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Abstract

The room temperature Cross-bar H Type Drift Tube
Linac (CH-DTL) is one of the candidate acceleration
structures working in CW mode. In order to optimize the
parameters, the 3 dimensional electromagnetic field of the
CH-DTL cavity is simulated. The method of parameter
sweeping with constraint variable is better than the meth-
od of parameter sweeping with only one variable during
the optimization. In order to simplify the manufacture, the
drift tube surface can be designed as spherical shape. The
CH-DTL cavity has been manufactured and tested.

INTRODUCTION

An Accelerator Driven transmutation System (ADS)
[1, 2], currently under development in China, will be used
to reduce both the toxicity and half-life of the long-lived
radioactive nuclear waste created in light-water reactors
to a controllable level [3]. An industrial scale ADS will
require an average beam current of>10 mA. In 2010, the
Institute of High Energy Physics (IHEP) and the Institute
of Modern Physics (IMP) are both developing supercon-
ducting accelerating structures which would follow an
RFQ [4].

Although low power consumption and a large aperture
favor superconducting structures following a 2-3.5MeV
RFQ, normal-conducting accelerating structures have
some advantages [5, 6]. Normal-conducting structures in
the energy range from 2 to a few tens of MeV are more
compcter and can obtain high acceleration gradient than
the superconducting ones and, when located downstream
of the RFQ, they can serve as a beam filter to reduce the
potential for beam loss at higher energies. The CH struc-
ture, initially proposed by IAP [7, 8], belongs to the =-
mode family of accelerating structures and is typically
characterized by high shunt impedance, low stored energy
and stable geometry that is relatively easy to cool. This
structure is evaluated as a potential candidate for CW
operation. In this paper it is presented the results of ge-
ometry optimization of the CH structure using the method
of parameter sweeping with constraint variable (PSCV)

[9].

THE METHOD OF PARAMETER
SWEEPING WITH CONSTRAINT VA-
RIABLE

The parameters of a single cell are shown in Fig. 1. The
outer drift tube radius (TR) and the radius of the drift tube
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aperture (HR) are fixed during the optimization. Typically
a single parameter was swept while monitoring the cavi-
ty’s RF properties. However, by changing the length of
the drift tube, the resonant frequency changes. Our objec-
tive is to optimize the cavity geometry at a fixed frequen-
cy (325 MHz). If the frequency changes during the opti-
mization, the optimized value of the swept parameter will
differ from the value corresponding to the correct fre-
quency as shown in Fig.2 and Tablel. In Fig. 2 the radius
of the drift-tube stem base (R2) was swept while fixing
the cavity radius (CR). It can be seen that the effective
shunt impedance decreases with increasing R2 while the
resonant frequency increases from 321.7 to 333.5 MHz. It
is convenient to use the cavity radius (CR) as a “con-
straint variable” to fix the resonant frequency to 325 MHz
as shown in Tablel. By doing so, it can be found that the
maximum effective shunt impedance at the correct fre-
quency occurs at R2=22. This method can be named after
“parameter sweeping with constraint variables” (PSCV).
Other parameters can be selected as constraint variables,
but it is found that the resonant frequency is more sensi-
tive to cavity radius than it is to other geometrical param-
eters.
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Figure 1: Geometry of a CH single cell.
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Figure 2: Shunt impedance as a function of outer stem
radius using two methods of parameter sweeping.
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[a)

E Table 1: Comparison of Parameter Sweeping with and
Ej without a Constraint Variable

é Fixed frequency

_; R2(mm) CR(mm)  f(MHz) ZT*Q/m)

S 18 140.9 324.69 1.1945E+08
£ 20 142 3249 1.1996E+08
E 22 143.1 324.52 1.2045E+08
= 24 144.2 324.18 1.2033E+08
@“ 26 145.2 324.06 1.1992E+08
g Fixed cavity radius

S R2(mm) CR(mm) f(MHz) ZT(Q/m)

f 18 142 321.7 1.2080E+08

% 20 142 3249 1.2004E+08
b= 22 142 327.9 1.1864E+08
'E 24 142 330.8 1.1656E+08

S 26 142 333.5 1.1438E+08

8

é SPHERICAL DRIFT TUBE

2 The drift tube in CH-DTL is typically much smaller
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8 tubes have much smaller capacitance resulting in a higher
= shunt impedance, but they are so small they are difficult
S to manufacture with integral cooling channels. Traditional
S drift tubes are nominally cylindrical as shown in Fig. 3.
-2 By modifying the design to have a spherically shaped
2 drift tube, the stem and drift tube can be manufactured
5 (turned) in one step without welding or brazing. In Fig. 4
T it can be seen that axis of revolution for the stem is coaxi-
al with that of the drift tube. The effective shunt imped-
ance of the spherical drift tube is only slightly lower than
that of the cylindrical drift tube (<1%) as shown in Fig. 5.

Figure 3: Cylindrical drift tube.

9)

Figure 4: Spherical drift tube.
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Figure 5: Shunt impedance for two different drift tube
shapes as a function of the stem-base radius.

OPTIMIZING THE MULTI-CELL CAVITY

The multi-cell CH-DTL cavity model includes four
drift tubes and five gaps as shown in Fig.6. In addition to
the parameters optimized above, the multi-cell cavity
contains two additional geometrical features requiring
optimization. These include the length and radius of the
end cups (EL and ER). ER is first swept to find that the
effective shunt impedance is inversely proportional to ER
as shown in Fig. 7.

As the end cup length (EL) increase, it can be seen that
the effective shunt impedance decreases rapidly due to the
power dissipated in the end regions where no acceleration
occurs as shown in Fig. 8.

CAVITY MANUFACTURE AND LOW
POWER RF MEASUREMENT

The stem, the cavity wall and drift tube is made of the
oxygen free copper, and the flange is made of the stain-
less steel with copperized inside as shown in Fig. 9. The
network analyzers is used for the low power RF meas-
urement, and the Q value is about 7194.

Figure 6: 3-D geometry of the 5-cell CH-DTL cavity
model.
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Figure 7: Shunt impedance and cavity radius at a fixed
frequency as a function of ER for a 5-cell cavity without
end cups.
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Figure 8: Shunt impedance and cavity radius at a fixed
frequency as a function of EL for a 5-cell cavity with end
cups.

Figure 9: The inside view of the manufactured cavity.
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