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Abstract
Nonassociative operator observable algebras, like those that occur in the presence of
small magnetic monopole charges and non-geometric backgrounds in string theory, can
not be represented as linear operators on a Hilbertspace, creating difficulties in extracting
physics from these systems. This thesis is a compilation of three papers [1–3] that start
with a more robust definition of an eigenstate and uses inequalities between moments
following from positivity of the state to find the spectra of several operators. This is
done without making any reference to wave functions or density matrices, and can thus
be applied tot nonassociative operator algebras as well. From this we find a new bound
on the magnetic charge of the muon (g ≤ 4.7 · 10−18Am = 1.4 · 10−9gDirac).

This work was supported in part by NSF grant PHY-1912168 and NSF grant PHY-
1607414. Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.
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Chapter 1 |
Introduction

This thesis is based on three papers that explore a moment based approach to quantum
mechanics, with the aim of extracting physics of systems with non-associative observable
algebras. These algebras arise in anomalous gauge theories [4–6], in non-geometric
backgrounds of string theory, and in Non-commutative geometry [7]. These algebras
are typically dismissed as un-physical as they can not be represented with Hilbert
space operators. However, with effective theories based on higher moments in quantum
systems1, it turns out we can still ask physically meaningful questions, and investigate
non-associative deformations of our theories which may represent a very large, unexplored
theory space.

The simplest system in which these non-associative algebras appear is in the descrip-
tion of an electrically charged particle in the presence of certain magnetic monopoles
[5, 11, 12]. This can be seen directly from the fact that the Jacobi identity does not hold
for the momentum operators, meaning that (p̂ip̂j)(p̂k) 6= (p̂i)(p̂j p̂k) can not hold for all i,
j, k.
As such, we can not represent these operators with linear maps on a Hilbert space, as
these are automatically associative2. This means that states can no longer be represented
as an element of a Hilbert space.

There is however a natural definition of states in terms of normalized, positive functionals
on C∗ - algebras, and this can be generalized in a straightforward way to non-associative

1Constructions like these are also useful in the context of deriving effective equations for higher
moments in constrained systems [8], and have been applied in gravitational context [9, 10]

2 Monopoles that satisfy the Dirac quantization condition, like those we see in most GUTs, can still
be described with the standard formalism involving Hilbert spaces. The simplest way to see this is by
noting that these field configurations can be realized in the standard theories by using more exotic fibre
bundles [13]. However, these constructions are related to integer topological invariants (elements of
certain homotopy groups), and are not available for arbitrary magnetic charges.
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algebras. In concrete terms, this means we define a state by the expectation values it
gives for all observables. The set of states is then characterized by the fact that these
expectation values have to satisfy properties like 〈1〉 = 1 and 〈A†A〉 ≥ 0. By defining an
eigenstate of the Hamiltonian as a state for which 〈X̂(Ĥ − E)〉 = 0 for a fixed E and all
operatorsX̂, it is then possible to extract an energy spectrum even in a non-associative
setting.

Applying this in the context of the harmonic oscillator directly led to a relation between
natural generalizations of the uncertainty principle and energy eigenstates, one which
was maintained under perturbations [3], and this is what the paper in chapter 2 is about.
Furthermore, applying this technique to a hydrogen-like atom whose nucleus had some
small magnetic charge allowed us to get the first characterization of the spectrum of a
non-associative Hamiltonian, which led to an improved upper bound on the magnetic
charge of a muon [2], as described in chapter 3. Extending this work in [1] led to a new
analytical method that allows for the full reconstruction of the negative energy states, as
shown in chapter 4.
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Chapter 2 |
Moments and saturation proper-
ties of eigenstates: Oscillator Sys-
tems

Martin Bojowald, Jonathan Guglielmon, Martijn van Kuppeveld

Eigenvalues are defined for any element of an algebra of observables and do not re-
quire a representation in terms of wave functions or density matrices. A systematic
algebraic derivation based on moments is presented here for the harmonic oscillator, to-
gether with a perturbative treatment of anharmonic systems. In this process, a collection
of inequalities is uncovered which amount to uncertainty relations for higher-order mo-
ments saturated by the harmonic-oscillator excited states. Similar saturation properties
hold for anharmonic systems order by order in perturbation theory. The new method,
based on recurrence relations for moments of a state combined with positivity conditions,
is therefore able to show new physical features.

2.1 Introduction
The usual derivation of eigenvalues in model systems of quantum mechanics seems to
suggest that spectral properties are a direct consequence of boundary conditions imposed
on wave functions. However, boundary conditions are a property of representations of an
algebra of observables A (with a unit I), while the spectrum of an operator does not refer
to a representation: For any algebra element â ∈ A, it can be defined as the set of all
λ ∈ C such that â− λI does not have an inverse in A. The main purpose of this article
is to show that it is not only possible to define the spectrum directly for an algebra, but
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also to compute it without using a specific representation.
While this statement may seem formal, there are several useful implications for

physical considerations. In particular, (i) the algebraic derivation works for all possible
representations of the algebra, (ii) it applies equally to pure states and mixed states,
and (iii) it is available in systems of non-associative quantum mechanics that cannot be
represented on a Hilbert space [5,11,14]. The latter arena has recently led to a new upper
bound on the magnetic charge of elementary particles [2] and is therefore physically
meaningful. Here, we demonstrate the new method used in the latter result for standard
associative systems, in which we rederive known spectra but find new identities for
moments of eigenstates that can be interpreted as saturation conditions of higher-order
uncertainty relations. This result helps to demonstrate a relationship between excited
states and generalized coherent states.

Our starting point is the algebraic definition of a state as a (normalized) positive
linear functional on the ∗-algebra A of observables, that is a linear map 〈·〉 : A → C
with 〈â†â〉 ≥ 0 for all â ∈ A (and 〈I〉 = 1). (We denote the ∗-relation by a †, following
standard physics notation in quantum mechanics.) Physically, the positivity condition
implies not only that fluctuations 〈â2〉 − 〈â〉2 ≥ 0 of self-adjoint algebra elements are
positive, but also, and slightly less obviously, that observations are subject to uncertainty
relations; see for instance [15]: Any positive state obeys the Cauchy–Schwarz inequality

〈â†â〉〈b̂†b̂〉 ≥ |〈â†b̂〉|2 (2.1)

from which uncertainty relations can be derived by making suitable choices for â and b̂.
The ∗-relation on A may be abstractly defined, or given by the usual adjoint if A

is represented on a Hilbert space. For basic generators x̂i of A, such as positions and
momenta, one can parameterize a state by its basic expectation values 〈x̂i〉 and central
moments

∆(xa1
1 · · ·xan

n ) = 〈(x̂1 − 〈x̂1〉)a1 · · · (x̂n − 〈x̂n〉)an〉Weyl (2.2)

using completely symmetric (or Weyl) ordering. Coupled equations of motion for basic
expectation values and moments follow from an extension of Ehrenfest’s theorem. For
instance, for canonical (xi) = (q, p) with [q̂, p̂] = i~I, in addition to

d〈q̂〉
dt = 〈[q̂, Ĥ]〉

i~
,

d〈p̂〉
dt = 〈[p̂, Ĥ]〉

i~
(2.3)
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we have
d∆(q2)

dt = d(〈q̂2〉 − 〈q̂〉2)
dt = 〈[q̂

2, Ĥ]〉
i~

− 2〈q̂〉d〈q̂〉dt (2.4)

for the position variance ∆(q2) = (∆q)2. As usual, the time dependence in Ehrenfest-type
equations may reside in the states used to compute expectation values (Schrödinger
picture) or in the operators (Heisenberg picture). To be specific, we take the former
viewpoint because it helps to avoid addressing mathematical questions about suitable
topologies on the algebra that would be required to define a time derivative of operators.
Depending on the Hamiltonian, the right-hand sides of (2.3) and (2.4) can be expanded
in moments and usually involve asymptotic series of terms (unless the Hamiltonian is
quadratic in basic operators).

This formulation is especially useful for canonical effective theories [16] and semi-
classical expansions because the condition ∆(xa1

1 · · ·xan
n ) = O(~(a1+···+an)/2) provides a

general definition of semiclassical (but possibly non-Gaussian) states and allows tractable
approximations of the equations of motion order by order in ~. In the present paper,
as another new conceptual insight, we show that interesting properties that can be
obtained in this way are not restricted to semiclassical ones: Harmonic and perturbative
eigenvalues can be derived as well, together with relationships between their moments.

Uncertainty relations play a crucial role in this context, as can be seen by the simple
example of the ground state of the harmonic oscillator with Hamiltonian

Ĥ = 1
2mp̂2 + 1

2mω
2q̂2 . (2.5)

Using moments, the ground-state energy can be derived from two conditions, namely
that (i) the moments be time independent for a stationary state, and (ii) the standard
uncertainty relation be saturated. Indeed, in this case the second-order moments obey a
closed set of evolution equations

d∆(q2)
dt = 2∆(qp)

m
(2.6)

d∆(qp)
dt = 1

m
∆(p2)−mω2∆(q2) (2.7)

d∆(p2)
dt = −2mω2∆(qp) . (2.8)

Condition (i) implies ∆(qp) = 0 and ∆(p2) = m2ω2∆(q2). Condition (ii) then determines
∆(q2) = ~/(2mω) and ∆(p2) = 1

2mω~. Therefore, the energy expectation value in such a
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state (with 〈q̂〉 = 0 = 〈p̂〉 by condition (i)),

〈Ĥ〉 = 1
2m∆(p2) + 1

2mω
2∆(q2) = 1

2~ω , (2.9)

agrees with the ground-state energy. It is not necessary to compute the full ground-state
wave function in order to find the energy. However, the question of how to compute the
energy eigenvalues of excited states using moments is more difficult: Their eigenstates
are not Gaussian and therefore do not saturate the standard uncertainty relation.

For the ground state of the harmonic oscillator, the condition that Heisenberg’s
uncertainty relation be saturated can be replaced by a lesson from the variational
principle. The expectation value of the Hamiltonian is minimized in the ground state.
Since (2.9) is linear in second-order moments, which take values in a region bounded by
the uncertainty relation, the expectation value is minimized at the boundary allowed
by this relation. Saturation therefore need not be assumed but can be derived from a
fundamental principle. But again, for excited states such a derivation based on moments
seems to be more complicated because one would somehow have to restrict the moments
to belong to a wave function orthogonal to the ground state and all lower-excited states.
However, orthogonality relations are not available for states at the algebraic level. Our
procedure will instead lead to certain higher-order uncertainty relations that, regarding
energy eigenstates, split the state space into subsets much like the usual orthogonality
conditions do for wave functions.

For some time and in a slightly different context, moments have been known to
be useful for numerical approximations of eigenvalues of excited states [17–20]. (See
also [21,22] for recent work.) Here, we use some of the same relations between moments of
eigenstates, but in a different way. As a result, our constructions have a more fundamental
flavor because they can serve as new definitions of eigenvalues and eigenstates in the
algebraic perspective, even while they do provide new computational schemes as well.
We are aware of at least two examples for settings in which our constructions may be
useful: In canonical quantum gravity, the problem of time [23–25] often makes explicit
constructions of physical Hilbert spaces and wave functions untractable, while moment
methods have been shown to present certain computational advantages [26–29]. And
in non-associative quantum mechanics, which plays a role in models with magnetic
monopoles [30] or of certain flux compactifications in string theory [31–35], operators
on wave functions (and therefore the usual definition of eigenvalues) are in general
unavailable [33,36–39], but moments may still be used [2, 56,70].
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The main new result we will be able to uncover here for associative systems is a
saturation property for any harmonic-oscillator eigenstate. (For a detailed non-associative
example, see [40].) As part of our procedure, we impose a set of inequality constraints
involving the moments, so as to ensure that they belong to an actual state (a positive
linear functional). These constraints include the standard uncertainty principle as well
as a series of inequalities involving higher moments. Upon imposing these conditions, we
find that some of them are not only satisfied but also saturated by a harmonic-oscillator
eigenstate. This feature is reminiscent of the saturation of Heisenberg’s uncertainty
relation by the ground state. As a related result, we show that excited states of the
harmonic oscillator are (limits of) generalized coherent states as defined by Titulaer and
Glauber [41]. In an extension to anharmonic oscillators, we confirm that such saturation
properties continue to hold order by order in perturbation theory by the anharmonicity.

At present, it is not clear how feasible it would be to extend this method to non-
harmonic systems beyond perturbation theory. As an alternative, still algebraic procedure,
we therefore show how eigenvalues can be derived from convergence conditions for certain
recurrence relations derived from positivity and boundedness conditions of expectation
values. The positivity of states used in this construction is also the origin of uncertainty
relations, but in the alternative procedure we do not directly impose uncertainty relations
and therefore do not obtain new saturation properties. However, the algebraic derivation
of eigenvalues and eigenstates is more tractable in this case and applies not only to the
harmonic example presented here but also to the standard hydrogen problem [40]. Finally,
our appendix presents an instructive finite-dimensional example given by a fermionic
system.

2.2 Eigenvalues from Moments
In the standard presentation of the problem, using wave functions, eigenvalues λ and
eigenstates ψλ of a given operator Ĥ are determine by a single equation,

Ĥψλ = λψλ . (2.10)

This equation immediately implies that that all expectation values of the form

〈Ô(Ĥ − λI)〉λ = 〈ψλ|Ô(Ĥ − λI)ψλ〉 = 0 (2.11)
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vanish for any operator Ô such that ψλ is in the domain of Ô†. In our derivation,
operators Ô polynomial in basic operators q̂ and p̂ will be found to be sufficient. Even
with this restriction, an algebraic derivation of eigenvalues is not obvious and requires
two ingredients: (i) A way of organizing infinitely many equations implied by (2.11) for
sufficiently many choices of Ô, and (ii) the imposition of a condition that the expectation
value in (2.11) indeed refers to an admissible, that is, positive state.

In this section we present two methods for the same system that differ in how both (i)
and (ii) are addressed. In our first derivation, we rewrite (2.11) as a system of recurrence
relations for moments of an eigenstate and impose positivity through (generalized)
uncertainty relations. In an alternative derivation in Section 2.2.3 we use generating
functions and impose positivity more indirectly through continuity and boundedness
conditions on a suitably defined object.

2.2.1 Notation

Equation (2.11) immediately implies that eigenstates of a self-adjoint Ĥ are stationary:

d〈Ô〉λ
dt = 〈[Ô, Ĥ]〉λ

i~
(2.12)

= 〈Ô(Ĥ − λI)〉λ − 〈Ô†(Ĥ − λI)〉∗λ
i~

= 0 .

For the harmonic oscillator, this equation applied to q̂ and p̂ implies that 〈q̂〉 = 0 and
〈p̂〉 = 0. Instead of using central moments as in the introduction, we can therefore work
directly with bare moments and zero basic expectation values. We define

T̂m,n := (q̂mp̂n)Weyl (2.13)

where q̂ and p̂ are the canonical position and momentum operators, m and n are non-
negative integers, and the subscript indicates, as before, that the product is taken in
completely symmetric ordering. Note that through the commutation relation [q̂, p̂] = i~,
products of the form T̂m,nT̂m′,n′ can always be rewritten as sums over individual T̂m′′,n′′ of
order m+n+m′+n′ or less. See [42] for an explicit statement of the relevant reordering
identity.

Given a particular state, we define the bare moments (about the origin) as:

Tm,n := 〈T̂m,n〉. (2.14)
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The collection of all such moments for a given state provides a complete description of
the state in the sense that given the moments, it is possible (in principle) to reconstruct
the wave function. However, the moments are not completely free. They must satisfy
certain inequalities, such as Heisenberg’s uncertainty relation, as well as a number of
other constraints involving higher moments. A necessary and sufficient condition for a
collection of moments {Tm,n} to correspond to a genuine quantum state has been given
in [43]. More recently, a similar result has been developed from a different perspective
in [44], providing a generalized uncertainty principle that imposes inequality constraints
on higher moments. These results are key for our further constructions.

Consider the column vector, ξ̂J , consisting of all operators T̂m,n up to orderm+n = 2J ,
where J is an integer or half-integer. The generalized uncertainty principle states that
the (J + 1)(2J + 1)× (J + 1)(2J + 1) dimensional square matrix MJ = 〈ξ̂J ξ̂†J〉 is positive
semi-definite,

MJ = 〈ξ̂J ξ̂†J〉 ≥ 0 (2.15)

where the expectation value is taken element by element. Prior to taking the expectation
value, the matrix elements are products of the form T̂m,nT̂m′,n′ . As mentioned above,
these products can be rewritten as linear combinations of individual Tm′′,n′′ . The elements
of MJ are thus functions of the moments. Since MJ ≥ 0 implies non-negativity of its
principal minors, the generalized uncertainty principle yields a set of inequalities involving
the moments.

As discussed in [45], it is useful to bring this matrix to block diagonal form

MJ →


A0

A1
. . .

A2J

 (2.16)

where An is an n+ 1 by n+ 1 matrix that contains moments up to order 2n. This can
be achieved by repeatedly applying the following identity

L

 A C†

C B

L† =
 A 0

0 B − CA−1C†

 (2.17)

to MJ , where

L =
 1 0
−CA−1 1

 . (2.18)
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This identity holds whenever the matrix on the left-hand side of Eq. (2.17) is Hermitian.
We then have that MJ ≥ 0 if and only if An ≥ 0 for all n ≤ 2J . The generalized
uncertainty principle may thus be rephrased as

An ≥ 0 for all n ≥ 0. (2.19)

If the state under consideration is known to be an eigenstate of a Hamiltonian, Ĥ,
then we can obtain an additional set of constraints. For all m,n ≥ 0 we have

〈T̂m,n(Ĥ − λI)〉λ = 0 (2.20)

where λ is the eigenvalue of the state 〈·〉λ under consideration. In order to rewrite
this set of equations as a collection of constraints on the moments, we express Ĥ in
terms of the T̂m,n and reorder the product T̂m,nĤ into a sum over individual T̂m′,n′ .
Equation (2.20) then implies recurrence relations for Tm,n which depend on the system
under consideration.

2.2.2 Application to the harmonic oscillator

We now show how the considerations outlined above can be used to find the eigenvalues
of the harmonic-oscillator Hamiltonian. The idea is to use (2.20) to solve for the moments
in terms of the eigenvalue λ and then apply (2.15) to obtain information concerning
the allowed values of λ (as yet unspecified). This combination is the basis of our new
method.

2.2.2.1 Recurrence relations

For the sake of mathematical clarity, we use the Hamiltonian Ĥ = (p̂2 + q̂2)/2. The
usual parameters given by the mass m and frequency ω can be reintroduced by a suitable
canonical transformation of q, p if we also understand Ĥ as the energy divided by ω.
Our q and p then both have units of

√
~, such that Tm,n has units of ~(m+n)/2. Imposing

(2.20) results in the following relations between the moments

Tm+2,n + Tm,n+2 = 2λTm,n + n(n− 1)
4 ~2Tm,n−2

+m(m− 1)
4 ~2Tm−2,n (2.21)

nTm+1,n−1 = mTm−1,n+1 (2.22)

10



which hold for all m,n ≥ 0. Two constraints are obtained because (2.20) — defined
without symmetric ordering of the product T̂m,nĤ — has both real and imaginary parts.
From (2.22), starting with m = 0 or n = 0, we find that the moments are zero unless
both m and n are even. For even and non-zero m = 2j and n = 2k, we then define Sj,k
such that

T2j,2k = (2j)!(2k)!
j!k! Sj,k . (2.23)

For these coefficients, (2.22) implies the simple relation

Sj+1,k = Sj,k+1 , (2.24)

which in turn implies that Sj,k depends only on j+ k. There are, therefore, dimensionless
coefficients bj depending only on a single integer, such that

T2j,2k = (2j)!(2k)!
j!k! ~j+kbj+k . (2.25)

For convenience, it is useful to define a second set of coefficients, aj, such that

bj+k = (j + k)!
(2j + 2k)!aj+k , (2.26)

or
T2j,2k = (2j)!(2k)!(j + k)!

j!k!(2j + 2k)! ~j+kaj+k . (2.27)

For instance,
T2j,0 = ~jaj (2.28)

and
T2j,2 = ~j+1 aj+1

2j + 1 (2.29)

have more compact coefficients than the equivalent expressions in terms of bj.
As a consequence of (2.21), the remaining coefficients, a`, are subject to a difference

equation in a single independent variable:

a`+1 = λ~−1(2`+ 1)
`+ 1 a` + (2`+ 1)(2`)(2`− 1)

8(`+ 1) a`−1 . (2.30)

Given the two initial values a0 = 1 (as a consequence of normalization of the state,
T0,0 = 1) and a1 = λ/~ (as a consequence of 2~a1 = T2,0 + T0,2 = 2〈Ĥ〉λ = 2λ), (2.30)
determines all orders of moments in terms of the parameter λ. It is clear from the

11



recurrence and its initial values that a` is a polynomial in λ of degree `. It has only even
terms for ` even, and only odd terms for ` odd.

In terms of b`, the recurrence relation is slightly simpler,

(`+ 1)b`+1 −
λ

2~b` −
1
16`b`−1 = 0 , (2.31)

and can be solved via the generating function f(x) = ∑∞
`=0 b`x

` subject to the differential
equation (

1− 1
16x

2
)
f ′(x) = 1

2

(
λ

~
+ 1

8x
)
f(x) (2.32)

and initial conditions f(0) = b0 = 1, f ′(0) = b1 = 1
2λ. The solution,

f(x) = (1 + x/4)λ/~−1/2

(1− x/4)λ/~+1/2 , (2.33)

has the Taylor expansion

f(x) =
∞∑
`=0

(−x
4

)` (`− λ/~− 1/2)!
(−λ/~− 1/2)!`! (2.34)

×2F1(λ/~ + 1/2,−`;λ/~ + 1/2− `;−1)

and determines the b` in terms of hypergeometric functions.

2.2.2.2 Positivity

We now apply the generalized uncertainty principle (2.15) to these moments. Note that
MJ ≥ 0 implies that M ′

J ≥ 0, where M ′
J is a matrix formed by deleting from MJ any

number of rows and their corresponding columns. Equivalently, M ′
J may be defined as

the matrix formed by deleting entries from ξ̂J to form a new vector ξ̂′J and then taking

M ′
J = 〈ξ̂′J ξ̂

′†
J 〉 . (2.35)

In particular, consider the matrix M ′
J formed by taking ξ̂′J to contain only operators of

the form ~−m/2T̂m,0 and ~−m/2T̂m−1,1 up to m = 2J . While ξ̂J has

NJ = (J + 1)(2J + 1) (2.36)
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components, ξ̂′J has
N ′J = 4J + 1 = NJ − J(2J − 1) (2.37)

components. (The number N ′J is by definition given by one plus twice the maximum
number 2J of factors of q̂ included in T̂m,0 for a given ξ̂J . It also equals N ′J = NJ−NJ−1.)
Therefore, M ′

J 6= MJ if and only if J ≥ 1.
For example, for J = 0 we have M ′

0 = 1, not implying any non-trivial uncertainty
relation. For J = 1/2, we have

M ′
1/2 = M1/2 =

〈
1 q̂/

√
~ p̂/

√
~

q̂/
√
~ q̂2/~ q̂p̂/~

p̂/
√
~ p̂q̂/~ p̂2/~


〉

(2.38)

where the expectation value is taken element by element. A suitable minor of M ′
1/2 being

positive semidefinite,

det
 〈q̂2〉 〈q̂p̂〉
〈p̂q̂〉 〈p̂2〉

 = T2,0T0,2 −
(
T1,1 + 1

2i~
)(

T1,1 −
1
2i~

)

= T2,0T0,2 − T 2
1,1 −

~2

4 ≥ 0 , (2.39)

is equivalent to Heisenberg’s uncertainty relation. Taking J = 1 as another example (the
simplest case in which M ′

J 6= MJ), we have

ξ̂′1 =



1
T̂1,0/

√
~

T̂0,1/
√
~

T̂2,0/~
T̂1,1/~


(2.40)

which gives

M ′
1 =

〈


1 T̂1,0/
√
~ T̂0,1/

√
~ T̂2,0/~ T̂1,1/~

T̂1,0/
√
~ T̂1,0T̂1,0/~ T̂1,0T̂0,1/~ T̂1,0T̂2,0/~3/2 T̂1,0T̂1,1/~3/2

T̂0,1/
√
~ T̂0,1T̂1,0/~ T̂0,1T̂0,1/~ T̂0,1T̂2,0/~3/2 T̂0,1T̂1,1/~3/2

T̂2,0/~ T̂2,0T̂1,0/~3/2 T̂2,0T̂0,1/~3/2 T̂2,0T̂2,0/~2 T̂2,0T̂1,1/~2

T̂1,1/~ T̂1,1T̂1,0/~3/2 T̂1,1T̂0,1/~3/2 T̂1,1T̂2,0/~2 T̂1,1T̂1,1/~2


〉

(2.41)
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where as before the expectation value is taken element by element.
In order to derive the generic structure of M ′

J , we use the relations

T̂k,0T̂`,1 = T̂k+`,1 −
1
2ik~T̂k+`−1,0 (2.42)

T̂k,1T̂`,1 = T̂k+`,2 + 1
2i(`− k)~T̂k+`−1,1 + 1

4k`~
2T̂k+`−2,0 (2.43)

which follow from the general ordering equations given in [42] (or [45]). For fixed J , we
can express the non-constant components of ξ̂′J =: ξ̂′ as

ξ̂′n = ~−n/4 ·

 T̂n/2,0 if n even
~1/4T̂(n−3)/2,1 if n odd

(2.44)

where 2 ≤ n ≤ 4J + 1. Excluding (for now) the first row and column of M̂ ′
J which

contain at most one factor of T̂m,n and therefore do not require any reordering, this
operator-valued matrix has the components

M̂ ′
mn = ξ̂′mξ̂

′
n
† = ~−(m+n)/4 ·



T̂(m+n)/2,0 if m,n even
~1/4T̂(m−3)/2,1T̂n/2,0 if m odd and n even
~1/4T̂m/2,0T̂(n−3)/2,1 if m even and n odd

~1/2T̂(m−3)/2,1T̂(n−3)/2,1 if m,n odd

(2.45)

= ~−(m+n)/4 ·



T̂(m+n)/2,0 if m,n even
~1/4T̂(m+n−3)/2,1 + 1

4in~
5/4T̂(m+n−5)/2,0 if m odd and n even

~1/4T̂(m+n−3)/2,1 − 1
4im~5/4T̂(m+n−5)/2,0 if m even and n odd

~1/2T̂(m+n−6)/2,2 + n−m
4 i~3/2T̂(m+n−8)/2,1

+ (m−3)(n−3)
16 ~5/2T̂(m+n−10)/2,0 if m,n odd

Taking expectation values and setting all Tm,n = 0 unless m and n are even, we obtain

M ′
mn = ~−(m+n)/4·



T(m+n)/2,0 if m,n even
1
4in~

5/4T(m+n−5)/2,0 if m odd and n even
−1

4im~5/4T(m+n−5)/2,0 if m even and n odd
~1/2T(m+n−6)/2,2 + 1

16(m− 3)(n− 3)~5/2T(m+n−10)/2,0 if m,n odd
(2.46)

Some components M ′
mn are zero for certain values of m and n, which can be seen by

refining the parameterization such that m = 4q + α and n = 4r + β with integer q and r
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and 0 ≤ α, β ≤ 3. For fixed q and r, we obtain the 4× 4 block

~q+rM ′
4q+α,4r+β = (2.47)

T2(q+r),0 −iq~T2(q+r−1),0 0 0
ir~T2(q+r−1),0 T2(q+r−1),2 0 0

+(q − 1
2)(r − 1

2)~2T2(q+r−2),0

0 0 ~−1T2(q+r+1),0 −i(q + 1
2)T2(q+r),0

0 0 i(r + 1
2)T2(q+r),0 ~−1T2(q+r),2

+qr~T2(q+r−1),0


where rows and columns are arranged according to the values of α and β. (The full
4× 4-blocks appear in M ′

J only for q ≥ 1 and r ≥ 1, while parts of these blocks make up
the first three rows and columns of M ′

J .) Using (2.28) and (2.29), we obtain the blocks

~q+rM ′
4q+α,4r+β = (2.48)

aq+r −iqaq+r−1 0 0
iraq+r−1

aq+r

2(q+r)−1 + (q − 1
2)(r − 1

2)aq+r−2 0 0
0 0 aq+r+1 −i(q + 1

2)aq+r
0 0 i(r + 1

2)aq+r aq+r+1
2(q+r)+1 + qraq+r−1



If J = 1, for instance, we have the matrix

M ′
1 =



1 0 0 a1 0
0 a1

1
2i 0 0

0 −1
2i a1 0 0

a1 0 0 a2 ia1

0 0 0 −ia1
1
3a2 + 1

4


. (2.49)

It is block-diagonalized by identifying C† in (2.17) with the vector C†1 = (0, 0, a1, 0):

L1M
′
1L
†
1 =



1 0 0 0 0
0 a1

1
2i 0 0

0 −1
2i a1 0 0

0 0 0 a2 − a2
1 ia1

0 0 0 −ia1
1
3a2 + 1

4


. (2.50)
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Its determinant is equal to

det(L1M
′
1L
†
1) (2.51)

= 1
4(λ/~ + 1/2)2(λ/~− 1/2)2(λ/~ + 3/2)(λ/~− 3/2)

using the solution a2 = 3
2(λ2/~2 + 1/4) of the recurrence relation (2.30).

2.2.2.3 Eigenvalues

For any J , we may block diagonalize M ′
J as in Equation (2.16), except that each A′n will

be a 2× 2 matrix since we are working with the reduced matrix, M ′
J . We then have

det(A′n) ≥ 0 (2.52)

for all n. For a fixed n, this inequality is a constraint involving moments up to order 2n.
All of these moments can in turn be written in terms of λ using (2.27) and (2.30). From
explicit computations, we infer the general result

dn = det(A′n) = 1
4n−1

n∏
k=1

(λ/~− αk)(λ/~ + αk) (2.53)

where αk = (2k−1)/2 are the odd half-integer multiples. (The polynomial (2.51) is equal
to d1d2.) Considered as a function of λ, this expression has nodes at the αk up to some
maximum k that depends on the particular value of n. Between nodes, the function is
non-zero, and it alternates in sign depending on the value of n. In particular, because
dn+1 = 1

4dn(λ2/~2 − α2
k) implies sgn dn+1 = −sgn dn if |λ|/~ < αn, sending n → n + 1

causes the sign to alternate. This behavior combined with the non-negativity of det(A′n)
implies that the only allowable values for λ occur at the nodes. We can exclude negative
values of λ by appealing to the non-negativity of the first leading principal minor of A′1
(which in this case is a 1× 1 “block” consisting simply of λ), which gives the constraint
λ ≥ 0. We thus have that the only possible values for λ are

λ = 1
2~,

3
2~,

5
2~, . . . (2.54)

in agreement with the well-known eigenvalues of the harmonic-oscillator Hamiltonian
(divided by ω).

Since eigenvalues occur at the nodes of positivity conditions, all excited states obey
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saturation conditions of higher-order uncertainty relations. We will explore these relations
further in Section 2.3, but first give an alternative moment-based derivation of eigenvalues
because we have found it to be difficult to construct a general analytic proof of our
crucial equation (3.4).

2.2.3 Alternative derivation

We now present an alternative algebraic derivation of eigenvalues and eigenstates of the
harmonic oscillator that appears to be more tractable but does not give as direct access
to saturation properties as the previous method. We still impose the two main conditions
stated at the beginning of this section, equation (2.11) combined with positivity of states,
but do so in an alternative way. The recurrence relations for moments will be replaced
by recurrence relations for coefficients of a suitable generating function, and positivity
will be evaluated by means of boundedness and continuity of a certain expectation value
of a 1-parameter family of operators.

Given an energy eigenstate of the harmonic oscillator with eigenvalue λ, consider the
function

Lλ(γ) =
〈
exp

(
(1 + γ)q̂2/~

)〉
λ
. (2.55)

For fixed λ, this function of γ is well defined for γ ≤ −1 because exp ((1 + γ)q̂2/~) is then
an algebra element that quantizes a bounded function, with Lλ(−1) = 1 by normalization
and limγ→−∞ Lλ(γ) = 0. (Any positive state is continuous [46].) Positivity of the state
also implies that Lλ(γ) increases monotonically. We will show that these properties,
implied by boundedness and positivity, can replace the uncertainty relations used in the
preceding section in an algebraic derivation of eigenvalues. This method can also be
applied to non-harmonic systems, including the standard hydrogen problem [40].

2.2.3.1 Recurrence relations

The moment expansion

Lλ(γ) =
∞∑
j=0

~−j〈q̂2j〉λ
(1 + γ)j

j!

=
∞∑
j=0

aj
(1 + γ)j

j! (2.56)

is readily obtained from the Taylor series of the exponential function, followed by the
identification ~−j〈q̂2j〉 = ~−jT2j,0 = aj according to (2.28). Using the recursion relation
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(2.30) for the aj we obtain the differential equation

3Lλ+3(9+9γ+4λ/~)L′λ+8(2+λ/~+γ(6+3γ+λ/~))L′′λ+4γ(1+γ)(2+γ)L′′′λ = 0 (2.57)

where primes indicate derivatives by γ. Motivated by the behavior of Lλ(γ) as γ → −∞,
we rewrite this function as

Lλ(γ) =
∞∑
n=0

αn,s(−γ)−n−s (2.58)

where the constant s takes into account a possible root-like pole at γ → −∞. The αn,s
are then subject to the relation

8(n+ s)(n+ s− λ/~)αn,s − (1 + 2n+ 2s)
(

(3 + 6n+ 6s− 4λ/~)αn+1,s − (3 + 2n+ 2s)αn+2,s

)
= 0 .

Inserting n = −1 and requiring that this sequence of numbers terminates before n = 0 in
backwards recurrence implies s = 1

2 . With this knowledge we can rewrite L as

Lλ(γ) =
∞∑
n=0

An(−γ)−n− 1
2 (2.59)

where An = αn,1/2. The preceding recurrence relation then turns into

(1 + 2n)(1 + 2n− 2λ/~)An − 2(1 + n)
(

(3 + 3n− 2λ/~)An+1 − (2 + n)An+2

)
= 0 .(2.60)

In the large-n limit, equation (2.60) simplifies to 4An−6An+1 +2An+2 = 0. Therefore,
for very large n, An ≈ c1 + 2nc2. If c1 6= 0 or c2 6= 0, this asymptotic behavior is
problematic as it would cause

Lλ(γ) ≈
M−1∑
n=0

An(−γ)−n− 1
2 +

∞∑
n=M

(
c1(−γ)−n− 1

2 + 2nc2(−γ)−n− 1
2
)

=
M−1∑
n=0

An(−γ)−n− 1
2 − (−γ) 1

2−M
(

c1

1 + γ
+ 2Mc2

2 + γ

)
(2.61)

to diverge on values of γ, γ = −1 and γ = −2, where it ought to be between zero and
one.

Therefore, both c1 and c2 have to be strictly zero: after a certain n all the An should
vanish. Let N be the lowest integer such that AN = 0. (Such an N always exists because
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the normalization condition Lλ(−1) = 1 cannot be satisfied if all An are zero.) We then
obtain the consistency equation

(2N − 1)(2N − 1− 2λ/~)AN−1 = 0 (2.62)

from inserting n = N − 1 in (2.60). By definition AN−1 is nonzero. Combined with the
fact that N is an integer greater than zero, we find the familiar spectrum (2.54).

2.2.3.2 Coefficients

Based on this result, the coefficients introduced in (4.109) seem to be more tractable in
the eigenvalue problem compared with our original aj. These sets are strictly related to
each other, but not in a simple way. Using Cauchy’s formula to invert (4.109), we first
write

An = (−1)n+1

2π

∮
|z|=1

Lλ(z)zn− 1
2 dz

= i(−1)n+1
∞∑
j=0

aj
2πj!

2π∫
0

(1 + eiθ)jei(n+1/2)θdθ

= i
∞∑
j=0

aj
πj!B(−1;n+ 1/2, j + 1) (2.63)

using also (2.58), where B is the incomplete beta function.
In order to check convergence, we write (1 + eiθ)j = 2jeijθ/2 cos(θ/2)j and show that

the second factor can be approximated as cos(θ/2)j ≈ exp(−jθ2/8). It is straightforward
to confirm that these two expressions match to second order of a Taylor expansion in θ
around θ = 0. The local maxima of the difference of cos(θ/2)j and exp(−jθ2/8) are at
some θmax such that

0 = ∂θ
(
cos(θ/2)j − exp(−jθ2/8)

)
θ=θmax

= j

4
(
θmax exp(−jθ2

max/8)− 2 tan(θmax/2) cos(θmax/2)j
)

or
cos(θmax/2)j = θmax/2

tan(θmax/2) exp(−jθ2
max/2) .
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Therefore, the difference is bounded by

∆j := sup
θ∈[−π,π]

| cos(θ/2)j − exp(−jθ2/8)|

= | cos(θmax/2)j − exp(−jθ2
max/8)|

=
(

1− θmax/2
tan(θmax/2)

)
exp(−jθ2

max/8) .

This expression goes to zero for large j because of the exponential factor, unless θmax → 0
in which case the first factor in ∆j approaches zero. We conclude that the difference
of the two functions cos(θ/2)j and exp(−jθ2/8) converges to zero in L∞[−π, π] when j
goes to infinity.

Now, writing

(1 + eiθ)j ≤ 2j exp(−jθ2/8 + ijθ/2) + 2jeijθ/2∆j

in the incomplete beta function and using (−1)n
∫ π
−π exp(i(n+ (j + 1)/2)θ)dθ ≤ 2π, we

have

B(−1;n+ 1
2 , j + 1) = (−1)n

2

∫ π

−π
(1 + eiθ)jei(n+1/2)θdθ

≤ (−1)n
2

∫ ∞
−∞

2j exp(−jθ2/8 + ijθ/2)ei(n+1/2)θdθ

+2jπ∆j

=
√

2π(−1)n 2j√
j

exp
(
−(1 + j + 2n)2

2j

)
+ 2jπ∆j . (2.64)

The first term goes to zero for fixed n and large j. From the recursion relation for the aj ,
we then see that the series (2.63) for An has to converge as well, as the numerator grows
at most exponentially with j, while the denominator contains a j!.

Conversely, we have

aj =
(

dj
dγjLλ(γ)

)∣∣∣∣∣
γ=−1

=
∞∑
n=0

An

(
dj

dγj (−γ)−n− 1
2

)∣∣∣∣∣
γ=−1

= (−1)j
∞∑
n=0

An

(
−n− 1

2

)(j)
(2.65)

20



where x(n) is the nth Pochhammer polynomial. As we have seen, only a finite number of
the An are nonzero, and therefore this sum is clearly well defined.

2.2.3.3 Probability density

The alternative method based on (2.55) allows a more direct derivation of the probability
density of eigenstates compared with reconstruction from the moments of Section 2.2.2.

In order to reconstruct the probability density of the N th energy level, we first solve
the recurrence relation for the coefficients An. Once N is fixed for a given eigenstate,
we know that the N th coefficient, AN , is the highest non-zero one. Its exact value will
be fixed later by normalization. Running through the recursion relation (2.60) with the
known eigenvalue λ = ~(N + 1

2), we can then work backward, starting with n = N − 1,
until we reach the 0th coefficient A0 using (2.60) for n = 0. After that, the recurrence
terminates automatically: For n = −1 in (2.60), we obtain A−1 = 0 because of an overall
factor of (1 + n) in the second part of (2.60), and for n = −2 we obtain A−2 = 0 because
A−1 is zero, as just shown, and there is a factor of (n+ 2) in front of the A0 = An+2 in
this case. All coefficients of orders less than −2 then vanish because the recurrence is of
second order. As an example, we consider N = 4 and find

A3 = −12
7 A4

A2 = 6
5A4

A1 = −12
35A4

A0 = 3
5A4 .

The coefficients An then determine the function Lλ(γ), in which we can impose
normalization by requiring Lλ(−1) = 〈I〉λ = 1. Continuing with our example of N = 4,
we find

Lλ4 = 35 + 60γ + 42γ2 + 12γ3 + 3γ4

8(−γ)9/2 . (2.66)

The probability density then requires an inversion of the integral that defines the
expectation value taken in Lλ(γ).

In order to do so, we first note that the Hamiltonian commutes with the parity
operator, such that the probability density of any eigenstate has to be even. We therefore
write

Lλ(γ) = 2
∫ ∞

0
exp

(1 + γ

~
x2
)
Pλ(x)dx (2.67)
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in order to introduce the probability density Pλ(x). Subsituting u = x2 and t = −(1+γ)/~,
where all expressions are well-defined if Re(t) > 0, we obtain

Lλ(−1− ~t) =
∫ ∞

0
e−tu

Pλ(
√
u)√
u

du . (2.68)

The probability density is therefore obtained by an inverse Laplace transform, for which
we can use Mellin’s inverse formula (with a suitable δ):

Pλ(x) = x

2πi lim
T→∞

∫ δ+iT

δ−iT
etx

2
Lλ(−1− ~t)dt

=
N∑
n=0

x

2πi lim
T→∞

∫ δ+iT

δ−iT
etx

2
An(1 + ~t)−n− 1

2 dt

=
N∑
n=0

Ann!(2x)2n exp(−x2/~)
√
π(2n)!~n+ 1

2
. (2.69)

Proceeding again for our example of N = 4, we have

Pλ4(x) = exp(−x2/~)√
π~

(
3
8 −

12
8

2x2

~
+ 42

8
4x4

3~2 −
60
8

8x6

15~3 + 35
8

16x8

105~4

)

= exp(−x2/~)
24
√
π~

(
3− 12x

2

~
+ 4x

4

~

)2

= exp(−x2/~)√
π~244!

H4

(
x√
~

)2

= |ψ4(x)|2 .(2.70)

The method introduced in the present subsection is more efficient than the moment
method, and perhaps more powerful because it provides a more direct route to probability
densities of eigenstates. However, the key definition (2.55) of the function Lλ(γ) was
made with the benefit of knowing that the operator exp((1 + γ)q̂2/~) should be useful,
based on the known form of wave functions for harmonic-oscillator eigenstates. While this
alternative method is fully algebraic, just like the moment method, it is not completely
independent of standard derivations of eigenstates.

We note at this point that other algebraic derivations of eigenvalues and eigenstates
of the harmonic oscillator exist in the literature, such as [47]. However, they are based
on ladder operators in Hilbert space and therefore require representations of the algebra
of observables.
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2.3 Saturation of inequalities
An interesting result that emerges from the solutions in Section 2.2.2 is a saturation
property of the first n eigenstates that obey dn = 0, and therefore saturate the generalized
uncertainty relation det(A′n) ≥ 0 given in (3.4). For n = 1, this condition is just the
well-known statement that the harmonic-oscillator ground state saturates Heisenberg’s
uncertainty relation. For each n > 1, we have an inequality involving higher moments
that is saturated by the first n eigenstates. (This saturation property is different from
the one found in [48]. Moreover, it sharpens a saturation property found in [45], which
is true for all energy eigenstates of the harmonic oscillator.) Motivated by this finding,
we return to the full generalized uncertainty principle and analyze its behavior for the
harmonic oscillator eigenstates, as well as related properties.

2.3.1 Principal minors and pure states

As is evident from our derivations in the previous section, we need to make use of only
a submatrix of MJ , corresponding to moments in ξ̂′J with at most one insertion of a
momentum operator. (A related computational fact is that MJ has an eigenvalue zero
with degeneracy D = J(2J−1).) Computational experiments indicate that the remaining
conditions do not impose additional restrictions on the allowed values of λ, which is
consistent with the fact that (2.54) is the full set of harmonic-oscillator eigenvalues.

Still, for an application of the method without prior knowledge of the spectrum, it
would be of interest to understand these features in more detail. In particular, it remains
unclear to us how a suitable subset of independent inequalities can be selected from the
generalized uncertainty principle that would be sufficient for determining all eigenstates
of a given Hamiltonian.

The observation that the matrices M ′
J suffice to find all relevant conditions on

eigenvalues can be interpreted as follows: For pure states, the moments Tm,0 = 〈q̂m〉
allow one to reconstruct the norm of the wave function according to the Hamburger
problem, while the additional moments Tn,1 = 〈q̂np̂〉 with a single momentum operator
can be used to determine the phase; see for instance [16, 49]. The other moments are
therefore not independent parameters if the state is known to be pure. (They would be
independent for mixed states.) The observation that M ′

J suffices to find all conditions on
eigenvalues, at least for the harmonic oscillator, can therefore be interpreted as saying
that mixed states cannot provide eigenstates in this case.
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2.3.2 Saturation from ladder operators

With hindsight, it is possible to obtain a saturation result for energy eigenstates of the
harmonic oscillator by means of the usual ladder operators,

â = 1√
2~

(q̂ + ip̂) , â† = 1√
2~

(q̂ − ip̂) . (2.71)

(We still assume m = 1 and ω = 1.) Let â be the lowering operator and take

f̂ = ân + â†n , ĝ = ân − â†n . (2.72)

If a state |ψ〉 is a linear combination of the first n eigenstates of the harmonic oscillator,
then f̂ |ψ〉 = −ĝ|ψ〉, which implies 〈f̂ †f̂〉〈ĝ†ĝ〉 = 〈f̂ †ĝ〉〈ĝ†f̂〉. Thus, the Cauchy-Schwarz
inequality

〈f̂ †f̂〉〈ĝ†ĝ〉 ≥ |〈f̂ †ĝ〉|2 (2.73)

is saturated. Explicit expressions for given n imply higher-order uncertainty relations,
which must then also be saturated by the first n energy eigenstates of the harmonic
oscillator.

The first three inequalities obtained in this way are as follows. The nth inequality is
saturated by any linear combination of the first n harmonic-oscillator eigenstates. For
n = 1, 〈

q̂2
〉 〈
p̂2
〉
≥ ~2/4 + 〈q̂p̂〉2Weyl (2.74)

for n = 2, 〈p̂4〉+ 〈q̂4〉 − 2〈p̂2q̂2〉Weyl + ~2

〈p̂2q̂2〉Weyl + ~2

4


≥ ~2

〈p̂2〉+ 〈q̂2〉

2

+
〈p̂q̂3〉Weyl − 〈p̂3q̂〉Weyl

2

(2.75)

and for n = 3,
(1

9
〈
q̂6
〉
− 2

3
〈
p̂2q̂4

〉
Weyl

+
〈
p̂4q̂2

〉
Weyl

+ ~2
〈
q̂2
〉

+ ~2
〈
p̂2
〉)

(2.76)

×
(1

9
〈
p̂6
〉
− 2

3
〈
p̂4q̂2

〉
Weyl

+
〈
p̂2q̂4

〉
Weyl

+ ~2
〈
p̂2
〉

+ ~2
〈
q̂2
〉 )
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≥ ~2

~2

3 + 1
2
〈
p̂4
〉

+ 1
2
〈
q̂4
〉

+
〈
p̂2q̂2

〉
Weyl

2

+ (2.77)

1
3
〈
p̂5q̂

〉
Weyl

+ 1
3
〈
p̂q̂5

〉
Weyl
− 10

9
〈
p̂3q̂3

〉
Weyl

2

. (2.78)

Except for n = 1, there is no obvious relationship with minors of the matrices M ′
J

introduced in (2.35), which were found to be relevant for eigenstates in our previous
analysis.

2.3.3 Generalized coherent states

The saturation property of the harmonic-oscillator ground state, which by definition
satisfies âψ = 0, is maintained by coherent states defined by

√
2~âψ = αψ with a complex

number α = 〈q̂〉 + i〈p̂〉. Similarly, saturation properties of higher-order uncertainty
relations obeyed by the first n− 1 excited states, all subject to the condition ânψ = 0,
can be maintained by generalized coherent states, for which

(
√

2~ â)nψ = αnψ . (2.79)

We will first show that these generalized coherent states indeed obey higher-order
uncertainty relations.

As in the case of α = 0 in the preceding subsection, we introduce two new operators,
f̂ := (2~)n/2(ân + â†n)− αn and ĝ := (2~)n/2(ân − â†n)− αn. In a state ψ that satisfies
(2.79), we again obtain f̂ψ = −ĝψ and therefore

〈f̂ †f̂〉〈ĝ†ĝ〉 = 〈f̂ †ĝ〉〈ĝ†f̂〉 = |〈f̂ †ĝ〉|2 (2.80)

saturating (2.73) as before.
The form of these uncertainty relations saturated by a generalized coherent state

depends on the parameter α = 〈q̂〉 + i〈p̂〉. For instance, for n = 1, we do not directly
obtain the standard uncertainty relation but rather compute

〈f̂ †f̂〉 = 〈4q̂2 − 2(α + α∗)q̂ + |α|2〉

= 4(∆q)2 + 〈q̂〉2 + 〈p̂〉2 (2.81)

〈ĝ†ĝ〉 = 4(∆p)2 + 〈q̂〉2 + 〈p̂〉2 (2.82)

〈f̂ †ĝ〉 = 4i〈q̂p̂〉 − 2 (α〈q̂〉+ iα∗〈p̂〉) + |α|2
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= iCqp − 2~− 〈q̂〉2 − 〈p̂〉2 (2.83)

with the covariance Cqp = ∆(qp). The saturated uncertainty relation obtained immedi-
ately from (2.80) then takes the form

(∆q)2(∆p)2 − C2
qp (2.84)

+1
4
(
〈q̂〉2 + 〈p̂〉2

) (
(∆q)2 + (∆p)2 − ~

)
= 1

4~
2 .

This equation is equivalent to saturation of the standard uncertainty relation because
(∆q)2 = ~/2 = (∆p)2 in a coherent state such that (2.79) holds with n = 1.

It is possible to evaluate the condition for generalized coherent states explicitly in
terms of energy eigenstates, following the usual procedure for n = 1. We will denote
these states as |α, k〉, anticipating the presence of a second (integer) parameter k because
the condition (2.79) does not uniquely determine a state for n > 1 even if α has been
fixed. Using the energy eigenstates |m〉 as a basis, we first compute, for integer 0 ≤ ` < k,
the inner products

〈kn+ `|α, k〉 = 1√
(kn+ `)!

(
(â†)kn+`|0〉

)†
|α, k〉

= 1
(2~)kn/2

αkn√
(kn+ `)!

〈0|â`|α, k〉

= αkn

(2~)kn/2

√
`!√

(kn+ `)!
〈`|α, k〉

=: αkn
√
`!√

(kn+ `)!
C` (2.85)

with k independent constants C` (which are related to one another only by normalization).
We then write

|α, k〉 =
∞∑
m=0
〈m|α, k〉|m〉

=
k−1∑
`=0

C`
√
`!
∞∑
n=0

αkn√
(kn+ `)!

|kn+ `〉

=
k−1∑
`=0

C`

√
`!
α`

∞∑
n=0

(αâ†)kn+`

(kn+ `)! |0〉 . (2.86)
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The infinite series ∑∞n=0(αâ†)kn+`/(kn + `)! in this last expression is related to the
exponential function applied to multiples of αâ†, but it is not a single such function
because n in the usual series is replaced here by kn + `. The series encountered here
therefore makes use of only a subset of the expansion terms of a single exponential
function. Using the basic k-th root of unity uk = e2πi/k, it is possible to write our series
as a superposition of exponential functions,

∞∑
n=0

(αâ†)kn+`

(kn+ `)! = 1
k

k−1∑
j=0

u−j`k exp(ujkαâ†) (2.87)

in which coefficients have been chosen so as to make unwanted terms cancel out. Indeed,

k−1∑
j=0

u−j`k exp(ujkαâ†) =
∞∑
N=0

1
N !

k−1∑
j=0

u
j(N−`)
k

 (αâ†)N (2.88)

implies the desired equation (2.87) because

k−1∑
j=0

u
j(N−`)
k =

 k if N − ` = kn for some integer n
0 otherwise

(2.89)

thanks to properties of roots of unity, uk.
We can therefore continue our derivation of |α, k〉 and write

|α, k〉 =
k−1∑
`=0

C`

√
`!
α`

1
k

k−1∑
j=0

u−jlk exp(ujkαâ†)|0〉

= 1
k
e

1
2 |α|

2
k−1∑
j=0

Dj|ujkα〉 (2.90)

with the standard coherent states |β〉 = e−
1
2 |β|

2 exp(βâ†)|0〉 and new constants

Dj =
k−1∑
`=0

√
`!
α`

u−j`k C` . (2.91)

Multiplying the parameter α = 〈q̂〉+ i〈p̂〉 of a standard coherent state with a power
of a basic root of unity uk in the superposed coherent states |ujkα〉 of (2.90) rotates the
peak position (〈q̂〉, 〈p̂〉) in phase space by a multiple of a fixed angle 2π/k. According
to (2.90), a generalized coherent state |α, k〉 is therefore a superposition of k standard
coherent states with peaks (〈q̂〉, 〈p̂〉) placed at equal distances on a circle of radius |α|.
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The k-th eigenstate of the harmonic oscillator is the limit of such a state in which these
peaks approach one another at the center, for suitable C`. Using [50], these generalized
coherent states are the same as those introduced by Titulaer and Glauber in [41]; see
also [51]. However, to the best of our knowledge, the relation to saturated uncertainty
relations and energy eigenstates is new.

2.4 Anharmonic oscillators
We now demonstrate that the methods developed in Section 2.2 can be used to find
perturbed eigenvalues for an anharmonic oscillator. Here we take H = 1

2(q2 + p2) + εq4.

2.4.1 Moment method

Using the same techniques as for the harmonic oscillator (but now setting ~ = 1), we
obtain the following recurrence relations for the moments:

Tm+2,n + Tm,n+2 −
n(n− 1)

4 Tm,n−2 −
m(m− 1)

4 Tm−2,n − 2λTm,n (2.92)

+ ε
(

2T̂m+4,n − 3n(n− 1)Tm+2,n−2 + 1
8n(n− 1)(n− 2)(n− 3)Tm,n−4

)
= 0

and

mT̂m−1,n+1 = nT̂m+1,n−1 + ε
(
4nT̂m+3,n−1 − n(n− 1)(n− 2)Tm+1,n−3

)
. (2.93)

Setting n = 0 in (2.92) and n = 1 in (2.93) while shifting m to m+ 1, and combining
to eliminate Tm,2 gives

(m+ 2)
(m+ 1)Tm+2,0 − 2λTm,0 −

m(m− 1)
4 Tm−2,0 + 2ε(m+ 3)

(m+ 1)Tm+4,0 = 0 . (2.94)

Then using (2.93) with n shifted ton+ 1 and m to m− 1 results in

Tm−2,n+2 = (n+ 1)
(m− 1)Tm,n + ε

(
4 (n+ 1)

(m− 1)Tm+2,n −
(n+ 1)(n)(n− 1)

(m− 1) Tm,n−2

)
. (2.95)

We now assume an expansion for the moments in powers of ε

Tm,n =
∑
k

T (k)
m,nε

k (2.96)
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and similarly for the eigenvalues,

λ =
∑
k

λ(k)ε
k. (2.97)

Using Equations (2.94)–(2.97), we can solve order by order for the moments in terms of
the λ(k).

For the odd moments, we first note that, at zeroth order, all of them are zero (as we
know well from the harmonic oscillator):

T
(0)
odd,odd = T

(0)
odd,even = T

(0)
even,odd = 0 . (2.98)

Then setting m = 0 and n = 1 in (2.93) gives T (1)
1,0 = 0. Using this and (2.94) with m

odd gives T (1)
odd,0 = 0. Taking n = 0 in (2.93) gives Tm,1 = 0 at all orders in ε. Combining

these two results with (2.95) implies that the rest of the odd moments vanish:

T
(1)
odd,odd = T

(1)
odd,even = T

(1)
even,odd = 0 . (2.99)

We can apply this argument repeatedly to find that the odd moments vanish at all orders
in ε.

Using the recurrence relations following the procedure detailed in Section 2.2, we find
to first order in ε

det (A′1) =
(
λ(0) −

1
2

)(
λ(0) + 1

2

)
− 1

4ελ(0)
(
12λ2

(0) − 8λ(1) + 3
)

+O(ε2)(2.100)

det(A′2) = 1
4

(
λ(0) −

3
2

)(
λ(0) −

1
2

)(
λ(0) + 1

2

)(
λ(0) + 3

2

)
− 1

32ελ(0)
(
80λ4

(0) − 32(λ(1) + 4)λ2
(0) + 40λ(1) + 3

)
+O(ε2) . (2.101)

At zeroth order in ε, we recover our results for the harmonic oscillator. Setting
λ(0) = 1/2, we find:

det (A′1) = ε
(
λ(1) −

3
4

)
+O(ε2) (2.102)

det (A′2) = ε
(3

8 −
1
2λ(1)

)
+O(ε2) . (2.103)

Positivity of these determinants then yields λ(1) ≥ 3/4 and λ(1) ≤ 3/4. Hence, λ(1) = 3/4.
Performing the same process with det(A′2) and det(A′3) using λ(0) = 3/2 yields λ(1) = 15/4.
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Thus we have:

E0 = 1
2 + 3

4ε+O(ε2) (2.104)

E1 = 3
2 + 15

4 ε+O(ε2) (2.105)

in agreement with the results from ordinary perturbation theory.
Note that at first order in ε, the energy eigenstates saturate the inequalities just as

they did for the harmonic oscillator. Computations at higher order indicate that similar
saturation results hold at each order in perturbation theory, although for higher orders
in ε, one must go to higher n in order for det(A′n) ≥ 0 to be saturated.

2.4.2 Commutator method

An alternative route to perturbated eigenvalues, which may sometimes be more feasible,
proceeds by applying suitable commutator relationships. Following [17], we can derive
recurrence relations for moments of energy eigenstates: We have 〈n|[Ĥ, Ŵ ]|n〉 = 0 for
any operator Ŵ , with eigenstates |n〉 of Ĥ = 1

2m
−1p̂2 + V (q̂). Choosing Ŵ1 = q̂k−2 and

Ŵ2 = q̂k−1p̂, respectively, for some fixed k, we obtain

[Ĥ, Ŵ1] = −i~k − 2
m

q̂k−3p̂− ~2 (k − 2)(k − 3)
2m q̂k−4 (2.106)

[Ĥ, Ŵ2] = −2i~(k − 1)q̂k−2(Ĥ − V (q̂))

−~2 (k − 1)(k − 2)
2m q̂k−3p̂+ i~q̂k−1V ′(q̂) . (2.107)

We combine these two equations (set equal to zero) and (divided by i~) write

0 = −2(k − 1)En〈q̂k−2〉n + 2(k − 1)〈q̂k−2V (q̂)〉n (2.108)

−~2 (k − 1)(k − 2)(k − 3)
4m 〈q̂k−4〉n + 〈q̂k−1V ′(q̂)〉n .

For a quartic anharmonicity, such that V (q) = 1
2mω

2q2 + εq4, we have

0 = −2(k − 1)En〈q̂k−2〉n

−(k − 1)(k − 2)(k − 3) ~
2

4m〈q̂
k−4〉n

+mω2k〈x̂k〉n + 2ε(k + 1)〈q̂k+2〉n . (2.109)
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Starting with k = 1, the first four recurrence steps are:

0 = mω2〈q̂〉n + 4ε〈q̂3〉n (2.110)

0 = −2En + 2mω2〈q̂2〉n + 6ε〈q̂4〉n (2.111)

0 = −4En〈q̂〉n + 3mω2〈q̂3〉n + 8ε〈q̂5〉n (2.112)

0 = −6En〈q̂2〉n −
3~2

2m + 4mω2〈q̂4〉n + 10ε〈q̂6〉n . (2.113)

Assuming ε to be small and expanding 〈q̂k〉n = ∑∞
j=0〈q̂k〉n,jεj, we have 〈q̂〉n,0 = 0 from

(2.110), which implies 〈q̂3〉n,0 = 0 from (2.112), such that 〈q̂〉n,1 = 0 from (2.110).
For even powers, 〈q̂2〉n,0 = En/mω

2 from (2.111) and 〈q̂4〉n,0 = 3
2E

2
n/m

2ω4 + 3
8~

2/m2ω2

from (2.113). This value then appears in 〈q̂2〉n,1 = −3〈x̂4〉n,0/mω2 from (2.111). We
obtain some of the moments including p̂ from (2.106) and (2.107). Setting k = 4 in
(2.106) shows that 〈q̂p̂+ p̂q̂〉n = 0 in all energy eigenstates. Setting k = 2 in (2.107) and
not using Ĥ|n〉 = En implies

〈p̂2〉n = m〈q̂V ′(q̂)〉n = m2ω2〈q̂2〉n + 4mε〈q̂4〉n , (2.114)

the final equality for our anharmonic oscillator. Using the results for low orders of
q-moments, we have

〈p̂2〉n,0 = m2ω2〈q̂2〉n,0 = mEn (2.115)

〈p̂2〉n,1 = m2ω2〈q̂2〉n,1 + 4m〈q̂4〉n,0 = m〈q̂4〉n,0 . (2.116)

To first order in ε, we therefore compute

〈q̂2〉n = 〈q̂2〉n,0 + ε〈q̂2〉n,1 +O(ε2) (2.117)

= En
mω2 −

9ε
8m3ω6 (4E2

n + ~2ω2) +O(ε2)

〈p̂2〉n = 〈p̂2〉n,0 + ε〈p̂2〉n,1 +O(ε2) (2.118)

= mEn + 3ε
8mω4 (4E2

n + ~2ω2) +O(ε2) .

The uncertainty relation implies

〈q̂2〉n〈p̂2〉n = E2
n

ω2 −
3εEn

4m2ω6 (4E2
n + ~2ω2) +O(ε2) ≥ ~2

4 . (2.119)

At zeroth order in ε, this implies En ≥ 1
2~ω. If we use an ε-expansion of En = ∑∞

j=0En,jε
j
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at this stage, we obtain
En ≥

1
2~ω + 3

4
ε~2

m2ω2 +O(ε2) . (2.120)

The present formulas indicate that neither the moments nor the uncertainty relations
and bounds on eigenvalues are analytic in ω, such that we cannot take a ω → 0 limit for
a single quartic potential.

2.5 Discussion
We have presented a new method that allowed us to rederive known results about energy
eigenvalues using only properties of the algebra of observables. The results are therefore
representation-independent, and the method can be applied to systems that do not have
a Hilbert-space representation, for instance owing to violations of associativity. Even in
standard, associative quantum mechanics, we have been able to derive new results related
to how excited states saturate higher-order uncertainty relations, as well as connections
between excited states and generalized coherent states.

As stated at the beginning of Section 2.2, an algebraic derivation of eigenvalues
imposes two conditions, equation (2.11) as well as positivity of a state. The first
condition, assuming some fixed eigenvalue λ, implies recurrence relations for moments of
an eigenstate, or for expectation values of polynomials of basic operators. Depending on
how these relations are set up, they may pose various challenges to finding sufficiently
general solutions. In particular, if anharmonicity is introduced, independent recurrence
relations in this system are more strongly coupled to one another, complicating the
solution process.

Such difficulties can be addressed in two ways: First, a perturbative treatment may
use solutions known for a less-coupled system to introduce approximate corrections for
the more coupled one. We have demonstrated this option for anharmonic oscillators,
which also by general methods require perturbation theory or numerical methods for a
determination of eigenvalues. Secondly, it may be possible to rearrange the recurrence
relations in a more suitable form that makes them solvable. There is no systematic
method for decoupling recurrence relations with non-constant coefficients, as we are
dealing with here. However, it may be possible to take some inspiration from other known
properties of the given system and introduce convenient generating functions through
expectation values of suitable operators. Here, we have demonstrated this method for
the same harmonic oscillator used for the first method, but its broader applicability has
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already been shown by a successful application to the standard hydrogen problem [40].
At the current stage of developments, the general range of applicability of algebraic

methods to derive eigenvalues is far from being completely circumscribed. In addition to
reorganizing recurrence relations by means of suitable expectation values as generating
functions, we mention the possibility of using ladder-type operators for non-harmonic
systems. Since our harmonic-oscillator example in Section 2.3 showed how properties of
ladder operators may be related to saturation properties similar to those we found with
our first method, such algebraic derivations may have a range of applicability beyond
strictly harmonic or perturbative anharmonic systems, but a detailed extension requires
further work.

We finally discuss the possibility that not only the tractability but even the overall
applicability of our methods may be limited, depending on the Hamiltonian Ĥ whose
eigenvalues are to be determined. To see this, we go back to the starting point of our
method, given by the algebraic definition (2.11), or

〈Â(Ĥ − λI)〉λ = 0 , (2.121)

for an eigenstate |〉λ with eigenvalue λ, which has to be satisfied for all algebra elements Â.
In particular, the definition is taylored to strict eigenstates which are normalizable since
〈I〉λ must be finite for the equation to be meaningful for all Â (including Â = I). The
method can therefore be used only for eigenvalues in the discrete part of the spectrum of
Ĥ.

If we try to work out the algebraic conditions for eigenstates in simple cases which
are known to imply continuous spectra, we can easily find inconsistencies. For instance,
taking Ĥ = p̂ as the momentum operator of a particle on the real line and Â = q̂ in
(2.121), we obtain the equation

Im〈q̂(p̂− λI)〉 = 1
2i〈[q̂, p̂]〉 = 1

2~ (2.122)

while the eigenvalue condition for λ would require the left-hand side to equal zero.
For the free-particle Hamiltonian, Ĥ = p̂2, we obtain 〈p̂2〉 − λ = 0 from (2.121) with

Â = I, and

Im〈q̂p̂(p̂2 − λI)〉 = 1
2i〈[q̂, p̂

3]− λ[q̂, p̂]〉 = 1
2~(3〈p̂2〉 − λ) = 0 (2.123)

from Â = q̂p̂. Combining these two equations, only λ = 0 is allowed, such that 〈p̂2〉 = 0.
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However,
Im〈q̂(p̂2 − λI)〉 = 1

2i〈[q̂, p̂
2]〉 = ~〈p̂〉 = 0 (2.124)

then implies (∆p)2 = 0, which is not consistent with Heisenberg’s uncertainty relation.
It is not surprising that an algebraic methods for computing eigenvalues fails for

operators that have a continuous spectrum in an irreducible representation on a separable
Hilbert space (spanned by a countable basis) because the corresponding eigenfunctions
require a generalized interpretation as distributions. However, it is possible for an
operator to have a continuous spectrum with normalizable eigenfunctions if the Hilbert
space is not separable or if the representation is not irreducible. (The set of eigenvalues
by itself does not uniquely determine whether it is discrete or continuous because the
real line can be equipped with discrete or continuous topologies.)

Since the algebraic condition for the spectrum is representation independent, an
algebra that has a continuous family of inequivalent irreducible representations, or one
that can be represented on a non-separable Hilbert space may lead to a continuous set
of eigenvalues for normalizable eigenstates. In this case, (2.121) would be well-defined
even if it permits a continuous range of values for λ. As an example, consider a particle
moving on a circle. The corresponding algebra can be generated by three basic operators,
p̂, Ŝ and Ĉ, with relations [p̂, Ŝ] = −i~Ĉ, [p̂, Ĉ] = i~Ŝ and [Ĉ, Ŝ] = 0. (The operators Ŝ
and Ĉ quantize the sine and cosine of the angle.) This linear algebra has the Casimir
element K̂ = Ŝ2 + Ĉ2 which we may require to equal K̂ = I as a further relation in the
generated algebra. Our Hamiltonian is Ĥ = p̂.

The condition 〈p̂n−1(Ĥ − λ)〉 = 0 for n ≥ 1 implies that 〈p̂n〉 = λn = 〈p̂〉n, and
therefore all central p-moments 〈(p̂− 〈p̂〉)n〉 = 0 vanish. More generally, it follows that
〈Â(p̂ − 〈p̂〉)〉 = 〈Â(Ĥ − λ)〉 = 0 for all Â. All generalized uncertainty relations are
therefore identically satisfied because the lower bound in the Cauchy–Schwarz inequality
(4.49), without loss of generality applied to an operator b̂ that contains at least one factor
of p̂− 〈p̂〉, is always zero for eigenstates. For any real λ, there is therefore an eigenstate
with this eigenvalue.

This result is in agreement with Hilbert-space representations of the algebra, which
are not unique up to unitary equivalence. Its inequivalent irreducible representations
are labeled by a real number 0 ≤ ε < 1, such that the momentum spectrum in the
representation determined by ε is Z + ε. The direct sum of all inequivalent irreducible
representations is a reducible representation of the algebra on a non-separable Hilbert
space. In this reducible representation, which contains all inequivalent irreducible ones,
the spectrum of p̂ contains all real numbers λ as eigenvalues, but it is still discrete because
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eigenfunctions of p̂ are normalizable.
We have obtained the same result in our algebraic derivation, which is representation-

independent and therefore implicitly takes into account all irreducible representations.
Comparing with our first example of a continuous spectrum (the standard momentum
operator for a particle on the real line), we see that the algebraic treatment correctly
recognizes the important distinction between a continuous and discrete spectrum: For a
continuous spectrum (particle on the real line), the algebraic equations have no consistent
solution owing to a lack of normalizability of eigenfunctions. For a discrete spectrum
(particle on a circle), the algebraic equations show that all real numbers may consistently
be realized as eigenvalues. This distinction is subtle in algebraic form because it is usually
based on properties of Hilbert-space representations, in particular on normalizability of
eigenfunctions.

As these examples demonstrate, the spectrum cannot always be fully analyzed based
on the algebraic condition (2.121), unless it is strictly discrete. As a consequence, it
remains an open question how the continuous spectrum could be defined in non-associative
quantum mechanics.

2.6 appendix

2.6.1 Eigenvalues in a fermionic system

It is instructive to compute eigenvalues in a fermionic system which has a finite-
dimensional Hilbert space in its standard representation, making use only of the defining
Grassmann algebra. For a finite number of fermions we have a finite-dimensional Hilbert
space, in which our general method can easily be illustrated. This simplicity comes at
the expense of requiring a careful discussion of anticommutation relations.

The single degree of freedom ξ included in the system we use here is subject to
anticommutation relations

[ξ̂†, ξ̂]+ = ~ , [ξ̂, ξ̂]+ = 0 = [ξ̂†, ξ̂†]+ . (2.125)

It generates a 4-dimensional unital ∗-algebra with vector-space basis given by I, ξ̂, ξ̂†

and ξ̂†ξ̂. As a Hamiltonian, we choose

Ĥ = 1
2ω(ξ̂†ξ̂ − ξ̂ξ̂†) = ωξ̂†ξ̂ − 1

2~ωI = ωξ̂ξ̂† + 1
2~ωI . (2.126)
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2.6.1.1 Hilbert-space representation

For comparison, we briefly summarize the standard representation on a 2-dimensional
Hilbert space. Commutators of ξ̂ and ξ̂† with Ĥ show that we can use the former as
ladder operators: we have [ξ̂, Ĥ] = ~ωξ̂. We define |−〉 such that ξ̂|−〉 = 0, and |+〉
as ξ̂†|−〉 =

√
~|+〉. These two states are the only independent ones since

√
~ξ̂†|+〉 =

(ξ̂†)2|−〉 = 0. The eigenstates of Ĥ are then given by |±〉 with eigenvalues

E± = ±1
2~ω . (2.127)

The action of the ladder operators, ξ̂|+〉 =
√
~|−〉 and ξ̂†|−〉 =

√
~|+〉, follows from

normalization of |±〉 and

||ξ̂|+〉||2 = 〈ξ̂†ξ̂〉+ = 1
ω

(
E+ + 1

2~ω
)

= ~ (2.128)

||ξ̂|−〉||2 = 〈ξ̂ξ̂†〉− = 1
ω

(
−E− −

1
2~ω

)
= ~ . (2.129)

A general state can be written as

|r, s〉 = cos r|−〉+ eis sin r|+〉 , (2.130)

parameterizing all normalized states up to a phase. Expectation values in these states
are given by

〈ξ̂〉(r, s) = 1
2
√
~ sin(2r)eis = 〈ξ̂†〉(r, s)∗ (2.131)

〈ξ̂†ξ̂〉(r, s) = ~ sin2 r (2.132)

〈ξ̂ξ̂†〉(r, s) = ~ cos2 r . (2.133)

States are subject to uncertainty relations, which will play a major role in our new
method. Define u = ∆ξ̂v and w = ∆ξ̂†v for some state v, where ∆ξ̂ = ξ̂ − 〈ξ̂〉v with
〈ξ̂〉v = 〈v|ξ̂v〉, and compute

〈u|u〉 = 〈∆ξ̂†∆ξ̂〉 = ∆(ξ†ξ) + 1
2~ (2.134)

〈w|w〉 = 〈∆ξ̂∆ξ̂†〉 = −∆(ξ†ξ) + 1
2~ (2.135)

〈u|w〉 = 〈∆ξ̂†∆ξ̂†〉 = 0 (2.136)
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with the (graded) covariance

∆(ξ†ξ) = 1
2
(
〈ξ̂†ξ̂ − ξ̂ξ̂†〉 − 〈ξ̂〉∗〈ξ̂〉+ 〈ξ̂〉〈ξ̂〉∗

)
= 1

2〈ξ̂
†ξ̂ − ξ̂ξ̂†〉 − 〈ξ̂〉∗〈ξ̂〉 . (2.137)

Expanding ∆ξ̂†∆ξ̂ in order to express equations such as (2.134) in terms of ∆(ξ†ξ)
requires anticommutation relations not only between ξ̂ and ξ̂† as provided by the original
Grassmann algebra, but also between these operators and their expectation values. The
equations shown here assume the convention that 〈ξ̂〉 and 〈ξ̂†〉 are Grassmann numbers
which anticommute with each other and with ξ̂ and ξ̂†. (This convention is consistent
with equations such as 〈ξ̂ξ∗〉 = ξξ∗ used in relating ∆ξ̂†∆ξ̂ to ∆(ξ†ξ).)

The Cauchy–Schwarz inequality implies

0 = |〈u|w〉|2 ≤ 〈u|u〉〈w|w〉 = −∆(ξ†ξ)2 + 1
4~

2 (2.138)

and therefore
|∆(ξ†ξ)| ≤ 1

2~ . (2.139)

Both eigenstates of Ĥ saturate this inequality.

2.6.1.2 Algebra

Let us now proceed algebraically. We introduce a phase-space version of the fermion
system by defining two Grassmann numbers, ξ = 〈ξ̂〉 and ξ∗ = 〈ξ̂†〉. Any operator in
the algebra A defines a function on the space of states on the algebra by evaluation,
A(〈·〉) := 〈Â〉. The equation

{〈Â〉, 〈B̂〉}+ = 〈[Â, B̂]+〉
i~

(2.140)

therefore defines a bracket on the space of states, which can be extended to arbitrary
functions on states by using the (graded) Leibniz identity. Applied to our basic operators
ξ̂ and ξ̂†, this bracket implies standard relations with anti-Poisson brackets

{ξ∗, ξ}+ = −i , {ξ, ξ}+ = 0 = {ξ∗, ξ∗}+ (2.141)
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for basic expectation values. The bracket can be extended to an anti-Poisson bracket on
moments of ξ̂ and ξ̂† by using the Leibniz rule. As already stated, the basic expectation
values anticommute with ξ̂ and ξ̂†.

There is only one non-zero moment:

∆(ξ†ξ) = 1
2〈∆ξ̂

†∆ξ̂ −∆ξ̂∆ξ̂†〉 = 〈∆ξ̂†∆ξ̂〉 − 1
2~

= −〈∆ξ̂∆ξ̂†〉+ 1
2~ , (2.142)

using ∆ξ̂ := ξ̂ − ξ and [∆ξ̂†,∆ξ̂]+ = ~. The dynamics now follows from the usual
derivation given by a commutator with the Hamiltonian:

ξ̇ = 〈[ξ̂, Ĥ]〉
i~

= −iωξ (2.143)

implies ξ(t) = ξ0 exp(−iωt), or r(t) = r0, s(t) = s0 − ωt in the parameterization of
(2.130). Also, ∆(ξ̄ξ)(t) = ∆(ξ̄ξ)(0) because ∆(ξ̄ξ) = ω−1Ĥ − |ξ|2 depends only on Ĥ and
constants.

Assume now that we have an eigenstate of Ĥ with eigenvalue λ. In this state,

0 = 〈Ĥ − λI〉 = ω〈ξ̂†ξ̂〉 − 1
2~ω − λ

= −ω〈ξ̂ξ̂†〉+ 1
2~ω − λ (2.144)

0 = 〈ξ̂(Ĥ − λI)〉 =
(1

2~ω − λ
)
ξ (2.145)

0 = 〈ξ̂†(Ĥ − λI)〉 = −
(1

2~ω + λ
)
ξ∗ (2.146)

0 = 〈ξ̂†ξ̂(Ĥ − λI)〉 =
(1

2~ω − λ
)
〈ξ̂†ξ̂〉

=
1
4~

2ω2 − λ2

ω
(2.147)

0 = 〈ξ̂ξ̂†(Ĥ − λI)〉 = −
(1

2~ω + λ
)
〈ξ̂ξ̂†〉

= −
1
4~

2ω2 − λ2

ω
(2.148)

using the first equation in the last step of (2.147) and (2.148). The last equation implies
λ± = ±1

2~ω. For λ− = −1
2~ω, (2.145) implies ξ = 0 and (2.147) implies 〈ξ̂†ξ̂〉 = 0, so

that 〈ξ̂ξ̂†〉 = ~ from (2.144). For λ+ = 1
2~ω, (2.146) implies ξ∗ = 0 and (2.148) implies

〈ξ̂ξ̂†〉 = 0, so that 〈ξ̂†ξ̂〉 = ~ from (2.144).
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In this example, we have managed to compute all eigenvalues of the Hamiltonian
using only the (anti-)commutator relationships. If we try the standard method of ladder
operators in a system with an infinite-dimensional Hilbert space, it is well known that we
need normalizability conditions in order to derive discrete eigenvalues. These conditions
are available only for wave functions in the Hilbert space but do not have an analog in
the algebra of observables. The main body of this paper shows how the new methods
of using moments and uncertainty relations can produce the correct discrete spectra
without an explicit normalizability condition even in systems with an infinite-dimensional
Hilbert space.
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Chapter 3 |
Small magnetic charges and monopoles
in non-associative quantum me-
chanics

Martin Bojowald, Suddhasattwa Brahma, Umut Büyükçam, Jonathan Guglielmon, Mar-
tijn van Kuppeveld

Weak magnetic monopoles with a continuum of charges less than the minimum im-
plied by Dirac’s quantization condition may be possible in non-associative quantum
mechanics. If a weakly magnetically charged proton in a hydrogen atom perturbs the
standard energy spectrum only slightly, magnetic charges could have escaped detection.
Testing this hypothesis requires entirely new methods to compute energy spectra in
non-associative quantum mechanics. Such methods are presented here, and evaluated for
upper bounds on the magnetic charge of elementary particles.

In 1931, Dirac [52] showed that magnetic monopoles with charge g can be consistently
described by wave functions provided the quantization condition eg = N~ holds with
half-integer N . Since the elementary electric charge e (or, rather, the fine structure
constant) is small, the elementary magnetic charge is large. Therefore, there are strict
limits on the possible magnetic charge of, say, a proton in a hydrogen nucleus because
the strong magnetic charge would significantly alter the energy spectrum [53].

The aim of this letter is to point out and analyze the fact that Dirac’s argument relies
on properties of wave functions in a Hilbert space, and therefore implicitly assumes that
quantum mechanics is associative. If the assumption of associativity is dropped, there is
no Hilbert-space representation of the algebra of observables (which by necessicity would
always be associative), but quantum mechanics may still be meaningful [5, 11, 14, 54].

40



Indeed, the existence of consistent non-associative algebras for magnetic charge densities
has recently been demonstrated [33, 36–39]. Non-associative quantum mechanics can
therefore be defined by replacing the operator product of observables with an abstract
product, such that â1(â2â3) 6= (â1â2)â3 in general. States are defined as expectation-value
functionals that assign complex numbers 〈â〉 to algebra elements â, subject to certain
consistency conditions which make sure that uncertainty relations are respected. No wave
functions appear in this formalism, and there is no analog of “single-valuedness” used
crucially by Dirac. Without wave functions, Dirac’s argument therefore loses its footing.
Magnetic monopoles are then possible with small charges much less than the smallest
non-zero value, g0 = 1

2~/e, allowed by Dirac. It is conceivable that a small magnetic
charge of the proton could have escaped detection in precision spectroscopy such as [55].

Here, we show that even a small magnetic charge of the nucleus would significantly
shift the ground-state energy of a hydrogen atom. To the best of our knowledge, this is
the first time that properties of energy spectra have been computed in non-associative
quantum mechanics. We provide new methods to compute spectra in an algebraic manner,
which may also be useful in other contexts.

Harmonic oscillator: We first demonstrate the new methods in an application to
the harmonic oscillator in standard, associative quantum mechanics. We have two
distinguished observables q̂ and p̂ with [q̂, p̂] = i~, and the quantum Hamiltonian
Ĥ = 1

2(p̂2/m+mω2q̂2).
An eigenstate |ψE〉 of Ĥ with eigenvalue E obeys the equation Ĥ|ψE〉 = E|ψE〉, which

implies
〈â(Ĥ − E)〉E = 0 (3.1)

for the expectation value 〈·〉E taken in |ψE〉, where â can be any polynomial in q̂ and
p̂. We will first show that (3.1), which amounts to infinitely many equations given the
freedom of choosing â, allows one to compute the spectrum of Ĥ even if the eigenstates
|ψE〉 are not known. In [56, 70], it has been shown how observables can be computed
using algebraic relations between moments of a state. The methods used here are
closely related to these papers but provide a new application to energy spectra. In this
way, we will set up a method to compute eigenvalues without using wave functions or
boundary conditions. The same method can then be applied to the Coulomb problem in
non-associative quantum mechanics.

The demonstration is based on recurrence with respect to the degree of the polynomial
â in q̂ and p̂. The ground-state energy can be obtained by elementary calculations as
follows: First, â = 1̂ (the identity operator) gives E = 1

2(〈p̂2〉E/m + mω2〈q̂2〉E). For â
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not the identity, it is useful to refer to the equation

〈[â, Ĥ]〉E = 〈âĤ〉E − 〈â†Ĥ〉E = E
(
〈â〉E − 〈â†〉E

)
= 0 (3.2)

with the complex conjugate z̄ of a complex number z. In particular, 〈[q̂, Ĥ]〉E =
i~〈p̂〉E/m = 0 from â = q̂ and 〈[p̂, Ĥ]〉E = −i~mω2〈q̂〉E = 0 from â = p̂. From quadratic
monomials, we obtain 〈[q̂2, Ĥ]〉E = 1

2i~〈q̂p̂+ p̂q̂〉E/m = 0 and 〈[q̂p̂, Ĥ]〉E = i~(〈p̂2〉E/m−
mω2〈q̂2〉E) = 0. Therefore, any eigenstate has fluctuations obeying ∆Ep = mω∆Eq,
and zero covariance 0 = CE

qp = 1
2〈q̂p̂ + p̂q̂〉E − 〈q̂〉E〈p̂〉E. From the condition for â = 1̂,

(∆Eq)2 = E/(mω2) and (∆Ep)2 = mE.
So far, we have computed moments of a bound state in terms of its energy value E.

We obtain a restriction on E by making sure that the fluctuations we derived obey the
uncertainty relation:

(∆Eq)2(∆Ep)2 − (CE
qp)2 = E2

ω2 ≥
~2

4 (3.3)

and therefore E ≥ 1
2~ω.

In order to evaluate all the conditions imposed on eigenstates by (3.1), we follow [43,44]
and introduce the operators T̂m,n := (q̂mp̂n)Weyl where m and n are non-negative integers,
and the subscript indicates that the product is taken in the totally symmetric ordering.
The Hamiltonian is a linear combination Ĥ = 1

2(T̂2,0/m+mω2T̂0,2) of T̂2,0 and T̂0,2, and
therefore (3.1) contains products of the form T̂m,nT̂m′,n′ . Using the basic commutation
relation of q̂ and p̂, such products can always be rewritten as sums over individual T̂m′′,n′′

of order m + n + m′ + n′ or less, as derived explicitly in [42]. The condition (3.1) is
therefore equivalent to a recurrence relation for 〈T̂m,n〉E which is shown and discussed in
more detail in our supplementary material. (This material also uses an algebraic notion
of states [15] and makes contact with effective constraints [57,58].)

In addition to higher-order moments 〈T̂m,n〉E of an eigenstate, we have higher-order
uncertainty relations. They can be obtained just like Heisenberg’s version, by applying
the textbook derivation to integer powers of q̂ and p̂ or their products instead of just q̂
and p̂. A systematic procedure to organize these higher-order, or generalized, uncertainty
relations has been given in [43, 44]. For our purposes, a subset of these relations is
sufficient, which can be constructed as follows: We define ξ̂J as the 2J-dimensional
column vector consisting of all T̂m,0 and T̂m−1,1 up to order m = 2J , where J is an
integer or half-integer. According to the generalized uncertainty principle, the matrix
MJ = 〈ξ̂J ξ̂†J〉 is positive semi-definite for all J , where the expectation value is taken
element by element. For J = 1/2, we have Heisenberg’s uncertainty principle because a
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positive semi-definite matrix has a non-negative determinant.
As outlined in the supplementary material, positive semi-definiteness of MJ can be

reduced to the conditions
n∏
k=1

(E/~ω − αk)(E/~ω + αk) ≥ 0 (3.4)

for all integer n ≥ 1, where αk = (2k−1)/2 are the odd half-integer multiples. Considered
as functions of E for all n, these expressions have nodes at ~ωαk up to some maximum
k that depends on the particular value of n. Between nodes, the functions are non-zero
and alternate in sign. Moreover, sending n to n + 1 causes the signs at fixed E to
alternate. This behavior combined with the non-negativity of (3.4) implies that the only
allowable values for E occur at the nodes. We can exclude negative values of E because
we have already shown that E ≥ 1

2~ω. Thus, the only possible values for E are such
that E/~ω = 1

2 ,
3
2 ,

5
2 , . . . in agreement with the well-known eigenvalues of the harmonic

oscillator.
Moreover, the arguments just given show that, for each eigenvalue En = (n− 1

2)~ω,
there is a generalized uncertainty relation which restricts higher-order moments and is
saturated by the corresponding excited state with energy En. This result generalizes
the well-known statement that the ground state of the harmonic oscillator saturates
Heisenberg’s uncertainty relation. Also note that our derivation, based on expectation
values, still applies if the state used is mixed, given by a density matrix. Since we obtain
the usual energy spectrum of the harmonic oscillator, it follows that mixed states do not
to enlarge the spectrum.

As another consequence, we obtain the full energy spectrum of the harmonic oscillator
from the unfamiliar condition (3.1) on energy eigenvalues. This result serves as a proof
of concept of the new algebraic method introduced here, which we now apply to the
Coulomb problem. We will then be ready to generalize the results to non-associative
quantum mechanics, where the usual methods of computing eigenvalues are not available.

Hydrogen: The hydrogen atom has the Hamiltonian Ĥ = 1
2 |p̂|

2/m − αr̂−1 where
|p̂|2 = p̂2

x + p̂2
y + p̂2

z and r̂2 = x̂2 + ŷ2 + ẑ2. The position and momentum components
are subject to the basic commutation relations [x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = i~. For our
purposes a different choice of distinguished observables,

r̂ , P̂ := r̂|p̂|2 , Q̂ := x̂p̂x + ŷp̂y + ẑp̂z , (3.5)

is more useful. Closely related variables have been used, quite differently, to compute
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hydrogen spectra in deformation quantization [59–61].
These operators have linear commutation relations

[r̂, Q̂] = i~r̂ , [r̂, P̂ ] = 2i~Q̂ , [Q̂, P̂ ] = i~P̂ , (3.6)

and there is a Casimir operator

K̂ = 1
2(r̂P̂ + P̂ r̂)− Q̂2 (3.7)

that commutes with r̂, P̂ and Q̂. A direct calculation in terms of the position and
momentum components in (4.6) shows that K̂ is equal to the total angular momentum
squared. We should keep in mind that not all the distinguished observables are self-adjoint.
We do have r̂† = r̂, but Q̂† = Q̂− 3i~ and

P̂ † = P̂ − 2i~r̂−1Q̂ = P̂ − 2i~Q̂r̂−1 − 2~2r̂−1 . (3.8)

As in our demonstration using the harmonic oscillator, we will be interested in
expectation values of monomials in r̂, P̂ and Q̂ evaluated in eigenstates that obey (3.1).
We have another useful relationship between certain expectation values given by the
virial theorem:

α〈r̂−1〉E = 2E = − 1
m
〈p̂2〉E . (3.9)

The procedure used for the harmonic oscillator does not directly apply to the Coulomb
problem because the Hamiltonian is no longer quadratic, leading to highly coupled
recurrence relations. We therefore reformulate the condition (3.1) in terms of a constraint
linear in P̂ and r̂, introducing

ĈE = r̂(Ĥ − E) = 1
2mP̂ − Er̂ − α . (3.10)

The condition on the spectrum of Ĥ then takes the form 〈âĈE〉E = 0 for all polynomials
â in r̂, r̂−1, P̂ and Q̂. Unlike the Hamiltonian, ĈE is not self-adjoint. It is still useful
to apply commutator identities as in (3.2), but with a non-self-adjoint ĈE, there are
additional terms: In an eigenstate such that 〈âĈE〉E = 0 and 〈â†ĈE〉E = 0,

0 = 〈âĈE〉E − 〈â†ĈE〉E = 〈(âĈE − Ĉ†E â〉E . (3.11)
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With
Ĉ†E = ĈE −

i~
m
r̂−1Q̂ = ĈE −

i~
m
Q̂r̂−1 − ~2

m
r̂−1 (3.12)

using (4.10), we have

0 = 〈[â, ĈE]〉E
i~

+ 〈Q̂r̂
−1â〉E
m

− i~〈r̂−1â〉E
m

. (3.13)

For â = Q̂,

0 = 〈P̂ 〉E2m + E〈r̂〉E + 〈Q̂
2r̂−1〉E
m

+ ~2

m
〈r̂−1〉E . (3.14)

If we replace Q̂2 using the Casimir operator K̂, and 〈P̂ 〉E using 〈ĈE〉E = 0, we have
0 = 3α + 4E〈r̂〉E − K`〈r̂−1〉E/m. The eigenvalues K` = `(` + 1)~2 of K̂ follow from
angular-momentum quantization, and 〈r̂−1〉E is related to E by (4.23). With these
ingredients and similar calculations for â = r̂Q̂, we obtain

〈r̂〉E = 1
2
K`

mα
− 3

4
α

E
, 〈r̂2〉E = 3

4
K`

mE
+ 5

8
α2

E2 −
1
4

~2

mE
. (3.15)

In order to determine the allowed eigenvalues E, as before, we have to impose
uncertainty relations. We are interested here in the ground state, for which we can focus
on the lowest-order uncertainty relations, computed for our non-canonical operators r̂, P̂
and Q̂ using the Cauchy–Schwarz inequality. There is only one non-trivial relation,

(∆Er)2CE
Q̄Q ≥ |C

E
rQ + 1

2i~〈r̂〉E|
2 , (3.16)

with two covariances. Again using (3.13), we compute 〈Q̂〉E = 1
2i~ using â = r̂, 〈r̂Q̂ +

Q̂r̂〉E = i~〈r̂〉E using â = r̂2. Finally, 〈Q̂†Q̂〉E = 〈Q̂2〉E − 3i~〈Q̂〉E can be obtained using
K̂.

Inserting all the required moments and factorizing the resulting polynomial in E,
(3.16) gives the condition

`2(`+ 1)2(`2 + `− 1) 1
E

(
E + 1

2
mα2

~2(`+ 1)2

)(
E + 1

2
mα2

~2`2

)(
E − 1

2
mα2

~2(`2 + `− 1)

)
≥ 0 .

(3.17)
It is saturated for all energy eigenvalues with maximal `, for which

E`+1 = − mα2

2~2(`+ 1)2 . (3.18)
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Assuming the well-known degeneracy of the hydrogen spectrum, we obtain the full set
of bound-state energies. As in the example of the harmonic oscillator, every eigenstate
saturates an uncertainty relation, in this case (3.16).

Non-associative hydrogen: We are now in a position to derive our main result. In the
presence of a magnetic central charge, we cannot use canonical momenta because they
require a vector potential of the magnetic field ~B. Instead, we generate an algebra using
kinematical electron momenta, quantizing pi = mẋi. Their commutators are obtained by
generalizing the case in which there is a vector potential ~A depending on ~x, and canonical
momenta are πi = pi + eAi. Therefore,

[p̂j, p̂k] = i~e
(
∂̂Ak
∂xj
− ∂̂Aj
∂xk

)
= i~e

3∑
l=1

εjklB̂
l (3.19)

while [x̂j, p̂k] = i~δjk is unchanged.
The final result depends only on ~B and therefore can be used to define the commutators

[p̂j, p̂k] also if ∇ · ~B 6= 0 in the presence of magnetic charges. A direct calculation shows
that these commutators then no longer obey the Jacobi identity:

[[p̂x, p̂y], p̂z] + [[p̂y, p̂z], p̂x] + [[p̂z, p̂x], p̂y]

= i~e
3∑
j=1

[B̂j, p̂j] = −~2e d̂iv ~B 6= 0 . (3.20)

Even a single point-like monopole cannot be excised, as in Dirac’s construction, if we
consider weak charges that do not obey the quantization condition. However, a non-
associative algebra generated by commuting x̂i and non-commuting p̂j, with standard
commutators between x̂i and p̂j, is still meaningful [5, 11].

Another direct calculation shows that the commutators of (r̂, Q̂, P̂ ) remain unchanged
provided that ~r × ~B = 0. This result, which relies on unexpected cancellations of the
extra terms in commutators implied by (4.1), is crucial for the new application in this
letter. In this case, ~B = g(~r)~r. For a static magnetic field, we have ∇× ~B = 0, which
implies that g(r) is spherically symmetric. A monopole density ∇ · ~B 6= 0 then requires
that g(r) = Qm(r)/(4πr3) with the magnetic charge

Qm(r) = 4π
∫
∇ · ~B(r)r2dr (3.21)

enclosed in a sphere of radius r. For a single monopole at r = 0, g(r) = g is constant.
The virial theorem relies only on algebraic properties and remains valid. With
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monopole commutators for momentum components, however, the modified angular
momentum ~̂L′ = ~̂L + eg~̂r/r̂, not ~̂L itself, satisfies the usual commutators of angular
momentum [30,62]. The Casimir of the algebra generated by (r̂, Q̂, P̂ ) is still equal to
K̂ = ~̂L2, but in terms of the modified angular momentum it has an extra term:

K̂ = ~̂L2 = ~̂L′2 − e2g2 . (3.22)

For a single monopole at the center, the spectrum of K̂ has a simple shift compared with
the standard spectrum of L̂2, which is known to break the `-degeneracy of the hydrogen
spectrum [53]. Moreover, the allowed values of ` are restricted for non-zero g because K̂,
by definition, is positive, and so must be its eigenvalues. Therefore, ` = 0 is not possible
for g 6= 0, and larger ` may be ruled out as well for strong magnetic charges.

We will focus now on the range of weak magnetic charges given by

0 < eg

~
= N <

1
2 . (3.23)

None of these values could be modeled by a Dirac monopole (they would not correspond
to single-valued wave functions), but they can be considered if quantum mechanics is
non-associative. Since the algebraic relations used to derive (3.17) are still applicable, we
obtain conditions on the energy spectrum. The only difference is that the eigenvalues of
K̂ are now given by K` = `(`+ 1)~2− e2g2, which can be taken into account by replacing
` in (3.17) with

˜̀=
√(

`+ 1
2

)2
− e2g2

~2 −
1
2 . (3.24)

For quantized magnetic charges, the corresponding eigenvalues for which the first paren-
thesis in (3.17) is zero are indeed included in the spectrum found in [53], but they no
longer constitute the full spectrum.

For weak magnetic charges, positivity of K̂ requires that the smallest possible ` is
` = 1/2, which we use for the ground state. The corresponding ˜̀ is equal to

˜̀=
√

1−N2 − 1
2 (3.25)

and lies in the range 1
2(
√

3− 1) < ˜̀< 1
2 . This range does not come close to the integer

values 0 or 1 which would amount to standard hydrogen eigenvalues. Therefore, even for
weak magnetic monopoles the energy spectrum of hydrogen is strongly modified. The
ground-state energy is discontinuous in the central magnetic charge as a consequence of
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the positivity condition K ≥ 0, which is the reason why even a small magnetic charge is
not a simple perturbation of the usual hydrogen spectrum.

This result would seem to rule out any non-zero magnetic charge of the proton.
However, from a purely experimental perspective, the smallest eigenvalue of the total
angular momentum, used in our evaluation of K ≥ 0, is zero only within some uncertainty.
The angular momentum spectrum is very basic and hard to modify. For instance, the
conservation law and its role played in parity considerations implies that, for a single
component, it has the form of a ladder centered around zero. It is, however, conceivable
that its values are washed out to within some δL2. To estimate this quantity, we are not
restricted to hydrogen-like systems because all energy levels depend in some way on the
eigenvalues of L̂2. The best relative precision, of about 5 · 10−19, is obtained for spectral
lines used in atomic clocks [63]. In SI units, a non-zero upper bound

g ≤ 4πε0
√
δL2c2

e
≈ 4.7 · 10−18Am = 1.4 · 10−9gDirac (3.26)

then follows from K ≥ 0 and (4.83), where gDirac is the smallest magnetic charge allowed
by Dirac.

For the proton, this bound is not as strong as existing ones [64, 65]. However, the
bounds in [64,65] are obtained by limiting the total magnetic charge of a macroscopic
object, adding the individual charges of all electrons or nucleons. Our bound is obtained
directly for a single proton. Moreover, the magnetic charge of the muon is more difficult
to bound [65]. Our bound, on the other hand, also applies to a muon as the nucleus
of muonium, and to antimatter such as the antiproton in antihydrogen [66, 67] or the
positron in positronium [68].

If we directly apply hydrogen or muonium spectroscopy, with accuracies of ∆E/E ≈
4.5 · 10−15 [55] and about 10−9 [69], respectively, we obtain weaker bounds: gproton ≤
9.5 · 10−8gDirac and gmuon ≤ 4.5 · 10−5gDirac.
Acknowledgements: This work was supported in part by NSF grant PHY-1607414. This re-
search was supported by the Ministry of Science, ICT & Future Planning, Gyeongsangbuk-
do and Pohang City.
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Chapter 4 |
The ground state of non-associative
hydrogen and upper bounds on
the magnetic charge of elemen-
tary particles

Martin Bojowald, Suddhasattwa Brahma, Umut Büyükçam, Martijn van Kuppeveld

Formulations of magnetic monopoles in a Hilbert-space formulation of quantum mechanics
require Dirac’s quantization condition of magnetic charge, which implies a large value that
can easily be ruled out for elementary particles by standard atomic spectroscopy. How-
ever, an algebraic formulation of non-associative quantum mechanics is mathematically
consistent with fractional magnetic charges of small values. Here, spectral properties in
non-associative quantum mechanics are derived, applied to the ground state of hydrogen
with a magnetically charged nucleus. The resulting energy leads to new strong upper
bounds for the magnetic charge of various elementary particles that can appear as the
nucleus of hydrogen-like atoms, such as the muon or the antiproton.

4.1 Introduction
Eigenvalues and eigenstates can be defined and derived completely algebraically, without
using a Hilbert-space representation of observables as operators. Such a formulation is
important in particular in studies of non-associative algebras that cannot be represented
on a Hilbert space. Physical examples can be found mainly in situations in which fractional
magnetic charges may be present that do not obey Dirac’s quantization condition [52],
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which can be defined at the level of a non-associative algebra of observables even though
no Hilbert-space representation exists [5, 11, 14, 54]. Magnetic monopole charges that
obey Dirac’s quantization condition are so large that they can easily be ruled out in
elementary particles by atomic spectroscopy. While small non-zero magnetic charges may
be compatible with observational bounds, they cannot obey the quantization condition
and therefore require non-associative algebras of observables.

Non-associative products are obtained for magnetic monopoles as follows: In the
presence of magnetic monopoles, the magnetic field has non-zero divergence and therefore
cannot be described by a vector potential. The usual canonical momentum π̂i = p̂i + eÂi

of a particle with electric charge e and mass m, where p̂i = m ˙̂xi is the kinematical
momentum, is then unavailable. However, it turns out that the commutator of two
kinematical momenta,

[p̂j, p̂k] = [π̂j − eÂj, π̂k − eÂk] = i~e
(
∂̂Ak
∂xj
− ∂̂Aj
∂xk

)
= i~e

3∑
l=1

εjklB̂
l (4.1)

does not require a vector potential. (The usual bracket [x̂j, p̂k] = i~δjk remains un-
changed.) It can therefore be generalized to a point charge moving in the presence of
a background magnetic charge, but it is not canonical and not even constant since the
magnetic field is position dependent. The Jacobi identity is therefore not guaranteed to
hold, and it is indeed violated as the calculation

[[p̂x, p̂y], p̂z] + [[p̂y, p̂z], p̂x] + [[p̂z, p̂x], p̂y] = i~e
3∑
j=1

[B̂j, p̂j] = −~2e d̂iv ~B 6= 0 (4.2)

demonstrates. Since the assumption of an associative product would imply the Jacobi
idenity for the commutator, magnetic monopoles are seen to require non-associative
algebras of quantum observables [5, 11, 14, 54]. The basic commutators (4.1) together
with an associator determined by (4.2) can be turned into a complete non-associative
algebra by means of ∗-products [33, 36–39].

Purely algebraic derivations that do not make use of specific representations are
usually more challenging than standard quantum mchanics, in particular if associativity
cannot be assumed. As a consequence, such systems remain incompletely understood,
and it remains to be seen whether they can be viable. Nevertheless, it has recently
become possible to derive potential physical effects [56] and to use spectral results for new
upper bounds on the possible magnetic charge of elementary particles [?]. The present
paper presents details of the latter derivation as well as a discussion of new methods that
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may be useful for further applications.

4.2 Associative algebra of the standard hydrogen atom
Modeled by a simple Coulomb potential, the hydrogen atom has the Hamiltonian

H = 1
2m |p|

2 − α

r
(4.3)

with constant α, where |p|2 = p2
x+p2

y+p2
z and r2 = x2+y2+z2 in Cartesian coordinates. As

operators, the position and momentum components are subject to the basic commutation
relations

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = i~ , (4.4)

and they are self-adjoint. These conditions define a so-called ∗-algebra, which, together
with a quantum Hamiltonian Ĥ, properties of angular momentum, and the virial theorem,
will be the only ingredient in our derivation of spectral properties. We will not make use
of operators that represent the observables on a Hilbert space of wave functions.

An eigenvalue is a property of an observable in the algebra together with a specific
eigenstate. For a derivation of spectral properties we therefore need a notion of states
on an algebra, bypassing the introduction of wave functions. Given a ∗-algebra A, a
quantum state [15] is defined as a positive linear functional ω : A → C from the algebra
to the complex numbers, such that ω(â∗â) ≥ 0 for all a ∈ A. In addition, a state obeys
the normalization condition ω(Î) = 1 where Î ∈ A is the unit. The evaluation ω(â) is
then the expectation value of â ∈ A, and moments such as ω(ân) for integer n define a
probability distribution for measurements of the observable a if â is self-adjoint, a∗ = a.
Our aim is to derive properties of eigenvalues λ of a quantum Hamiltonian Ĥ ∈ A for
hydrogen through a suitable subset the moment conditions

ω(â(Ĥ − λ)) = 0 for all â ∈ A . (4.5)

We have to find a useful subset of â ∈ A in order to make this derivation feasible.

4.2.1 Subalgebra for spherical symmetry

Instead of applying standard position and momentum components, spherical symmetry
can be used to introduce a promising subset of algebra elements. A subalgebra of certain
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spherically symmetric elements of A is generated by the three elements

r̂ , P̂ = r̂|p̂|2 , Q̂ = x̂p̂x + ŷp̂y + ẑp̂z − i~ . (4.6)

Linear combinations of these generators form a 3-dimensional Lie algebra with basic
relations

[r̂, Q̂] = i~r̂ , [r̂, P̂ ] = 2i~Q̂ , [Q̂, P̂ ] = i~P̂ , (4.7)

isomorphic to so(2, 1). (Closely related algebras have been used for derivations of the
hydrogen spectrum in deformation quantization [59–61]. Our application of this algebra
follows different methods, and our extension to non-associative hydrogen in the next
section is completely new.) Its Casimir element is given by

K̂ := 1
2(r̂P̂ + P̂ r̂)− Q̂2 . (4.8)

Using the definitions (4.6), K̂ turns out to equal the square of angular momentum.
At this point, we can already see the main features of our new derivation, which

consists of the following steps in the order of the next three subsections:

1. A Casimir element such as (4.8) is a powerful tool because it takes a constant
value in a fixed irreducible representation. Physically, our Casimir is not new but
identical with the square of angular momentum. Nevertheless, we will examine
angular momentum in order to determine which of the standard properties are
readily available in a completely algebraic derivation.

2. The standard hydrogen Hamiltonian Ĥ is not an element of our linear algebra
because the Coulomb potential requires an inverse of r̂, and P̂ is not the correct
kinetic energy. However, the basic variables r̂ and P̂ are such that the expression
r̂Ĥ is linear in our algebra generators. This observation by itself is not very helpful
because r̂Ĥ and Ĥ do not have the same eigenvalues. Nevertheless, it is a crucial
step in our new strategy, combined with turning the Hamiltonian into a constraint
equation: If we start with the constraint Ĥ − λ = 0, encoded by the algebraic
definition (4.5) of the spectrum, we replace it with the constraint r̂Ĥ − λr̂ = 0,
which is still linear in our basic generators. This step gives rise to several subtleties
because we will have to employ methods from constrained systems, and even for
non-self-adjoint constraints because we need the non-symmetric ordering r̂Ĥ in the
constraint in order to use P̂ in our linear algebra. Once this step is completed, we
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gain information about solutions of (4.5).

3. In the final step, we have to impose positivity of the state used in our solutions
of (4.5). Instead of working directly with the basic positivity condition, we will
evaluate uncertsinty relations which are derived from positivity. In this general
form, there are many different versions of uncertainty relations because they depend
on which basic operators one chooses as well as on the polynomial order in which
they appear in moments. For our purposes, we do not need a complete analysis but
rather have to find a suitable version of uncertainty conditions that gives us useful
information about energy eigenvalues. Our main aim is to rule out a certain range
of values that could be eigenenergies of non-associative hydrogen. The specific
uncertainty relations we choose turn out to give us an interesting restriction by
ruling out a large range of values. If there is another uncertainty relation that rules
out more values, it would only strengthen our result without removing the bounds
obtained here.

We will first explore the algebra and derive useful identities within it as well as in an
extension that includes an inverse r̂−1. This inverse does not only appear in the Coulomb
potential, where it can be evaded by using the constraint just described, but also, as
it turns out, appears in the adjointness relation of P̂ . Since adjointness relations are
essential for positivity conditions or uncertainty relations, we cannot avoid discussing a
possible inclusion of r̂−1 in the algebra. The identities derived now for this purpose will
be used in our main calculation.

The commutators (4.7) rely on P̂ and Q̂ being defined in the specific orderings shown
in their definition (4.6), making them not self-adjoint. Completing the definition of a
∗-subalgebra, their adjointness relations can be derived from the basic commutators of
Cartesian position and momentum components: In addition to r̂∗ = r̂, we have

Q̂∗ = Q̂− i~Î (4.9)

and
P̂ ∗ = P̂ − 2i~r̂−1Q̂ = P̂ − 2i~Q̂r̂−1 − 2~2r̂−1 . (4.10)

At this point, we assume that the subalgebra generated by r̂, P̂ and Q̂ is suitably extended
such that it includes an inverse of r̂ which, like r̂, is also self-adjoint. The adjointness
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relations imply the conditions

Imω(Q̂) = 1
2iω(Q̂− Q̂∗) = 1

2~ (4.11)

and

Imω(r̂P̂ ) = 1
2i
(
ω(r̂P̂ )− ω(P̂ ∗r̂)

)
= 1

2i
(
ω(P̂ r̂ + 2i~Q̂)− ω(P̂ r̂ − 2i~Q̂− 2~2Î)

)
= ~ω(Q̂+ Q̂∗) = 2~Reω(Q̂) (4.12)

for expectation values in any state ω on the algebra, in addition to Imω(r̂) = 0.
In deriving (4.10), we have made use of the commutator

[r̂, |p̂|2] = 2i~r̂−1Q̂ = 2i~(Q̂− i~Î)r̂−1 (4.13)

which is itself based on the commutator

[r̂−1, Q̂] = −i~r̂−1 (4.14)

in the second step. These commutators can be computed easily in a position representation
of momentum components in p̂ and Q̂, which then defines the extension of our algebra
to one that includes r̂−1. Related useful commutators are

[Q̂, |p̂|2] = 2i~r̂−1P̂ (4.15)

[r̂−1, |p̂|2] = 2i~r̂−3(Q̂+ i~) (4.16)

[r̂−1, P̂ ] = 2i~r̂−2(Q̂+ i~) (4.17)

and

[P̂ ∗, P̂ ] = −2i~r̂−1Q̂P̂ ∗ + 2i~P̂ (Q̂− i~)r̂−1 + 4~2r̂−1Q̂(Q̂− i~)r̂−1 (4.18)

[P̂ ∗, r̂] = [r̂, P̂ ]∗ = −i~r̂ (4.19)

[P̂ ∗, Q̂] = −i~P̂ ∗ = [P̂ ∗, Q̂∗] . (4.20)

Adjointness relations require us to extend the algebra by an inverse of r̂. Nevertheless,
we will see that all moments required for a derivation of spectral properties can be derived
using relations in the linear algebra because the expectation value ω(r̂−1) is related to
moments of polynomial expressions by the virial theorem, which states that for any

54



quantum Hamiltonian Ĥ = 1
2m
−1p̂2 + αr̂n with some integer n, the expectation values of

kinetic and potential energy in a stationary state ω are related by

ω(p̂2) = nmαω(r̂n) . (4.21)

Since all energy eigenstates are stationary, the theorem applies in our case. In addition,
the eigenvalue condition ω(Ĥ − λ) = 0, as a special case of (4.5), implies a second
condition for the same energy expectation values:

1
2mω(p̂2) + αω(r̂n) = λ . (4.22)

Therefore,
ω(p̂2) = 2nmλ

n+ 2 , αω(r̂n) = 2λ
n+ 2 . (4.23)

For the Coulomb potential,
ω(r̂−1) = 2λ

α
(4.24)

is strictly determined.
The proof of the virial theorem is brief and standard, but it is useful to display the

key ingredients to demonstrate that no Hilbert-space representation is required. Since ω
is stationary, we have

0 = dω(Q̂)
dt = −iω([x̂p̂x + ŷp̂y + ẑp̂z, Ĥ]) = ω(m−1|p̂|2 − nαr̂n) (4.25)

using [p̂x, r̂] = −i∂̂r/∂x = −ix̂r̂−1. This result proves the virial theorem not only for
standard quantum mechanics but also for non-associative systems in the presence of
magnetic monopoles: While some associativity is applied in computing the commutator
in (4.25), none of the brackets (4.2) appear that would be modified for non-zero magnetic
charge.

4.2.2 Angular momentum

We will use the familiar eigenvalues of angular momentum squared, which equal the
eigenvalues of K̂ defined in (4.8). The usual derivation of these eigenvalues is, to a large
degree, algebraic, but it relies on applications of ladder operators on wave functions
representing angular-momentum eigenstates. Such an application will no longer be
available once we turn to non-associative hydrogen. We therefore provide here a complete
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algebraic derivation of angular-momentum eigenvalues.
The relevant algebra in this derivation is the enveloping algebra B of the Lie algebra

su(2), with self-adjoint generators Ĵx, Ĵy and Ĵz such that

[Ĵx, Ĵy] = i~Ĵz , [Ĵy, Ĵz] = i~Ĵx , [Ĵz, Ĵx] = i~Ĵy . (4.26)

An angular-momentum eigenstate ωι,µ with eigenvalue ι of the square of angular momen-
tum, Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z , and eigenvalue µ of the z-component Ĵz is a normalized and
positive linear map from B to the complex numbers which obeys the conditions

ωι,µ(â(Ĵ2 − ι)) = 0 and ωι,µ(â(Ĵz − µ)) = 0 (4.27)

for all â ∈ B.
Although we will not apply the ladder operators Ĵ± to wave functions, defined as

usually as
Ĵ± = Ĵx ± Ĵy , (4.28)

they are still useful because they obey the identity

ĴN− Ĵ
N
+ = ĴN−1

− (Ĵ2 − Ĵ2
z − Ĵz)ĴN−1

+

= ĴN−1
− ĴN−1

+ (Ĵ2 − Ĵ2
z − Ĵz) + ĴN−1

− [(Ĵ2 − Ĵ2
z − Ĵz), ĴN−1

+ ]

= ĴN−1
− ĴN−1

+

(
Ĵ2 − Ĵ2

z − Ĵz − 2(N − 1)Ĵz − (N − 1)2 − (N − 1)
)

on B for any positive integer N . Similarly,

ĴN+ Ĵ
N
− = ĴN−1

+ ĴN−1
−

(
Ĵ2 − Ĵ2

z + Ĵz + 2(N − 1)Ĵz − (N − 1)2 − (N − 1)
)
. (4.29)

Evaluating these identities in an eigenstate, we find

ωι,µ(ĴN∓ ĴN± ) = ωι,µ(ĴN−1
∓ ĴN−1

± )
(
ι− (µ± (N − 1))2 ∓ (µ± (N − 1))

)
=

N−1∏
n=0

(ι− (µ± n)2 ∓ (µ± n))

by iteration.
Since we have ĴN− ĴN+ = (ĴN+ )∗(ĴN+ ) and ĴN+ ĴN− = (ĴN− )∗(ĴN− ), positivity of ωι,µ implies

N∏
n=0

(ι− (µ± n)2 ± (µ± n)) ≥ 0 (4.30)
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for all N ≥ 0. The second term in each factor, −(µ± n)2, is a negative square which can
grow arbitrarily negative. Therefore, only finitely many factors in the products (4.30)
can be non-zero, such that, for some positive integers n+ and n−, we have

ι− (µ+ n+)2 − (µ+ n−) = 0 and ι− (µ− n−)2 + (µ− n−) = 0 . (4.31)

Solving these two equations implies that the eigenvalues are of the form

ι =
(
n− + n+

2

)(
n− + n+

2 + 1
)

and µ = n− − n+

2 , (4.32)

which can be recognized as the familiar eigenvalues in finite-dimensional irreducible
representations of su(2).

4.2.3 Eigenvalue constraint

We proceed with our derivation of energy eigenvalues. The Hamiltonian is not polynomial
in basic observables of the linear algebra. However, some of the conditions (4.5) are
defined on the linear algebra, provided â has at least one factor of r̂ on its right. For
instance, a single such factor, â = r̂, replaces the non-polynomial Ĥ − λ in (4.5) with the
linear expression

Ĉ := r̂(Ĥ − λ) = 1
2mP̂ − λr̂ − α . (4.33)

A subset of the spectrum conditions (4.5) can therefore be written in terms of Ĉ as the
constraint equations

ω(b̂Ĉ) = 0 for all b̂ ∈ A . (4.34)

These constraints might not be sufficient to obtain the full spectrum based on (4.5), but
any condition on eigenvalues derived from (4.108) also applies to the full eigenvalues.

In what follows, we therefore replace the self-adjoint Hamiltonian Ĥ with a constraint
operator Ĉ that, by definition, is not self-adjoint. Dealing with constraints that are not
self-adjoint requires some care. In particular, while a self-adjoint constraint generates a
gauge flow in much the same way as a self-adjoint Hamiltonian generates time evolution,
there are additional terms in the relationship between the flow and the commutator with
Ĉ when the constraint Ĉ is not self-adjoint.

For a self-adjoint Hamiltonian Ĥ, a time-dependent state ωt by definition evolves
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according to

dωt(Ô)
dt = d

dtωt(exp(itĤ/~)Ô exp(−itĤ/~)) = ωt([Ô, Ĥ])
i~

(4.35)

for all Ô ∈ A. Similarly, defining the gauge flow generated by Ĉ through the (non-unitary)
operator F̂ε = exp(−iεĈ/~) a gauge-dependent state ωε flows according to

dωε(Ô)
dε = d

dεωε(F̂
∗
ε ÔF̂ε) (4.36)

because this condition implies that any state solving the constraint equation (4.108) is
preserved by the flow: We then have

ω(F̂ ∗ε ÔF̂ε) = ω(Ô) (4.37)

for all Ô ∈ A if ω(b̂Ĉ) = 0 for all b̂ ∈ A. Infinitesimally, applying the flow operator
implies a relationship,

dωε(Ô)
dε = d

dεωε(exp(iεĈ∗/~)Ô exp(−iεĈ/~)) = ωε(ÔĈ − Ĉ∗Ô)
i~

, (4.38)

that is not directly related to the commutator of Ô and Ĉ because of the presence of a
Ĉ∗. In our specific case, we can use

Ĉ∗ = Ĉ − i~
m
r̂−1Q̂ = Ĉ − i~

m
Q̂r̂−1 − ~2

m
r̂−1 (4.39)

and arrive at
dωε(Ô)

dε = ωε([Ô, Ĉ])
i~

+ ωε(Q̂r̂−1Ô)
m

− i~ωε(r̂−1Ô)
m

. (4.40)

The constraint equations (4.108) play the same role as stationarity of eigenstates.
Since every energy eigenstate ω is gauge invariant under the flow generated by Ĉ, (4.40)
implies that

ω([Ô, Ĉ])
i~

= −ω((Q̂− i~Î)r̂−1Ô)
m

(4.41)

for any such state. Since r̂−1 appears on the right, these equations give us another way
to derive moments involving r̂−1. For instance, for Ô = r̂, we obtain

ω(Q̂) = ω([r̂, P̂ ])
2i~ = mω([r̂, Ĉ])

i~
= −ω(Q̂− i~Î) (4.42)
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from the basic commutators in the first step, the definition of Ĉ in the second step and
an application of equation (4.41) in the last step. Thus,

ω(Q̂) = 1
2i~ , (4.43)

which is consistent with the reality condition (4.11) and in addition shows that Reω(Q̂) =
0 for stationary states.

In another example, choosing Ô = Q̂ and using the basic commutators, as well as
(4.14), implies

1
2mω(P̂ ) + λω(r̂) + 1

m
ω(Q̂2r̂−1)− ~2

m
ω(r̂−1) = 0 . (4.44)

In this expression, The first term is given by

1
2mω(P̂ ) = λω(r̂) + α (4.45)

using the constraint, ω(Ĉ) = 0. The factor of Q̂2 in the third moment can be eliminated
by using the Casimir K̂, such that

Q̂2r̂−1 =
(
−K̂ + 1

2(r̂P̂ + P̂ r̂)
)
r̂−1

= −K̂r̂−1 + 1
2[r̂, P̂ ]r̂−1 + P̂

= −K̂r̂−1 + i~Q̂r̂−1 + P̂ . (4.46)

The final appearance of Q̂ in the second term of this new expression can be eliminated
by applying (4.41) to Ô = Î: i~ω(Q̂r̂−1) = ~2ω(r̂−1). Thus, equation (4.44) implies

3α + 4λω(r̂)− K

m
ω(r̂−1) = 0 (4.47)

with an eigenvalue K = ~2`(` + 1) of K̂ if we assume, as usual, that our eigenstate is
simultaneously one of energy and angular momentum and then use the derivation given
in Section 4.2.2. Using the virial theorem to replace ω(r̂−1) = 2λ/α, we obtain

ω(r̂) = −1
2`(`+ 1) ~2

mα
− 3

4
α

λ
(4.48)

for the radius expectation value. This equation gives the correct expression for the
r-expectation value in all energy eigenstates in terms of the eigenvalue λ.
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4.2.4 Uncertainty relations

So far, we have not obtained any restriction on the eigenvalues λ that may appear in
(4.48). Such restrictions cannot be derived by using only the eigenmoment equation (4.5).
In addition, we have to impose conditions that ensure that ω is positive (or “normalizable”
in quantum-mechanics lingo). In order to keep the discussion more physically intuitive, we
implement positivity through the equivalent conditions implied by uncertainty relations.

4.2.4.1 General derivation

To arrive at uncertainty relations, we follow standard results that imply the Cauchy–
Schwarz inequality

ω(â∗â)ω(b̂∗b̂) ≥ |ω(b̂∗â)|2 (4.49)

for all â, b̂ ∈ A and any state ω. The proof proceeds by defining a new algebra element
â′ := â exp(−iargω(b̂∗â)), designed such that |ω(b̂∗â)| = ω(b̂∗â′). This intermediate step
allows us to rewrite the positivity condition as

0 ≤ ω
((√

ω(b̂∗b̂)â′ −
√
ω(â′∗â′) b̂

)∗ (√
ω(b̂∗b̂)â′ −

√
ω(â′∗â′) b̂

))
= 2ω(b̂∗b̂)ω(â′∗â′)−

√
ω(b̂∗b̂)ω(â′∗â′)

(
ω(â′∗b̂) + ω(b̂∗â′)

)
= 2ω(b̂∗b̂)ω(â′∗â′)− 2

√
ω(b̂∗b̂)ω(â′∗â′)|ω(b̂∗â)| (4.50)

and to conclude that

|ω(b̂∗â)| ≤
√
ω(â∗â)

√
ω(â′∗â′) =

√
ω(â∗â)ω(b̂∗b̂) .

Importantly, the result does not require associativity; see also [70].
Choosing â = Ô1 − ω(Ô1)Î and b̂ = Ô2 − ω(Ô2)Î for self-adjoint Ô1 and Ô2, we

compute the variances ω(â∗â) = (∆O1)2, ω(b̂∗b̂) = (∆O2)2 of O1 and O2, respectively,
and ω(b̂∗â) = ∆(O1O2) + ω([Ô1, Ô2]) is related to their covariance ∆(O1O2). In this way,
the Cauchy–Schwarz inequality implies Heisenberg’s uncertainty relation

(∆O1)2(∆O2)2 −∆(O1O2)2 ≥
(∑

I

CI
12ω(ÔI)

)2

(4.51)

for any pair of observales O1 and O2 whose algebra elements Ô1 and Ô2 are two of the
generators of a linear subalgebra of A with structure constants CK

IJ : [Ô1, Ô2] = ∑
I C

I
12ÔI
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with a summation range equal to the dimension of the subalgebra. According to (4.7), we
can apply such an uncertainty relation to any pair of the generators (r̂, P̂ , Q̂). Some of
our generators, P̂ and Q̂, are not self-adjoint. In such a case, according to the derivation
shown here where (∆O1)2 results from ω(â∗â), any variance of a self-adjoint expression
should be replaced with the covariance of the algebra element and its adjoint, such as

∆(P̄P ) = 1
2ω(P̂ ∗P̂ + P̂ P̂ ∗)− |ω(P̂ )|2 . (4.52)

4.2.4.2 Relevant moments

We will apply these (generalized) uncertainty relations to pairs of algebra elements given
by r̂, P̂ and Q̂. An explicit evaluation in terms of the energy eigenvalue requires a
derivation of the moments ω(r̂2), ω(P̂ ∗P̂ ), ω(Q̂∗Q̂), ω(r̂P̂ ), ω(r̂Q̂), and ω(Q̂∗P̂ ). Also
here, we can exploit (4.41) for different choices of Ô, as well as (4.108) for various choices
of b̂.

We first compute one of the Q̂-related moments. First, equation (4.41) evaluated for
Ô = r̂2 implies

ω(r̂Q̂+ Q̂r̂)
m

= ω([r̂2, Ĉ])
i~

= −ω((Q̂− i~Î)r̂)
m

= ω(r̂Q̂− 2Q̂r̂)
m

(4.53)

using the basic commutators (4.7) in the last step. Therefore,

ω(Q̂r̂) = 0 and ω(r̂Q̂) = ω([r̂, Q̂]) = i~ω(r̂) . (4.54)

Together with (4.43), we arrive at

∆(rQ) = 0 . (4.55)

For the P̂ -related moments, we apply (4.108) with b̂ equal to the three linear generators
r̂, Q̂ and P̂ as well as the adjoint P̂ ∗, giving us four equations,

ω(r̂2) = 1
2mλω(r̂P̂ )− α

λ
ω(r̂) (4.56)

from b̂ = r̂,
ω(Q̂P̂ ) = i~mα (4.57)
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from b̂ = Q̂ using ω(Q̂r̂) = 0 as just derived,

ω(P̂ 2) = 2mλω(P̂ r̂) + 2mαω(P̂ ) (4.58)

from b̂ = P̂ , and

ω(P̂ ∗P̂ ) = 2mλω(P̂ ∗r̂) + 2mαω(P̂ ∗)

= 2mλω(P̂ r̂) + 2mαω(P̂ )− 2mλ~2 (4.59)

from b̂ = P̂ ∗ using (4.10) and (4.43). We apply gauge invariance (4.41) to Ô = r̂Q̂, such
that

1
2mω(r̂P̂ ) + 2

m
ω(Q̂2) + λω(r̂2) + 1

2m~2 = 0 . (4.60)

In the last equation, we replace Q̂2 with the square of angular momentum and
therefore K̂, as before. Together with (4.56) as well as (4.48), we obtain

ω(r̂2) = 3
4
`(`+ 1)~2

mλ
+ 5

8
α2

λ2 −
1
4
~2

mλ
(4.61)

which, like (4.48), is valid for all energy eigenstates in terms of λ. The remaining equations
then allow us to solve for the P̂ -related moments

ω(r̂P̂ ) = 1
2`(`+ 1)~2 − 1

4m
α2

λ
− 1

2~
2 (4.62)

ω(P̂ r̂) = 1
2`(`+ 1)~2 − 1

4m
α2

λ
+ 1

2~
2 (4.63)

ω(P̂ ∗P̂ ) = −`(`+ 1)mλ~2 + 1
2m

2α2 −mλ~2 . (4.64)

The Q̂-related moment ω(Q̂P̂ ) = i~mα is already determined by (4.57), which
together with (4.9), (4.45) and (4.48) gives

ω(Q̂∗P̂ ) = i~
(
mα− ω(P̂ )

)
= −i~m (α + 2λω(r̂)) = i~

(
1
2mα + λ`(`+ 1)~2

α

)
, (4.65)

which is the second Q̂-related moment relevant for uncertainty relations. The final
moment, ω(Q̂∗Q̂), is related to the square of angular momentum by

ω(Q̂∗Q̂) = ω(Q̂2)−i~ω(Q̂) = −ω(K̂)+1
2ω(r̂P̂+P̂ r̂)−i~ω(Q̂) = −1

2`(`+1)~2−mα
2

4λ +1
2~

2 ,

(4.66)
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using (4.62), (4.63) and (4.43).
We are now in a position to impose positivity of ω. Heisenberg’s uncertainty relation

for our variables include

(∆r)2∆(P̄P ) ≥ |∆(rP ) + i~ω(Q̂)|2 (4.67)

which is always saturated for our solutions, without restrictions on λ. In fact, the equality
in this statement is implied by the eigenvalue constraint (4.108), such that ω(b̂Ĉ) = 0
and ω(Ĉ∗b̂) = 0 for any b̂ ∈ A. Since Ĉ is linear in P̂ and r̂, any P in the moments in
(4.67) can be replaced by an r as follows:

∆(rP ) + i~ω(Q̂) = 1
2ω

(
(r̂ − ω(r̂))(P̂ − ω(P̂ )) + (P̂ − ω(P̂ ))(r̂ − ω(r̂))

)
+ 1

2ω([r̂, P̂ ])

= ω
(
(r̂ − ω(r̂))(P̂ − ω(P̂ ))

)
≈ 2mλω

(
(r̂ − ω(r̂))2

)
= 2mλ(∆r)2 (4.68)

and

∆(P̄P ) = 1
2ω

(
(P̂ ∗ − ω(r̂))(P̂ − ω(P̂ )) + (P̂ − ω(P̂ ))(P̂ ∗ − ω(r̂))

)
≈ (2mλ)2(∆r)2

(4.69)
where ≈ indicates equality on states obeying the constraint (4.108).

The remaining inequalities,

(∆r)2∆(Q̄Q) ≥ |∆(rQ) + 1
2i~ω(r̂)|2 (4.70)

and
∆(Q̄Q)∆(P̄P ) ≥ |∆(Q̄P ) + 1

2i~ω(P̂ )|2 , (4.71)

imply the the same condition on solutions of the constraint (4.108), but one that non-
trivially restricts the values of λ.

4.2.5 Energy eigenvalues

We evaluate the inequality (4.70) explicitly, using a simplification implied by (4.55). For
the variances on the left, we have

(∆r)2 = ω(r̂2)− ω(r̂)2 = 3
4
`(`+ 1)~2

mλ
+ 5

8
α2

λ2 −
1
4
~2

mλ
−
(

1
2`(`+ 1) ~2

mα
+ 3

4
α

λ

)2
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= −`
2(`+ 1)2~4

4m2α2 + α2

16λ2 −
~2

4mλ (4.72)

from (4.48) and (4.61), and

∆(Q̄Q) = ω(Q̂∗Q̂)− |ω(Q)|2 = −1
2`(`+ 1)~2 − mα2

4λ + 1
4~

2 (4.73)

combining (4.66) and (4.43). Subtracting the right-hand side 1
4~

2ω(r̂)2 off (4.70), using
∆(rQ) = 0 according to (4.55), we obtain the inequality

`3(`+ 1)3~6

8m2α2 + `2(`+ 1)2~4

16m2α2

(
mα2

λ
− 2~2

)
− `(`+ 1)~2

32mλ2

(
mα2 + 2~2λ

)
−mα

4

64λ3 −
α2~2

16λ2 −
~4

16mλ ≥ 0 . (4.74)

Upon multiplication with the positive λ2, the left-hand side is given by λ−1 times a
polynomial in λ of degree three, which can be factorized as

(`+ 1)2~6

8m2α2λ

(
`2λ+ 1

2
mα2

~2

)(
λ+ 1

2
mα2

~2(`+ 1)2

)(
(`2 + `− 1)λ− 1

2
mα2

~2

)
≥ 0 . (4.75)

The central parenthesis demonstrates that the inequality is saturated for any energy
eigenvalue of the hydrogen problem with maximal angular momentum for a given quantum
number n, such that ` = n− 1, using the standard expression

λn = − mα2

2~2n2 = − mα2

2~2(`+ 1)2 . (4.76)

Each degenerate energy level therefore contains a state that saturates an uncertainty
relation, (4.70), even if it is highly excited. This surprising result extends an observation
made in [?, 2] for the harmonic oscillator to the hydrogen problem.

4.2.6 Spectral conditions from uncertainty relations

The saturation result makes use of the known formula for energy eigenvalues of the
hydrogen problem. Keeping in mind our aim to apply algebraic methods to the non-
associative generalization of the problem in the presence of small magnetic charges, we
are interested also in an independent derivation of spectral properties directly from the
inequality (4.75). To this end, we first note that the left-hand side of this inequality
approaches positive infinity for λ → −∞, while it has negative roots. In order to
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demonstrate this result it is useful to split the discussion into two case, ` = 0 and ` > 0.
In the first case, we can rewrite the inequality as

− ~4

16m2λ

(
λ+ 1

2
mα2

~2

)2

≥ 0 , (4.77)

which eliminates all positive λ (where we have a continuous spectrum and therefore
no normalizable states ω), and distinguishes the ground-state energy λ = −1

2mα
2/~2

through a saturation condition. In the second case, the inequality written as

`2(`+ 1)2~6

8m2α2

(
λ+ 1

2
mα2

~2`2

)(
λ+ 1

2
mα2

~2(`+ 1)2

)(
`2 + `− 1− 1

2
mα2

~2λ

)
≥ 0 (4.78)

has a final parenthesis which is always positive for negative λ. Therefore, it rules out
any values of λ between the two roots given by the first two parentheses,

λ1 = −1
2
mα2

~2`2 and λ2 = −1
2

mα2

~2(`+ 1)2 (4.79)

where λ1 < λ2. All intervals between the known degenerate eigenvalues are therefore
eliminated. (An alternative derivation of this result not based on uncertainty relations is
given in the Appendix.)

4.3 Non-associative hydrogen with small magnetic charge
A non-associative monopole algebra is not uniquely determined by basic commutators and
associators such as (4.1) for a monopole system. Different versions can be classified via
suitable star products that determine non-commutative and non-associative compositions
of the basic position and momentum variables as formal power series in ~. To leading
order, a direct calculation demonstrates that the commutators within the subset {r̂, P̂ , Q̂}
remain unchanged compared with the associative case, provided the background magnetic
field obeys the condition

~r × ~B = 0 . (4.80)

In this case, therefore, corrections to our preceding results are at most perturbative in ~
multiplied by a number, such as the magnetic charge, that characterizes the strength
of the magnetic field which appears in non-trivial commutators and associators of a
monopole star product. Since we will be interested in weak magnetic charges, these
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corrections will be small.
In order to determine how the magnetic charge appears, we further evaluate condition

(4.80). In general, it implies that ~B(~r) = b(~r)~r with some function b(~r). In the static
case, we need ∇× ~B = 0, which is fulfilled if and only if b(r) is spherically symmetric. A
monopole density µ(r) = ∇ · ~B then requires

b(r) = g(r)
4πr3 (4.81)

with the magnetic charge
g(r) = 4π

∫ r

µ(r̃)r̃2dr̃ (4.82)

enclosed in a sphere of radius r. For a single monopole at r = 0, g(r) is constant, while
g(r) depends on r for a constant monopole density. We will assume that g(r) = g is
constant, which combined with the standard Coulomb potential implies that the hydrogen
nucleus has magnetic charge g.

Given the magnetic field of a single monopole with magnetic charge g, according
to [30, 62] the shifted angular momentum components L̂′j = L̂j + egx̂j r̂

−1 satisfy the
usual commutators of angular momentum and therefore have the familiar spectrum. The
Casimir of the algebra generated by r̂, P̂ and Q̂ is still equal to K̂ = L̂2, but in terms of
the modified angular momentum, it has an extra term:

K̂ = L̂2 = L̂′2 − e2g2Î . (4.83)

(For a monopole density with non-constant g, K̂ and L̂′2 cannot be diagonalized simul-
taneously and an independent method would have to be used to find eigenvalues of
K̂.)

For a single monopole at the center, the spectrum of K̂, according to (4.83) has a
simple constant shift compared with the spectrum of L̂′2, which is known to break the
degeneracy of the energy spectrum for magnetic monopoles that obey Dirac’s quantization
condition [53]. This condition, eg = 1

2~, implies a large value of the smallest non-zero
magnetic charge because the electric fine structure constant is small. Dirac monopoles
in a hydrogen nucleus would therefore be large perturbations that strongly modify the
energy spectrum. They can easily be ruled out by standard spectroscopy. Dirac’s
quantization condition can be violated in non-associative quantum mechanics. Magnetic
charges can then be small and might modify the energy spectrum sufficiently weakly to
be phenomenologically viable. However, a derivation of eigenvalues in the non-associative
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setting remained impossible for decades. Our methods from the preceding section can
now be applied to this question.

We will focus on a range of small magnetic charges g characterized by the condition
0 < eg/~ < 1

2 . As already noted, the commutators (4.7), the virial theorem and the
Cauchy–Schwarz inequality all hold for a non-associative monopole algebra, at least up
to higher-order terms in the star product. Specifically, corrections from the associator
(4.2) or the commutator to real quantities are of the order ~2eg or smaller. Second-order
corrections in ~ and eg are therefore insensitive to the specific star product. To within
this order, the only assumption that need be modified in our previous derivation of
uncertainty relations is the spectrum of K̂, which is no longer equal to the square of
angular momentum but instead has the eigenvalues

K` = `(`+ 1)~2 − e2g2 . (4.84)

It is convenient to parameterize the shift by replacing ` with a non-integer quantum
number

˜̀=
√(

`+ 1
2

)2
− e2g2

~2 −
1
2 . (4.85)

Substituting ˜̀ for ` in (4.75) then gives us conditions on energy eigenvalues of non-
associative hydrogen. (Saturation conditions indeed give us correct eigenvalues according
to [53], but since the usual degeneracy is broken, they do not give us the full spectrum.)

The range of ` is bounded by the fact that K̂ is a positive operator (the components
L̂i being Hermitian [30,62]), such that the eigenvalues (4.84) cannot be negative. This
condition rules out the quantum number ` = 0, but for small magnetic charges the
next possible value, ` = 1/2, is allowed. We will assume this value for the ground state
because (4.75) tells us that the smallest root of this equation is proportional to −1/`2.
The minimum energy eigenvalue is therefore obtained for the smallest possible `. This
value of ` implies

˜̀=
√

1− e2g2

~2 −
1
2 (4.86)

which lies in the range
1
2(
√

3− 1) < ˜̀< 1
2 . (4.87)

Since ˜̀= 0 is not possible, the uncertainty relation always rules out a range of energy
eigenvalues between

λ1 = −1
2
mα2

~2 ˜̀2
(4.88)
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and
λ2 = −1

2
mα2

~2(˜̀+ 1)2
. (4.89)

For any ˜̀ in the range (4.87), ˜̀< 1 while ˜̀+ 1 > 1. Therefore, a certain non-empty
range around the usual hydrogen ground-state energy −1

2mα
2/~2 is ruled out for any

value of a small magnetic charge. We conclude that even a small magnetic charge would
strongly modify the usual hydrogen spectrum and be incompatible with spectroscopic
data. This strict exclusion is possible because the positivity of K̂ implies a discontinuity
of energy eigenvalues as functions of the magnetic charge g at g = 0.

4.4 Conclusions
Our derivations have produced the first results about spectral properties in a system of
non-associative quantum mechanics. In particular, we have been able to demonstrate
a discontinuity in the ground-state energy of hydrogen as a function of the magnetic
charge of the nucleus. Addressing this question requires a continuous range of the
magnetic charge around zero, which cannot be modeled by an associative treatment with
Dirac monopoles for which the magnetic charge is quantized. Non-associative quantum
mechanics is able to describe fractional magnetic charges of any value and is therefore a
suitable setting for our question.

A Hilbert-space representation of an algebra by operators acting on wave functions is
by necessity associative because for any ψ in the Hilbert space and operators Â, B̂ and
C we have

(ÂB̂)Ĉψ = ÂB̂ψ′ = Â(B̂ψ′) = Â(B̂Ĉ)ψ , (4.90)

defining ψ′ = Ĉψ in an intermediate step. Non-associative quantum mechanics can
therefore not be represented on a Hilbert space, necessitating a purely algebraic derivation
of properties of expectation values, moments, and eigenvalues. That such an algebraic
treatment can indeed be used to derive a complete spectrum is demonstrated in [?,
2], in this case for the (associative) harmonic oscillator as a proof of principle. The
algebraic treatment relies on uncertainty relations in order to impose positivity of states,
replacing the more common normalizability conditions of Hilbert-space treatments. The
new methods are therefore well-suited to finding unexpected saturation properties of
eigenstates, even excited ones. As a new result of [?, 2], every eigenstate of the harmonic
oscillator saturates a suitable uncertainty relation. Saturation results even extend to
eigenstates of anharmonic systems in perturbative treatments.
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Our application of related methods to non-associative hydrogen in the present paper
have not resulted yet in a full energy spectrum because we focused on the ground state,
deriving only one uncertainty relation explicitly. Nevertheless, a saturation result has
been found for this state, indicating that the behavior seen in harmonic models might
be extendable also to excited states of hydrogen. However, the dynamical algebra of
hydrogen is more involved than the canonical algebra applicable to the harmonic oscillator,
making a generic treatment of saturation results for hydrogen more complicated.

Our extension to non-associative hydrogen relied on several fortuitous algebraic
properties of standard hydrogen that are not affected by introducing non-associativity of
monopole type, given by a commutator (4.1) of kinematical momentum components with
a magnetic field generated by a pointlike magnetic charge. For other non-associative
algebras, or even a monopole algebra with a continuous magnetic charge distribution, the
eigenvalue problem cannot yet be solved, presenting a challenging mathematical problem.

Our specific physical result demonstrates that the pursuit of these mathematical
questions is worthwhile. We have found that the ground-state energy of hydrogen
with a small magnetic nuclear charge g is significantly displaced from the usual value
due to a discontinuity, even for infinitesimally small magnetic charge. Spectroscopy is
therefore very sensitive to introducing a magnetic charge. In order to produce an upper
bound on g consistent with observational data, we may, following [?], wash out the
discontinuity implied by positivity of the non-associative angular momentum K because
the eigenvalues of angular momentum squared are determined only within some δL2 from
a purely phenomenological viewpoint. In addition, a fundamental uncertainty in angular
momentum could also be caused by an extended magnetic charge distribution in the
nucleus, which would imply that K̂ and L̂′2 no longer commute.

As an estimate of this uncertainty, we may use the value 5 ·10−19 given as the accuracy
of recent atomic clocks [63], which rely on sharp spectral lines that would be affected by
the same uncertainty δL2 if angular momentum is not sharp. The inequality K ≥ 0 for
eigenvalues of K̂, which must always hold because K̂ is defined as a positive operator,
then implies an upper bound

g ≤ 4πε0
√
δL2c2

e
≈ 4.7 · 10−18Am = 1.4 · 10−9gDirac (4.91)

for the magnetic charge, written here in SI units. This upper bound is a small fraction of
gDirac, the smallest non-zero magnetic charge allowed by Dirac’s quantization condition
in an associative treatment.
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Magnetic charges of elementary particles have been bounded by various means. Using
the proton as an example, interpreted here as the nucleus of hydrogen, our bound is
not as strong as those found based on the total magnetic charge of a large number of
nucleons in macroscopic objects [64,65]. The large number of nucleons in macroscopic
objects implies a strong magnification factor in the latter studies if their magnetic
charges add up. However, this method is not available for those elementary particles
that cannot be combined in stable macroscopic objects, such as unstable particles or
antimatter. Some of them can nevertheless be used as substitutes of the nuclear proton
in hydrogen-like atoms, with precision spectroscopic data being available in some cases
such as muonium [69] or antihydrogen [66,67]. For instance, muonium spectroscopy with
a current accuracy of about 10−9 gives us an upper bound on the muon’s magnetic charge
of gmuon ≤ 4.5 · 10−5gDirac, which is better than available upper bounds based on other
methods.
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4.5 Appendix

4.5.1 Algebraic derivation of the associative hydrogen spectrum

It is instructive to derive the standard energy spectrum of an electric charge in a Coulomb
potential by algebraic means, using the same subalgebra of observables generated by (4.6)
as employed in the main text but imposing positivity of states not through uncertainty
relations but, more indirectly, through convergence properties of certain expectation
values expressed as power series. This derivation more closely resembles the standard
derivation based on convergence properties of norms of wave functions, but it is still
fully algebraic. However, it does not give rise to new saturation conditions of uncertainty
relations, and it is more difficult to extend it to non-associative systems.

In addition to the basic commutators (4.7), we will make use of

[r̂, Ĉ] = i~
m
Q and [Q̂, Ĉ] = i~

( 1
2mP̂ + λr̂

)
(4.92)
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with the constraint Ĉ defined in (4.33), as well as the expectation-value equation

ω(b̂P̂ ) = 2mω
(
b̂(λr̂ + α)

)
(4.93)

for any b̂ ∈ A, implied by the eigenvalue constraint (4.108). We will apply the invariance
condition (4.41) in various ways, and use the operator (4.8) in the form

K̂ = r̂P̂ − i~Q̂− Q̂2 . (4.94)

4.5.1.1 Kramer’s relation

Our first step is the algebraic derivation of a recurrence relation for expectation values of
integer powers of r̂ in energy eigenstates of hydrogen, known as Kramer’s relation. To
this end, we derive the commutators

[r̂n, Q̂] = i~nr̂n , [r̂n, P̂ ] = 2in~r̂n−1Q̂+ ~2n(n− 1)r̂n−1 (4.95)

for integer n, using induction and being careful with taking commutators of powers
because [â, [â, b̂]] = 0 does not always hold for â, b̂ ∈ A.

Second, invariance applied to Ô = mr̂s takes the form

0 = m

i~
ω([r̂s, Ĉ] + (Q̂− i~)r̂s−1)

= 1
2i~ω([r̂s, P̂ ] + [(Q̂− i~), r̂s−1] + r̂s−1(Q̂− i~))

= sω(r̂s−1Q̂)− i~
2 s(s− 1)ω(r̂n−1)− (s− 1)i~ω(r̂s−1) + ω(r̂s−1(Q̂− i~))

= s+ 1
2 ω(r̂s−1(2Q̂− is~)) ,

such that
ω(r̂s−1Q̂) = 1

2i~sω(r̂s−1) . (4.96)

Using this result, invariance applied to Ô = mr̂sQ̂ leads to

0 = m

i~
ω([r̂sQ̂, Ĉ] + (Q̂− i~)r̂s−1Q̂)

= 1
2i~ω([r̂s, P̂ ]Q̂) + m

i~
ω(r̂s[Q̂, Ĉ]) + ω([(Q̂− i~), r̂s−1]Q̂) + ω(r̂s−1(Q̂− i~)Q̂)

= sω(r̂s−1Q̂2)− i~
2 s(s− 1)ω(r̂s−1Q̂) + 1

2ω(r̂s(P̂ + 2mλr̂))− i~(s− 1)ω(r̂s−1Q̂)
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+ω(r̂s−1(Q̂− i~)Q̂)

= (s+ 1)ω(r̂s−1Q̂2) + 1
2ω(r̂sP̂ ) +mλω(r̂s+1)− i~s(s+ 1)

2 ω(r̂s−1Q̂)

= −(s+ 1)ω(K̂r̂s−1) + (s+ 3/2)ω(r̂sP̂ ) +mλω(r̂s+1)− i~(s+ 2)(s+ 1)
2 ω(r̂s−1Q̂)

= −(s+ 1)ω(K̂r̂s−1) + (s+ 3/2)ω(r̂sP̂ ) +mλω(r̂s+1) + ~2 (s+ 2)(s+ 1)s
4 ω(r̂s−1) .(4.97)

Equation (4.93) then implies Kramer’s relation

0 = ~2(s+ 1)
(
s(s+ 2)

4 − `(`+ 1)
)
ω(r̂s−1) + (2s+ 3)mαω(r̂s) + 2(s+ 2)mλω(r̂s+1)

(4.98)
after inserting the standard angular-momentum eigenvalues of K̂. Incidentally, invariance
applied to Ô = r̂sP̂ results in an identity:

m

i~
ω([r̂sP̂ , Ĉ]) + ω((Q̂− i~)r̂s−1P̂ )

= 1
2i~ω([r̂s, P̂ ]P̂ ) + m

i~
ω(r̂s[P̂ , Ĉ]) + ω([(Q̂− i~), r̂s−1]P̂ ) + ω(r̂s−1(Q̂− i~)P̂ )

= 2m(s+ 1)ω(r̂s−1Q̂(λr̂ + α))− i~ms(s+ 1)ω(r̂s−1(λr̂ + α)) + ω(r̂s(2mλQ̂))

= 2mα(s+ 1)ω(r̂s−1Q̂) + 2mλ(s+ 1)ω(r̂s(Q̂− i~))− i~ms(s+ 1)λω(r̂s)

−i~mαs(s+ 1)ω(r̂s−1) + 2mλω(r̂sQ̂) = 0

upon using (4.96).

4.5.1.2 Spectrum

Equipped with Kramer’s relation, which we first shift down by one unit in s,

0 = ~2s

(
s2 − 1

4 − `(`+ 1)
)
ω(r̂s−2) + (2s+ 1)mαω(r̂s−1) + 2(s+ 1)mλω(r̂s) , (4.99)

we can now set up a new recurrence relation. We first generalize Kramer’s relation to

0 = ~2

4 ω ((r̂f(r̂))′′′)− ~2`(`+ 1)ω(r̂−1f ′(r̂)) +mαω(2f ′(r̂) + r̂−1f(r̂)) + 2mλω((r̂f(r̂))′)
(4.100)

for any analytic function f , where derivatives of analytic functions of r̂ are interpreted in
the sense of formal power series.
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Specializing f(r̂) to fs,k(r̂) = r̂se−kr̂ and defining

κs(k, λ) = ω(r̂se−kr̂) (4.101)

then gives

0 = ~2s(−1− 4`(1 + `) + s2)κs−2(k, λ) + (h2k(4`(1 + `)− 3s(1 + s)) + 4m(1 + 2s)α)κs−1(k, λ)

+(3~2k2(1 + s) + 8m(λ(1 + s)− kα))κs(k, λ)− k(8mλ+ k2~2)κs+1(k, λ) .

Again shifting s by defining Ls(k, λ) = κs−2(k, λ), we rewrite the previous relation as the
third-order linear differential equation

0 =
(
~2s(−1− 4`(1 + `) + s2)− (h2k(4`(1 + `)− 3s(1 + s)) + 4m(1 + 2s)α)∂k(4.102)

+(3~2k2(1 + s) + 8m(λ(1 + s)− kα))∂2
k + k(8mλ+ k2~2)∂3

k

)
Ls(k, λ) .

Since our fs,k(r̂) is a bounded operator for k > 0 and s ≥ 0 with limk→∞ f(r̂) = 0̂,
any state should be such that Ls(k, λ) is well-defined for all k > 0 and s ≥ 0 with
limk→∞ Ls(k, λ) = 0 for all λ. We also know that Ls(k, λ) is well-defined for energy
eigenstates at k = 0 as long as s ≥ 0 is integer, because Kramer’s relation together
with the virial theorem provides finite numbers for expectation values of positive integer
powers of r̂. Under these conditions, we can perform a Laplace-like transformation and
write

Ls(k, λ) =
∫ ∞

0
as,λ(b, d)(k + d(s, λ))−bdb

=
∞∑
n=0

∫ 1

0
as,λ(b+ n, d)(k + d(s, λ))−n−bdb . (4.103)

In the first line, as,λ(b, d) may be seen as the inverse Laplace transform of Ls(et− d(s, λ))
with respect to t. As we will see, it is convenient to introduce a free displacement d(s, λ)
on which the coefficients an,λ will in general depend.

For further convenience, we now drop the explit dependences on s and λ from our
notation. Comparing coefficients of the expansion (4.103) inserted in (4.102), we obtain
the recurrence relation

C3a(b+ n− 3) + C2a(b+ n− 2) + C1a(b+ n− 1) + C0a(b+ n) = 0 (4.104)
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with

C3 = d(b+ n− 3)(b+ n− 2)(b+ n− 1)(d2~2 + 8mλ) (4.105)

C2 = (b+ n− 2)(b+ n− 1)
(
−3d2~2(b+ n− 1− s) + 8dmα− 8m(b+ n− 1− s)λ

)
(4.106)

C1 = (b+ n− 1)
3d~2(b+ n)(b+ n+ 1) + d~2

(
−4`(1 + `) + 3s(1 + s)

)

+(b+ n)
(
−6d~2(1 + s)− 8mα

)
+ 4mα(1 + 2s)

 (4.107)

C0 = −h2(b+ n− s)((b+ n− s)2 − (2`+ 1)2) . (4.108)

By definition, the support of a as a function of b is bounded from below. If for a
given solution nmin is the smallest integer such that a(b+nmin) 6= 0 while a(b+n) = 0 for
n < nmin, the expression (4.108) shows that nmin +b−s = 0 or |nmin +b−s|− |2`+1| = 0.
Using the fact that ` is an integer (since we are for now assuming the absence of a
magnetic charge), b must be an integer. This result shows that Ls(k, λ) allows an
expansion as a Laurent series of the form

Ls(k, λ) =
∞∑
n=0

As,λ(n)(k + d(s, λ))−n . (4.109)

(The original coefficients as,λ(b, d) introduced in (4.103) are proportional to a Dirac comb
of delta functions of b supported on the integers.)

The recurrence relation for As,λ(n) can easily be obtained from (4.104) by absorbing
b in n, ignoring the shift by b. The relation can be simplified further by making the
choice d =

√
−8mλ/~ for a given λ, such that the lowest-order term (at order n − 3)

drops out of the recurrence. We also choose s = 2`+ 2 and obtain

0 = 2d(n− 2)
(
d~2(3 + 2`− n) + 4mα

)
A(n− 2) (4.110)

+
(
d~2

(
8`2 + `(26− 12n) + 3(n− 3)(n− 2)

)
+ 4mα(5 + 4`− 2n)

)
A(n− 1)

−~2(n− 3− 4`)(n− 2− 2l)A(n)

after factoring out b+ n− 1. For very large n of either sign, this recursion takes the form
A(n)− 3dA(n− 1) + 2d2A(n− 2) = 0, such that any non-zero asymptotic An behaves
either as dn or (2d)n. However, these options would introduce a pole for Ls(k, λ), either
at k = 0 or k = d > 0, which cannot happen for well-defined states. Therefore, only
finitely many A(n) can be non-zero. According to the A(n)-term in (4.110), there is an
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N1 such that A(n) = 0 for n < N1 because ` is an integer.
For the range of n where A(n) 6= 0 to be bounded from above, the first coefficient in

(4.110) the latter condition requires

d = 4mα
~2ν

(4.111)

with some positive integer ν. Inserting this expression, we obtain

0 = 2(n+ 2`)(n− 1− ν)cn−2 (4.112)

− (n(3n− 3− 2ν) + ν − 4`(1 + `)) cn−1

+n(n− 1− 2`)cn

where
cn = d−nAn+2`+2 . (4.113)

There is one final condition: as all these sequences are linear with recurrence relations
that have integer coefficients (since ` is known to be an integer) we infer that, up to
n-independent rescalings, for a given solution all the coefficients cn are integer multiples
of the same basic quantity, γ. Dividing the recurrence relation by γ, we have 0 =
νcn−1/γ mod 2 for all n, because only a single term in the coefficients of (4.112) is not
guaranteed to be even. As an overall factor of two could be absorbed into the definition
of γ (and therefore cn−1/γ may well be odd), we conclude that ν = 2N , giving

δ = 2mα
~2N

(4.114)

and
λ = − mα

2~2N
, (4.115)

which is the known energy spectrum of hydrogen.
It is instructive to look at the detailed recurrence for the case of ` = 0, which includes

the ground state, such that s = 2. For n = 0 in (4.112), we obtain c−1 = 0. Choosing
n = 1 in (4.112) then shows that c0 = 0. For n = 2, we obtain a non-trivial relation that
determines c2 in terms of a free c1:

c2 = 3(1− ν/2)c1 . (4.116)

For ν = 2, the smallest allowed value, c2 = 0, which then implies c3 = 0 at n = 3. With
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two successive vanishing cn, all the following cn are zero. Since c1 may be non-zero,
there is a non-zero solution, as required for a non-zero expectation value of the positive
operator r̂2e−kr̂. A non-zero c1 implies through (4.113) that A3 is the only non-zero
coefficient, such that

L2(k, λ0) ∝
(
k + 2mα

~2

)−3
(4.117)

using (4.109). According to its definition (4.101) as an expectation value, L2(k, λ0) =
κ0(k, λ0) = ω0(e−kr̂) should be the ground-state expectation value of e−kr̂, which can
easily be confirmed to be of the form (4.117) using the known ground-state wave function
ψ0(r) ∝ e−r/a with the Bohr radius a = ~2/(mα).

4.5.2 Generalization to hydrogen with a magnetic nuclear charge

Since most of the identities used in our new derivation of Kramer’s relation hold true in
the non-associative case with a pointlike magnetic monopole at the center, we can easily
generalize this relation. We only have to adjust the spectrum of K̂ using (4.84) in (4.97)
and obtain

0 = ~2(s+1)
(
s(s+ 2)

4 − `(`+ 1) + e2g2/~2
)
ω(r̂s−1)+(2s+3)mαω(r̂s)+2(s+2)mλω(r̂s+1)

(4.118)
as a generalization of (4.98).

This equation takes the form

0 = ~2

4 ω ((r̂f(r̂))′′′)−~2
(
`(`+ 1)− e2g2

)
ω(r̂−1f ′(r̂))+mαω(2f ′(r̂)+r̂−1f(r̂))+2mλω((r̂f(r̂))′)

(4.119)
as a differential equation replacing (4.119), which in turn implies the equation

0 =
(
~2s(s2 − 1− 4(`(`+ 1)− e2g2/~2))

−(4mα(2s+ 1) + k(4`(`+ 1)− 4e2g2/~2 − 3s(s+ 1)))∂k
+(8m(s+ 1)− 8kmα + 3k2(1 + s)~2)∂2

k + k(8mλ+ k2)~2∂3
k

)
Ls(k, λ)

instead of (4.102).
The recurrence relation (4.104) still holds with the same C3 and C2, while C1 and C0

are replaced by
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C ′1 = (b+ n− 1)
3d~2(b+ n)(b+ n+ 1) + d~2

(
−4`(1 + `) +−4e2g2/~2 + 3s(1 + s)

)

+(b+ n)
(
−6d~2(1 + s)− 8mα

)
+ 4mα(1 + 2s)


C ′0 = −h2(b+ n− s)((b+ n− s)2 − (2`+ 1)2 + 4e2g2/~2) .

The same choice d =
√
−8mλ/~ as in the derivation of (4.110) can be used to reduce the

equation to second order, and it has the same large-n behavior as before. The sequence
of an therefore still has only finitely many non-zero elements, which is again the case if
b − s is an integer because the coefficient b + n − s in the last term of the recurrence
relation has not changed. However, there is now a second possibility if b and s are such
that (b+ n− s)2 = (2`+ 1)2 − 4e2g2/~2 for some integer n. This condition can provide
new solutions and a more complicated spectrum.

The last coefficient, (b+ n− s)2 − (2`+ 1)2 + 4e2g2/~2, no longer factorizes. Setting
b = 0 as before, we therefore obtain a relation,

0 = 2d(n− 2)(n− 1)
(
−4mα + d(−1 + n− s)~2

)
an−2

+(n− 1)
(
−4mα(2s+ 1)− 3dn(1 + n)~2 + d(4`(`+ 1)− 4e2g2/~2 − 3s(1 + s))~2

+n(8mα + 6d(1 + s)~2)
)
an−1

+(n− s)
(
(n− s)2 − (2`+ 1)2 + 4e2g2/~2

)
~2an ,

in which the coefficient n− 1 does not cancel out as before (for s = 2`+ 2) because the
last coefficient no longer factorizes in the same way. In the previous section we have
already indicated several steps in the derivation of the standard hydrogen spectrum that
would no longer hold if ` (or the effective ˜̀ in (4.86) if g 6= 0) is not an integer.

More specifically, we again now look at the case of ` = 0 or s = 2, comparing with the
discussion at the end of the preceding section. Now, choosing n = 1 implies a non-trivial
condition, given by a1 = 0, because we are no longer able to factor our n− 1. With this
value, n = 2 is then identically satisfied. At this stage, we have the same behavior as
before, with a single coefficient (a1 here corresponding to c−1 before) required to be zero.
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At n = 3, we obtain a linear relationship between a2 and a3, specifically

2(mα− de2g2)a2 = e2g2a3 . (4.120)

The previous equation, c0 = 0, would correspond to a2 = 0, which is implied only if g = 0,
while a3 = 0 may be implied for suitable quantized charges such that e2g2 is an integer,
given the value of d. For generic magnetic charges g, and in particular for small ones such
that 0 6= e2g2/~2 � 1, a2 and a3 are not independent. It is then impossible to make the
recurrence end with a non-zero expectation value of e−kr̂, which is a contradiction. As in
the main text, we see that the quantum number ` = 0 is ruled out for weak magnetic
charges.
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Chapter 5 |
Discussion

In this thesis we’ve been able to adequately describe the physics of several quantum
systems without needing to refer to the existence of a Hilbert space. While there is
a limit on how widely applicable these techniques are, as mentioned in the discussion
in chapter 2, we nonetheless found new relationships between energy eigenstates and
uncertainty relationships, and by avoiding a Hilbert space formulation, we were able to
describe non-Dirac monopoles. The surprisingly non-continuous way in which magnetic
charge deformed the spectrum of the angular momentum operators then allowed us to
place new bounds on the magnetic charge of a muon.

Several open questions remain however:

• Are there systems beyond the harmonic oscillator whose spectrum can be found
with the methods used in Chapter 2? The primary properties of the harmonic
oscillator we used to get this spectrum was the fact that we had access to a sequence
of self-adjoint operators (T̂i,j), whose products had an easy enough expansion in
terms of thos same self-adjoint operators, and from which we could easily construct
the Hamiltonian. There is no a priori reason to think this should only hold for the
harmonic oscillator.

• One can wonder whether further constraints on magnetic charges can be given from
data concerning cosmological particle production or from scattering amplitudes of
collisions in particle colliders. Unfortunately, finding an unambiguous relativistic
field theory for theories admit both electric and magnetic charge is difficult, as we
prove in appendix A that these theories can’t be Poincaré invariant.

• There is some difficulty in interpreting what nonassociativy in our operator algebra
means in a practical sense. The noncommutativity that distinguishes the C∗
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algebras of quantum theories with the abelian algebras of classical physics can be
sloganized into the statement that the order of measurements changes their outcome.
In the ordinary conception of time however, there should not be a difference between
a sequence of processes that goes as "(A and then B) and then C" versus the
sequence "A and then (B and C)". Starting with an associative product we can get
nonassociativity in the composition of processes by having a certain probability of
swapping the two arguments of the multiplication (a ? b = pa · b+ (1− p)b · a), or
on the algebra of, say, 1 second long processes by doing both tasks in the correct
order, but at twice the speed. I.e.:

(U2 ? U1)(t) =

U1(2t) : t ∈ [0, 1
2 ]

U2(2t− 1) · U1(1) : t ∈ [1
2 , 1].

Whether these two scenarios exhaust all physically relevant non-associative systems
is neither known nor obvious.
Appendix B contains some notes on transition probabilities that might be useful in
getting the first steps in how this nonassociativity works on an operational level.
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Appendix A|
Magnetic Charges and Field the-
ory

In order to see whether a field theory with both electric and magnetic charges is compatible
with special relativity, we must show that it has energy- and momentum densities h and
di, respectively a scalar- and vector field, both local in the fields 1, which satisfy the
following Poisson-brackets:

{
H(M̄), H(N̄)

}
= Di(M̄∂iN̄ − N̄∂iM̄) (A.1){

H(M̄), Di(V̄ i)
}

= H(V̄ i∂iM̄) (A.2){
Di(V̄ i), Dj(W̄ j)

}
= Di(W̄ j∂jV̄

i − W̄ j∂jV̄
i); (A.3)

where

H(M̄) =
∫
hM̄d3x

Di(V̄ i) =
∫
diV̄

id3x

and we restrict ourselves to smearing scalarfields M̄ and N̄ with vanishing Hessian and
smearing vector fields V̄ i and W̄ i that are Killing2.

For any theory that couples the electromagnetic field to other matter fields with just
1That is, the value of these quantities at any given point depends only on the value of the physical

fields at that point and a finite number of their derivatives.
2This gives us a subset of Dirac’s hypersurface deformation algebra [71] which is isomorphic to the

Poincaré algebra. If the algebra closes for arbitrary scalar functions and vector fields the theory is not
just Lorentz-invariant, but fully diffeomorphism invariant.
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electric charge, we can write down the following momentum density3

di = εijkE
jBk + pi + eAi + . . . , (A.4)

keeping only the lowest order terms in field strength and electric charge. Here Ei is
the electric field, Bi the magnetic, pi is the momentum density of all the other fields,
e is a local charge density and Ai is a vectorpotential of Bi, whose curl equals the
divergence-free part of Bi. This satisfies the relations above with the only nonzero
Poisson brackets being given by 4

{
Ei(x), Bj(y)

}
= 1

2ε
ijk

(
∂

∂xk
− ∂

∂yk

)
δ(3)(x− y) (A.5)

{pi(x), pj(y)} = p[i,j](x)δ(3)(x− y) (A.6)

{pi(x), e(y)} = e,i(x)δ(3)(x− y) (A.7)

and the two usual constraints

CE = Ei
,i + e+ . . . ≈ 0 (A.8)

CB = Bi
,i + . . . ≈ 0. (A.9)

Using the duality transformation that rotates electric to magnetic fields and likewise for
charges [72], we then see that the momentum density of a theory with only magnetic
charges has to be of the form

di = εijkE
jBk + pi +mZi + . . . , (A.10)

where m is now the magnetic charge density and Zi the vector potential for Ei. This
leads to the additional bracket

{pi(x),m(y)} = m,i(x)δ(3)(x− y) (A.11)
3Throughout we will assume all fields fall off rapidly enough for us to neglect boundary terms.
4Note that B.5 may look somewhat unorthodox, but follows from the usual fact that the electric field

is the canonical conjugate of the vectorpotential and the fact that the longitudonal part of the magnetic
field purely depends on the other matter fields.
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with the constraints

CE = Ei
,i + . . . ≈ 0 (A.12)

CB = Bi
,i −m+ . . . ≈ 0. (A.13)

Combining this into a single a theory of both electric and magnetic charges then gives
the following general expression for the momentum density and constraints

di = εijkE
jBk + pi + eAi +mZi + . . . (A.14)

CE = Ei
,i + e+ . . . ≈ 0 (A.15)

CB = Bi
,i −m+ . . . ≈ 0, (A.16)

with the additional requirement that {CE(x), CB(y)} ≈ 0, as we don’t want to over-
constrain the system. This leads to the relation

{e(x),m(y)} = 0. (A.17)

With these brackets we then find

0 =
{
Di(V̄ i), Dj(W̄ j)

}
−Di(W̄ j∂jV̄

i − W̄ j∂jV̄
i)

=
∫
V̄ i(x)W̄ j(y)

(
e(x)m(y) {Ai(x), Zj(y)}+ e(x)m(y) {Zi(x), Aj(y)}

)
d3xd3y

=
∫ (

V̄ i(x)W̄ j(y)− W̄ i(x)V̄ j(y)
)
e(x)m(y) {Ai(x), Zj(y)} d3xd3y

=
∫ (

V̄ i(x)W̄ j(y)− W̄ i(x)V̄ j(y)
)
e(x)m(y)

{
Ai(x), Ek(z)

}
εjkm

d

dzm
1

4π|yi − zi|d
3xd3yd3z

=
∫ (

V̄ i(x)W̄ j(y)− W̄ i(x)V̄ j(y)
)
e(x)m(y)εjim

d

dxm
1

4π|yi − xi|d
3xd3y

However, for general independent electric and magnetic charge densities this last term
does not vanish, forcing us to conclude that theories with both types of charges can’t be
compatible with special relativity5

5as this argument involves only the momentum densities, it turns out mixed charges aren’t even
compatible with Galilean relativity. One interesting thing to note is this integral does vanish when
V̄ i = εijkvjxk, W̄ i = εijkwjxk and when m = gδ(3)(x). This implies that there is a well defined notion
of angular momentum around point-like magnetic charges, which is what we’ve used in Chapters 3 and
4.

83



Appendix B|
Probabilities in nonassociative quan-
tum mechanics

B.1 Projections onto eigenspaces
In associative quantum mechanics, transition amplitudes are defined using the Hermitian
innerproduct on the given Hilbert space, or by taking the trace of the product of two
density matrices. In non-associative quantum mechanics we no longer have direct access
to this machinery, so we have to be a bit more careful in how we find transition probabil-
ities.

The Born rule tells us that after measuring an observable H, the probability of finding
value E is given by the expectation of the projection onto that eigenspace.

For simplicity, assume H is a Hermitian operator. We’re looking for a linear map
PH,E on the algebra of operators such that for all operators X we have

H ? PH,E(X) = PH,E(X) ? H = EPH,E(X)

We construct this map by first projecting on the commutant of H with a map PH , after
which we can pick the correct eigenvalue with what is in essence a Fourier transform.

B.1.1 Making the map PH

First define the (linear) evolution map evolH,t as follows:

evolH,0(X) = X
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d
dtevolH,t(X) = iH ? evolH,t(X)− ievolH,t(X) ? H

= i(LH −RH)evolH,t(X)

Where LH is the linear map from left multiplication by H, and RH is a similar map by
right multiplication. We can always get this map as a series expansion in t:

evolH,t(X) =
∞∑
n=0

(it(LH −RH))n
n! X

We then define PH as the zero mode of this map:

PH =
∮

0

dw

2πi

∫ ∞
0

exp(−wt)evolH,t(X)dt

where we use some analytical continuation to perform the contour integral around a
point arbitrarily close to 0.

This map commutes with H as we have

H ? PH(X)− P (X) ? H = i(LH −RH)PH(X)

=
∮

0

dw

2πi

∫ ∞
0

exp(−wt)i(LH −RH)evolH,t(X)dt

=
∮

0

dw

2πi

∫ ∞
0

exp(−wt)( d
dtevolH,t(X))dt

=
∮

0

dw

2πi(X − w
∫ ∞

0
exp(−wt)

∞∑
n=0

(it(LH −RH))n
n! Xdt

= 0

B.1.2 Picking out the correct eigenvalue

To project onto only one eigenvalue, we can perform a similar trick of picking out the cor-
rect mode. We define PH,E as follows: PH,E(X) =

∮
E

dz
2πi
∫∞

0 exp(−zs)exp(iLHs, PH(X))ds
where the exponent in this formula is defined as the solution to

exp(0, X) = X

d
dsexp(iLHs,X) = iH ? exp(iLHs,X)
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= iLHexp(iLHs,X)

The fact that this satisfies the equations we want an operator to satisfy follows a similar
line as we saw with PH .

B.2 Transition probabilities
The Born rule in our formalism becomes

Prob(ω,H,E) = ω(PH,E(1))

and after this measurement we end with the state ωH,E defined by

ωH,E(X) = ω(PH,E(X))
ω(PH,E(1))

In associative quantum mechanics, the transition probability of going from an eigenstate
of an operator A with eigenvalue a, to an eigenstate of an operator B with eigenvalue b
by measuring B, is the same as vice versa:

Prob(|A, a〉 → |B, b〉) = ‖〈B, b|A, a〉‖2 = ‖〈A, a|B, b〉‖2 = Prob(|B, b〉 → |A, a〉)

This boils down to the statement that for each state ω, each set of operators A and B
and each set of eigenvalues a and b

ω(PA,a(PB,b(1)))ω(PB,b(1)) = ω(PB,b(PA,a(1)))ω(PA,a(1))

Whether this equation holds in general is an open question.

B.3 Examples

B.3.1 Finite dimensional Hilbert-space

Expanding any operator in terms of the eigen-basis of H (assuming discrete, unique
eigenvalues) we get

X =
∑
a,b

XabEaEb
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evolH,t(X) =
∑
a,b

Xabe
i(Ea−Eb)tEaEb

PH(X) =
∑
a

XaaEaEa

PH,Ei
(X) = XiiEiEi

B.3.2 Sedenions

The (complexified) sedenions, which result from applying the Cayley–Dickson construction
to the octonions, are an interesting finite dimensional toy model for the quantum
mechanics of the monopole models in chapter 3 and 4, as this algebra is also not
alternative. Explicit computation of the projectors above shows that

• each self-adjoint operator has 2 eigenstates.

• The transition amplitudes are symmetric per equation 1, even for nonzero operators
whose product vanishes.

• there is no longer have a resolution of the identity: the projections onto eigenspaces
don’t sum to 1.

• For each state ω there is a density matrix ρω such that

ω(X) = Tr(ρLX) = Tr(ρRX),

but the eigenstates of self-adjoint operators are never pure (Tr(ρ2) 6= 1).
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