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Kurzfassung

Die Entdeckung eines geladenen Higgs-Bosons, H+, wäre ein unbestreitbarer Nachweis von Physik jen-

seits des Standardmodells. In der vorliegenden Arbeit wird die Suche nach dem H+ mit Hilfe von Proton-

Proton-Kollisionen, welche im Jahr 2011 mit dem ATLAS Experiment am Large Hadron Collider, LHC,

des CERN aufgenommen wurden, beschrieben. Im Rahmen dieser Arbeit wurde eine überarbeitete Ana-

lyse der Suche nach geladenen Higgs-Bosonen, die eine Verhältnismethode anwendet und damit die

Sensitivität des traditionell direkten Suchansatzes stark verbessert, durchgeführt.

Leichte geladene Higgs-Bosonen, welche eine Masse geringer als die des Top-Quarks aufweisen,

können aus einem Top-Quark-Zerfall hervorgehen. Im Gegensatz zu den schweren geladenen Higgs-

Bosonen sind die leichten aufgrund des hohen Produktionswirkungsquerschnitts von Top-Quark-Paaren

am LHC potenziell mit den ersten Daten des Experiments beobachtbar.

In den meisten Theorien und Szenarien sowie dem größten Bereich ihres Phasenraumes zerfal-

len leichte geladene Higgs-Bosonen meist im H± → τ±ν Kanal. Demzufolge spielen sowohl die

τ-Identifikation als auch die τ-Fehlidentifikation eine besondere Rolle für die Suche nach geladenen

Higgs-Bosonen. Eigens für die Ermittlung der Fehlidentifikationswahrscheinlichkeiten von Elektronen

als hadronisch zerfallende τ-Leptonen wurde eine “tag-and-probe”-Methode, basierend auf Z → ee

Ereignissen, entwickelt. Diese Messungen sind mit den allerersten Daten durchgeführt worden. Dabei

haben diese einerseits für alle Analysen, welche die Elektronenveto-Algorithmen der τ-Identifikation

nutzen, essenzielle Skalenfaktoren hervorgebracht. Andererseits wurde, beruhend auf diesen Ergebnis-

sen, eine datenbasierte Abschätzungsmethode entwickelt und für die Untergründe der geladenen Higgs-

Boson-Suche, die von der Fehlidentifikation von Elektronen als hadronisch zerfallende τ-Leptonen stam-

men, erfolgreich implementiert.

Im Rahmen dieser Arbeit wurden Triggerstudien, mit dem Ziel höchstmögliche Signaleffizienzen zu

gewährleisten, durchgeführt. Neuartige Triggerobjekte, basierend auf einer Kombination aus τ-Trigger

und fehlender transversaler Energie-Trigger, wurden entworfen, überprüft und in das Triggermenü für

die Datennahme im Jahr 2012 aufgenommen.

Eine direkte Suche nach dem geladenen Higgs-Boson wurde in drei Kanälen mit einem τ-Lepton

im Endzustand unter Berücksichtigung des gesamten Datensatzes des Jahres 2011 durchgeführt. Da kein

signifikanter Überschuss, der von den Vorhersagen des Standardmodells abweicht, in den Daten beob-

achtet wurde, sind obere Ausschlussgrenzen auf B(t → bH+) gesetzt worden.

Letztlich ist die Analyse des Kanals mit einem hadronisch zerfallenden τ-Lepton und einem My-

on oder Elektron im Endzustand des tt̄-Zerfalls, unter Anwendung der sogenannten Verhältnismethode,

wiederholt worden. Diese Methode misst Verhältnisse von Ereignisausbeuten, anstatt die Verteilungen

diskriminierender Variablen zu evaluieren. Folglich kürzen sich die meisten dominant beitragenden sys-

tematischen Unsicherheiten intrinsisch heraus. Die Daten stimmen mit den Vorhersagen des Standard-

modells überein. Durch Zuhilfenahme der Verhältnismethode wurden die oberen Ausschlussgrenzen, im

Vergleich zur direkten Suche, signifikant verbessert. Die Resultate der Verhältnismethode sind mit de-

nen der direkten Suche, welche ein hadronisch zerfallendes τ-Lepton und zwei Jets im Endzustand des

tt̄-Zerfalls nutzt, kombiniert worden. Auf diese Art und Weise konnten obere Ausschlussgrenzen auf

B(t → bH+) in einem Bereich von 0,8 %–3,4 % für geladene Higgs-Bosonen in einem Massenbereich
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für mH+ zwischen 90 GeV und 160 GeV gesetzt werden.

Sollte das Minimal Supersymmetrische Standardmodell (MSSM) in der Natur realisiert sein, so ha-

ben die hier ermittelten oberen Ausschlussgrenzen auf B(t → bH+) direkte Konsequenzen für die Iden-

tität des Higgs-Boson-ähnlichen Teilchens, welches im Jahr 2012 am LHC entdeckt wurde.
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Abstract

The discovery of a charged Higgs boson, H+, would be an unambiguous evidence for physics beyond

the Standard Model. In this thesis a search for the H+, with the ATLAS experiment at the Large Hadron

Collider, LHC, at CERN based on data taken in 2011, are described. A re-analysis of the charged

Higgs boson search, utilising the ratio-method, was performed, which greatly enhanced the sensitivity

compared to the traditional direct search approach.

Light charged Higgs bosons, with a mass lower than the top quark mass, can be produced in top quark

decays. Due to the large production cross-section of top quark pairs the light charged Higgs bosons are

accessible with early LHC data, in contrast to charged Higgs bosons heavier than the top quark mass. For

light charged Higgs bosons the decay via H± → τ±ν is predominant in most theories and scenarios, in the

most parts of their phase space. Therefore the τ identification and the τ mis-identification probabilities

play an important role in the charged Higgs boson search. A tag-and-probe selection of Z → ee events

was developed in order to asses the mis-identification probability of electrons as hadronically decaying

τ leptons, utilising the very first data taken in 2010. The results of this analysis on the one hand provided

scale factors crucial for all analyses utilising the electron veto algorithms of the τ identification. On the

other hand a data-driven estimation technique for backgrounds stemming from electrons mis-identified

as hadronically decaying τ leptons, dedicated for the charged Higgs boson search, was developed and

successfully implemented, based upon the results of the tag-and-probe mis-identification results.

Trigger studies for the charged Higgs boson search aiming at the highest feasible signal efficiencies

with the utilised combination of τ trigger and missing transverse energy trigger, during the 2012 data tak-

ing at a centre of mass energy of 8 TeV, were performed. Novel trigger items were designed, thoroughly

tested and finally implemented into the trigger menu of the ATLAS experiment for data taking in 2012.

A direct charged Higgs boson search in three channels with τ leptons in the final state, was performed

on the full dataset, with an integrated luminosity of 4.6 fb−1, taken in 2011 at a centre of mass energy of

7 TeV. No significant excess over the Standard Model expectation was observed in data, thus limits on

B(t → bH+) were set.

Finally the channel with a hadronically decaying τ lepton and an additional electron or muon in the

final state from the tt̄ decay was re-analysed with the so-called ratio-method. This method measures

ratios of event yields instead of evaluating distributions of discriminating variables, thus most of the

dominating systematic uncertainties intrinsically cancel to first order. The observed data are found to

be in agreement with the Standard Model predictions. Utilising the ratio-method the limits obtained on

B(t → bH+) were significantly improved, compared to the direct search in this channel. When the results

of the ratio-method analysis are combined with the results of the direct search for charged Higgs bosons

in tt̄ decays, with a hadronically decaying τ lepton and jets in the final state, upper limits on B(t → bH+)

are set in the range of 0.8 %–3.4 %, for mH+ between 90 GeV and 160 GeV.

The limits set on B(t → bH+) have direct implications on the identity of the Higgs-like particle,

with a mass of approximately 126 GeV discovered in 2012 at the LHC, if the Minimal Supersymmetric

extension of the Standard Model (MSSM) is realised in nature.
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Chapter 1

Introduction

A famous physicist once stated: “It can scarcely be denied that the supreme goal of all theory

is to make the irreducible basic elements as simple and as few as possible without having to

surrender the adequate representation of a single datum of experience.” [1] or simplified: “Ev-

erything should be made as simple as possible, but no simpler.” The Standard Model of particle

physics (SM) [2–4], introduced in the sixties of the 20th century, is consistent with all data gath-

ered by high energy physics experiments, hitherto. Based on a set of symmetries it presents

an axiomatic and potent model. Nevertheless, shortcomings to answer fundamentally important

questions may indicate that it is indeed too simple. For example in the SM, dark matter and dark

energy cannot be explained, the force of gravity is not incorporated, and a seemingly unnatural

fine tuning of the Higgs Boson mass is necessary [5]. There are many candidates for extensions

of the SM [6]. The simplest one for the Higgs sector is the Two Higgs Doublet Model (2HDM),

achieved by adding a second Higgs doublet. It is compatible with the gauge invariance and

contains in total five Higgs bosons, two charged, H±, and three neutral, h0, H0 and A0. A further

possible and in terms of symmetry appealing extension is Supersymmetry [7, 8], which doubles

the particle content of the SM. The Minimal Supersymmetric extension of the SM (MSSM) [9–

12] is, due to its simplicity, one of the most studied and tested scenarios at the Large Hadron

Collider (LHC) [13, 14]. The MSSM Higgs sector, if the supersymmetric particles are heavy

enough, is a constrained 2HDM (type-II) [15–17] at low energies. The discovery of a charged

scalar particle would thus clearly indicate the existence of physics beyond the SM, as H± are

also featured in many other extensions of the SM [18–20]. This thesis will focus on the search

for light charged Higgs bosons, with a mass lower than the top quark mass. Subsequently the

main production mechanism for light charged Higgs bosons is top quark decays, t → bH+.1

The greatest source for top quarks at the LHC is the production of top pairs.

2012 was the year of the discovery of the Higgs-like particle [21, 22], with a mass of ap-

1 In the following, charged Higgs bosons are denoted H+, with the charge-conjugate H− always implied.
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proximately 126 GeV,2 at the LHC at CERN3. Assuming this boson is one of the neutral MSSM

Higgs bosons, only certain values of the MSSM parameters mH+ and tan β are allowed for a

given scenario. If the discovered boson is the lightest neutral MSSM Higgs boson (h0), this

would imply tan β > 3 and mH+ > 155 GeV [23]. On the one hand, the allowed region depends

strongly on MSSM parameters, which on the other hand do not affect the charged Higgs bo-

son production and decay significantly. Thus, by adjusting these MSSM parameters, the region

in which the light neutral Higgs boson mass can take a value of about 126 GeV can change

significantly. Should the recently discovered boson instead be the heavier CP-even Higgs bo-

son (H0), the additional constraint from mH0 ≃ 126 GeV leads to an upper limit of roughly

mH+ < 150 GeV with suppressed couplings for h0 [23]. If the recently discovered particle is a

MSSM Higgs boson, excluding a low-mass charged Higgs boson would thus imply that it is the

lightest neutral state, h0.

This thesis will guide through the searches for the light charged Higgs boson with τ leptons

in the final state. The searches are performed with 4.6 fb−1 of data taken in 2011 at a centre of

mass energy of 7 TeV by the ATLAS experiment [24] at the LHC.

Chapter 2 gives an overview of the Standard Model of particle physics, its problems, and

possible extensions, with an emphasis on the Two Higgs Doublet Model (2HDM) and the

charged Higgs boson production at the LHC, as well as the current status of charged Higgs

boson searches.

Chapter 3 will introduce Monte Carlo simulation techniques, which are utilised for the pre-

diction of physics processes at particle colliders.

Chapter 4 describes the LHC and the ATLAS detector.

Chapter 5 outlines the basic event selection and introduces the reconstructed entities, as well

as describes the developed and utilised data-driven background estimation techniques.

Chapter 6 summarises the direct searches, conducted with data gathered in 2011 by the

ATLAS detector, for the light charged Higgs boson and their results.

Chapter 7 re-analyses the τ+lepton channel with a novel approach, the ratio-method, which

due to cancellation of most systematic uncertainties significantly enhances the sensitivity

and improves the results of the direct searches.

Chapter 8 compares the results of the analyses described in this work with further charged

Higgs boson searches conducted at the LHC.

Chapter 9 closes with a short summary and an outlook into the future of charged Higgs boson

searches at the LHC.
2 A system of units with ~=c=1 is used in this work.
3 “Organisation Européenne pour la Recherche Nucléaire” (European Organisation for Nuclear Research), the

acronym CERN stems from the former name “Conseil Européen pour la Recherche Nucléaire” (European Coun-
cil for Nuclear Research).
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Chapter 2

Theoretical Framework

2.1 The Standard Model of Particle Physics

2.1.1 Particles, Fields and Interactions

The Standard Model (SM) of particle physics [2–4, 25–35] is a Quantum Field Theory (QFT)

which describes the known particles and their couplings. Based on the gauge symmetry

S U(3)C × S U(2)L × U(1)Y it is consistent with available electroweak precision data gathered

at high energy physics experiments [36].

Its fundamental particles are fermions carrying a spin of |s| = 1
2 , the leptons and quarks, for

which an overview is given in Table 2.1. Both carry electric, Q, except for the neutrinos, as well

as weak charge, ~I, a formalisation of the spin. The quarks have one additional quantum number

of the strong force called colour (C). The single colour charges are named red, green, blue,

with corresponding anti-colours. As a result of the required local gauge symmetry, forces are

mediated by exchange of particles carrying an integer spin, which are called gauge bosons. An

overview is given in Table 2.2. The photon, γ, is the exchange particle of the electromagnetic

force. The photon mass is zero and the electromagnetic force has infinite range. Weak forces

are mediated via W± and Z bosons. The weak charge was introduced similarly to the strong

isospin, mathematically described as a S U(2) symmetry, to correctly describe this interaction.

Charged and neutral weak interactions exist. The names were given historically depending

whether the electric charge of a particles changed by one unit during the interaction. Mediators

of the charged weak force, W±, couple to left chiral particles and right chiral antiparticles only.

A useful tool to connect the third component of the weak charge with the electrical charge is

the Gell-Mann-Nishijima Equation 2.1, introducing the hypercharge, Y , conserved under weak

interaction, important for the Glashow-Weinberg-Salam theory.

Q =
Y

2
+ IW

3 (2.1)

The weak interaction owns its name to its relative weakness, with respect to the electromag-

netic interaction at low momentum transfers. Values of the coupling “constants” change with
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family or generation quantum numbers

I II III IW
3 Q YW


νe

e−


L


νµ

µ−


L


ντ

τ−


L


+1

2

−1
2


0

−1

−1

−1


u

d′


L


c

s′


L


t

b′


L


+1

2

−1
2


+2

3

−1
3

+1
3

+1
3

νeR

e−
R

νµR

µ−
R

ντR

τ−
R

0

0

0

−1

0

−2

uR

d′R

cR

s′R

tR

b′R

0

0

+2
3

−1
3

+4
3

−2
3

Table 2.1: Fermions ordered in electroweak multiplets, with selected quantum numbers. [36]

the scale of interaction energy, as depicted in Figure 2.1. This effect is called the running of

coupling constants. The range of a force can be approximated with the Yukawa hypothesis [38],

which makes use of Heisenberg’s uncertainty principle, ∆E · ∆t ≥ ~

2
. Therefore a force range,

R f , can be estimated by R f = c ·∆t. Using the W± mass, listed in Table 2.2, as energy scale, the

range of the weak force can be approximated in the order of 10−18 m. Quantum Chromo Dy-

namics (QCD) is the field theory describing interactions of the coloured particles, a non-Abelian

gauge theory. Self-coupling occurs between gluons, the massless mediators of the strong force.

The potential energy of the QCD field rises with the distance of the interacting particles, which

results in the so called confinement, meaning that no free colour charge has been observed yet.

interaction boson mass

electromagnetic γ < 10−18 eV

neutral weak Z 91.19 GeV

charged weak W± 80.40 GeV

strong g < 20 MeV

Table 2.2: List of the gauge bosons of the Standard Model of particle physics, with masses or

their upper limits as determined by experimental data. [36, 39, 40]

Colour neutral mesons are made of a quark pair, one carrying a colour and the other the

corresponding anti-colour. Baryons consist of three quarks each having one of the three different

colours or anti-colours. Confinement is also the reason for hadronisation of quarks and gluons
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QCD
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Figure 2.1: Summary of the running of the strong coupling, αs, as a function of the respective

energy scale, Q. [37]

in high energy interactions, which leads to jets of hadronic particles.

Leptons and quarks are grouped into weak iso-spin-duplets and iso-spin-singlets. These are

arranged in three families or generations according to their mass. The leptons are paired up in

one carrying electric charge, as the electron, e−, the muon, µ−, the tau lepton, τ−, and their weak

interacting partners, the electron neutrino, muon neutrino and tau neutrino, νe, νµ, ντ. As the left

chiral fermions and their partners have the same weak quantum number they are ordered into

electroweak multiplets, as listed in Table 2.1. The quark pairs consist of one up-type and one

down-type quark, named after the first generation quarks, and carry an electric charge of +2
3 and

−1
3 , respectively. Charm and strange are the names given to the second generation quarks. Top

and bottom, sometimes called truth and beauty, are the quarks of the third generation. The top

quark stands out, as it is heavier than the weak gauge bosons (mt > mW± ,mZ). It decays faster

than a tt bound state can form. Top quark studies could therefore reveal the nature of “free”

quarks.

Most of the directly observable matter in the universe is made up of the first fermion gen-

eration. All fermions of the 2nd and 3rd generations have higher masses, as listed in Table 2.3

and decay to the lightest stable quark or lepton. Solar, atmospheric, reactor and accelerator

neutrino experiments, indirectly via the measurement of neutrino oscillations, confirm that neu-

trinos have nonzero masses [36]. The neutrino mass eigenstates are not equal to their elec-

troweak ones, similar to the quarks. A consequence is neutrino oscillation as predicted by

Pontecorvo [41–44]. The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix provides a rela-

tion between the mass eigenstates and electroweak eigenstates of the neutrinos. The Cabibbo-
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family lepton mass (MeV) generation quark mass (MeV)

I e− 0.5110 I u 2.3+0.7
−0.5

νe < 0.0022 d 4.8+0.7
−0.3

II µ− 105.7 II c 1 275

νµ < 0.008 s 95

III τ− 1 777 III t 173 500

ντ < 18.2 b 4 650

Table 2.3: Fermions of the Standard Model of particle physics. [36]

Kobayashi-Maskawa (CKM) matrix provides this relation for the quarks [45]. Oscillations are

observed in K0−K̄0 [46], B0−B̄0 [47] and B0
s−B̄0

s [48] systems. Evidence of D0−D̄0 oscillations

have been reported by three experiments using different D0 decay channels [49–53]; an obser-

vation was claimed by the LHCb collaboration [54]. The imaginary phase in the CKM-matrix

is very important, because it is the source of CP-violation and a contribution to the observed

imbalance between matter and anti-matter in the universe.

2.1.2 Gauge Theory in a Nutshell

The unification of the electromagnetic and weak force was accomplished by S.L. Glashow,

A. Salam and S. Weinberg (GSW) [2–4]. An important step in this direction was the idea that

weak neutral and charged currents together form the symmetry group S U(2)L × U(1)Y . The

subscript “L” indicates that the weak isospin current couples to left-handed fermions and right-

handed anti-fermions only. Introducing helicity in the Lagrangian a calculation results in the

so-called “vector minus axial” (V-A) nature of the charged currents [55]. The symmetry group

S U(2)L × U(1)Y , with the hypercharge, Y , as defined by the Gell-Mann-Nishijima Equation 2.1,

contains the electromagnetic interaction and the weak interaction. The GSW-theory was very

successful in relating masses of weak gauge bosons to the gauge couplings. Invariance under

local gauge transformations of the Lagrangian, which describes particle states, is considered a

fundamental principle to describe their interactions. The Lagrangian density, L , itself cannot be

derived from underlying principles, but has to be found and validated using the basic principle

of physics and nature: the principle of least action, given in Equation 2.2. It states that the

action, S , during the transition of a physical system between two states is minimal. In case of

quantum field theories S is a functional of the Lagrangian density, L .

S =

∫ state2

state1

d4xL
(
∂µψ(x), ∂µψ̄(x), ψ(x), ψ̄(x)

)
(2.2)
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With help of the Euler-Lagrange formalism (2.3) and the Lagrangian of a relativistic massive

fermion (2.4) the Dirac Equation 2.5 can be derived. It describes the propagation of a fermion

through space-time.

∂L

∂ψ̄(x)
− ∂µ

∂L

∂
(
∂µψ̄(x)

) = 0 (2.3)

L = ψ̄(x)(i∂µγ
µ − m)ψ(x) (2.4)

(i∂µγ
µ − m)ψ(x) = 0 (2.5)

In Equations 2.4, 2.3 and 2.5 ψ(x) represents a Dirac field. It should be noted that the field itself

is not an observable, only |ψ(x)|2 is. Applying a global phase, α, in all space-time points, x, the

gauge transformation on ψ(x) → eiαψ(x) does not change the associated Lagrangian, L , (2.4).

As a global gauge symmetry can not be utilised to make predictions a local gauge symmetry

is imposed. Applying a local gauge transformation, with α(x) varying at each point of space-

time, the transformation ψ(x) → eiα(x)ψ(x) does change the equation of motion, which is not

desired. To restore the invariance, also under local gauge transformation, a method called mini-

mal coupling is applied. The derivative ∂µ is replaced by the covariant derivative Dµ, defined in

Equation 2.6. It requires the introduction of a new field, in this case a vector field, Aµ(x).

∂µ → Dµ = ∂µ + iQeAµ, (2.6)

where Aµ at the same time transforms as followed:

Aµ → A′µ = Aµ +
1

Qe
∂µα. (2.7)

The thus modified Lagrangian, L ′, is invariant under the local gauge transformation, as

terms stemming from the covariant derivative, compensate the before troublesome terms. The

Aµ(x) field can be interpreted as the field of the photon, γ. A mass term, 1
2 M2

γAµ(x)Aµ(x),

would however destroy the just restored local gauge symmetry. The Lagrangian of quantum

electrodynamics (QED) for fermions and massless photons is thus given by:

LQED = ψ̄(x)(iγµ∂
µ − m)ψ(x) − 1

4
Fµν(x)Fµν(x) + Qeψ̄(x)γµAµ(x)ψ(x), (2.8)

with Fµν the the “field strength tensor” defined as [56]:

Fµν(x) = ∂µAν(x) − ∂νAµ(x). (2.9)

Fermion masses are added “by hand” to LQED. The electroweak Lagrangian, LEW , must be

extended by the gauge fields ~Wµ and Bµ of the S U(2)L × U(1)Y group. It is rather troublesome

that the requirement for local gauge invariance of LEW does again not allow for mass terms,
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neither for the ~Wµ-field and Bµ-field nor the fermions, as the weak interaction couples differently

to left and right chiral particles.

LEW = χ̄Lγ
µDµχL + ν̄Rγ

µDµνR + ēRγ
µDµeR −

1

4
~Wµν

~Wµν − 1

4
BµνB

µν (2.10)

where

Dµ = ∂µ − ig
1

2
~τ · ~Wµ − ig′

Y

2
Bµ, (2.11)

χL =


ν

e


L

and

~Wµν = ∂µ ~Wν − ∂ν ~Wµ − gWµ ×Wν, (2.12)

Bµν(x) = ∂µBν − ∂νBµ. (2.13)

These gauge fields cannot be associated directly with physical fields or particles. The physi-

cal neutral current fields, Aµ and Zµ, identified with the gauge bosons γ and Z, can be interpreted

as linear combinations of the third component of the ~Wµ-field and the Bµ-field [57]. This mixing

of fields can be parametrised by the weak mixing angle, θW . It provides the connection between

the gauge fields and the physical measurable gauge particles.


Aµ

Zµ

 =


cos θW sin θW

− sin θW cos θW




Bµ

W3
µ

 (2.14)

θW is not predictable, but can only be measured by experiment. The weak mixing angle has

an experimentally determined value of sin2(θW) ≈ 0.231 [36]. The physical W± bosons can be

interpreted as a linear combination of the remaining first and second component of the Wµ-field:

W± =
1
√

2

(
W1

µ ∓ iW2
µ

)
. (2.15)

The masses of the gauge bosons Z and W±, as well as the fermions are required to be

zero according the GSW-theory, as in any gauge theory, a clear contradiction to experimental

observations. The GSW-theory is nevertheless very successful in describing the electroweak

interactions of particles. For instance, interference of the Z and γ in the process e−e+ → µ−µ+

introduces a forward-backward-asymmetry, which do not occur when considering only quan-

tum electrodynamic contributions. This asymmetry was first verified by the PETRA experi-

ments [55]. The GSW-model thus should to be extended by a mechanism that is able to generate

gauge boson masses and fermion masses and respects the local gauge symmetry.
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2.1.3 Brout-Englert-Higgs Mechanism

A thin plastic strip between thumb and index finger will, once force is applied, either curve to

the right or the left. These are the ground states of the new system, both break the left-right

symmetry [55, 56]. Replacing the imagined strip with a thin rod takes the step from a discrete

symmetry to a continuous symmetry, as a rod can take any bent position as ground state, a sim-

ple analogon to illustrate the principle of spontaneous symmetry breaking. It is the fundament of

the Brout-Englert-Higgs mechanism [58–63]. Breaking the global gauge invariance of a system

would, according to the Goldstone theorem [64], result in one or more massless bosons. There is

no experimental evidence for Brout-Englert-Higgs Goldstone bosons. However by breaking the

local gauge symmetry Goldstone ghost fields can be absorbed by gauge bosons, which gain an

additional degree of freedom. The longitudinal polarisation, additionally to the two transverse

polarisations, is just what was needed for the bosons to acquire mass [62]. By adding LHiggs

(2.17), invariant under local S U(2) gauge transformations and containing four scalar fields φi,

to LEW massive gauge bosons can be generated. These fields can then be arranged in an isospin

doublet Φ with weak hypercharge YW = 1:

Φ =


Φ+

Φ0

 =
1
√

2


φ1 + iφ2

φ3 + iφ4

 . (2.16)

LHiggs = (DµΦ)†(DµΦ) − V(Φ), (2.17)

with

V(Φ) = µ2Φ†Φ + λ(Φ†Φ)2, (2.18)

with Dµ as given in Equation 2.11. The Higgs potential, V(Φ), is relevant for mass generation

only if µ2 < 0 and λ > 0 as illustrated in Figure 2.2. Only in this parameter space it acquires a

non-trivial minimum with a finite value for 〈Φ†Φ〉 = − µ2

2λ
. Without loss of generality the field

can be expanded pertubatively around the minimum:

Φ0 =
1
√

2


0

v

 , (2.19)

with

〈|φ3|2〉 = −
µ2

2λ
≡ v

2

2
. (2.20)

Relation 2.19 defines the Vacuum Expectation Value (VEV), v. Expanding Φ(x) around the

chosen minimum, Φ0, yields:

Φ0 =
1
√

2


0

v + h(x)

 . (2.21)
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Figure 2.2: The Higgs potential, V(Φ), as function of two,

out of four φ- fields. [65]

Where h(x) is the field of the scalar Higgs boson, H [66]. Introducing Φ0 in Equation 2.17

reveals the masses of the boson field to have the following form: g2v2

8

[
(W2

µ)2 + (W1
µ)2 + (W3

µ)2
]
.

The masses of bosons can be extracted from the complete Lagrangian as followed [55]:

mW± =
v

2
g,

mZ =
v

2

√
g2 + g′2,

mH = v
√

2λ .

The charged lepton is still massless, as

Mℓ ℓ̄ ℓ = Mℓ (ℓ̄R ℓL + ℓ̄L ℓR) ,

mixes L and R lepton field, ℓ, components and would break the gauge invariance [67]. A way

to give mass in a gauge invariant way is via the Yukawa coupling, Gℓ, of the leptons with the

Higgs field, by adding the Yukawa interaction terms:

L
ℓ

yuk = −
Gℓ v√

2
ℓ̄ ℓ − Gℓ√

2
ℓ̄ ℓ H . (2.22)

The charged lepton mass can be identified as:

Mℓ =
Gℓ v√

2
. (2.23)

This procedure is able to generate a mass term for the fermion in a gauge invariant way. It does

not specify the value of the mass as the introduced Yukawa constant, Gℓ, is arbitrary [67]. The

Higgs to lepton coupling strength,

Cℓ̄ℓH =
Mℓ

v
, (2.24)

is obtained. This is a precise prediction of the Standard Model that the LHC experiments should

soon be able to verify experimentally.
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Down-type fermions need an additional Higgs doublet for mass generation, which is the

charge conjugated ofΦ. Values of g and g′ are related to the weak mixing angle, θW , via the rela-

tion g′ = g·tan θW . The tree level relation of the weak boson masses follows: MW = MZ · cos θW .

Eventually θW and v are related to the Fermi coupling, GF , via:

1

2v2
=

GF√
2
. (2.25)

Its value is experimentally determined to v = 246 GeV, fixed by the high precision muon decay

measurements of GF [68–70]. The masses of the weak bosons were predicted, by measurements

of related physical constants [2–4] 15 years before their direct discovery, by the UA1 and UA2

(Underground Area 1&2) experiments at the Super Proton Synchrotron (SPS) at CERN in

1983 [71–74]. To have physical relevance the QFT of the SM has to be renormalisable. This

nontrivial proof for the Brout-Englert-Higgs mechanism extended GSW-model was achieved

by ’t Hooft in 1971, four years after the theory was introduced.

In 2012, over 40 years after its postulation, the discovery of the Higgs-like particle [21, 22],

with a mass around 126 GeV, within the mass range preferred by the SM, was announced by

two LHC experiments. This is a great achievement considering the low rate at which Higgs

bosons are produced at the LHC, compared to other SM processes, as illustrated in Figure 2.3.

Latest measurements show that the newly discovered particle very probably has no spin and

a positive parity, just as expected of SM Higgs bosons [75–79]. The missing piece is a pre-

cision measurement of the Higgs to fermion couplings, κF , first measurements were already

conducted [78, 80, 81], more data however is necessary to reduce the uncertainties on the mea-

sured κF .

2.2 Supersymmetry

The SM describes matter particles and interactions down to quantum corrections and at per mill

level. Still some problems remain unresolved. For example, dark matter is not explained in

the SM, unnatural precise fine tuning of the Higgs mass at Born level, also known as the hier-

archy problem, is necessary and gravity is not included. The unification of the three forces,

electromagnetic, weak and strong, can not occur in the SM. The theory describing such a

force unification scenario is called the Grand Unified Theory (GUT). The Haag-Łopuszański-

Sohnius-theorem [83], an extension of the Coleman-Mandula theorem [84], states, that possible

extensions of the Standard Model, which provide mass gaps, do not necessarily have to be mem-

bers of the Poincaré group or an internal symmetry. As a nontrivial extension of the Poincaré

algebra supersymmetry (SUSY) [7, 8] is a valid possibility. In the following the Minimal Su-

persymmetric Standard Model (MSSM) [9–12], as a special SUSY model is considered. A new
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discrete symmetry, the R-parity, is introduced [85]:

PR = (−1)(2s+3B+L), (2.26)

with “L” the lepton number, “B” the baryon number and s the spin. With this definition SM

particles have a R-parity value of 1 and therefore a R-parity value of -1 follows for SUSY parti-

cles. The generators of SUSY have to satisfy an algebra of anti-commutation and commutation

relations, with Pµ, the four-momentum generator of space-time translations, of the form [86]:

{
Q,Q†

}
= Pµ, (2.27)

{Q,Q} =
{
Q†,Q†

}
= 0, (2.28)

[Pµ,Q] =
[
Pµ,Q†

]
= 0. (2.29)

This symmetry introduces a superpartner for each SM particle. Applying the Q operator on a

fermionic state creates a bosonic state and vice versa.

Q |boson〉 = |fermion〉 Q |fermion〉 = |boson〉 (2.30)

The SM field and superpartners created by applying Q belong to a supermultiplet. They have a

spin of sSUSY = sS M− 1
2 , except the Higgs bosons, where 1

2 is added. All quantum numbers, these

are listed in Table 2.4, except for s and all couplings are equal. The nomenclature for SUSY-

particles states that SUSY-bosons or “scalar” fermions get a “s-” prefix. SUSY-fermions, the

gauginos, are indicated via the appendix “-ino”. This results in sparticle names as for example

the selectron, ẽ, the winos, W̃± and the stop, t̃. The SUSY-particles are marked with a tilde

(˜ ). Due to effects of electroweak symmetry breaking a mixing of higgsinos and electroweak

gauginos occurs. The charged higgsinos
(

h̃+u and h̃−
d

)
and winos

(
W̃±

)
form two mass eigenstates

with an electric charge of ±1, the charginos
(
χ̃±

i

)
. Following this pattern neutral higgsinos(

h̃0
u and h̃0

d

)
and neutral gauginos

(
W̃0 and B̃0

)
form four mass eigenstates, the neutralinos

(
χ̃0

i

)
,

as listed in Table 2.5. In most SUSY models the lightest neutralino, χ̃0
1, is found to be the

lightest SUSY-particle. Commonly the indices i are increased the higher the sparticle masses

are. The MSSM states that Higgs doublets mix, yielding five mass eigenstates, as three of the

eight possible Goldstone bosons are absorbed by Z and W± to produce their masses. The five

massive scalar Higgs bosons of the MSSM are therefore:

h0 light CP-even,

H0 heavy CP-even,

A0 CP-odd,

H± charged Higgs bosons.
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(s)particles s = 0 s = 1
2

(S U(3)C , S U(2)L,U(1)Y )

sleptons, ( ν̃ ẽL) (ν eL)
(
1, 2,−1

2

)

leptons ẽR eR (1, 1, 1)

(×3 families )

squarks,
(

ũL d̃L

)
(uL dL)

(
3, 2, 1

6

)

quarks ũR uR

(
3̄, 1,−2

3

)

(×3 families) d̃R dR

(
3̄, 1, 1

3

)

Higgs,
(

h+u h0
u

) (
h̃+u h̃0

u

) (
1, 2,+1

2

)

Higgsinos
(

h0
d

h−
d

) (
h̃0

d
h̃−

d

) (
1, 2,−1

2

)

(s)particles s = 1
2 s = 1 (S U(3)C , S U(2)L,U(1)Y )

gluino, gluon g̃ g (8, 1, 0)

winos, W bosons W̃± W̃0 W± W0 (1, 3, 0)

bino, B boson B̃0 B0 (1, 1, 0)

Table 2.4: The MSSM super-multiplets. [86]
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The value of tan β is defined as the ratio of VEVs of the two Higgs doublets vu and vd:

tan β =
vu

vd

. (2.31)

Fixing tan β and one Higgs boson mass, preferred by literature are mA0 or mH± , at the tree level

is common practise to define a certain scenario.

The decay fractions of the different Higgs bosons are not determined by their mass alone. A

small selection of the best studied MSSM scenarios is given in the following:

• Decoupling regime: mA ≥ 150 GeV for tan β = 30 and mA ≥ 400−500 GeV for tan β = 3.

The last region results in the highest h0-mass. It then follows closely the decay schema

drawn for the SM Higgs [87], shown in Figure 2.4. The heavier Higgs bosons decay chan-

nels are very sensible to the tan β value. An interesting issue is the strong enhancement

of the couplings to the down-type fermions for tan β ≫ 1, leading to the decay of A0 and

H0 into almost exclusively bb̄ (∼ 90 %) and τ+τ− (∼ 10 %).

• Anti-decoupling regime: tan β ≥ 10 and mA ≤ mmax

h0 . h0 and A0 decay via fermions bb̄

(∼ 90 %) and τ+τ− (∼ 10 %). H± almost always decays into τ±ντ.

• Intense-coupling regime: tan β ≥ 10 and mA ∼ 100 − 140 GeV, stands out due to a strong

suppression of the neutral Higgs into γγ decay, compared to the SM.
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Figure 2.4: SM Higgs boson branching ratios as a function of the Higgs boson mass. [88]
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Names Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 h0
u h0

d
h+u h−

d
h0 H0 A0 H±

ũL ũR d̃L d̃R (same)

squarks 0 -1 s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

ẽL ẽR ν̃e (same)

sleptons 0 -1 µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

Neutralinos 1
2 -1 B̃0 W̃0 h̃0

u h̃0
d

χ̃0
1 χ̃

0
2 χ̃

0
3 χ̃

0
4

Charginos 1
2 -1 W̃± h̃+u h̃−

d
χ̃±1 χ̃

±
2

gluino 1
2

-1 g̃ (same)

goldstino

(gravitino)

1
2

(
3
2

) -1 G̃ (same)

Table 2.5: Undiscovered (except for either h0 or H0 [21, 22], if SUSY is realised in nature)

particles of the MSSM (with sfermion mixing of the first two families assumed as negligi-

ble). [86]
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Grand Unified Theory (GUT)

The intersection of the three coupling constants, αi, at the energy scale of new physics and

below the Planck scale
(
MP = (8πGNewton)−

1
2 = 2.4 × 1018 GeV

)
, would be the first step towards

the GUT. MP is the energy scale where quantum gravitational effects become important for

particle interactions. Unfortunately the anticipated αi crossing can not occur in the SM, as the

interpolations towards higher interaction energies in Figure 2.5 show. Due to the additional

particle content of SUSY-models the evolution of the coupling constants is modified such that

an intersection of all three forces at interaction energies in the order of O(1015 GeV), therefore

named the GUT scale, is possible.

After the precise measurement of the S U(3) × S U(2) × U(1) coupling constants, it has

become possible to test the unification scenarios numerically.

In QFT the vacuum act as the medium. The vacuum, due to the presence of virtual pairs of

particles, is polarised in the presence of a charge. The matter fields and transverse quanta of

vector fields in this case behave like dipoles in a dielectric medium and cause screening, while

the longitudinal quanta of vector fields behave like currents and induce anti-screening. Thus,

the couplings become the functions of a distance or an energy scale,

αi = αi

(
Q2

Λ2

)
= αi(distance), αi ≡ g2

i /4π.

This dependence is described by the renormalisation group equations and is confirmed experi-

mentally, as demonstrated in Figure 2.1. The three coupling constants to be compared are:

α1 = (5/3)g′2/(4π) = 5α/(3 cos2 θW),

α2 = g2/(4π) = α/ sin2 θW , (2.32)

α3 = g2
s/(4π),

where g′, g and gs are the U(1), S U(2) and S U(3) coupling constants and α is the fine structure

constant [89]. The factor of 5/3 in the definition of α1 has been included for proper normali-

sation of the generators. Assuming that the SM is valid up to the GUT scale, one can use the

renormalisation group (RG) equations for the three couplings. The result of this interpolations is

given in Figure 2.5, as an evolution of the inverse of the couplings as a function of the logarithm

of the respective energy scale. In this presentation, the evolution becomes a straight line in first

order. The second order corrections are small and do not cause any visible deviation from a

straight line. Figure 2.5 clearly demonstrates that within the SM the coupling constant unifica-

tion at a single point is impossible. It is excluded by more than 8 standard deviations [89, 90].

The unification can thus only be achieved if new physics enters between the electroweak scale

and the Planck scale.
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Figure 2.5: Evolution of the inverse of the three coupling constants as a function of the re-

spective energy scale, Q, in the Standard Model (left) and in the MSSM (right). Only in

the latter case unification is obtained. The SUSY particles are assumed to contribute only

above the effective SUSY scale MS US Y of about 1 TeV, which causes a change in the slope

in the evolution of couplings. The thickness of the lines represents the error in the coupling

constants. [89, 90] (picture edited)

Gravity

A globally broken supersymmetry implies the existence of a massless Weyl fermion called

the goldstino. With supersymmetry as local symmetry it forms a new theory called super-

gravity [86]. It contains the superpartner of the graviton, the gravitino with a spin of s = 3
2
.

This sparticle absorbs the goldstino and thereby acquires mass. This, due to its analogy, is

called the super-Higgs mechanism. The interactions of the gravitino are suspected to be in the

order of gravitational strength, thus will not play a role in present day collider physics. The

gravitino mass is expected to be in the order of some 100 GeV, in a “Planck-scale-Mediated

Supersymmetry Breaking” (PMSB) scenario, where the gravitino should be in the mass range

of the other sparticles. Supergravity and certain MSSM scenarios raise hope for an unification

of all four forces even below MP.

Dark Matter

Only a few percent of the matter in the universe are made up of SM particles [91]. This re-

sult is obtained from astronomical observations and calculations concerning the movement of

matter, which at these scales be should dominated by the gravitational force only. Models

show that mass not directly observable has to drive the outer part of galaxies rotation velocity
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(for a detailed description see chapter “23. Cosmological Parameters” in Reference [36]). As

stated in Section 2.1.1 neutrinos do have mass. Calculations using the measured upper limits,

as given in Table 2.3 reveal that neutrinos can not account for the expected dark matter exclu-

sively [36]. They rather are a small piece of the puzzle. SUSY provides the lightest SUSY

particle (LSP) [92, 93], the χ̃0
1 in Table 2.5. In most models and parameter spaces it is predicted

to be heavier than the neutrinos, the reason for the mass difference will be provided in the fol-

lowing. As this sparticle neither carries strong nor electric charge it can only interact weakly or

gravitationally, thereby making it a promising candidate for cold or cool dark matter, if stable.

“Cold” describes the property of being non-relativistic at the beginning of galaxy formation.

The decay of the LSP is prohibited, if R-parity conservation is assumed. Further consequence

of PR-conservation is the exclusive SUSY particle production in pairs. The motivation for this

parity is the superpotential WMSSM, which describes the Yukawa interactions of the MSSM. In its

most common form it leads to a renormalisable Lagrangian density which contains lepton and

baryon number violating terms, which would lead to a fast decay of the proton. Experimentally,

with stored anti-protons, the proton was found to have a lifetime greater than 7 × 107 years, the

theoretical lower bound ranges between 1031−1033 years, depending on the model assumed [36].

The R-parity conservation suppresses the proton decay. Another possible scenario is R-parity

non-conservation, which results in a stable proton only if the Yukawa couplings are small.

Hierarchy Problem

Measuring the properties of weak interactions provides a vacuum expectation value of 〈Φ〉 =
mH

√
2
λ
≈ 174 GeV, where λ is the Higgs self-coupling parameter [36]. The m2

H receives quan-

tum corrections from all particles interacting with the Higgs field directly and indirectly [94].

Two examples are shown in Figure 2.6. Here f is a massive fermion and couples with a term

λ f H f̄ f in the Lagrangian and a heavy scalar particle S with mass mS couples with the term

λS |H|2|S |2. This would lead to the following corrections of m2
H

:

∆m2
H = −

|λ f |2
8π2
Λ2

UV + · · · (2.33)

∆m2
H = −

|λS |2
16π2

[
Λ2

UV − 2mS ln

(
ΛUV

mS

)
+ · · ·

]
. (2.34)

ΛUV , the ultraviolet momentum cutoff, is used in QFT to regulate the loop integral. It seems

reasonable to replace ΛUV with a scale where new physics should appear, for example the GUT

scale. Choosing dimensional regularisation on the loop integral instead of momentum cutoff,

the ΛUV terms vanish. The term containing m2
S

cannot be eliminated without a counter term

introduced for this sole purpose. In the momentum cutoff procedure counter terms performing

mass tuning at Born level would have to reach a precision within the order of
m2

H

Λ2 ≈ 10−26. SUSY

solves this fine tuning problem with its additional particle content, as sparticle mass corrections
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Figure 2.6: One-loop quantum corrections to the Higgs squared mass parameter, m2
H

, due to

(a) a Dirac fermion f , and (b) a scalar S . [86]

do have an opposite sign with respect to the fermion loop contributions. The same is true for

the boson loops and their SUSY partners. Therefore physically motivated and exact counter

terms for the hierarchy problem are generated. The downside of this argument is that there is

no experimental evidence for a for example selectron with a mass of 511 keV. This implies that

supersymmetry would have to be broken in the vacuum state, if realised in nature.

2.2.1 Sources of Supersymmetry Breaking

The hierarchy problem shows that supersymmetry has to be broken, otherwise it would have

already been discovered. A beautiful aspect of the MSSM is that no new parameters except

the Yukawa couplings are introduced. This property however is lost after the SUSY breaking.

In the worst case scenario up to 105 free parameters would have to be introduced. “Soft”

supersymmetry breaking describes breaking models that do not result in terms with quadratic

divergences. Several models for supersymmetry breaking exist, some are shortly outlined in

the following.

Supersymmetry Breaking by Non-Zero Term Vacuum Expectation Value

These non-soft breaking models build upon a vacuum state not invariant under supersym-

metry caused by a non-vanishing term leading to a non-zero VEV. Such theories are separated

into two groups, depending on the form of the non vanishing term. Fayet-Iliopoulos (D-term)

breaking [9, 10, 95] introduces a term linear to the auxiliary field of the gauge supermultiplet.

If this term drives the breaking, it would have to belong to a U(1). Not the U(1)Y , as this would

only break colour and/or electromagnetism, but not SUSY. This ansatz only works if a hidden

sector is assumed, in which a yet unknown U(1) symmetry is realised and hardly couples to the

visible world. A further problem is that in the D-term breaking scenario it is difficult to give

the MSSM sparticles, especially the gauginos, appropriate masses. This downside brought this

breaking theory on the brink of being ruled out.

The F-term or O’Raifeartaigh models [96] have brighter phenomenological prospects, as in

detailed explained in the appendix of Reference [97]. These introduce a dimensional
(
[mass]2

)

multiplicative parameter k of a linear chiral supermultiplet term in the superpotential. Although

it seems unnatural that k needs to be tiny compared to the Planck scale [98], to create the correct



2.2. Supersymmetry 21

order of magnitude for a soft MSSM breaking, it fulfils most criteria of a physically relevant

candidate [99].

Models with dynamical supersymmetry breaking make use of dimensional transmutation.

A new non-Abelian gauge symmetry with gauge coupling, g, being perturbative at MP is the

main idea behind this breaking mechanism. Taking QCD as an analogy g gets stronger at scales

smaller than the Planck scale.

Hidden Sector Supersymmetry Breaking

These theories assume that the source of symmetry breaking lies in an sector of particles

which have no or only very small direct couplings to the “visible” sector. This sector is there-

fore called “hidden”. This category has famous members as the “gravity-mediated”, also called

the Planck-scale-Mediated Supersymmetry Breaking scenario (PMSB), as it assumes that near

MP new physics, including gravity, enters. A special member of this group is the minimal

SUperGRAvity, short mSUGRA [100–105] introducing only 5 additional parameters. The sec-

ond competing theory family is the Gauge-Mediated Supersymmetry Breaking (GMSB). In this

model the flavour-blind mediating interactions for SUSY are the ordinary electroweak and QCD

gauge interactions, but introduce new chiral multiplets of messenger particles, which couple to

a supersymmetry breaking vacuum expectation value.

Further hidden sector SUSY breaking theory members are hiding behind the acronyms

XMSB (eXtra-dimensional-Mediated Supersymmetry Breaking) and AMSB (Anomaly-

Mediated-Supersymmetry Breaking), Reference [86] provides a good overview and the Ref-

erences therein more details.

2.2.2 Two Higgs Doublet Model

The MSSM is the most studied and tested scenario at the LHC, therefore the Two Higgs Doublet

Model (2HDM) [106] will be introduced shortly. The MSSM Higgs sector, if the supersymmet-

ric particles are heavy enough, is described by a constrained 2HDM (type-II) [15–17] at low

energies. A more general description of the Higgs sector and its interaction with fermions is

provided by the 2HDM. The general 2HDM extension of the SM features two scalar doublets of

equal hypercharge Φ1,2 = (φ+1,2, φ
0
1,2)T , thereby giving rise to five massive scalar Higgs bosons.

Charged Higgs bosons are also featured in more exotic extensions of the SM, as for ex-

ample the little Higgs model [107] and Higgs triplett models [108], but these lie beyond the

scope of this work. Constraints for the Yukawa matrices are selected to categorise the spe-

cific models into different types. In the common 2HDM model types I, II, III [109–111], the

Higgs doublets couple to all fermion families proportional to their masses (modulo additional

parameters) [112]. Further types exist for the 2HDM all featuring different constraints and

phenomenologies.

• 2HDM-I: only one Higgs doublet generates all the masses, of gauge bosons and
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fermions [17]. The second doublet only contributes via mixing. Therefore the Higgs

phenomenology shows similarities to the SM, but the SM Higgs couplings are shared

among the neutral scalar spectrum [112].

• 2HDM-II: natural flavor conservation [113] is featured, its phenomenology is very simi-

lar to the 2HDM-I. Here the SM couplings are not exclusively shared via mixing, but also

via the Yukawa structure.

• 2HDM-III: distinguishes itself through the presence of flavor changing neutral scalar

interactions, these need a special suppression mechanism [114]. For example a dedicated

texture of the Yukawa couplings [115] can be imposed.

In the special case of the constrained MSSM [116] several mass relations can be derived

from the Higgs potential. The most relevant concerning the charged Higgs boson is:

m2
H+ = m2

A0 + m2
W , (2.35)

which, by implying the tree level sum rule:

m2
H0 + m2

h0 = m2
A0 + m2

Z , (2.36)

and the mass product relation:

m2
H0m

2
h0 = m2

A0m
2
Z cos2 2 β, (2.37)

results in:

mH+ ≥ mW , (2.38)

mH0 ≥ mZ , (2.39)

mA0 ≥ mh0 , (2.40)

and mh0 ≤ mZ | cos 2 β| ≤ mZ. (2.41)

From these relations it follows that this model predicts (at least) one light Higgs boson, which

due to its strong coupling to WW is able to preserve unitarity.

2.2.3 Charged Higgs Boson Production and Decay

In the type-II 2HDM, which corresponds to the Higgs sector of the Minimal Supersymmetric

Standard Model (MSSM), the production and decay of the H+ partially depend on the mass.

For low masses (mH+ < mt), commonly called light charged Higgs bosons, the main production

mechanism is from the decay of a top quark. The leading source of top quarks at the LHC

is via tt production. For H+ boson masses above the top quark mass (mH+ > mt), commonly

called heavy charged Higgs bosons, the leading H+ production mode at the LHC is expected
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Figure 2.7: Example of leading-order Feynman diagrams for the production of light charged

Higgs bosons, at masses below (the left diagram) and heavy charged Higgs bosons, above

the top quark mass (the middle and right diagram, 4 − 5 flavor scheme).

to be top-associated production. Feynman diagrams illustrating the leading-order production

mechanisms are shown in Figure 2.7.

The production and decay of H+ is further controlled by tan β, as depicted in Figure 2.8. The

branching fractions of the H+ as a function of mass (for tan β = 1) are illustrated in Figure 2.9.

Note that for the light charged Higgs Boson the dominant decay channel is H± → τ±ν, thus this

channel is the most promising for the charged Higgs searches and will be explored in this work.
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Figure 2.8: Production cross-section for the charged Higgs as a function of mass for the light

charged Higgs (resulting from tt production and decay), predictions are given for a range of
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associated production with top), predictions are given for the different diagrams (4− 5 flavor

scheme). [88]
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Figure 2.9: Branching fractions of the H+ for a range of masses. A value of tan β = 1 and

tan β = 35 is assumed in the left and right plot, respectively. For higher values of tan β, the

decays to hW and AW are negligible in the mmax
h scenario. [117]

2.3 Current Status of charged Higgs Boson Searches

Searches for the charged Higgs boson were performed by experiments before the LHC. A short

summary of the pre-LHC status is given in this section.

LEP

A combined LEP limit for charged Higgs bosons [118] in any type-II 2HDM is about

80 GeV [119–122] and does not depend on the branching ratios of the charged Higgs boson,

as shown in Figure 2.10. The translation of this result into a production cross-section limit,

under the assumption of B(H+ → τ+ν) = 1 is given in Figure 2.11. In the MSSM, it can

be indirectly strengthened to about 130 GeV by the experimental constraints on the mass mA

and the fact that m2
H+
≃ m2

A
+ m2

W
. Charged Higgs bosons with mass below 72.5 GeV in the

type-I scenario, with pseudo-scalar masses above 12 GeV are excluded at the 95 % (C.L.) by

the combined LEP results [118].

Tevatron

At the Tevatron, the searches for MSSM Higgs bosons in pp̄ collisions complement those per-

formed at LEP, as they cover regions of the MSSM parameter space with either a small (below

1.5) or large (above 30) tan β values. No evidence for charged Higgs bosons has been found

here either. The resulting limits on B(t → bH+) by the Tevatron experiments, CDF [123, 124]

and DØ [125–127], for the light H+ are given in Figure 2.12 and 2.13.
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Figure 2.10: Type-II 2HDM: excluded regions in the B(H+ → τ+ν) − mH± plane, based on the

combined data collected by the four LEP experiments at centre-of-mass energies from 183

to 209 GeV. The shaded area is excluded at the 95 % or higher C.L. The expected exclusion

limit (at the 95 % C.L.) is indicated by the thin solid line and the thick dotted line inside the

shaded area is the observed limit at the 99.7 % C.L. [118]

H
+
→ cs̄ Searches

The charged Higgs boson can also decay hadronically via H+ → cs̄. This decay mode is

dominant in the MSSM, when considering the parameter space with tan β < 1. For example

at tan β < 1 B(H+ → cs̄) ≈ 70 %, at mH+ = 110 GeV [128, 129], but for tan β > 3 the

tauonic decay mode with B(H+ → τν) ≈ 90 % dominates for masses up to the top quark mass.

Therefore this decay channel is complementary, considering the tan β parameter space, to the

tauonic decays modes.

The Tevatron experiments, as well as the ATLAS experiment have performed searches for

hadronically decaying charged Higgs bosons in this decay channel, the latest results and limits

are given in plots in Figure 2.14.

Indirect Searches and Constrains

Indirect searches via the measurements of rare B meson decays have been carried out by the

B factories BaBar and Belle. A very descriptive overview is given in Reference [131], which

combines the results of flavor physics data that is sensitive to charged Higgs boson contribu-

tions. Reference [131] states a combined limit in a type-II 2HDM non-SUSY scenario on the

charged Higgs boson mass of mH± > 316 GeV irrespective of the tan β value. Examples of the
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Figure 2.11: Type-II 2HDM: the 95 % C.L. upper limits on the production cross-section as

a function of mH± for an assumed B(H+ → τ+ν) = 1, combining the data collected by

the four LEP experiments at centre-of-mass energies from 183 to 209 GeV. The solid lines

represent the observed exclusion limits, while the expected exclusion limits are indicated

by the dashed lines. The shaded bands represent the ±1σ and ±2σ excursions around the

expected limits. The intersections of the curves (solid or dashed) with the thick line showing

the theoretical (tree-level) charged Higgs cross-section represent the (observed or expected)

95 % C.L. lower limits on the charged Higgs boson mass. [118]
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Lower plot: The extracted 95 % C.L. upper limits on B(t → H+b) are shown in the range

of the charged Higgs mass from 90 GeV to 150 GeV, in the right plot by the ATLAS collab-

oration utilising 4.7 fb−1 pp data at
√

s = 7 TeV taken in 2011 at the LHC. The limits are

calculated using the CLs limit-setting procedure. [130]
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exploited processes are:

• B→ Xsγ: As the transition at quark level (b→ sγ) is a flavour changing neutral process it

is forbidden at the tree level in the SM. Thus these decays are only allowed through “pen-

guin” processes [132] at one loop level of the perturbation theory. An enhancement of the

rate predicted by the SM could be possible via additional contributions from H± bosons,

as shown in Figure 2.15. It should be noted that in some scenarios of the MSSM chargino

contributions can partially cancel the H± contribution and thereby would be harder ac-

cessible via this channel. Assuming no such destructive interferences in a generic type-II

2HDM a limit of mH± > 295 GeV was set on the charged Higgs mass [133, 134].

• B̄ → D(∗)τ−ν̄τ: A recently improved study [135] of these channels (D∗ and D in the final

state) by the BaBar collaboration has found the measured excess over the SM expectation,

illustrated in Figure 2.16, not explainable with the type-II 2HDM, for any values of tan β

and mH±. The level of disagreement of the measured Ratios (R(D) = B(B→Dτ−ντ)

B(B→Dℓ−νℓ)
and

R(D∗) = B(B→D∗τ−ντ)

B(B→D∗ℓ−νℓ)
) in the tan β − mH± plane is depicted in Figure 2.17. Further this

analysis was able to exclude a significant portion of the type-III 2HDM.

b s

W+

b s

H+

Figure 2.15: An example of b → sγ transition through W boson exchange (left) and charged

Higgs boson exchange (right). A second diagram can be drawn with the photon emitted from

the charged boson. [131]

The anomalous magnetic moment of the muon, aµ =
g−2

2
, receives non-zero contributions

from radiative corrections. It has been determined to high precision both theoretically and

experimentally, thus can be utilised to probe effects of new physics, including the MSSM [136].

Comparing the precisely measured value for aµ [137]

a
exp
µ = (11 659 208.0 ± 6.3) × 10−10

to a calculated SM prediction [138]

aSM
µ = (11 659 178.5 ± 6.1) × 10−10

shows a discrepancy of:

δaµ = a
exp
µ − aSM

µ = (29.5 ± 8.8) × 10−10,
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that include a charged Higgs boson of type-II 2HDM (dark band, red). The widths of the two

bands represent the uncertainties. The SM corresponds to tan β/mH± = 0. [135]
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this corresponds to a 3.4σ deviation of the measurement from the SM. The 95 % C.L. allowed

range, including the uncertainties from two loop SUSY corrections which have not been in-

cluded, is:

11.5 × 10−10 < δaµ < 47.5 × 10−10.

aµ and δaµ can then be utilised to constrain MSSM models, as for example done in Refer-

ence [136].

Further the measured dark matter density, as can for example be determined from the

WMAP data [139] or the Planck data [140], can be taken into account, by requiring and setting

constrains on a neutral LSP. This however was shown to not create distinct constraint regions in

the tan β − mH± plane [136].
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Chapter 3

Monte Carlo Simulation

3.1 Methodology of Monte Carlo Simulation

For the prediction of physics processes in particle colliders Monte Carlo simulation (MC)

is utilised. The MC chain is directly incorporated into the ATLAS software framework,

Athena [141], as shown in the flow chart in Figure 3.1.

Figure 3.1: The flow of the ATLAS simulation software, from event generators (top left)

through reconstruction (top right). Algorithms are placed in square-cornered boxes and

persistent data objects are placed in rounded boxes. The optional pile-up portion of the

chain, used only when events are overlaid, is dashed. Generators are used to produce data

in HepMC format. Monte Carlo generation information is saved in addition to energy de-

positions in the detector (hits). This information is merged into Simulated Data Objects

(SDOs) during the digitisation. Also, during the digitisation stage, Read Out Driver (ROD)

electronics are simulated. [142]
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A necessary input are the Parton Distribution Functions (PDFs) [143, 144], these are avail-

able from different groups, based on fits of the data of various scatter measurements over a wide

range of energy. Matrix elements are calculated by integrating over all Feynman diagrams con-

tributing to the process or final state that should be simulated. By integrating the Matrix element

over the desired phase space the hard or partonic process is calculated. Depending on the order

of αs, rising due to virtual loops or radiation correction, of the Feynman diagrams taken into

account the calculations are named: leading order (LO), next to leading order (NLO), next to

next to leading order (NNLO) and next to next to leading logarithms (NNLL) etc. Examples

of LO generators are Pythia [145], Herwig [146] and Alpgen [147]. Here initial state radiation

and final state radiation corrections are performed by the parton shower simulation algorithms,

as for example provided by Herwig and Pythia. The parton showering, the second step of the

Monte Carlos simulation process, describes the transition from the scale of the hard process

down to the scale where the hadronisation takes place. For the underlying event, the not-hard

process or soft process in an collision event, similar calculations are performed and overlaid

with the hard process to better simulate the conditions of a LHC collision. The four-momentum

vectors of the hard process and the underlying event are passed on to the hadronisation. Here

quarks and gluons form hadrons, as they cannot exist as free particles. The τ lepton decays

are performed by a dedicated package, Tauola [148]. Photos [149] handles the simulation of

electromagnetic radiation. It is utilised by Tauola, which therefore cannot be used without Pho-

tos. Photos is further improves the description of electromagnetic radiation in, for example, the

decay W → eν, where radiation distorts the electron energy distribution [142]. The resulting

particles and their four-momentum vectors are then further passed on to the ATLAS detector

simulation, which utilises the Geant4 simulation toolkit [142, 150]. Geant4 simulates the inter-

action of the particles with the detector material, including the formation of electromagnetic and

hadronic showers. Further it is able to emulate the electronic response of the detectors, which

are then passed on to the digitisation step. The ATLAS detector geometry used for simulation,

digitisation, and reconstruction is built from databases with information describing the physical

construction and conditions data. These databases contain all the information needed to emulate

a single data-taking run of the real detector (as for example detector mis-alignments or detector

component temperatures) [142]. The digitisation describes the step from the energy deposited

in the sensitive regions of the detector into voltages and currents that are read out, the detector

response. The output of the simulation chain is thus in a format identical to the output of the

ATLAS data acquisition system. Both the simulated and real data from the detector are then

run through the same ATLAS trigger and reconstruction algorithms. In the following sections a

short overview of the different simulation software packages that were utilised for the different

studies is given.
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3.2 Monte Carlo Simulation for Electron to τ Mis-

identification Analysis

The Monte Carlo simulation used in the analysis explained in Section 5.5.2 and documented

in Reference [151, 152] utilises Pythia [145] to create
√

s = 7 TeV signal and background

processes and Geant4 [142, 150] is used to simulate the ATLAS detector [142]. Pileup has been

included in the simulation for a mean number of interactions per event, 〈nvtx〉, of 2.2, while the

mean number in data taken in 2010 is 〈nvtx〉 = 2.4. The average number of primary vertices

per event in data throughout the data taking period exceeded that in the Monte Carlo samples.

The primary vertex distributions for the Monte Carlo samples are therefore re-weighted event

by event to match the distribution of the number of interactions per event in data. Effects of

the bunch-train pileup configuration have been included in all Monte Carlo samples. A full

list of the on Monte Carlo simulation samples used is given in the Appendix Section A.1.1 in

Table A.1.

The signal Monte Carlo process is mainly Z → ee, generated requiring mee > 60 GeV. The

γ∗ → ee sample, generated with 15 < mee < 60 GeV is also included as a signal because it

has the same di-electron final state. The main background Monte Carlo samples are W → τν,

W → eν, Z → ττ and QCD. For QCD production, the at generator level electron-filtered

J1-J3 samples and the J0, J4, and J5 samples are used. The jet pT range of the hard scatter for

J0, J1, J2, J3, J4, J5 are less than 17, 17 − 35, 35 − 70, 70 − 140, 140 − 280 GeV, and more

than 280 GeV, respectively. All filtered and non-filtered samples were directly summed-up.

Table A.1 lists the samples with MC10 tune used, all were generated with Pythia. The W/Z

cross-sections are calculated at NNLO order [153, 154] and the γ∗ → ee cross-section is calcu-

lated at NLO [155–157]. Further information on the QCD samples is given in Reference [158].

3.3 Monte Carlo Simulation for H± Analysis with Data taken

2010

The background estimation methods validation and search for the charged Higgs with data taken

in 2010, as summarised in Section 5.5 and documented in References [159, 160], utilise a pro-

duction of tt and single-top events with MC@NLO [161] with Herwig [146] for hadronisation

and Jimmy [162] for the underlying event. Overlap between tt and single-top final states is

removed in these MC@NLO samples [163]. A tt production cross-section of 164.6 pb [164]

obtained from approximate NNLO calculations [165] is used (both for SM-like tt and decays

via H+), for single-top production the the MC@NLO values are used.

Alpgen [147] is utilised for the generation of W and Z events with up to five partons to-

gether with Herwig/Jimmy. A so-called MLM matching scheme [166] is applied. The Alpgen
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cross-sections are rescaled by a factor 1.20 (W) and 1.25 (Z) to match cross-section calcu-

lated at NNLO [167]. QCD jet events, including bb̄, and H+ signal events are generated with

Pythia [145] (including a variant, PythiaB [168, 169], for production of events with B-hadrons),

using Tauola [148] for τ lepton decays and Photos [149] for photon radiation off charged

leptons. Events hadronised by Pythia use the ATLAS Minimum Bias Tune 1 (AMBT1) [170],

while Herwig/Jimmy samples use the ATLAS Underlying Event Tune 1 (AUET1) [171]. The

QCD jet events for the H± in the τ+lepton channel study employs lepton filters, requiring either

a generated muon in the event or an electron-like energy content in η − φ cell of size 0.12 by

0.12 (sensitive to both generated and fake reconstructed electrons).

Process Generator Cross-section [pb]

tt with ≥ 1ℓ MC@NLO 89.7

single-top (s, t, Wt channel) MC@NLO 21.4, 1.41, 14.6

W → ℓν+jets Alpgen 3.1 · 104

Z → ℓν+jets Alpgen 3.2 · 103

QCD jets (17–280 GeV) Pythia 7.2 · 108

bb̄ with µ filter PythiaB 7.4 · 104

tt→ bH±bW with H± → τν Pythia 18.5

Table 3.1: Simulated events used for the 2010 H± analyses. The W/Z+jets as well as the s-

and t-channel single-top events are only simulated for decays involving leptons (e, µ, or τ),

and the cross-section given includes this branching ratio. NLO+NNLL calculations are used

for tt, NLO for single-top, NNLO for W/Z+jets, and LO for QCD multi-jet and bb̄. The bb̄

cross-section is given for the phase space with at least one muon in the decay chain with

pT > 15 GeV. The H+ sample uses mH+ = 130 GeV and tan β = 35 as input. [159]

All events are propagated through a detailed ATLAS detector simulation using Geant4 [142,

150] and reconstructed by the same algorithms as the data. cross-sections and simulated event

samples are summarised in Table 3.1. Table A.2 in the Appendix Section A.1.2 gives a complete

list of the datasets used, together with the number of events they each contain.
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3.4 Monte Carlo Simulation for H± Analyses with Data taken

2011

This section describes the Monte Carlo simulation samples utilised in the analyses with the data

taken in 2011 as summarised in Section 6 and 7 and documented in References [172, 173],

for even more details of the analyses please refer to the supporting documentation provided in

References [174–177].

Monte Carlo samples intended for the analysis of the 2011 data are provided by the MC11

campaign of the ATLAS production group. The sample statistics of the MC11 production round

are such that the statistical uncertainties obtained when working with the Monte Carlo simulated

samples remain smaller than those of the 2011 data sample. In this study, the estimation of the

multi-jet background is only performed with data-driven techniques, therefore none of the QCD

Monte Carlo samples are used.

The modelling of the tt̄ and single top quark events is performed with MC@NLO [161],

except for the t-channel of the single quark production, in which case AcerMC [178] is used.

The top quark mass is set to 172.5 GeV and the parton density function is CT10 [143]. The par-

ton shower and the underlying event are added using Herwig [146] and Jimmy [162] for events

generated with MC@NLO. Pythia [145] is instead used for events generated with AcerMC.

The inclusive tt̄ production cross section is normalised to the approximate NNLO prediction of

167 pb [179]. For the single top quark production, approximate NNLO calculations are used for

the inclusive cross-sections, 64.6 pb, 4.6 pb and 15.7 pb for the t-, s- and Wt-production chan-

nels, respectively [180–182]. Single top quark events are available for each of the leptonic, e, µ

and τ, t- and s-channels and for the inclusive Wt-channel. Overlaps between single top quark

and tt̄ final states are removed [163].

Various tt̄ samples using other generators and parameter setups are also available. For in-

stance, tt̄ samples simulated using Powheg [183], interfaced with Pythia or Herwig/Jimmy,

allow the comparison of two different parton shower and hadronisation models. For initial

state radiation and final state radiation studies, a set of tt̄ samples, generated with AcerMC and

Pythia, is available. The initial and final state parameters and their combinations are set to a

range of values not excluded by current data.

Single vector boson production is simulated using Alpgen interfaced to Herwig/Jimmy for

the underlying event model. The parton density function CTEQ6.1 [144] is used for both ma-

trix element calculations and parton shower evolution. The additional partons produced in the

matrix element part of the event generation can be light partons or heavy quarks. The MLM

matching [166] is applied inclusively for the production of W+5 partons and exclusively for

lower multiplicity sub-samples. The production cross-sections of all samples are rescaled by

1.20 and 1.25, respectively, to match NNLO cross-section calculations [184, 185].

Diboson events (WW, WZ and ZZ) are generated and hadronised using Herwig. For these
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events, inclusive decays are used for both gauge bosons, and a filter, requiring at least one

electron or muon with pT > 10 GeV and a pseudorapidity |η| < 2.8, is applied at the generator

level. Similarly to the single vector boson production, the cross-sections are rescaled, by 1.48

for WW, 1.60 for WZ, and 1.30 for ZZ, to match the NLO predictions [186].

In addition to the SM background samples, three types of signal samples are produced with

Pythia 6.425 [145] for 90 GeV < mH+ < 160 GeV: tt̄ → bb̄H+W−, tt̄ → bb̄H−W+ and

tt̄ → bb̄H+H−, where charged Higgs bosons decay as H± → τ±ν. Tauola 1.20 [148] is used

for simulation of τ decays, and Photos 2.15 [149] is used for photon radiation from charged

leptons.

Event generators are tuned to describe the ATLAS data. The parameter sets AUET2B [170]

and AUET2 [171] are used for events hadronised with Pythia and Herwig/Jimmy, respectively.

The SM background and signal samples used in this study are summarised in Tables 3.2 and A.4,

respectively. All Monte Carlo events are propagated through a detailed Geant4 simulation [142,

150] of the ATLAS detector, and they are reconstructed with the same algorithms as the data.

Only events recorded with all ATLAS sub-systems fully operational are used for this analysis.

Together with the requirement of having
√

s = 7 TeV pp collisions with stable beams, this

results in a 2011 data sample of 4.6 ± 0.2 fb−1, with an uncertainty of 3.9 % [187].

Process Generator Cross-section [pb]

SM tt̄ with at least one lepton, ℓ = e, µ, τ MC@NLO 4.01 [161] 91 [179]

Single top quark t-channel (with ℓ) AcerMC 3.8 [178] 21 [180]

Single top quark s-channel (with ℓ) MC@NLO 4.01 [161] 1.5 [181]

Single top quark Wt-channel (inclusive) MC@NLO 4.01 [161] 16 [182]

W → ℓν Alpgen 2.13 [147] 3.1 · 104 [184]

Z/γ∗ → ℓℓ with m(ℓℓ) > 10 GeV Alpgen 2.13 [147] 1.5 · 104 [185]

WW Herwig 6.520 [146] 17 [186]

ZZ Herwig 6.520 [146] 1.3 [186]

WZ Herwig 6.520 [146] 5.5 [186]

H+ signal with B(t → bH+) = 3 % Pythia 6.425 [145] 9.9

Table 3.2: Cross-sections for the simulated processes and the generators used to model them.

All background cross-sections are normalised to NNLO predictions, except for diboson event

production where the NLO prediction is used. For the diboson events, a filter is applied

at the generator level, by requiring at least one electron or muon with pT > 10 GeV and

|η| < 2.8. [174]
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The LHC peak luminosity exceeded 1033 cm−2s−1 for most of the 2011 data-taking period,

a level at which more than one interaction per bunch crossing occurs (on average, 6.3 and 11.6,

respectively before and after the September 2011 technical stop, during which the β∗-value

was reduced from 1.5 to 1.0 m). In addition, the LHC ran with an in-train bunch separation

of 50 ns. Thus, the out-of-time pile-up (overlapping signals in the detector from other neigh-

bouring bunch crossings) is very important. For the pile-up simulation, minimum bias events

are generated with Pythia, assuming variable pile-up rates, and added to the hard process in

each Monte Carlo event. Prior to the analysis, the simulated events are reweighted to match

the distribution of the average number of pile-up interactions 〈µ〉 in the data [188]. As an illus-

tration of the “pile-up reweighting procedure”, Figure 3.2 shows the normalised distribution of

the number of reconstructed vertices with five or more tracks, in data and in a tt̄ Monte Carlo

sample, before and after performing the pile-up reweighting.
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Figure 3.2: Normalised distribution of the number of vertices with five or more tracks, in

data taken 2011 with
√

s = 7 TeVand in a tt̄ Monte Carlo sample, before and after pile-up

reweighting of the simulated events. [175]
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Chapter 4

LHC and the ATLAS Detector

4.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [14] is situated at the European Organisation for Nuclear

Research (CERN), located in a tunnel 50 m to 175 m beneath the surface at the Swiss-French

border close to Geneva. Prime motivation to design and construct this enormous object was to

find the source of electroweak symmetry breaking, presumably the Brout-Englert-Higgs mech-

anism [58–63] and the predicted Higgs boson. Large Electron Positron collider (LEP) [189],

LHC’s predecessor, was abandoned end of the year 2000 with a peak centre of mass energy,(√
s
)
, of 209 GeV to free its approximately 26.7 km long tunnel for the terascale proton-proton

collider. The magnet system of the LHC machine consists of 1232 dipoles and around 8000

correction magnets, as well the worlds largest cryogenic system at liquid helium temperature.

A working temperature of 1.9 K created by the super fluid helium is necessary for supercon-

ducting magnets, which provide the magnetic field of 8.33 T to hold the proton beam on a

circular path. At design energy of 7 TeV per proton beam the centre of mass energy,
√

s, of

14 TeV is anticipated. This is greater than the centre of mass energy of the Tevatron [190], a

proton-antiproton machine situated at the Fermilab, USA, which provided more than 12 fb−1of

data [191] at
√

s = 1.96 TeV until its shutdown on September 30th, 2011.

The acceleration of the proton bunches is not achieved by the LHC alone. A chain of pre-

accelerators is involved, illustrated in Figure 4.1. The LINAC (LINear ACcelerator) provides

50 MeV beam energy as the first step. The following PSB (Proton Synchrotron Booster) passes

the beam with 1.4 GeV on to the PS (Proton Synchrotron) which injects it with 26 GeV into the

SPS (Super Proton Synchrotron). In 1983 the W± and Z0 boson were discovered at this storage

ring [71–74]. As the last pre-accelerator the SPS injects the proton beams into the LHC with an

energy of 450 GeV. The dimensional differences of the SPS, measuring 7 km in circumference,

to the LHC, with around 27 km in circumference, are visualised in Figure 4.2.

Collisions or bunch-crossings occur, if the LHC is nominally filled with a bunch spacing

of 25 ns, at a frequency of 40.08 MHz where the four major experiments ATLAS (A Toroidal
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Figure 4.1: The CERN accelerator com-

plex. [192]

Figure 4.2: The LHC and its pre-

accelerator system unscaled. [193]

LHC ApparatuS) [24], CMS (Compact Muon Solenoid) [194], ALICE (A Large Ion Collider

Experiment) [195] and LHCb (Large Hadron Collider beauty) [196] are located, as illustrated

in Figure 4.3. Further two forward particle experiments are hosted by the LHC. LHCf (Large

Hadron Collider forward) [197], consists of two small detectors each placed a at distance 149 m

from the ATLAS interaction point. TOTEM (TOTal Elastic and diffractive cross-section Mea-

surement) [198], with a total length of 440 m set up close to the CMS detector. Additionally

to the six already existing a seventh experiment was approved for the installation at the LHC,

the MoEDAL (Monopole and Exotics Detector At the LHC) [199] is planned to share the ex-

perimental cavern with LHCb following the 2013–2014 shutdown. After this first long break

for maintenance and upgrades for the LHC and the experiments, collisions close to the nominal
√

s = 14 TeV are anticipated for physics analysis during 2015. Further in future an upgrade of

the LHC to HL-LHC (High Luminosity - Large Hadron Collider), which amongst other machine

parameters should increase the luminosity, is planned [200–206].

4.2 The ATLAS Detector

The design of the ATLAS detector, as most of the latest multipurpose detectors, follows an

overall cylindrical shape with a layered layout, as depicted in the cut-away view of the detector

in Figure 4.4. It is separated in a central part, the “barrel” and the “end-caps”, to cover the

forward and backward regions. This modularity allows for a good overall detector serviceabil-

ity. The barrel components are shaped cylindrically, whereas the end-cap systems are arranged

as discs in the x-y-plane. This separation is followed in each system of the ATLAS detector.

A schematic overview of the subsystems and particles which they are designed to detect, is

given in Figure 4.5. The innermost layer, called Inner Detector (ID) or tracker, consists of three

subsystems and measures the momenta and charge of electrically charged particles, as well as

primary and secondary vertices. The surrounding central solenoid provides a magnetic field
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Figure 4.3: The LHC and its experiments. [207] (image modified)

with a mean value of 2 T. Energy measurement with high resolution is the main purpose of the

electromagnetic calorimeters (ECAL) and hadronic calorimeters (HCAL). Both are designed to

fully absorb the respective particles and their showers. Muons, passing all these layers with only

a small energy and momentum loss, are precisely measured by the Muon Spectrometer (MS).

Together with the ID and the air-core toroid magnets, providing a toroidal shaped magnetic

field, the MS is responsible for a precise muon momentum measurement.

Particles of interest, except neutrinos, should not escape undetected. Major crack regions

pointing back towards the interaction point (IP) were successfully obviated in the design. A

short description of the sub-detectors and the magnet systems is given in the following sections.

The origin of the ATLAS detectors coordinate system is the nominal IP. A right-handed

Cartesian coordinate system was specified as followed: the positive x-axis is defined pointing

towards the centre of the LHC ring, the positive y-axis points towards the surface, therefore the

z-axis follows the direction of the beam pipe. Protons consist of sub-particles, called partons,

shorthand for gluons and quarks. These partons, the interacting particles during a pp collision,

carry an unknown fraction of the longitudinal proton momentum. The fraction of the transverse

momentum component is negligibly small compared to the longitudinal component, therefore

an approximate conservation of momentum in the transverse plane is assumed:
∑

pT ≈ 0.

This assumption motivates the usage of transverse momentum, pT, defined as:

pT =

√
p2

x + p2
y.

Cylindrical coordinates are commonly used to describe the position of a particle, as this re-

flects the detector geometry. The value of the polar angle reveals whether the object in question
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Figure 4.4: Cut-away view of the ATLAS detector, with all subsystems. [208]

Figure 4.5: Schematic view of the layers of the ATLAS detector,

also showing a selection of particles and in which parts they are

measured. [209]
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was reconstructed in the barrel or in the end-cap part of the detector. The polar angle, θ, mea-

sured from the positive z-axis to the particle, helps to define the pseudorapidity η, illustrated in

Figure 4.6:

η = − ln
[
tan

(
θ

2

)]
.

One reason to prefer η over θ is the feature that the number of charged particles produced

in inelastic pp collision events, as a function of η is approximately constant. The azimuthal

angle φ = 0 corresponds to the positive x-axis. φ increases clock-wise looking in the positive

z-direction and is measured in a range from −π to +π.

Figure 4.6: Pseudorapidity, η, as a function of

the polar angle, θ. [210]

Further a distance measurement in the η − φ plane is introduced:

∆R =
√

(∆η)2 + (∆φ)2 ,

where ∆η is the difference in pseudorapidity of the two objects in question, and ∆φ the differ-

ence between their azimuthal angles. This quantity is often utilised to define a cone around a

reconstructed object in order to measure its isolation. ∆R is also utilised for the so-called overlap

removal, if two reconstructed objects are geometrically very close, one, commonly the object

with higher reconstruction efficiency, is preferred over the other, the latter is thus discarded.
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4.2.1 Magnet Systems

The conceptual design of the magnet system was one prime issue of the detector, as all sub

detectors had to be planned to function within its environment. Limits imposed by the experi-

mental cavern size, combined with the requirement to measure the momentum of muons up to

1 TeV with a relative precision of at least 10 %, led to the choice of superconducting technol-

ogy. The magnet system consists of one small radius, thin walled solenoid and three air-core

toroids. This system creates a magnetic field in a volume of approximately 12 000 m3 (defined

as the volume where the magnetic field exceeds 50 mT). Situated at smaller radii than the barrel

ECAL, integrated in its cryostat, the solenoids material budget was minimised to reduce the

impact on the calorimeters performance. A thickness of about 0.66 electromagnetic radiation

lengths (X0) in radial direction was achieved. This impairs the ECAL barrel resolution in the

region of 1.2 < |η| < 1.4 to some extent. With an inner diameter of 2.4 m and an axial length of

5.8 m the central solenoid does not cover the complete ID. This results in a magnetic field non-

uniformity at the end regions of the tracker volume. The solenoid provides an axial magnetic

field of around 2 T. The three superconducting air-core toroids, one located in the barrel region,

the other two installed as end-caps, consist of eight independent coils each. With an axial length

of 25.3 m, an inner diameter of 9.4 m and an outer diameter of 20.1 m, weighting 830 t, the bar-

rel toroid provides a torodially field of approximately 0.5 T for the muon detectors. The end-cap

toroids contribute approximately 1 T, weighting 239 t each, spanning from 1.7 m up to 10.7 m

in radius [211]. The solenoid magnetic field was mapped with Hall probes [212]. Discrepancies

between the modelled and the measured magnetic field were in the order of 0.5 mT, only some

locations at the edges of the ID volume differed up to 5 mT.

Figure 4.7: Shown is the layout of

the magnet systems (in red) of

the ATLAS detector, together with

a model of the calorimeter sys-

tems magnetic properties, repre-

sented colour coded. [24]

Figure 4.8: The barrel toroid system with sup-

port structure (left) and one installed end-cap

toroid (right). [213, 214]
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4.2.2 Inner Detector

The ATLAS Inner Detector (ID) was designed to provide charge and momentum measurement,

robust and redundant pattern recognition, as well as vertex measurements for charged tracks

with a pT above 0.5 GeV within |η| < 2.5. Precise measurements of secondary decay vertices

are crucial for b-tagging and the identification of hadronically decaying τ leptons. A very high

granularity is needed to separate particle tracks this close to the interaction point (IP). The

ID consists of three independent supplementary sub-detectors, a pixel detector [215], the sili-

con micro-strip sensors, also called SemiConductor Tracker (SCT) [216, 217] and a Transition

Radiation Tracker (TRT) [218]. A cut away view of the ID and its components is given in

Figure 4.9. These components are installed very closely around the beam pipe, which in the

ID region is manufactured of beryllium to reduce material budget and reduce the probability of

multiple scattering. The TRT provides a very efficient electron identification for |η| < 2.0, this

will be explained in detail in the respective section. Meeting the physics requirements, while at

the same time providing a robust and stable operation over years was the greatest challenge of

the ID systems design. Withstanding the harsh radiation conditions near the IP stood in conflict

with the requirement for a low material budget. The material budget of the trackers was greater

than anticipated, reaching up to 1.2 X0 at η ≈ 1.7 [219]. Cooling the pixel detector and SCT to

approximately -10 to −5 ◦C degrees Celsius, decelerates the radiation induced doping concen-

tration changes of the silicon pn-diodes. The ID, including its envelope, measures 7 m in length

and 1.15 m in radius.

Figure 4.9: Full inner detector overview with labelled barrel and end-cap components. [24]
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Pixel Detector

The pixel detector sensors are 250 µm thick and made of double sided processed, oxygenated

n-type wafers. This design allows for a good charge collection efficiency, even after radiation-

invoked type inversion. In long term studies highly oxygenated material proved a high tolerance

for charged hadron radiation [215]. The operation voltage is expected to be raised from initially

approximately 150 V to 600 V after ten years of operation. The pixel detector consists of three

layers in the central region, situated at the following given radii measured from the IP, 50.5 mm,

directly on the beam pipe of the LHC, 88.5 mm and 121.2 mm. Three discs at distances of

z = ±495 mm, z = ±580 mm and z = ±650 mm cover the higher η-regions. The spacial

resolution of the pixel detector is designed to achieve 10 µm in the R − φ plane and 115 µm in

z-direction in the barrel and R-direction the end-caps.

SCT

The SCT utilises a classical single-sided p-in-n technology with AC-coupled readout strips.

A small angle (40 mrad) stereo strip technology enables for a reconstruction of the tracks

z-coordinate, by the measurement of R and φ. This technique allows for a separation of two

charged tracks, if their inter-space, while passing the SCT, is greater than 200 µm. The four

double layers of strips in the barrel provide up to eight measurements per traversing track. Nine

discs in each end-cap, consisting of double layer strips, complete the SCT. Figure 4.10 and Fig-

ure 4.11 provide the radii of the SCT layers. The designed resolution of the SCT is 17 µm in

the R − φ plane and 580 µm in z-direction in the barrel and in R-direction in the end-caps.

Figure 4.10: ID barrel with its systems in detail. The red line indicates a charged track with

pT = 10 GeV at η = 0.3. [24]
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TRT

The basic detector elements of the TRT are polyimide drift tubes, called straw tubes. Their

diameter measures 4 mm. Each tube is filled with a gas mixture of 70 % Xe, 27 % CO2 and

3 % O2. The gas mixture is filled with 5–10 mbar over-pressure. Tubes are build in as multi-

layer system of aluminium, graphite, and polyimide layers. The straw resistance is below 300 Ωm .

A 31 µm diameter thin, very pure, gold plated tungsten wire is used as the anode of the system.

It is kept at ground-potential and directly connected to the front-end electronics. The nominal

operational voltage of the cathodes is given with 1530 V and the thus achieved gain factor is in

the order of 2.5 × 104. Charged particles traversing the straws ionise the gas and by secondary

ionisation the measurable current is created.

The special feature of the TRT are the different dielectric constants of the straws multi-layer

system. While traversing the straw this variation invokes transition radiation, with a higher

probability for electrons in contrast to the heavier hadrons, like charged pions. Straws are

arranged in three layers of bundles of 144 cm length in the barrel, covering the radial range

of 554–1082 mm, as can be evinced in Figure 4.10. The barrel straw anodes are electrically

split and mechanically supported in the centre of the detector. Radially arranged straws with a

length of 37 cm cover charged tracks up to |η| = 2.0. Merely a R − φ-measurement in the barrel

and a z − φ-measurement in the end-caps, with an intrinsic accuracy of 130 µm is provided.

The example track indicated in Figure 4.10 traverses 36 straws, which is close to the estimated

average for η < 2.0 of 35 straw hits per charged track.

Figure 4.11: Full inner detector overview with red lines indicating charged tracks with a

pT = 10 GeV transversing the ID at η = 1.4 and η = 2.2. The barrel part of the TRT is

not depicted. [24]
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4.2.3 Calorimeter Systems

The calorimeter technology and design of the ATLAS detector features a lead Liquid Argon

(LAr) sampling calorimeter and a system with scintillating plastic tiles. In contrast to the sys-

tems described so far the intrinsic energy resolution of the calorimeters improves with higher

particle energies. The ATLAS calorimeter system consists of an electromagnetic and a hadronic

calorimeter. It was constructed to precisely measure energies and positions of electromagneti-

cally and strongly interacting particles, electrons and photons, and hadrons, respectively. Fur-

thermore it provides input for the Level-1 trigger. The overall calorimeter layout is depicted in

Figure 4.12. The calorimeter was designed for complete coverage of the region |η| < 4.9. This

hermeticity makes missing transverse energy determination [220] possible4, which is an impor-

tant indicator for neutrinos or new physics. Both sampling calorimeters posses full φ-symmetry

and φ-coverage, though with different materials and geometries. In the passive absorber mate-

rial secondary particle showers are initiated. Measurement of their quantity and therefore the

deposited energy is the purpose of the active detector material. The design ensures enough

electromagnetic radiation lengths (X0) or interaction lengths (λ) to capture the greatest part of

the showers initiated by incident particles with energies of up to several TeV. X0 is defined

as the mean distance during which a high energy electron loses energy to 1
e

of its initial value

by bremsstrahlung. For a high energetic photon it is 7
9 th of the mean free path for pair pro-

duction. The nuclear interaction length, λ, is defined as the mean free distance a relativistic

particle passes through matter, before its energy decreases to 1
e

of the initial value. Several lay-

ers, typically three, in longitudinal or η-direction of the calorimeters enhance the of the shower

reconstruction accuracy.

Electromagnetic Calorimetry

The precision electromagnetic (EM) calorimeter system consists of a barrel (EMB) and two

end-cap calorimeters (EMEC). The barrel is built of two identical halves, each with an axial

length of 320 cm, spanning over the radial range from 140 cm to 200 cm. These are divided by a

gap of 0.6 cm at z = 0 cm. The wheels of the EMECs are 63 cm thick, with inner and outer radii

of 33.0 cm and 209.8 cm, positioned at |z| = 374.4 cm. One wheel is mechanically subdivided

into two wheels, the outer and inner covering 1.375 < |η| < 2.5 and 2.5 < |η| < 3.2, respectively.

The z-position of the wheels was changed by |z| = +4 cm, from the nominal position, yielding

inner detector services. This shift degenerates the designed projectivity of the geometry slightly.

An overlap region between the barrel |η| < 1.475 and the EMEC 1.375 < |η| < 3.2 was designed

for a smooth transition and thus to avoid crack regions. The accordion geometry of the ab-

sorbers and kapton electrodes of the electromagnetic calorimeters provides a full φ-coverage.

4 The resolution follows a functionσ = k·
√∑

ET, where the value of the parameter k is, before pile-up mitigation,

about 0.7 GeV0.5, much larger than the resolution observed in 2010 ATLAS data [221], due to the increased pile-

up conditions. [220]
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Figure 4.12: The ATLAS calorimeter systems cut-away view exposing all sub-

components. [24]
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The folding angles of the accordion waves were optimised, depending on the radius, to keep the

traversed LAr gap width constant, as can be evinced in Figure 4.13. To limit the decrease of

the sampling fraction as |η| increases, the absorber lead plates thickness changes from 1.53 mm

for |η| < 0.8 to 1.13 mm for |η| > 0.8 in the barrel. In the end-cap calorimeters the plates have

a thickness of 1.7 mm for |η| < 2.5 and 2.2 mm for |η| > 2.5. To provide mechanical stability

these are glued in between two 0.2 mm thick stainless-steel sheets. The electrodes consist of

three conductive copper layers separated by insulating polyimide sheets, located between the

absorber plates.

granularity [∆η × ∆φ] versus |η|
barrel end-cap

Presampler 0.025 × 0.1 |η| < 1.52 0.025 × 0.1 1.5 < |η| < 1.8

Layer 1 0.025/8 × 0.1 |η| < 1.40 0.050 × 0.1 1.375 < |η| < 1.425

0.025 × 0.025 1.40 < |η| < 1.475 0.025 × 0.1 1.425 < |η| < 1.5

0.025/8 × 0.1 1.5 < |η| < 1.8

0.025/6 × 0.1 1.8 < |η| < 2.0

0.025/4 × 0.1 2.0 < |η| < 2.4

0.025 × 0.1 2.4 < |η| < 2.5

0.1 × 0.1 2.5 < |η| < 3.2

Layer 2 0.025 × 0.025 |η| < 1.40 0.050 × 0.025 1.375 < |η| < 1.425

0.075 × 0.025 1.40 < |η| < 1.475 0.025 × 0.025 1.425 < |η| < 2.5

0.1 × 0.1 2.5 < |η| < 3.2

Layer 3 0.050 × 0.025 |η| < 1.35 0.050 × 0.025 1.5 < |η| < 2.5

Table 4.1: Granularity of the electromagnetic calorimeter for the different |η|-regions. [24]

The η-segmentation was realised by etching patterns onto the different layers. Ganging together

an appropriate number of electrodes, as shown in Figure 4.13, results in φ-separation. Segments

of the ECAL that are read out together are called cells. The granularity of the EMB and EMEC

cells as a function of |η| is given in Table 4.1.

High energy electrons predominately lose their energy by bremsstrahlung in matter [36].

High energetic photons, γ, traversing matter preferably perform electron-positron pair produc-

tion. The e− and e+ emit bremsstrahlung again, thus an electromagnetic shower is formed. In

the electromagnetic calorimeter the charged shower particles ionise the liquid-argon. The pro-

duced charges travel, due to the electrical field, to the electrodes where the current is read out.

The nominal voltage applied is about 2000 V for the EMB.
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Figure 4.14: Cumulative material before and of the electromagnetic calorimeter given in X0

as a function of |η|, showing the different layers colour coded for the barrel (left) and the

end-caps (right). [24]

An additional separate layer, the pre-sampler, consisting of a single active layer of liquid-

argon, with a thickness of 11 mm for the barrel up to |η| = 1.52 and 2 mm for the EMEC

1.5 < |η| < 1.8, was installed. The reason for the introduction of this coarsely granulated

layer is the large amount of material accumulated before of the electromagnetic calorimeter. In

the region |η| < 1.8 it can reach several radiation lengths, X0, as can be seen in Figure 4.14.

An electromagnetic shower therefore starts before the incident particle reaches the calorime-

ter. Corrections for upstream energy losses, using the pre-sampler information, improve the

resolution of the reconstructed energy.

The region of |η| < 2.5 is also called the precision-measurement-region, as the granularity

is very fine and the longitudinal direction is covered by at least three sampling layers. Energy

resolution is degenerated in the overlap region 1.375 < |η| < 1.5, as the cells are coarser and

only two samplings per calorimeter are provided, as detailed listed in Table 4.1. This region

is often misleadingly referred to as crack-region due to its non-optimal energy resolution. The

ECAL inner wheel 2.5 < |η| < 3.2 is equipped with only two layers in the η-direction.

The granularity of the cells in the first or strip layer is finely segmented in η, optimised for

electron and jet separation. By providing an equally fine granularity in φ and η, the second layer

allows for reconstruction of the electron or photon shower position and direction. In this way

allows for separation of primary photons from the IP and photons from π0-decays [222], with a

rejection factor 5 of about 5000 [224]. With its depth of approximately 16 X0 the second layer is

designed to absorb the largest part of the electromagnetic showers induced by electromagnetic

interacting particles with energies up to several TeV. The coarser third sampling allows for

rejection of early starting hadronic showers, which occur at low rates.

5 The identification is separately optimised for unconverted and converted photons to provide a photon identi-

fication efficiency of about 85 % for photon candidates with ET > 40 GeV , and a corresponding background

rejection factor of about 5000 [223].
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Figure 4.15: The α energy-scale correction factor as a function of the electron track φ for

(left) |η| < 0.6 and (right) 1.52 < |η| < 1.8 determined by the baseline calibration using

Z → ee decays (circles) and by the E/p method using W → eν decays (triangles). Errors are

statistical only. [228]

The strategy to calibrate the EM calorimeter was validated using test-beam data [225–227].

Energy calibration is performed in three steps [228]:

1. Raw signal is extracted from each cell in ADC counts and converted into a deposited

energy, using the electronic calibration of the EM calorimeter [229–231].

2. Monte Carlo Simulation based calibration [167] corrections are applied at cluster level

to account for energy loss due to absorption in the passive material and leakage outside

the cluster. For |η| < 2.47. Further corrections depending on η and φ coordinates of the

electron are made to compensate for the energy modulation as a function of the impact

point.

3. The in-situ calibration with Z → ee decays determines the energy scale and inter-

calibrates [228] different regions of the calorimeters with |η| < 4.9.

The ATLAS ECAL, due to its layout and construction, is uniform to a level of less than about

1 %. This was shown in test beam results [225–227] and with first collision data of 2010 [228],

as shown in Figure 4.15.

The fractional energy resolution of the electromagnetic calorimeter is conventionally

parametrised as follows:
σE

E
=

a

E
⊕ b
√

E
⊕ c.

Here a is the noise term, b the sampling term and c is called the constant term, all are η-

dependent parameters. Figure 4.16 shows the noise measured in randomly triggered events at

the cell level as a function of η for all layers of the LAr calorimeters. In all layers, a good

agreement with the expected noise [229] is observed [232].
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Figure 4.16: Electronic noise (σnoise) in randomly triggered events at the EM scale in indi-

vidual cells for each layer of the calorimeter as a function of |η|. The results are averaged

over φ. [232]

During a combined test beam measurement in 2004 the sampling term and the constant

terms were determined with a fit after subtracting the in advance measured noise term. Fig-

ure 4.17 shows the resolution values where the noise contribution and the beam spread have

been subtracted in quadrature from the total resolution values. Two different fit functions were

used, the data results are compatible with each other [227]:

b = (10.5 ± 0.4)% ·
√

GeV and c = (0.2 ± 0.1)%

and

b = (10.2 ± 0.4)% ·
√

GeV and c = (0.2 ± 0.2)%.

The constant term, c, was further derived using pp collision data for the different calorimeter

regions, as given in Table 4.2 [228].

The calorimeter closest to the IP of the Forward Calorimeters (FCal), described in detail

later, is also a part of the electromagnetic calorimeter system of ATLAS.

From end of April until early July of the data taking in 2011 a problem in reading out six

Front End Boards (FEBs) and one calibration board of the LAr barrel persisted. The source was

a identified to be a burnt fuse on a controller board, which lead to the loss of the Timing Trigger

and Control System (TTC) signal. The so-called “LAr hole” covered the area of 0 < η < 1.4 and

−0.84 < φ < −0.64. Four of the FEBs and the calibration board were successfully recovered,

thus restoring 90 % of the depth coverage over the whole η range. The two not recovered FEBs
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Figure 4.17: Resolution values, obtained from the MC simulation and data samples with the

two different parametrisation of the calibration constants, and cluster noise contributions,

after subtracting the noise contribution and the beam spread (data only). [227]

Sub-system |η|-range Effective constant term, cdata

EMB |η| < 1.37 1.2% ± 0.1% (stat) + 0.5%
− 0.6% (syst)

EMEC (outer wheel) 1.52 < |η| < 2.47 1.8% ± 0.4% (stat) ± 0.4% (syst)

EMEC (inner wheel) 2.5 < |η| < 3.2 3.3% ± 0.2% (stat) ± 1.1% (syst)

FCal 3.2 < |η| < 4.9 2.5% ± 0.4% (stat) + 1.0%
− 1.5% (syst)

Table 4.2: Measured effective constant term cdata from the observed width of the Z → ee peak

for different calorimeter |η| regions. [228]
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controlled mostly cells of the third sampling. Detailed reports about planning, execution and a

summary report of the recovery operation can be found in References [233–236].

Hadronic Calorimetry

The hadronic calorimeter system utilises different techniques. The barrel calorimeter covering

|η| < 1.0 and the extended barrel tile calorimeter, covering 0.8 < |η| < 1.7 consist of scintillat-

ing plastic tiles and steel plates, layout and segmentation of these calorimeters are depicted in

Figure 4.18. The second component is the Hadronic end-cap Calorimeter (HEC) located in the

wheels, covering 1.5 < |η| < 3.2. It uses a copper-LAr technique similar to the lead-LAr of the

EMEC and the FCals. The latter covers 3.1 < |η| < 4.9 and also utilises the LAr technology.

The cryostats are therefore shared by EMEC, HEC and FCals, as shown in Figure 4.20. With

a radial range from 2.28 m to 4.25 m the barrel and extended tile provide approximately 7.4 λ

in this direction. The cumulative amount of the ATLAS detector material in units of λ as a

function of the pseudorapidity is provided in Figure 4.21.
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Figure 4.18: Segmentation of the hadronic tile calorimeter in η and radius, for the central barrel

(left) and the extended barrel (right). [24]

Fundamental elements of the sampling tile calorimeters are scintillating plastic tiles and

steel plates. Tiles provided in eleven sizes, all 3 mm thick, with radial lengths ranging from

97 mm to 187 mm and azimuthal lengths from 200 mm to 400 mm, constitute the active detector

material. Thicker steel plates serve as passive absorber material, an approximate volume ratio of

4.7 : 1 is achieved. A schematic view of this stacking structure is given in Figure 4.19. Ionising

secondary shower particles produce ultraviolet scintillation light in the polystyrene. Each tile

is read out by two fluorine doped wavelength shifting fibres. By grouping and coupling of the

fibres, a three dimensional cell structure is created, as depicted in Figure 4.18. The visible light

from the fibre bunches creates an electrical signal in the photo-multipliers (PMTs) which is

then read out. Three radial sampling layers with approximately 1.5 λ, 4.1 λ and 1.8 λ at |η| = 0,

possess a granularity in ∆η × ∆φ of 0.1 × 0.1 for the first two layers and for the third layer
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0.2 × 0.1. Long term irradiation tests of tile-fibre-systems indicate, that a light loss of less than

10 % is expected after a ten year of operation. The tile calorimeters are equipped with three

calibration systems, a charge injection, a laser and three 137Cs radioactive sources. The latter

ones are driven by a flowing liquid (water) through a in total 10 km long measuring tube system

to reach all cells [237]. These test optical as well as digitised signals and help to set the PMT

gains to an uniformity of ±3 %.

Photomultiplier

Wavelength-shifting fibre

Scintillator Steel

Source

tubes

Figure 4.19: Schematic view of a

hadronic calorimeter module including

the read out components. [24]

Electromagnetic end-cap calorimeter

Forward calorimeter

Feed-throughs and front-end crates

Hadronic end-cap calorimeter

Figure 4.20: Cut-away view of the

three end-cap calorimeters situated in

the end-cap cryostat extending 3.17 m

in length, with an outer radius of

2.25 m. [24]

The HEC is situated at larger distance to the IP than the EMEC, as shown in Figure 4.20. It

consists of two wheels, the front wheel, HEC1, and rear wheel, HEC2, providing a total of four

longitudinal layers. The modules of the HEC are build of copper plates. HEC1 begins with a

12.5 mm thick front plate, followed by 24 discs of 25 mm. HEC2 provides a coarser sampling

fraction with 16 plates each 50 mm thick in addition to a 25 mm front plate. Corresponding

thicknesses in interaction lengths along the η-axis of the HEC are depicted in Figure 4.21. Here

HEC0 indicates the first sampling of HEC1. The inner radius changes from 372 mm for the first

nine plates of HEC1 to 475 mm for the following HEC plates [238]. Gaps filled with LAr, the

active material, are kept constant at 8.5 mm throughout the HEC. The cell structure, created by

etching a pattern on the central foil in each gap, provides a semi-pointing geometry with cell

sizes of 0.1 × 0.1 for |η| < 2.5 and 0.2 × 0.2, in ∆η × ∆φ for higher |η|-values. A shielding

plug made of 19.5 t copper is mounted behind the HEC2, to protect the most forward muon

chambers [238].
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Figure 4.22: Schematic of the FCal

electrode structure, with the Molière

radius, RM, represented by a solid

disc. [24]

Forward Calorimeters

The FCals, which cover the highest |η|-regions, 3.1 < |η| < 4.9, are exposed to high particle

fluxes. They are located at a distance of approximately 4.7 m from the interaction point. This

resulted in a design of very small LAr gaps, smaller than the usual 2.1 mm of the barrel [238].

The FCal is divided into three 45 cm deep modules, adding up to a total depth of 9.94 λ or

208.1 X0. Electrodes are small diameter rods running in a matrix of high precision drilled

holes parallel to the beam line. A radiation hard plastic fibre wound around the rod provides

the LAr gap. A detailed view of FCal1 and its electrode structure is given in Figure 4.22.

The first partition, FCal1, is made of copper plates. This material improves heat removal and

optimises resolution for electromagnetic interacting particles. The FCal1 with 0.269 mm LAr

gaps and a depth of 27.6 X0 is designed to fully absorb electromagnetic showers. For FCal2

and FCal3 tungsten is used as absorber material. This minimises the lateral spread of hadronic

showers and with absorption lengths of 3.68 λ and 3.60 λ it is designed to provide full shower

containment [238]. The LAr gap sizes are designed wider the further the distance from the IP is,

0.376 mm for FCal2 and 0.508 mm for FCal3. In this way higher readout currents and therefore

better energy measurement resolutions are achieved.
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4.2.4 Muon Spectrometer

The ATLAS muon system is designed to achieve a relative pT-resolution for 1 TeV muon tracks

in stand-alone mode of approximately 10 %. The lower boundary for muon identification is

given with a muon momentum of approximately 3–4 GeV. Energy of this order is on average

lost by muons traversing the detector material from the IP to the muon systems. Resistive Plate

Chambers (RPCs) are situated in the barrel part |η| < 1.05. Thin Gap Chambers (TGCs) are

used in the end-cap 1.05 < |η| < 2.4, both provide Level-1 trigger signals [239].

Figure 4.23: Muon spectrometer with its four chamber sub-

systems. [24]

To achieve the design resolution, a strict alignment requirement of ±30 µm is set. An op-

tical system of around 5000 sensors permanently controls the placement of the muon system

components. This allows potential offline data corrections in case of in situ displacements.

Further, around 1700 three-dimensional Hall probes are arranged on the chambers providing

precise information about position and shape of the conductors of each coil. These measure

the magnetic field with high accuracy throughout the whole volume, a requirement for high

precision muon measurements. In the region of |η| < 1.0 the barrel toroid and for the region

1.4 < |η| < 2.7 the end-cap toroids provide the magnetic field. In the so called intermediate

region 1.0 < |η| < 1.4, where these fields overlap, field modelling calculations are non-trivial.

Partial reduction of the bending power occurs in this region. Detectors are placed in concentric

cylindrical shells around the barrel at radii of 5 m, 7.5 m and 10 m. Large wheels included in

the end-cap spectrometer systems are situated at distances of |z| ≈ 7.4 m, 10.8 m, 14.0 m and

21.5 m. In φ varying gap sizes, at |η| ≈ 0 up to 2 m, are necessary for services of the inner

detector, solenoid and calorimeters.

Highest precision momentum measurement is achieved by the Monitored Drift Tube chambers
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Figure 4.24: Barrel muon system

cross-section, perpendicular to

the beam axis or non bending

plane, the outer diameter mea-

sures about 20 m. [24]

Figure 4.25: cross-section of the muon

system in the bending plane, with

dashed lines representing muons,

demonstrating that typically three

systems are transversed. [24]

(MDTs), covering the complete η-range of the MS. An average resolution of 80 µm per tube

or about 35 µm per chamber, each containing three to eight layers of MDTs, is achieved. In

the innermost layer of the end-cap Cathode-Strip Chambers (CSCs) instead of MDTs are in-

stalled, because of their higher rate capacity and better time resolution. CSCs are multi-wire

proportional chambers with cathode plates segmented into orthogonal strips, allowing for a

measurement of both coordinates. They have a resolution of 40 µm in the bending plane (η)

and 5 mm in the transverse plane (φ). To safely identify a certain beam crossing, for higher

level trigger decision, the system has to provide a good time resolution. The technology of

the RPCs provides a time resolution of σ ∼ 1.5 ns [239], while at the same time measuring

track coordinates in η and φ. As the MDTs are designed to perform as precision trackers for

the η coordinate only, this measurement is then matched with trigger detector hits. In case of

a successful match, the non-bending plane coordinate of the trigger is adopted as the second

coordinate for the MDT.

4.2.5 Forward Detectors

Three smaller detector systems, depicted in Figure 4.26, dedicated to the coverage of the very

forward region are installed in addition to the main ATLAS detector systems. They are named

LUCID (LUminosity measurement using Cherenkov Integrating Detector), positioned at ±17 m

from the IP near the TAS (Target Absorber Secondaries), ZDC (Zero-Degree Calorimeter),

embedded in the TAN (Target Absorber Neutral) at a distance ±140 m, and ALFA (Absolute

Luminosity For ATLAS) situated at about ±220 m, as sketched in Figure 4.26.

LUCID a relative luminosity monitor for ATLAS. By detecting inelastic proton-proton scat-

tering, it is dedicated to online luminosity monitoring. A usage as a rapidity-gap veto trigger
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Figure 4.26: Position of the forward detectors along the beam line, with the distances

measured from the ATLAS IP. [24]

for ATLAS is conceivable. LUCID is based on the principle that the number of interactions

in a bunch-crossing is proportional to the number of particles detected in the forward region.

It is build of an array of Cherenkov cones. A further detector dedicated for bunch-by-bunch

luminosity measurements is the Beam Conditions Monitor (BCM) [240], it consists of four

small diamond sensors on each side of the ATLAS IP arranged around the beampipe in a cross

pattern [187].

The luminosity scale determined by the ATLAS for 2011 has been evaluated based on 2011

van der Meer scan data [241], because of various operational issues with the LUCID detector

described in Reference [187]. The LUCID and BCM [242] results were used as a cross-check of

the stability. Further independent cross checks were provided by utilising the ATLAS calorime-

ters. In the first method, the PMT current drawn in Tile Calorimeter modules is used [243],

while in the second the current drawn across the liquid argon gaps in the Forward Calorimeter

modules is used [244]. Since the currents drawn are related to the mean number of particles

interacting in each calorimeter, the observed currents are sensitive to the luminosity. A review

of the luminosity measurements for ATLAS is given in Reference [245].

The ZDCs are located between the beam-pipes just after the split. Primarily the calorime-

ters are designed to detect forward neutrons in |η| > 8.3 from heavy ion collisions. The neutron

number in this very forward region is strongly correlated to the centrality of the collisions.

Background neutrons, beam-gas and halo effects are reduced by a coincidence trigger, requir-

ing a signal from both ZDCs. One detector consists of four modules, one electromagnetic with

about 29 X0 and three hadronic calorimeters, each with a depth of about 1.16 λ. Its time reso-

lution of roughly 100 ps provides an ID-independent measurement of the vertex location with a

precision of ±3 cm along the beam axis.

ALFA follows the traditional approach for hadron colliders to measure the absolute lumi-
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nosity via elastic scattering at small angles. Its detectors consist of scintillating-fibre trackers

located inside Roman-pots. This technique, successfully used in the past, is based upon sepa-

ration of the detector volume, called the pot, from the accelerators vacuum by a thin window.

An interconnection with bellows to the beam-pipe allows for a proximity of the detector to the

beam of 0.85 mm. The connection of the elastic-scattering amplitude in forward direction to the

total cross-section is provided by the optical theorem, an overview given in Reference [246],

which allows for an extraction of the luminosity. Measurements of extremely small scattering

angles of around 3 µrad translate to a resolution requirement of 30 µm. As this is less than the

nominal beam divergence, remoteness from the IP and vicinity to the beam are necessary. Two

Roman-pot stations are placed within 4 m on each side at a distance of 240 m from the IP. The

anticipated spatial resolution of ALFA is (25 ± 3) µm. ALFA already recorded three data runs,

one in 2011 and two in 2012, the collaboration is close to finish the physics analysis of the 2011

data set [247].

4.2.6 Trigger and Data Acquisition

The trigger system plays a crucial role in the Large Hadron Collider experiments as the collision

and data rates are significantly higher than the rates at which they can be stored. Therefore only

the events with an interesting topologies should be selected by the trigger system and stored

for analysis. Each bunch crossing produces about 1.5 MB of data in the read out system of the

ATLAS detector. In 2011 installed systems for archival storage and data processing possessed

a capability corresponding to a rate of 300 MB/s [248], this was upgraded to 600 MB/s [249]

for the data taking in 2012. The necessary rejection power in the order of 107 can hardly be

achieved in a single processing step. Large general purpose collider experiments currently use

at least two entities for event selection before storing the data. The ATLAS trigger system

consists of three levels, labelled as Level-1 (L1), Level-2 (L2) and event filter (EF). L2 and EF

together form the High-Level Trigger (HLT). Data of an event passing these filters is transferred

to the Data Acquisition system (DAQ). An overview of the information and data flow is given

in Figure 4.27.

The hardware based L1 trigger uses reduced granularity information from the muon spec-

trometers, RPC and TGC, as well as all calorimeter subsystems. It searches for signatures of

high-pT muons, electrons/photons, jets, hadronically decaying τ leptons, large total and large

missing transverse energy (Emiss
T ). Detector readout systems, especially the limited pipeline

memories, require a L1 decision within 2.5 µs after the bunch-crossing occurs. Subtraction of

the cable-propagation delays, results in an actual required L1 processing time of less than 1.5 µs.

Commercially available computers and networking hardware, as used for the HLT, could not

meet these needs. Therefore, the L1 trigger was assembled from custom made electronics. The

L1 consists of three major components:

• L1Calo, a pipe-lined digital system works with about 7000 analog trigger towers with
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Figure 4.27: Block diagram depicting the interactions, connections, hardware and the

data flow of the trigger and DAQ systems. [24]
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a granularity of 0.1 × 0.1 in ∆η × ∆φ and larger areas for higher |η|. It is located in a

nearby service cavern, called USA15. Further details of this trigger architecture are given

in Figure 4.28.

• The L1 muon trigger combines information of three triggers, one covering the barrel and

two for the end-cap regions. Each trigger requires coincidence of hits in different trigger

detector stations which have to be re-constructable, within a certain road to the IP.

• The Central Trigger Processor (CTP) receives the signals from L1Calo and the L1 muon

trigger. Using look-up tables, it creates trigger decisions from the input, as visualised in

Figure 4.29.

While the decision is processed by the trigger, all detector readout channels are stored in

pipeline memories, placed on and around the detector. The muon time of flight to the spec-

trometer exceeds a bunch-crossing interval. The typical width of a calorimeter signal extends

over 25 bunch-crossings. These effects are accounted for. Vicinity to the detector where radia-

tion levels are high and therefore threaten the data reliability as well as technical aspects led to

the shortest feasible pipeline length, preset by the the L1 processing time. Regions-of-Interest

(RoIs), identified as possible trigger sources by the CTP, are passed on to the L2 with a max-

imal rate of 100 kHz. In 2011 the L1 rate was limited to approximately 50 kHz, as shown in

Figure 4.30 [250].
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The L2 trigger processes only the information within the RoIs in order to minimise the data

transfer from the detector readout, evaluating only approximately only 2 % of the complete
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luminosity of 3.2 × 1033 cm−2s−1. [250]

available information. In several refining steps, each using data of additional detector subsys-

tems, a hypothesis algorithm determines whether identified features meet the selection criteria.

The L2 reduces the event rate below 5 kHz within an average processing time of less than 40 ms

per event.

The EF, a processing farm, runs tasks with the standard ATLAS event reconstruction soft-

ware. Event selection similar to L2 is repeated with full detector data access. A subset of tags,

created during this decision process, is appended to the output event data structure. EF process-

ing times per event were on average in the order of 4 s. An important task in this step is the

classification of events according to ATLAS physics streams: “e/gamma”, “muon”, “jetTauEt-

miss” and “minBias”. Event data passing this last filter, with an average rate of approximately

400 Hz in 2011 and approximately 600 Hz in 2011, is transmitted to the Subfarm Output Unit

(SFO). The SFO, interface between HLT and CERN’s central data recording service, features an

output bandwidth capable to handle peak event rate values up to 400 Hz. In case of prolonged

transmission failure its capacity allows storage of full event data of about 24 h data-taking. In

2012 this system was upgraded and additional 200 Hz were written into the “delayed stream”,

which will be reconstructed during the long shutdown [249].

In addition to the data streams mentioned, a subset of events is written to calibration and ex-

press streams. Only events usable for data quality or detector status monitoring are selected for

these special streams. All triggers discussed above are fully configurable. Weights of selection

tags, prescale factors, may be edited to control the event rate for chosen event signatures.
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4.3 Data Taking

The LHC started up on September 10th, 2008. Nine days after the first beam passed the com-

plete ring an accident occurred [251]. A faulty electric connection between two dipoles was

determined as the source. This forced the LHC into a long repair and safety upgrade phase

of about one year. Several dipoles and multipoles were brought to the surface for mend-

ing. Other similar faulty connections were detected and replaced. The re-startup occurred on

November 20th, 2009, and it took a machine learning period until March 30th 2010 before an en-

ergy of
√

s = 7 TeV was successfully established and sustained until the end of 2011, while the

instantaneous luminosity was constantly increases [252]. A further step towards nominal oper-

ation was taken in the beginning of 2012, when the centre of mass energy was raised to 8 TeV.

The anticipated bunch spacing of 25 ns, thus roughly 7 m between each other, was achieved just

before end of the proton-proton operation in December 2012. The ring was filled with 2748

bunches out of the possible 2808 [14]. The most common run setup during 2011 and 1012 pp

collision operation was 1380 bunches with a spacing of 50 ns. The LHC delivered 48 pb−1 in

2010 [253], 5.6 fb−1 in 2011 [253] at
√

s = 7 TeV, and 23.3 fb−1 [254] in 2012 at
√

s = 8 TeV,

as shown in Figure 4.31, reaching a peak instantaneous luminosity of 7.73× 1033 1
cm2s

, recorded

by ATLAS, as illustrated in Figure 4.32. For an overview of the luminosities delivered to all ex-

periments by the LHC refer to Reference [255]. In 2015 the design luminosity of 1034 1
cm2s

[14]

is planned to be reached. At design luminosity, an average of 23 inelastic proton-proton inter-

actions per bunch crossing was estimated [14], the value measured by ATLAS in 2012 during

stable beam conditions was already close to 40, as visualised in Figure 4.33.

The data taking is divided in periods which usually mark similar data and detector conditions

or have planned technical stops in between them. Further one fill of the LHC is labelled with

a run-number. Table 4.3 and Table 4.4 provide an overview of the data taking in 2010 and

2011. The excellent data taking efficiency by ATLAS of 96 % and 98 %, relative to the LHC

delivered luminosity, in the years 2010 and 2011, respectively, should be noted as a remarkable

achievement.



68 4.3. Data Taking

Day in 2010

24/03 19/05 14/07 08/09 03/11

]
­1

T
o

ta
l 
In

te
g

ra
te

d
 L

u
m

in
o

s
it
y
 [

p
b

0

10

20

30

40

50

60

Day in 2010

24/03 19/05 14/07 08/09 03/11

]
­1

T
o

ta
l 
In

te
g

ra
te

d
 L

u
m

in
o

s
it
y
 [

p
b

0

10

20

30

40

50

60
 = 7 TeVs     ATLAS Online Luminosity

LHC Delivered

ATLAS Recorded

­1Total Delivered: 48.1 pb
­1

Total Recorded: 45.0 pb

Day in 2011

28/02 30/04 30/06 30/08 31/10

]
­1

T
o

ta
l 
In

te
g
ra

te
d
 L

u
m

in
o
s
it
y
 [
fb

0

1

2

3

4

5

6

7  = 7 TeVs     ATLAS Online Luminosity

LHC Delivered

ATLAS Recorded

­1Total Delivered: 5.61 fb
­1Total Recorded: 5.25 fb

Day in 2012

26/03 31/05 06/08 11/10 17/12

]
­1

T
o

ta
l 
In

te
g
ra

te
d
 L

u
m

in
o
s
it
y
 [
fb

0

5

10

15

20

25

30  = 8 TeVs     ATLAS Online Luminosity

LHC Delivered

ATLAS Recorded

­1Total Delivered: 23.3 fb
­1Total Recorded: 21.7 fb

Figure 4.31: Total integrated luminosity in 2010 (top) , 2011 (lower left), and 2012 (lower

right). Cumulative luminosity versus day delivered to (green), and recorded by ATLAS

(yellow) during stable beams and for pp collisions at 7 and 8 TeV centre of mass energy in

2010, 2011 and 2012. The delivered luminosity accounts for the luminosity delivered from

the start of stable beams until the LHC requests ATLAS to turn the sensitive detector off to

allow a beam dump or beam studies. Given is the luminosity as determined from counting

rates measured by the luminosity detectors. These detectors have been calibrated with the

use of the van-der-Meer beam-separation method, where the two beams are scanned against

each other in the horizontal and vertical planes to measure their overlap function. [254]
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Chapter 5

Event Selection and Data-Driven

Background Estimation Techniques

In this chapter trigger and reconstructed physics objects utilised for the event selections, as well

as the data-driven background and efficiency estimation techniques applied by the three different

light charged Higgs boson analyses are discussed. All the studies presented in this work were

performed with the help of ROOT – A Data Analysis Framework [257], utilising ROOT n-tuples

produced by ATHENA [141]. In this context “light” charged Higgs boson refers to mH± smaller

than the top quark mass, mt. At the LHC the dominant production mode for H± is through top

quark decay via t → bH+. The dominant source of top quarks at the LHC is tt production, as

shown by the example Feynman diagram in Figure 5.1.

f

f′
g

g

g

ντ

τ+
H

+

W
-

t

t

b

b

Figure 5.1: Example for a leading-order Feynman diagram for the production of a charged

Higgs boson through gluon fusion in tt decays. [172]

The nomenclature for the different channels is best explained considering the diagram in

Figure 5.1, where the first object in the name always denotes the identified particle stemming

from the charged Higgs boson decay and the second object(s) name the reconstructed product(s)

of the W boson decay. Note that “τhad” stands in shorthand for hadronically decaying τ leptons,

an approximate branching ratio of 65 %, and “τlep” for leptonically decaying τ leptons with a
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branching ratio of approximately 35 %, as illustrated in Figure 5.2. Further note that leptons

from τlep decays can not be distinguished from leptons stemming from other sources.

Figure 5.2: Pie chart illustrating the most common decay modes and their branching ratios of

the τ lepton based on the data found in Reference [36]. [258]

5.1 Event Cleaning

The basic ATLAS data quality checks are applied. To ensure that no jet in the event is consis-

tent with having originated from instrumental effects, such as spikes in the hadronic end-cap

calorimeter, coherent noise in the electromagnetic calorimeter, or non-collision backgrounds a

selection, the so-called “jet cleaning”, is performed by discarding events where any jet with

pT > 20 GeV fails the quality cuts discussed in Reference [259]. In addition, events are dis-

carded if the primary vertex, the one with the largest sum of track momenta, has less than five

associated tracks.

In periods E–H of 2011 data taking six front-end boards in the electromagnetic Liquid Argon

barrel calorimeter could not be read out. Therefore events with a calorimeter jet in the vicinity

of this “LAr hole” are discarded. If an electron or a jet with ET greater than 15 or 20 GeV,

respectively, is identified within 0.1 < η < 1.5 and −0.5 < φ < −0.9. This veto is applied in the

same step as the jet cleaning.

5.2 Trigger for the Charged Higgs Boson Analyses

A trigger has to balance between maintaining the rate within the bandwidth limits and high

signal selection efficiencies for analyses. Keeping the output rates under control is a crucial part
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of efficient and stable data acquisition. The performance of the ATLAS trigger is described in

Reference [248]. Dedicated studies were performed for the combined τ and missing transverse

energy trigger.

Dedicated trigger studies, to ensure stable rates throughout the 2012 data taking, as well as

highest possible signal efficiencies were carried out. Due to changes in the τ as well as the Emiss
T

trigger algorithms in the beginning (period A) of the 2012 data taking these detailed studies en-

sured the highest amount feasible of data recorded for the charged Higgs τhad+jets analysis. It is

important to keep the Emiss
T threshold low, else the sensitivity for the low charged Higgs masses

could be reduced, as Figure 5.3 demonstrates. A τ trigger isolation at Level 1 was tested in

combination with non-isolated higher threshold trigger, to compensate for isolation inefficien-

cies for higher pT τ leptons, as can be evinced in Figure 5.4. This setup however did not save

as much trigger bandwidth as anticipated and after the trigger hardware upgrade was replaced

by a non-isolated low pT threshold (29 GeV) τ trigger, which required one or three tracks. In

combination with a new Emiss
T trigger, utilising topological clusters of the calorimeters [260] at

trigger level for improved Emiss
T calculation, with a Emiss

T threshold at 50 GeV was tested and

approved for the 2012 data taking.
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Figure 5.3: Emiss
T distributions for different light charged Higgs boson signal masses.

5.2.1 Trigger for the τhad+Lepton and τlep+Jets Channels

The τhad+lepton and the τlep+jets final state analysis rely on events passing a single-lepton trig-

ger. Electron trigger with a pT threshold of 20 or 22 GeV for periods B–H and for periods I–K

respectively. Muon trigger at 18 GeV for the periods B–H and the same pT threshold but tighter

selection criteria for periods I–M. These thresholds are low enough to guarantee that electrons
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Figure 5.4: Trigger turn on curves of components of a possible τhad+jets charged Higgs search

analysis for the data taking in 2012. Level 1 isolation studies of the τ trigger with possible

logical “OR” combinations with higher threshold non-isolated items to recover the ineffi-

ciency at higher pT are shown in the top plot. The turn-on curve, shown in the lower plot,

studies new Emiss
T trigger item options at Event Filter level, where a “t” after the threshold

value denotes “tight” to denote the closeness of the threshold value to the Level 2 threshold,

and “tclcw” denotes a Emiss
T calculated using “topological clusters” with the “local cluster

weighting” calibration scheme. A signal sample with mH± = 130 GeV was used for these

histograms.
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with ET > 25 GeV and muons with pT > 20 GeV are situated in the plateau region of the

trigger-efficiency curve.

5.2.2 Trigger for the τhad+Jets Channel

The τhad+jets final state analysis relies on events passing a combined τ and Emiss
T trigger. For

periods B–K the trigger has a pT threshold of 29 GeV for the τ object and a Emiss
T threshold

of 35 GeV. For the periods L–M, the trigger has the same thresholds, but additionally requires

three jets at Level-1 with a minimum pT of 10 GeV. This was proven to have no influence on

the signal efficiency, but reduced this trigger L1 rates by 50 %. In both cases no correction on

the Emiss
T is applied for muon objects. The efficiency of these triggers, as measured in signal

simulation, after all selection criteria, is 70 % [172].

5.3 Physics Object Reconstruction

This section provides details on the reconstructed physics objects used in the analyses. Note

that some requirements, as for example the thresholds for the transverse energy, ET, or the

transverse momentum, pT, of charged leptons and τ leptons amongst others, might be increased

in steps in the different analyses selections.

5.3.1 Muons

Muon candidates are required to contain matching ID and MS tracks [261], a pT > 15 GeV

and to lie within |η| < 2.5. Further they have to fulfil tight identification selection criteria and

good track quality is ensured by imposing criteria on the number of hits in the ID sub-detectors,

taking known in-operational channels into account [262]. Only isolated muons are accepted by

requiring that the transverse energy deposited in the calorimeters and the transverse momentum

of the inner detector tracks in a cone of radius ∆R = 0.2 and 0.3 around the muon amounts

to less than 4 GeV and 2.5 GeV, respectively. The energy deposited in the calorimeter and

the muon track momentum itself are excluded from the energy sum in the cone when applying

these isolation requirements. Scale factors are applied to simulated events with muons to

account for trigger and identification efficiency differences between the data and simulations.

5.3.2 Electrons

Electrons are reconstructed by matching clustered energy deposits in the electromagnetic

calorimeter to tracks reconstructed in the ID. Candidates are required to meet quality require-

ments based on the expected shower shape, enclosed in the definition of the tight electron
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identification requirements, which have an efficiency in the range of 70–80 % [228]. Electrons

are additionally requested to have ET > 20 GeV, where ET = Eclus/cosh(ηtrack) is computed

using the calorimeter cluster energy, Eclus, and the direction of the electron track, ηtrack. The

pseudorapidity range for the electromagnetic cluster covers the fiducial volume of the detector,

|η| < 2.47. The transition region between the barrel and end-cap calorimeters, 1.37 < |η| < 1.52,

is excluded. In addition, ET and η-dependent calorimeter and tracking isolation requirements

are imposed in a cone with a radius ∆R = 0.2 and 0.3, respectively, around the electron position,

excluding the electron object itself. The isolation criteria applied have an efficiency of about

90 % [228, 263]. The efficiencies of the electron trigger, reconstruction and identification are

measured using Z → ee and W → eν events, in both data and Monte Carlo simulation samples.

The MC simulations are generally found to model the data well [228], considering the electron

reconstruction, with a few exceptions mainly regarding the lateral development of showers and

the TRT in the end-caps. Scale factors are derived to parametrise these efficiency differences

between the data and simulations.

5.3.3 Jets

Jets are reconstructed using the anti-kt algorithm [264, 265] with a size parameter value of

R = 0.4. The jet finder uses three-dimensional, noise-suppressed clusters of calorimeter cells,

topological clusters [260], that are reconstructed at the electromagnetic scale, appropriate for

the energy deposited by electrons or photons. Jets are then calibrated to the hadronic energy

scale with correction factors based on simulation [266, 267].

A method that allows identification and selection of jets originating from the hard-scatter

interaction using tracking and vertex information is utilised [268]. It is referred to as the “Jet

Vertex Fraction” (JVF), defined as the fraction of the total transverse momentum of the charged

particle tracks associated to the jet that belongs to tracks which are also compatible with the

primary vertex:

JVF(jeti, vtx j) =

∑
k pT(trkjeti

k
, vtx j)

∑
n

∑
l pT(trk

jeti
l
, vtxn)

. (5.1)

By convention, jets with no associated tracks are assigned a JVF value of −1 to keep a high

efficiency for jets at large values of |η|, outside the range of the inner tracking detectors. The jet

selection based on JVF is insensitive to pile-up. A requirement of |JVF| > 0.75 is set for all jets

during event selection. Discrepancies between the simulated and measured JVF distributions

are accounted for as a systematic uncertainty in the analyses [269, 270].
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5.3.4 b-Tagging

To identify jets initiated by b-quarks, the MV1 algorithm [271] is utilised. The MV1 algorithm

is a neural-network based algorithm that uses the output weights of IP3D, SV1 and JetFit-

terCombNN as inputs [271, 272], combining impact-parameter information with the explicit

determination of a secondary vertex. A working point corresponding to an average efficiency

of about 70 % for b-jets with pT > 20 GeV in tt̄ events and a light-quark jet rejection factor of

about 130 is chosen. As the b-tagging algorithm relies on information of the inner tracking

detectors, the acceptance region for all jets is restricted to |η| < 2.4. Tagging and mis-tagging

efficiency scale factors relate efficiencies, as determined in various data samples, to their

counterparts in simulation [273–275]. These are applied to simulation, after the b-tagging

algorithm was run to the jets.

5.3.5 Hadronically decaying τ Leptons

To reconstruct hadronically decaying τ leptons, anti-kt jets with either one or three associated

tracks reconstructed in the ID and depositing ET > 10 GeV in the calorimeter are consid-

ered as τ lepton candidates [276]. Dedicated veto algorithms are utilised to reject electrons

and muons [277]. The τ lepton candidates are further required to have a visible transverse

momentum of at least 20 GeV and to be within |η| < 2.3. Hadronically decaying τ leptons

are identified with a likelihood criterion designed to discriminate against quark and gluon

initiated jets by using shower shape and tracking variables as inputs. A working point utilising

a likelihood-based identification technique with an efficiency of about 30 % for hadronically

decaying τ leptons with pT > 20 GeV in Z → ττ events is chosen, leading to a rejection factor

of about 100–1000 for jets [277]. The rejection factor depends on the pT and η of the τ lepton

candidate and on the number of associated tracks. Only τ lepton candidates which fulfil the

likelihood-based identification criterion are hence referred to as “τ leptons”.

5.3.6 Missing Transverse Momentum

The magnitude of the missing transverse momentum, Emiss
T , is reconstructed from noise-

suppressed clusters of cells in the calorimeters, topological clusters [260] and from muon

tracks reconstructed in the muon spectrometer and the inner tracking detectors [221]. Clusters

of calorimeter cells belonging to jets, including τ lepton candidates, with pT > 20 GeV are

calibrated to the hadronic energy scale. Calorimeter cells not associated to any object are also

taken into account and calibrated at the electromagnetic energy scale. To deal appropriately

with the energy deposited by muons in the calorimeters, the contributions of muons to Emiss
T are

calculated differently for isolated and non-isolated muons.
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5.3.7 Removal of Geometric Overlaps between Objects

When selected lepton and jet candidates, satisfying the criteria above, overlap with ∆R < 0.4 or

0.2, the following procedures are applied in this respective order: muon candidates are rejected

if they are found within ∆R < 0.4 of any jet with pT > 25 GeV; a τ lepton candidate is rejected

if found within ∆R < 0.4 of a b-tagged jet or within ∆R < 0.2 of a selected muon or electron

and jets are removed if they are within ∆R < 0.2 of a selected τ lepton or electron.

5.4 Selection and Cut Optimisation

5.4.1 τhad+Lepton Analysis Selection

This analysis relies on the detection of τhad+lepton decays of tt̄ decays, where the hadronically

decaying τ lepton arises from H± → τ±hadν, while the lepton, ℓ, an electron or muon, stem from

a leptonically decaying W boson, i.e. tt̄ → bb̄WH+ → bb̄(ℓν)(τhadν). In this analysis Emiss
T is

used as the discriminating variable for SM tt̄ events and those where the top quark decays are

mediated via a charged Higgs boson, in which case the neutrinos are likely to carry away more

energy (also see Figure 5.3). In the lepton case the object pT and ET cuts were determined by the

trigger thresholds. The lower thresholds of further reconstructed objects were set in accordance

to the validity range for the applied MC to data scale factors.

In the charged Higgs search with data taken in 2010 [159] a scan of the Emiss
T and the trans-

verse energy sum in the calorimeters,
∑

ET, phase space was performed to determine a signal

to background ratio optimised set of cuts. The distributions, for the analysis with the data taken

in 2010, of selected events before the application of the Emiss
T > 60 GeV and

∑
ET > 200 GeV

selection criteria are given in Figure 5.6 and Figure 5.5, respectively.

Due to increased pile-up conditions the
∑

ET variable was not modelled well in the data

taken in 2011.
∑

pT is defined as the sum of the transverse momenta of all tracks associated

with the primary vertex. Tracks entering the sum must pass quality cuts on the number of hits

in the central tracking detector and a pT > 1 GeV. As this variable is based on tracks from

the primary vertex (as opposed to energy deposits in the calorimeter), it is robust against pile-

up. The Emiss
T contribution from QCD in the analyses with 2011 data was estimated utilising

a data-driven background estimation method , therefore no cut was applied on this variable.

The τhad+lepton analysis relies in the single-lepton triggers, as described in Section 5.2.1. A

matching of the selected lepton and the single-lepton trigger object is performed by requiring

∆R < 0.2.

To efficiently select τhad+lepton events, the following requirements are imposed:
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Figure 5.5: The sum over the transverse energy
∑

ET distributions before applying the
∑

ET > 200 GeV cut for τhad+leptons channel of the charged Higgs search, split in the muon

(left) and electron (right) channels.
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T distributions before applying the
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T > 60 GeV cut for τhad+leptons channel of the charged Higgs search, split in the muon

(left) and electron (right) channels.
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• exactly one lepton with ET > 25 GeV (electron) or pT > 20 GeV (muon) and matched to

the corresponding trigger object, no further electron or muon present in the event;

• exactly one τ lepton within |η| < 2.3 with pT > 20 GeV and a reconstructed electric

charge opposite to the selected lepton;

• at least two jets with pT > 20 GeV, with at least one b-tagged jet among them;

• ∑
pT > 100 GeV to suppress multi-jet events.

After imposing the above listed event selection the total signal efficiency is determined from

simulation and given, separately for the muon and electron triggered categories, in Table 5.1 for

different charged Higgs boson mass hypotheses.

mH± (GeV) µ-channel efficiency (%) e-channel efficiency (%)

90 0.402 0.321

100 0.416 0.309

110 0.425 0.324

120 0.422 0.307

130 0.403 0.293

140 0.350 0.268

150 0.293 0.232

160 0.229 0.192

Table 5.1: Signal efficiency as a function of the charged Higgs boson mass determined from

simulation.

5.4.2 τlep+Jets Analysis Selection

This analysis relies on the detection of τlep+jets decays of tt̄ events, where the charged lepton,

ℓ an electron or muon, arises from the subsequent H± → τ±lepν decay, while the jets stem from a

hadronically decaying W boson, i.e. tt̄→ bb̄WH+ → bb̄(qq̄′)(τlepν).

The τlep+jets analysis uses events passing a single-lepton trigger with an ET threshold of

20–22 GeV for electrons and a pT threshold of 18 GeV for muons. In addition, to select a

sample of τlep+jets events enriched in tt̄ candidates, the following requirements are imposed:

• exactly one lepton with ET > 25 GeV (electron) or pT > 20 GeV (muon) and matched

to the corresponding trigger object, neither a second lepton nor a hadronically decaying

τ lepton in the event;
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• at least four jets with pT > 20 GeV, exactly two of these b-tagged;

• Emiss
T > 40 GeV and, to discriminate between Emiss

T arising from isolated neu-

trinos and from poorly reconstructed leptons, this requirement is tightened to

Emiss
T × | sin∆φℓ,miss| > 20 GeV if the azimuthal angle, ∆φℓ,miss, between the lepton and

Emiss
T is smaller than π/6.

5.4.3 τhad+Jets Analysis Selection

This analysis relies on the detection of τhad+jets decays of tt̄ events, where the hadronically

decaying τ lepton arises from the H± → τ±hadν decay, while the jets stem from a hadronically

decaying W boson, i.e. tt̄ → bb̄WH+ → bb̄(qq̄′)(τhadν). For the selected events, the transverse

mass, mT =

√
2pτTEmiss

T

(
1 − cos∆φτ,miss

)
, with ∆φτ,miss defined as the azimuthal angle between

the hadronically decaying τ lepton and the direction of the missing transverse momentum, is

used as final discriminating variable. The mT variable is usually utilised for the leptonically

decaying W boson analyses. Therefore the discriminating power grows with the increasing mass

difference of the charged Higgs boson signal and the W bosons from tt background decays.

The τhad+jets analysis uses events passing a τ + Emiss
T trigger described in Section 5.2.2

with a threshold of 29 GeV for the τ trigger object and 35 GeV for the Emiss
T . The following

requirements to select a sample τhad+jets events are imposed:

• at least four jets with pT > 20 GeV, excluding hadronically decaying τ leptons, among

them at least one b-tagged jet;

• exactly one hadronically decaying τ lepton with pT > 40 GeV within |η| < 2.3 and match-

ing the corresponding τ trigger object;

• neither a second hadronically decaying τ lepton with pT > 20 GeV, nor any electrons

with ET > 20 GeV, nor any muons with pT > 15 GeV;

• Emiss
T > 65 GeV;

• to reject events in which a large reconstructed Emiss
T is present due to the limited resolution

of the energy measurement the ratio, based on the
∑

pT, must satisfy:

Emiss
T

0.5 GeV1/2 ·
√∑

pT

> 13;

• the combination of two untagged jets ( j) and one b-tagged jet (b) with the highest p
j jb

T

satisfying m j jb ∈ [120, 240] GeV ensures the selection of a topology consistent with a top

quark decay.
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5.5 Background Estimations

This section introduces data-driven background estimation methods utilised for the charged

Higgs boson searches. First the measurement of the τ lepton mis-identification probability from

electrons is explained in detail. This measurement was, in the process of this work, performed

for the first time at ATLAS experiment, with data taken in 2010. Subsequently the usage of

its results in the charged Higgs boson searches, with data taken in 2011, for the estimation

of background contributions stemming from electrons mis-identified as τ leptons in a data-

driven way, as well as further data-driven background estimation methods for other background

contributions are described.

5.5.1 Measurement of the τ Lepton Mis-identification Probability from

Electrons

A dedicated measurement of the mis-identification probability of τ leptons from electrons was

performed with the first data taken in 2010, this work is documented in Reference [151]. Elec-

trons are an important background for analyses involving hadronically decaying τ leptons, first

and foremost the τ leptons with one associated track. Therefore, a dedicated cut-based electron

veto algorithm is available, utilising on the following variables [278]:

• E
strip
max : The maximum energy deposited in the strip layer of the electromagnetic calorime-

ter, not associated with that of the leading track, pLtrk
T .

• EEM/pLtrk : The ratio of the energy deposited in the electromagnetic calorimeter, EEM,

and the momentum of the leading track, pLtrk.

• EHad/pLtrk : The ratio of the energy deposited in the first layer of the hadronic calorimeter,

EHad, and the leading track momentum, pLtrk.

• NHT/NLT : The ratio of high-threshold hits to low-threshold hits in the TRT. This variable

is only used within the acceptance region |η| < 1.7.

The distributions of these, by the cut-based electron veto algorithm utilised, variables are shown

in Figure 5.7 after the full tag-and-probe selection, as described below. Generally a good agree-

ment is observed between data and Monte Carlo, except for the ratio of high-threshold to low-

threshold hits, where a significant shift to higher values is observed in data. This shift can

mainly be attributed to electron candidates falling inside the TRT region with |η| > 0.8. The

selection performed by the cut-based electron veto algorithm based on the variables described

above are pT and |η| dependent [278]. A Boosted Decision Tree (BDT) based electron veto

algorithm was equally considered and studied in this measurement.
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Figure 5.7: Variables utilised by the cut-based electron veto algorithm. The points represent the

data and the shaded area the signal prediction from Monte Carlo simulations. Backgrounds

investigated include QCD, as well as W boson events, but were found to be negligible. [151]
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To measure the performance of the electron veto from data, a tag-and-probe method based

on Z → ee events is developed. Events that pass the electron trigger requirements on Event-

Filter level with a threshold of ET = 15 GeV and medium electron identification criteria are

selected. The electron candidate matched to the trigger is required to fulfil pT > 30 GeV,

to fall inside |η| < 2.47, excluding the transition region of the electromagnetic calorimeter,

1.37 < |η| < 1.52, and not to be reconstructed in regions of the calorimeter which are known to

be not fully operational. This “tag” electron further has to satisfy the tight electron identification

criteria [279] and has to be isolated from the rest of the event. An isolation criterion [280], is

calculated from the sum of the pT of all tracks found in a cone of ∆R = 0.4 around the tag

electron, normalised to the pT of the tag electron and required to have a value < 0.06. As

“probe” a reconstructed τ lepton candidate with pT > 15 GeV and |η| < 2.5 is selected. It has to

have exactly one associated track, as three-prong τ lepton candidates suffer from a background

level which is too high for a reliable measurement of the electron mis-identification probability,

it is estimated to be negligibly small. The pT distribution of the probe at the τ energy scale and

the invariant mass distribution of the tag-and-probe pair are displayed on the left- and right-hand

side of Figure 5.8, respectively.
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Figure 5.8: Distributions of pT of the probe candidate (left-hand side) at the τ energy scale and

the invariant mass distribution of the tag-and-probe pair (right-hand side), calculated at the

electromagnetic scale. The points represent the data and the predictions from Monte Carlo

simulation are displayed as shaded histograms. [151]

In case more than one pair of tag-and-probe objects is found in the event, the pair with

the highest scalar sum of ET is chosen. In addition, the invariant mass of the tag-and-probe

pair, calculated using the energy at the electromagnetic scale, is required to fall inside the mass

window 80 GeV < mee < 100 GeV. To suppress remaining backgrounds, mainly from W → eν

processes, Emiss
T < 20 GeV is required where the missing energy in the event is calculated from

the vector sum of all calorimeter cells associated to clusters in the region |η| < 4.5, corrected

for identified muons [281].
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The probe candidates, satisfying the criteria above, are then subjected to the τ identifica-

tion algorithms and to the electron veto algorithms in order to determine the mis-identification

probability of electrons as hadronically decaying τ leptons. The mis-identification probability

is defined as:

fID =
Number of probe candidates passing electron veto and τ ID

Number of all selected probe candidates
. (5.2)

To assess the influence of backgrounds on the mis-identification probability, three control re-

gions are selected, based on the charge product of the tag and the probe candidates and on the

number of tracks associated to the probe candidate. The three regions are:

• Events with a negative charge product and three or more tracks associated to the probe

candidate.

• Events with a positive or zero charge product and three or more tracks associated to the

probe candidate.

• Events with a positive or zero charge product and one track associated to the probe can-

didate.

Since the available statistics in the control regions is not sufficient to correct the contribution

of the backgrounds binned in pT and |η|, an overall correction factor is calculated, integrated

over pT and |η|, and treated as a systematic uncertainty of the mis-identification probability.

Additional sources of systematic uncertainties considered are the energy scale of the probe

electron (1 % in the barrel region and 3 % in the end-cap region) and the choice of the signal

mass window. The latter is broadened to 70 < mee < 110 GeV, doubling the expected amount

of background events. The effects of the variations on the mis-identification probability were

taken into account as systematic uncertainties.

The mis-identification probabilities for the cut-based electron veto working point used in the

H± analyses with data taken in 2010 are displayed in Figure 5.9 as a function of pT (left-hand

side) and |η| (right-hand side) of the probe candidate. The mis-identification probability is of

the order of 1 % for probe candidates above a pT of 20 GeV, independent of the τ-identification

algorithm applied [151]. The region 15 < pT < 20 GeV of the probe candidate is dominated by

background stemming from QCD processes, and due to a lack of statistics a data-driven back-

ground estimation is not possible. Therefore, the mis-identification probability determined in

this pT region is not considered to be reliable. The mis-identification probabilities for the looser

electron veto algorithm working points have a typical mis-identification probability between

3 % and 5 %.

The mis-identification probabilities are potentially influenced by the amount of pile-up

present in the event. Therefore, the mis-identification probability was studied as a function

of the number of reconstructed vertices found in the event. The results of this study are dis-

played in Figure 5.10 for the tighter cut-based τ identification working point. In general, the
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Figure 5.9: The mis-identification probabilities for probe objects passing the likelihood-based

τ identification and the cut-based electron veto as well as the overlap removal with electrons

parametrised by ET and |η|, for the working point used in the H± analyses with data taken in

2010 are shown. The error bars denote the binomial statistical uncertainty.

influence of pile-up on the mis-identification probability of electrons as τ leptons was found to

be small. In the process of these studies mis-configurations of the cut-based as well as the BDT-

based electron veto algorithms were found. The cut-based electron veto used a wrong |η| range

for the calorimeter transition region, and the BDT-based electron veto, due to not considering

performance changes of the ID in the different η-regions, especially the lack of the TRT system

at η > 2.0, in the training resulted in a significant efficiency degradation in the forward regions.

These inefficiencies were promptly addressed for following versions of these algorithms. The

BDT-based electron veto algorithm with its thus improved performance was utilised for the H±

analysis with the data taken 2011.

5.5.2 Backgrounds with Electrons and Jets Mis-identified as τ Leptons

About 51 % of the simulated tt̄ events in the τhad+lepton final state contain a reconstructed

τ lepton matched to a, at the MC generator level, simulated hadronically decaying τ lepton.

In the other events, the reconstructed τ lepton is hence called “mis-identified”. These mis-

identified τ leptons originate from leptons, e or µ, in 3 % and hadronic objects, initiated by light

quarks, b-quarks or gluons, in 46 % of all simulated events.

The background of electrons mis-identified as τ leptons is estimated selecting a Z → e+e−

control region in the data [151], where either the electron or the positron are reconstructed as a

hadronically decaying τ lepton. The measured mis-identification probabilities, as explained in

detail in Section 5.5.1, with an average value of 0.2 % at the selected working point, are then

applied to all simulated events in the τhad+lepton analysis. Studies of Monte Carlo simulation

show that the application of the mis-identification rates determined from Z → ee to tt̄ events

is valid, as the electron-to-τ mis-identification probabilities for Z → e+e− and tt̄ events agree
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Figure 5.10: Mis-identification probability as a function of the number of primary vertices

found in the event for the tighter cut-based τ identification working point. The points rep-

resent the data. The statistical uncertainty is represented by the vertical bars and the total

uncertainty, calculated by adding the statistical and systematic uncertainties in quadrature,

is displayed by the hatched areas. The square markers indicate the prediction from simu-

lation and the shaded area represent the statistical uncertainty of the Monte Carlo sample

used. [151]

well [175].

The majority of mis-identified τ leptons after the final event selection however originate

from jets for which the mis-identification probability depends on the initial parton, i.e. light

quark, heavy-flavour quark or gluon. All jet types occur in tt̄ events, and it is not possible to

accurately predict the fraction of each, potentially leading to a large systematic uncertainty on

the jet→ τ lepton mis-identification probability. However, the influence of all jet types other

than light-quark jets can effectively be eliminated by categorising all events in terms of the

charge of the lepton relative to the τ lepton as opposite-sign (OS) or same-sign (SS) events. On

the one hand all processes with gluon and b-quark jets produce positively and negatively charged

mis-identified τ leptons at the same rate. While on the other hand the light-quark jet component

in SS events represents both charge mis-reconstruction and quarks which fragment such that

the leading charged particle does not have the same charge as the initial quark. Assigning a

negative weight to the SS events therefore on average cancels the gluon and heavy-flavour-

quark jet contributions from the OS events, leaving only the light-quark jets mis-identified as

τ leptons.

The rate at which light-quark jets are mis-identified as τ candidates is derived using a region

enriched with W+>2 jets events in the data, selected by requiring:

• exactly one electron or muon with ET or pT larger than 25 GeV;

• at least one τ lepton candidate;
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• at least two jets in addition to the τ lepton candidate(s), none of them b-tagged;

• Emiss
T > 40 GeV.

The leading process in this control region is gq → Wq′. Hence, the final state quark mis-

identified as a τ lepton candidate and the W boson usually have opposite charges. To reduce

the contribution from events with a correctly reconstructed τ lepton, mostly originating from

Z+jets events, a requirement on the transverse mass, mT, to be greater than 30 GeV is imposed.

The W+>2 jets events are then classified as OS and SS events using the charges of the lepton

and the τ lepton candidate. Figure 5.11 shows the mT distribution for OS, SS and OS-SS events

fulfilling the W + >2 jets selection, demonstrating the cancellation of heavy-flavour-quark and

gluon contributions.

However, Figure 5.11 also suggests that simulation poorly models mis-identified τ lepton

candidates. This motivates the use of data-driven methods to predict the background due to

mis-identified τ leptons. In particular, the number of tracks associated to jets mis-identified

as τ lepton candidates is found to be poorly modelled in simulation. Events in the data tend

to have fewer τ lepton candidates with one or three tracks. To correct the τ lepton candidate

selection efficiencies in simulation, τ track multiplicity scale factors are derived using OS-SS

events fulfilling the W + >2 jets selection, and are then applied to all jets mis-identified as

τ candidates in the simulation: 0.71 ± 0.03 for 1-track τ lepton candidates; 0.92 ± 0.03 for

3-track τ lepton candidates where the given errors are statistical only.

The probability for a light-quark jet to be mis-identified as a τ jet is measured in the data

and binned in pτT, the number of associated tracks Nτ
track (one or three), and the number of tracks

found within 0.2 < ∆R < 0.4 of the τ lepton candidate N iso
track. For each bin, the jet→ τ lepton

mis-identification probability is defined as the number of objects passing the τ identification

based on the likelihood criterion divided by the number prior to requiring identification. OS

events are given a weight +1 and SS events are given a weight −1, in both the numerator and

denominator of the jet→ τ lepton mis-identification probability. After OS-SS subtraction, the

selected events mostly contain τ candidates from light-quark jets and, to a much lesser extent,

electrons, muons, and correctly reconstructed hadronically decaying τ leptons. Figure 5.12

shows the measured values of the jet→ τ lepton mis-identification probability in W + >2 jets

events selected from the data, after OS-SS subtraction. These are then used to scale all simulated

events in the signal region. Events fulfilling the requirements listed in the beginning of this

section, in which the selected reconstructed τ lepton originates from a jet (of any type), are

weighted by the mis-identification probabilities. An additional weighting factor, +1 for OS

events and −1 for SS events, is further assigned to perform the OS-SS subtraction. The results

of the application of both methods are given in Table 6.1.
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Figure 5.11: Distributions of mT for events fulfilling the W + >2 jets selection, without the

requirement mT > 30 GeV. Each colour corresponds to a type of generator-level particle

matched to a τ lepton candidate, the highest energy particle within a cone of radius ∆R = 0.2

around the τ lepton candidate is considered. The SS events are given a weight of −1, as

shown in the left plot and in the right plot subtracted from the OS events. All simulated SM

processes are considered. [173]
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Figure 5.12: Probability for a light quark jet to be mis-identified as a 1-track or 3-track τ lepton,

measured in a region enriched with OS-SS W + >2 jets events in the data, as a function of

(a) pτT and (b) the number of tracks N iso
track found within 0.2 < ∆R < 0.4 of the τ lepton. [173]
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5.5.3 Embedding Method

The method consists of selecting a control sample of tt, single-top and W+jets events with a

reconstructed muon and replacing the detector signature of this muon with that of a simulated

τ lepton. Reconstruction algorithms are then re-applied to the new hybrid events, which are

used afterwards to estimate the background arising from SM processes with correctly recon-

structed hadronically decaying τ leptons. The complete event (except for the τ leptons) is thus

taken directly from the data, including underlying event and pile-up, Emiss
T , b-quark and light-

quark jets. In Figure 5.13 the prediction of the embedding method compared to Monte Carlo

simulation for the mT variable of correctly reconstructed τ leptons is shown.
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Figure 5.13: Comparison of the mT distribution for correctly reconstructed hadronically decay-

ing τ leptons predicted by the embedding method and by simulation. Combined statistical

and systematic uncertainties are shown. [172]

5.5.4 Multi-Jet Background

The multi-jet background is estimated by adjusting its rate such that the Emiss
T distribution of the

sum of the data-derived QCD-template and a template for all other simulated processes agree

well with the measurement. To achieve this a control region is defined where the τ leptons

must pass a looser τ identification, but fail the tighter τ identification [276] of the default se-

lection. Furthermore the events of the control region are required not to contain any b-tagged

jet. Assuming that the shapes of the Emiss
T and mT distributions are the same in control and

signal regions, the Emiss
T shape of the multi-jet background is measured in the control region,

after subtracting the simulated background contributions from other processes. These amount

to less than 1% of the observed events in the control region. Figure 5.14(a) compares the Emiss
T
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shapes obtained with the τhad+jets selection and in the control region, just before the final Emiss
T

requirement of the selection. The differences between the two distributions are taken into ac-

count as systematic uncertainty of this estimation method. A simultaneous fit is then performed

on the Emiss
T distribution of the selected data. The first fit-template is the multi-jet model ob-

tained from the control region and the second template is the shape of the sum of the other

processes, dominated by tt and W+jets, from Monte Carlo simulation. The fit result is shown

in Figure 5.14(b).
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Figure 5.14: (a) Shape of Emiss
T in the data control region after the baseline selection (before

the Emiss
T requirement) and after subtracting the simulated expectation from tt, W+jets, and

single top quark processes. (b) Fit of the Emiss
T templates in the signal region to data, only

statistical uncertainties are given. [172]

5.5.5 Backgrounds with Mis-identified Leptons

While the lepton identification provides a very pure sample of candidates, there is a non-

negligible contribution from non-isolated leptons arising from the semi-leptonic decay of

hadrons containing b-quarks or c-quarks from the decay-in-flight of π± or K mesons and,

in the case of mis-identified electron objects, from the reconstruction of π0 mesons, photon

conversions or shower fluctuations. All leptons from such mechanisms are referred to as

“mis-identified” leptons, as opposed to truly isolated leptons, for example stemming from

the prompt decay of W or Z bosons, which are hence referred to as “real” leptons. The

data-driven estimation of the number of mis-identified leptons passing the lepton selections of

Sections 5.3.1 and 5.3.2 is based on exploiting differences in the lepton identification between

real and mis-identified electrons or muons. Two data samples are defined which differ only in

the lepton identification criteria. The “tight” sample contains mostly events with real leptons

and uses the same lepton selection as in the analysis. Whereas the “loose” sample contains

mostly events with mis-identified leptons. This latter sample is obtained by loosening the
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isolation and identification requirements for the leptons. For loose electrons, the isolation

requirements have an efficiency of about 98 % for true isolated electrons, compared to 90 % in

the tight sample. For loose muons, the isolation requirement is removed. By construction, the

tight sample is therefore a subset of the loose sample.

Let NL
r and NL

m

(
NT

r and NT
m

)
be the number of events containing real and mis-identified

leptons, respectively, passing a loose (tight) criterion. The numbers of events containing one

loose or tight lepton are then given by:

NL = NL
m + NL

r , (5.3)

NT = NT
m + NT

r . (5.4)

Defining pr and pm as:

pr =
NT

r

NL
r

and pm =
NT

m

NL
m

, (5.5)

the number of mis-identified leptons passing the tight selection, NT
m, can be calculated:

NT
m =

pm

pr − pm

(
prN

L − NT
)
. (5.6)

The main ingredients of this data-driven method are thus the relative efficiencies pr and

pm for a real or a mis-identified lepton, respectively, to be detected as a tight lepton. On the

one hand the lepton identification efficiency pr is measured using a tag-and-probe method on

Z → ℓℓ data events with a dilepton invariant mass between 86 GeV and 96 GeV, where one lep-

ton is required to fulfil tight selection criteria. The rate at which the other lepton passes the same

tight selection criteria defines pr. The average values of the electron and muon identification

efficiencies are 80 % and 97 %, respectively. While on the other hand, a control sample with

mis-identified leptons is selected by considering events in the data with exactly one lepton pass-

ing the loose criteria. To select events dominated by multi-jet production the measured Emiss
T is

required to lie within 5 GeV and 20 GeV. Residual true leptons contribute at a level below 10 %

and are subtracted from this sample utilising Monte Carlo simulation. After this subtraction, the

rate at which a loose lepton passes tight selection criteria defines the mis-identification rate pm.

The average values of the electron and muon mis-identification probabilities are 18 % and 29 %,

respectively. In the final parametrisation of pr and pm, dependencies on the pseudorapidity of

the lepton, its distance ∆R to the nearest jet and the leading jet pT in the event are taken into

account [172].
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Chapter 6

Direct Searches for the Charged Higgs

Boson

6.1 Analysis of the τhad+Lepton Channel

After employing the optimised selection detailed described in Section 5.4.1 the expected num-

ber of background events for the SM-only hypothesis and the observation in the data is given

in Table 6.1. The total number of predicted events (signal+background) in the presence of a

130 GeV charged Higgs boson, assuming B(t → bH+) = 5 %, is also shown.

The τhad+lepton analysis relies on the theoretically calculated tt production cross-section

σtt̄ = 167+17
−18 pb [179] for the background estimation. In the presence of a charged Higgs boson

in the top quark decays, with a branching ratio B(t → bH+), the contributions of tt̄→ bb̄W+W−

events in the backgrounds with true or mis-identified hadronically decaying τ leptons are scaled

according to this branching ratio. In this analysis the background with correctly reconstructed

τ leptons is obtained with simulation. The data are found to be consistent with the expectation

for the background-only hypothesis. The Emiss
T distributions, after all selection cuts applied, are

shown in Figure 6.1(a) and Figure 6.1(b) for the τhad + e and the τhad + µ channels, respectively.

6.2 Analysis of the τlep+Jets Channel

Having selected a τlep+jets sample enriched in tt̄ candidates, by employing the selection de-

scribed in Section 5.4.2, jets must be assigned correctly to the decay products of each W boson

(with a mass mW = 80.4 GeV) and top quark. In particular, the hadronic side of the event is

identified by selecting the combination of one b-tagged jet (b) and two untagged jets ( j) that

minimises:

χ2 =
(m j jb − mtop)2

σ2
top

+
(m j j − mW)2

σ2
W

, (6.1)
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Figure 6.1: Emiss
T distribution after all selection cuts in the τhad+lepton channel, for

(a) τ+electron and (b) τ+muon final states. The dashed line corresponds to the SM-only hy-

pothesis and the hatched area around it shows the total uncertainty for the SM backgrounds.

The solid line shows the predicted contribution of signal+background in the presence of a

130 GeV charged Higgs boson withB(t → bH+) = 5 % andB(H+ → τν) = 100 %. The con-

tributions of tt̄ → bb̄W+W− events in the backgrounds with true or mis-identified τ leptons

are scaled down accordingly. [172]
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Sample Event yield (τhad+lepton)

τhad + e τhad + µ

True τ+lepton 430 ± 14 ± 59 570 ± 15 ± 75

Mis-identified jet→ τ 510 ± 23 ± 86 660 ± 26 ± 110

Mis-identified e→ τ 33 ± 4 ± 5 34 ± 4 ± 6

Mis-identified leptons 39 ± 10 ± 20 90 ± 10 ± 34

All SM backgrounds 1010 ± 30 ± 110 1360 ± 30 ± 140

Data 880 1219

t → bH+ (130 GeV) 220 ± 6 ± 29 310 ± 7 ± 39

Signal+background 1160 ± 30 ± 100 1570 ± 30 ± 130

Table 6.1: Expected event yields after all selection cuts in the τhad+lepton channel and com-

parison with 4.6 fb−1 of data. The numbers in the last two rows, obtained for a hypo-

thetical H+ signal with mH+ = 130 GeV, are obtained with B(t → bH+) = 5 % and

B(H+ → τν) = 100 %. All other rows assume B(t → bW+) = 100 %. Both statistical

and systematic uncertainties, explained detailed in Section 6.4, are shown, in this respective

order. [172]

where σtop = 17 GeV and σW = 10 GeV are the widths of the reconstructed top quark and

W boson mass distributions, as measured in simulated tt̄ events. Using information about the

correctly identified combinations in the generated events, the jet assignment efficiency is found

to be 72 %. Events with χ2 > 5 are rejected to select well-reconstructed hadronically decaying

top quark candidates.

The analysis uses two variables that discriminate between leptons produced in τ → ℓνℓντ

and leptons stemming directly from W boson decays. The first discriminating variable is the

invariant mass mbℓ of the b-tagged jet and the charged lepton from the same top quark candidate,

alternatively rewritten as cos θ∗ℓ defined as:

cos θ∗ℓ =
2m2

bℓ

m2
top − m2

W

− 1 ≃ 4 pb · pℓ
m2

top − m2
W

− 1. (6.2)

Both m2
b

and m2
ℓ are neglected as small contribution, hence the approximation m2

bℓ ≃ 2 pb · pℓ

is used, where pb and pℓ are the four-momenta of the b-tagged jet and of the charged lepton,

respectively. The presence of a charged Higgs boson in a leptonic top quark decay reduces the

invariant product pb · pℓ, compared to W-mediated top quark decays, resulting in cos θ∗ℓ values

closer to −1.

The second discriminating variable is the charged Higgs transverse mass mH
T [282], obtained
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by fulfilling the constraint
(
pmiss + pℓ + pb

)2
= m2

top on the leptonic side of τlep+jets tt events.

Note that more than one neutrino contributes to the missing four-momentum pmiss and its trans-

verse component pmiss
T . By construction, mH

T gives an event-by-event lower bound on the mass

of the leptonically decaying charged W or Higgs boson produced in the top quark decay and

can be written as:

(
mH

T

)2
=

(√
m2

top + (pℓT + pb
T + pmiss

T )2 − pb
T

)2

−
(
pℓT + pmiss

T

)2
. (6.3)

The cos θ∗ℓ distribution measured in the data is shown in Figure 6.2(a) superimposed on

the predicted background determined with the data-driven multi-jet background estimation and

simulation for the other SM backgrounds. In the presence of a charged Higgs boson in the top

quark decays, with a branching ratio B(t → bH+), the contribution of tt̄ → bb̄W+W− events

in the backgrounds are scaled according to this branching ratio. A control region enriched in

tt̄ → bb̄W+W− events is defined by requiring −0.2 < cos θ∗ℓ < 1. In the limit setting procedure,

described later in Section 6.5, this sample is used to fit the branching ratio B(t → bH+) and the

product of the cross-section σbb̄WW , the luminosity, the selection efficiency and acceptance for

tt̄ → bb̄W+W−, simultaneously with the likelihood for the signal estimation. This ensures that

the final results, and in particular the upper limit on B(t → bH+), are independent of the as-

sumed theoretical production cross-section for tt̄. With a branching fractionB(t → bH+) = 5 %,

the signal contamination in the control region would range from 1.3 % for mH+ = 90 GeV

to 0.4 % for mH+ = 160 GeV. The signal region is defined by requiring cos θ∗ℓ < −0.6 and

mW
T < 60 GeV, with the definition:

mW
T =

√
2pℓTEmiss

T

(
1 − cos∆φℓ,miss

)
. (6.4)

This is done to suppress the background from events with a W boson decaying directly into an

electron or muon along with the corresponding neutrino. For events in the signal region mH
T is

used as a discriminating variable in the search for charged Higgs bosons. The mH
T distribution

is shown in Figure 6.2(b).

Table 6.2 lists the contributions to the signal region of the SM processes and of tt̄ events

with at least one decay t → bH+, assuming mH+ = 130 GeV and B(t → bH+) = 5 %. When

including signal in the prediction, the simulated SM tt̄ contribution is scaled according to this

branching ratio. The data are consistent with the predicted SM background and no significant

deviation in the mH
T distribution is observed.

6.3 Analysis of the τhad+Jets Channel

After the selection described in Section 5.4.3 the expected number of background events for the

SM-only hypothesis and the observation in the data is shown in Table 6.3. The total number of
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Figure 6.2: Distribution of (a) cos θ∗ℓ and (b) mH
T , in the signal region (cos θ∗ℓ < −0.6,

mW
T < 60 GeV) for the latter. The dashed line corresponds to the SM-only hypothesis and

the hatched area around it shows the total uncertainty for the SM backgrounds, where “Oth-

ers” refers to the contribution of all SM processes except tt̄ → bb̄W+W−. The solid line

shows the predicted contribution of signal+background in the presence of a 130 GeV charged

Higgs boson, assuming B(t → bH+) = 5 % and B(H+ → τν) = 100 %. The light area below

the solid line corresponds to the contribution of the H+ signal, stacked on top of the scaled

tt̄→ bb̄W+W− background and other SM processes. [172]
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Sample Event yield (τlep+jets)

tt̄ 840 ± 20 ± 150

Single top quark 28 ± 2 +8
−6

W+jets 14 ± 3 +6
−3

Z+jets 2.1 ± 0.7 +1.2
−0.4

Diboson 0.5 ± 0.1 ± 0.2

Mis-identified leptons 55 ± 10 ± 20

All SM backgrounds 940 ± 22 ± 150

Data 933

t → bH+ (130 GeV) 120 ± 4 ± 25

Signal+background 990 ± 21 ± 140

Table 6.2: Expected event yields in the signal region of the τlep+jets final state, and comparison

with 4.6 fb−1 of data. A cross-section of 167 pb is assumed for the SM tt̄ background. The

numbers shown in the last two rows, for a hypothetical H+ signal with mH+ = 130 GeV, are

obtained with B(t → bH+) = 5 %. Both statistical and systematic uncertainties are shown,

in this respective order. [172]
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predicted events (signal+background) in the presence of a 130 GeV charged Higgs boson with

B(t→ bH+) = 5 % is also shown.

Sample Event yield (τhad+jets)

True τ (embedding method) 210 ± 10 ± 44

Mis-identified jet→ τ 36 ± 6 ± 10

Mis-identified e→ τ 3 ± 1 ± 1

Multi-jet processes 74 ± 3 ± 47

All SM backgrounds 330 ± 12 ± 65

Data 355

t → bH+ (130 GeV) 220 ± 6 ± 56

Signal+background 540 ± 13 ± 85

Table 6.3: Expected event yields after all selection cuts in the τhad+jets channel and comparison

with 4.6 fb−1 of data. The numbers in the last two rows, obtained for a hypothetical H+ signal

with mH+ = 130 GeV, are obtained with B(t → bH+) = 5 % and B(H+ → τν) = 100 %. The

rows for the backgrounds with mis-identified objects assume B(t → bW+) = 100 %. Both

statistical and systematic uncertainties are given, in this respective order. [172]

On the one hand, the number of events with a correctly reconstructed τ lepton is de-

rived from the number of embedded events and does not depend on the cross-section of the

tt̄ → bb̄W+W− process. On the other hand, the τhad+jets analysis does rely on the theoretical

inclusive tt production cross-section for the estimation of the background with electrons or

jets mis-identified as τ leptons. In the presence of a charged Higgs boson in the top quark

decays, with a branching ratio B(t → bH+), the contributions of tt̄ → bb̄W+W− events in these

backgrounds are scaled according to this branching ratio. The data are found to be consistent

with the estimation of the SM background. The mT distribution for the τhad+jets channel, after

all selection cuts are applied, is shown in Figure 6.3.

6.4 Systematic Uncertainties

6.4.1 Systematic Uncertainties of Detector Simulation

Systematic uncertainties arising from the simulation of pile-up and object reconstruction are

considered. The latter arise from the simulation of the trigger, from the reconstruction and

identification efficiencies, as well as from the energy or momentum scale and resolution for the
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Figure 6.3: Distribution of mT after all selection cuts in the τhad+jets channel. The dashed

line corresponds to the SM-only hypothesis and the hatched area around it shows the total

uncertainty for the SM backgrounds. The solid line shows the predicted contribution of

signal+background in the presence of a charged Higgs boson with mH+ = 130 GeV, assuming

B(t → bH+) = 5 % and B(H+ → τν) = 100 %. The contributions of tt̄ → bb̄W+W− events

in the backgrounds with mis-identified objects are scaled down accordingly. [172]
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objects described in Section 5.3. To assess the impact of most sources of systematic uncer-

tainty, the selection cuts for each analysis are re-applied after shifting a particular parameter by

its ±1 standard deviation uncertainty, as given in Table 6.4. The systematic uncertainties related

to electrons and muons are discussed in Reference [228] and References [261, 283], respec-

tively. The systematic uncertainties related to jets are discussed in Reference [267] and Refer-

ence [272] describes the b-tagging calibration. Systematic uncertainties related to τ leptons are

taken from Reference [276]. Finally, for the reconstruction of Emiss
T and its uncertainties Refer-

ence [221] was consulted. All studies of systematic uncertainties have been updated with the

full 4.6 fb−1 dataset collected in 2011. The dominant instrumental systematic uncertainties arise

from the jet energy resolution (10–30 %, depending on pT and η), the jet energy scale (up to

14 %, depending on pT and η, to which a pile-up term of 2–7 % and a b-tagged jet term of 2.5 %

are added in quadrature), as well as the b-tagging efficiency (5–17 %, depending on pT and η)

and mis-identification probability (12–21 %, depending on pT and η). In comparison to these

the systematic uncertainties arising from the reconstruction and identification of electrons and

muons are small. All instrumental systematic uncertainties are propagated to the reconstructed

Emiss
T .

6.4.2 Systematic Uncertainties of Generation of tt Events

To estimate the systematic uncertainties arising from the tt̄ generation and the utilised parton

shower model, the acceptance is computed for tt̄ events produced with MC@NLO [161] inter-

faced to Herwig/Jimmy [146] and Powheg [183] interfaced to Pythia [145]. For the signal sam-

ples, which are generated with Pythia without higher-order corrections, no alternative generator

is available. The systematic uncertainty for the signal samples is thus set to the relative differ-

ence in acceptance between tt̄ events generated with MC@NLO interfaced to Herwig/Jimmy

and with AcerMC, which is a leading-order generator, interfaced to Pythia. The systematic

uncertainties arising from initial state radiation and final state radiation are computed using

tt̄ samples generated with AcerMC interfaced to Pythia, where initial and final state radiation

parameters are set to a range of values not excluded by the experimental data [292]. The largest

relative differences with respect to the reference sample after full event selections are used as

systematic uncertainties. The systematic uncertainties arising from the modelling of the tt̄ event

generation and the parton shower, as well as initial and final state radiation, are summarised in

Table 6.5 separately for each analysis channel.

6.4.3 Systematic Uncertainties of Data-Driven Background Estimates

The systematic uncertainties arising from the data-driven methods, used to estimate back-

grounds from various sources, are summarised in Table 6.6 for each of the three channels.

For backgrounds with mis-identified leptons, discussed in Section 5.5.5, the main systematic
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Source of uncertainty Treatment in analysis

Electron trigger efficiency Up to 1.0%, depending on pT, η and the data period.

Electron reco. efficiency ± (0.6–1.1)%, depending on η.

Electron ID efficiency ± (2.8–3.5)%, depending on ET and η.

Electron energy scale [284] ± (0.5–2.4)%, additional constant term, depending on pT and η.

Electron energy resolution [284] Up to 1%, depending on E and η.

Muon trigger efficiency ± (0.5–6.0)%, depending on η, φ and the data period.

Muon reco efficiency ± (0.4–0.8)%, depending on E, η, φ.

Muon ID efficiency ± (0.3–1.2)%, depending on the data period.

Muon momentum scale Up to 1%, depending on pT, η and the charge.

and resolution [285]

Jet energy resolution (JER) [286] ± (10–30)%, depending on pT and η.

Jet energy scale (JES) [287] ± (2.5–14)%, depending on pT and η,

+ pile-up term (2–7%) in quadrature.

Jet reco efficiency Randomly drop jets (2%) from the events and symmetrise.

b-tagging efficiency [288] ± (5–17)%, depending on pT and η.

b-tagging mis-tag rate [288] ± (12–21)%, depending on pT and η.

b-tagged jet JES uncertainty [289] Up to 2.5%, depending on pT, added to the standard JES.

τ ID efficiency [290] ± (4–7)%, depending on the number of tracks.

τ energy scale [290] ± (2.5–5.0)%, depending on pT, η and the number of tracks.

Emiss
T uncertainty [291] Uncertainties from object scale and resolution, Soft Jets &

Cell Out terms + 6.6% flat pile-up contribution.

Table 6.4: Detector-related systematic uncertainties.
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Source of uncertainty Normalisation uncertainty

τlep+jets:

Generator and parton shower (bb̄WH+, signal region) 10 %

Generator and parton shower (bb̄W+W−, signal region) 8 %

Generator and parton shower (bb̄WH+, control region) 7 %

Generator and parton shower (bb̄W+W−, control region) 6 %

Initial and final state radiation (signal region) 8 %

Initial and final state radiation (control region) 13 %

τhad+lepton:

Generator and parton shower (bb̄WH+) 2 %

Generator and parton shower (bb̄W+W−) 5 %

Initial and final state radiation 13 %

τhad+jets:

Generator and parton shower (bb̄WH+) 5 %

Generator and parton shower (bb̄W+W−) 5 %

Initial and final state radiation 19 %

Table 6.5: Systematic uncertainties arising from the modelling of tt → bb̄W+W− and

tt→ bb̄WH+ events and the parton shower, as well as from initial and final state radia-

tion. [172]
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Source of uncertainty Normalisation uncertainty Shape uncertainty

τlep+jets: lepton mis-identification

Choice of control region 6 % –
Z mass window 4 % –
Jet energy scale 16 % –
Jet energy resolution 7 % –
Sample composition 31 % –

τhad+lepton: jet→ τ mis-identification

Statistics in control region 2 % –
Jet composition 11 % –
Object-related systematics 23 % 3 %

τhad+lepton: e→ τ mis-identification

Mis-identification probability 20 % –

τhad+lepton: lepton mis-identification

Choice of control region 4 % –
Z mass window 5 % –
Jet energy scale 14 % –
Jet energy resolution 4 % –
Sample composition 39 % –

τhad+jets: true τ

Embedding parameters 6 % 3 %
Muon isolation 7 % 2 %
Parameters in normalisation 16 % –
τ identification 5 % –
τ energy scale 6 % 1 %

τhad+jets: jet→ τ mis-identification

Statistics in control region 2 % –
Jet composition 12 % –
Purity in control region 6 % 1 %
Object-related systematics 21 % 2 %

τhad+jets: e→ τ mis-identification

Mis-identification probability 22 % –

τhad+jets: multi-jet estimate

Fit-related uncertainties 32 % –
Emiss

T -shape in control region 16 % –

Table 6.6: Dominant systematic uncertainties on the data-driven estimates. The shape uncer-

tainty given is the relative shift of the mean value of the final discriminant distribution. A “–”

in the second column indicates negligible shape uncertainties. [172]
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uncertainties arise from the simulated samples used to subtract the true leptons in the determi-

nation of the mis-identification probabilities. These are sensitive to the instrumental systematic

uncertainties and to the sample dependence, since mis-identification probabilities are calculated

in a control region dominated by gluon-initiated events, but later used in a data sample with a

higher fraction of quark-initiated events.

The dominant systematic uncertainties in the estimation of the multi-jet background in the

τhad+jets channel, discussed in Section 5.5.4, are the statistical uncertainty of the fit due to the

limited size of the data control sample and uncertainties due to potential differences of the Emiss
T

shape in the signal and control regions. The dominant systematic uncertainties in estimating the

contribution of events with electrons mis-identified as τ leptons in Section 5.5.2 arise from the

subtraction of the multi-jet and electroweak backgrounds in the control region enriched with

Z → ee events and from potential correlations in the selections of the tag-and-probe electrons.

For the estimation of backgrounds with jets mis-identified as hadronically decaying τ leptons,

also discussed in Section 5.5.2, the dominant systematic uncertainties on the mis-identification

probability are the statistical uncertainty due to the limited control sample size and uncertainties

due to the difference of the jet composition (gluon or quark-initiated) in the control and signal

regions, which is estimated using simulation. Other uncertainties stem from the impurities aris-

ing from multi-jet background events and from true hadronic τ lepton decays in the control

sample. The systematic uncertainties affecting the estimation of the background from correctly

reconstructed τ leptons in the τhad+jets channel, discussed in Section 5.5.3, consist of the po-

tential bias introduced by the embedding method itself, uncertainties from the trigger efficiency

measurement, uncertainties associated to simulated τ leptons (τ energy scale and identifica-

tion efficiency) and uncertainties on the normalisation. They are dominated by the statistical

uncertainty of the selected control sample and the τ + Emiss
T trigger efficiency uncertainties.

6.5 Results

No significant deviation from the SM prediction is observed in any of the investigated final

states in 4.6 fb−1 of data. To test the compatibility of the data with background-only and sig-

nal+background hypotheses, a profile likelihood ratio [293] is used with mH
T for τlep+jets, Emiss

T

for τhad+lepton and mT for τhad+jets as the discriminating variables [294]. The statistical analy-

sis is based on a binned likelihood function for these distributions. The systematic uncertainties

in shape and normalisation are incorporated. Assuming B(H+ → τν) = 100 %, upper limits are

extracted on the branching ratio t → bH+ as a function of mH±. Events featuring tt̄ → bb̄H+H−

are not considered in the following, as previous analyses suggest B(t → bH+) < 10 %, thus the

contribution from tt̄ → bb̄H+H− is assumed as small. Thus this estimation of the upper limit on

B(t→ bH+) may be considered conservative.

With µ and n the number of expected and observed events in the signal region after the event
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selection, the acceptances ǫW and ǫH for tt̄ → bb̄W+W− and tt̄→ bb̄H±W∓, derived from Monte

Carlo simulations, the expected number of observed events is given by:

µ = µWǫW + µHǫH + µothers = µtt

(
(1 − B)2 ǫW + 2B (1 − B) ǫH

)
+ µothers,

where B ≡ B(t → bH+).

In the SM case, with no charged Higgs boson in the top quark decays, µW is the product of

theoretical tt cross-section and the integrated luminosity. However in the presence of a charged

Higgs boson in the top quark decays, µW is reduced by a factor (1 − B)2. The simulated Emiss
T

distribution is described with a probability density function fi(Emiss
T ). Expected and observed

number of events in each bin, i, are thus µi = µ fi(Emiss
T ) and ni. The resulting likelihood is given

by:

L(B) =
∏

i

fPoisson(ni|µi)
∏

j

p
(
θ̃ j|θ j

)
.

Nuisance parameters, θ j, are used to describe the effect of systematic uncertainties, with the

Gaussian constraints, p
(
θ̃ j|θ j

)
, relating each parameter to its nominal estimate, θ̃ j.

A profile likelihood statistical analysis with B as the only parameter of interest is then per-

formed. The test statistic is given by [293]:

qB = −2 log
L

(
B, ˆ̂
θB

)

L
(
B̂, θ̂

) , 0 ≤ B̂ ≤ B,

with ˆ̂θB the maximum likelihood estimators of the nuisance parameters for a fixed B, as well as

θ̂ and B̂ the global maximum likelihood estimators of θ and B, respectively. The limit itself is

derived using the CLs criterion [295] based on a fully frequentist ensemble in which ni and θ̃ j

are randomised. These limits are based on the asymptotic distribution of the test statistic [293].

The combined limit is derived from the product of the individual likelihoods, and systematic

uncertainties are treated as correlated, where appropriate. The exclusion limits for the individual

channels, as well as the combined limit, are shown in Figure 6.4 in terms of B(t → bH+) with

the usual assumption B(H+ → τν) = 100 %.

In Figure 6.5, the combined limit on B(t → bH+) × B(H+ → τν) is interpreted in context

of the mmax
h

scenario [296] of the MSSM. By rejecting the signal hypothesis at the 95 % Confi-

dence Level (C.L.) again utilising the CLs procedure [295]. The following relative theoretical

uncertainties on B(t → bH+) are considered and added linearly [88, 128]:

• 5 % for one-loop electroweak corrections missing from the calculations,

• 2 % for missing two-loop QCD corrections

• about 1 %, depending on tan β, for ∆b-induced uncertainties. ∆b is a correction factor to

the running b quark mass [297].
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Figure 6.4: Expected and observed 95 % C.L. exclusion limits on B(t → bH+) for

charged Higgs boson production from top quark decays as a function of mH+ , assuming

B(H+ → τν) = 100 %. Shown are the results for: (a) τlep+jets channel; (b) τhad+lepton

channel; (c) τhad+jets channel; (d) their combination. [172]
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h
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which reliable theoretical predictions exist. The theoretical uncertainties described as in the

text are included. [172]

A detailed discussion of the results and comparison to other current charged Higgs boson

searches will be given in Chapter 8, as the ratio-method analysis, introduced in the following

Chapter 7, is able to further improve the results of the direct searches.
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Chapter 7

Indirect Search for the Charged Higgs

Boson – The Ratio-Method

7.1 Ratio-Method:

A Re-Analysis of the τhad+Lepton Channel

The ratio-method [127, 173] is based on the idea that a light charged Higgs boson preferably

decays into τ leptons. Thus, an excess compared to the SM tt decay should be an indicator if top

quark decays are mediated via a charged Higgs and not a W boson. An advantage is that almost

all systematic uncertainties not related to leptons (e or µ) or τ leptons cancel in first order, if

choosing a ratio of event yields as the final discriminating variable.

For each of the four final states considered (e+τhad, e+µ, µ+τhad and µ+e), the difference of

the opposite sign (OS) to the same sign (SS) event yield N can be split into two contributions:

tt̄ events (where the top quark decays are mediated by both W and H+) and all other SM pro-

cesses, except tt̄→ bb̄W+W−. The contributions from tt̄ events are expressed as a function of the

cross-section,σtt̄, the integrated luminosity,L, the branching fraction, B ≡ B(t → bH+), as well

as the selection efficiencies ǫW+W− , ǫH+W− , ǫH−W+ and ǫH+H− for tt̄ → bb̄W+W−, tt̄ → bb̄H+W−,

tt̄→ bb̄H−W+ and tt̄→ bb̄H+H− events, respectively, in each of the four final states considered:

N = σtt̄ × L ×
[
(1 − B)2ǫW+W− + B(1 − B) (ǫH+W− + ǫH−W+) + B2ǫH+H−

]
+NOthers .

The event yield ratios are defined as:

Re =
N(e + τhad)

N(e + µ)
and Rµ =

N(µ + τhad)

N(µ + e)
.

A variation of the event yieldsN(e+ τhad) andN(e+ µ),N(µ+ τhad) andN(µ+ e) and their

ratios as a function of B(t → bH+) for a charged Higgs boson mass of 130 GeV is shown in
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Figure 7.1. The presence of H+ → τν in a fraction of the top quark decays results in an increase

of the number of tt̄ events with a lepton and a hadronically decaying τ lepton in the final state,

hence of the ratios Re and Rµ. Note that the event yields for dilepton final states become smaller

in the presence of a charged Higgs boson in top quark decays, despite the fact that a τ lepton

decays into an electron or muon more often than a W boson. This results from the fact that

electrons and muons produced in the decay chain t → bH+ → bτν→ bℓ + Nν are, on average,

softer than those stemming from t → bW → bℓ + Nν.
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Figure 7.1: Relative variation with B(t → bH+) of the event yields N(e + τhad), N(e + µ) and

their ratio in the left plot, as well as N(µ + τhad), N(µ + e) and their ratio in the right plot,

assuming the presence of a 130 GeV charged Higgs boson in the tt̄ events. [173]

The sensitivity of this analysis to charged Higgs bosons is determined by the rate at which

the ratios Re and Rµ change withB(t → bH+), which in turn depends on the selection efficiencies

ǫH+W− , ǫH−W+ , ǫH+H− and on the charged Higgs boson mass. For mH+ = 150 (160) GeV, the rate at

which the ratios Re and Rµ change with B(t→ bH+) is found to be two (five) times smaller than

for mH+ = 130 GeV. The selection efficiencies ǫH+W− , ǫH−W+ , ǫH+H− are reduced for mH+ values

in the vicinity of mtop, as the b-tagged jet arising from t → bH+ becomes softer as the mass

difference mtop − mH+ decreases. Table 7.1 illustrates how the slopes se and sµ of the ratios Re

and Rµ as a function of B(t → bH+) vary with mH+ . The slopes obtained with mH+ = 130 GeV,

as shown in Figure 7.1, are used as the reference in Table 7.1.

7.2 Event Selection

This analysis uses events passing a single-lepton trigger with an ET threshold of 20 GeV or

22 GeV for electrons and a pT threshold of 18 GeV for muons, as given in Section 5.2.1. To
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mH+ (GeV) 90 100 110 120 130 140 150 160

se/s130
e 1.12 0.96 1.15 1.06 1.00 0.81 0.52 0.22

sµ/s130
µ 1.04 1.04 1.06 1.04 1.00 0.81 0.47 0.16

Table 7.1: Variation with mH+ of the slopes se and sµ relative increase of the ratios Re and

Rµ with B(t → bH+). mH+ = 130 GeV is used as the reference mass point. The relatively

low value of the slope in the electron-triggered channel at 100 GeV is caused by a statistical

fluctuation in the corresponding Monte Carlo signal sample. [174]

select a sample enriched in tt̄ events, the following requirements are imposed:

• one charged lepton, ℓ (e, µ), having ET > 25 GeV (e) or pT > 25 GeV (µ) and matched to

the corresponding trigger object;

• at least two jets with pT > 20 GeV and within |η| < 2.4, exactly two of these b-tagged;

• either exactly one τhad lepton with pτT > 25 GeV and |η| < 2.3 with no additional charged

lepton, or exactly one additional charged lepton, ℓ′, with ET or pT above 25 GeV with a

different flavour than the trigger-matched lepton;

• Emiss
T > 40 GeV.

At this stage, the selected events are classified into two categories according to the matched

single-lepton trigger: an electron trigger or a muon trigger category. Each category contains

τhad+lepton and dilepton (ℓℓ′) events. The lepton appearing first in the final state name is,

by convention, matched to the corresponding trigger object. The electron triggered category,

therefore, consists of e + τhad and e + µ events, while the muon triggered category contains

µ + τhad and µ + e events. Events firing both, a single-electron and a single-muon trigger are

assigned to both categories, and accounted for in the combined limit setting, as explained later

in Section 7.5.

The analysis uses the generalised transverse mass [282], mH+

T2 , which can help discriminate

leptons produced in H+ → τν decays from leptons stemming from W bosons. Here for the first

time mH+

T2 is utilised with hadronically decaying τ leptons.

The method by which such a variable is obtained for a general event topology is rather sim-

ple: maximisation (or minimisation, depending on the nature of the constraints) of an unknown

particle mass in the event, is subjected to the constraints that are imposed by the known particle

masses and by assuming momentum conservation in the transverse plane. Here tt → H+bW−b̄,

with subsequent decays W− → ℓ−ν̄ℓ and H+ → τ+hadν are considered. Assuming that the top

quarks and the W boson are on-shell, and the missing transverse momentum in the event stems

entirely from neutrinos produced in the decays of the charged Higgs and W bosons. The fol-
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lowing constraints are obtained for the particles in tt → bb̄W−H+ → bb̄(ℓ−ν̄ℓ)(τ+hadν):

(
pH+ + pb

)2
= m2

top,
(
pℓ
−
+ pν̄ℓ

)2
= m2

W ,
(
pℓ
−
+ pν̄ℓ + pb̄

)2
= m2

top, (7.1)
(
pν̄ℓ

)2
= 0,

~p H+

T − ~p τ+had

T
+ ~p ν̄ℓ

T
= ~p miss

T .

In these equations, pH+ and pν̄ℓ represent the unknown quantities in the event, while all other

four-momenta are known. Hence, there are eight unknown variables and only six constraints,

meaning that the system is under-constrained with two degrees of freedom. mH+

T2 is defined as

the maximum of the invariant mass
(
pH+

)2
subjected to the constraints of Equations (7.1):

(
mH+

T2

)2
= max
{Equations (7.1)}

[(
pH+

)2
]
. (7.2)

By choosing the z-component of the H+ momentum as one of the unconstrained degrees of

freedom, half of the maximisation can be performed analytically using the result obtained for

the transverse mass of a charged Higgs boson in semi-leptonic tt̄ decays, as described in detail

in Reference [298]. Doing this, one obtains:

mH+

T2 = max
~p H+

T

[
MH

T

(
~p H+

T

)]
, (7.3)

where
(
MH

T

)2
=



√
m2

top +
(
~p H+

T
+ ~p b

T

)2
− pb

T


2

−
(
pH+

T

)2
. (7.4)

Since ~p H+

T is constrained by Equation (7.1), there is effectively one remaining degree of

freedom. The rest of the maximisation has to be done numerically. A program that computes

the generalised transverse mass for dilepton tt̄ events was written. Its input parameters are the

two components of the missing transverse momentum, as well as the four-momenta of the two

leptons and of the two b-tagged jets. By construction, the generalised transverse mass satisfies

mH+

T2 ≥ mH+, where mH+ is the true charged Higgs boson mass. It is this property that provides

the potential for the generalised transverse mass mH+

T2 to discriminate between charged Higgs

and W bosons.

In τhad+lepton events, before computing the generalised transverse mass, each b-tagged jet

must be assigned to the other visible decay product of each top quark candidate. This is done

by selecting the combination that minimises the sum of the distances between each b-tagged

jet and either the charged lepton or the hadronic τ lepton, ∆R(b1, ℓ)+ ∆R(b2, τhad). In simulated

SM tt̄ events, by using information about the correctly identified combinations in the generated
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events, the efficiency of finding the correct association for the b-tagged jets is about 70 %. The

hadronic τ lepton and its associated b-tagged jet are assigned to the “H+-side” of the event,

where mH+

T2 is computed. The charged lepton and its associated b-tagged jet are assigned to the

“W-side” of the event, where the single-lepton trigger is fired.

In dilepton events, the b-tagged jet assignment is performed by selecting the combination

that minimises the sum of the distances between each b-tagged jet and each charged lepton. The

efficiency of finding the right assignment in simulated SM tt̄ events is about 76 %. Similarly to

the τhad+lepton events, the “W-side” of the event is assigned to the lepton firing the trigger (the

electron for e + µ events and the muon for µ + e events), and the other side of the event is used

to compute mH+

T2 , with the corresponding charged lepton instead of τ lepton in Equation 7.1.

At first order, this transverse mass is larger than the true charged Higgs boson mass mH+ and

smaller than the top quark mass, mtop, used in the constraints. For incorrect pairings of τ leptons

or leptons with b-tagged jets, the numerical determination of mH+

T2 may fail. Therefore, only

events with mH+

T2 > 0 are kept in the following, the mH+

T2 distributions are shown in Figure 7.2.

The backgrounds due to mis-identified τ leptons are, estimated with the data-driven proce-

dures as given in Section 5.5.2, mis-identified electrons and muons are estimated by the data-

driven approach described in Section 5.5.5.

7.3 Measured Event Yield Ratios

The event yields in the τhad+lepton and dilepton final states are summarised in Table 7.2 for the

background-only hypothesis as well as in the presence of a 130 GeV charged Higgs boson in

the top quark decay. The predicted values in the SM-only hypothesis and the measured values

of the ratios Re and Rµ are summarised in Table 7.3.

7.4 Systematic Uncertainties

7.4.1 Systematic Uncertainties of Detector Simulation

The systematic uncertainties arising from detector, pile-up and the object reconstruction in this

analysis are the same for this analysis as described in Section 6.4.1.

7.4.2 Systematic Uncertainties of Generation of tt Events

Section 6.4.2 describes the systematic uncertainties also for this analysis arising from the gen-

eration of tt events. Further the tt̄ cross-section used in this analysis is σtt̄ = 167+17
−18 pb [179].

Initial state radiation and final state radiation systematic uncertainties are dominated by the dif-

ference in modelling the numbers of tracks Nτ
track and N iso

track in the core and isolation regions of
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Figure 7.2: Distribution of mH
T2 in the signal region enriched in OS–SS tt̄ events for (a) e + τhad

or (b) e + µ and (c) µ + τhad or (d) µ + e final state selections. The dashed line corre-

sponds to the SM-only hypothesis and the hatched area around it shows the total uncertainty

for the SM backgrounds, where “Others” refers to the contribution of all SM processes ex-

cept tt̄ → bb̄W+W−. The solid line shows the predicted contribution of signal+background

in the presence of a 130 GeV charged Higgs boson, assuming B(t → bH+) = 3% and

B(H+ → τν) = 100 %. The yellow area below the solid line corresponds to the contribu-

tion of the H+ signal, stacked on top of the scaled tt̄ → bb̄W+W− background and other SM

processes. [174]
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Sample OS–SS event yields

e + τhad e + µ

Mis-identified electrons or muons −0.8 ± 3.0 94 ± 37

W/Z+jets & diboson 2.1 ± 0.9 0.7 ± 0.4

Single top quark 3.3 ± 0.8 24 ± 4

tt̄ 111 ± 25 980 ± 200
∑

SM 116 ± 25 1100 ± 210

Data 144 1247

tt̄ with t → bH+ (130 GeV) 30 ± 4 27 ± 4

Prediction with signal 139 ± 28 1070 ± 200

µ + τhad µ + e

Mis-identified electrons or muons 0.2 ± 1.0 74 ± 37

W/Z+jets & diboson 2.6 ± 1.6 0.7 ± 0.4

Single top quark 4.6 ± 0.9 18 ± 3

tt̄ 131 ± 28 740 ± 150
∑

SM 138 ± 29 830 ± 160

Data 153 929

tt̄ with t → bH+ (130 GeV) 35 ± 4 20 ± 3

Prediction with signal 166 ± 32 810 ± 150

Table 7.2: Expected opposite sign (OS) – same sign (SS) event yields after all selection cuts

in τhad+lepton and dilepton channels, compared with 4.6 fb−1 of ATLAS data. The numbers

shown for a hypothetical 130 GeV H+ signal correspond to B(t → bH+) = 3 %. The con-

tribution of tt̄ → bb̄W+W− events to the background is scaled accordingly. Statistical and

systematic uncertainties are combined. [173]

Ratio Re Rµ

SM value 0.105 ± 0.012 0.166 ± 0.017

Measured value 0.115 ± 0.010 (stat) 0.165 ± 0.015 (stat)

Table 7.3: Predicted (in the SM-only hypothesis) and measured values of the event yield ra-

tios Re and Rµ. For the values of the ratios predicted using simulation, the statistical and

systematic uncertainties are combined. [173]
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the jets mis-identified as τ lepton candidates, respectively. The various simulated tt̄ samples are

reweighted so the Nτ
track and the N iso

track distributions match, where both variables are reweighted

in a correlated way, before the systematic uncertainties on the tt̄ generation, the parton shower

model, as well as initial state radiation and final state radiation, are evaluated.

The signal samples are generated with Pythia, without higher-order corrections, as no al-

ternative generator is available for the charged Higgs boson simulation. Hence, the systematic

uncertainty is evaluated to be the relative difference in acceptance between tt̄ events generated

with MC@NLO interfaced to Herwig/Jimmy and with AcerMC, which is also a leading-order

generator, interfaced to Pythia. For the systematic uncertainty from initial state radiation and

final state radiation the same simulated samples as for the SM tt̄ events are used. In the evalua-

tion of the systematic uncertainties for the signal samples only τ leptons matched to simulated

hadronically decaying τ leptons in the generated events are considered.

7.4.3 Systematic Uncertainties of Data-Driven Background Estimates

Concerning the backgrounds with mis-identified leptons the largest systematic uncertainties

arise from the sample dependence: the mis-identification probabilities are calculated in a control

region dominated by gluon-initiated events, but they are then used in a data selection with a

higher fraction of quark-initiated events. The total systematic uncertainty on the backgrounds

with mis-identified leptons is 38 % for electron-triggered events and 49 % for muon-triggered

events. This corresponds to the relative variation of the number of events with exactly one

trigger-matched lepton and two jets, after having considered all systematic uncertainties. The

requirement of having two b-tagged jets in the event does not have a significant impact on these

systematic uncertainties and neither does the presence of a second lepton.

For the estimation of backgrounds with jets mis-identified as hadronically decaying

τ leptons, the systematic uncertainty on the scale factors associated with the number of tracks is

determined by varying the requirement on the jet multiplicity and the magnitude of the subtrac-

tion of τ candidates matched to a simulated electron, muon or τ lepton in the generated events.

This uncertainty is 7 % for 1-track τ leptons and 11 % for 3-track τ leptons. In addition, sys-

tematic uncertainties on the jet→ τ lepton mis-identification probability arise from statistical

uncertainties due to the limited control sample size, the differences between mis-identification

probabilities computed in the region enriched with W+ >2 jets events and the signal region as

well as the small contamination from correctly reconstructed τ leptons (including those possibly

stemming from H+ → τν) in the region enriched with W+ >2 jets events.

Some of the systematic uncertainties above affect the τhad+lepton and dilepton event yields

in the same manner and, as a result, have a limited impact on Re and Rµ. Systematic uncertainties

arising from jets and Emiss
T are common to all reconstructed events in the simulation. Hence,

they should cancel in the ratios Re and Rµ. However, due to the use of data-driven background

estimates and because of the removal of geometric overlaps between reconstructed objects,
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some of these systematic uncertainties still do have a minor impact. In each category, the

systematic uncertainties related to the trigger-matched electron or muon are the same for the

e + τhad and e + µ or µ + τhad and µ + e events. Thereby, they do not affect the predicted

value of the ratios Re and Rµ. Those systematic uncertainties stemming from the reconstructed

muon or electron only affect event yields in the denominator and hence the ratio. Similarly,

the systematic uncertainties caused by τ leptons and their mis-identification probabilities only

affect the numerator of Re and Rµ. Hence these systematic uncertainties do have an impact on

the analysis. This is also the case for systematic uncertainties on the backgrounds with mis-

identified leptons, which have a larger contribution in the dilepton events on the denominator of

Re and Rµ. Table 7.4 shows how these ratios, for the SM-only hypothesis, change when shifting

a particular parameter by its ±1 standard deviation uncertainty.

7.5 Results

7.5.1 Upper Limits obtained from Results of the Ratio-Method

No significant deviation from the SM predictions is observed for the event yield ratios Re and

Rµ, given in Table 7.3. With the assumption B(H+ → τν) = 100 %, upper limits are extracted

on the branching ratio, B ≡ B(t → bH+), as a function of the charged Higgs boson mass. Before

deriving upper limits from the event yield ratios, the mH
T2 distributions of Figure 7.2 are used

for the computation of limits, with the procedure described in Section 6.5, just as a reference.

For this purpose, a probability density function fi(mH
T2) is introduced, such that the expected

and observed number of events in each bin, i, are, respectively, µi = µ fi(mH
T2), where µ is the

expected number of events in the signal region, and ni. The resulting likelihood is given by:

L(B) =
∏

i

fPoisson(ni|µi)
∏

j

p
(
θ̃ j|θ j

)
. (7.5)

Nuisance parameters, θ, are used to describe the effect of systematic uncertainties, and

p
(
θ̃ j|θ j

)
are the Gaussian constraints relating each parameter to its nominal estimate, θ̃ j. A

profile likelihood statistical analysis is then performed with B as the only parameter of interest.

The test statistic is given by [293]:

qB = −2 log
L

(
B, ˆ̂θB

)

L
(
B̂, θ̂

) , 0 ≤ B̂ ≤ B, (7.6)

where ˆ̂θB are the maximum likelihood estimators of the nuisance parameters for a fixed B, while

θ̂ and B̂ are the global maximum likelihood estimators of θ and B. The limit itself is derived

using the CLs criterion [295] and asymptotic approximations [293]. For the calculation of the

expected limits and the error bands the Asimov dataset [293] is employed. Using the mH
T2
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Systematic uncertainty ∆Re ∆Rµ

Integrated luminosity 0.3 % 0.3 %

Electron trigger efficiency 0.1 % n/a

Electron reconstruction and ID efficiencies 0.2 % 1.9 %

Electron energy resolution 0.1 % <0.1 %

Electron energy scale 0.1 % 0.3 %

Muon trigger efficiency n/a 0.1 %

Muon reconstruction and ID efficiencies 1.0 % 0.1 %

Muon momentum resolution <0.1 % <0.1 %

Muon momentum scale 0.1 % <0.1 %

τ ID efficiency 3.9 % 3.9 %

τ energy scale 2.9 % 3.0 %

τ mis-ID (data-driven): number of associated tracks 2.1 % 2.1 %

τ mis-ID (data-driven): true τ contamination 0.2 % 0.2 %

τ mis-ID (data-driven): H+ signal contamination 0.6 % 0.6 %

τ mis-ID (data-driven): event environment 1.3 % 1.2 %

τ mis-ID (data-driven): statistical uncertainties 3.3 % 3.2 %

τ mis-ID (data-driven): electron veto uncertainties 0.6 % 0.3 %

b-tagging 1.9 % 2.3 %

Jet vertex fraction 0.1 % 0.4 %

Jet energy resolution 0.4 % <0.1 %

Jet energy scale 0.7 % 0.5 %

Jet reconstruction efficiency 0.1 % 0.4 %

Emiss
T 0.3 % 0.1 %

tt̄: cross-section 0.7 % 0.6 %

tt̄: generator and parton shower 5.7 % 4.4 %

tt̄: initial state and final state radiation 3.6 % 3.7 %

Backgrounds with mis-identified leptons 3.5 % 4.3 %

Total (added in quadrature) 10.3 % 10.1 %

Table 7.4: Relative variation of the ratios, Re and Rµ, in the SM-only hypothesis after shifting a

particular parameter by its ±1 standard deviation uncertainty. In this table only “ID” stands

shorthand for identification. [173]
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distributions of Figures 7.2, upper limits in the range 3.3 %–13.0 % and 2.4 %–14.0 % can be

placed on B(t → bH+), for e + τ and µ + τ events, respectively, illustrated in Figures 7.3(a)

and 7.3(b).
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Figure 7.3: Upper limits on B(t → bH+) derived from the mH
T2 distributions of (a) e + τ and

(b) µ + τ events, as a function of the charged Higgs boson mass, obtained for an integrated

luminosity of 4.6 fb−1 and with the assumption B(H+ → τν) = 100 %. All systematic

uncertainties are included, as described in the text. The solid line in the figure is used to

denote the observed 95 % C.L. upper limits, while the dashed line represents the expected

exclusion limits. The outer edges of the green and yellow regions show the 1σ and 2σ error

bands. [174]

To cancel out or reduce some systematic uncertainties, the study presented here uses the

ratio of integrated event yields rather than the mH
T2 distributions themselves. In this context the

assumed underlying probability density function of the measured variables must be known to

perform a profile likelihood statistical analysis.

The measured event yield ratios Re and Rµ are the ratios of two Poisson distributed variables,

the probability density function of which is unknown. However, the sampling variation ofNℓ+ℓ′

is restricted to the subset Nℓ+τhad + Nℓ+ℓ′ (0 < Nℓ+ℓ′ < Nℓ+τhad + Nℓ+ℓ′). This implies that the

variableNℓ+ℓ′ follows a binomial distribution, defined as:

fBinomial(k, n, p) =

(
n

k

)
pk(1 − p)n−k, (7.7)

where the parameters k, n and p are:

k = Nℓ+ℓ′ ,

n = Nℓ+τhad +Nℓ+ℓ′ ,

p =
Nℓ+ℓ′

Nℓ+τhad
+Nℓ+ℓ′

,

(7.8)
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hence, k = np. In addition, the binomial parameter p can be rewritten as a monotonic function

of the ratio, Rℓ:

p =
1

1 + Rℓ

. (7.9)

If both np and np(1 − p) are greater than 5, a good approximation to the binomial distribution

fBinomial(k, n, p) is given by the normal distribution:

fGauss

(
np, σ =

√
np(1 − p)

)
. (7.10)

Dividing by the parameter n yields that p is approximated by the normal distribution:

fGauss

p, σ =

√
p(1 − p)

n

 . (7.11)

If the ratio Re or Rµ is used for the computation of upper limits on the branching ratio, B,

the resulting likelihood, introducing ρ and R, the expected and observed ratios, and n the sum

of expected τhad+lepton and dilepton events in a signal region, is given by:

L(B) = fGauss (p (Ri) |p (ρi) , σ (ρi, ni))
∏

j

q
(
θ̃ j|θ j

)
, (7.12)

where σ represents the second parameter of the normal distribution of Equation (7.11) and the

index i this time indicates the category (electron or muon triggered). Similar to Equation (7.5),

nuisance parameters are used to describe the effect of systematic uncertainties, and q
(
θ̃ j|θ j

)
are

the Gaussian constraints relating each parameter to its nominal estimate, θ̃ j.

Using the event yield ratios Re and Rµ, upper limits in the range 4.5 %–6.3 % and

3.6 %–4.7 % can be placed on B(t → bH+) for charged Higgs boson masses in the range

90–140 GeV, in the electron and muon triggered category, respectively, illustrated in Figure 7.4.

Note that the observed limits follow the trend of the expected limits. This results from the fact

that the utilised limit setting method resembles a counting experiment and this behaviour is

expected, as no shape information is utilised.

For higher charged Higgs boson masses, the loss of sensitivity, as predicted by Table 7.1, is

clearly visible. It can be noted that the upper limits on B(t → bH+) obtained from the event

yield ratios are significantly better than those derived from the mH
T2 distributions, except in the

vicinity of the top quark mass, where more information is found in the shape of the generalised

transverse mass distribution than in the event yield ratios. In addition, the differences between

the expected upper limits in the electron and muon triggered categories are small, since the

dominant systematic uncertainties arise from the τ leptons and are similar in both categories,

as suggested by Table 7.4.
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Figure 7.4: Upper limits on B(t → bH+) derived from the event yield ratios Re left and Rµ

right, as a function of the charged Higgs boson mass, obtained for an integrated luminosity

of 4.6 fb−1 and with the assumptionB(H+ → τν) = 100 %. The solid line in the figure is used

to denote the observed 95 % C.L. upper limits, while the dashed line represents the expected

exclusion limits. The outer edges of the green and yellow regions show the 1σ and 2σ error

bands. [173]

A combined upper limit for the electron and muon triggered categories is obtained utilising

the same formalism with a global event yield ratio, Re+µ, defined as:

Re+µ =
N(e + τhad) +N(µ + τhad)

N(e + µ) +NOR(µ + e)
, (7.13)

where NOR(µ + e) is the event yield in the µ + e channel after removing the dilepton events

that simultaneously fire a single-electron trigger and a single-muon trigger, as those are already

accounted for in N(e + µ). The fraction of dilepton events common to the µ + e and e + µ final

states, after the event selection, is about 42 % in the data. Utilising this global event yield ratio,

upper limits in the range 3.2 %–4.4 % can be placed on B(t → bH+) for charged Higgs boson

masses in the range 90–140 GeV, as given in Figure 7.5 and Table 7.5.

The profiled values and constraints on systematic uncertainties (nuisance parameters)

from an unconditional fit of the combined model to data are given in Table 7.6, assuming a

charged Higgs boson mass of 130 GeV. No significant pulls or over-constraints of the nuisance

parameters are observed.

In Figure 7.6, the limit on B(t → bH+) × B(H+ → τν) is interpreted in the context of

the mmax
h

scenario of the MSSM [296] and illustrated in the mH+ − tan β plane. Note that no

exclusion limit is shown for charged Higgs boson masses above 140 GeV, as no reliable calcu-

lations of B(t → bH+) exist for tan β values in this range. The following relative uncertainties

on B(t → bH+) are considered and added linearly [88, 128]:



124 7.5. Results

 [GeV]+
H

m

90 100 110 120 130 140 150 160

+
 b

H
→

t 
B

0

0.05

0.1

0.15

0.2

0.25

0.3

Observed 95% CL
Expected

σ 1±
σ 2±

ATLAS  Data 2011

 = 7 TeVs

­1
Ldt = 4.6 fb∫

µe+R

Figure 7.5: Upper limits on B(t → bH+) derived from the event yield ratio, Re+µ, as a function

of the charged Higgs boson mass, obtained for an integrated luminosity of 4.6 fb−1, assuming

B(H+ → τν) = 100 %. The solid line in the figure is used to denote the observed 95 % C.L.

upper limits, while the dashed line represents the expected exclusion limits. The outer edges

of the green and yellow regions show the 1σ and 2σ error bands. [173]

• 5 % for one-loop electroweak corrections missing from the calculations,

• 2 % for missing two-loop QCD corrections

• about 1 %, depending on tan β, for ∆b-induced uncertainties. ∆b is a correction factor to

the running b quark mass [297].

7.5.2 Combination of Upper Limits obtained from Direct Searches for

Charged Higgs Bosons in the τhad+jets final state and the Ratio-

Method Results

In the direct searches for charged Higgs bosons presented in Section 6, upper limits on the

branching ratioB(t → bH+) were derived using various distributions of discriminating variables

in the τhad+lepton, τhad+jets and τlep+jets final states [172]. The most sensitive channel was

found to be τhad+jets, except for low values of mH+ , as is evinced in Table 7.7.

A full orthogonality of the τhad+jets event selection to the selection of this analysis, as

described in Section 7.2, is a result of a lepton veto imposed in τhad+jets event selection. The

physics object definitions and the corresponding systematic uncertainties are the same in this

analysis and the direct searches [172], thus a new set of combined upper limits on B(t → bH+)

using both the transverse mass distribution, mT, of τhad+jets events and the global event yield
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Figure 7.6: Limits for charged Higgs boson production from top quark decays in the

mH+ − tan β plane, derived using the ratio, Re+µ, in the context of the mmax
h

scenario of the

MSSM, obtained for an integrated luminosity of 4.6 fb−1. The 1σ band around the observed

limit (blue dashed lines) shows the theoretical uncertainties. Values below tan β = 1, where

the calculations in the MSSM become non-perturbative, are not considered, as results be-

come unphysical. [173]
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mH+ (GeV) 90 100 110 120 130 140 150 160

95 % C.L. observed

(expected) limit on 3.3 % 3.6 % 3.2 % 3.4 % 3.6 % 4.4 % 7.3 % 18.3 %

B(t → bH+) using (3.1 %) (3.3 %) (3.0 %) (3.1 %) (3.3 %) (4.0 %) (6.7 %) (16.8 %)

the ratio Re+µ

Table 7.5: Observed (expected) 95 % C.L. upper limits on B(t → bH+) derived from the event

yield ratio, Re+µ, as a function of the charged Higgs boson mass, obtained for an integrated

luminosity of 4.6 fb−1, assuming B(H+ → τν) = 100 %. [174]

ratio, Re+µ, is calculated. The results of this combination are summarised in Table 7.8 and

illustrated in Figure 7.7.

With this new combination of the upper limits the charged Higgs bosons can be ex-

cluded for values of B(t → bH+) ranging from 0.8 % to 3.4 %, for mH+ between 90 GeV

and 160 GeV, assuming B(H+ → τν) = 100 %. In Figure 7.8, this combined limit on

B(t→ bH+) × B(H+ → τν) is interpreted in the context of the mmax
h

scenario of the MSSM

and illustrated in the mH+ − tan β plane.
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Systematic uncertainty Profiled value Constraint

Integrated luminosity 0.001 1.000

Electron trigger efficiency 0.002 1.000

Electron reconstruction and ID efficiencies 0.007 1.000

Electron energy scale 0.001 1.000

Electron energy resolution 0.000 1.000

Muon trigger efficiency 0.000 1.000

Muon reconstruction and ID efficiencies 0.004 1.000

Muon momentum resolution (inner detector) 0.000 1.000

Muon momentum resolution (muon spectrometer) 0.000 1.000

Muon momentum scale 0.001 1.000

τ ID efficiency 0.003 0.998

τ energy scale 0.004 1.000

τ mis-ID (data-driven): number of associated tracks 0.001 1.000

τ mis-ID (data-driven): τ contamination 0.000 1.000

τ mis-ID (data-driven): H+ signal contamination 0.001 1.000

τ mis-ID (data-driven): event environment 0.001 1.000

τ mis-ID (data-driven): statistical uncertainties 0.004 1.000

τ mis-ID (data-driven): electron veto uncertainties 0.001 1.000

b-tagging 0.061 0.998

Jet vertex fraction -0.014 1.000

Jet energy resolution 0.000 1.000

Jet energy scale 0.001 0.995

Jet reconstruction efficiency 0.000 1.000

Emiss
T CellOut and SoftJets 0.001 1.000

Emiss
T pile-up contribution 0.001 1.000

tt̄: cross-section 0.000 1.000

tt̄: generator and parton shower 0.000 1.000

tt̄: initial and final state radiation 0.000 1.000

Backgrounds with mis-identified leptons 0.003 0.999

Table 7.6: Profiled values and constraints on the systematic uncertainties from an unconditional

fit of the combined model to data. The assumed charged Higgs boson mass is 130 GeV. In

this table only “ID” stands shorthand for identification. [174]
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Figure 7.7: Upper limits on B(t → bH+) derived from the transverse mass distribution of

τhad+jets events in Section 6.5 and the event yield ratio, Re+µ, as a function of the charged

Higgs boson mass, obtained for an integrated luminosity of 4.6 fb−1 and with the assumption

B(H+ → τν) = 1. The solid line in the figure is used to denote the observed 95 % C.L. upper

limits, while the dashed line represents the expected exclusion limits. The green and yellow

regions show the 1σ and 2σ error bands. [173]
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Figure 7.8: Limits for charged Higgs boson production from top quark decays in the mH+−tan β

plane, derived using τhad+jets events in Section 6.5 and the event yield ratio, Re+µ, in the

context of the mmax
h

scenario of the MSSM. The 1σ band around the observed limit (dashed

lines) shows the theoretical uncertainties. Values below tan β = 1, where the calculations in

the MSSM become non-perturbative, are not considered, nor shown, as the results become

unphysical. [173]
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mH+ (GeV) 90 100 110 120 130 140 150 160

95 % C.L. observed

(expected) limit on 7.2 % 4.5 % 2.0 % 1.2 % 1.0 % 0.9 % 1.0 % 1.0 %

B(t → bH+) using (5.3 %) (4.6 %) (2.5 %) (1.9 %) (1.5 %) (1.3 %) (1.3 %) (1.3 %)

τhad+jets

Table 7.7: Observed (expected) 95 % C.L. upper limits on B(t → bH+) derived from

the mT distribution of τhad+jets events, described in Section 6.3, as a function of the

charged Higgs boson mass, obtained for an integrated luminosity of 4.6 fb−1 and assuming

B(H+ → τν) = 100 %. [172]

mH+ (GeV) 90 100 110 120 130 140 150 160

95 % C.L. observed

(expected) limit on 3.4 % 2.9 % 1.7 % 1.1 % 0.9 % 0.8 % 1.0 % 1.1 %

B(t → bH+) using (3.1 %) (2.8 %) (1.9 %) (1.4 %) (1.2 %) (1.1 %) (1.2 %) (1.2 %)

Re+µ and τhad+jets

Table 7.8: Observed (expected) 95 % C.L. upper limits on B(t → bH+) derived from the mT

distribution of τhad+jets events, described in Section 6.3 and the event yield ratio, Re+µ, as a

function of the charged Higgs boson mass, obtained for an integrated luminosity of 4.6 fb−1

and assuming that B(H+ → τν) = 100 %. [173]
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Chapter 8

Comparison and Discussion of the Results

It was shown that in case of the τhad+lepton channel the resulting limit was greatly improved

by eliminating most of the systematic uncertainties. This was achieved by using the event yield

ratio, Re+µ, as final discriminating variable, which intrinsically cancels the greatest contributing

systematic uncertainties. These expressed as nuisance parameters have less space to be varied

during limit setting, therefore the resulting limits are be more stringent.

Direct searches similar to the ones described in the Chapter 6 were conducted by the CMS

collaboration [299] at the LHC. The results are hardly comparable to the results presented in this

work, as CMS has not yet analysed the full 2011 dataset in all charged Higgs boson searches.

Only one analysis channel, the τhad+µ, was updated with the full 2011 dataset of 4.9 fb−1 [300],

which nevertheless yield a combined exclusion that, for charged Higgs masses below 110 GeV,

are competitive with the ATLAS combined upper limits on B(t → bH+) obtained with the ratio-

method analysis described in Chapter 7.

The direct comparison of the latest exclusion limits of both collaborations onB(t → bH+) is

given in Figure 8.1. For a more complete comparison the limits obtained by the ATLAS direct

searches, as described in Chapter 6, are also shown. The limits shown in Figure 8.1 are, for

better comparison, transcribed and listed in Table 8.1.

For both experiments the most sensitive charged Higgs boson search channel proofs to be

τhad+jets. It should be noted that CMS is able to achieve a similar sensitivity, considering the

expected limits in the τhad+jets channel, analysing merely half the integrated luminosity of data

than ATLAS. Even thought the ATLAS charged Higgs τhad+jets analysis profits from lower

τ+Emiss
T trigger thresholds than CMS and therefore should show a better sensitivity. To identify

the sources for this not being the case is worth pursuing. The origins of the differing sensitivities

of the τhad+jets analyses of the two experiments shall be investigated in the following.

The most noteworthy difference is the assumed systematic uncertainties of the utilised data-

driven multi-jet (QCD) background estimation techniques. While the ATLAS analysis relies on

a template fit extracted from a control region, CMS utilises a pT-binned factorisation technique,

in detail discussed in Reference [301]. The Emiss
T shape fit, explained in Section 5.5.4, accounts
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Figure 8.1: Top: For a better comparison the combined upper limits on B(t→ bH+) of the

direct searches as explained in Section 6.5 is given again. [172]

Left: Upper limits on B(t → bH+) derived from the transverse mass distribution of τhad+jets

events in Section 6.5 and the ratio-method event yield ratio, Re+µ, explained in Chapter 7, as

a function of the charged Higgs boson mass, obtained for an integrated luminosity of 4.6 fb−1

and with the assumption B(H+ → τν) = 100 %. The solid line in the figure is used to denote

the observed 95 % C.L. upper limits, while the dashed line represents the expected exclusion

limits. The green and yellow regions show the 1σ and 2σ error bands. [173]

Right: The combined limits with the results from the e+ µ, e+ τhad, and τhad+jets final states

of the CMS collaboration are illustrated. [300]
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for 32 % fit-related uncertainties and further 16 % uncertainty due to the Emiss
T -shape difference

between control region and signal region. This shape fit method estimates 74 ± 3 ± 47 multi-jet

events, statistical and systematic uncertainties given in this respective order, while the CMS

estimation yields 26 ± 2 ± 1 QCD events [299]. It therefore seems that the CMS factorisation

method, due to its relatively tiny systematic uncertainties, is superior to the here employed

template shape fit method for estimation of the multi-jet background.

Further the embedding method, described in Section 5.5.3, utilised by both experiments

for the estimation of backgrounds with correctly reconstructed τ leptons, again reveals dif-

fering systematic uncertainties estimated for the method. The τ embedding method estimates

210 ± 10 ± 44 events with correctly reconstructed τ leptons, statistical and systematic uncer-

tainties given in this respective order, and 78 ± 3 ± 11 events, for ATLAS and CMS, respec-

tively [172, 299].

An event selection specific difference is the ∆φ(τ, Emiss
T ) < 160◦ cut, which is applied as

last step during the CMS event selection, and is not considered in the ATLAS search. This

selection criterion is able to reduce the “multi-jets bump” in the mT distribution, as can be

evinced in Figure 8.2, and could thereby indeed significantly contribute to an improvement of

the sensitivity, if utilising a shape aware limit setting procedure. It may therefore be a variable

that the ATLAS analysis, in the τhad+jets channel, could be studied and possibly also utilised to

further improve the current results.

For better illustration proposes the physically more relevant B(t → bH+) limits are usu-

ally interpreted in the mmax
h

scenario of the MSSM and presented in the mH+ − tan β plane. A

comparison in this manner of the ATLAS and CMS results is given in Figure 8.3. Note that un-

fortunately no such interpretation for the updated CMS results [300], therefore only the limits

given in Reference [299] can be shown.

As almost the complete phase space of the mmax
h

scenario is excluded by LHC results, new

MSSM benchmark scenarios will need to be defined, for the presentation of results, in the near

future. Potent candidates for successors are suggested for example in Reference [302]. The most

important and universal results however will remain the limits set on B(t → bH+), as given in

Table 8.1 and Figure 8.1, as these are interpretable in any thought of model and scenario.
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Figure 8.2: Left: Distribution of mT after all selection cuts in the τhad+jets channel. The

dashed line corresponds to the SM-only hypothesis and the hatched area around it shows the

total uncertainty for the SM backgrounds. The solid line shows the predicted contribution of

signal+background in the presence of a charged Higgs boson with mH+ = 130 GeV, assuming

B(t → bH+) = 5 % and B(H+ → τν) = 100 %. The contributions of tt̄ → bb̄W+W− events

in the backgrounds with mis-identified objects are scaled down accordingly. [172]

Right: The transverse mass of τ lepton and Emiss
T after full event selection for the τhad+jets

analysis. The expected event yield in the presence of the t → bH+, H+ → τν decays is shown

as the dashed line for mH+ = 120 GeV and under the assumption that B(t → bH+) = 5 %.

The bottom panel shows the ratio of data over background along with the total uncertainties.

The ratio is not shown for mT > 160 GeV, where the expected total number of background

events is 2.5 ± 0.3 while 5 events are observed. Statistical and systematic uncertainties are

added in quadrature. [299]
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Figure 8.3: Top: For a better comparison the combined upper limits on B(t→ bH+) of the

direct searches, as explained in Section 6.5 is shown in the mH+ − tan β plane. [172]

Left: Limits for charged Higgs boson production from top quark decays in the mH+ − tan β

plane, derived using the combined τhad+jets analysis and the ratio-method, explained in

Chapter 7, event yield ratio, Re+µ, results, in the context of the mmax
h

scenario of the MSSM.

The ±1σ band around the observed limit (dashed lines) shows the theoretical uncertainties.

Values below tan β = 1, where the calculations in the MSSM become non-perturbative, are

not considered, nor shown, as the results become unphysical. [173]

Right: The exclusion region in the MSSM mH+ − tan β parameter space obtained from the

combined analysis for the MSSM mmax
h

scenario. The ±1σ and ±2σ bands around the ex-

pected limit are also shown. [299]
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Chapter 9

Summary and Outlook

The observation of a charged Higgs boson would be an evidence for physics beyond the Stan-

dard Model. The measured branching ratio limits, B(t → bH+), obtained by the searches

described in this work, are a very important source of knowledge and a valuable input for the

discrimination of possible Standard Model extensions.

In this work the searches for light charged Higgs bosons with 4.6 fb−1 of data taken in 2011

at
√

s = 7 TeV by the ATLAS detector at the LHC were conducted. Direct searches [172] as

well as an improved analysis of the τhad+lepton channel based upon the measurement of possible

violation of the lepton universality in tt̄ events, the ratio-method [173] were performed. Charged

Higgs bosons with τ leptons in the final state were in the focus of this thesis. The exclusion

limits obtained on B(t→ bH+) pose an improvement by over one order of magnitude compared

to previous results, as for example by the LEP [118, 303] and Tevatron [124, 125] experiments.

The basis of this work was laid by the determination of the τ lepton mis-identification prob-

ability from electrons. It was the first time this measurement was performed in the ATLAS

collaboration. A Z → ee tag-and-probe method was designed and implemented in order to

achieve the task. This measurement utilised the first 37 pb−1 of pp collision data recorded at
√

s = 7 TeV in 2010 [151]. Its achievement was the determination of the mis-identification

probabilities and scale factors as well as their systematic and statistical uncertainties, neces-

sary for MC simulation to better reproduce data and therefore crucial to all analyses employing

electron veto algorithms.

Based on the measured mis-identification probabilities a data-driven estimation method for

the charged Higgs boson search was developed and implemented for the background contribu-

tion stemming from electrons mis-identified as hadronically decaying τ leptons [159].

New τhad + Emiss
T trigger menu items were designed for the charged Higgs boson search. It

was important to balance stable and sustainable rates, restricted by the readout bandwidth and

based on predictions of the instantaneous luminosities for the 2012 data taking on the one hand

with the goal to achieve highest efficiencies on the other. Special trigger items were designed

for the τ+jets channel, the most sensitive charged Higgs boson search channel, and included
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into the 2012 trigger menu of ATLAS after thorough validation.

An event selection optimisation was performed for the τ+lepton channel of the charged

Higgs boson search, which helped to reduce all backgrounds, except for the kinematically indis-

tinguishable tt→ bb̄W+W− events. The remaining background contributions were successfully

estimated with data-driven techniques.

The comparison of the three direct searches combined results and the ratio-method re-

analysis of the τhad+lepton channel combined with the τhad+jets result, clearly indicates the

future path of the light charged Higgs search with τ leptons in the final state. It is notewor-

thy to mention that these two analyses perfectly complement each other. The ratio-method is

very efficient for lower charged Higgs masses, close to the W± boson mass, whereas the direct

τ+jets channel shows a great sensitivity for the higher mass regions close to the top quark mass.

Utilising these two channels only, with hadronically decaying τ leptons in the final state, im-

proved limits on B(t → bH+) were set. The two analyses could, with only minor adjustments,

be applied on data taken in 2012 with
√

s = 8 TeV. Given that approximately four times the

integrated luminosity of data taken 2011 were recorded in 2012, the limits on B(t → bH+) can

be improved further. The gap in the mH+ − tan β plane as can be seen in Figure 7.8, for the

interpretation of the results in the mmax
h

-scenario, would then most probably close. The most

important, universal results however are the limits set on B(t → bH+), as these are interpretable

in any thought of model and scenario.

With the amount of data collected in 2012 the gate opened for analyses searching for heavy

charged Higgs bosons, mH± > mt. The production cross section is strongly dependent on its

mass, as discussed in Chapter 2. Here two decay channels are currently under investigation by

ATLAS, H+ → tb̄ [65] as the dominant contribution for the heavy H±, and H+ → τν, with a

branching ratio very sensitive to tan β. A modified ratio-method could be utilised for the heavy

charged Higgs boson search with a τ lepton in the final state.
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Appendix A

Monte Carlo Simulation Samples

A.1 Monte Carlo Simulation Samples for 2010 Analyses

A.1.1 Monte Carlo Simulation Samples for the Electron to τ Lepton

Mis-identification Analysis
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A.1.2 Monte Carlo Simulation Samples for the H± Analysis
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A.2 Monte Carlo Simulation Samples for 2011 Analyses

A.2.1 Monte Carlo Samples for H± Ratio-Method Search Analysis

Process Generator Sample label(s) Cross section (pb)

tt̄ with at least one lepton ℓ MC@NLO 105200 90.6

Single top quark t-channel (with ℓ) AcerMC 117360–2 20.9

Single top quark s-channel (with ℓ) MC@NLO 108343–5 1.5

Single top quark Wt (inclusive) MC@NLO 108346 15.7

107680–5 (eν)

W → ℓν Alpgen 107690–5 (µν) 3.1 × 104

107700–5 (τν)

W + bb̄ Alpgen 107280–3 1.3 × 102

W(ℓν) + cc̄ Alpgen 117284–7 3.6 × 102

W + c Alpgen 117293–7 1.1 × 103

107650–5 + 116250–5 (ee)

Z/γ∗ → ℓℓ, m(ℓℓ) > 10 GeV Alpgen 107660–5 + 116260–5 (µµ) 1.5 × 104

107670–5 + 116270–5 (ττ)

109300–3 (ee)

Z/γ∗(ℓℓ) + bb̄, m(ℓℓ) > 30 GeV Alpgen 109305–8 (µµ) 38.7

109310–3 (ττ)

WW Herwig 105985 17.0

ZZ Herwig 105986 1.3

WZ Herwig 105987 5.5

Table A.3: Cross sections and dataset ID numbers for the main SM Monte Carlo samples. In

this table, ℓ refers to the three lepton families e, µ and τ. [174]
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Sample label

mH+ (GeV) tt̄→ bb̄H+W− tt̄ → bb̄H−W+ tt̄ → bb̄H+H−

90 116970 128120 116980

100 116971 128121 116981

110 116972 128122 116982

120 116973 128123 116983

130 116974 109851 116984

140 116975 128125 116985

150 116976 109850 116986

160 116977 128127 116987

Table A.4: ATLAS simulation dataset ID numbers for the charged Higgs boson Monte Carlo

samples.
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