The variations of SB with respect to the generic field F̄ [using Eq. (C.4)],

δF̄SB =
∫
d4x

(
σF

πR δF †
RFL

∣∣∣
πR

+ σF
πR δF †

LFR

∣∣∣
πR
− σF

0 δF †
RFL

∣∣∣
0
− σF

0 δF †
LFR

∣∣∣
0

)
,

together with Eq. (4.24) allow to write down the variations of the free fermion action:

δF̄ (Sbulk + SB) =
∫
d4x

{(∫ 0−

−πR+
+
∫ πR

0

)
dy δF̄

(
iΓM∂MF

)
+
(
σF

πR + 1
)
δF †

RFL

∣∣∣
πR

+
(
σF

πR − 1
)
δF †

LFR

∣∣∣
πR
−
(
σF

0 + 1
)
δF †

RFL

∣∣∣
0
−
(
σF

0 − 1
)
δF †

LFR

∣∣∣
0

}
. (4.46)
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Figure 4.3 – Zero-mode and KK dimensionless wave functions qn
L/R(y), dn

L/R(y), with
n = 0, 1, 2, along the S1/Z2 orbifold domain, y ∈ [−πR+, 0−] ∪ [0, πR], corresponding to
the free solutions of Table 4.2 in the simplified case, αn

Q,D = 0, mn ≥ 0, and for the two
different types of Z2 transformations, I, II from Eq. (4.29)-(4.32). The two fixed points at,
y = 0, y = πR ≡ −πR, and Dirichlet/Neumann BC, (−)/(+), are indicated on the graph.

The individual vanishing of those volume and surface terms lead to the EOM (4.26) to-
gether with the four following NBC, depending on the two σF

0,πR choices,
FL|0 = 0 (σF

0 = +1),
or

FR|0 = 0 (σF
0 = −1),

and


FL|πR = 0 (σF

πR = +1),
or

FR|πR = 0 (σF
πR = −1).

[NBC] (4.47)

At this level, the EOM and NBC are effectively the same as the EOM (4.26) and EBC (4.40)
of previous subsection, in the domain y ∈ [0, πR], so that we find again the solutions (4.41)-
(4.42) together with the mass spectra (4.43)-(4.45). For instance, the SM-like choice
σQ

0,πR) = −1 of Eq. (4.18) leads via Eq. (4.47) to the solution of line 2 in Eq. (4.41). Then
the parts of the general profile solutions in the complementary region, y ∈ [−πR+, 0−],
are found out via the different types of Z2 transformations (4.29)-(4.32) in the free case,
as in Section 4.3.2, so that the complete solutions are once more identical and can also be
illustrated by the Table 4.2 and Figure 4.3 both based on the ortho-normalization condi-
tions (4.33). In conclusion, introducing the BBT permits to rigorously work out profile
and mass solutions. A second conclusion in this approach is that the chirality setup – one
of the two chiral solutions (4.41) or of the vector-like ones (4.42) – and associated mass
spectrum are fixed by the choice of NBC (4.47) and in turn by the choices of σF

0,πR BBT
signs in Eq. (4.18). In simpler words, the BBT (like the EBC previously) control the chiral

96



nature of the theory as well as each field chirality.
Let us now discuss the probability currents. The addition of the SB part in Eq. (4.18)

to Sbulk is not affecting the current equations (4.35)-(4.36) since the new brane terms so
induced in the infinitesimal action variation – under the U(1)Q,D transformations (4.34) –
vanish due to their U(1)Q,D invariant form. In contrast with previous subsection and with
the interval model in the free case with BBT (see Sections 3.3.2-3.3.3), there exists no
demonstration there of Eq. (4.39) from discrete symmetries. Nevertheless, we can check
that j4

F |0,πR is well vanishing by using the obtained solutions (4.41)-(4.42): the product
fn

L(y)fm
R (y) systematically vanishes at y = 0, πR. Therefore, the BBT play the role of

making j4
F |0,πR vanish (Z2 transformation consequence) like the EBC were guaranteeing

it in Section 4.3.2. Note that we could simultaneously apply the EBC and introduce the
BBT but those two processes would be physically redundant to define the model.

4.4 Brane-Localized Yukawa Couplings on the Orbifold: 4D
Approach

Once the free case is addressed, via the EBC (4.40) in Section 4.3.2 or the NBC (4.47)
induced by the BBT in Section 4.3.3, the fermion mass spectrum and profiles are known.
Then how to take into account the effects of the action part SX (4.16) in the mass spectrum,
induced by the Yukawa interaction between a brane-localized scalar field and bulk fermions
in Eq. (4.14)? The considered action reads thus as,

Sbulk + SX (+SB) . (4.48)

A first method called the perturbation method, described in the present section, is per-
formed at the level of the 4D effective Lagrangian, that is by calculating the mass mixings
between the different levels of the KK towers. Considering the SM-like profile solutions
dn

L/R(y) (qn
L/R(y)) and associated free KK mass spectrum from line 1 (2) of Eq. (4.41), all

the initial 4D effective masses for the KK modes of Eq. (4.28) in the interaction basis can
be classified into two species: the pure KK masses (4.43) and the mass contributions from
the Yukawa interaction given by the overlap between the wave functions and Higgs-brane,

∀(i, j) ∈ N2, αij = X
qi

L(πR)√
2πR

dj
R(πR)√

2πR
,

∀(i, j) ∈ N⋆2, βij = X ′ d
i
L(πR)√

2πR
qj

R(πR)√
2πR

.

(4.49)

In particular, βij = 0 as imply the respective SM solutions (4.41) so that the coupling
constant X ′ disappears from the mass dependences. Note that for similar reasons [cf.
Eq. (C.5)], in the case of the presence of the BBT (4.18), those do not generate 4D mass
terms. All the 4D mass terms enter the 4D effective Lagrangian through the following
mass matrix [similar to the interval case in Section 3.4],

−χ†
LMχR + H.c.

within the field basis noted,
χt

L(xµ) =
(
Q0

L, Q
1
L, D

1
L, Q

2
L, D

2
L, · · ·

)
,

χt
R(xµ) =

(
D0

R, Q
1
R, D

1
R, Q

2
R, D

2
R, · · ·

)
.

(4.50)
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The texture of this infinite mass matrixM involving the diagonal mn (3.30), off-diagonal
αij (4.49) and mixing the Q, D fields together can be precisely taken from the interval
model context in Eq. (3.43), with two substitutions:

(i) L ↔ πR, since the KK masses and bulk profile solutions are then identical (up to
extensions over [−πR+, 0−] as seen in Section 4.3.2 here) like the Yukawa interactions
localized at y = πR [for any Z2 transformation (4.58)-(4.32)].

(ii) X ↔ X/2, since the two present profiles (even or odd) entering αij (4.49) are
normalized via Eq. (4.33) over a domain of double size 2L ↔ 2πR compared to
the interval case.

Now we can apply the results for the mass eigenvalues Mn of the 4D eigenstates ψn
L/R(xµ)

obtained through the bi-diagonalization performed in Eq. (3.45), based on the calculations
in Ref. [96]. Then, the obtained exact mass eigenvalues are determined by the following
equation, coming from the characteristic equation,

∀n ∈ N, tan2(
√
|Mn|2 πR) =

(
X

2

)2
, (4.51)

in the case of a real X parameter, i.e. αY = 0 (3.12) and positive mn branch from
Eq. (4.43). Hence, the physical absolute value of the mass spectrum reads as:

|Mn| =
1
πR

∣∣∣∣arctan
(
X

2

)
+ (−1)n ñ(n)π

∣∣∣∣ , n ∈ N , (4.52)

using the ñ(n) function already defined in Eq. (3.47).

4.5 Brane-Localized Yukawa Couplings on the Orbifold: 5D
Approach

4.5.1 Applying the NBC

Let us now study the presence of Yukawa couplings at the fixed point, y = πR, through
the action,

Sm
5D = Sbulk + SX + S0

B , with S0
B = −

∫
d4x LB|0 , (4.53)

where the first bulk term is based on kinetic terms (4.8) and LB introduced by the BBT
of Eq. (4.18) is imposed only at the brane y = 0 where the Yukawa interaction is absent.
Within the 5D approach, that is by considering the mixings among KK excitation states
at the level of the 5D fields. The BBT introduced here at the fixed point at y = 0
are the ones of Eq. (4.18)-(4.19) leading to SM-like chirality configurations: σQ

0 = −1,
σD

0 = 1. Those guarantee a correct treatment of the free brane, like EBC, as analyzed
throughout Section 4.3. Using Eq. (4.46) and Eq. (4.16), one gets directly the following
action variations with respect to the fields Q̄ and D̄,

δQ̄S
m
5D =

∫
d4x

{(∫ 0−

−πR+
+
∫ πR

0

)
dy δQ̄

(
iΓM∂MQ

)
+
[
δQ†

L (−XDR −QR) + δQ†
R

(
−X ′DL +QL

)]∣∣∣
πR

+ 2
(
δQ†

LQR

)∣∣∣
0

}
,

δD̄S
m
5D =

∫
d4x

{(∫ 0−

−πR+
+
∫ πR

0

)
dy δD̄

(
iΓM∂MD

)
+[

δD†
L

(
−X ′∗QR −DR

)
+ δD†

R (−X∗QL +DL)
]∣∣∣

πR
− 2

(
δD†

RDL

)∣∣∣
0

}
. (4.54)
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The separate vanishings of these volume and surface terms, induced by the least action
principle, give rise respectively to the EOM (4.26) and the following NBC, (QR +X DR)|πR = 0 , (DR +X ′∗ QR)|πR = 0 , QR|0 = 0 ,

(QL −X ′ DL)|πR = 0 , (DL −X∗ QL)|πR = 0 , DL|0 = 0 .
(4.55)

As usual, the 5D field solutions of the EOM (4.26) and NBC (4.55) have the form of the
following mixed KK decomposition [instead of Eq. (4.28)] [100, 101],

QL (xµ, y) = 1√
2πR

+∞∑
n=0

qn
L(y)ψn

L (xµ) ,

QR (xµ, y) = 1√
2πR

+∞∑
n=0

qn
R(y)ψn

R (xµ) ,

DL (xµ, y) = 1√
2πR

+∞∑
n=0

dn
L(y)ψn

L (xµ) ,

DR (xµ, y) = 1√
2πR

+∞∑
n=0

dn
R(y)ψn

R (xµ) ,

(4.56)

with the 4D fields ψn
L/R, already mentioned in Section 4.4, satisfying the Dirac-Weyl equa-

tions in Eq. (3.51), where the the fermion mass eigenvalues Mn include the contributions
from the Yukawa terms and these 4D fields the mass eigenstates including the effects of
mixings among the Q, D fields as well as (infinite) KK levels. Besides, the two (for L/R)
following ortho-normalization conditions over the full S1 domain [replacing Eq. (4.33)],

∀n,m ∈ N,
1

2πR

(∫ 0−

−πR+
+
∫ πR

0

)
dy
[
qn∗

L/R(y) qm
L/R(y) + dn∗

L/R(y) dm
L/R(y)

]
= δnm .

(4.57)
Indeed, injecting the mixed KK decomposition (4.56) into the first type of Z2 transforma-
tion (4.9), we get the Z2 transformations directly on the profiles:

Type I



+∞∑
n=0

[
qn

L(R)(−y) (+)
− qn

L(R)(y)
]
ψn

L(R) (xµ) = 0 ⇒ qn
L(R)(−y) = +

(−)q
n
L(R)(y)

+∞∑
n=0

[
dn

L(R)(−y) +
(−) d

n
L(R)(y)

]
ψn

L(R) (xµ) = 0 ⇒ dn
L(R)(−y) = (+)

− dn
L(R)(y)

(4.58)
In the same way, for the three other types of Z2 transformations (4.10)-(4.12), one obtains
the same profile parities as in Eq. (4.32). The explicit profile solutions appearing in
Eq. (4.56) over the domain, y ∈ [0, πR], were found out for the interval model studied in
Section 3.6.1 where the exactly identical EOM (1.30) and the NBC (3.68), up to a sign
and a factor 2 in front of each X(′) parameter, have been solved over y ∈ [0, L]. Because
the fields are continuous over y ∈ [0, πR] [cf. Eq. (4.4)] like there over y ∈ [0, L], one can
apply here the conclusions obtained in this reference. Note that the ortho-normalization
conditions (4.57) can be recast into the integration of Eq. (3.52) over the region [0, πR]
but with a global factor 2, thanks to the change of variable y′ = −y, the fixed odd/even
parities of the profiles and Eq. (4.4), so that the demonstration about profile solutions
on the interval in Eq. (3.72) remains unchanged here, from this point of view as well.
Meanwhile, the relative factors 2, at the same places in the NBC (4.55), come from the
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existence of surface terms both at y = 0, 0− and y = πR, −πR+ as is clearly described in
Eq. (4.23)-(4.24). These factors turn out not to modify the relations between the different
profile solutions but to only change by a factor 4 in the final mass spectrum equation in
Eq. (3.73).

As a conclusion, the same result as in Section 3.6.1 holds here for the orbifold: the 4D
effective Yukawa coupling constant for the lightest modes (ψ0

L,R), induced by the found
profiles, tends to zero within the decoupling limit which is not compatible with the SM
configuration expected. The problematic characteristics of the solutions obtained in this
naive approach are confirmed by the final mass spectrum equation (independent from the
profile normalization),

tan2(Mn πR) = |X|2 ,
which conflicts analytically with the one obtained through the 4D method in Eq. (4.51)
for a real X parameter. This failure motivates the alternative 5D methods of the next two
subsections.

4.5.2 Introducing the EBC

Following the same idea as for the free case in Section 4.3.2, we try now to find
consistent fermion mass solutions via considerations on their currents. The currents permit
a priority to fully define the geometrical field configuration like here for the S1/Z2 orbifold
scenario. The complete relevant action including the brane-localized Yukawa terms (4.16),

Sbulk + SX + S0
B , (4.59)

like in Eq. (4.53), is invariant under the unique U(1)F symmetry defined via Eq. (4.34)
only for,

α = α′ , (4.60)
since the fermions Q and D are mixed on the brane at y = πR. Based on this symmetry
involving both Q and D as well as on the bulk EOM [whose standard structure appears
in the action variation (4.22)], the Noether’s theorem predicts (cf. Appendix F) the new
local probability conservation relation,

∂MjM = 0 , with jM =
∑

F =Q,D

jM
F , (4.61)

involving the individual currents given by Eq. (4.36)-(4.60) over the full orbifold domain,
y ∈ [−πR+, 0−] ∪ [0, πR]. The addition of the SX part to Sbulk is not modifying the
conservation relation (4.61) as the new brane terms entering the infinitesimal action
variation – under the U(1)F transformations – vanish because of their invariant form.
The mathematical consistency of the relation (4.61) implies necessarily the (left/right)
continuity of 5-current components over the whole spacetime and in particular a (left-
/right) continuous j4 along y ∈ [−πR+, 0−]∪ [0, πR]. Besides, a discontinuity of the form,
j4|−πR+ ̸= j4|−πR ≡ j4|πR, would not fix any field at this fixed point and in turn would not
induce vanishing variations in Eq. (4.54), which preserves the BC (4.55) and thus induce
the drawbacks already pointed out in Section 4.5.1. As a consequence, we must consider
the remaining model possibility:

j4|−πR+ = j4|−πR ≡ j4|πR = j4|πR− , (4.62)

where Eq. (4.4) is also invoked. On the other side, the current j4 is odd under any type
of Z2 transformation (4.9)-(4.12) as can be shown in a similar way as in Eq. (4.38):

j4
∣∣∣
−πR+

= − j4
∣∣∣
πR−

. (4.63)
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Combining Eq. (4.62) with Eq. (4.63) leads to,

j4|πR− = j4|πR = j4|−πR+ = 0 ,

so that, using Eq. (4.39) and (4.60), we get the relation (inducing EBC),

j4
∣∣∣
πR

= iα
(
Q†

LQR −Q†
RQL +D†

LDR −D†
RDL

)∣∣∣
πR

= 0 , (4.64)

and its variation (for a non-trivial transformation with α ̸= 0),(
δQ†

LQR +Q†
LδQR − δQ†

RQL −Q†
RδQL (4.65)

+ δD†
LDR +D†

LδDR − δD†
RDL −D†

RδDL

)∣∣∣
πR

= 0 .

At this level, we can consider the search for field solutions of vanishing Eq. (4.54) and
Eq. (4.64)-(4.65) first on the domain, y ∈ [0, πR], which is equivalent to the search per-
formed for the interval model in Section 3.6.2, L↔ πR. Thus, we can directly apply the
conclusion in Section 3.6.2 and claim that there exists no SM-like consistent solution for
the fields (over y ∈ [0, πR]). As a conclusion, the introduction of EBC does not constitute
the correct approach towards the treatment of point-like Yukawa interactions at a fixed
point of the S1/Z2 orbifold. Regarding the bulk fermion probability currents, both the
cases of a j4 jump and a j4 continuity at the Yukawa coupling location y = πR, lead to
inconsistent field solutions so that, at this stage of the study, there exists no theoretical
proof of the j4 continuity – and via Eq. (4.63) of its vanishing – at this fixed point.

4.5.3 Introducing the BBT

In order to get meaningful field solutions in the presence of brane-localized Yukawa
couplings at the fixed point y = πR, let us finally try the introduction of the SM-like
BBT (4.18) as in the free case described in Section 4.3.3 or as in the interval model in
Section 3.6.3. We thus consider here the same action as in Eq. (4.53)-(4.59) but adding
now the BBT at y = πR:

Sbulk + SX + SB .

Using Eq. (4.46) and Eq. (4.54), we find the following action variations with respect to Q̄
and D̄:

δQ̄(Sbulk + SX + SB) =
∫
d4x

{(∫ 0−

−πR+
+
∫ πR

0

)
dy δQ̄ iΓM∂MQ+[

−2 δQ†
L

(
QR + X

2 DR

)
−X ′δQ†

RDL

]∣∣∣∣
πR

+ 2
(
δQ†

LQR

)∣∣∣
0

}
,

δD̄(Sbulk + SX + SB) =
∫
d4x

{(∫ 0−

−πR+
+
∫ πR

0

)
dy δD̄ iΓM∂MD+[

−X ′∗δD†
LQR + 2 δD†

R

(
DL −

X∗

2 QL

)]∣∣∣∣
πR
− 2

(
δD†

RDL

)∣∣∣
0

}
.

The individual vanishing of those volume and surface terms, due to the action minimisa-
tion, leads to the EOM (4.26) and the following NBC,

(
QR + X

2 DR

)∣∣∣∣
πR

= 0 , X ′∗ QR|πR = 0 , QR|0 = 0 ,

X ′ DL|πR = 0 ,
(
DL −

X∗

2 QL

)∣∣∣∣
πR

= 0 , DL|0 = 0 ,
(4.66)
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which differ from the NBC (4.55) obtained without the BBT. As before, given the continu-
ity region defined by Eq. (4.4), we can start by considering the search for profile solutions
of 5D EOM (4.26) and 5D NBC (4.66) on the domain y ∈ [0, πR], being equivalent to
the search performed for the interval scenario (with the BBT) in Section 3.6.3 after two
substitutions,

L↔ πR and X ↔ X

2 ,

which have been proposed in Section 4.4. The 4D field solutions in the mixed KK de-
composition (4.56) obey the known Dirac-Weyl equations (1.25). Note that the factor
1/2 difference at the same places in NBC (4.66), compared to the interval NBC (3.87),
comes from the existence of double numbers of surface terms (at y = 0, 0− and y = πR,
−πR+) – like in Section 4.5.1 – and leads to the factor 1/2 in the final mass spectrum
relations (4.70)-(4.71) through a re-normalization of the X parameter as X/2. Besides,
the necessary ortho-normalization condition (4.57) can be rewritten on the domain [0, πR]
only, as [the subscript C stands for L or R],

δnm = 1
πR

∫ πR

0
dy [qn∗

C (y)qm
C (y) + dn∗

C (y)dm
C (y)] , (4.67)

thanks to the change of variable, y′ = −y, the fixed profile parities (4.58)-(4.32) and the
continuity relations (4.4):∫ 0−

−πR+
dy [qn∗

C (y)qm
C (y) + dn∗

C (y)dm
C (y)] =

∫ πR−

0+
dy′ [qn∗

C (−y′)qm
C (−y′) + dn∗

C (−y′)dm
C (−y′)

]
=
∫ πR−

0+
dy′ [qn∗

C (y′)qm
C (y′) + dn∗

C (y′)dm
C (y′)

]
=
∫ πR

0
dy [qn∗

C (y)qm
C (y) + dn∗

C (y)dm
C (y)] ,

recovering thus exactly and conveniently the interval condition, if L = πR. Nevertheless,
the dimensional wave functions [ 1√

2πR
fn

L/R(y)] (4.56) in the orbifold are identical with
that (3.50) in the interval framework only up to an additional normalization factor (1/

√
2)

here, due to the double compact space size. Therefore, here we can finally apply the results
in Section 3.6.3 so that

X ′ = 0 ,
leading to the new Yukawa coupling (X) dependent BC [denoted as (×) at the brane
located at y = πR]: 

(
QR + X

2 DR

)∣∣∣∣
πR

= 0 , QR|0 = 0 ,(
DL −

X∗

2 QL

)∣∣∣∣
πR

= 0 , DL|0 = 0 .
(4.68)

Referring to the SM-like consistent profile solutions in the free case in Eq. (3.89) over
y ∈ [0, πR], we obtain the dimensionless profiles,

∀n ∈ N ,

 (+×) : qn
L(y) = An

q cos(Mn y) , (−×) : qn
R(y) = −An

q sin(Mn y) ,

(−×) : dn
L(y) = An

d sin(Mn y) , (+×) : dn
R(y) = An

d cos(Mn y) ,
(4.69)

for the two classes of real mass spectrum solutions (αn
0 ∈ R),

I : tan(Mn L) =
∣∣∣∣X2
∣∣∣∣ ⇒ An

q = ei(αn
0 +αY ) , An

d = eiαn
0 , (4.70)

II : tan(Mn L) = −
∣∣∣∣X2
∣∣∣∣ ⇒ An

q = ei(αn
0 +αY ±π) , An

d = eiαn
0 , (4.71)
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and for the absolute values of the fermion masses [based on Eq. (3.47)],

|Mn| =
1
πR

∣∣∣∣ arctan
∣∣∣∣X2
∣∣∣∣+ (−1)n ñ(n)π

∣∣∣∣ . (4.72)

Note that the sign of Mn is not physical as demonstrated in Section 3.6.3 via the transfor-
mation in Eq. (3.95). At this stage, the part of the profile solutions on the complementary
region, y ∈ [−πR+, 0−], is deduced through the four types of Z2 transformations (4.58)-
(4.32). Hence, the Mn spectrum entering the profile solutions in both regions, [0, πR] and
[−πR+, 0−], is the same.

As a first conclusion, the introduction of the BBT allows to obtain realistic fermion
wave functions and consistent mass eigenvalues. The absolute mass spectrum obtained
within the 5D approach in Eq. (4.72) is analytically matching the one derived via the
4D method in Eq. (4.52) for a real Yukawa coupling constant: this feature represents
a non-trivial confirmation of the present exact results. In particular, the absence of X ′

parameter in the fermion 4D mass matrix M, described below Eq. (4.49), is interestingly
recovered through the mass independence from X ′, issued from the 5D NBC (4.68).

Regarding the probability current, the component j4|πR at the Yukawa brane is still
given by Eq. (4.64) since the BBT do not affect it, as explained at the end of Section 4.3.3.
The relations found in the first line of the NBC (4.66), injected once into each term of this
current component expression, give rise to,

j4|πR = 0 .

The BBT are thus found to induce NBC leading to a vanishing current component along
the extra dimension at the fixed points of the orbifold, with (present section) or without
(cf. Section 4.3.3) a brane-localized Yukawa coupling, and in turn to a continuous current
component along the extra dimension at those points given the odd parities, demonstrated
in Eq. (4.63) or (4.38) respectively.

Z2

Fields
Continuity QL/R DL/R

domains
qn

L(y)/(±ei(αn
0 +αY )) qn

R(y)/(±ei(αn
0 +αY )) dn

L(y)/eiαn
0 dn

R(y)/eiαn
0

[0, πR] Any cos(Mn y) − sin(Mn y) sin(Mn y) cos(Mn y)

[−πR+, 0−]

I cos(Mn y) − sin(Mn y) sin(Mn y) cos(Mn y)
II − cos(Mn y) sin(Mn y) − sin(Mn y) − cos(Mn y)
III cos(Mn y) − sin(Mn y) − sin(Mn y) − cos(Mn y)
IV − cos(Mn y) sin(Mn y) sin(Mn y) cos(Mn y)

KK Masses |Mn| = |arctan |X/2 |+ (−1)n ñ(n)π| /πR, n ∈ N

Table 4.3 – SM-like coupled fermion profiles on the two orbifold continuity domains
[−πR+, 0−] and [0, πR], corresponding to the solutions (4.69), (4.70)-(4.71), together with
the associated absolute mass spectrum (4.72) for completeness. The profiles are given for
the four types of Z2 transformations (4.58)-(4.32).

In Table 4.3 are exhibited the explicit profile functions over the entire orbifold domain
for the SM-like solutions (4.69), (4.70)-(4.71), (4.72). We can see in this table that the
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choice of type of Z2 transformation is purely a convention because it can modify the profile
signs but without any effect on the mass spectrum.

In Figure 4.4, we illustrate a set of excitation profiles, obeying the Z2 transformations
of types I and II in Eq. (4.58)-(4.32), for the found solutions, which are explicitly presented
in Table 4.3, within the simplified real case, αY = αn

0 = 0. We observe in this figure that
all the wave function values at the Yukawa-brane (at the fixed point, y = πR) are modified
due to the presence of this coupling. For example, under the Type I of Z2 transformation,
the profile values dn

L(πR) = dn
L(πR−) are shifted from zero as well as from dn

L(−πR+),
in contrast to the free case shown in Figure 4.3. This shift creates profile jumps whose
amplitude is depending on the Yukawa coupling constant through the X parameter [BC
(×) in Eq. (4.68)]. The presence of new possible profile discontinuities justifies once
more mathematically the prescriptions about the field continuities and action integration
domains introduced in Section 4.2.1.
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Figure 4.4 – Zero-mode and excitation wave functions qn
L/R(y), dn

L/R(y), with n = 0, 1, 2,
along the S1/Z2 orbifold domain, y ∈ [−πR+, 0−]∪ [0, πR], corresponding to the Yukawa-
coupled solutions (4.70), presented in Table 4.3, for the simplified case, αY = αn

0 = 0, and
the two different types of Z2 transformations, I, II from Eq. (4.58)-(4.32). The two fixed
points at, y = 0, y = πR ≡ −πR, the BC, (−)/(+)/(×), the BBT and Yukawa coupling
brane-locations are indicated on the graph.

Finally, let us calculate, still without any kind of Higgs field regularisation, the 4D
effective Yukawa coupling constants [defined in Eq. (3.96)] between the mass eigenstates
ψn

L(xµ) and ψm
R (xµ) as generated by the insertion of decompositions (4.56) into Eq. (4.17),
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based on the obtained profile expressions (4.69), (4.70)-(4.71), (4.72):

ynm =̂ Y5

2
√

2πR
qn∗

L (πR) dm
R (πR)

= ± |Y5|
2
√

2πR
ei(αm

0 −αn
0 ) cos(Mn πR) cos(Mm πR)

= ±(−1)ñ(n)+ñ(m) ei(αm
0 −αn

0 ) |Y5|
2
√

2πR(1 + |X/2|2)
, (4.73)

where we have used the trigonometric identity [inserted in Eq. (3.97)] to get the last
equality. Note that the modulus of the 4D effective Yukawa couplings reads

|ynm| =
|Y5|

2
√

2πR(1 + |X/2|2)
, (4.74)

which is independent of the KK mixing indexes nm. In the decoupling limit of extremely
heavy KK modes, R → 0, we can then write the modulus of the lightest mode coupling
constant, using Eq. (4.15)-(3.15), as,

|y00| →
R→0

|Y5|
2
√

2πR
= |y4|√

2
, (4.75)

and the absolute mass eigenvalue of the lightest eigenstates as [from Eq. (4.72)],

|M0| →
R→0

|X|
2πR = v|Y5|

2
√

2πR
→

R→0
v |y00| , (4.76)

so that the SM fermion setup – for the assumed single family – is recovered as expected
from the decoupling condition. Besides, we can conclude that the choice of type of Z2
transformation among Eq. (4.58)-(4.32) affects neither the profile values taken at the
point y = πR – see Table 4.3 – nor their global ortho-normalization condition (4.57) – as
described right below Eq. (4.67) – so that the 4D effective Yukawa coupling constants (4.73)
are insensitive as well to this Z2 representation choice.

4.6 The Inclusive Z2 Parity
Let us study the alternative scenario whose definition is based on the Z2 transformation

of 5D fields extended to include the two fixed points at y = 0 and y = πR:

Φ(xµ,−y) = T Φ(xµ, y) , ∀y ∈ (−πR, πR] , (4.77)

in contrast with Eq. (4.1). This generic transformation still lets the Lagrangian density
invariant, exactly like in Eq. (4.2). At the two fixed points, this Lagrangian invariance
is once more automatically satisfied without the need for any specific T transformation.
Accordingly to the simple Eq. (4.77), the operator T for the fixed points is the same as
the non-trivial one which must let the Lagrangian invariant in the bulk. Let us consider
in particular the realistic Z2 transformation leading to the SM chirality setup: it is the
bulk transformation in Eq. (4.9), defined now over the same range as in Eq. (4.77), which
keeps well Lkin invariant in the bulk according to Eq. (4.2):

∀y ∈ (−πR, πR] ,

 Q (xµ,−y) = −γ5Q (xµ, y) ,

D (xµ,−y) = γ5D (xµ, y) .
(4.78)
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Focusing on the fixed points at y = 0 and y = πR ≡ −πR, we obtain the four non-trivial
relations  Q (xµ, 0) = −γ5Q (xµ, 0) ⇒ QR|0 = − QR|0 = 0 ,

D (xµ, 0) = γ5D (xµ, 0) ⇒ DL|0 = − DL|0 = 0 , Q (xµ, πR) = −γ5Q (xµ, πR) ⇒ QR|πR = − QR|πR = 0 ,

D (xµ, πR) = γ5D (xµ, πR) ⇒ DL|πR = − DL|πR = 0 ,
[EBC′] (4.79)

representing the new EBC that we denote EBC’ to distinguish them from those in Eq. (4.40).
In the free case, Section 4.3.1 has shown that the EBC(’) or the BBT must be con-

sidered. Starting with the EBC(’), in analogy to Section 4.3.2, the fixed Z2 transforma-
tions (4.78) in the bulk lead to the EBC (4.40) while the Z2 transformations (4.79) at the
fixed points lead to the EBC’. Those EBC’ select one general BC set among these four
EBC sets for the 5D field Q, and same statement for D: the sets corresponding to the
chiral solution of line 1 (2) in Eq. (4.41) for the field D (Q), namely the SM-like chirality
configuration. Finally, the complete profile solutions over the whole orbifold domain are
found out as before via the bulk Z2 transformations (4.78).

Alternatively, the selected consistent BBT (4.18) can be included like in Section 4.3.3 to
obtain the same SM-like solutions. The corresponding EBC’ (4.79), part of the EBC (4.40)
and required by the model, are checked to be satisfied afterwards, as consequences.

Once the free profiles are worked out as described right above – either through the
EBC(’) or the BBT – we can apply the 4D method prescription in Section 4.4, based on
infinite matrix bi-diagonalization, in order to derive the mass spectrum in the presence
of brane-localized Yukawa couplings. Even the 4D effective Yukawa coupling constants
can be calculated in this way: the above EBC’ selection of a specific chirality setup and
mass spectrum for the free fields would affect as well these effective coupling constants,
for instance via the KK mass mixings.

In contrast, we need to emphasize that the analysis of point-like Yukawa interactions
cannot be achieved via the 5D approach within the present inclusive Z2 symmetry model.

First, motivated by Section 4.5.1, the essential boundary conditions can be classified
into the EBC coming directly from the vanishing probability currents – indirectly from the
fixed Z2 transformations (4.78) in the bulk – discussed in Section 4.5.2 and the EBC’ (4.79).
These EBC’ combined with the surface terms at y = πR in Eq. (4.54), including the
Yukawa terms, give rise to the BC of type (4.55). Considering non-vanishing Yukawa
coupling constant X ̸= 0, all the fields are forced to vanish at y = 0, πR. Hence, the
resulting mass spectrum looses its dependence on the Yukawa coupling constant 14 which
conflicts with the decoupling limit argument [see Eq. (4.76)].

Secondly, the BBT (4.18) could be added like in Section 4.5.3 to try obtaining SM-
like solutions. However the EBC’ (4.79), expected to be recovered afterwards, are not
compatible with the resulting BC (4.69) together with the spectrum equations (4.70)-
(4.71).

4.7 Result Analysis

14. Actually, the independence of the Yukawa coupling constants can be concluded from the EBC’ (4.79)
directly via QR (or DL) since both of its EOM and BC are Yukawa independent.
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4.7.1 The Higher-Dimensional Method

The present study confirms the general methodology depicted in Figure 3.4 presented in
Section 3.7. Within the present model, the probability current condition on this schematic
description is the vanishing of fermion currents (4.39) at the two fixed points, issued from
Z2 symmetry criteria and inducing the EBC (4.40). For the interval model, the vanishing
current condition is a direct implication of the existence of boundaries for the matter fields.
This current vanishing holds both in the presence and absence of brane-localized Yukawa
couplings.

In the framework of the orbifold version described in Section 4.6, the additional field
condition (4.79), coming from the Z2 symmetry at the fixed points, accompanies the
definition of the Z2 symmetry of the bulk action and leads to the new EBC’ (4.79).

4.7.2 Discussion of the Action Content

In addition to the information contained in the action (4.5)-(4.21), the present orbifold
model is defined in a complementary way by other elements like:

(i) The S1 junction point at y = πR ≡ −πR.
(ii) The choices of Z2 transformations for the fields in the bulk [see Eq. (4.9)-(4.12)] and

possibly at the fixed points [cf. Eq. (4.79)].
(iii) The EBC (4.40) imposed by the model definition when those are used instead of the

BBT. Table 4.4 summarizes the obtained cases where the EBC and the BBT can be
used. This table is identical to the one 3.1 obtained in the interval model study (see
Section 3.7).

No boundary Vanishing current Bilinear brane
characteristic condition [EBC] terms [NBC]

4D approach (Impossible) BC (±) BC (±)

5D approach (Impossible) (Impossible) BC (×)

Table 4.4 – Types of boundary conditions for the bulk fermions at an orbifold fixed point
where their interactions with the Higgs boson locate, in different brane treatments: pres-
ence of BBT, vanishing of probability current or nothing specific. The 4D line holds as
well for the 5D approach of the free brane. As usually, the Dirichlet BC are noted (−),
the Neumann BC (+) and we denote (×) the new BC depending on the Yukawa coupling
constant [corresponding to Eq. (4.69) taken at y = πR].

4.8 About the Orbifold/Interval Duality

The present S1/Z2 orbifold model and the [0, L] interval scenario studied in Chapter 3
are physically different in two crucial aspects:

(i) Geometrical setups;
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(ii) Lagrangian symmetries.
Nevertheless, the respective theoretical predictions for the observables like the (brane-
coupled) fermion mass spectra and 4D effective Yukawa coupling constants are identical
up to factors [2], which may be called a duality. Indeed, for a comparable dimension size
L = πR, although the mass absolute values (4.72) involve a new factor 1/2 in front of
X, with respect to the interval analytical result (3.91), the measurable range of values
for |Mn| is of the same order and the precise limits of this range rely on the approximate
perturbative limits of the 4D effective Yukawa coupling constants proportional to y4 (4.15)
[see Section 4.2.4 and Eq. (4.73)-(4.76)]. Besides, the dependence of the analytical mass
formula on the Lagrangian parameters is identical in the two models, up to this factor 1/2
entering the coupling constant definition, as can be seen from Eq. (4.72) and Section 4.2.4
– including the free limiting case X → 0. Similar comments hold for the 4D effective
Yukawa coupling constants (4.73) which have additional factors 1/2 in front of X and as
an overall factor (latter one induced by ortho-normalization considerations), with respect
to the interval case.

The orbifold version of Section 4.6 contains additional information at the fixed point
branes. It predicts thus a specific chirality configuration and mass spectrum [among
chiral or vector-like solutions respectively of type (4.41)-(4.42)] so that it is not dual to
the interval model.

Coming back to the case of duality, there exist similarities between the orbifold and
interval models, as it appeared throughout this work when solving the EOM and the
(N,E)BC to find out the fields. Let us now comment on the similarities at the Lagrangian
level. First, the BBT (4.18) have the same form as in the interval framework (3.4) and the
different factor 2 is related to the double size of the compactified space for the identification,
L = πR.

In the global action (4.5), Sbulk remains to be discussed, the other parts being identical
in the orbifold and interval models. Thanks to the orbifold property – Z2 Lagrangian
symmetry (4.2), the change of variable y′ = −y, allows the following rewriting of the bulk
action (4.6),

Sbulk =
∫
d4x

{∫ 0−

−πR+
dy Lkin(y) +

∫ πR

0
dy Lkin(y)

}

=
∫
d4x

{∫ πR−

0+
dy′ Lkin(y′) +

∫ πR

0
dy Lkin(y)

}

= 2×
∫
d4x

∫ πR

0
dy Lkin(y) , (4.80)

where the last step is based on the continuity condition in Eq. (4.4). Therefore, using the
relevant dimension identification L = πR, we can express the orbifold action (4.5)-(4.21)
in terms of the interval action pieces (3.17)-(3.18) (indicated by the L exponent):

S5D = 2SL
bulk + S

(L)
H + S

(L)
X + S

(L)
hQD + 2SL

B

= 2
{
SL

bulk + 1
2
[
S

(L)
X + S

(L)
hQD

]
+ SL

B

}
+ S

(L)
H

= 2
{
SL

bulk + S
(L)
X/2 + S

(L)
hQD|Y5/2 + SL

B

}
+ S

(L)
H . (4.81)

This re-expression reveals an alternative method to derive the fermion masses and cou-
plings, which are independent from the pure scalar part, namely S

(L)
H . The idea is that,

within the orbifold model now described by the action (4.81) importantly together with

108



the description of the Z2 symmetry over S1, we can first search for the field parts along
the limited domain [0, πR]. This search is in fact based on the action [SL

bulk + S
(L)
X/2 +

S
(L)
hQD|Y5/2 + SL

B], since the overall factor 2 in Eq. (4.81) affects neither the EOM (global
factor) nor the BC (same factor in front of the surface terms and pure brane terms com-
bined into BC) 15, and is in turn strictly equivalent to solving the interval model. Given
this action, the solutions can be obtained for the 4D masses in Eq. (3.91) (and 4D effective
Yukawa coupling constants from profile overlaps with the Higgs boson peak at y = πR in
Eq. (3.97)), but involving a re-normalized coupling parameter X/2. The last stage of this
technique is the extension of the obtained profiles over the complete orbifold domain via
the Z2 transformations, before applying the ortho-normalization condition. The 4D effec-
tive Yukawa coupling constants are then changed by an additional factor 1/2, as is clear
from the wave function normalization forms (4.57)-(4.67), which confirms the result (4.73).
On the other side, we see as well that the fermion masses so obtained (unchanged by the
spatial domain extension) involve only a new normalised parameter X/2, with respect to
Eq. (3.91), which confirms the found spectrum (4.72).

Beyond these action correspondences, there are other elegant similarities. For example,
as illustrated by Figure 3.4, both the interval and orbifold scenarios lead to the same
vanishing probability current conditions at the two branes (and hence to identical EBC);
those current conditions come, respectively, directly from the interval boundary criteria
and indirectly from Z2 symmetry considerations. Besides, Table 4.4 shows that the same
treatments of the two branes, at the fixed points or interval boundaries, must be adopted
in identical situations and that the same BC are generated.

Finally, let us propose an intuitive description for understanding the orbifold versus
interval model duality. The obtained wave functions for the bulk fermions on the interval
are of the kind cos(Mn y) ∝ (eiMn y + e−iMn y), coming in factor (via the KK decompo-
sition) of the energy coefficients e±iE t in the 4D Dirac fields, which gives rise to wave
planes propagating in both y-directions of the interval with momenta ±pn = ±Mn – as
for oscillations left-moving and right-moving along opposite directions in the world-sheet
parameter space of strings. The associated particle, going in the direction L→ 0 and then
coming back along 0 → L, reproduces the propagation along S1, following consecutively
the two fundamental domains −πR→ 0− and 0+ → πR of the orbifold (effectively equiv-
alent orientations of the circle in the bulk so a unique propagation direction chosen along
it): exactly the same L [Φ(xµ, y)] Lagrangian evolution is felt by this particle during those
dual travelings along the extra y-dimension, in the two different models, as is clear from
the Lagrangian Z2 symmetry depicted in the drawing 4.2.

4.9 Conclusions

In the study of the S1/Z2 orbifold, the proper action definition through improper
integrals has allowed to obtain consistent bulk profile solutions with possible discontinuities
at the fixed points. In particular the point-like interaction of Yukawa creates a profile
jump.

These solutions have been obtained without brane-Higgs regularization, by relying on
the necessary EBC, coming from vanishing fermion probability currents, or alternatively
on the introduction of BBT in the action. The associated calculations have been confirmed
by the matching between the 4D and the 5D approaches of the analytical results for the

15. This search could also be constrained by vanishing currents at y = 0, πR instead of the SL
B presence,

in the free case, as shown in Sections 4.3.2 and 4.5.2.
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fermion mass spectrum and 4D effective Yukawa coupling constants.
The orbifold version, with Z2 transformations of the fields extended to the fixed points,

was shown to be able to generate the chiral nature of the theory and even to select the
expected SM chirality configuration for the 4D states.

The duality between the interval and orbifold scenarios has been deeply described. It
has also constituted the opportunity to point out an alternative method for calculating
the tower of excitation masses and 4D Yukawa couplings.
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Chapter 5

Distribution Formalism for the
S1/Z2 Orbifold

This chapter is based on a work in progress in collaboration with Grégory MOREAU
and Florian NORTIER.

5.1 Introduction

The field treatments in the S1/Z2 orbifold model, with a brane-localized Higgs field,
have been precisely described in Chapter 4 without any brane-Higgs regularization (see
Section 3.5.2). In particular, the focus was put on the treatment of possible field jumps
at fixed points, via the introduction of improper integrals, as well as on the necessity
of fermionic bilinear brane terms: the so-called BBT. We emphasize that the fields were
mathematically described there, as usual, as spacetime functions. In this chapter, we
attempt to find an alternative rigorous treatment of such an orbifold model, also motivated
by the presence of a Dirac peak localizing the Yukawa interactions.

Recall that the Dirac peak also appears frequently in quantum field theory. In the early
1950s, Arthur Wightman attempted to develop a mathematically rigorous formulation of
quantum field theory with one crucial mission to treat properly the Dirac peak [162]
(see Section 5.2). Motivated by Wightman’s prescription (without anymore brane-Higgs
regularization in this chapter), we reformulate the function formalism of Chapter 4 through
a new rigorous formalism based on fields as distributions 1 (further distinguished from the
regularized Dirac peak function (3.63) of Section 3.5).

Moreover, this re-expression procedure towards the language of distributions allows
the automatic appearance of the BBT. Concretely, we define the Lagrangian density via
regular and Dirac distributions for an introduction to the theory of distributions, which
act on test functions whose supports are included in the compactified geometry S1 [see
Appendix H]. We use the distribution theory to re-define the partial derivatives ∂y in the
bulk kinetic terms as weak derivatives for the discontinuous odd fields. Indeed, the fields
can be even (odd) with respect to each fixed point, and the branes at the fixed points
are not boundaries of the covering space S1 so that we have to discuss if the fields are
continuous or discontinuous across the branes. Then, the BBT [identical to the ones from
the function formalism in Eq. (4.18)] turn out to originate spontaneously from these weak
partial derivatives of the odd discontinuous fields at the fixed points. It is important to

1. See Refs. [115, 116] for an introduction to the theory of distributions by L. Schwartz and an appli-
cation to quantum mechanics.
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understand here that the BBT are not added by hand to the orbifold S1/Z2 description
but come from those weak partial derivatives.

The consistency of the distribution formalism will be confirmed by the exact recovering
of the Lagrangian density, expressed in terms of the fields as simple spacetime functions,
and hence then of the fermion profile solutions as well as the analytical results for the
fermion mass spectrum and 4D effective Yukawa coupling constants. Nevertheless, some
conventions about the orbifold parity differ: in contrast to the function formalism in
Chapter 4, it turns out that each Z2 transformation of the fields will be shown to fix
the chirality configuration. Thus, the Z2 symmetry can generate the chiral nature of the
theory and the SM chirality setup by itself, in the decoupling limit. This origin for the
chirality configuration is not generated within the function prescription. Mathematically,
we will have to build rigorously the five-dimensional models by introducing the Kurasov’s
distributions for the bulk fermions in order to handle boundary-localized interactions at
the fixed points possibly inducing profile jumps.

This chapter is organized as follows. After having briefly recalled the basics of the
Wightman’s distribution theory, we describe the minimal model in Section 5.3. Then, the
treatment of the free case is presented in Section 5.4.1 before a 4D and a 5D approach of the
Yukawa case is exposed. An overview is provided in Section 5.6 and a brief description of
the relationship with the well-described function treatment [in Chapter 4] is summarized in
Section 5.7. To discuss the comparison with the function formalism, the specific inclusive
Z2 transformation studied in Section 4.6 is also used.

5.2 Wightman’s Distribution Theory
In order to improve the annoying treat the Dirac peak, Arthur Wightman promoted

the quantized free field to a so-called Wightman field
{
ϕ̂
}

– an operator-valued tempered

distribution, satisfying the Wightman Axioms [162]. The smeared field
{
ϕ̂
}

[f ] 2

∀ f ∈ S(R4) ,
{
ϕ̂
}

[f ] =̂
∫
d4x ϕ̂(x)f(x) , (5.1)

is a well-defined operator on a domain in Fock space and f ∈ S(R4) is a test function. Thus,
any product of such

{
ϕ̂
}

[f ] would get an operator. Moreover, causality is guaranteed by

the commute condition
{
ϕ̂
}

[f ]
{
ϕ̂
}

[g] =
{
ϕ̂
}

[g]
{
ϕ̂
}

[f ] if supp f is space-like to supp g 3.

Wightman also postulated
{
ϕ̂
}

[f ] is symmetric on its dense domain D in the Hilbert
space of states, i.e.

∀Φ, Ψ ∈ D , ⟨Ψ|
{
ϕ̂
}

[f ]Φ⟩ = ⟨
{
ϕ̂
}

[f ]Ψ|Φ⟩ .

Based on the Schwartz’s nuclear theorem, the n-point Wightman distribution W̃n ∈ S ′(R4×
R4 · · ·×R4) [mapping n test functions to a complex number] is defined through the vacuum
expectation value for the Wightman vacuum (Ω ∈ D),

W̃n[f(x1, x2, ... , xn)] =̂ ⟨Ω|
{
ϕ̂
}

[f1]
{
ϕ̂
}

[f2] · · ·
{
ϕ̂
}

[fn]Ω⟩ , (5.2)

2. The space S(R4) consists of infinitely differentiable real functions of four variables, which go to zero
at infinite infinitely faster than any power of Euclidean distance, which is also furnished with furnished by
Schwartz [115, 116].

3. The support of function f is defined by supp f =̂
{

xµ ∈ R4
∣∣ f(x) ̸= 0

}
.
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where f(x1, x2, ... , xn) ∈ S(R4 × R4 · · · ×R4) is defined by

f(x1, x2, ... , xn) =̂ (f1 ⊗ f2 ⊗ · · · ⊗ fn) (x1, x2, ... , xn) = f1(x1)f2(x2) · · · fn(xn) .

Then, invoking the canonical quantized n-point correlation function Gn(x1, x2, ... , xn) of
the standard quantum field theory, the Wightman distribution (5.2) (W̃n assumed to be
a regular distribution) can be rewritten as,

W̃n[f(x1, ... , xn)] =
∫
d4x1 · · · d4xn Gn(x1, ... , xn)f1(x1) · · · fn(xn) . (5.3)

Even if Gn(x1, ... , xn) is singular (like a Dirac peak), W̃n[f(x1, ... , xn)] still has a rigor-
ous definition but W̃n would be instead a singular distribution. Eq. (5.3) can thus be
used as a new definition – via the unique correspondance between the f functions and
W̃n[f(x1, ... , xn)] – of the Green function, a general rigorous definition: the interest of this
formalism.

Similarly, we will develop a distribution formalism to treat discontinuous fields on a
compact space. Compared with Wightman’s field in Eq. (5.1), the kinetic Lagrangian
L̃kin (xµ) of Eq. (5.8) will be defined as a (not operator-valued) distribution acting on
certain test functions along S1, as will be described precisely in Section 5.3.1.

5.3 Minimal S1/Z2 Consistent Model

5.3.1 Geometry and the Proper Action via Distribution Formalism

We consider the 5D spacetime structure via the product geometry M4 × S1/Z2 ex-
plicitly described in Section 4.2.1, which is labeled by the coordinates, xM =̂ (xµ, y),
M ∈ J0, 4K where the Lorentz index xµ , µ ∈ J0, 3K represents the usual 4D Minkowski
spacetime manifold whose coordinates and the circle S1 is characterized by the coordinate
y ∈ (−πR, πR] with a radius R in Figure 4.2.

As we urged in Chapter 4, possible field jumps at the points y = 0, πR must be taken
into account. Thus, we maintain the left/right continuity of a generic profile at y = 0, πR
conventionally defined in Eq. (4.4) and we consider a 5D field noted generically Φ(xµ, y)
being piece-wise smooth along the extra dimension. Hence the Kurasov’s distributions
must be introduced, instead of the Schwartz’s distribution theory whose regular distri-
butions rely exclusively on continuous functions. Along these lines, we also configure
test K-functions (H.57) rather than test S-functions (H.16) of the Schwartz’s distribution
theory (cf. Appendix H.2) which just manipulates smooth test functions. The math-
ematical properties of the function associated to a regular K-distribution or of a test
K-function (H.57) (cf. Appendix H.4) read as,

∀xµ ∈M4 , Φ(xµ, y) ∈ C∞([−πR+, 0−] ∪ [0, πR],C) = K(S1,C) , (5.4)

where K(S1,C) is the test K-function space defined in Eq. (H.57). Φ can be embedded
into a continuous linear functional Φ̃ ∈ K ′(S1,C) on the test K-function space K(S1,C),
i.e. a regular K-distribution on S1 [see Eq. (H.58)], which will play a crucial role for the
Lagrangian building.

Then, in contrast to the function formalism in Section 4.2.1 where the bulk action is
decomposed via improper integrals over [−πR+, 0−]∪ [0, πR], here the well-defined global
action of this model should be written as a sum of bulk terms and some brane terms,

S5D = SD
bulk + SD

branes , (5.5)
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which has an identical generic formula as in the function formalism [see Eq. (4.5)]. How-
ever, the 4D effective Lagrangian density is constituted by a K-distribution acting on a
constant test K-function φ(y) ≡ 1 ∈ K(S1,C),

SD
bulk =̂

∫
d4x L̃bulk (xµ) [1] , (5.6)

where the K-distribution L̃bulk (xµ) reads 4,

∀xµ ∈M4 , L̃bulk (xµ) : K(S1,C)→ C ,

φ 7→ L̃bulk (xµ) [φ] ,

so that the 4D Lagrangian density function L̃bulk (xµ) [1] on xµ ∈M4 5 is the result of the
K-distribution L̃bulk (xµ) acting on the constant test K-function φ(y) ≡ 1 ∈ K(S1,C) on
the extra spatial dimension S1. In this chapter, we only consider bulk massless fermions,
so the bulk terms only consist of kinetic terms as

L̃bulk = L̃kin . (5.7)

Note that in contrast to the treatment in the function formalism in Chapter 4.2.1 where
we have to operate on the profile functions directly, here we focus on the K-distributions
where all fields considered are embedded, which would also provide additional information
at the brane,

L̃kin (xµ) [1] =
(∫ 0−

−πR+
+
∫ πR

0

)
dy Lkin (xµ, y) + Lkin

B (xµ) , (5.8)

where Lkin (xµ, y) is the kinetic function induced by the K-distribution L̃bulk (xµ), which
will fulfill the Z2 symmetry condition in Eq. (4.2). Lkin

B will turn out to the brane terms
– BBT, derived from the weak derivative in L̃kin (xµ), which would be described in Sec-
tion 5.3.2 precisely.

SD
branes represents action terms located at the orbifold fixed points, which for instance

exclusively involves Lagrangians with the Dirac K-distribution δπR[φ] (H.72) (e.g. the
brane-localized Yukawa interactions (5.26) in Section 5.3.4) taken at the fixed point y =
πR.

Finally, the Lagrangian densities of the whole expression (5.5) will respect the Z2 parity
symmetry in the sense of induced functions of the 5D Lagrangian density and 5D fields
[see Eq. (4.1)-(4.2)].

5.3.2 Bulk Fermion Fields

To keep consistent with the function formalism in Section 4.2.2 and write down a
SM Yukawa-like coupling, we introduce a pair of bulk 5D fermion fields Q(xµ, y) and
D(xµ, y) – of mass dimension 2 – as the minimal spin-1/2 field content, which will represent
respectively the SU(2)L gauge doublet down-component quark and the singlet down-quark
respectively. Note that

∀xµ ∈M4 , Q(xµ, y), D(xµ, y) ∈ K(S1,C) ,

4. L̃bulk (xµ) [φ] ∈ L1 (M4) =̂
{

L : M4 → C |
∫

d4x |L (xµ)| < ∞
}

, the Lebesgue integration on the
4D Minkowski spacetime.

5. Another part of the complete 4D effective Lagrangian density should be generated from SD
branes in

Eq. (5.5).
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so that after the chiral decomposition in Eq. (1.17), we define the regular K-distributions
Q̃L/R (xµ) , D̃L/R (xµ) associated to the 5D fields QL/R(xµ, y) and DL/R(xµ, y) which have
the following kinetic terms with the weak derivatives (cf. Appendix H.4.2) in the distri-
bution formula [entering Eq. (5.6)]:

L̃kin (xµ) =
∑

F =Q,D

i

2
˜̄FΓM←→∂M F̃ , (5.9)

using the same standard notations in the function formalism [see Eq. (1.16)] that
←→
∂M =

−→
∂M −

←−
∂M , ∂M = ∂/∂xM , xM = (xµ, y) with M ∈ J0, 4K for the coordinates xM ∈ M4 ×

S1/Z2 and ΓM for the 5D Dirac matrices (cf. Appendix A). Notice that the kinetic
Lagrangian density L̃kin (xµ) (5.9) has a similar formula as that in the function prescription
[see Eq. (4.8)] but contains definitely different building blocks via regular K-distributions
(H.58) combined with weak derivatives (H.77) as product K-distributions (H.65).

Inserting the chiral decomposition in Eq. (1.17), we can rewrite the kinetic terms
L̃kin (xµ) (5.9) as

L̃kin (xµ) = 1
2

(
iF̃ †

Rσ
µ←→∂µ F̃R + iF̃ †

Lσ̄
µ←→∂µ F̃L − F̃ †

R

←→
∂4 F̃L + F̃ †

L

←→
∂4 F̃R

)
= 1

2
(
i Ď̃FRγ

µ←→∂µ F̃R + iĎ̃FLγ
µ←→∂µ F̃L − Ď̃FR

←→
∂4 F̃L + Ď̃FL

←→
∂4 F̃R

)
, (5.10)

using the matrices σµ, σ̄µ defined in Appendix A and the weak derivatives can be written
explicitly via Eq. (H.77),

∂4F̃L = {∂4FL}+ (βπR[FL]βπR − β0[FL]β0) +
∑

y0=0,πR

βy0 [FL]δy0 ,

∂4F̃R = {∂4FR}+ (βπR[FR]βπR − β0[FR]β0) +
∑

y0=0,πR

βy0 [FR]δy0 ,
(5.11)

where
{
∂4FL/R

}
are the regular K-distributions associated to the partial derivatives

∂4FL/R. In contrast to the function formalism in Section 4.2.2 where the Z2 symmetry
represents on the Lagrangian density and 5D fields obviously, here the Z2 parity should
be revealed by the 5D fields Q(xµ, y) and D(xµ, y) induced by the regular K-distributions
Q̃L/R (xµ) , D̃L/R (xµ) respectively [see Eq. (H.58)] so that Q(xµ, y) and D(xµ, y) can still
take the four different forms in Eq. (4.9)-(4.12). Notice that one of FL and FR (F = Q,D)
must be even and in turn leads to the associated vanishing jump at the branes (fixed
points). Thus, certain terms induced by the second term of Eq. (5.11)

L̃kin (xµ) [1] ∋ 1
2 F̃

†
R/L

(
βπR[FL/R]βπR − β0[FL/R]β0

)
[1]

∋ 1
2
(
βπR[FL/R]βπR[FR/L]− β0[FL/R]β0[FR/L]

)
, (5.12)

must vanish since β0,πR[FL] = 0 (FL is even) or β0,πR[FR] = 0 (FR is even) where
βy0 [φ] ∈ K ′(S1,C) is the Jump K-distribution [see Eq. (H.70)]. Moreover, the first term
of Eq. (5.11) leads to

L̃kin (xµ) [1] ∋ 1
2 F̃

†
R/L

{
∂4FL/R

}
[1]

∋
(∫ 0−

−πR+
+
∫ πR

0

)
dy

1
2F

†
R/L ∂4FL/R , (5.13)
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combining with kinetic terms of Eq. (5.10) along ordinary 4D coordinates,

L̃kin (xµ) [1] ∋ i

2 F̃
†
R/Lσ

µ←→∂µ F̃R/L[1]

∋
(∫ 0−

−πR+
+
∫ πR

0

)
dy

i

2F
†
R/Lσ

µ←→∂µFR/L , (5.14)

will recover the Z2 symmetric kinetic terms Lkin (xµ, y) of Eq. (4.8) built via function
formalism as expected in Eq. (5.8). The rest terms including δy0 will potentially lead
to the SM configuration BBT (4.18)-(4.19) associated to each type of Z2 parity (4.9)-
(4.12), which will be described precisely afterwards. Finally, we can conclude that the
kinetic Lagrangian L̃kin (xµ) [1] (5.9) developed via distribution formalism satisfies the Z2
symmetry.

Then, let us deduce the brane-localized terms Lkin
B (xµ) (5.8) under each type of Z2

parity (4.9)-(4.12) respectively. In the Type I Z2 transformation (4.9), QL and DR are
continuous at the two fixed points since they are even fields, i.e. β0,πR[QL] = β0,πR[DR].
Instead, QR and DL are odd fields so they can be discontinuous at the fixed points.
Thus, considering ∀xµ ∈ M4 , FL/R(xµ, y) ∈ K(S1,C) (F = Q,D), we can calculate the
associated weak derivatives of F̃L/R (F = Q,D) via Eq. (5.11),

Type I



∂4Q̃L = {∂4QL} ,

∂4Q̃R = {∂4QR}+ (βπR[QR]βπR − β0[QR]β0) +
∑

y0=0,πR

βy0 [QR]δy0 ,

∂4D̃L = {∂4DL}+ (βπR[DL]βπR − β0[DL]β0) +
∑

y0=0,πR

βy0 [DL]δy0 ,

∂4D̃R = {∂4DR} ,
(5.15)

which lead to the brane terms in L̃kin (xµ) [1] as

Q̃†
L ∂4Q̃R[1] ∋

∑
y0=0,πR

δy0 [Q†
L]βy0 [QR] = Q†

L

∣∣∣
0
QR|00− + Q†

L

∣∣∣
πR

QR|−πR+

πR

∋ 2
(
Q†

LQR

∣∣∣
0
− Q†

LQR

∣∣∣
πR

)
,

D̃†
R ∂4D̃L[1] ∋

∑
y0=0,πR

δy0 [D†
R]βy0 [DL] = D†

R

∣∣∣
0
DL|00− + D†

R

∣∣∣
πR

DL|−πR+

πR

∋ 2
(
D†

R DL

∣∣∣
0
− D†

R DL

∣∣∣
πR

)
, (5.16)

where the odd Z2 parity of QR, DL ∈ K(S1,C) have been injected{
QR|0 = QR|0+ = − QR|0− ,

QR|πR = QR|πR− = − QR|−πR+ ,{
DL|0 = DL|0+ = − DL|0− ,

DL|πR = DL|πR− = − DL|−πR+ .

Inserting Lagrangian pieces (5.16) with its Hermitian conjugate and the other terms in
Eq. (5.12)-(5.14), we can reformulate the kinetic terms L̃kin (xµ) (5.9) into the function
formalism (5.8),

L̃kin (xµ) [1] =
(∫ 0−

−πR+
+
∫ πR

0

)
dy Lkin (xµ, y) + Lkin

BI (xµ) , (5.17)
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where

Lkin (xµ, y) =
∑

F =Q,D

1
2
(
iF †

Rσ
µ←→∂µFR + iF †

Lσ̄
µ←→∂µFL − F †

R

←→
∂4FL + F †

L

←→
∂4FR

)
=

∑
F =Q,D

i

2 F̄ΓM←→∂MF ,

Lkin
BI (xµ) =

(
D̄D − Q̄Q

)∣∣∣
πR
−
(
D̄D − Q̄Q

)∣∣∣
0
. (5.18)

Now we can clearly see that Lkin (xµ, y) of Eq. (5.18) exactly recovers the 5D kinetic
Lagrangian density of Eq. (4.8) within the function formalism. Similarly

SBI =̂
∫
d4x Lkin

BI (xµ) =
∫
d4x

[(
D̄D − Q̄Q

)∣∣∣
πR
−
(
D̄D − Q̄Q

)∣∣∣
0

]
, (5.19)

is exactly identical to the BBT corresponding to the SM configuration in Eq. (4.18)-(4.19)
within the function formalism. Therefore, writing the initial Lagrangian as a distribu-
tion (5.9) is equivalent to express in a field function formalism.

Similarly, for the three other types of Z2 transformations (4.10)-(4.12), we have the
following weak derivatives of F̃L/R (F = Q,D):
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∂4Q̃L = {∂4QL}+ (βπR[QL]βπR − β0[QL]β0) +
∑

y0=0,πR

βy0 [QL]δy0 ,

∂4Q̃R = {∂4QR} ,

∂4D̃L = {∂4DL} ,

∂4D̃R = {∂4DR}+ (βπR[DR]βπR − β0[DR]β0) +
∑

y0=0,πR

βy0 [DR]δy0 ,

(5.20)
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∂4Q̃L = {∂4QL} ,

∂4Q̃R = {∂4QR}+ (βπR[QR]βπR − β0[QR]β0) +
∑

y0=0,πR

βy0 [QR]δy0 ,

∂4D̃L = {∂4DL} ,

∂4D̃R = {∂4DR}+ (βπR[DR]βπR − β0[DR]β0) +
∑

y0=0,πR

βy0 [DR]δy0 ,

(5.21)
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∂4Q̃L = {∂4QL}+ (βπR[QL]βπR − β0[QL]β0) +
∑

y0=0,πR

βy0 [QL]δy0 ,

∂4Q̃R = {∂4QR} ,

∂4D̃L = {∂4DL}+ (βπR[DL]βπR − β0[DL]β0) +
∑

y0=0,πR

βy0 [DL]δy0 ,

∂4D̃R = {∂4DR} ,

(5.22)

which would lead to the same function formalism of the 5D kinetic Lagrangian density
Lkin (xµ, y) in Eq. (5.18) but different configurations of BBT:

SBII =
∫
d4x Lkin

BII (xµ) =
∫
d4x

[(
−D̄D + Q̄Q

)∣∣∣
πR
−
(
−D̄D + Q̄Q

)∣∣∣
0

]
,

SBIII =
∫
d4x Lkin

BIII (xµ) =
∫
d4x

[(
−D̄D − Q̄Q

)∣∣∣
πR
−
(
−D̄D − Q̄Q

)∣∣∣
0

]
,

SBIV =
∫
d4x Lkin

BIV (xµ) =
∫
d4x

[(
D̄D + Q̄Q

)∣∣∣
πR
−
(
D̄D + Q̄Q

)∣∣∣
0

]
,

(5.23)
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recovering the chiral setups for zero modes but different from the potential SM chirality
configuration, which are listed in Table 4.1. It is important to see here that the BBT
are not added by hand to the S1/Z2 orbifold description (as in the function formalism in
Section 4.2.5) but originate from the weak partial derivative of the odd field, which are
discontinuous at the fixed points y = 0, πR. Moreover, the BBT configuration is fixed by
the Z2 parity form in Eq. (4.9)-(4.12) and only the Type I Z2 parity symmetry (4.9) can
realize the BBT under the SM configuration in Eq. (4.18)-(4.19). Besides, the vector-like
BBT configuration [see Section 4.2.5] can’t be realized in the distribution prescription.

5.3.3 Brane-Localized Scalar Field

To derive the mass spectrum by the bulk fermion coupling, we introduce the 4D real
scalar Higgs field H (mass dimension 1) confined at y = πR, a fixed point of the S1/Z2
orbifold, as in the function description in Section 4.2.3. In contrast, the brane-localized
scalar field is developed via Dirac K-distribution at y = πR,

SH =
∫
d4x L̃H (xµ) [1] , with L̃H (xµ) =

[1
2 ∂µH∂

µH − V (H)
]
δπR , (5.24)

with a potential V (H) possessing a minimum which generates a non-vanishing VEV for
the field H expanded as in Eq. (3.10). The K-distribution formalism L̃H (xµ) [1] (5.24)
can be reformulated to the function form,

LH =̂ L̃H (xµ) [1] =
[1

2 ∂µH∂
µH − V (H)

]
δπR[1] = 1

2 ∂µH∂
µH − V (H) , (5.25)

which is identical to the 4D Higgs Lagrangian density directly built via functions in
Eq. (4.13).

5.3.4 Yukawa Interactions

The brane-localized Yukawa interactions between the bulk fermions and the above
brane-scalar Higgs field (at y = πR) can be introduced via the Dirac K-distribution
δπR[φ] (H.72) as

SY =
∫
d4x L̃Y (xµ)[1] ,

with L̃Y (xµ) =
[
−Y5 H(xµ)Q†

LDR − Y ′
5 H(xµ)Q†

RDL + H.c.
]
δπR , (5.26)

where the complex phases αY (′) of the two independent Yukawa couplings Y (′)
5 at the

3-brane y = πR are defined in Eq. (3.12). Besides, the dimensionless Yukawa couplings
y4, y

′
4 ∼ O(1) are defined in Eq. (4.15) and y4 can be approximately identified with the

SM Yukawa coupling constant within the decoupling limit. The K-distribution formalism
L̃Y (xµ)[1] (5.24) can be reformulated to the function form,

LY |πR =̂ L̃Y (xµ) [1]

= H(xµ) δπR

[
−Y5 Q

†
LDR − Y ′

5 H(xµ)Q†
RDL + H.c.

]
= −Y5 H(xµ)Q†

LDR − Y ′
5 H(xµ)Q†

RDL + H.c. , (5.27)

which is identical to the brane-localized Yukawa interactions built via functions in Eq. (4.14).
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When calculating the tower of excited fermion masses, we restrict our considerations
to the VEV of H. In analogy to the SM Higgs, after inserting the VEV generation (3.10)
relation to the Yukawa interactions (5.27), we should obtain 6

SY = SX + ShQD ,

where SX is the Yukawa mass sector in Eq. (4.16) with effective couplings X,X ′ defined
in Eq. (3.15). ShQD is the localized fermion-scalar interaction in Eq. (4.17), allowing to
work out the 4D effective Yukawa coupling constants.

We notice that the complete toy model originally developed in the distribution for-
malism of Eq. (5.5) can be reformulated into function formalism in Eq. (4.5)-(4.6), (4.21),
since

SD
bulk = Sbulk + SBI ,

SD
branes = SH + SX + ShQD , (5.28)

where Sbulk is the bulk action via the kinetic Lagrangian density Lkin (5.18) since we
consider bulk massless fermions (5.7),

Sbulk =
∫
d4x

(∫ 0−

−πR+
+
∫ πR

0

)
dy Lkin (xµ, y) , (5.29)

recovering Eq. (4.6) and SBI (I = I, II, III, IV) is the Z2 parity dependent BBT in
Eq. (5.19)-(5.23), which recovers the SM configuration BBT (4.18)-(4.19) only under the
Type I Z2 parity symmetry (4.9).

5.4 Function Recovery

5.4.1 Free Bulk Fermions on the Orbifold

In order to reproduce the profile solutions and mass spectra derived in Section 4.3 (free
case) and Section 4.4-4.5 (Yukawa case), we firstly investigate the free case via the bulk
action part of S5D (5.5) built in distribution formalism,

SD
bulk = Sbulk + SBI , with I = I, II, III, IV ,

which depends on the type of Z2 parity in Eq. (4.9)-(4.12) due to SBI (I = I, II, III, IV) in
Eq. (5.19)-(5.23) and Sbulk is the bulk action via the kinetic Lagrangian density Lkin (5.18).
We apply the least action principle to it, which leads to two relations

δF̄ (Sbulk + SBI) = 0 ,

one for each of the generic independent unknown 5D fields F = Q,D, and two correspond-
ing ones, δF (Sbulk + SBI) = 0, involving the complex conjugate fields. This is exactly
what has been treated in Section 4.3.3, where identical bulk kinetic terms (4.8) and the
BBT (4.18) have been solved for piece-wise smooth fields over y ∈ [−πR+, 0−]∪[0, πR]. We
can thus apply here the results obtained there. The EOM (4.25)-(4.26) and the NBC (4.47)
would be respectively deduced for F = Q,D.

Inserting the KK decomposition (4.28), we would obtain the profile solutions in Eq. (4.41)
in the domain y ∈ [0, πR], together with the mass spectra (4.43). Combining with the Z2

6. The linear decomposition is guaranteed by the Dirac K-distribution δπR (see Appendix H.4).
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parity of the profiles in Eq. (4.29)-(4.32), we can obtain profile solutions in the comple-
mentary region, y ∈ [−πR+, 0−]. Note that the configuration of the BBT can no longer be
added by hand freely but fixed by the type of Z2 parity in Eq. (4.9)-(4.12) [see Eq. (5.19)-
(5.23)], which would extend the BBT-chirality configuration Table 4.1 to Table 5.1 includ-
ing the relation to the Z2 parity type. We can see that the Type I Z2 parity symmetry (4.9)
would realize the SM configuration and induce the profile solution in Table. 4.2 [only the
line of Type I Z2 parity], which is constrained by the ortho-normalization conditions in
Eq. (4.33). In simpler words, the Z2 parity would fix the BBT (chiral) configuration and
in turn controls the chiral nature of the theory as well as each field chirality.

Z2 σQ
0,πR σD

0,πR Q D

IV 1 1 Q0
R(xµ) D0

R(xµ)
II 1 −1 Q0

R(xµ) D0
L(xµ)

I −1 1 Q0
L(xµ) D0

R(xµ)
III −1 −1 Q0

L(xµ) D0
L(xµ)

Table 5.1 – Chiral setups for the zero-modes of fields Q and D from various different BBT
signs σQ,D

0,πR in Eq. (4.18), which is fixed by the type of Z2 parity in Eq. (4.9)-(4.12) in the
distribution formalism via Eq. (5.19)-(5.23).

For completeness, let us now discuss the probability currents. Within the same sym-
metry analysis in Section 4.3.2, the two independent global U(1)Q,D transformations of
the fields in Eq. (4.34), would leave the kinetic Lagrangian density Lkin (5.18) invariant.
Based on these two symmetries, inserting the bulk EOM (4.25), the Noether’s theorem
predicts the local conservation relation in Eq. (4.35) with respect to two probability cur-
rents jM

F (F = Q,D) (4.36) respectively. The addition of the SBI (I = I, II, III, IV) part in
Eq. (5.19)-(5.23) to Sbulk is not affecting the current conservation equations (4.35)-(4.36),
which has been concluded in Section 4.3.3.

In contrast to the function formalism in Section 4.3.2, the weak derivatives of odd fields
induce the BBT automatically, associated to the Z2 parity form so that there’s no need to
inject essential boundary conditions (4.40) via the (vanishing) probability currents (4.40)
[using the continuity at the fixed points y = 0, πR (4.37) and the odd parity (4.38)].
However, we can check that j4

F |0,πR is well vanishing due to the chiral NBC (4.47) [see
Table 5.1]. Therefore, the Z2 parity leads to the associated BBT and in turn suppresses
the probability current j4

F |0,πR to vanish. The Z2 parity configuration, chosen initially,
leads to a specific setup of BBT signs as presented in Table 5.1.

5.4.2 Brane-Localized Yukawa Couplings on the Orbifold

In order to work out the fermion mass spectrum in the presence of Yukawa couplings
SX (4.16), we would focus on the fermion terms of the complete toy model S5D (5.5)
including brane-localized action terms SD

branes (5.28) at the fixed points y = πR. The
considered action reads as,

SD
bulk + SX = Sbulk + SBI + SX ,

which exactly recovers the considered action in Section 4.4 [4D perturbation approach]-4.5
[5D approach]. Thus, we can reproduce all the results: profiles in Table 4.3 [only the line
of Type I Z2 parity], mass spectra (4.73), 4D effective Yukawa couplings (4.73), via the
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identical procedure in both of the 4D and the 5D approaches and realize the decoupling
limit in Eq. (4.76). Regarding the probability current, vanishing current component along
the extra dimension at the fixed points of the orbifold j4|πR (4.64) is achieved by the NBC
induced by the BBT as described in Section 4.5. Then, the probability current turns to
be continuous along the entire extra dimension as demonstrated in Eq. (4.63) or (4.38)
respectively.

We need to emphasize that since we concentrate on the SM chiral configuration as
in Section 4.4-4.5, the Z2 parity form must be fixed in the Type I (4.9) leading in to
SBI (5.19) [see Section 5.3.2], which has been indicated in Table 5.1.

5.5 The Inclusive Z2 Parity

Let us study the inclusive Z2 parity scenario (4.77) proposed in Section 4.6, which
would lead to the Dirichlet BC for the odd fields [see SM chirality setup in Eq. (4.79)].

In the free case, the EBC’ (4.79) and the chiral BBT SBI (I = I, II, III, IV) in
Eq. (5.19)-(5.23) would induce the identical Dirichlet BC (4.47) for the odd fields and
in turn to the same chiral configuration with respect to the type of Z2 parity in Eq. (4.9)-
(4.12) [see Table 5.1]. Thus, only the Type I Z2 parity (4.9) can induce the SM chiral
configuration, which is consistent with the analysis in Section 4.6. We should also notice
that the EBC’ and the chiral BBT deduced from the distribution formalism are physi-
cally redundant to fix the chiral configuration. In the presence of Yukawa couplings, the
analysis of point-like Yukawa interactions cannot be achieved via the 5D approach within
the present inclusive Z2 symmetry model due to the decoupling limit, which has been
mentioned in Section 4.6.

5.6 Result Analysis

5.6.1 Distribution Formalism

The present study indicates that the distribution formalism can provide additional
information for discontinuities. In particular, when we go from a distributional to a
functional treatment of the Lagrangian densities and fields, the BBT under a chiral con-
figuration would be deduced from the weak partial derivative of the discontinuous fields
automatically, which provides another motivation to introduce the BBT in Chapter 3-4
except for the UV complement. The vanishing probability current condition is thus pre-
served as dedicated in Section 5.4 both in the presence and absence of brane-localized
Yukawa couplings. Note that the jump has the possibility to happen at each brane at the
fixed points y = 0, πR so that we don’t need to insert any EBC or additional BBT.

Moreover, in the framework of the inclusive Z2 symmetry described in Section 5.5, the
Z2 transformation form can fix the chiral configuration through the Dirichlet boundary
conditions from the odd parity at the fixed points [EBC’] (4.79), which performs equiva-
lently via the BBT originating from the weak derivatives of odd fields in the free case.

5.6.2 Distribution/Function Prescription

Although the weak derivative in the distribution formalism can introduce the BBT,
only the BBT under the chiral configuration (5.19)-(5.23) can be induced, associated to
the four Z2 parity form in Eq. (4.9)-(4.12) [see Table 5.1] and only the Type I Z2 parity
symmetry (4.9) can realize the BBT under the SM configuration in Eq. (4.18)-(4.19).
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However, it does not mean the other cases does not exist, which is just constrained by the
distribution formalism itself. In contrast, the configuration of BBT can be injected freely
and independent of the Z2 parity form, which is one of the crucial results in Chapter 4.
Besides, the vector-like configuration BBT for custodians can only be constructed in the
function formalism [see Section 4.2.5].

5.7 Conclusions

In the study of the proposed distribution formalism for the S1/Z2 orbifold, the chiral
BBT can be generated automatically by the weak derivative at the branes (fixed points y =
0, πR) where the jump of a fermionic field can happen, so that one does not need anymore
to insert by hand any BBT or the equivalent essential boundary conditions. Through a
proper action definition [particularly for the kinetic terms], the chiral SM configuration of
fermions can be realized both in the free and the brane-localized Yukawa case, recovering
the results in the usual function prescription (without brane-Higgs regularization) [see
Chapter 4].

Instead of only deriving the action in terms of field-functions from the starting point
distributions, via the weak derivatives, we are now working on the attempt to keep a
distribution formalism up to ‘the end’, that is up to the full derivation and treatment of
the equations of motion and boundary conditions leading to the final results on the fermion
profiles and KK masses. The motivation being to develop in particular an alternative, and
maybe instructive, method.

Furthermore, we are working on providing the general role to the test functions (and
functions associated to the regular distributions) of implementing the model definition of
the considered compactified space [its infinite or finite size, the boundary locations,. . . ],
for instance by choosing formal infinite extra spatial dimensions at the level of distribution
applications while taking test functions as ‘step’ functions equal to unity but vanishing
outside the finite physical regions. Such an achievement would also allow to treat the
interval model via a distribution framework.

Finally, we are trying to merge Wightman’s distribution theory with our extra-dimensional
distribution formalism, through a 5D action based on the ordinary 4D integration imple-
mented via the Wightman’s smeared field and the extra dimension integrated via the
K-distributions as we developed in this chapter.
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Chapter 6

An Origin for Flavors: the
Compact Space Partition

This chapter is based on a study that we are now finalizing, in collaboration with
Grégory MOREAU and Florian NORTIER.

6.1 Introduction
Still nowadays, the non-trivial structure of the SM suggests that its flavor sector and

gauge interactions may not be arbitrary but should have some underlying first-principle
explanation. This outstanding theoretical open question represents one of the great mys-
teries in elementary particle physics. In particular in this community, one should admit
that there exists today no unanimously celebrated model reproducing the fermion patterns
of the flavor space, and, that one does not even know the energy scale at which the flavor
dynamics sets in.

The first enigma about the SM fermion field content is the origin of the existence
of flavors itself, namely the replication of each fermion in three copies with identical
quantum numbers (i.e. spin and charges). There have been of course several attempts in
the literature to interpret the presence of the SM fermion families.

The first class of scenarios explaining the fermion replication relies on GUT, introduc-
ing new gauge bosons and symmetry breaking mechanism. For instance, the SM gauge
group could originate from the reduction pattern, E8 → E6 × SU(2)F ×U(1)F followed by
the subsequent breaking E6 → [SU(3)]3, where [SU(3)]3 is associated to the gauge trini-
fication symmetry and U(1)F × SU(2)F is a local group of the family symmetry whose
respective singlet and doublet components constitute the three SM fermion families [163–
166]. These three SM generations can emerge from other schemes of gauge symmetry
group extensions [167–173].

The second class of models is based on extra spatial dimensions and has thus no coun-
terpart in 4D field theories. First, one could simply take advantage of the 8 components
of the vector-like spinor in flat 6D quantum field theories, in order to produce two 4-
component 4D Dirac spinors corresponding to two fermion families [174]. Nevertheless, it
is not possible to create more than these 2 flavors, even when systematically scrutinizing
all the possible boundary conditions on a 6D compactified flat spacetime [175] (like for
supersymmetric versions [176]). Then, another hope is to introduce a specific curved met-
ric for a 6D spacetime giving rise to a finite number of mass-degenerate 0-modes (without
Kaluza-Klein masses) identified as the three families of SM fermion fields (acquiring their
mass mainly through a brane-localized Higgs boson coupling): this can be realized by gen-
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erating three 5D fermion families in some 6D to 5D action reduction, and then recovering
three 4D 0-modes being identical [up to masses] as in Ref. [177, 178]. In order to realize
the three SM flavors by forcing the existence of several 4D 0-mode fields, one could try
to build a model where those are contained in a higher-dimensional fermion field taking
possibly different position states in an extra (compact) space: each 4D 0-mode would then
correspond to a different state along extra dimensions. This can be achieved, via a topo-
logical defect mechanism, by coupling a 6D fermion field to a non-trivial solitonic object
in a 2D (compact) space: a global vortex background [179–184], and the resulting fermion
wave functions along this space – for the different position states 1 – are then overlapping
with each other. Similarly, different angular momentum eigenstates [rotations around a
1+3 brane] in a 2D extra space, with a warp metric (acting as a potential well trapping
fermions), can generate a 4D fermion 0-mode replication reproducing the SM flavors [186–
188]. The origin of families could be understood as well through a topological property
of a semi-finite extra dimension as the number of 4D massless surface modes is directly
related to the quantized coefficient of the Chern-Simons operator obtained by integrating
out the heavy bulk fermions [189].

Within the composite models, generally possibly related to the previous ones via the
AdS/CFT duality, the origin of the three quark/lepton generations should typically rely
on gauge dynamics. In this context, metacolor or hypercolor gauge forces [190] as well as
strongly coupled supersymmetric theories [191] have been studied. To be exhaustive, let
us mention at this level other kinds of approaches, to the interpretation of the presence of
three fermion families, which are connected to the cosmological constant problem [192] or
to the compactification with magnetic fluxes (see for example Ref. [193–196] and references
therein): there the number of 4D chiral 0-modes (with non-trivially quasi-localized profiles)
– corresponding to the generation number – is determined by the magnitude of magnetic
flux. The three fermion families of quarks and leptons could also come from three chiral
multiplets of a 6D supersymmetric gauge theory containing a specific vector multiplet and
compactified on a T 2/Z3 orbifold [197, 198].

The last main type of scenario, where the origin of SM fermion families has been ex-
plored, is based on string theories. First, within the 10D heterotic string theories, where
6 dimensions can be compactified on a Calabi-Yau manifold or on orbifolds, the flavor
properties are strictly related to the features of the compact space. In Calabi-Yau com-
pactifications, the number of chiral generations is proportional to the Euler characteristics
of the manifold. In orbifold compactifications, matter in the twisted sector is localized
around the fixed points, and, the Yukawa couplings – arising from world-sheet instan-
tons – have a natural geometrical interpretation [199–201]. Similarly, in the more recent
string realizations, where the light matter fields of the SM arise from intersecting branes
(in superstring theories, intersecting D-brane models are T-dual of magnetized D-brane
models), the flavor dynamics is controlled by topological properties of the geometrical con-
struction: the generation number is determined by the intersecting number in the frame-
work of intersecting D-branes (see for instance Ref. [202, 203] or rather Ref. [204, 205] for
non-supersymmetric string model versions of intersecting D5-branes). Finally, the idea of
a three-family configuration of the field content arising from GUT has also been investi-
gated within the framework of perturbative heterotic superstring models (see Ref. [206]
for a review).

In the present chapter, we propose a new simple geometrical mechanism, along a single

1. See Ref. [185] for a similar discussion with a unique extra dimension: a 5D fermion coupled to a
specific domain wall (the introduction of an auxiliary fermionic field together with a certain background
metric are then necessary).
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flat extra dimension, which generates the fermion replication needed to reproduce the three
SM flavors. Nevertheless, to be clear, our model does not predict why the number of SM
flavors is equal to three, as done for instance in Ref. [207, 208] (using conditions coming
from the not so trivial cancellation of 6D anomalies). However, the presented fermion
replication tool will be extended to custodian-like particles, which allows to realize as well
the promoted group multiplets invoked for the custodially-protected [117] warped extra
dimension scenario addressing the gauge hierarchy problem [58].

The central and original mechanism of this model is based on the presence in the
Lagrangian of bulk-fermion BBT at several intermediate points along the extra dimension,
which is natural in the sense that those terms exist generally if no specific symmetry is
applied on the dominant lowest-dimension operators. Furthermore, the BBT are needed 2

at the boundaries 3 of extra dimensions in order to well define the finite intervals (since
the BBT induce vanishing probability currents along the new dimension), as shown in
Chapter 3, so there is no obvious reason why BBT should not appear as well at several
intermediate locations. The BBT, when located at such intermediate positions, are then
called partition terms since, as we will demonstrate, they still induce a probability current
component vanishing at these positions – as a point-like infinite potential – and hence
can restrict the fermion field domain to the left or right side of those positions (the whole
discussion in this paragraph holds for the free bulk fermion case as well as in the presence
of brane or bulk Yukawa couplings for the fermions). As the fermion profiles may be
discontinuous at these BBT points, we will apply, in a clear way, the rigorous procedure
developed in Chapter 4 to treat jumps.

We will further clearly explain in this chapter the heart of the higher-dimensional
mechanism of fermion replication: how a unique fundamental 5D fermion field can generate
several massless 4D fields. At the two main steps of the explanation, an explicit quantum
interpretation will be provided. The first step relies on the summation of solutions, of the
differential linear homogeneous equations of motion, in order to obtain the generic higher-
dimensional field expression 4. This summation runs over the various spatial states in the
compact space – states possibly lying on both sides of the BBT positions in the present
model or e.g. angular momentum states in the 6D model mentioned above – exactly like
it runs over the various momentum states along the extra dimensions in the usual Kaluza-
Klein decomposition. From the quantum point of view, all these states are represented by
ket elements defining a basis of the Hilbert space for the extra space and their formal sum
corresponds to the physical state superposition. The second step is to inject the higher-
dimensional field solutions into the initial action and then impose ortho-normalization
conditions on their wave functions along the extra space, in order to recover the canonical
kinetic terms for the associated 4D fermion fields in a possible 4D effective theory – as
imposed by the decoupling criteria. Those conditions correspond to the standard ortho-
normalizations of the quantum states constituting the Hilbert space basis. Finally, the
several massless 4D fields, associated to the wave functions of the various position states
along extra dimensions (in contrast with the heavy 4D KK modes), originate from the same
higher-dimensional field and possess in turn identical quantum numbers: they constitute
thus fermion copies which can realize the SM flavors (getting then different masses mainly

2. Or some equivalent essential boundary conditions as established in Chapter 3.
3. In fact, we will show in the present chapter that with BBT at intermediate positions (not boundaries),

it is not necessary to have BBT precisely at the boundaries of an interval: in other words, BBT at
two positions, at least, are needed to have non-vanishing normalizable wave functions in between those
positions.

4. Keeping in mind the cut-off on the tower of massive 4D solution fields, which implements the energy
limit of the physical domain of validity of the non-renormalizable theory.
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through Higgs couplings as required by experimental data: see discussion below). Then
the SM gauge interactions can be introduced to build a realistic model.

The intuition only of a higher-dimensional field written as a sum of individual flavor
fields, lying in distinct intervals connected by some point(s) in an extra space, was already
in the literature, but without explicit model-building realization and precise description 5 –
as we have presented just above. First, an effective 6 approach of such a field configuration
was performed in Ref. [111, 212–214]. Secondly, a geometrical extension of this field con-
figuration, with the different flavor profiles possibly lying in distinct rose graph branches
(N loop-intervals that begin and end up at a common boundary), has been studied [215].
The alternative star graph (N intervals connected by a common boundary: an Ultra-Violet
brane) – representing a simple field theory limit of a “multi-throat” setup where one of
the warped extra dimensions in each throat is much larger than the other ones – has also
been analysed within the same flavor context [216]. In string theories, a generic type of
situation arising from flux compactifications leads to geometries with such multi-throats
hanging out from a “head”, which constitute a compact Calabi-Yau manifold.

The other enigma of the SM flavor sector lies in the origin of the mass scale hierarchies
among the three fermion families as well as between the quarks, charged leptons and
neutrinos. For a 4D world, the main approach to this question is probably to decipher
the observed mass hierarchies via spontaneously broken flavor symmetries [217] (and the
relatively tiny neutrino mass scale via the seesaw mechanism), which could be discrete or
continuous, global or local, as widely explored in the literature. In this context, a realistic
reproduction of the measured fermion masses and mixing angles typically requires either
a large number of parameters or a certain degree of complexity, so that today one is for
sure unable to select the best model of this kind. The paradigm on higher-dimensional
frameworks, appeared around the year 2000, has brought geometrical ideas for generating
both the gauge hierarchy and the fermion mass hierarchies – including the small neutrino
masses: the various 0-mode fermion wave functions (exponential or gaussian) along the
compactified space can overlap differently either between the two 4D chiralities [63, 218]
(see precise mass and phase reproductions respectively in Ref. [219, 220]) [see also e.g.
Ref. [55, 66, 221–224] for the neutrinos] or with the Higgs boson profile [68, 225, 226] (see
detailed mass reproductions e.g. in Ref. [76, 100, 123, 153, 227, 228]) [see e.g. Ref. [152,
229] for neutrinos], in a way that creates strong hierarchies in the 4D effective Yukawa
couplings, and in turn in the 4D masses after electroweak symmetry breaking – the benefit
being that the fundamental fermion parameters (solitonic bulk masses and sub-interval
sizes) are all of the same order of magnitude.

Our present model with distinct flavor fermion wave functions separated by BBT
points, or possibly having different non-vanishing amplitudes on each BBT side, further
addresses, in a new way, the fermion mass hierarchy: for a 5D Higgs boson profile expo-
nential along the entire flat extra dimension – easily obtained from a bulk scalar mass –
its overlaps with the different flavor profiles, being maximal at various locations, are expo-
nentially different and hence generate the observed strongly hierarchical fermion masses
through hierarchical Yukawa couplings [similarly for generating the tiny neutrino mass
scale]. For instance, compared to the above mass models with light fermion profiles ex-

5. Such an effective flavor field sum, but with overlapped exponential fields shifted along some extra
dimension, is also mentioned in Ref. [209] (see also Ref. [210] for the dual composite Higgs approach, with
multiple flavor scales, of a similar field configuration).

6. In other words, a generic point-like interaction model was simulated: without such interactions, the
equality δF = 0 at a given point y0, along some extra dimension, should come as the model hypothesis
of a known 5D fermion field F (xµ, y0) at the calculation level of action variation, and cannot be deduced
from a final result on this field (see Ref. [211] for the chronological aspects of the variational calculus).
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ponentially spread along a warped extra dimension and only peaked towards the so-called
Planck-brane, a warped version of the setup proposed here with light fermion profiles
possibly partitioned around the Planck-brane (hence strictly vanishing in the other TeV-
brane region) favors small light fermion couplings with the KK gauge bosons peaked at the
TeV-brane which tends to soften dangerously constrained flavor changing neutral current
effects. A warped version of the present model also possesses the attractive feature that
the exponential Higgs profile (induced by the warped metric and a bulk mass) peaked
towards the TeV-brane allows to address simultaneously the fermion mass hierarchies and
the gauge hierarchy puzzle [58], which represents theoretically a kind of economy: in other
words, the present model is connecting, via the curved Higgs profile, the flavor appear-
ance, the quark/lepton mass hierarchies and the gauge hierarchy. The phenomenological
study of the reproduction of SM fermion mass and mixing angle values, within the setup
of fermion flavors in distinct intervals, was performed for the effective approach men-
tioned above [111, 212–214]. A comparable setup – with exponential profiles for the two
bulk Higgs doublets, the first matter generation localized on an interval boundary, second
fermion generation in the bulk and third one on the other boundary – has also been studied
in the context of a supersymmetric 5D GUT based on a S1/(Z2 × Z ′

2) orbifold [230].
In the present work, we find out in particular the configuration for a given flavor fermion

wave function with different amplitudes on each side of a BBT location (as exposed above)
which was not studied in this Ref. [111, 212–214]. This configuration permits the needed
mass mixings among different flavors thanks to non-vanishing wave function overlaps at
the Yukawa coupling level, in contrast with the setup of distinct flavor wave functions
partitioned respectively on the two sides of a BBT location which requires a shift of the
BBT locations between the Left and Right-handed 0-mode fields to create such a mixing
effect [111, 212–214]. We perform a phenomenological analysis of this profile configuration
by working out examples of regions in the parameter space where SM fermion masses are
reproduced, in order to illustrate the result that realistic numerical values can be easily
reached.

The other puzzle in the SM fermion sector is the set of deviations from lepton flavor
universality observed experimentally through neutral-current and charged-current semi-
leptonic B meson decays. Among the various scenarios built in the literature, the most
successful mediator addressing both sets of anomalies has turned out to be a TeV-scale
U1 vector leptoquark [231–237]. The couplings of such a U1 particle, being necessarily
stronger with the third quark/lepton generation, as well as the needed multi-scale con-
struction [238] find a concrete realization in the following SM fermion distribution along
a compactified warped extra dimension: distinct up-type Right-handed fermion flavors
localized on distinct 3-branes 7, one brane-localized down-type Right-handed fermion and
their two other flavors respectively in two complementary sub-intervals, the second family
of Left-handed doublet inside a sub-interval attached to the Infra-Red brane and their two
other families spread on the whole interval [239].

It turns out that our present partition mechanism allows to simultaneously induce the
flavor replication and arrange them accordingly to the above field distribution along the
extra dimension, representing thus a natural theoretical framework for interpreting the
measured flavor anomalies. In particular, for the up-type SM fermions, distinct flavors
can indeed be strictly localized in distinct 1D sub-domains separated by intermediate
vanishing profile sub-intervals 8, thanks to the BBT, and those sub-domain widths could
be reduced to produce (thick) 3-branes [see next paragraph]. Regarding the SM doublets

7. With three spatial dimensions.
8. As long as the profiles are globally ortho-normalizable.

127



of Ref. [239], two 5D fermion doublets should be introduced with one of them splitting
into two 4D fermion flavors.

An even more ambitious approach is to solve the B meson anomalies using the gauge
vector leptoquark – transforming as U1 ≡ (3, 1, 2/3) under the SM gauge group – of the
Pati-Salam (PS) scenario which is unifying quarks and leptons in a fundamental repre-
sentation of the SU(4) group. This attempt can be pursued within the context of a 4D
model [240] or a 5D warped model [241]. The PS3 model relies on the discrete language
of three sites connected by nearest-neighbour interactions which implicitly admits the em-
bedding of the theory into a higher-dimensional spacetime: this can be realized along a
warped extra dimension [242] with, once more, the various SM doublet and singlet flavors
distributed in complementary sub-intervals and 3-branes. Now, again, our present theo-
retical partition mechanism, based on BBT, allows to create the three flavors and shape
those according exactly to the PS3 model field configuration along the extra dimension.

Furthermore, we propose a new type of spin-1/2 fermion localization mechanism. Let
us first recall the general context of this topics. For example, the wave function shapes of
spin-1/2 fields can be modified along the extra dimensions by gravitational interactions but
cannot be totally localized on a brane in five or six dimensions only via these interactions
(see for instance Ref. [243, 244]). The idea of localizing fermions towards some wall in an
higher-dimensional space which relies on the index theorem in soliton background [245,
246] goes back to Ref. [247]. There the fermions couple to the spatially varying Vacuum
Expectation Value of an higher-dimensional scalar field. For instance, a kink function
(step function) for this VEV leads to a spread profile with an angular peak for the (chiral)
fermion 0-mode [248]. A more smooth domain wall with an hyperbolic tangent form
creates instead a fermion Gaussian profile [249]. The fermions can also couple to extended
functions of the scalars with varying VEVs [250, 251] (see also Ref. [252]), generically in
4 + d dimensions [253], and the additional effect of gravity on the wall may be included as
well [254].

Within the string theory framework, the hypothesis itself of matter localization on a
brane-world was studied, by restricting the matter Lagrangian to lie on a D3-brane thanks
to a simple delta distribution with support at the brane location: it was demonstrated that
in D3-brane scenarios, 4D fermion modes are not normalizable [255]. Nonetheless, when
domain wall generalizations for D-branes are considered, adding an interaction between
a fermion and the scalar field generating the domain wall, at least one chirality of the
effective 4D fermion could be localized. Chiral fermions can be localized, e.g. at a D3/D7
brane intersection world-volume via a stringy defect mechanism [256]. More generally,
fermions can be localized thanks to a string-like defect [257–260].

In the present work, the field theory partition mechanism of spin-1/2 fermion localiza-
tion, along an extra dimension, is quite simple and possesses the following particularities:

(i) It has a point-like phenomena origin through the BBT – thus not relying on a fermion
coupling to a spatially varying scalar field VEV.

(ii) It localizes a (chiral or vectorial) fermion [any KK-level mode] to a strict interval
(i.e. exactly vanishing profile outside this interval).

(iii) The interval width, determined by the BBT points, can be chosen as small as wanted
down to a point, which represents nothing else but a brane-localization.

In particular, the localization mechanism we proposed, based on certain BBT positions,
also allows to have a compactified space domain where all fermion profiles are exactly
vanishing. Taking the limit of vanishing width (instead of keeping a strict thick wall)
for the complementary domain – where all the fermions spread – leads to the concrete
realization of the types of warped or flat extra dimension models where all SM fermions
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are confined on a brane (instead of a strict thick brane), as proposed in the literature to
address the gauge hierarchy puzzle. Of course, by taking different BBT among fermions,
we can also build variants of such scenarios where only a sub-class of fermions is brane-
localized, like for tiny neutrino mass models with all SM fermions stuck on a brane and a
Right-handed neutrino field propagating in the bulk.

This chapter is organized as follows. First, we give the definition of the spacetime
geometry and the complete toy model in Section 6.2.1. Then, in Sections 6.2.2-6.2.6, we
study the free fermion profile through the least action principle, and give the detailed
description of the fermion generation splitting mechanism. In Section 6.3, we realize the
fermion mass hierarchy with the bulk Higgs VEV function on the extra dimension, via the
bulk Yukawa interactions. Finally, an overview and a brief conclusion would be given in
Section 6.4.

6.2 Flavor Model
In this section, we search for a flavor model including a fermion generation splitting

mechanism in the basic free case without Yukawa interactions, deriving the associated
profiles and mass spectra to each generation. The main target of this section is to realize
the generation splitting in a rigorous procedure for revealing the SM mass hierarchy in
Section 6.3.

6.2.1 Partition Model

6.2.1.1 Spacetime Geometry

We consider a 5D toy model on the product spacetime geometry, E5 =M4 × I1.
— M4 represents the usual 4D Minkowski spacetime whose coordinates are denoted

by xµ where µ ∈ J0, 3K is the Lorentz index of the covariant formalism. The metric
conventions are given in Appendix A.

— I1 is a compact 1D flat interval of the extra spatial dimension, which is denoted by
y ∈ [0, L], with a length, L ∈ R∗, and bounded by two flat 3-branes at y = 0 and
y = L. The interesting thing is that the brane-localized interactions – the BBT –
play the role of extra intermediate branes between the two boundaries at y = 0, L
for the fermion, F , which may interrupt the continuity of the fermion profiles and
force the fermion probability currents vanish at the intermediate branes at y = LF

(cf. Section 6.2.2). Here, we firstly consider the toy model with one intermediate
brane 9 to realize two fermion generations localizing in the first and the second regions
respectively, as illustrated symbolically in Figure 6.1.

— A point of the 5D spacetime E5 is labeled by the coordinates, xM =̂ (xµ, y), with
M ∈ J0, 4K.

In order to write down the initial action, we urge the importance of taking care of possible
field jumps along the extra dimension at intermediate branes by the treatment of the
discontinuity precisely described in Chapter 4 [function formalism]. The bulk Lagrangian
density will involve profile derivatives ∂yf(y), so that ∂yf(y) must be well-defined on
[0, LF ] ∪ (LF , L], i.e. on [0, LF ] and (LF , L] respectively. Analogy to the treatment of
jumps in Chapter 4 (also see Ref. [2]), the necessary (but not sufficient) condition for
this last feature is that the profiles f(y) have to be continuous on the three segments

9. It’s the reason why we impose ‘1’ as the subscript in I1.
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respectively. For example, f(y) is derivable in the region [0, LF ] at y = 0 if and only
if f(y) is right-derivable at y = 0, and the corresponding right-derivative is convergent.
Then, the complete 1D interval is decomposed by I1 = [0, LF ] ∪ (LF , L] with respect to
the piece-wise smoothness. The lengths of the two segments are denoted respectively as,

∆L1
F =̂LF − 0 , ∆L2

F =̂L− LF . (6.1)

 BBT

0 LF L

Figure 6.1 – A picture of the interval with one intermediate brane. Two 3-branes (two
solid lines) on two boundaries (two black points) at y = 0, L. Unique intermediate brane
(dashed line) at y = L

(+)
F are induced by the BBT (three gray points).

Then, the well-defined global action covering the whole physical domain of the interval
is developed including an improper integral:

SF
5D = SF

bulk + SF
branes ,

with SF
bulk =

∫
d4x

(∫ LF

0
+
∫ L

L+
F

)
dy LF

bulk , (6.2)

where
— LF

bulk includes the fermion kinetic (6.3) (cf. Section 6.2.1.2) and the mass terms (6.58)
(cf. Section 6.2.6) of the Lagrangian density , which is integrable over the entire
region, I1 = [0, LF ]∪ (LF , L]. Here, we introduce a unique field content to achieve a
simplest 2-gen example. Fermionic particles propagate along I1 as we have in mind
that a direct extension of this toy model to a 3-gen scenario as the realistic SM.

— SF
branes represents action terms localized at the two boundaries (y = 0, L) and inter-

mediate branes [y = L
(+)
F ] for the fermion field, e.g. the brane-localized BBT (cf.

Section 6.2.1.3).
Note that this two-generation toy model can be easily extended to the realistic SM scenario
with three generations, where two intermediate branes are induced by the BBT and profiles
will be piece-wise smooth with respect to three sub-regions. The bulk action will preserve
a similar formula to Eq. (6.2) but include a three-piece integration rather than two.

6.2.1.2 Bulk Fermion Fields

The 5D fermion field F (xµ, y) – of mass dimension 2 – has the following kinetic terms
[entering Eq. (6.2)] which allow to recover canonical covariant kinetic terms for the as-
sociated fermions in the 4D effective action (as imposed by the argument of decoupling
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limit 10):

LF
kin = i

2 F̄ΓM←→∂MF , (6.3)

which keeps the identical formula as the interval case of Eq. (3.1) and its chiral formula
can be derived via the chiral decomposition (1.17) as

LF
kin = 1

2
(
iF †

Rσ
µ←→∂µFR + iF †

Lσ̄
µ←→∂µFL − F †

R

←→
∂4FL + F †

L

←→
∂4FR

)
= 1

2
(
i sFRγ

µ←→∂µFR + i sFLγ
µ←→∂µFL − sFR

←→
∂4FL + sFL

←→
∂4FR

)
, (6.4)

but with the discontinuity argument (see Section 6.2.1.1) at the intermediate branes at
y = LF . Particularly, the bulk mass terms Lmass will be treated in Section 6.2.6.

6.2.1.3 Partition Terms

The BBT – of mass dimension 4 – introduced in Chapter 3 (also see Ref. [1]) turn out
to be necessary here again for several reasons:

— They allow to avoid physical consistency problems (e.g. recovering the SM fermion
chirality configuration).

— They play interestingly the role of intermediate branes at y = L+
F where the fermion

probability currents are forced to vanish and each fermion generation is embedded
into one segment individually (cf. Section 6.2.2).

— They define the compact model with the two boundaries at y = 0, L and constrain
all fermion fields on the physical domain, I1.

The following BBT lead to the SM chirality configuration 11

SF
B =

∫
d4x

(
LF

B

∣∣∣
LF

− LF
B

∣∣∣
0

+ LF
B

∣∣∣
L
− LF

B

∣∣∣
L+

F

)
,

with LF
B = σF (y)

2 F̄F = σF (y)
2

(
F †

LFR + F †
RFL

)
, (6.5)

where we impose the chiral decomposition (1.17) and σF (y) are generic parameters for the
field F at y with compact notations

σF
0,LF ,L+

F ,L
=̂ σF

∣∣∣
0,LF ,L+

F ,L
. (6.6)

The two choices of dimensionless BBT signs 12
σF

1 : σF
0,LF ,L+

F ,L
= −1 ,

σF
2 : σF

0,LF ,L+
F ,L

= +1 ,
(6.7)

10. From the theoretical consistency and phenomenological points of view, the SM must be approximately
recovered at low-energies in the limit of infinitely heavy KK excitations, which is also a crucial argument
in other scenarios in Chapter 3-4.

11. One can also setup the BBT at L−
F instead of LF but it wouldn’t change any physical results such

as mass spectra.
12. The different BBT signs would lead to a different chirality configuration of the zero-modes from the

SM or custodian fermions (cf. Section 3.3.3).
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would lead to a set of natural boundary conditions localized at intermediate branes and
boundaries in Eq. (6.12), which then induces two generations of normalizable profiles
[clarified in two series in Eq. (6.35)] associated to the 5D fermionic field F (6.36) with the
non-vanishing zero modes [without KK mass contribution] for only one chirality [L or R]
respectively [see Eq. (6.44)-(6.51) with Table 6.1 for bulk massless case and Eq. (6.74)-
(6.75) with Table 6.2 for bulk massive case].

Considering all the aspects above, the complete toy model (6.2) studied for the free
fermions in Section 6.2 is characterized by the action,

SF
5D = SF

bulk + SF
branes = SF

bulk + SF
B , (6.8)

where the bulk action terms consist of the kinetic Lagrangian density of Eq. (6.3)-(6.4) in
the bulk massless case, while the bulk massive case would be studied in Section 6.2.6. The
conclusions that will be derived in the present work can be directly extended to the realistic
warped model with SM bulk matter addressing the fermion mass and gauge hierarchies,
along the same lines as the flavor and gauge symmetry generalizations described in details
in Section 3.2.6.

6.2.2 Mass Spectra & Profiles

As a preparation for the presence of the Yukawa interactions, we firstly concentrate
on the free bulk massless fermions, i.e.

LF
bulk = LF

kin ,

to derive profiles, mass spectra and realize the fermion generation splitting in the free case.
The least action principle is applied to the free action (6.8) and leads to two associated
stationary equations,

δF̄

(
SF

bulk + SF
B

)
= 0 ,

for the unknown 5D field F are generic and independent field variations. In particular, we
can write the explicit variations of SF

bulk + SB
13,

δF̄

(
SF

bulk + SF
B

)
=
∫
d4x

{(∫ LF

0
+
∫ L

L+
F

)
dy δF̄ iΓM∂MF

+
σF

LF
− 1

2 δF †
LFR

∣∣∣
LF

+
σF

LF
+ 1

2 δF †
RFL

∣∣∣
LF

− σF
0 − 1

2 δF †
LFR

∣∣∣
0
− σF

0 + 1
2 δF †

RFL

∣∣∣
0

+σF
L − 1

2 δF †
LFR

∣∣∣
L

+ σF
L + 1

2 δF †
RFL

∣∣∣
L
−
σF

L+
F

− 1

2 δF †
LFR

∣∣∣
L+

F

−
σF

L+
F

+ 1

2 δF †
RFL

∣∣∣
L+

F

 ,
(6.9)

where the the chiral decomposition (1.17) is inserted to brane terms. In this stationary
action condition, the bulk and brane variations must vanish individually, which would lead
to the bulk EOM,

∀xµ, y ∈ I1 = [0, LF ] ∪ (LF , L] , iΓM∂MF = 0 , (6.10)

13. We omit the global 4-divergence by the remarks in Section 1.3.
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and it’s chiral formula after the chiral projection (1.17),

∀xµ, y ∈ I1 = [0, LF ] ∪ (LF , L] ,

 iσ̄µ∂µFL + ∂4FR = 0 ,

iσµ∂µFR − ∂4FL = 0 ,
(6.11)

with the corresponding NBC under the SM σF
0,LF ,L+

F ,L
configuration mentioned before,


σF

0 − 1
2 FR|0 = σF

0 + 1
2 FL|0 =

σF
LF
− 1

2 FR|LF
=
σF

LF
+ 1

2 FL|LF
,

σF
L+

F

− 1

2 FR|L+
F

=
σF

L+
F

+ 1

2 FL|L+
F

= σF
L − 1

2 FR|L = σF
L + 1

2 FL|L .

(6.12)

where σF
0,LF ,L+

F ,L
= ±1 leading to the associated NBC 14,


FL|0(L+

F ) = 0 (σF
0(L+

F ) = +1),
or

FR|0(L+
F ) = 0 (σF

0(L+
F ) = −1),

and


FL|LF (L) = 0 (σF

LF (L) = +1),
or

FR|LF (L) = 0 (σF
LF (L) = −1).

[NBC]

(6.13)
Regarding the 5D EOM of Eq. (6.11), the 5D spinors FL/R (xµ, y) are the generic

solutions of Eq. (6.11), which is nothing else but the 5D Dirac equation (in its two-
component chiral form) for massless fermions, so that we can write them accordingly to
the following factorization,

F sol.
L/R (xµ, y) = 1√

L
fL/R(y)F 4D

L/R (xµ) , (6.14)

with the convention of a dimensionless profile fL/R(y) (still in the natural unit system)
and 15,

fL/R(y) = C+L/R(y) eip4y + C−L/R(y) e−ip4y ,

F 4D
L/R (xµ) =

∫
d3p4D
(2π)3

1√
Ep

∑
s=1,2

{
as

p4D
us

L/R(p4D)e−ipµ xµ + bs
p4D

vs
L/R(p4D)eipµ xµ

}
,

(6.15)
where C+L/R(y), C−L/R(y) are piece-wise normalization constants on [0, LF ]∪ (LF , L] due
to possible profile jumps at y = LF ,

C+L/R(y) = C+L/R,1 θ (y) θ (LF − y) + C+L/R,2 θ
(
y − L+

F

)
θ (L− y) ,

C−L/R(y) = C−L/R,1 θ (y) θ (LF − y) + C−L/R,2 θ
(
y − L+

F

)
θ (L− y) ,

(6.16)

with the Heaviside step function,

θ (y − y0) =̂

 0 , y < y0 ,

1 , y ≥ y0 .
(6.17)

14. In principle, different configurations on the two regions [0, LF ]and (LF , L] can be achieved if σF
0 ̸=

σF

L+
F

or σF
LF

̸= σF
L .

15. The bold letter represents related spatial components.
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Two opposite orientation momenta along the extra spatial dimension in fL/R(y) (6.15) are
contributions from the reflection at the branes. as

p4D
and bs

p4D
(s = 1, 2) are coefficients

associated to the 4D momentum. us
L/R(p4D)e−ipµ xµ and vs

L/R(p4D)eipµ xµ (s = 1, 2) are
(normalized) 4D spinor fields [8] satisfying the 4D Dirac-Weyl equations (1.25), corre-
sponding to particle and anti-particle respectively. pM = (pµ, p4) denote the relativistic
5-momentum which must obey the on-shell (massless) relation,

(
p0
)2

=
4∑

j=1

(
pj
)2

= p2
4D +

(
p4
)2

, and p0 =̂Ep . (6.18)

Notice that the Eq. (6.15)-(6.18) guarantee F sol. (xµ, y) (6.14) to satisfy the free massless
5D Klein-Gordon equation

∂M∂MFL/R (xµ, y) = 0 , (6.19)

derived from the 5D EOM (Dirac equation) as required 16. Given the momentum operator
P̂ j =̂ − i∂j [j = 1, ..., 4] 17, we can rewrite the wave functions and spinors of Eq. (6.15)
using (squared) momentum eigenstates:

fL/R(y) =
〈
y
∣∣∣p2

4

〉
L/R

,

F 4D
L/R (xµ) =

∫
d3p4D
(2π)3

1√
Ep

×
∑

s=1,2

{
as

p4D
us

L/R(p4D)⟨x|p4D(t)⟩+ bs
p4D

vs
L/R(p4D)⟨x| − p4D(t)⟩

}
,

(6.20)
where (

P̂ 4
)2 ∣∣∣p2

4

〉
L/R

=
(
p4
)2 ∣∣∣p2

4

〉
L/R

,

P̂ j |p4D(t)⟩ = pj |p4D(t)⟩ , with j = 1, 2, 3 , (6.21)

and the compact notations,

|x⟩ = |x1⟩ ⊗ |x2⟩ ⊗ |x3⟩ ,

|p4D(t)⟩ = e− iEpt |p4D⟩ = e− iEpt
∣∣p1〉⊗ ∣∣p2〉⊗ ∣∣p3〉 . (6.22)

Besides, F 4D
L/R (xµ) (6.15) must constitute a 4D fermion field satisfying the 4D Dirac-

Weyl equation (1.25), involving a effective 4D mass mF , leading to the 4D Klein-Gordon
equation, [

∂µ∂
µ +

(
mF

)2
]
F 4D

L/R (xµ) = 0 . (6.23)

Inserting the factorization (6.14)-(6.15) to the 5D Klein-Gordon equation (6.19) and com-
paring to the 4D Klein-Gordon equation (6.23), one can obtain the mass-momentum re-
lation,

mF = ± p4 . (6.24)

16. 0 = −i2 ΓM ΓN ∂M ∂N F = 1
2
{

ΓM , ΓN
}

∂M ∂N F = ηMN ∂M ∂N F = ∂M ∂M F , using the Christoffel
algebra

{
ΓM , ΓN

}
= 2ηMN in Appendix A.

17. Notice the subtlety due to the compact spatial geometry that the extra momentum operator
(
P̂ 4)2

is not Hermitian, even if its real eigenvalues and ortho-normalized eigenstates can still be defined [261].
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Hence, the factorization (6.14) allows to fulfill the decoupling limit criteria within a realistic
model at the field theory level [for theoretical and phenomenological reasons]: in the
heavy limit for the new particles of the extended scenario (that will turn out here to be
the Kaluza-Klein excitations), the SM Lagrangian involving 4D fermion fields FL/R (xµ)
must be recovered at low energies (the profiles fL/R(y) being integrated out over y in
the 4D effective action, ending up in global factors). Moreover, since the profile solution
fL/R(y) (6.15) is even with respect to p4 18, it will turn out that one can fix the mass-
momentum relation (6.24) as,

mF = p4 . (6.25)

If we insert the 5D factorization (6.14)-(1.25) into the 5D EOM (6.11), we would obtain
the EOM of profiles explicitly,

∀ y ∈ [0, LF ] ∪ (LF , L] ,

 ∂4fL (y)−mF fR (y) = 0 ,

∂4fR (y) +mF fL (y) = 0 ,

which leads to general profile solutions fL (y) = BR(y) cos(mF y) +BL(y) sin(mF y) ,

fR (y) = BL(y) cos(mF y)−BR(y) sin(mF y) ,
(6.26)

where BL(y), B′(y) are piece-wise normalization constants via the Heaviside step func-
tion (6.17) due to possible profile jumps at y = LF ,

BL(y) = BL,1 θ (y) θ (LF − y) +BL,2 θ
(
y − L+

F

)
θ (L− y) ,

BR(y) = BR,1 θ (y) θ (LF − y) +BR,2 θ
(
y − L+

F

)
θ (L− y) .

(6.27)

with the two redefined constants, comparing with the momentum solution (6.15) and the
mass-momentum relation (6.25): BL = i (C+L − C−L) ,

BR = C+L + C−L ,
with

 C+R = iC+L ,

C−R = −iC−L ,
(6.28)

can be derived. Similarly, the reverse constant transformation can be derived,
C+L = BR − iBL

2 ,

C−L = BR + iBL

2 ,

with

 C+L = iC+R ,

C−L = −iC−R .
(6.29)

Note that the solution (6.26)-(6.28) includes the massless case mF = p4 = 0 via piece-wise
constant profiles fL (y) = BR(y), fR (y) = BL(y). On the contrary, (mF )2 ̸= p2

4 would
induce vanishing profile solutions (i.e. fL (y) = fR (y) = 0) and hence a vanishing 5D field
F (xµ, y) = 0 [in the Lagrangian], which is ruled out because the field content of the SM
(and its present realistic extension) must include fermion spinors.

Then, let us derive all possible profile solutions fL/R (y) (6.15)-(6.26) related to the
NBC (6.13) explicitly. Since fL/R (y) are piece-wise smooth on [0, LF ] ∪ (LF , L], we can

18. For any appreciate profile solution fL/R(y) realized by p4, we can reproduce it with −p4 and exchange
C+L/R(y) ↔ C−L/R(y).
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solve the profile on each region respectively. The solutions of the profile EOM (1.32) on
the piece-wise smooth domain y ∈ [0, LF ] ((LF , L]) [normalized via Eq. (1.26)] have been
precisely solved in Section 3.3.3 but we need to the modify the length as ∆L1(2)

F (6.1).
Moreover, the lack of BBT at any (intermediate) brane would induce related vanishing
profiles and a trivial mass spectrum equation [see Section 3.3.1]. Non-trivial solutions
found with particular BBT configurations for Eq. (6.11)-(6.12) are factorized in Eq. (6.14)-
(6.26), following four possible sets of profiles over y ∈ [0, LF ] together with the associated
(KK) mass spectrum equations (∀n ∈ N),

1) (−−) : fn
L(y) = Bn

L,1 sin(mF
n y) , (++) : fn

R(y) = Bn
L,1 cos(mF

n y) ,
sin(mF

n ∆L1
F ) = 0 ;

2) (++) : fn
L(y) = Bn

R,1 cos(mF
n y) , (−−) : fn

R(y) = −Bn
R,1 sin(mF

n y) ,
sin(mF

n ∆L1
F ) = 0 ; (6.30)

and,

3) (−+) : fn
L(y) = Bn

L,1 sin(mF
n y) , (+−) : fn

R(y) = Bn
L,1 cos(mF

n y) ,
cos(mF

n ∆L1
F ) = 0 ;

4) (+−) : fn
L(y) = Bn

R,1 cos(mF
n y) , (−+) : fn

R(y) = −Bn
R,1 sin(mF

n y) ,
cos(mF

n ∆L1
F ) = 0 ; (6.31)

where we use the standard BC notations − or + at y = 0, πR defined below Eq. (3.29),
which make explicit the correspondence between the correspondence between the four
NBC (6.12) with non-zero BBT and the four solutions (6.30)-(6.31). The equation

sin(mF
n ∆L1

F ) = 0 ,

possesses the following solutions for the KK mass spectrum,∣∣∣mF
n

∣∣∣ = nπ

∆L1
F

, n ∈ N . (6.32)

Similarly, the equation

cos(mF
n ∆L1

F ) = 0 ,

has the solutions: ∣∣∣mF
n

∣∣∣ = (2n+ 1)π
2∆L1

F

, n ∈ N . (6.33)

We can clearly see that the mass spectrum (6.32)-(6.33) deduced by the piece-wise smooth
profile solutions of the EOM (1.32) and the BC (6.12) is parameterized by the length
of associated sub-region. So, let us firstly consider the non-zero KK modes [mF

n ̸= 0].
The generic profile solution fL/R(y) (6.15)-(6.26), defined on the entire domain I1 =
[0, LF ] ∪ (LF , L], must have the unique momentum p4 (mass mF ) on the entire extra
spatial dimension (both of two sub-regions), which corresponds to the unique effective
4D mass as discussed in the comparasion between the 5D (6.19) and the 4D-(6.23) Klein-
Gordon equation. Hence, the (non-vanishing) profile solutions of Eq. (6.30)-(6.31) (similar
profile solutions on the second sub-region (LF , L] but with the interval length ∆L2

F ) must
only exist on one sub-region ([0, LF ] or (LF , L]) and vanish on the other, since the two

136



sub-region lengths induce two different mass spectra. We denote two generations (families)
of fermion profile solutions as fn

GiL/R(y) (∀n ∈ N∗, i = 1, 2), where n ∈ N∗ is the KK mode
indices. Gi (i = 1, 2) is the generation label corresponding to the non-vanishing solutions
on the first and the second sub-region respectively. Furthermore, the associated (SM-like)
mass spectrum can be derived explicitly via the sub-interval length ∆Li

F (i = 1, 2) (6.1)
in analogy to Eq. (6.32), ∣∣∣mF

G1(2)n

∣∣∣ = nπ

∆L1(2)
F

, n ∈ N . (6.34)

Then, let us turn our focus to the zero mode [mF
n = 0]. We can see from Eq. (6.30)-(6.31)

that the zero modes are piece-wise constants on the two sub-regions [0, LF ] and (LF , L].
The zero mode is the unique mode whose mass is interval length independent (vanishing
on both of two sub-regions), which leads to a possible non-vanishing profile solution of
the EOM (1.32) and the BC (6.12), propagating on the whole extra spatial dimension.
Moreover, the two sub-regions will induce a two-dimensional Hilbert space for zero modes
[discussed later in Eq. (6.44)-(6.50)], so we denote the two 0-mode profiles (basis states)
as f0

GiL/R(y) (i = 1, 2).
We sum two kinds of flavors and corresponding KK modes, constituting all individual

solutions of both homogeneous differential equations [5D EOM (6.11)] and 5D homogeneous
NBC (6.12)-(6.13) (associated to a certain BBT configuration). From the quantum point
of view, it is based on the quantum superposition principle 19. We obtain

FL/R (xµ, y) =
∑

i=1,2
FGiL/R (xµ, y) , (6.35)

which consists of two flavor generations 20 FGiL/R (xµ, y) (i = 1, 2),

FGiL/R (xµ, y) = 1√
L
f0

GiL/R

∣∣∣
ΩF

(y)F 0
GiL/R (xµ) + 1√

L

+∞∑
n=1

fn
GiL/R(y)Fn

GiL/R (xµ) , (6.36)

where zero mode profile f0
GiL/R

∣∣∣
ΩF

(y) (i = 1, 2) is labeled by a rotation angle ΩF ∈ [0, 2π),
which will be described later in the precise solutions (6.44)-(6.50). Each profile solution
fn

GiL/R (y) (i = 1, 2) is related to its 4D field Fn
GiL/R (xµ) (i = 1, 2, n ∈ N) with the KK

mass mF
Gin

(i = 1, 2, n ∈ N) (6.34).
In analogy to Eq. (6.20), each KK mode profile fn

GiL/R (y) (∀n ∈ N, i = 1, 2) can still

be written by the squared momentum eigenstates
∣∣∣p2

4,nGi

〉
L/R

(∀n ∈ N, i = 1, 2),


f0

GiL/R

∣∣∣
ΩF

(y) =
〈
y
∣∣∣p2

4,0Gi
(ΩF )

〉
L/R

, n = 0 ,

fn
GiL/R (y) =

〈
y
∣∣∣p2

4,nGi

〉
L/R

, n ∈ N∗ ,

(6.37)

where n ∈ N denoted the KK order corresponding to family Gi (i = 1, 2) with the KK
mass mF

Gin
(i = 1, 2) (6.32)-(6.33) and ΩF ∈ [0, 2π) is a rotation angle for the 0-mode

Hilbert space, which will be described later in the precise solutions (6.44)-(6.50).

19. In the mathematical point of view, the generic solution FL/R (xµ, y) (6.35) – the summation of all
possible solutions – is induced by the linearity and homogeneity of the EOM (6.11) and the BC (6.13)
[fixed BBT configuration]. It is similar to the integration over momentum 3D, the summation of spin
states, of particle and anti-particle (6.20). Besides, the ortho-normalized basis made of flavor states, KK
states, 4D momentum eigenstates, particle/anti-particle sates, up/down spin states are also all motivated
by the quantum point of view.

20. A further justification is presented above the ortho-normalization conditions (6.38).
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In the decoupling limit, FL/R (xµ, y) (6.35) must recover canonical 4D fields with in-
dependent (diagonal) kinetic terms, i.e. the effective 4D fields must be orthogonal [see
Eq. (6.40)-(6.42)], and one cannot build more than 2 (families of) orthogonal fields satis-
fying the ortho-normalization conditions,

∀n,m ∈ N, ∀ i, j ∈ {1, 2} ,
1
L

(∫ LF

0
+
∫ L

L+
F

)
dy fn∗

GiL/R(y) fm
GjL/R(y) = δijδnm . (6.38)

Indeed, this crucial physical condition can be justified by firstly injecting FL/R (xµ, y) back
to the kinetic terms LF

kin (6.4) 21,

∑
2

∫
dy LF

kin →
∑

i=1,2

∑
2

∫
dy LF

Gikin ,

with, LF
Gikin = 1

2
(
iF †

GiR
σµ←→∂µFGiR + iF †

GiL
σ̄µ←→∂µFGiL − F

†
GiR

←→
∂4FGiL + F †

GiL

←→
∂4FGiR

)
,

(6.39)

where LF
Gikin is the kinetic terms for the ith (i = 1, 2) generation. Note that non-diagonal

terms vanish by ∀ i ̸= j ∈ {1, 2},
∑

2

∫
dy F †

GiL/Rσ
µ←→∂µFGjL/R

= 1
L

+∞∑
n,m=0

∑
2

∫
dy fn∗

GiL/R(y)Fn†
GiL/R (xµ)σµ←→∂µ

[
fm

GjL/R(y)Fm
GjL/R (xµ)

]
= 0 ,

∑
2

∫
dy F †

GiL/R

←→
∂4FGjR/L

= 1
L

+∞∑
n,m=0

∑
2

∫
dy fn∗

GiL/R(y)Fn†
GiL/R (xµ)

←→
∂4
[
fm

GjR/L(y)Fm
GjR/L (xµ)

]
= 0 ,

with ∀ i ̸= j ∈ {1, 2} , n,m ∈ N , y ∈ [0, LF ] ∪ (LF , L] from the orthogonality relations in
Eq. (6.38),

∑
2

∫
dy fn∗

GiL/R(y)fm
GjL/R(y) = 0 ,

∑
2

∫
dy fn∗

GiL/R(y)
←→
∂4 f

m
GjR/L(y) = 0 , (6.40)

where we use the equation from the EOM (6.11) [cf. Eq. (1.32)],

fn∗
GiL/R

←→
∂4 f

m
GjR/L = fn∗

GiL/R

[
(−/+)mF

Gjmf
m
GjL/R

]
−
[
(+/−)mF

Ginf
n∗
GiR/L

]
fm

GjR/L

= (−/+)
(
mF

Gjmf
n∗
GiL/Rf

m
GjL/R +mF

Ginf
n∗
GiR/Lf

m
GjR/L

)
. (6.41)

Considering the absence of bulk mass terms, the kinetic splitting (6.39) confirms the initial
scheme that FGiL/R (xµ, y) (i = 1, 2) contains two different 4D particles, such that the bulk

21. To be compact,
∑

2

∫
dy =̂

(∫ LF

0
+
∫ L

L+
F

)
dy.
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terms, LF
bulk (6.3), finally split into two generations,∑

2

∫
dy LF

bulk →
∑

i=1,2

∑
2

∫
dy LF

Gibulk , with LF
Gibulk = LF

Gikin . (6.42)

Then, let us integrate out the extra dimension and realize an effective 4D scenario.
Inserting the free KK decomposition Eq. (6.36), the orthonormalization conditions (6.38)
and the EOM of free profiles for each generation [cf. Eq. (1.32)], the bulk action terms,
SF

bulk (6.2) leads to the canonical kinetic terms for each generation (∀ i ∈ {1, 2}) of the 4D
fermion fields by the generation splitting (6.39)-(6.42),∑

2

∫
dy LF

Gikin =
∑

2

∫
dy

1
2
(
iF †

GiR
σµ←→∂µFGiR + iF †

GiL
σ̄µ←→∂µFGiL − F

†
GiR

←→
∂4FGiL + F †

GiL

←→
∂4FGiR

)

=
+∞∑

n=nF
L

i

2F
n†
GiL

σ̄µ←→∂µF
n
GiL +

+∞∑
n=nF

R

i

2F
n†
GiR

σµ←→∂µF
n
GiR

+
∑

2

∫
dy

1
2L

+∞∑
n,m=0

(
fn∗

GiL

←→
∂4 f

m
GiRF

n†
GiL

Fm
GiR + H.c.

)

=
+∞∑

n=nF
L

i

2F
n†
GiL

σ̄µ←→∂µF
n
GiL +

+∞∑
n=nF

R

i

2F
n†
GiR

σµ←→∂µF
n
GiR

−
+∞∑
n=1

mF
Gin

(
Fn†

GiL
Fn

GiR + Fn†
GiR

Fn
GiL

)
, (6.43)

with nF
L⟨R⟩ = 0⟨1⟩ or 1⟨0⟩ through two SM-like BBT configurations (6.7) respectively [the

lowest non-vanishing KK mode] 22, σF
1 : nF

L⟨R⟩ = 0⟨1⟩ ,

σF
2 : nF

L⟨R⟩ = 1⟨0⟩ ,

using diagonal relations derived from the ortho-normalization conditions (6.38) and the
relation in Eq. (6.41),

∑
2

∫
dy F †

GiL⟨R⟩σ̄
µ⟨σµ⟩

←→
∂µFGiL⟨R⟩ =

∑
2

∫
dy

1
L

+∞∑
n,m=0

fn∗
GiL⟨R⟩ f

m
GiL⟨R⟩ F

n†
GiL⟨R⟩σ̄

µ⟨σµ⟩
←→
∂µ F

m
GiL⟨R⟩

=
+∞∑

n=nF
L⟨R⟩

Fn†
GiL⟨R⟩σ̄

µ⟨σµ⟩
←→
∂µF

n
GiL⟨R⟩ ,

∑
2

∫
dy

1
2L

+∞∑
n,m=0

fn∗
GiL

←→
∂4 f

m
GiRF

n†
GiL

Fm
GiR = −

+∞∑
n=1

mF
GinF

n†
GiL

Fn
GiR ,

which contains a canonical formalism for the 4D effective kinetic terms and diagonal KK
mass terms as expected.

6.2.3 Quantum Description of 0-Modes

To end up the study of mass spectra and profiles, in this section, we study the explicit
0-mode profile solutions, satisfying the ortho-normalization conditions (6.38).

22. nF
L/R = 0 in the custodian configurations (6.31)-(6.33).
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First, zero modes over the whole domain for the SM-like profile f0
GiL/R

∣∣∣
ΩF

(y) (i = 1, 2)
are taken from Eq. (6.30) via the Heaviside step function (6.17), leading to non-vanishing
zero modes in the σF

1 BBT configuration (6.7),

f0
G1L

∣∣∣
ΩF

(y) = θ (y) θ (LF − y)
√

L

∆L1
F

cos ΩF e
iα10

F

+θ
(
y − L+

F

)
θ (L− y)

√
L

∆L2
F

sin ΩF e
iα20

F ,

f0
G2L

∣∣∣
ΩF

(y) = −θ (y) θ (LF − y)
√

L

∆L1
F

sin ΩF e
i(α10

F +δF )

+θ
(
y − L+

F

)
θ (L− y)

√
L

∆L2
F

cos ΩF e
i(α20

F +δF ) ,

(6.44)

and that in the σF
2 BBT configuration (6.7),

f0
G1R

∣∣∣
ΩF

(y) = θ (y) θ (LF − y)
√

L

∆L1
F

cos ΩF e
iα10

F

+θ
(
y − L+

F

)
θ (L− y)

√
L

∆L2
F

sin ΩF e
iα20

F ,

f0
G2R

∣∣∣
ΩF

(y) = −θ (y) θ (LF − y)
√

L

∆L1
F

sin ΩF e
i(α10

F +δF )

+θ
(
y − L+

F

)
θ (L− y)

√
L

∆L2
F

cos ΩF e
i(α20

F +δF ) ,

(6.45)

with arbitrary phases α1(2)0
F , δF and the relative phase angle ΩF ∈ [0, 2π) 23. The ortho-

normalizations (6.38) are basically guaranteed by two mathematical relations: cos ΩF sin ΩF

− sin ΩF cos ΩF = 0 and cos2 ΩF + sin2 ΩF = 1 .
From the ortho-normality (6.38) of above wave functions f0

GiL/R

∣∣∣
ΩF

(y) (i = 1, 2) and
the completeness relation

1
L

∑
2

∫
dy |y⟩⟨y| = 1 , (6.46)

we can show that (∀ i, j ∈ {1, 2})〈
p2

4,0Gj
(ΩF )

∣∣∣p2
4,0Gi

(ΩF )
〉

L/R
= 1
L

∑
2

∫
dy
〈
p2

4,0Gj
(ΩF )

∣∣∣y〉〈y∣∣∣p2
4,0Gi

(ΩF )
〉

L/R

= 1
L

∑
2

∫
dy f0∗

GjL/R

∣∣∣
ΩF

(y) f0
GiL/R

∣∣∣
ΩF

(y)

= δij , (6.47)

implying that
∣∣∣p2

4,0Gi
(ΩF )

〉
L/R

(i = 1, 2) are ortho-normalized via arbitrary angle ΩF ∈

[0, 2π). So, we can consider
∣∣∣p2

4,0Gi
(0)
〉

L/R
(i = 1, 2) as a set of ortho-normalized basis

23. Note that ΩF = π/2, 3π/2 will make generic solutions f0
G1(2)L

∣∣∣
ΩF

(y) (6.44)-(6.45) localized in the

second(first) sub-region. So, f0
GiL

∣∣
ΩF

(y) (i = 1, 2) will have wrong names according to their localization.
However, in the realistic case, this weird phenomenon will not happen since we can realize all reasonable
configurations without ΩF = π/2, 3π/2 and ΩF can be fixed by experimental quantities (see Section 6.3).
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states from the generic solutions (6.44)-(6.45),
f0

G1L/R

∣∣∣
0

(y) =
〈
y
∣∣∣p2

4,0G1
(0)
〉

L/R
= θ (y) θ (LF − y)

√
L

∆L1
F

,

f0
G2L/R

∣∣∣
0

(y) =
〈
y
∣∣∣p2

4,0G2
(0)
〉

L/R
= θ

(
y − L+

F

)
θ (L− y)

√
L

∆L2
F

,

(6.48)

which span a two-dimensional 0-mode Hilbert space. Indeed, the first generation profile〈
y
∣∣∣p2

4,0G1
(0)
〉

L/R
vanishes on the second sub-region (LF , L], while the second generation

profile
〈
y
∣∣∣p2

4,0G2
(0)
〉

L/R
vanishes on the first sub-region [0, LF ], as illustrated in Figure 6.3.

Then, Eq. (6.44)-(6.45) can re-written as developments on these basis elements (6.48),
thanks to Eq. (6.37),〈

y
∣∣∣p2

4,0G1(ΩF )
〉

L/R
= cos ΩF e

iα10
F

〈
y
∣∣∣p2

4,0G1(0)
〉

L/R

+ sin ΩF e
iα20

F

〈
y
∣∣∣p2

4,0G2(0)
〉

L/R
,〈

y
∣∣∣p2

4,0G2(ΩF )
〉

L/R
= − sin ΩF e

i(α10
F +δF )〈y∣∣∣p2

4,0G1(0)
〉

L/R

+ cos ΩF e
i(α20

F +δF )〈y∣∣∣p2
4,0G2(0)

〉
L/R

, (6.49)

which can be illustrated geometrically in the case of vanishing complex phases, i.e. α10
F =

α20
F = δF = 0 . This is what we perform in Figure 6.2, using

∣∣∣p2
4,0G1(2)

(0)
〉

L/R
as two

ortho-normal basis vector representations with coordinates (1, 0) and (0, 1) respectively.
Then, the angle ΩF can be interpreted as the projection angle made by

∣∣∣p2
4,0G1(2)

(ΩF )
〉

L/R

with respect to these basis elements.

In the absence of complex phases, we can also see the decomposition equation (6.49)
as a basis rotation from the initial basis states

∣∣∣p2
4,0Gi

(0)
〉

L/R
(i = 1, 2) into another pair

of ortho-normal states
∣∣∣p2

4,0Gi
(ΩF )

〉
L/R

(i = 1, 2) with respect to the rotation angle ΩF :


∣∣∣p2

4,0G1
(ΩF )

〉
L/R∣∣∣p2

4,0G2
(ΩF )

〉
L/R

 =

 cos ΩF sin ΩF

− sin ΩF cos ΩF



∣∣∣p2

4,0G1
(0)
〉

L/R∣∣∣p2
4,0G2

(0)
〉

L/R

 . (6.50)

In Figure 6.3, we represent the fermion profiles corresponding to the quantum states
of the Hilbert space shown in Figure 6.2. Clearly, the angle ΩF controls the location of
the two fermion profiles with respect to the intermediate BBT brane at y = LF . In this
sense, the partition mechanism arranges the location of the various flavors along the extra
dimension. Similarly, we can directly extend our partition mechanism to the realistic case
of 3 flavors, by introducing two intermediate branes via certain BBT (see Section 6.2.1.1).
Then, a similar formalism will induce a 3-dimensional Hilbert space for the zero modes.
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Figure 6.2 – Basis rotation (6.48) in the 0-mode Hilbert space with respect to a rotation
angle ΩF (6.50).

In particular, according to the localization, we can span the 0-mode Hilbert space by
two kinds of basis states,

f0
I(II)L/R =̂

〈
y
∣∣∣p2

4,0G1(2)
(0)
〉

L/R
, ΩF = 0 ,

f0
a(b)L/R =̂

〈
y
∣∣∣p2

4,0a(b)

〉
L/R

, ΩF ̸=
kπ

2 (k ∈ N) ,
(6.51)

which refers to existing definitions in Eq. (6.37)-(6.48). f0
GiL/R (y) [i = 1, 2, G1(2) = I(II)]

include two generations with the zero mode localized in the two regions respectively with
the corresponding 4D fields F 0

GiL/R (xµ) [i = 1, 2, G1(2) = I(II)]. In contrast, f0
GiL/R (y)

[i = 1, 2, G1(2) = a(b)] include two generations with the zero mode propagating in the whole
region [0, LF ]∪(LF , L] with the corresponding 4D fields F 0

GiL/R (xµ) [i = 1, 2, G1(2) = a(b)].
Then, we present explicit non-zero modes in Table 6.1.

Finally, in Figure 6.4, we draw the two localized SM-like zero modes of F = Q, D
[i.e. ΩQ = ΩD = 0 (6.51)] in two SM-like BBT configurations (6.7) respectively (σQ

1 and
σD

2 ) presented in in Eq. (6.44)-(6.45) with a shifted intermediate brane (LQ ̸= LD), in the
simple real case, α10

F = α20
F = δF = 0. In contrast, in Figure 6.5, we draw SM flavors with

a unique intermediate brane LQ = LD and ΩQ,D ̸=
kπ

2 (k ∈ N) (6.51). Therefore, both of
these two scenarios will allow to realize a flavor mixing in two different approaches as will
be discussed when we will introduce the bulk Yukawa couplings.
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 BBT

0 LF L

First Generation Second Generation

Figure 6.3 – Two pairs of profiles corresponding to
〈
y
∣∣∣p2

4,0Gi
(0)
〉

L/R
(i = 1, 2) (6.48)

and
〈
y
∣∣∣p2

4,0Gi
(ΩF )

〉
L/R

(i = 1, 2) respectively, before and after a rotation of angle ΩF in
Eq. (6.50), which exactly matches the rotation in the Hilbert space visualized in Figure 6.2
(same solid/dash-dot and color codes are used).

6.2.4 Introducing the Fermion Currents

Let us now discuss the probability currents. The global U(1)F symmetry of the field,
letting LF

bulk invariant, acts as,

F 7→ eiαF , F̄ 7→ e−iαF̄ , (6.52)

where α ∈ R is a continuous constant phase. Based on the global gauge symmetry and the
bulk EOM (6.11), the Noether’s theorem predicts the local conservation relation holding
over the the entire domain I1,

∂MjM
F = 0 , (6.53)

for the conserved probability current,

jM
F = −αF̄ ΓMF , (6.54)

as derived in details within the Appendix F. By the way, the addition of the SB (6.5) part,
which is a U(1)F invariant form, to SF

bulk is not affecting the current equations (6.53)-
(6.54). Nevertheless, we can check that j4

F |0,L1
F ,L+

F ,L is well vanishing due to the Dirichlet
BC for FL/R (6.13) 24, which forces j4

F to be continuous on the entire domain I1 including
intermediate branes. Therefore, the BBT play the role of making the probability current
j4

F vanish at the associated intermediate branes.

24. The vanishing can be derived clearly from the chiral form of j4
F (6.54) in Eq. (3.23).
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σF Fields
Generations

fn
G1L/R(y)Fn

G1L/R (xµ) , n ∈ N∗ fn
G2L/R(y)Fn

G2L/R (xµ) , n ∈ N∗

σF
1

FL
fn

G1L(y)/eiα1n
F , n ∈ N∗ fn

G2L(y)/eiα2n
F , n ∈ N∗

θ (y) θ (LF − y)
√

2 cos
(
mF

G1n y
)

θ
(
y − L+

F

)
θ (L− y)

√
2 cos

[
mF

G2n (y − LF )
]

FR
fn

G1R(y)/eiα1n
F , n ∈ N∗ fn

G2R(y)/eiα2n
F , n ∈ N∗

−θ (y) θ (LF − y)
√

2 sin
(
mF

G1n y
)
−θ
(
y − L+

F

)
θ (L− y)

√
2 sin

[
mF

G2n (y − LF )
]

σF
2

FL
fn

G1L(y)/eiα1n
F , n ∈ N∗ fn

G2L(y)/eiα2n
F , n ∈ N∗

θ (y) θ (LF − y)
√

2 sin
(
mF

G1n y
)

θ
(
y − L+

F

)
θ (L− y)

√
2 sin

[
mF

G2n (y − LF )
]

FR
fn

G1R(y)/eiα1n
F , n ∈ N∗ fn

G2R(y)/eiα2n
F , n ∈ N∗

θ (y) θ (LF − y)
√

2 cos
(
mF

G1n y
)

θ
(
y − L+

F

)
θ (L− y)

√
2 cos

[
mF

G2n (y − LF )
]

∣∣∣mF
G1n

∣∣∣ , n ∈ N∗
∣∣∣mF

G2n

∣∣∣ , n ∈ N∗
KK

Masses nπ

∆L1
F

, n ∈ N∗ nπ

∆L2
F

, n ∈ N∗

Table 6.1 – Two sets of SM-like BBT configurations (6.7) induce respectively two gener-
ations of SM-like free fermionic fn

G1(2)L/R(y) (n ∈ N∗) profiles – ortho-normalized (6.38)
up to the indicated complex phases – on the entire domain, I1 = [0, LF ] ∪ (LF , L], corre-
sponding to the solution in Eq. (6.30). The associated mass spectrum (6.32) is included
as well for completeness. The non-zero mode profiles are given for the two generations
localized in the first and the second region respectively.

6.2.5 Interpretation of the Partition Mechanism

Theoretically, the partition mechanism must be interpreted along the following words.
At low energies, the three flavors of particles of the SM (quarks and leptons) appear to
be three distinct particles. It is an illusion in the sense that at high energies – where
one can ‘feel’ and test the extra dimension – the three flavors represent in fact three
different position states along extra dimension(s) of a unique higher-dimensional field.
This mechanism thus provides an explanation for the identical quantum numbers of the
three flavor fields, or in other words, for the existence itself of flavors as coming from a
replication of fermions with the same origin.

The different masses of the three flavors of particles allow to distinguish them at low
energies and originate in this model from the various flavor wave function overlaps with
the Higgs boson profile. The SM fermion mass hierarchy is easily implemented from an
exponential Higgs profile.

Now, the experimental signature of the present scenario would be to detect three KK
fermion towers – with three different KK spectra – associated to the three position states
(three flavors). There is also a possible kind of measurement distinguishing this scenario
with a model explaining the fermion mass hierarchies but not the three flavor appearance,
like the framework with a higher-dimensional field introduced for each generation together
with a bulk mass to control the fermion profile overlaps with a brane-localized Higgs boson
(as inspired by the now standard mechanism studied within the context of a warped extra
dimension): it is the gap of separation between two consecutive KK fermion masses.
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  q 0
L        d 0

R  
  q 0

L        d 0
R   

 BBT

0 LD LQ L

First Generation Second Generation

Figure 6.4 – Two ortho-normalized (6.38) generations of SM-like zero-mode wave func-
tions, f0

I(II)L/R (6.51) (f = q, d), obtained by two sets of SM-like BBT configurations
σQ

1 , σD
2 (6.7) respectively along the entire domain, I1 = [0, LF ] ∪ (LF , L] (F = Q, D),

corresponding to localized free solutions of Eq. (6.44)-(6.45) (ΩQ,D = 0) with a shifted
intermediate BBT brane LD < LQ, in the simplified case, α10

F = α20
F = δF = 0.

Indeed, this gap is constant at any nth (n ∈ N) KK level:

∆
∣∣∣mF

n

∣∣∣ =
∣∣∣mF

n+1

∣∣∣− ∣∣∣mF
n

∣∣∣ = π

∆LF
, (6.55)

in our model [see the spectra (6.32)-(6.33) of both types of chirality], while it is not regular
when affected by a bulk fermion mass [see the spectrum in Eq. (6.64)]. In our model, the
three towers of KK fermion excitations, at different locations along the extra dimension,
also possess exponentially different 4D effective couplings with the Higgs boson being
located towards a boundary (or with the KK gauge bosons close to the TeV-brane in
the mentioned warped model), which might also help to discriminate with other higher-
dimensional mass models.

6.2.6 Introduce Bulk Masses

After the bulk massless fields investigation in the last section, we can add another bulk
mass terms to the bulk kinetic terms (6.3),

LF
bulk = LF

kin + LF
mass , with LF

mass = −m̃F F̄F , (6.56)

where m̃F is the bulk mass of the fermion F , which is a constant on each segment as

m̃F (y) =

 m̃1
F , y ∈ [0, LF ] ,

m̃2
F , y ∈ (LF , L] .

(6.57)

such that ∂4m̃F = 0 on the whole physical domain, y ∈ I1 = [0, LF ] ∪ (LF , L]. The mass
terms LF

mass (6.56), can also be rewritten via the chiral decomposition (1.17) as,

LF
mass = −m̃F

(
F †

LFR + F †
RFL

)
= −m̃F

(
sFLFR + sFRFL

)
. (6.58)
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 BBT
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Figure 6.5 – Two ortho-normalized (6.38) generations of SM-like zero-mode wave functions,
f0

a(b)L/R (6.51) (f = q, d), obtained by two sets of SM-like BBT configurations σQ
1 , σD

2 (6.7)
respectively along the entire domain, I1 = [0, LF ] ∪ (LF , L] (F = Q, D), corresponding
to non-localized free solutions of Eq. (6.44)-(6.45) [ΩQ,D ̸=

kπ

2 (k ∈ N)] with a unique
intermediate BBT brane LQ = LD, in the simplified case, α10

F = α20
F = δF = 0.

The least action principle is applied to

SF
bulk + SF

B ,

where SF
bulk is constituted of LF

bulk (6.56) via Eq. (6.2), and - after the similar process in
Eq. (6.9) - leads to the bulk EOM with the piece-wise constant bulk mass m̃F (6.57),

∀xµ, y ∈ I1 = [0, L1
F ] ∪ (LF , L] ,

(
iΓM∂M − m̃F

)
F = 0 , (6.59)

and the NBC remain identical to Eq. (6.13). Then, following the same procedure in the
bulk massless case (see Section 6.2.2), inserting the 5D factorization (6.14) and the 4D
Dirac equations (1.25) into the 5D EOM (6.59) and NBC (6.13), one directly obtains the
EOM for the profiles on [0, LF ] ∪ (LF , L]:

∀n ∈ N,


(
∂4 + m̃i

F

)
fn

L(y)−mF
n f

n
R(y) = 0 ,(

∂4 − m̃i
F

)
fn

R(y) +mF
n f

n
L(y) = 0 ,

(6.60)

which can be combined into the decoupled second order equations,

∀n ∈ N, ∂2
4f

n
L/R(y) +

[
−
(
m̃i

F

)2
+
(
mF

n

)2
]
fn

L/R(y) = 0 , (6.61)

which are the regular Sturm-Liouville equations on the two segments [0, LF ] ∪ (LF , L] for
i = 1, 2 independently. Firstly, the continuous SM-like profiles and the mass spectrum
on y ∈ [0, LF ] can be derived via two SM-like BBT configurations (6.7) (cf. Appendix J)
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as the following two possible sets of chiral profiles together with the associated KK mass
spectrum 25,

1)


(++) : f0

L(y) = NF 10
1 e−m̃1

F y, fn
L(y) = NF 1n

1 cos
[√

(mF
n )2 −

(
m̃1

F

)2
y + ζF 1

n

]
, n ∈ N∗,

(−−) : f0
R(y) = 0, fn

R(y) = −NF 1n
1 sin

[√
(mF

n )2 −
(
m̃1

F

)2
y

]
, n ∈ N∗,

(6.62)

2)


(−−) : f0

L(y) = 0, fn
L(y) = NF 1n

2 sin
[√

(mF
n )2 −

(
m̃1

F

)2
y

]
, n ∈ N∗,

(++) : f0
R(y) = NF 10

2 em̃1
F y, fn

R(y) = NF 1n
2 cos

[√
(mF

n )2 −
(
m̃1

F

)2
y − ζF 1

n

]
, n ∈ N∗,

(6.63)
where the argument ζF 1

n (n ∈ N∗) is defined as,

sin
(
ζF 1

n

)
=̂ m̃1

F

mF
n

, cos
(
ζF 1

n

)
=̂

√
(mF

n )2 −
(
m̃1

F

)2
mF

n

,

and the associated mass spectrum reads,

∣∣∣mF
n

∣∣∣ =


0 , n = 0 ,√√√√[ nπ

∆L1
F

]2

+
(
m̃1

F

)2
, n ∈ N∗ ,

(6.64)

which is parameterized by the bulk mass and the associated length and recovers the results
of profiles and the mass spectrum in Eq. (6.32) in the bulk massless limit (m̃F → 0).

In analogy to the bulk mass case in Section 6.2.2, based on the localization and the
quantum superposition principle, the complete 5D field FL/R (xµ, y) should still be written
as Eq. (6.35)-(6.36), including two generations FGiL/R (xµ, y) (i = 1, 2). Note that the
EOM with bulk masses (6.59) remains the linearity as the bulk massless one in Eq. (6.11),
while homogeneous boundary conditions exactly remain identical to Eq. (6.13). Similarly,
zero mode profile f0

GiL/R

∣∣∣
ΩF

(y) (i = 1, 2) is still labeled by a rotation angle ΩF ∈ [0, 2π),
which will be described later in the precise solutions (6.74)-(6.75). In analogy to Eq. (6.64),
the KK mass spectra for two SM-like generations are explicitly determined by,

∣∣∣mF
G1(2)n

∣∣∣ =


0 , n = 0 ,√√√√[ nπ

∆L1(2)
F

]2

+
[
m̃

1(2)
F

]2
, n ∈ N∗ .

(6.65)

Following the same comments in Section 6.2.2, one can not build more than 2 (families
of) orthogonal fields satisfying the ortho-normalization conditions of Eq. (6.38), which can
be justified by injecting firstly to the kinetic terms LF

kin (6.4). However, the kinetic terms
would no longer split as in Eq. (6.39) but with non-diagonal terms,∑

2

∫
dy LF

kin →
∑

i=1,2

∑
2

∫
dy LF

Gikin + non-diagonal terms ,

with LF
Gikin = 1

2
(
iF †

GiR
σµ←→∂µFGiR + iF †

GiL
σ̄µ←→∂µFGiL − F

†
GiR

←→
∂4FGiL + F †

GiL

←→
∂4FGiR

)
,

(6.66)

25. To be clear, normalization factors N F in
a and argument ζF i

n , i = 1, 2 – region label, n ∈ N – KK
mode, a = 1, 2 – type of solutions.
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while non-diagonal kinetic terms read as,∑
i ̸=j∈{1,2}

∑
2

∫
dy

1
2
(
iF †

GiR
σµ←→∂µFGjR + iF †

GiL
σ̄µ←→∂µFGjL − F †

GiR

←→
∂4FGjL + F †

GjL

←→
∂4FGiR

)

=
∑

i ̸=j∈{1,2}

 i

2L

+∞∑
n,m=0

(∑
2

∫
dy fn∗

GiR f
m
GjR

)
Fn†

GiR
(xµ)σµ←→∂µF

m
GjR (xµ)

+ i

2L

+∞∑
n,m=0

(∑
2

∫
dy fn∗

GiL f
m
GjL

)
Fn†

GiL
(xµ) σ̄µ←→∂µF

m
GjL (xµ)


+

∑
i ̸=j∈{1,2}

 1
2L

+∞∑
n,m=0

(∑
2

∫
dy fn∗

GiL

←→
∂4 f

m
GjR

)
Fn†

GiL
(xµ)Fm

GjR (xµ) + H.c.


=

∑
i ̸=j∈{1,2}

 +∞∑
n,m=0

(
1

2L
∑

2

∫
dy fn∗

GiL

←→
∂4 f

m
GjR

)
Fn†

GiL
(xµ)Fm

GjR (xµ) + H.c.


=

∑
i ̸=j∈{1,2}

 +∞∑
n,m=0

(
1
L

∑
2

∫
dy m̃F f

n∗
GiL f

m
GjR

)
Fn†

GiL
(xµ) Fm

GjR (xµ) + H.c.


=

∑
i ̸=j∈{1,2}

∑
2

∫
dy m̃F

(
F †

GiL
FGjR + H.c.

)
, (6.67)

where the orthogonal relation (6.38) is inserted and
1

2L
∑

2

∫
dy fn∗

GiL

←→
∂4 f

m
GjR = 1

L

∑
2

∫
dy fn∗

GiL ∂4f
m
GjR −

1
2L

∑
2

∫
dy ∂4

(
fn∗

GiL f
m
GjR

)
= 1
L

∑
2

∫
dy fn∗

GiL ∂4f
m
GjR −

1
2L

(
fn∗

GiL f
m
GjR

∣∣∣LF

0
+ fn∗

GiL f
m
GjR

∣∣∣L
L+

F

)
= 1
L

∑
2

∫
dy fn∗

GiL ∂4f
m
GjR

= 1
L

∑
2

∫
dy fn∗

GiL

(
m̃F f

m
GjR −mF

Gin f
m
GjL

)
= −mF

Gin δGiGj δnm + 1
L

∑
2

∫
dy m̃F f

n∗
GiL f

m
GjR , (6.68)

with the Dirichlet BC (6.13) for fn
GiL

or fm
GjR inserted at y = 0, LF , L

+
F , L.

The similar generation splitting procedure exists in the mass terms, LF
mass (6.58),∑

2

∫
dy LF

mass →
∑

i=1,2

∑
2

∫
dy LF

Gimass + non-diagonal terms ,

with LF
Gimass = −m̃F

(
F †

GiL
FGiR + F †

GiR
FGiL

)
, (6.69)

with non-diagonal mass terms,∑
i ̸=j∈{1,2}

∑
2

∫
dy (−m̃F )

(
F †

GiL
FGjR + H.c.

)
. (6.70)

Finally, the bulk terms, Lbulk (6.3), split into two generations again,∑
2

∫
dy Lbulk →

∑
i=1,2

∑
2

∫
dy LF

Gibulk ,

with LF
Gibulk = LF

Gikin + LF
Gimass , (6.71)
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since non-diagonal kinetic (6.67) and mass (6.70) terms cancel each other fortunately.
This cancellation is interestingly non-trivial especially for the generation splitting form
of FG1L/R (xµ, y) and FG2L/R (xµ, y) whose ΩF ̸=

kπ

2 (k ∈ N) [i.e. G1(2) = a(b) (6.51)] in
Eq. (6.74)-(6.75) and in turn non-diagonal kinetic (6.67) and mass (6.70) terms do not
vanish to zero.

Analogy to the calculation in the bulk massless case (6.43),
∑

2

∫
dy LF

Gikin is modified

due to the additional bulk masses in the EOM (6.60) for each generation,

∑
2

∫
dy LF

Gikin =
∑

2

∫
dy

1
2
(
iF †

GiR
σµ←→∂µFGiR + iF †

GiL
σ̄µ←→∂µFGiL − F

†
GiR

←→
∂4FGiL + F †

GiL

←→
∂4FGiR

)

=
+∞∑

n=nF
L

i

2F
n†
GiL

σ̄µ←→∂µF
n
GiL +

+∞∑
n=nF

R

i

2F
n†
GiR

σµ←→∂µF
n
GiR

+
∑

2

∫
dy

1
2L

+∞∑
n,m=0

(
fn∗

GiL

←→
∂4 f

m
GiRF

n†
GiL

Fm
GiR + H.c.

)

=
+∞∑

n=nF
L

i

2F
n†
GiL

σ̄µ←→∂µF
n
GiL +

+∞∑
n=nF

R

i

2F
n†
GiR

σµ←→∂µF
n
GiR

−
+∞∑
n=1

mF
Gin

(
Fn†

GiL
Fn

GiR + H.c.
)

+
∑

2

∫
dy m̃F

(
F †

GiL
FGiR + H.c.

)
,

with nF
L⟨R⟩ = 0⟨1⟩ or 1⟨0⟩ , (6.72)

where the relation (6.68) is inserted. Combining with the mass terms in Eq. (6.69), one
can obtain the 4D Lagrangian,∑

2

∫
dy LF

Gibulk =
∑

2

∫
dy

(
LF

Gikin + LF
Gimass

)

=
+∞∑

n=nF
L

i

2F
n†
GiL

σ̄µ←→∂µF
n
GiL +

+∞∑
n=nF

R

i

2F
n†
GiR

σµ←→∂µF
n
GiR

−
+∞∑
n=1

mF
Gin

(
Fn†

GiL
Fn

GiR + Fn†
GiR

Fn
GiL

)
, (6.73)

which maintains the same formalism as the bulk massless case (6.42)-(6.43) with the bulk
masse m̃F involved in KK masses mF

Gin
.

As the end of this section, we study explicit profile solutions, satisfying the ortho-
normalization conditions (6.38). First, zero modes over the whole domain for the SM-like
profile f0

GiL/R

∣∣∣
ΩF

(y) (i = 1, 2) are taken from Eq. (6.62)-(6.63) via the Heaviside step
function (6.17) with an additional ingredient from different bulk masses m̃F (y) (6.57)
depending on the region, leading to non-vanishing zero modes in the σF

1 BBT configura-
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tion (6.7),

f0
G1L

∣∣∣
ΩF

(y) = θ (y) θ (LF − y)
√

2 m̃1
F L

1− e−2m̃1
F ∆L1

F

cos ΩF e
iα10

F e−m̃1
F y

+θ
(
y − L+

F

)
θ (L− y)

√
2 m̃2

F L

1− e−2m̃2
F ∆L2

F

sin ΩF e
iα20

F e−m̃2
F (y−LF ) ,

f0
G2L

∣∣∣
ΩF

(y) = −θ (y) θ (LF − y)
√

2 m̃1
F L

1− e−2m̃1
F ∆L1

F

sin ΩF e
i(α10

F +δF ) e−m̃1
F y

+θ
(
y − L+

F

)
θ (L− y)

√
2 m̃2

F L

1− e−2m̃2
F ∆L2

F

cos ΩF e
i(α20

F +δF ) e−m̃2
F (y−LF ) ,

(6.74)
and that in the σF

2 BBT configuration (6.7),

f0
G1R

∣∣∣
ΩF

(y) = θ (y) θ (LF − y)
√

2 m̃1
F L

e2m̃1
F ∆L1

F − 1
cos ΩF e

iα10
F em̃1

F y

+θ
(
y − L+

F

)
θ (L− y)

√
2 m̃2

F L

e2m̃2
F ∆L2

F − 1
sin ΩF e

iα20
F em̃2

F (y−LF ) ,

f0
G2R

∣∣∣
ΩF

(y) = −θ (y) θ (LF − y)
√

2 m̃1
F L

e2m̃1
F ∆L1

F − 1
sin ΩF e

i(α10
F +δF ) em̃1

F y

+θ
(
y − L+

F

)
θ (L− y)

√
2 m̃2

F L

e2m̃2
F ∆L2

F − 1
cos ΩF e

i(α20
F +δF ) em̃2

F (y−LF ) ,

(6.75)
with arbitrary phases α1(2)0

F , δF and the relative phase angle ΩF ∈ [0, 2π), which can
generate a rotation in zero mode Hilbert space as the bulk massless case in Eq. (6.50).
Moreover, f0

GiL/R (i = 1, 2) recovers the bulk massless results in Eq. (6.44)-(6.45) in the
zero bulk mass limit. Zero mode profiles in Eq. (6.44)-(6.45) would be tuned from piece-
wise constants to exponential curves by m̃F (6.57) to achieve one more step closer to our
final goal to realize the flavor mass hierarchy. In Table 6.2, we present the explicit non-zero
modes over the whole domain for the SM-like profile fn

GiL/R(y) (n ∈ N∗, i = 1, 2) taken
from Eq. (6.62)-(6.63) analogy to Table 6.1, with arguments ζF i

n (n ∈ N∗, i = 1, 2),

sin
[
ζF 1(2)

n

]
=̂ m̃

1(2)
F

mF
G1(2)n

, cos
[
ζF 1(2)

n

]
=̂

√[
mF

G1(2)n

]2
−
[
m̃

1(2)
F

]2
mF

G1(2)n

,

where Gi (i = 1, 2) is the generation label.

Finally, in Figure 6.6, we draw the two SM-like zero modes of F = Q, D in two SM-like
BBT configurations (6.7) respectively presented in Eq. (6.74)-(6.75) within the simple real
case, α10

F = α20
F = δF = 0.

6.3 Mass Hierarchy and Mixing Model
Once the free flavor model is addressed via the BBT in Section 6.2.2, the fermion

generation splitting mechanism is revealed together with the associated profiles and mass
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Table 6.2 – Two sets of SM-like BBT configurations (6.7) induce respectively two
generations of SM-like free fermionic fn

GiL/R(y) (n ∈ N∗, i = 1, 2) profiles – ortho-
normalized (6.38) up to the indicated complex phases – on the entire domain, I1 =
[0, LF ] ∪ (LF , L], corresponding to the solution in Eq. (6.62)-(6.63). The associated mass
spectrum (6.32) is included as well for completeness. The non-zero mode profiles are given
for the two generations localized in the first and the second region respectively.

spectra. Then, let us now introduce the bulk Higgs scalar field H (mass dimension 3/2)
(cf. Section 1.2) to study the presence of the bulk Yukawa couplings, which would further
induce the fermion mass hierarchy.

6.3.1 SM-like Fermion Content

In analogy to the interval case in Section 3.2.2, let us introduce the minimal spin-3/2
fermion field content (cf. Section 6.2.1.2) which allows to write down a bulk SM Yukawa-
like coupling between zero mode fermions (of different chiralities) and the bulk Higgs
scalar – spin-0 – field (cf. Section 1.2). It is constituted by a pair of fermion fields called
Q and D, potentially splitting into two generations. Those particles propagate along the
interval I1 (see Section 6.2.1.1) but with individual intermediate branes at y = LQ, LD

respectively, i.e.
I1 = [0, LQ] ∪ (LQ, L] = [0, LD] ∪ (LD, L] ,

as we have in mind an extension of this toy model to a realistic SM scenario with three gen-
erations where Q,D will represent respectively the SU(2)L gauge doublet down-component
quark and the singlet down-quark. The lengths of the two segments for Q and D respec-
tively are denoted respectively as in Eq. (6.1) with F = Q,D.

To be simple, we consider the bulk massless 5D fermion fields with the bulk Lagrangian
density,

LF
bulk = LF

kin , F = Q,D ,
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Figure 6.6 – Two ortho-normalized (6.38) generations of SM-like zero-mode wave func-
tions, f0

G1(2)L/R(y) [G1(2) = I(II), a(b), f = q, d], obtained by two sets of SM-like BBT
configurations σQ

1 , σD
2 (6.7) respectively along the entire domain, I1 = [0, LF ] ∪ (LF , L]

(F = Q, D), corresponding to the free solutions of Eq. (6.74)-(6.75) in the simplified case,
α10

F = α20
F = δF = 0, bulk masses m̃i

F < 0 (i = 1, 2).

which constitute the bulk action via Eq. (6.2) as

Sbulk =
∑

F =Q,D

SF
bulk . (6.76)

The individual kinetic Lagrangian density LF
kin is presented in Eq. (6.3).

The BBT – inducing the intermediate branes at y = LQ, LD (see Figure 6.7) would
also be a double replica for Q and D respectively as

SB =
∑

F =Q,D

SF
B , (6.77)

where SF
B is the individual BBT for F = Q,D and the dimensionless BBT signs are

selected as the chiral SM configuration σQ
1 and σD

2 in Eq. (6.7) such that only QL and DR

would be non-vanishing for the zero mode (see Section 6.2.2).

6.3.2 Yukawa Interactions

We consider the following bulk Yukawa interactions up to dimension 11/2 allowing
to study the phenomenology induced by the coupling of the bulk Higgs scalar field (cf.

152



Section 1.2) and bulk fermions regarding to the distribution of intermediate branes at
y = LQ, LD in Figure 6.7 (LQ ̸= LD) and Figure 6.8 (LQ = LD) 26,

SY =
∫
d4x

∑
D,Q

∫
dy LY (xµ, y) ,

with LY = −Y5 Q
†
LHDR − Y5 Q

†
R HDL + H.c. . (6.78)

When calculating the fermion mass spectrum, we restrict our considerations to the VEV
function v(y) (1.11) of the bulk Higgs scalar field H. Based on the spontaneous Z2 sym-
metry breaking in Eq. (1.7), the complete Yukawa sector reads as,

SY = SX + ShQD .

We concentrate our attention on SX potentially generating mass terms,

SX =
∫
d4x

∑
D,Q

∫
dy LX(xµ, y) ,

with LX = −X Q†
LDR −X Q†

R DL + H.c. , (6.79)

with the compact Yukawa coupling notations

X(y) =̂ v(y)Y5√
2

. (6.80)

The complete toy model studied for the fermion mass hierarchy is characterized by the
action

S5D = Sbulk + SB + SX , (6.81)

where the bulk action terms Sbulk (6.76) consist of the kinetic terms for both of the 5D
fields Q and D since we only consider the bulk massless case. Moreover, SB involves the
BBT for F = Q,D, allowing to deduce the free profile solutions of Q and D respectively
as in Section 6.2. Then, we take into account of the Yukawa action part SX (6.79) and
present a perturbation method to obtain the physical mass including the effects of the
Yukawa terms for two generation fermions in Section 6.3.3.

6.3.3 Mass Matrix & Hierarchy

In the 5D approach, the EOM is coupled to the bulk Yukawa coupling, which would
cause great difficulty for an analytical solution. On the other hand, we have in mind that
the interactions of the bulk Higgs scalar field with the bulk fermions can be treated in
perturbation theory, as usual in the quantum field theory. Since the zero modes provide
the main contribution to the physical flavor basis, we approximately take the zero modes as
the SM flavor basis for the SU(2)L gauge doublet down-component quark Q and the singlet
down-quark D respectively. Thus, the 4D effective kinetic Lagrangian for generation Gi

26. To be compact,

∑
D,Q

∫
dy =̂



(∫ LD

0
+
∫ LQ

L+
D

+
∫ L

L+
Q

)
dy , LQ ̸= LD ,

(∫ LQ,D

0
+
∫ L

L+
Q,D

)
dy , LQ = LD .
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(i = 1, 2) of the fermion field F = Q,D in Eq. (6.43) can be simplified as [via the chiral
SM configuration σQ

1 and σD
2 in Eq. (6.7)],

∑
2

∫
dy LF

Gikin ∼


i

2Q
0†
GiL

σ̄µ←→∂µQ
0
GiL

, F = Q ,

i

2D
0†
GiR

σµ←→∂µD
0
GiR

, F = D ,

(6.82)

so all physical masses in the complete action S5D (6.81) must come from the Yukawa
terms (6.79). We need to emphasize that the SB (6.77) will not contribute to the mass
eigenvalues in the perturbation approach since it leads to the Dirichlet BC for free KK
wave functions in one chirality at intermediate branes at y = 0, LF , L

+
F , L (F = Q,D) [see

Eq. (6.13)], which can be seen clearly in its chiral form of Eq. (6.5) and has also been
highlighted in the simple interval scenario (see Section 3.2.3).

The Yukawa mass terms SX (6.79) – inserting the generation splitting relation (6.35)
and the KK decomposition (6.36) – can be rewritten with zero modes as,

∑
D,Q

∫
dy LX ∼ −

∑
D,Q

∫
dy

 ∑
i,j∈{1,2}

X(y)
L

q0∗
GiLd

0
GjRQ

0†
GiL

D0
GjR + H.c.


= −

[
Q0†

G1L Q0†
G2L

]
M
[
D0

G1R

D0
G2R

]
+ H.c. , (6.83)

where the physical mass matrix M reads,

M =
[
M11 M12
M21 M22

]
, (6.84)

with Mij (i, j ∈ {1, 2}) defined as the overlap of q0
GiL

(6.44), d0
GjR (6.45) and the Higgs

VEV v(y) under the configuration presented in Figure 6.7 (LQ ̸= LD) and Figure 6.8
(LQ = LD) schematically,

Mij =̂
∑
D,Q

∫
dy

X(y)
L

q0∗
GiLd

0
GjR , i, j ∈ {1, 2} . (6.85)

with explicit formalism of Mij (6.84) in Appendix K.

Finally, the mass eigenvalues can be determined by bidiagonalizing the mass matrix,
M (6.84) with the associated characteristic equation,

det
(
M†M−M2

Gi
I
)

= 0 .

whereMGi (i = 1, 2) is the physical mass eigenvalue for the ith (i = 1, 2) fermion generation
with the analytic formula,

|MG1 | =

√√√√√ |M|2 −
√(
|M11|2 + |M21|2 − |M12|2 − |M22|2

)2
+ 4 |M∗

11M12 +M∗
21M22|2

2 ,

|MG2 | =

√√√√√ |M|2 +
√(
|M11|2 + |M21|2 − |M12|2 − |M22|2

)2
+ 4 |M∗

11M12 +M∗
21M22|2

2 .

(6.86)
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Figure 6.7 – Two generations of otho-normalized zero-mode wave functions, q0
I(II)L(y),

d0
I(II)R(y) (6.51), along the entire domain, corresponding to the free solutions in the sim-

plified real case and the BBT as well as the bulk Higgs VEV function, v(y) (1.11), are
indicated on the graph. The positions of the intermediate branes are chosen as LD < LQ.

with

|M|2 = |M11|2 + |M12|2 + |M21|2 + |M22|2 .

6.3.3.1 Localized SM Flavors

For localized solutions of q0
I(II)L(y), d0

I(II)R(y) (6.51) presented in Figure 6.7 (LD <

LQ), elements of mass matrix M (6.84) can be derived as (cf. Appendix K),

M11 = N11 ei(α10
D −α10

Q ) ,

M22 = ei(δD−δQ)N22 ei(α20
D −α20

Q ) ,

M12 = eiδD N12 ei(α20
D −α10

Q ) ,

M21 = 0 ,

(6.87)
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Figure 6.8 – Two generations of otho-normalized zero-mode wave functions, q0
a(b)L(y),

d0
a(b)R(y) (6.51), along the entire domain, corresponding to the free solutions in the sim-

plified real case and the BBT as well as the bulk Higgs VEV function, v(y) (1.11), are
indicated on the graph. The positions of the intermediate branes are chosen as LD = LQ.

and the mass eigenvalues can be derived via Eq. (6.86),

|MG1 | =

√√√√√ |N11|2 + |N12|2 + |N22|2 −
√(
|N11|2 − |N12|2 − |N22|2

)2
+ 4 |N11|2 |N12|2

2 ,

|MG2 | =

√√√√√ |N11|2 + |N12|2 + |N22|2 +
√(
|N11|2 − |N12|2 − |N22|2

)2
+ 4 |N11|2 |N12|2

2 .

(6.88)
where we have used coefficients Nij defined in Eq. (K.2). To test the hierarchy in numer-
ical method, we choose parameters in Table 6.3, which produce physical masses of two
generations,

|MG1 | = 98.80 MeV , |MG2 | = 4.19 GeV , (6.89)

which recover the latest experimental values in Ref. [262] precisely, where the masses of
strange and bottom quarks are 90−100 MeV and 4.15−4.21 GeV respectively. It’s possible
to make the hierarchy even better by the use of bulk masses and a warp factor in AdS
geometry where each generation profile would be localized at the corresponding brane.
We hope to make this upgrade in the future.

Another crucial phenomenological implement of the partition model is to realize the
lepton universality. Three (normalized) fermion profiles, associated to three lepton flavors,
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are distributed in three sub-regions via the partition mechanism. The SM gauge boson
zero modes have flat profiles propagating on the extra dimension, which play a similar role
of the Higgs VEV to realize the fermion mass hierarchy in this section. Thus, three lepton
flavors would have the identical overlap with the gauge boson, leading to the universality
of the effective 4D couplings.

∆L1
D ∆L2

D ∆L1
Q ∆L2

Q MH Nv
Y5√

2
eMHL

0.604 · L 0.396 · L 0.705 · L 0.295 · L 8.056 · L−1 12.718 GeV

Table 6.3 – Numerical parameters to realize SM Fermion mass hierarchy for localized
flavors.

6.3.3.2 Non-Localized SM Flavors

For non-localized solutions of q0
a(b)L(y), d0

a(b)R(y) (6.51) presented in Figure 6.8 (LD =
LQ), elements of mass matrixM (6.84) can be derived in the real case (i.e. δD,Q = α10

D,Q =
α20

D,Q = 0) as (cf. Appendix K),

M11 = N11 cos ΩQ cos ΩD +N22 sin ΩQ sin ΩD ,

M22 = N11 sin ΩQ sin ΩD +N22 cos ΩQ cos ΩD ,

M12 = −N11 cos ΩQ sin ΩD +N22 sin ΩQ cos ΩD ,

M21 = −N11 sin ΩQ cos ΩD +N22 cos ΩQ sin ΩD ,

(6.90)

and the mass eigenvalues can be derived via Eq. (6.86), |MG1 | = |N11| ,

|MG2 | = |N22| ,
(6.91)

where we have used coefficients Nij defined in Eq. (K.2) (LQ = LD). To recover the
numerical hierarchy in Eq. (6.89), we choose parameters in Table 6.4.

∆L1
Q,D ∆L2

Q,D MH Nv
Y5√

2
eMHL

0.5 · L 0.5 · L 7.497 · L−1 16.096 GeV

Table 6.4 – Numerical parameters to realize SM Fermion mass hierarchy for non-localized
flavors.

6.3.4 Localization Model

In the previous section, we have built a partition mechanism using the BBT. In this
section, we use the same BBT terms to build a universal (for all flavors) localization
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mechanism, by introducing particularly a 5D field for each fermion flavor together with
certain BBT (for each flavor as well). Then, if all the BBT are located at the same point
along an extra dimension, it follows that all the fermion flavors can be localized in the
same interval (in the case of a model defined by the absence of BBT on the complementary
interval).

The space time geometry is similar to the partition scenario and defined as E5 =
M4×Ĩ1. Distinguishing from I1 in the partition model, the interval Ĩ1 = [0, LF ]∪ (LF , L]
is constructed by the BBT only existing at y = 0, LF for the fermion F , as illustrated
symbolically in Figure 6.9. This toy model is developed to localize a fermion field in a
certain region, with the possible limit of the brane-localization of a fermion field. For
example, if we take the limit of length (6.1): ∆L1

F → 0, the fermion field will be localized
at the brane y = 0 and vanish outside.

BBT
NO BBT

0 LF L

  All SM
Fermions

Figure 6.9 – A picture of the interval with one intermediate brane. Two 3-branes (two
solid lines) on two boundaries (two black points) at y = 0, L. Unique intermediate brane
(dashed line) at y = LF are induced by the BBT (two gray points).

The initial action preserves the identical formula as that (6.2)-(6.8) in the partition
model and fermionic particles propagate along Ĩ1. Meanwhile, the BBT (6.5) will change
to new configurations with σF

L+
F ,L

= 0, leading to a set of natural boundary conditions
localized at y = 0, LF in Eq. (6.12). For example, the two sets of SM configurations in
Eq. (6.7) are replaced by σF

1 : σF
0,LF

= −1 ,

σF
2 : σF

0,LF
= +1 ,

and σF
L+

F ,L
= 0 . (6.92)

Notice that the lack of BBT at y = L+
F , L will lead to vanishing profiles on (LF , L] via

the Dirichlet BC at y = L+
F , L,

FL|L+
F ,L = FR|L+

F ,L = 0 , (6.93)

as demonstrated in Section 3.3.1. Finally, one can obtain normalizable profiles localized
on [0, LF ], clarified as four series in Eq. (6.35) with two sets of KK mass spectra in
Eq. (6.32)-(6.33).

Note that such a localization mechanism could be extended to the limit of an infinites-
imal size for the sub-interval [0, LF ] (LF → 0), by taking the BBT position as close as
appreciated to the brane at the origin, which could have the effect of localizing all the SM
fermions on the 3-brane at y = 0. This process could realize for instance the ADD [52–54]
configuration, by invoking other mechanisms to brane-localize as well all the bosons of the
SM.
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6.4 Conclusions
Based on an extra spatial dimension scenario, we have proposed a new simple geomet-

rical mechanism, where a higher-dimensional field can be written as a sum of individual
flavor fields lying in distinct intervals connected by some intermediate branes, generat-
ing the fermion replications needed to realize the three SM families, without introducing
new fields. We have presented different versions of this scenario: different realizations of
quark/lepton mixing, possible intermediate region with vanishing profile,...

We have shown that distinct flavor fermion wave functions split by BBT points, would
possibly have different (non-vanishing) amplitudes on each BBT side, which in turn ad-
dresses the fermion mass hierarchy via a 5D Higgs boson profile exponential along the flat
extra dimension (obtained from a bulk scalar mass). Indeed, overlaps between different
families of profiles at their respective locations and the Higgs boson profile will then differ
exponentially, which generate the observed strong fermion mass hierarchy through hierar-
chical effective 4D Yukawa couplings. This mass hierarchy is realized without hierarchical
5D coupling configuration in the model. A numerical analysis has also been presented to
illustrate that the realistic numerical values can be easily reached for the fermion masses.

Hence, we have proposed a simple geometrical scenario addressing two puzzles of the
SM flavor sector – the origin of fermion families and the mass scale hierarchies. In addition,
a warped version of the present model would bring a common solution to relate the three
flavor appearance, the quark/lepton mass hierarchies and the gauge hierarchy, via the
curved Higgs profile peaked at the TeV-brane.

Some extensions of the present model are possible. First, some of the SM fermions
can be brane-localized in order to realize the models which have interpreted the flavor
anomalies in the B meson decays. Another possibility is to localize the Yukawa cou-
pling at the intermediate 3-branes connecting two flavor intervals in order to generate the
quark/lepton mixing differently (without relying on the overlap of different flavor profiles).
Furthermore, a bulk mass of 5D fermion fields would modify the shape of profiles and in
turn bring even more degrees of freedom in the parameter space.

We have also proposed a new type of spin-1/2 fermion localization mechanism along
an extra dimension which possesses the following features:

(i) Intermediate partitioning branes are induced by the BBT, and do not rely on some
bulk fermion interactions with other fields (like solitons) or a specific gravitational
background. Thus, this point-like mechanism is suitable for free fermion fields as
well.

(ii) The mechanism can localize a (chiral or vectorial) fermion [any KK mode] to a
sub-interval strictly, so that the profile exactly vanishes outside this interval.

(iii) This interval width, determined by the BBT points, can be easily controlled and
selected as small as wanted down to the minimum limit of a point (representing then
a brane-localization).
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Summary & Outlook

In the modern theory of particle physics, the two hierarchy problems – gauge and
flavor hierarchies – motivate model building beyond the SM, introducing new fields to
stabilize radiative corrections (superpartners, KK modes, composite states) and generate
mass hierarchies (like scalar fields charged under flavor symmetries). The paradigm of
higher-dimensional models, that we have studied under some formal aspects, has allowed
us to follow an alternative geometrical approach – extendable to a warped version ad-
dressing the gauge hierarchy – reducing the fermionic field content of the SM by a factor 3
(corresponding to the flavor number: 12 7→ 4). This reduction can be seen as an ‘economy’
from the theoretical point of view. Let us summarise the Ph.D. thesis results and their
impacts, below, with more precisions.

In the RS1 model, spacetime is a slice of AdS5, and the warp factor redshifts the scale
at which gravity becomes strongly coupled, from the 4D Planck scale to the TeV scale, on
the IR-brane where the SM Higgs boson is localized, an appealing solution to the gauge
hierarchy problem. In the attractive picture with SM fields in the bulk, it is essential
to understand deeply the theoretical treatment of 5D fermion fields coupled to a Higgs
field localized on a 3-brane, which has been treated in the literature through a physically
unnecessary and mathematically incorrect brane regularization procedure. In the first
part of this thesis, we have explicitly derived [Chapter 3] the proper analytical treatment
for the flat interval, leading to new physical results at the Lagrangian level for the bulk
fermions (KK mass spectrum and 4D effective Yukawa couplings). This method relies on
additional bilinear fermion terms (BBT) in the action for the 5D fermions – or on certain
essential boundary conditions derived from geometrical model definitions through fermion
probability currents (if one accepts a UV philosophy where the model is not only defined
through the action itself) – allowing to deduce the natural boundary conditions without
over-constraining the system. The BBT can be used for both free and brane-coupled bulk
fermions, as confirmed by the exact converging results of the 4D and 5D approaches, and
show how elaborating a UV origin of the chiral nature of the SM as well as its chirality
distribution among quarks/leptons.

The new calculations presented, implying the independence of excited fermion masses
and 4D effective Yukawa couplings on the ‘wrong-chirality’ Yukawa terms, have impacts on
phenomenological results like the relaxing of previously obtained strong bounds on Kaluza-
Klein masses induced by flavor-changing reactions generated by the tree-level exchanges
of the Higgs field.
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In Chapter 4, based on the techniques developed for the interval scenario, we have
studied the famous S1/Z2 orbifold, a circle equipped with an additional discrete Z2-parity,
and shed a new light on the duality between the S1/Z2 orbifold and the basic interval
scenario. The obtained fermion profiles along the extra dimension turn out to undergo
some discontinuities, particularly at the Higgs brane, which we have shown to be possibly
mathematically consistent, if the 5D action is well written with improper integrals. We
have also shown that the Z2 parity transformations in the bulk do not affect the fermion
chiralities, masses and couplings, in contrast with the essential BC or BBT. Besides when
the parity is extended to the orbifold fixed points, it represents a UV interpretation for
the chiral nature of the low-energy theory and selects the SM chirality setup.

Besides, we have suggested a formalism which is appropriate to field theories in ex-
tra dimensions: it is based on an extension of fields as functions to fields as distribu-
tions (sometimes called generalised functions). The initial action, written as an applied
Lagrangian-distribution, possesses the interest that, after its explicit development, the
Lagrangian in terms of fields as functions is recovered including automatically the BBT
necessary to define the fermion behavior at the orbifold fixed points (dual to the inter-
val boundaries). More precisely, considering all the possible Z2 symmetry configurations,
the so-called weak derivatives of the fermion field-distributions entering the kinetic terms
induce naturally the presence of the needed BBT (except, so far, for vector-like 0-mode
solutions associated for instance to custodians in custodially protected warped scenarios).
We are still working on the additional possibility to give the test functions, for the field-
distributions, the role to implement the definition information about the extra compact
space.

As a further application of the BBT prescription, we have built a geometrical spin-
1/2 fermion partition mechanism allowing to explain the origin of the three SM fermion
families: a higher-dimensional field can be written as a sum of individual flavor fields
lying in distinct intervals of a compact space connected by some intermediate BBT branes.
This construction is thus realizing the needed SM fermion replication: the reason why the
three families would have identical quantum numbers would be that they originate from
the same unique higher-dimensional field. This scenario with fermion flavors split along
an extra dimension, where the Higgs boson would have an exponential profile, further
permits to produce the huge fermion mass hierarchies of the SM. We propose different
buildings to create generically the quark/lepton mixings imposed by the experimental
results. Moreover, after introducing the SM gauge interactions, our construction allows
to realize the higher-dimensional models proposed recently in the literature to explain the
deviations from lepton flavour universality – observed through neutral/charged-current
semi-leptonic B meson decays.

In addition, the mechanism principle presented right above and based on BBT-like
terms can be applied, independently of the flavor puzzles, to strictly localize [vanishing wave
functions outside] all/some SM fermions on a (thick) 3-brane, or even on well-controlled
domains (squares, disks,. . . ) of extra spaces with N = 2, 3, . . . dimensions. In other words,
we propose a new mechanism of fermion localization which represents an alternative to
the standard localization procedure based on a generic fermion coupling to a solitonic
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background (like a domain wall).

As a general opening remark ending up this global conclusion, we state that in this
manuscript, we have scrutinized fundamental aspects of bulk fermions undergoing some
brane-localized phenomenon (like from brane-localized interactions or BBT). Such an anal-
ysis could maybe have implications in other higher-dimensional contexts with similar geo-
metrical field configurations. We have in mind, for instance, the attractive warped version
of the Minimal Supersymmetric SM (MSSM) where supersymmetry is broken at an ex-
tra dimension boundary (TeV-brane) [263]. Such a scenario can push the supersymmetry
breaking scale ΛSUSY around the electroweak symmetry breaking scale, ΛEW ≃ 100 GeV,
as required by the gauge hierarchy. There, the gauge boson and graviton superfields prop-
agate in the bulk while the matter and Higgs superfields are assumed to be confined on
the Planck-brane, which sufficiently suppresses all higher-dimension operators associated
with dangerous proton decay and flavor changing neutral current processes. The hidden
sector of supersymmetry breaking would then lie at the TeV-brane where the graviton
and its superpartner – the gravitino – would feel different boundary conditions: Neumann
and Dirichlet BC respectively (as for the gauge bosons and their associated gauginos),
so that the gaugino zero mode would no longer be massless. On the other hand, scalars
at the Planck-brane would obtain a soft supersymmetry breaking mass generated at the
one-loop level from interactions with the bulk gauge vector multiplets (negligible gravita-
tional processes): this is how the satisfactory breaking scale, ΛSUSY ∼ 100 GeV, would
be associated to the Planck-brane superpartners (squarks and sleptons). It would thus
maybe be interesting to revisit for example the treatment of the brane-phenomenon giving
mass to bulk gauginos, through our approaches.

162



Appendices

163



Appendix A

Notations & Conventions

Throughout the manuscript, we use the natural units where we have the reduced Planck
constant ℏ = 1 and the speed of light c = 1 and the conventions of Ref. [112]. The 4D
Minkowski metric is,

ηµν = diag(+1,−1,−1,−1) , (A.1)

where µ, ν = 0, 1, 2, 3. The 5D Minkowski metric is,

ηMN = diag(+1,−1,−1,−1,−1) , (A.2)

where M,N = 0, 1...4.
The 4D Dirac matrices are taken in the Weyl representation,

γµ =
(

0 σµ

σ̄µ 0

)
with

{
σµ =

(
12×2, σ

i
)
,

σ̄µ =
(
12×2,−σi

)
,

(A.3)

where µ = 0, 1, 2, 3 and σi (i = 1, 2, 3) are the three Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.4)

One has also the 4D chirality operator,

γ5 = iγ0γ1γ2γ3 =
(
−12×2 0

0 12×2

)
. (A.5)

In our conventions, the 5D Dirac matrices ΓM (M = 0, 1...4) obey
{

ΓA, ΓB
}

= 2ηAB

(A,B = 0, 1...4) and read as,
ΓM =

(
γµ,−iγ5

)
. (A.6)
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Appendix B

5D EOM & BC Splitting for the
VEV

In this section, we would present a splitting mechanism for the 5D EOM (1.5) and
BC (1.6) due to the existence of the VEV (1.7), which is induced from the spontaneous
Z2 symmetry breaking as described in Section 1.2. Thus, we can obtain two sets of EOM
and BC for the VEV v(y) and the 5D scalar field h(xµ, y) respectively. Insert the VEV
decomposition (1.7) into the EOM (1.5) and the BC (1.6), one would directly obtain,(

∂M∂M +M2
H

)
[v(y) + h(xµ, y)] = 0(

−∂2
4 +M2

H

)
v(y) +

(
∂M∂M +M2

H

)
h(xµ, y) = 0 , (B.1)

which should be valid for any 4D position xµ, such that
(
−∂2

4 +M2
H

)
v(y) = C ,(

∂M∂M +M2
H

)
h(xµ, y) = −C ,

where C is a constant to be determined. Considering the 4D asymptotic condition for the
scalar field h(xµ, y), it should vanish to zero at 4D infinity boundaries due to the local-
ization comments. Hence, we can split the EOM (1.5) for v(y) and h(xµ, y) respectively
as, 

(
−∂2

4 +M2
H

)
v(y) = 0 ,(

∂M∂M +M2
H

)
h(xµ, y) = 0 .

(B.2)

Then, we can apply similar treatments to BC (1.6). For the BC at y = 0,

(∂4 −M0) [v(y) + h(xµ, y)]|0 = 0
(∂4 −M0) v(y)|0 + (∂4 −M0)h(xµ, y)|0 = 0 , (B.3)

which can be split by the 4D xµ independence as, (∂4 −M0) v(y)|0 = C1 ,

(∂4 −M0)h(xµ, y)|0 = −C1 ,

where C1 is a constant, which is suspended by the 4D localization comments for h(xµ, y)
again,  (∂4 −M0) v(y)|0 = 0 ,

(∂4 −M0)h(xµ, y)|0 = 0 .
(B.4)
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Turn to the BC at y = L,

(∂4 −ML) [v(y) + h(xµ, y)]|L = −λH/2
3! [v(y) + h(xµ, y)]3

∣∣∣∣
L[

(∂4 −ML) v + λH/2
3! v3

]∣∣∣∣
L

=
[
− (∂4 −ML)h− λH/2

3!
(
3v2h+ 3vh2 + h3

)]∣∣∣∣
L
, (B.5)

where the right-handed should be independent of xµ. Considering h(xµ, y) must vanish at
xµ →∞, we can finally obtain the BC for v(y) and h(xµ, y) respectively at y = L,

[
(∂4 −ML) v + λH/2

3! v3
]∣∣∣∣

L
= 0 ,

[
(∂4 −ML)h+ λH/2

3!
(
3v2h+ 3vh2 + h3)]∣∣∣∣

L
= 0 ,

(B.6)

which can be further simplified if we impose the hypothesis that v(y)≫ h(xµ, y),
[
(∂4 −ML) v + λH

12 v3
]∣∣∣∣

L
= 0 ,[

(∂4 −ML)h+ λH

4 v2h

]∣∣∣∣
L

= 0 .
(B.7)
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Appendix C

From Spinor Components to
Compact Notations

C.1 Spinor Components and Their Variations

The generic spinor field F (F = Q,D) introduced via Eq. (1.17) can be written in
terms of its four explicit components Fα [α = 1, 2, 3, 4]:

F =


F1
F2
F3
F4

 , (C.1)

and similarly, F̄ can be expressed in terms of its own four components F̄α:

F̄ =
(
F̄1, F̄2, F̄3, F̄4

)
=̂F †γ0 =

(
F ∗

3 , F ∗
4 , F ∗

1 , F ∗
2

)
. (C.2)

These 8 components constitute the fundamental variables of the bulk kinetic Lagrangian (4.8).
Hence, the variation of the associated action Sbulk [see Eq. (4.5)], involves the following
8 elementary variations, that we can group into new 4-component (transposed) vectorial
objects defined as:

δF =̂


δF1
δF2
δF3
δF4

 , δF̄ =̂
(
δF̄1, δF̄2, δF̄3, δF̄4

)
, (C.3)

introducing the 8 components δFα and δF̄α. We then define,

δF =
(
δFL

δFR

)
, δF̄ =̂

(
δF †

R, δF †
L

)
, with for instance, δF†

R =̂
(
δF̄1, δF̄2

)
, (C.4)

inspired by the following generic relations, based on Eq. (1.17),

F =
(
FL

FR

)
, F̄ =̂F †γ0 = (F †

R, F
†
L) . (C.5)
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C.2 A Typical Compact Form Calculation

Using the Lagrangian Lkin of Eq. (4.8), let us work out explicitly the following quantity
entering Eq. (4.22) in a compact form (no explicit spinor index of type α),

δF̄
∂Lkin

∂F̄
=̂

4∑
α=1

δF̄α
∂Lkin

∂F̄α
=

4∑
α=1

δF̄α
∂

∂F̄α

(
i

2 F̄ΓM∂MF

)

=
4∑

α=1
δF̄α

∂

∂F̄α

 i
2

4∑
β=1

F̄β[ΓM∂MF ]β

 =
4∑

α=1
δF̄α

i

2 [ΓM∂MF ]α

= i

2 δF̄ΓM∂MF , (C.6)

where the spinor components of Eq. (C.1) and (C.2) have appeared, as well as the variations
of Eq. (C.3).

C.3 Z2 Transformations of Field Variations

Finally, we can derive the Z2 transformation for the compact form δF̄ of Eq. (C.3).
Accordingly to the Z2 transformations (4.9)-(4.12), we have,

F̄ |−y = F †|−yγ
0 =

(
±γ5F

)†
|yγ0 = ±F †|yγ5γ0 = ∓F †|yγ0γ5 = ∓F̄ |yγ5 ,

due to the anti-commutator relation
{
γ5, γµ

}
= 0. Then one must rewrite this relation by

making the spinor components of Eq. (C.2) appear explicitly:

F̄α|−y = ∓
4∑

β=1
F̄β|yγ5

βα ,

in order to deduce the relation on the variations of these components:

δF̄α|−y = ∓
4∑

β=1
δF̄β|yγ5

βα .

Thanks to Eq. (C.3), this equation can be contracted back to the compact notation as,

δF̄ |−y = ∓δF̄ |yγ5 . (C.7)
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Appendix D

The Spin Connection on AdS5

Recall the original definition of the spin connection ωM in the covariant derivative
DM (2.22) 1,

ωM = i

2 ωMAB J AB , (D.1)

where
J AB = − i4

[
ΓA, ΓB

]
, ωMAB = ηAC e

C
N

(
∂M eN

B + eS
B ΓN

SM

)
, (D.2)

and ΓN
SM are Christoffel symbols,

ΓK
MN = 1

2 g
KL (∂N gLM + ∂M gLN − ∂L gMN ) , (D.3)

containing non-vanishing components in the AdS5 as,
Γν

µ4 = Γν
4µ = 1

2 e
2ky∂4e

−2kyδν
µ = −kδν

µ ,

Γ4
µν = Γ4

νµ = 1
2 ηµν∂4e

−2ky = −kηµν e
−2ky .

(D.4)

Insert ΓN
SM (D.4) into ωMAB (D.2), one would obtain non-vanishing components from,

ωµAB = ηAC e
C

N eS
B ΓN

Sµ

= ηAC e
C

4 eν
B Γ4

νµ + ηAC e
C

ν e4
B Γν

4µ

= −k e−ky ηA4 ηBµ − k e−ky ηAµ δ
4
B ,

which satisfy an anti-symmetric relation,

ωµ4ν = −ωµν4 = k e−ky ηµν . (D.5)

Combining with the commutator of ΓM matrices,[
Γ4, Γµ

]
= 2Γ4Γµ = 2iγµγ5 ,

1. One can also use the RS index alternatively,

ωM = i

2 ωMP Q J P Q ,

where ωMP Q = e A
P e B

Q ωMAB and J P Q = eP
A eQ

B J P Q = − i

4
[
eP

A ΓA, eQ
B ΓB

]
.
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one can finally obtain the spin connection ωM (D.1),

ωµ = 1
8 ωµAB

[
ΓA, ΓB

]
= 1

4 ωµ4ν

[
Γ4, Γν

]
= i

k

2 e
−kyγµγ

5 , (D.6)

while the other components are zero.
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Appendix E

Profile Solutions of Bulk Fermions
on AdS5

E.1 Bulk Massless Solutions
In this chapter, we would present general solutions of the second order differential

equation in Eq. (2.36) with mF
n ̸= 0, which are regular Sturm-Liouville equations with a

weight function,
w(y) = e−3y ,

and it’s consistent with the ortho-normalization conditions in Eq. (2.27).
Rewrite the Sturm-Liouville equation of Eq. (2.36) in an explicit form,(

∂2
4 − 5k∂4

)
fn

L/R +
[
6k2 +

(
mF

n

)2
e2ky

]
fn

L/R = 0 . (E.1)

In order to obtain a specific form of particular equations, we do a variable transformation,

ξ =̂ mF
n

k
eky , (E.2)

such that

∂4 = kε∂ξ ,

∂2
4 = k2

(
ξ2∂2

ξ + ξ∂ξ

)
. (E.3)

Insert Eq. (E.2)-(E.3) to Eq. (E.1), we would obtain a better formula,(
ξ2∂2

ξ − 4ξ∂ξ

)
fn

L/R +
(
6 + ξ2

)
fn

L/R = 0 . (E.4)

In order to realize a Bessel equation, we need to introduce an auxiliary function g(y) and
factors νL/R, such that(

ξ2∂2
ξ − 4ξ∂ξ

) (
gfn

L/R

)
+
(
ξ2 − ν2

L/R

)
gfn

L/R = 0 , (E.5)

which is a typical formula of the Bessel equation. The next step is to find out the auxiliary
function g(ξ) and factors νL/R, which must exist if the Bessel equation is truly suitable to
our case. Expand Eq. (E.5) and manage it to the following form 1,

ξ2g∂2
ξ f

n
L/R +

(
2ξ2g′ + ξg

)
∂ξf

n
L/R +

[
ξ2g′′ + ξg′ +

(
ξ2 − ν2

L/R

)
g
]
fn

L/R = 0 . (E.6)

1. g′ =̂ ∂ξg and g′′ =̂ ∂2
ξ g.
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Then, compare Eq. (E.6) with Eq. (E.4) multiplied by the function g,

ξ2g∂2
ξ f

n
L/R − 4ξg∂ξf

n
L/R +

(
6 + ξ2

)
gfn

L/R = 0 , (E.7)

and now we can write the characteristic equation of the function g and factors νL/R,
2ξ2g′ + ξg = −4ξg ,

ξ2g′′ + ξg′ +
(
ξ2 − ν2

L/R

)
g =

(
6 + ξ2) g ,

which induces the appreciate formula of the function g and the factor νL/R,
g = ξ− 5

2 ,

ν2
L/R = 1

4 .
(E.8)

Since the function gfn
L/R(y) satisfies the Bessel equation (E.5) with νL/R = −/ + 1

2 , we
can now recover the general solutions of Eq. (2.36),

fn
L/R(y) = e

5
2 ky

[
An

L/R J−/+ 1
2

(
mF

n

k
eky

)
+Bn

L/R Y−/+ 1
2

(
mF

n

k
eky

)]
, (E.9)

where Jν and Yν are the Bessel functions of the first and the second kind respectively and
An

L/R, Bn
L/R are complex coefficients related by the coupled equations in Eq. (2.33). Here,

we choose νL/R = −/ + 1
2 corresponding to the left/right chirality respectively as the set

of two independent fundamental solution bases. This assignment is configured to obtain
a compact relation among An

L/R, Bn
L/R,

∂4f
n
L(y) = 5

2kf
n
L(y)

+ e
5
2 kykξ

{
An

L

[
J− 3

2
(ξ) + 1

2ξ J− 1
2
(ξ)
]

+Bn
L

[
Y− 3

2
(ξ) + 1

2ξ Y− 1
2
(ξ)
]}

, (E.10)

where the Bessel function relations have been injected,

Z ′
ν(ξ) = Zν−1(ξ)− ν

ξ
Zν(ξ) , Zν = Jν , YνZν , (E.11)

and consider another Bessel function relation,

Zν−1(ξ) + Zν+1(ξ) = 2ν
ξ
Zν(ξ) , Zν = Jν , YνZν , (E.12)

we can do a further step,

∂4f
n
L(y) = e

5
2 ky

{
An

L

[
−kξJ 1

2
(ξ) + 2kJ− 1

2
(ξ)
]

+Bn
L

[
−kξY 1

2
(ξ) + 2kY− 1

2
(ξ)
]}

, (E.13)

so that according to EOM in Eq. (2.36),

(∂4 − 2k) fn
L(y) = −kξe

5
2 ky

[
An

LJ 1
2
(ξ) +Bn

LY 1
2
(ξ)
]
, (E.14)

must be equal to

−kξfn
R(y) = −kξe

5
2 ky

[
An

RJ 1
2
(ξ) +Bn

RY 1
2
(ξ)
]
, (E.15)

which would finally derive the relation among An
L/R, Bn

L/R, An
L = An

R ,

Bn
L = Bn

R .
(E.16)
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E.2 Bulk Massive Solutions
In this chapter, we would present general solutions of the second order differential

equation in Eq. (2.48) with mF
n ̸= 0, which are regular Sturm-Liouville equations with a

weight function,
w(y) = e−3y ,

and it’s consistent with the ortho-normalization conditions in Eq. (2.27).
Rewrite the Sturm-Liouville equation of Eq. (2.48) in an explicit form,(

∂2
4 − 5k∂4

)
fn

L/R +
[(

6− /+ c− c2
)
k2 +

(
mF

n

)2
e2ky

]
fn

L/R = 0 . (E.17)

Then, a variable transformation of ξ in Eq. (E.2) would be repeated, such that the differ-
ential equation (E.17) would become a better formula,(

ξ2∂2
ξ − 4ξ∂ξ

)
fn

L/R +
[(

6− /+ c− c2
)

+ ξ2
]
fn

L/R = 0 . (E.18)

A Bessel equation form in Eq. (E.5) would be expected again, following the treatment
in the bulk massless case in Section E.1, we need to introduce an auxiliary function g(y)
and factors νL/R. The next step is to find out the auxiliary function g(ξ) and factors
νL/R, which must exist if the Bessel equation is truly suitable to our case. Then, compare
Eq. (E.6) with Eq. (E.18) multiplied by the function g,

ξ2g∂2
ξ f

n
L/R − 4ξg∂ξf

n
L/R +

[(
6− /+ c− c2

)
+ ξ2

]
gfn

L/R = 0 , (E.19)

and now we can write the characteristic equation of the function g and factors νL/R,
2ξ2g′ + ξg = −4ξg ,

ξ2g′′ + ξg′ +
(
ξ2 − ν2

L/R

)
g =

[(
6− /+ c− c2)+ ξ2] g ,

which induces the appreciate formula of the function g and the factor ν,
g = ξ− 5

2 ,

ν2
L/R =

(
c− /+ 1

2

)2
.

(E.20)

Since the function gfn
L/R(y) satisfies the Bessel equation (E.5) with νL/R = c− /+ 1

2 , we
can now recover the general solutions of Eq. (2.48),

fn
L/R(y) = e

5
2 ky

[
An

L/R Jc−/+ 1
2

(
mF

n

k
eky

)
+Bn

L/R Yc−/+ 1
2

(
mF

n

k
eky

)]
, (E.21)

where Jν and Yν are the Bessel functions of the first and the second kind respectively and
An

L/R, Bn
L/R are complex coefficients related by the coupled equations in Eq. (2.45). Here,

we choose νL/R = c− /+ 1
2 corresponding to the left/right chirality respectively as the set

of two independent fundamental solution bases. This assignment is configured to obtain
a simple and compact relation among An

L/R, Bn
L/R,

∂4f
n
L(y) = 5

2kf
n
L(y)

+ e
5
2 kykξ

{
An

L

[
Jc− 3

2
(ξ) + 1

2ξ Jc− 1
2
(ξ)
]

+Bn
L

[
Yc− 3

2
(ξ) + 1

2ξ Yc− 1
2
(ξ)
]}

, (E.22)
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where the Bessel function relations in Eq. (E.11) have been injected. We can do a further
step with another Bessel function relation in Eq. (E.12),

∂4f
n
L(y) = e

5
2 ky

{
An

L

[
−kξJc+ 1

2
(ξ) + 2kJc− 1

2
(ξ)
]

+Bn
L

[
−kξYc+ 1

2
(ξ) + 2kYc− 1

2
(ξ)
]}

,

(E.23)

so that according to EOM in Eq. (2.48),

(∂4 − 2k) fn
L(y) = −kξe

5
2 ky

[
An

LJc+ 1
2
(ξ) +Bn

LYc+ 1
2
(ξ)
]
, (E.24)

must be equal to

−kξfn
R(y) = −kξe

5
2 ky

[
An

RJc+ 1
2
(ξ) +Bn

RYc+ 1
2
(ξ)
]
, (E.25)

which would finally derive the relation among An
L/R, Bn

L/R, An
L = An

R ,

Bn
L = Bn

R .
(E.26)
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Appendix F

Noether’s Theorem including
Brane-localized Terms

Here we demonstrate the Noether’s theorem in the presence of boundary-localized
Yukawa couplings and the BBT. We first consider the free bulk action constituted via
kinetic terms (3.1) together with the BBT (3.4) [or the custodian BBT (3.7)] being invari-
ant under the transformations (3.21) affecting the fields but not the coordinates xM . The
infinitesimal action variation under such a transformation on the field F reads generically
as 1,

δ(Sbulk + SB) =
∫
d4x dy

{
δF

∂Lkin

∂F
+ δF̄

∂Lkin

∂F̄
+ δ(∂MF ) ∂Lkin

∂(∂MF ) + δ(∂M F̄ ) ∂Lkin

∂(∂M F̄ )

}

+
∫
d4x

{
− δF ∂LB

∂F

∣∣∣∣
0
− δF̄

∂LB

∂F̄

∣∣∣∣
0

+ δF
∂LB

∂F

∣∣∣∣
L

+ δF̄
∂LB

∂F̄

∣∣∣∣
L

}
. (F.1)

Now we invoke the generic version of the EOM,

∂Lkin

∂F
= ∂M

∂Lkin

∂(∂MF ) , (F.2)

as found in Eq. (1.30) 2, which isn’t affected by the BBT or the EBC. Using these EOM
to rewrite the bulk terms of Eq. (F.1) and then grouping those with the last two terms to
make global derivatives appear, we find:

δ(Sbulk + SB) =
∫
d4x

{
− δF ∂LB

∂F

∣∣∣∣
0
− δF̄

∂LB

∂F̄

∣∣∣∣
0

+ δF
∂LB

∂F

∣∣∣∣
L

+ δF̄
∂LB

∂F̄

∣∣∣∣
L

}
+
∫
d4x dy

{
∂M

[
δF

∂Lkin

∂(∂MF ) + δF̄
∂Lkin

∂(∂M F̄ )

]}
, (F.3)

where the four brane BBT terms vanish since the infinitesimal field variations (3.22) lead
for instance to,

− δQ∂LB

∂Q

∣∣∣∣
0
− δQ̄

∂LB

∂Q̄

∣∣∣∣
0

= 1
2Q̄(iαQ)

∣∣∣∣
0

+ 1
2(−iαQ̄)Q

∣∣∣∣
0

= 0 . (F.4)

A similar cancellation, due to the symmetry of the model, arises for the last two terms at
y = L and the D field contributions [relying on the α′ parameter in Eq. (3.21)].

1. Using the compact notations defined in Appendix C.
2. Of course similar EOM hold for the complex conjugate fields.
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The infinitesimal variation of the bulk (kinetic) terms (3.1) and the BBT (3.4) vanishes
when integrated over the whole space [δ(Sbulk + SB) = 0] and even over any 5D domain
Ω, since the Lagrangian density keeps invariant everywhere. Note that the brane terms of
Eq. (F.3) vanishes independently for any integration volume Ω with or without [absence
of SB (3.4)] the boundaries y = 0, L.

Therefore, mathematically, Eq. (F.3) implies the vanishing of its bulk terms for any
integration region Ω and in turn the local conservation relation for the 5D probability
current of the field F ,

∂MjM
F = 0 , ∀xM , with jM

F = δF
∂Lkin

∂(∂MF ) + δF̄
∂Lkin

∂(∂M F̄ )
. (F.5)

Notice that an alternative reading, based on the global derivatives of the bulk terms
in Eq. (F.3), with integration over a generic 5D domain Ω, is that the bulk terms lead to
the equality between the net fluxes 3 and the change of charge (time component of the 5D
currents). It’s nothing but an equivalent form of the local current conservation (F.5). As
a consistency check, let’s consider the entire 5D domain, i.e. Ω represents the whole 5D
bulk. The integration of fluxes at boundaries along the standard axes [4-coordinates xµ]
jµ

F (±∞, y) tend to zero – due to the vanishing of fields at 4D infinity boundaries, which
in turn suspend the difference of current components along the extra dimension,∫

d4x
[
j4

F (xµ, L)− j4
F (xµ, 0)

]
= 0 .

It is compatible with the finite geometrical model, j4
F (xµ, L) = j4

F (xµ, 0) = 0, ∀xµ. By the
way, this global current continuity condition (F.6) could be realized as well in a periodic
setup like an orbifold scenario (identification of the boundary points y = 0, L and hence
of the currents there), which is precisely described in Chapter 4.

Let us now extend the demonstration of the Noether’s theorem to the presence of
the BBT and boundary-localized Yukawa couplings by considering the bulk (kinetic)
terms (3.1) together with the BBT (3.4) and the Yukawa terms (3.11). This whole action
Sbulk + SB + SY is invariant under the transformation (3.77). The infinitesimal action
variation under this transformation reads as,

δ(Sbulk + SB + SY ) =
∑

FC=QL/R,DL/R

∫
d4x

{
δFC

∂LY

∂FC

∣∣∣∣
L

+ δF †
C
∂LY

∂F †
C

∣∣∣∣∣
L

}

+
∑

F =Q,D

∫
d4x

{
− δF ∂LB

∂F

∣∣∣∣
0
− δF̄

∂LB

∂F̄

∣∣∣∣
0

+ δF
∂LB

∂F

∣∣∣∣
L

+ δF̄
∂LB

∂F̄

∣∣∣∣
L

}

+
∑

F =Q,D

∫
d4x dy

{
δF

∂Lkin

∂F
+ δF̄

∂Lkin

∂F̄
+ δ(∂MF ) ∂Lkin

∂(∂MF ) + δ(∂M F̄ ) ∂Lkin

∂(∂M F̄ )

}
.

(F.6)

Invoking once more the EOM (F.2), including neither the possible BBT contributions nor
the Yukawa terms (both rather entering the boundary conditions), we can rewrite the first
two terms in the bulk terms of Eq. (F.6) and then grouping those with the last two terms

3. The difference between the ingoing and the out going currents on spacial dimensions.
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to make global derivatives arise:

δ(Sbulk + SB + SY ) =
∑

FC=QL/R,DL/R

∫
d4x

{
δFC

∂LY

∂FC

∣∣∣∣
L

+ δF †
C
∂LY

∂F †
C

∣∣∣∣∣
L

}

+
∑

F =Q,D

∫
d4x

{
− δF ∂LB

∂F

∣∣∣∣
0
− δF̄

∂LB

∂F̄

∣∣∣∣
0

+ δF
∂LB

∂F

∣∣∣∣
L

+ δF̄
∂LB

∂F̄

∣∣∣∣
L

}

+
∑

F =Q,D

∫
d4x dy

{
∂M

[
δF

∂Lkin

∂(∂MF ) + δF̄
∂Lkin

∂(∂M F̄ )

]}
. (F.7)

Here, the four terms of BBT cancel each other since for example the infinitesimal field
variations (3.78) lead to,

− δQ∂LB

∂Q

∣∣∣∣
0
− δQ̄

∂LB

∂Q̄

∣∣∣∣
0

= 1
2Q̄(iαQ)

∣∣∣∣
0

+ 1
2(−iαQ̄)Q

∣∣∣∣
0

= 0 , (F.8)

and the Yukawa terms vanishes as for instance the infinitesimal field variations of type (3.78)
lead to,

∑
FC=QL/R,DL/R

[
− δFC

∂(Y5Q
†
LHDR)

∂FC

∣∣∣∣∣
L

− δF †
C
∂(Y5Q

†
LHDR)

∂F †
C

∣∣∣∣∣
L

]

= − Y5Q
†
LH (iαDR)

∣∣∣
L
− Y5

(
−iαQ†

L

)
HDR

∣∣∣
L

= 0 . (F.9)

Therefore, the vanishing infinitesimal variation (F.7) over a generic 5D domain Ω, similar
as in the free case, leads to the local conservation relation for the 5D probability current,

∂MjM = 0 , ∀xM , with jM =
∑

F =Q,D

δF
∂Lkin

∂(∂MF ) + δF̄
∂Lkin

∂(∂M F̄ )
. (F.10)
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Appendix G

Boundary Variations

In this Appendix, we write down explicitly the global boundary variations derived from
the initial variation of the action Sm

5D in Eq. (3.64):

∑
F =Q,D

(
δ

F †
L
S|brane + δ

F †
R
S|brane + δFL

S|brane + δFR
S|brane

)
= 0 ,

where

δ
Q†

L
Sm

5D ∋ δQ†
L
S|brane =̂

∫
d4x

{[
δQ†

L

(
−XDR −

1
2QR

)]∣∣∣∣
L

+
(
δQ†

LQR

)∣∣∣
0

}
,

δ
Q†

R
Sm

5D ∋ δQ†
R
S|brane =̂

∫
d4x

[
δQ†

R

(
−X ′DL + 1

2QL

)]∣∣∣∣
L
,

δ
D†

L
Sm

5D ∋ δD†
L
S|brane =̂

∫
d4x

[
δD†

L

(
−X ′∗QR −

1
2DR

)]∣∣∣∣
L
,

δ
D†

R
Sm

5D ∋ δD†
R
S|brane =̂

∫
d4x

{[
δD†

R

(
−X∗QL + 1

2DL

)]∣∣∣∣
L
−
(
δD†

RDL

)∣∣∣
0

}
,

δQL
Sm

5D ∋ δQL
S|brane =̂

∫
d4x

{[(
−X∗D†

R −
1
2Q

†
R

)
δQL

]∣∣∣∣
L

+
(
Q†

RδQL

)∣∣∣
0

}
,

δQR
Sm

5D ∋ δQR
S|brane =̂

∫
d4x

[(
−X ′∗D†

L + 1
2Q

†
L

)
δQR

]∣∣∣∣
L
,

δDL
Sm

5D ∋ δDL
S|brane =̂

∫
d4x

[(
−X ′Q†

R −
1
2D

†
R

)
δDL

]∣∣∣∣
L
,

δDR
Sm

5D ∋ δDR
S|brane =̂

∫
d4x

{[(
−XQ†

L + 1
2D

†
L

)
δDR

]∣∣∣∣
L
−
(
D†

LδDR

)∣∣∣
0

}
. (G.1)
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Appendix H

Distribution Theory on S1

H.1 Schwartz’s Distribution Theory on an Interval

In this appendix, we adapt Schwartz’s distribution theory [115, 116] to the case of test
functions defined on the interval.

H.1.1 Basics

Test function on the interval – The vector space D(I,C) of test S-functions on the
interval I = y ∈ [0, πR], is the set of all functions φ ∈ C∞(I,C), i.e.

D(I,C) =̂ C∞(I,C) , (H.1)

such that the sequence of functions
{
∂k

yφ , k ∈ N
}

is uniformly bounded on I.

Convergence in D(I,C) – A test S-function sequence {φn}n∈N [∀φn ∈ D(I,C)] con-
verges to a test S-function φ ∈ D(I,C), i.e. convergent on D(I,C), if and only if the
sequence

{
∂k

yφn

}
n∈N

converges uniformly to ∂k
yφ on I for each k ∈ N.

Continuity of a linear functional on D(I,C) – A linear functional

T : D(I,C)→ C ,
∀φ1, φ2 ∈ D(I,C) , T [λ1 φ1 + λ2 φ2] = λ1 T [φ1] + λ2 T [φ2] , λ1, λ2 ∈ C ,

is continuous if and only if the sequence {T [φn]}n∈N converges to T [φ] ∈ C, for any test
S-function sequence {φn}n∈N on D(I,C).

S-distribution – A S-distribution 1 T on I is a continuous linear functional on D(I,C),

T : D(I,C)→ C .

The set containing all the S-distributions,

D′(I,C) =̂ {T | T is an S-distribution on D(I,C).} ,

forms a vector space over C by
(i) (T1 + T2)[φ] = T1[φ] + T2[φ] ;
(ii) (λT )[φ] = λ (T [φ]) , λ ∈ C ,

which are valid for ∀T1, T2 ∈ D′(I,C), φ ∈ D(I,C).

1. "S" stands for Schwartz.
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Regular S-distribution – For any integrable function f ∈ C0(I,C) 2, one can define a
regular S-distribution f̃ ∈ D′(I,C) [I = y ∈ [0, πR]] such that

∀φ ∈ D(I,C) , f̃ [φ] =̂
∫ πR

0
dy f(y)φ(y) , (H.2)

which clearly follows the commutative law,

∀ f, g ∈ C0(I,C) , f̃ ∗ g = g̃ ∗ f . (H.3)

Note that an S-distribution which is not regular is singular.

Product S-distribution – If T ∈ D′(I,C) and f ∈ D(I,C), one can define their
product as an S-distribution denoted as f T via

∀φ ∈ D(I,C) , (f T )[φ] =̂ T [f ∗ φ] , (H.4)

satisfying the bi-linear conditions,
(i) f (λ1 T1 + λ2 T2) = λ1 (f T1) + λ2 (f T2) , λ1, λ2 ∈ C ;
(ii) (λ1 f + λ2 g)T = λ1 (f T ) + λ2 (g T ) , λ1, λ2 ∈ C ,

which are valid for ∀T, T1, T2 ∈ D′(I,C), f, g ∈ D(I,C).
It can also be proved to preserve two following calculation laws:

(i) The associative composition law

∀ f, g ∈ D(I,C) , f(g T ) = (f ∗ g)T , (H.5)

can be proved as,

∀φ ∈ D(I,C) , f(g T )[φ] = (g T )[f ∗ φ]
= T [g ∗ f ∗ φ]
= T [(f ∗ g) ∗ φ]
= (f ∗ g)T [φ] .

(ii) The commutative law

∀ f, g ∈ D(I,C) , f(g T ) = g(f T ) , (H.6)

can also be guaranteed as

f(g T ) = (f ∗ g)T = (g ∗ f)T = g(f T ) ,

where we inserted the associative composition law (H.5).
In particular, we can derive some specific results,

(i) T ∈ D′(I,C) is a regular S-distribution associated to τ ∈ C0(I,C), we should have

f T = f̃ ∗ τ , (H.7)

which should be demonstrated as

∀φ ∈ D(I,C) , f T [φ] = T [f ∗ φ]

=
∫ πR

0
dy τ(y) f(y)φ(y)

=
∫ πR

0
dy [f(y) τ(y)]φ(y) = f̃ ∗ τ [φ] .

2. D(I,C) is a subset of C0(I,C), i.e. D(I,C) ⊂ C0(I,C).

180



(ii) T ∈ D′(I,C) is a regular S-distribution associated to τ ∈ D(I,C), we should have

f T = τ f̃ = f̃ ∗ τ , (H.8)

where the first equality should be demonstrated as

∀φ ∈ D(I,C) , f T [φ] = T [f ∗ φ]

=
∫ πR

0
dy τ(y) f(y)φ(y)

=
∫ πR

0
dy f(y) [τ(y)φ(y)] = f̃ [τ ∗ φ] = (τ f̃) [φ] ,

and the second one could be obtained from Eq. (H.7).
If T ∈ D′(I,C) and f̃ ∈ D′(I,C) is the regular S-distribution associated to f ∈

D(I,C), the product S-distribution f̃T with respect to T and f̃ is defined as

f̃ T =̂ f T , (H.9)

satisfying the bi-linear conditions,
(i) f̃ (λ1 T1 + λ2 T2) = λ1 (f̃ T1) + λ2 (f̃ T2) , λ1, λ2 ∈ C ;
(ii) (λ1 f̃ + λ2 g̃)T = λ1 (f̃ T ) + λ2 (g̃ T ) , λ1, λ2 ∈ C ,

which are valid for ∀T, T1, T2 ∈ D′(I,C), f, g ∈ D(I,C) and we invoke the definition of
f T ∈ D′(I,C) in Eq. (H.4). It can also be proved to follow

(i) The associative composition law

∀ f, g ∈ D(I,C) , f̃(g̃ T ) = (f̃ g̃)T , (H.10)

can be proved as,

f̃(g̃ T ) = f(g T ) = (f ∗ g)T = f̃ ∗ g T = (f g̃)T = (f̃ g̃)T ,

where f̃ , g̃ ∈ D′(I,C) are the regular S-distributions associated to f, g ∈ D(I,C)
respectively via Eq. (H.2) and we invoke the Eq. (H.8).

(ii) The commutative law

∀ f, g ∈ D(I,C) , f̃(g̃ T ) = g̃(f̃ T ) , (H.11)

can also be derived as

f̃(g̃ T ) = f(g T ) = g(f T ) = g̃(f̃ T ) ,

where f̃ , g̃ ∈ D′(I,C) are the regular S-distributions associated to f, g ∈ D(I,C)
respectively via Eq. (H.2) and we inserted the commutative law (H.6).

In particular, if T ∈ D′(I,C) is the regular S-distribution associated to τ ∈ C0(I,C),
we can rewrite Eq. (H.7) via Eq. (H.9) as

f̃ T = f̃ ∗ τ . (H.12)

In contrast, when τ ∈ D(I,C), we can rewrite Eq. (H.8) via Eq. (H.9) as

f̃ T = T f̃ = f̃ ∗ τ , (H.13)

which indicates the commutative law of the product of two regular S-distributions in
Eq. (H.9). So, we can conclude that no matter T is a regular S-distribution or not, f̃ T
and T f̃ would not induce an ambiguity so that we would not distinguish them afterwards.
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Dirac S-distribution – The Dirac S-distribution δy0 , y0 ∈ I is a singular S-distribution,
which is defined as

∀φ ∈ D(I,C) , δy0 [φ] =̂ φ(y0) . (H.14)

H.1.2 Weak Derivative

In contrast to the derivative of a function, we expect to define a weak derivative for reg-
ular S-distributions. Following the methodology of its definition in Schwartz’s distribution
theory on R1 (see Ref. [115, 116]), let us consider an integrable function

f ∈ C1(I,C) ,

whose first order derivative ∂yf ∈ C0(I,C) is also integrable on I. Thus, one can obtain
the regular S-distribution associated to f as f̃ ∈ D′(I,C) and {∂yf} ∈ D′(I,C) 3 is the
regular S-distribution induced by ∂yf via Eq. (H.2). The weak derivative ∂yf̃ of f̃ is
defined as

∂yf̃ =̂ {∂yf} ,

so that we can rewrite it with the Dirac S-distribution δy0 (H.14) as

∀φ ∈ D(I,C) , ∂yf̃ [φ] =
∫ πR

0
dy ∂yf(y)φ(y)

= −
∫ πR

0
dy f(y) ∂yφ(y) + [f(y)φ(y)]|πR

0

= −f̃ [∂yφ]− δ0[fφ] + δπR[fφ] , (H.15)

where the first equality is just the definition of the regular S-distribution {∂yf} in Eq. (H.2).
The boundary terms in the second equality are generated from the partial integration. Fi-
nally, the definition of f̃ in Eq. (H.2) is invoked to obtain f̃ [∂yφ] in the last equality.

H.2 Schwartz’s Distribution Theory on S1

In this appendix, we adapt Schwartz’s distribution theory [115, 116] to the case of test
functions defined on the circle S1 labeled by y ∈ [−πR+, 0−] ∪ [0, πR ≡ −πR] 4.

H.2.1 Basics

Test function on S1 – The vector space D(S1,C) of test S-functions on S1 is the set
of all smooth functions φ ∈ C∞(S1,C), i.e.

D(S1,C) =̂ C∞(S1,C) , (H.16)

such that the sequence of functions
{
∂k

yφ , k ∈ N
}

is uniformly bounded on S1.

Convergence in D(S1,C) – A test S-function sequence {φn}n∈N [∀φn ∈ D(S1,C)]
converges to a test S-function φ ∈ D(S1,C), i.e. convergent on D(S1,C), if and only if
the sequence

{
∂k

yφn

}
n∈N

converges uniformly to ∂k
yφ on S1 for each k ∈ N.

3. We want to emphasize the specific regular S-distribution induced from a function derivative ∂yf so
that a new notation {∂yf} is introduced instead of the usual one ∂̃yf via Eq. (H.2).

4. We use the notation [−πR+, 0−] ⇔ (−πR, 0) defined in Section 4.2.1.
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Continuity of a linear functional on D(S1,C) – A linear functional

T : D(S1,C)→ C ,
∀φ1, φ2 ∈ D(S1,C) , T [λ1 φ1 + λ2 φ2] = λ1 T [φ1] + λ2 T [φ2] , λ1, λ2 ∈ C ,

is continuous if and only if the sequence {T [φn]}n∈N converges to T [φ] ∈ C, for any test
S-function sequence {φn}n∈N on D(S1,C).

S-distribution – A S-distribution T on S1 is a continuous linear functional on D(S1,C),

T : D(S1,C)→ C .

The set containing all the S-distributions,

D′(S1,C) =̂
{
T | T is an S-distribution on D(S1,C).

}
,

forms a vector space over C by
(i) (T1 + T2)[φ] = T1[φ] + T2[φ] ;
(ii) (λT )[φ] = λ (T [φ]) , λ ∈ C ,

which are valid for ∀T1, T2 ∈ D′(S1,C), φ ∈ D(S1,C).

Regular S-distribution – For any integrable piece-wise continuous function f ∈ C0([−πR+, 0−]∪
[0, πR],C) 5, one can define a regular S-distribution f̃ ∈ D′(S1,C) such that

∀φ ∈ D(S1,C) , f̃ [φ] =̂
(∫ 0−

−πR+
+
∫ πR

0

)
dy f(y)φ(y) , (H.17)

which clearly follows the commutative law,

∀ f, g ∈ C0([−πR+, 0−] ∪ [0, πR],C) , f̃ ∗ g = g̃ ∗ f . (H.18)

Note that an S-distribution which is not regular is singular.

Product S-distribution – If T ∈ D′(S1,C) and f ∈ D(S1,C), one can define their
product as an S-distribution denoted as f T via

∀φ ∈ D(S1,C) , (f T )[φ] =̂ T [f ∗ φ] , (H.19)

satisfying the bi-linear conditions,
(i) f (λ1 T1 + λ2 T2) = λ1 (f T1) + λ2 (f T2) , λ1, λ2 ∈ C ;
(ii) (λ1 f + λ2 g)T = λ1 (f T ) + λ2 (g T ) , λ1, λ2 ∈ C ,

which are valid for ∀T, T1, T2 ∈ D′(S1,C), f, g ∈ D(S1,C).
It also follows two other calculation laws:

(i) The associative composition law

∀ f, g ∈ D(S1,C) , f(g T ) = (f ∗ g)T , (H.20)

can be proved as,

∀φ ∈ D(S1,C) , f(g T )[φ] = (g T )[f ∗ φ]
= T [g ∗ f ∗ φ]
= T [(f ∗ g) ∗ φ]
= (f ∗ g)T [φ] .

5. D(S1,C) is a subset of C0([−πR+, 0−] ∪ [0, πR],C), i.e. D(S1,C) ⊂ C0([−πR+, 0−] ∪ [0, πR],C).
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(ii) The commutative law

∀ f, g ∈ D(S1,C) , f(g T ) = g(f T ) , (H.21)

can also be guaranteed as

f(g T ) = (f ∗ g)T = (g ∗ f)T = g(f T ) ,

where we inserted the associative composition law (H.20).
In particular, we can derive some specific results,

(i) T ∈ D′(S1,C) is a regular S-distribution associated to τ ∈ C0([−πR+, 0−]∪[0, πR],C),
we should have

f T = f̃ ∗ τ , (H.22)
which should be demonstrated as

∀φ ∈ D(S1,C) , f T [φ] = T [f ∗ φ]

=
(∫ 0−

−πR+
+
∫ πR

0

)
dy τ(y) f(y)φ(y)

=
(∫ 0−

−πR+
+
∫ πR

0

)
dy [f(y) τ(y)]φ(y) = f̃ ∗ τ [φ] .

(ii) T ∈ D′(S1,C) is a regular S-distribution associated to τ ∈ D(S1,C), we should have

f T = τ f̃ = f̃ ∗ τ , (H.23)

where the first equality should be demonstrated as

∀φ ∈ D(S1,C) , f T [φ] = T [f ∗ φ]

=
(∫ 0−

−πR+
+
∫ πR

0

)
dy τ(y) f(y)φ(y)

=
(∫ 0−

−πR+
+
∫ πR

0

)
dy f(y) [τ(y)φ(y)] = f̃ [τ ∗ φ] = (τ f̃) [φ] ,

and the second one could be obtained from Eq. (H.22).
If T ∈ D′(S1,C) and f̃ ∈ D′(S1,C) is the regular S-distribution associated to f ∈

D(S1,C), the product S-distribution f̃ T with respect to T and f̃ is defined by

f̃ T =̂ f T , (H.24)

satisfying the bi-linear conditions,
(i) f̃ (λ1 T1 + λ2 T2) = λ1 (f̃ T1) + λ2 (f̃ T2) , λ1, λ2 ∈ C ;
(ii) (λ1 f̃ + λ2 g̃)T = λ1 (f̃ T ) + λ2 (g̃ T ) , λ1, λ2 ∈ C ,

which are valid for ∀T, T1, T2 ∈ D′(S1,C), f, g ∈ D(S1,C) and we invoke the definition of
f T ∈ D′(S1,C) in Eq. (H.19). Besides, it respects two following laws as well,

(i) The associative composition law

∀ f, g ∈ D(S1,C) , f̃(g̃ T ) = (f̃ g̃)T , (H.25)

can be proved as,

f̃(g̃ T ) = f(g T ) = (f ∗ g)T = f̃ ∗ g T = (f g̃)T = (f̃ g̃)T ,

where f̃ , g̃ ∈ D′(S1,C) are the regular S-distributions associated to f, g ∈ D(S1,C)
respectively via Eq. (H.17) and we invoke the Eq. (H.23).
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(ii) The commutative law
∀ f, g ∈ D(S1,C) , f̃(g̃ T ) = g̃(f̃ T ) , (H.26)

can also be derived as
f̃(g̃ T ) = f(g T ) = g(f T ) = g̃(f̃ T ) ,

where f̃ , g̃ ∈ D′(S1,C) are the regular S-distributions associated to f, g ∈ D(S1,C)
respectively via Eq. (H.17) and we inserted the commutative law (H.21).

In particular, if T ∈ D′(S1,C) is the regular S-distribution associated to τ ∈ C0([−πR+, 0−]∪
[0, πR],C), we can rewrite Eq. (H.22) via Eq. (H.24) as

f̃ T = f̃ ∗ τ . (H.27)
In contrast, when τ ∈ D(S1,C), we can rewrite Eq. (H.23) via Eq. (H.24) as

f̃ T = T f̃ = f̃ ∗ τ , (H.28)
which indicates the commutative law of the product of two regular S-distributions in
Eq. (H.24). So, we can conclude that no matter T is a regular S-distribution or not, f̃ T
and T f̃ would not induce an ambiguity so that we would not distinguish them afterwards.

Dirac S-distribution – The Dirac S-distribution δy0 , y0 ∈ S1 is a singular S-distribution,
which is defined as

∀φ ∈ D(S1,C) , δy0 [φ] =̂ φ(y0) . (H.29)

H.2.2 Weak Derivative

Analogy to the interval case in Appendix H.1, we consider an integrable function
f ∈ C0(S1,C) ∩ C1([−πR+, 0−] ∪ [0, πR],C) , (H.30)

which is continuous at y = 0, πR [forming a subset of D(S1,C)] and its corresponding
derivative ∂yf ∈ C0([−πR+, 0−] ∪ [0, πR],C) is also integrable on S1. Let us introduce
the regular S-distribution f̃ ∈ D′(S1,C) associated to f (H.30) and {∂yf} is the regular
S-distribution associated to ∂yf . The weak derivative ∂yf̃ of f̃ is thus defined as

∂yf̃ =̂ {∂yf} ,
which can rewritten as

∀φ ∈ D(S1,C) , ∂yf̃ [φ] =
(∫ 0−

−πR+
+
∫ πR

0

)
dy ∂yf(y)φ(y)

= −
(∫ 0−

−πR+
+
∫ πR

0

)
dy f(y) ∂yφ(y)

+ [f(y)φ(y)]|0
−

−πR+ + [f(y)φ(y)]|πR
0

= −
(∫ 0−

−πR+
+
∫ πR

0

)
dy f(y) ∂yφ(y)

+ { [f(y)φ(y)]|0− − [f(y)φ(y)]|0}

+
{

[f(y)φ(y)]|πR − [f(y)φ(y)]|−πR+

}
= −

(∫ 0−

−πR+
+
∫ πR

0

)
dy f(y) ∂yφ(y)

= −f̃ [∂yφ] , (H.31)
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where the first equality is just the definition of the regular S-distribution {∂yf} in Eq. (H.17).
To go from the first to the second equality, we have performed integrations by parts. Note
that the two pairs of obtained boundary terms at y = 0, 0−, y = −πR+, πR cancel each
other respectively because f(y) and φ(y) are continuous at y = 0, πR. In the last step, we
have used the definition of f̃ in Eq. (H.17).

Now, as in Schwartz’s distribution theory on R1, in contrast to Eq. (H.30), we generalize
the weak derivative definition to any regular S-distribution f̃ ∈ D′(S1,C) associated to

f ∈ C1([−πR+, 0−] ∪ [0, πR],C) , (H.32)

which can be discontinuous at y = 0, πR and its derivative ∂yf ∈ C0([−πR+, 0−] ∪
[0, πR],C) is integrable on S1 so that

∀φ ∈ D(S1,C) , ∂yf̃ [φ] =̂ − f̃ [∂yφ] . (H.33)

Since f (H.32) can be discontinuous at y = 0, πR, we define the jumps as

β0[f ] =̂ f(y)|00− = f(0)− f(0−) ,

βπR[f ] =̂ f(y)|−πR+

πR = f(−πR+)− f(πR) . (H.34)

In contrast to the Jump K-distribution defined in Eq. (H.70), note that β0,πR (H.34) isn’t
an S-distribution but a conventional notation. Using {∂yf} ∈ D′(S1,C) as the regular
S-distribution associated to ∂yf ∈ C0([−πR+, 0−] ∪ [0, πR],C), we can have

∀φ ∈ D(S1,C) , ∂yf̃ [φ] = −
(∫ 0−

−πR+
+
∫ πR

0

)
dy f(y) ∂yφ(y)

=
(∫ 0−

−πR+
+
∫ πR

0

)
dy φ(y) ∂yf(y)

− [f(y)φ(y)]|0
−

−πR+ − [f(y)φ(y)]|πR
0

=
(∫ 0−

−πR+
+
∫ πR

0

)
dy φ(y) ∂yf(y)

+ φ(0) f(y)|00− + φ(πR) f(y)|−πR+

πR

= {∂yf} [φ] + β0[f ] δ0[φ] + βπR[f ] δπR[φ] ,

where the first equality is just the definition of the weak derivative (H.33). Then, we have
performed integrations by parts. In turn, the continuity of φ at y = 0, πR is involed.
Finally, we use the definitions of {∂yf} (H.17), δ0/πR (H.29), and β0/πR[f ] (H.34). We
have thus shown that

∂yf̃ = {∂yf}+
∑

y0=0,πR

βy0 [f ]δy0 . (H.35)

This definition of the weak derivative on S1 is similar to what we have on R1.

H.3 Kurasov’s Distribution Theory on an Interval

In this appendix, we adapt Kurasov’s distribution theory [264] to the case of test
functions defined on the interval labeled by y ∈ [0, L′] ∪ [L′+, L] (L′ < L).
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H.3.1 Basics

Test function on the interval – The set K(I1,C) of test K-functions on I is the set
of all piece-wise smooth functions φ ∈ C∞([0, L′] ∪ [L′+, L],C), i.e.

K(I1,C) =̂ C∞([0, L′] ∪ [L′+, L],C) , (H.36)

such that the sequence of functions
{
∂k

yφ , k ∈ N
}

is uniformly bounded on [0, L′]∪[L′+, L].
In contrast to D(I,C) in Eq. (H.16), we have following two remarks:

(i) Test K-functions in K(I1,C) can be discontinuous at y = L′ (L′ < L), but the
(left/right) limits of the functions ∂k

yφ, k ∈ N, on both sides of y = L′ (L′ < L) exist
and are finite.

(ii) The set of test S-functions D(I,C) is a subspace of K(I1,C), i.e. the test K-functions
are smooth at y = L′ (L′ < L) particularly.

Convergence in K(I1,C) – A test K-function sequence {φn}n∈N [∀φn ∈ K(I1,C)]
converges to a test K-function φ ∈ K(I1,C), i.e. convergent on K(I1,C), if and only if
the sequence

{
∂k

yφn

}
n∈N

converges uniformly to ∂k
yφ on [0, L′] ∪ [L′+, L] for each k ∈ N.

Continuity of a linear functional on K(I1,C) – A linear functional

T : K(I1,C)→ C ,
∀φ1, φ2 ∈ K(I1,C) , T [λ1 φ1 + λ2 φ2] = λ1 T [φ1] + λ2 T [φ2] , λ1, λ2 ∈ C ,

is continuous if and only if the sequence {T [φn]}n∈N converges to T [φ] ∈ C, for any test
K-function sequence {φn}n∈N on K(I1,C).

K-distribution – A K-distribution 6 T on I is a continuous linear functional onK(I1,C),

T : K(I1,C)→ C .

The set containing all the K-distributions,

K ′(I1,C) =̂ {T | T is a K-distribution on K(I1,C).} ,

forms a vector space over C by
(i) (T1 + T2)[φ] = T1[φ] + T2[φ] ;
(ii) (λT )[φ] = λ (T [φ]) , λ ∈ C ,

which are valid for ∀T1, T2 ∈ K ′(I1,C), φ ∈ K(I1,C).

Regular K-distribution – For any integrable piece-wise continuous function f ∈
C0([0, L′] ∪ [L′+, L],C) 7, one can define a regular K-distribution f̃ ∈ K ′(I1,C) such that

∀φ ∈ K(I1,C) , f̃ [φ] =̂
(∫ L′

0
+
∫ L

L′+

)
dy f(y)φ(y) , (H.37)

which clearly follows the commutative law,

∀ f, g ∈ C0([0, L′] ∪ [L′+, L],C) , f̃ ∗ g = g̃ ∗ f . (H.38)

Note that a K-distribution which is not regular is singular.
6. "K" stands for Kurasov.
7. K(I1,C) is a subset of C0([0, L′] ∪ [L′+, L],C), i.e. D(I,C) ⊂ K(I1,C) ⊂ C0([0, L′] ∪ [L′+, L],C).
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Product K-distribution – If T ∈ K ′(I1,C) and f ∈ K(I1,C), one can define their
product f T as

∀φ ∈ K(I1,C) , (f T )[φ] =̂ T [f ∗ φ] . (H.39)
satisfying the bi-linear conditions,

(i) f (λ1 T1 + λ2 T2) = λ1 (f T1) + λ2 (f T2) , λ1, λ2 ∈ C ;
(ii) (λ1 f + λ2 g)T = λ1 (f T ) + λ2 (g T ) , λ1, λ2 ∈ C ,

which are valid for ∀T, T1, T2 ∈ K ′(I1,C), f, g ∈ K(I1,C).
It also follows two other calculation laws:

(i) The associative composition law

∀ f, g ∈ K(I1,C) , f(g T ) = (f ∗ g)T , (H.40)

can be proved as,

∀φ ∈ K(I1,C) , f(g T )[φ] = (g T )[f ∗ φ]
= T [g ∗ f ∗ φ]
= T [(f ∗ g) ∗ φ]
= (f ∗ g)T [φ] .

(ii) The commutative law

∀ f, g ∈ K(I1,C) , f(g T ) = g(f T ) , (H.41)

can also be guaranteed as

f(g T ) = (f ∗ g)T = (g ∗ f)T = g(f T ) ,

where we inserted the associative composition law (H.40).
In particular, we can derive some specific results,

(i) T ∈ K ′(I1,C) is a regular K-distribution associated to τ ∈ C0([0, L′] ∪ [L′+, L],C),
we should have

f T = f̃ ∗ τ , (H.42)
which should be demonstrated as

∀φ ∈ K(I1,C) , f T [φ] = T [f ∗ φ]

=
(∫ L′

0
+
∫ L

L′+

)
dy τ(y) f(y)φ(y)

=
(∫ L′

0
+
∫ L

L′+

)
dy [f(y) τ(y)]φ(y) = f̃ ∗ τ [φ] .

(ii) T ∈ K ′(I1,C) is a regular K-distribution associated to τ ∈ K(I1,C), we should have

f T = τ f̃ = f̃ ∗ τ , (H.43)

where the first equality should be demonstrated as

∀φ ∈ K(I1,C) , f T [φ] = T [f ∗ φ]

=
(∫ L′

0
+
∫ L

L′+

)
dy τ(y) f(y)φ(y)

=
(∫ L′

0
+
∫ L

L′+

)
dy f(y) [τ(y)φ(y)] = f̃ [τ ∗ φ] = (τ f̃) [φ] ,

and the second one could be obtained from Eq. (H.42).
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If T ∈ K ′(I1,C) and f̃ ∈ K ′(I1,C) is the regular K-distribution associated to f ∈
K(I1,C), the product K-distribution f̃ T with respect to T and f̃ is defined by

f̃ T =̂ f T , (H.44)

satisfying the bi-linear conditions,
(i) f̃ (λ1 T1 + λ2 T2) = λ1 (f̃ T1) + λ2 (f̃ T2) , λ1, λ2 ∈ C ;
(ii) (λ1 f̃ + λ2 g̃)T = λ1 (f̃ T ) + λ2 (g̃ T ) , λ1, λ2 ∈ C ,

which are valid for ∀T, T1, T2 ∈ K ′(I1,C), f, g ∈ K(I1,C) and we invoke the definition of
f T ∈ K ′(I1,C) in Eq. (H.39). Besides, it respects two following laws as well,

(i) The associative composition law

∀ f, g ∈ K(I1,C) , f̃(g̃ T ) = (f̃ g̃)T , (H.45)

can be proved as,

f̃(g̃ T ) = f(g T ) = (f ∗ g)T = f̃ ∗ g T = (f g̃)T = (f̃ g̃)T ,

where f̃ , g̃ ∈ K ′(I1,C) are the regular K-distributions associated to f, g ∈ K(I1,C)
respectively via Eq. (H.37) and we invoke the Eq. (H.43).

(ii) The commutative law

∀ f, g ∈ K(I1,C) , f̃(g̃ T ) = g̃(f̃ T ) , (H.46)

can also be derived as

f̃(g̃ T ) = f(g T ) = g(f T ) = g̃(f̃ T ) ,

where f̃ , g̃ ∈ K ′(I1,C) are the regular K-distributions associated to f, g ∈ K(I1,C)
respectively via Eq. (H.37) and we inserted the commutative law (H.41).

In particular, if T ∈ K ′(I1,C) is the regular K-distribution associated to τ ∈ C0([0, L′]∪
[L′+, L],C), we can rewrite Eq. (H.42) via Eq. (H.44) as

f̃ T = f̃ ∗ τ . (H.47)

In contrast, when τ ∈ K(I1,C), we can rewrite Eq. (H.43) via Eq. (H.44) as

f̃ T = T f̃ = f̃ ∗ τ , (H.48)

which indicates the commutative law of the product of two regular K-distributions in
Eq. (H.44). So, we can conclude that no matter T is a regular K-distribution or not, f̃ T
and T f̃ would not induce an ambiguity so that we would not distinguish them afterwards.

Jump K-distribution – The Jump K-distribution βy0 , y0 ∈ I is a singular K-distribution,
which is defined as

∀φ ∈ K(I1,C) , βy0 [φ] =̂


0 for y0 ̸= L′ ,

φ(y)|L
′+

L′ = φ(L′+)− φ(L′) for y0 = L′ ,

(H.49)

so that βy0 [φ] gives the jump of the test K-function φ(y) ∈ K(I1,C) at y0. Thus, we have
the following remark:

βy0 [φ] ̸= 0 if and only if y0 = L′ and φ(y) ∈ K(I1,C) is discontinuous there. (H.50)
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Dirac K-distribution – The Dirac K-distribution δy0 , y0 ∈ I is a singular K-distribution,
which is defined as

∀φ ∈ K(I1,C) , δy0 [φ] =̂ φ(y0) . (H.51)

H.3.2 Weak Derivative

We want to define a weak derivative for regular K-distributions. However, we will not
define it as the distributional derivative in Kurasov’s original article (see Ref. [264]) since
his definition is not appropriate for practical reason 8. Here, we follow the way of the weak
derivative defined in Schwartz’s distribution theory (see Appendix H.2).

First , let us consider an integrable function

f ∈ C0(I,C) ∩ K(I1,C) , (H.52)

which is continuous at y = L′ (L′ < L) [forming a subset of K(I1,C)] and its corre-
sponding derivative ∂yf ∈ K(I1,C) is also integrable on I. Then, introduce the regular
K-distribution f̃ ∈ K ′(I1,C) associated to f (H.52) and {∂yf} is the regular K-distribution
associated to ∂yf . The weak derivative ∂yf̃ of f̃ is thus defined as

∂yf̃ =̂ {∂yf} ,

which can be rewritten via βy0 (H.49) and δy0 (H.51),

∀φ ∈ K(I1,C) , ∂yf̃ [φ] =
(∫ L′

0
+
∫ L

L′+

)
dy ∂yf(y)φ(y)

= −
(∫ L′

0
+
∫ L

L′+

)
dy f(y) ∂yφ(y)

+ [f(y)φ(y)]|L
′

0 + [f(y)φ(y)]|LL′+

= −
(∫ L′

0
+
∫ L

L′+

)
dy f(y) ∂yφ(y)

+ { [f(y)φ(y)]|L′ − [f(y)φ(y)]|L′+}
+ { [f(y)φ(y)]|L − [f(y)φ(y)]|0}

= −f̃ [∂yφ]− δL′ [f ]βL′ [φ] + f̃ (δL − δ0) [φ] , (H.53)

where we have used the continuity of f at y = L′ (L′ < L) in Eq. (H.52) and the definition
of f̃ in Eq. (H.37). The non-vanishing boundary terms which defer from what we have for
a S-distribution on I in Eq. (H.31), come from possible jumps at y = L′ (L′ < L) of the
test K-functions.

Now, as in Schwartz’s distribution theory on I in Appendix H.2, we generalize this
result to define the weak derivative of any regular K-distribution f̃ ∈ K ′(I1,C) associated
to a test K-function

f ∈ K(I1,C) , (H.54)

which can be discontinuous at y = L′ (L′ < L) and its derivative ∂yf ∈ K(I1,C) is also
integrable on I so that

∀φ ∈ K(I1,C) , ∂yf̃ [φ] =̂ − f̃ [∂yφ]− δL′ [f ]βL′ [φ] + f̃ (δL − δ0) [φ] . (H.55)

8. Kurasov discusses in Ref. [264] that his distributional derivative does not match with the usual
derivative for differentiable functions, which is however essential for a weak derivative in physical applica-
tions [115].
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Using {∂yf} ∈ K ′(I1,C) as the regular K-distribution associated to ∂yf ∈ K(I1,C), we
can have

∀φ ∈ K(I1,C) , ∂yf̃ [φ] = {∂yf} [φ] + βL′ [f ] {δL′ [φ] + βL′ [φ]} ,

where we inserted

f̃ [∂yφ] =
(∫ L′

0
+
∫ L

L′+

)
dy f(y) ∂yφ(y)

= −
[(∫ L′

0
+
∫ L

L′+

)
dy φ(y) ∂yf(y)

]
+ [f(y)φ(y)]|L

′

0 + [f(y)φ(y)]|LL′+

= −
[(∫ L′

0
+
∫ L

L′+

)
dy φ(y) ∂yf(y)

]
+ { [f(y)φ(y)]|L′ − [f(y)φ(y)]|L′+}

+ { [f(y)φ(y)]|L − [f(y)φ(y)]|0}
= −{∂yf} [φ]− {βL′ [f ]δL′ [φ] + δL′ [f ]βL′ [φ]} − βL′ [f ]βL′ [φ] + f̃ (δL − δ0) [φ] ,

with

[f(y)φ(y)]|L′ − [f(y)φ(y)]|L′+ = f(L′)φ(L′)− f(L′)φ(L′+) + f(L′)φ(L′+)− f(L′+)φ(L′+)
= −f(L′)βL′ [φ]− φ(L′+)βL′ [f ]
= −{βL′ [f ]δL′ [φ] + δL′ [f ]βL′ [φ]} − βL′ [f ]βL′ [φ] .

We have thus shown that

∂yf̃ = {∂yf}+ βL′ [f ] (δL′ + βL′) . (H.56)

H.4 Kurasov’s Distribution Theory on S1

In this appendix, we adapt Kurasov’s distribution theory [264] to the case of test
functions defined on S1 labeled by y ∈ [−πR+, 0−] ∪ [0, πR ≡ −πR].

H.4.1 Basics

Test function on S1 – The set K(S1,C) of test K-functions on S1 is the set of all
piece-wise smooth functions φ ∈ C∞([−πR+, 0−] ∪ [0, πR],C), i.e.

K(S1,C) =̂ C∞([−πR+, 0−] ∪ [0, πR],C) , (H.57)

such that the sequence of functions
{
∂k

yφ , k ∈ N
}

is uniformly bounded on [−πR+, 0−]∪
[0, πR]. In contrast to D(S1,C) in Eq. (H.16), we have following two remarks:

(i) Test K-functions in K(S1,C) can be discontinuous at y = 0, πR, but the (left/right)
limits of the functions ∂k

yφ, k ∈ N, on both sides of y = 0, πR exist and are finite.
(ii) The set of test S-functions D(S1,C) is a subspace of K(S1,C), i.e. the test K-

functions are smooth at y = 0, πR particularly.

Convergence in K(S1,C) – A test K-function sequence {φn}n∈N [∀φn ∈ K(S1,C)]
converges to a test K-function φ ∈ K(S1,C), i.e. convergent on K(S1,C), if and only
if the sequence

{
∂k

yφn

}
n∈N

converges uniformly to ∂k
yφ on [−πR+, 0−] ∪ [0, πR] for each

k ∈ N.
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Continuity of a linear functional on K(S1,C) – A linear functional

T : K(S1,C)→ C ,
∀φ1, φ2 ∈ K(S1,C) , T [λ1 φ1 + λ2 φ2] = λ1 T [φ1] + λ2 T [φ2] , λ1, λ2 ∈ C ,

is continuous if and only if the sequence {T [φn]}n∈N converges to T [φ] ∈ C, for any test
K-function sequence {φn}n∈N on K(S1,C).

K-distribution – A K-distribution T on S1 is a continuous linear functional onK(S1,C),

T : K(S1,C)→ C .

The set containing all the K-distributions,

K ′(S1,C) =̂
{
T | T is a K-distribution on K(S1,C).

}
,

forms a vector space over C by
(i) (T1 + T2)[φ] = T1[φ] + T2[φ] ;
(ii) (λT )[φ] = λ (T [φ]) , λ ∈ C ,

which are valid for ∀T1, T2 ∈ K ′(S1,C), φ ∈ K(S1,C).

Regular K-distribution – For any integrable piece-wise continuous function f ∈
C0([−πR+, 0−] ∪ [0, πR],C) 9, one can define a regular K-distribution f̃ ∈ K ′(S1,C) such
that

∀φ ∈ K(S1,C) , f̃ [φ] =̂
(∫ 0−

−πR+
+
∫ πR

0

)
dy f(y)φ(y) , (H.58)

which clearly follows the commutative law,

∀ f, g ∈ C0([−πR+, 0−] ∪ [0, πR],C) , f̃ ∗ g = g̃ ∗ f . (H.59)

Note that a K-distribution which is not regular is singular.

Product K-distribution – If T ∈ K ′(S1,C) and f ∈ K(S1,C), one can define their
product f T as

∀φ ∈ K(S1,C) , (f T )[φ] =̂ T [f ∗ φ] . (H.60)
satisfying the bi-linear conditions,

(i) f (λ1 T1 + λ2 T2) = λ1 (f T1) + λ2 (f T2) , λ1, λ2 ∈ C ;
(ii) (λ1 f + λ2 g)T = λ1 (f T ) + λ2 (g T ) , λ1, λ2 ∈ C ,

which are valid for ∀T, T1, T2 ∈ K ′(S1,C), f, g ∈ K(S1,C).
It also follows two other calculation laws:

(i) The associative composition law

∀ f, g ∈ K(S1,C) , f(g T ) = (f ∗ g)T , (H.61)

can be proved as,

∀φ ∈ K(S1,C) , f(g T )[φ] = (g T )[f ∗ φ]
= T [g ∗ f ∗ φ]
= T [(f ∗ g) ∗ φ]
= (f ∗ g)T [φ] .

9. K(S1,C) is a subset of C0([−πR+, 0−] ∪ [0, πR],C), i.e. D(S1,C) ⊂ K(S1,C) ⊂ C0([−πR+, 0−] ∪
[0, πR],C).
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(ii) The commutative law

∀ f, g ∈ K(S1,C) , f(g T ) = g(f T ) , (H.62)

can also be guaranteed as

f(g T ) = (f ∗ g)T = (g ∗ f)T = g(f T ) ,

where we inserted the associative composition law (H.61).
In particular, we can derive some specific results,

(i) T ∈ K ′(S1,C) is a regular K-distribution associated to τ ∈ C0([−πR+, 0−]∪[0, πR],C),
we should have

f T = f̃ ∗ τ , (H.63)
which should be demonstrated as

∀φ ∈ K(S1,C) , f T [φ] = T [f ∗ φ]

=
(∫ 0−

−πR+
+
∫ πR

0

)
dy τ(y) f(y)φ(y)

=
(∫ 0−

−πR+
+
∫ πR

0

)
dy [f(y) τ(y)]φ(y) = f̃ ∗ τ [φ] .

(ii) T ∈ K ′(S1,C) is a regular K-distribution associated to τ ∈ K(S1,C), we should
have

f T = τ f̃ = f̃ ∗ τ , (H.64)
where the first equality should be demonstrated as

∀φ ∈ K(S1,C) , f T [φ] = T [f ∗ φ]

=
(∫ 0−

−πR+
+
∫ πR

0

)
dy τ(y) f(y)φ(y)

=
(∫ 0−

−πR+
+
∫ πR

0

)
dy f(y) [τ(y)φ(y)] = f̃ [τ ∗ φ] = (τ f̃) [φ] ,

and the second one could be obtained from Eq. (H.63).
If T ∈ K ′(S1,C) and f̃ ∈ K ′(S1,C) is the regular K-distribution associated to f ∈

K(S1,C), the product K-distribution f̃ T with respect to T and f̃ is defined by

f̃ T =̂ f T , (H.65)

satisfying the bi-linear conditions,
(i) f̃ (λ1 T1 + λ2 T2) = λ1 (f̃ T1) + λ2 (f̃ T2) , λ1, λ2 ∈ C ;
(ii) (λ1 f̃ + λ2 g̃)T = λ1 (f̃ T ) + λ2 (g̃ T ) , λ1, λ2 ∈ C ,

which are valid for ∀T, T1, T2 ∈ K ′(S1,C), f, g ∈ K(S1,C) and we invoke the definition
of f T ∈ K ′(S1,C) in Eq. (H.60). Besides, it respects two following laws as well,

(i) The associative composition law

∀ f, g ∈ K(S1,C) , f̃(g̃ T ) = (f̃ g̃)T , (H.66)

can be proved as,

f̃(g̃ T ) = f(g T ) = (f ∗ g)T = f̃ ∗ g T = (f g̃)T = (f̃ g̃)T ,

where f̃ , g̃ ∈ K ′(S1,C) are the regular K-distributions associated to f, g ∈ K(S1,C)
respectively via Eq. (H.58) and we invoke the Eq. (H.64).
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(ii) The commutative law

∀ f, g ∈ K(S1,C) , f̃(g̃ T ) = g̃(f̃ T ) , (H.67)

can also be derived as

f̃(g̃ T ) = f(g T ) = g(f T ) = g̃(f̃ T ) ,

where f̃ , g̃ ∈ K ′(S1,C) are the regular K-distributions associated to f, g ∈ K(S1,C)
respectively via Eq. (H.58) and we inserted the commutative law (H.62).

In particular, if T ∈ K ′(S1,C) is the regular K-distribution associated to τ ∈ C0([−πR+

, 0−] ∪ [0, πR],C), we can rewrite Eq. (H.63) via Eq. (H.65) as

f̃ T = f̃ ∗ τ . (H.68)

In contrast, when τ ∈ K(S1,C), we can rewrite Eq. (H.64) via Eq. (H.65) as

f̃ T = T f̃ = f̃ ∗ τ , (H.69)

which indicates the commutative law of the product of two regular K-distributions in
Eq. (H.65). So, we can conclude that no matter T is a regular K-distribution or not, f̃ T
and T f̃ would not induce an ambiguity so that we would not distinguish them afterwards.

Jump K-distribution – The Jump K-distribution βy0 , y0 ∈ S1 is a singular K-distribution,
which is defined as

∀φ ∈ K(S1,C) , βy0 [φ] =̂


φ(y)|y0

y−
0

= φ(y0)− φ(y−
0 ) for y0 ̸= πR ,

φ(y)|−πR+

πR = φ(−πR+)− φ(πR) for y0 = πR ,

(H.70)

so that βy0 [φ] gives the jump of the test K-function φ(y) ∈ K(S1,C) at y0. Thus, we have
the following remark:

βy0 [φ] ̸= 0 if and only if y0 = 0, πR and φ(y) ∈ K(S1,C) is discontinuous there. (H.71)

Dirac K-distribution – The Dirac K-distribution δy0 , y0 ∈ S1 is a singular K-distribution,
which is defined as

∀φ ∈ K(S1,C) , δy0 [φ] =̂ φ(y0) . (H.72)

H.4.2 Weak Derivative

We want to define a weak derivative for regular K-distributions. However, we will not
define it as the distributional derivative in Kurasov’s original article (see Ref. [264]) since
his definition is not appropriate for practical reason 10. Here, we follow the way of the
weak derivative defined in Schwartz’s distribution theory (see Appendix H.2).

First , let us consider an integrable function

f ∈ C0(S1,C) ∩ K(S1,C) , (H.73)

10. Kurasov discusses in Ref. [264] that his distributional derivative does not match with the usual
derivative for differentiable functions, which is however essential for a weak derivative in physical applica-
tions [115].
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which is continuous at y = 0, πR [forming a subset of K(S1,C)] and its correspond-
ing derivative ∂yf ∈ K(S1,C) is also integrable on S1. Then, introduce the regular K-
distribution f̃ ∈ K ′(S1,C) associated to f (H.73) and {∂yf} is the regular K-distribution
associated to ∂yf . The weak derivative ∂yf̃ of f̃ is thus defined as

∂yf̃ =̂ {∂yf} ,

which can be rewritten via βy0 (H.70) and δy0 (H.72),

∀φ ∈ K(S1,C) , ∂yf̃ [φ] = −f̃ [∂yφ]−
∑

y0=0,πR

δy0 [f ]βy0 [φ] , (H.74)

where we perform the same calculation in Eq. (H.31) except the last step. We have used
the continuity of f at y = 0, πR in Eq. (H.73) and the definition of f̃ in Eq. (H.58). The
non-vanishing boundary terms which defer from what we have for a S-distribution on S1

in Eq. (H.31), come from possible jumps at y = 0, πR of the test K-functions.
Now, as in Schwartz’s distribution theory on S1 in Appendix H.2, we generalize this

result to define the weak derivative of any regular K-distribution f̃ ∈ K ′(S1,C) associated
to a test K-function

f ∈ K(S1,C) , (H.75)

which can be discontinuous at y = 0, πR and its derivative ∂yf ∈ K(S1,C) is also inte-
grable on S1 so that

∀φ ∈ K(S1,C) , ∂yf̃ [φ] =̂ − f̃ [∂yφ]−
∑

y0=0,πR

δy0 [f ]βy0 [φ] . (H.76)

Using {∂yf} ∈ K ′(S1,C) as the regular K-distribution associated to ∂yf ∈ K(S1,C), we
can have

∀φ ∈ K(S1,C) , ∂yf̃ [φ] = {∂yf} [φ] +{βπR[f ]βπR[φ]− β0[f ]β0[φ]}+
∑

y0=0,πR

βy0 [f ]δy0 [φ] ,

where we inserted

f̃ [∂yφ] =
(∫ 0−

−πR+
+
∫ πR

0

)
dy f(y) ∂yφ(y)

= −
[(∫ 0−

−πR+
+
∫ πR

0

)
dy φ(y) ∂yf(y)

]
+ [f(y)φ(y)]|0

−

−πR+ + [f(y)φ(y)]|πR
0

= −
[(∫ 0−

−πR+
+
∫ πR

0

)
dy φ(y) ∂yf(y)

]
+ { [f(y)φ(y)]|0− − [f(y)φ(y)]|0}

+
{

[f(y)φ(y)]|πR − [f(y)φ(y)]|−πR+

}
= −{∂yf} [φ] + {β0[f ]β0[φ]− βπR[f ]βπR[φ]} −

∑
y0=0,πR

{βy0 [f ]δy0 [φ] + δy0 [f ]βy0 [φ]} ,
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with

[f(y)φ(y)]|0− − [f(y)φ(y)]|0 = f(0−)φ(0−)− f(0−)φ(0) + f(0−)φ(0)− f(0)φ(0)
= −f(0−)β0[φ]− φ(0)β0[f ]
= {β0[f ]− δ0[f ]}β0[φ]− δ0[φ]β0[f ]
= −{β0[f ]δ0[φ] + δ0[f ]β0[φ]}+ β0[f ]β0[φ] ,

[f(y)φ(y)]|πR − [f(y)φ(y)]|−πR+ = f(πR)φ(πR)− f(πR)φ(−πR+)
+ f(πR)φ(−πR+)− f(−πR+)φ(−πR+)

= −f(πR)βπR[φ]− φ(−πR+)βπR[f ]
= −{βπR[f ]δπR[φ] + δπR[f ]βπR[φ]} − βπR[f ]βπR[φ] .

We have thus shown that

∂yf̃ = {∂yf}+ (βπR[f ]βπR − β0[f ]β0) +
∑

y0=0,πR

βy0 [f ]δy0 , (H.77)

which keeps a similar formalism of the weak derivative for an S-distribution on S1 in
Eq. (H.35).
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Appendix I

Dimensional analysis

The MKS unit system is recovered by the conventional formalism in Ref. [265].

I.1 4D Analysis
The generic action is contructed by the 4D Lagrangian as,

S = 1
c

∫
d4x L4D , xµ = (ct,x) ,

[S] = [E]× [T ] = [J ] = [P ]× [L] ,[
L4D

]
= [E]× [L]−3 . (I.1)

— 4D scalar field ϕ

L4D = 1
2∂µϕ∂

µϕ− 1
2

(
mc

ℏ

)2
ϕ2 ,[

L4D
]

= [L]−2 × [ϕ]2 ,

[ϕ]2 = [E]× [L]−1 = [m]× [T ]−2 × [L] ,

[ϕ] = [m]
1
2 × [T ]−1 × [L]

1
2 = [E]

1
2 × [L]−

1
2 . (I.2)

— 4D spinor field ψ

L4D = i (ℏc) ψ̄γµ∂µψ −
(
mc2

)
ψ̄ψ ,

[ψ] = [L]−
3
2 . (I.3)

I.2 5D Analysis

The generic action is contructed by the 5D bulk and brane-localized Lagrangian (4D)
as,

S = 1
c

∫
d4x

(∫
dy L5D + L4D

)
, xM = (ct,x, y) ,[

L5D
]

=
[
L4D

]
× [L]−1 = [E]× [L]−4 . (I.4)

197



— 5D bulk scalar field Φ

L5D = 1
2∂M Φ∂M Φ− 1

2

(
MΦc

ℏ

)2
Φ2 ,[

L5D
]

= [L]−2 × [Φ]2 ,

[Φ]2 = [E]× [L]−2 = [m]× [T ]−2 ,

[Φ] = [m]
1
2 × [T ]−1 = [E]

1
2 × [L]−1 . (I.5)

— 5D bulk spinor field Ψ

L5D = i (ℏc) Ψ̄ΓM∂M Ψ−
(
MΨc

2
)

Ψ̄Ψ ,

[Ψ] = [L]−2 . (I.6)

— BBT terms (3.4) as a brane-localized Lagrangian

SB ∋
1
c

∫
d4x

1
2 (ℏc)σΨ

P Ψ̄Ψ
∣∣∣
P
, P = 0, L ,

[ℏc] = [E]× [L] . (I.7)
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Appendix J

Bulk Massive KK Modes on an
Interval

Here, we give an example demonstration on continuous solutions of the EOM (6.60)
with the NBC (6.12) on the first region, [0, LF ].

For
(
mF

n

)2
−
(
m̃1

F

)2
< 0 in Eq. (6.61), the solutions have the general form on y ∈ [0, LF ],

fn
L/R(y) = An

L/R e

√
(m̃1

F )2−(mF
n )2 y +Bn

L/R e
−
√

(m̃1
F )2−(mF

n )2 y
, (J.1)

where An
L/R, Bn

L/R are complex coefficients. For the Dirichlet BC for fn
R(y) (6.12),

i.e.fn
R|0 = fn

R|LF
= 0, we have the following set of equations to determine An

R, Bn
R,

An
R e

√
(m̃1

F )2−(mF
n )2 · 0 +Bn

R e
−
√

(m̃1
F )2−(mF

n )2 · 0 = 0 ,

An
R e

√
(m̃1

F )2−(mF
n )2 · LF +Bn

R e
−
√

(m̃1
F )2−(mF

n )2 · LF = 0 ,
and the associated characteristic determinant,

∆ = e

√
(m̃1

F )2−(mF
n )2 · (0−LF ) − e

√
(m̃1

F )2−(mF
n )2 · (LF −0) ̸= 0 ,

which leads to the absence of An
R, Bn

R, i.e. An
R = Bn

R = 0, such that,

fn
R(y) = 0 , (J.2)

which is valid on y ∈ [0, LF ] and after injecting to Eq. (6.60), leads to, fn
L(y) = 0, mF

n ̸= 0 ,(
∂4 + m̃1

F

)
fn

L(y) = 0, mF
n = 0 ,

which means fn
L(y) has non-zero solutions in this case if and only if mF

n = 0, i.e. the zero
mode f0

L(y), and directly leads to the form of f0
L(y) with the normalization factor NF 10

L ,
derived from the ortho-normalisation conditions (6.38) 1,

f0
L(y) = NF 10

L e−m̃1
F y , N F 10

L =
√

2 m̃1
F L

1− e−2m̃1
F ∆L1

F

eiα10
F , (J.3)

1. Here, we just consider the normalization on [0, LF ],

∀ n, m ∈ N,
1
L

∫ LF

0
dy fn∗

L/R(y) fm
L/R(y) = δnm .
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where ∆L1
F =̂LF −0 is the length of the segment, [0, LF ], and eiα10

F (α10
F ∈ R) is the global

phase.
For

(
mF

n

)2
−
(
m̃1

F

)2 ≥ 0 in Eq. (6.61), the solutions have the general form on y ∈ [0, LF ],

∀n ∈ N∗, fn
L/R(y) = An

L/R cos
[√

(mF
n )2 −

(
m̃1

F

)2
y

]
+Bn

L/R sin
[√

(mF
n )2 −

(
m̃1

F

)2
y

]
,

(J.4)
where An

L/R, Bn
L/R are complex coefficients. Then, the Dirichlet BC for fn

R(y) would
constrain solutions as the following form with the normalization factors NF 1n

R (n ∈ N∗),

∀n ∈ N∗, fn
R(y) = N F 1n

R sin
[√

(mF
n )2 −

(
m̃1

F

)2
y

]
, NF 1n

R =
√

2 eiα1n
F , (J.5)

which generates the mass spectrum,

∣∣∣mF
n

∣∣∣ =

√√√√[ nπ

∆L1
F

]2

+
(
m̃1

F

)2
, n ∈ N∗ . (J.6)

Combining with the zero mode, one can obtain the complete mass spectrum. Inserting
the solutions of fn

R(y) (J.5) into the coupled EOM (6.60), one can obtain the solutions of
fn

L(y),

∀n ∈ N∗, fn
L(y) = NF 1n

L cos
[√

(mF
n )2 −

(
m̃1

F

)2
y + ζF 1

n

]
,

with, NF 1n
L = −NF 1n

R , sin
(
ζF 1

n

)
=̂ m̃1

F

mF
n

, cos
(
ζF 1

n

)
=̂

√
(mF

n )2 −
(
m̃1

F

)2
mF

n

. (J.7)

Note that the KK mass
∣∣∣mF

n

∣∣∣ (J.6) can’t be equal to
∣∣m̃1

F

∣∣. Otherwise, both of the left and
the right profiles are suspended to vanish due to the coupled EOM (6.60).

The similar analysis can be applied on the Dirichlet BC for fn
L(y) (6.12), i.e. fn

L |0 =
fn

L |LF
= 0, which would lead to the vanishing f0

L(y) on y ∈ [0, LF ]. The normalized
non-vanishing zero mode f0

R(y) reads,

f0
R(y) = NF 10

R em̃1
F y , N F 10

R =
√

2 m̃1
F L

e2m̃1
F ∆L1

F − 1
eiα10

F , (J.8)

and the higher order KK modes (n ∈ N∗),

∀n ∈ N∗,


fn

L(y) = NF 1n
L sin

[√
(mF

n )2 −
(
m̃1

F

)2
y

]
, N F 1n

L =
√

2 eiα1n
F ,

fn
R(y) = NF 1n

R cos
[√

(mF
n )2 −

(
m̃1

F

)2
y − ζF 1

n

]
, N F 1n

R = NF 1n
L ,

(J.9)

which generates the identical mass spectrum of Eq. (J.6).
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Appendix K

Explicit Formula of the Mass
Matrix

K.1 Generic Elements of Mass Matrix

Using the explicit profile solution of q0
GiL

(6.44) and d0
GjR (6.45) (i, j = 1, 2), let us work

out following explicit results of the mass matrix Mij in Eq. (6.85) and the bulk Yukawa
coupling X(y) (6.80),

M11 =
∫ LD

0
dy

X(y)
L

q0∗
G1Ld

0
G1R +

∫ LQ

L+
D

dy
X(y)
L

q0∗
G1Ld

0
G1R +

∫ L

L+
Q

dy
X(y)
L

q0∗
G1Ld

0
G1R

= N11 cos ΩQ cos ΩD ei(α10
D −α10

Q ) +N12 cos ΩQ sin ΩD ei(α20
D −α10

Q )

+N22 sin ΩQ sin ΩD ei(α20
D −α20

Q ) ,

M22 =
∫ LD

0
dy

X(y)
L

q0∗
G2Ld

0
G2R +

∫ LQ

L+
D

dy
X(y)
L

q0∗
G2Ld

0
G2R +

∫ L

L+
Q

dy
X(y)
L

q0∗
G2Ld

0
G2R

= ei(δD−δQ) [N11 sin ΩQ sin ΩD ei(α10
D −α10

Q ) −N12 sin ΩQ cos ΩD ei(α20
D −α10

Q )

+ N22 cos ΩQ cos ΩD ei(α20
D −α20

Q )] ,
M12 =

∫ LD

0
dy

X(y)
L

q0∗
G1Ld

0
G2R +

∫ LQ

L+
D

dy
X(y)
L

q0∗
G1Ld

0
G2R +

∫ L

L+
Q

dy
X(y)
L

q0∗
G1Ld

0
G2R

= ei(δD−π)
[
N11 cos ΩQ sin ΩD ei(α10

D −α10
Q ) −N12 cos ΩQ cos ΩD ei(α20

D −α10
Q )

− N22 sin ΩQ cos ΩD ei(α20
D −α20

Q )] ,
M21 =

∫ LD

0
dy

X(y)
L

q0∗
G2Ld

0
G1R +

∫ LQ

L+
D

dy
X(y)
L

q0∗
G2Ld

0
G1R +

∫ L

L+
Q

dy
X(y)
L

q0∗
G2Ld

0
G1R

= ei(π−δQ) [N11 sin ΩQ cos ΩD ei(α10
D −α10

Q ) +N12 sin ΩQ sin ΩD ei(α20
D −α10

Q )

− N22 cos ΩQ sin ΩD ei(α20
D −α20

Q )] , (K.1)
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with,

N11 =̂ Nv
Y5√

2

√√√√ L2

∆L1
Q∆L1

D

eMHLD − 1
MHL

= Ñ

√√√√ L2

∆L1
Q∆L1

D

e−MH∆L2
D − e−MHL

MHL
,

N12 =̂ Nv
Y5√

2

√√√√ L2

∆L1
Q∆L2

D

eMHLQ − eMHLD

MHL
= Ñ

√√√√ L2

∆L1
Q∆L2

D

e−MH∆L2
Q − e−MH∆L2

D

MHL
,

N22 =̂ Nv
Y5√

2

√√√√ L2

∆L2
Q∆L2

D

eMHL − eMHLQ

MHL
= Ñ

√√√√ L2

∆L2
Q∆L2

D

1− e−MH∆L2
Q

MHL
, (K.2)

where

Ñ =̂ Nv
Y5√

2
eMHL ,

and Nv denotes the Higgs VEV amplitude in Eq. (1.11)-(1.12).

K.2 Matrix Elements of Localized Profiles

For the localization solutions of q0
a(b)L(y), d0

a(b)R(y) (6.51) presented in Figure 6.8 (LD =
LQ), elements of mass matrixM (6.84) can be derived in the real case (i.e. δD,Q = α10

D,Q =
α20

D,Q = 0) as (cf. Appendix K),

M11 = N11 cos ΩQ cos ΩD +N22 sin ΩQ sin ΩD ,

M22 = N11 sin ΩQ sin ΩD +N22 cos ΩQ cos ΩD ,

M12 = −N11 cos ΩQ sin ΩD +N22 sin ΩQ cos ΩD ,

M21 = −N11 sin ΩQ cos ΩD +N22 cos ΩQ sin ΩD ,

(K.3)

and in turn related crucial terms for mass eigenvalues of Eq. (6.86) can be written as,
|M|2 = N 2

11 +N 2
22 ,

|M11|2 + |M21|2 − |M12|2 − |M22|2 =
(
N 2

11 −N 2
22
)

cos(2ΩD) ,

M∗
11M12 +M∗

21M22 =
(
N 2

22 −N 2
11
)

sin ΩD cos ΩD ,

(K.4)

so that√(
|M11|2 + |M21|2 − |M12|2 − |M22|2

)2
+ 4 |M∗

11M12 +M∗
21M22|2 = N 2

22 −N 2
11 .

(K.5)
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Glossary

ADD : Arkani-Hamed, Dimopoulos and Dvali

AdS : Anti-de Sitter

BBN : Big Bang Nucleosynthesis

BBT : Bilinear Boundary Terms

BC : Boundary Conditions

BSM : Beyond the Standard Model

CDM : Cold Dark Matter

CFT : Conformal Field Theory

CMB : Cosmic Microwave Background

DGP : Dvali, Gabadadze and Porrati

DLS : Discrete Lagrangian and Symmetries

EBC : Essential Boundary Condition

EFT : Effective Field Theory

EOM : Equations Of Motion

EWSB : ElectoWeak Symmetry Breaking

FCC pp : Future Circular Collider proton-proton

FCNC : Flavor Changing Neutral Current

GBBT : Generic Bilinear Boundary Terms

GUT : Grand Unified Theory

GSW : Glashow-Salam-Weinberg

IR : InfraRed

KK : Kaluza-Klein

LED : Large Extra Dimension
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LHC : Large Hadron Collider

LHS : Left-Hand Side

LKP : Lightest Kaluza-Klein Particle

LQG : Loop Quantum Gravity

nD : n-Dimensional space

NBC : Natural Boundary Condition

NPGO : Non-Perturbative Gravitationnal Object

PGO : Perturbative Gravitational Object

QBH : Quantum Black Hole

QCD : Quantum ChromoDynamics

QFT : Quantum Field Theory

RHS : Right-Hand Side

RS : Randall and Sundrum

SM : Standard Model

SUGRA : SUperGRAvity

SUSY : SUperSYmmetry

UED : Universal Extra Dimension

UV : UltraViolet

VEV : Vacuum Expectation Value
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