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Abstract

We present a topologically protected teleportation protocol based on projective parity
measurements between spatially separated Majorana zero modes (MZMs), eliminating
the need for dynamic braiding. Unlike conventional teleportation schemes, our method
preserves logical information through nonlocal encoding and suppresses decoherence
exponentially with Majorana separation. We provide a rigorous mathematical framework
that includes six theorems and a lemma, proving fidelity bounds, no entropy increase
under ideal QND parity measurement under quantum non-demolition (QND) measure-
ments, and compliance with the no-cloning theorem. We demonstrate that all correction
operations lie within the Clifford group, enabling efficient, fault-tolerant implementation.
Furthermore, we outline a scalable architecture for multi-qubit teleportation and relate
our framework to recent experimental advances in quantum-dot-based Kitaev chains and
superconducting nanowire platforms. These results position Majorana-based teleportation
as a thermodynamically stable and experimentally viable approach to scalable quantum
information transfer. All operations discussed are Clifford-only; achieving universality
requires non-Clifford resources and lies outside our scope.

Keywords: Majorana zero modes; quantum teleportation; parity measurement; topological
quantum computation; quantum coherence; quantum state fidelity

1. Introduction

Quantum teleportation is a foundational protocol in quantum information science
that transfers an unknown quantum state between distant parties using shared entangle-
ment and classical communication [1-3]. It relies on quantum entanglement and classical
communication and has been demonstrated across several platforms—including photonic
systems, trapped ions, and superconducting circuits—spanning both discrete-variable and
continuous-variable regimes—with recent work achieving logical-level teleportation using
transversal gates and lattice surgery [3—6]. Despite these advances, reliable high-fidelity
teleportation over long distances and in noisy environments remains a central challenge
for scalable quantum networks [3,7,8] and, in the near term, motivates architectures that
minimize error-correction overhead in the NISQ regime [9].

The standard teleportation protocol suffers from vulnerabilities to decoherence and
environmental noise, especially when implemented in systems that store quantum infor-
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mation locally [3,7,8,10]. These imperfections not only reduce fidelity but also require
elaborate quantum error correction techniques, which can limit scalability and increase
resource overhead [11-13].

Majorana fermions, originally proposed in high-energy physics and now realized as
quasiparticles in condensed matter systems, present a transformative opportunity [14-19].
These exotic states of matter are their own antiparticles and exhibit non-Abelian statistics,
making them fundamentally different from conventional fermions or bosons [20,21]. In
one-dimensional topological superconductors, Majorana zero modes (MZMs) appear at
the ends of topological superconducting wires and can be used to encode qubits in a
nonlocal manner [14].

MZMs provide an alternative route: qubits can be encoded nonlocally at the ends of
topological superconducting wires, offering protection against local noise via fermion-parity
conservation [14,16,20,22,23]. Experiments on hybrid superconductor-semiconductor de-
vices have reported phase-coherent transport through “Majorana islands” consistent with
nonlocal encoding [24], while theory and device studies show that hybridization-induced
splittings—and associated error rates—can be exponentially suppressed with increasing
separation relative to the coherence length [25]. In parallel, the statistical and computa-
tional framework of non-Abelian anyons underpins the appeal of Majorana platforms for
fault-tolerant operations [20].

This topological encoding offers intrinsic protection against certain local decoherence
channels: hybridization-induced splittings (and associated error processes) can be exponen-
tially suppressed by increasing MZM separation relative to the coherence length, consistent
with both theory and experiment [16,25,26].

From a thermodynamic and information-theoretic viewpoint, parity-preserving (QND)
measurements need not increase system entropy, providing a principled basis for low-
dissipation state transfer when ideal conditions hold [2,23]. Complementing device-level
progress, emulation studies have realized Majorana-encoded teleportation primitives on
gate-model hardware by mapping Kitaev-chain dynamics to spin circuits [14], helping to
clarify resource requirements and control strategies that inform future experiments on true
topological hardware [14,24,27].

In this work we analyze Majorana-based teleportation protocols that leverage nonlocal
encoding and parity operations to enhance robustness against local noise. We explore
how their nonlocal properties and topological protection can enable teleportation protocols
that are naturally resistant to decoherence and errors. We outline how these ingredients
can be used to implement teleportation primitives within the encoded space, discuss
realistic constraints and error budgets, and survey experimental progress and architectural
proposals toward scalable implementations [18,28].

2. Majorana Fermions and Topological Qubits

Majorana fermions, first theorized by Ettore Majorana in 1937 [29], are unique in
that they are their own antiparticles [30]. While elementary Majorana particles have not
been found in high-energy physics, condensed matter systems—particularly topological
superconductors—have provided platforms where Majorana zero modes (MZMs) can
emerge as quasiparticle excitations. These modes appear at the ends of 1D nanowires
in a topologically nontrivial superconducting phase, such as those made from indium
arsenide (InAs) or indium antimonide (InSb) coupled to conventional superconductors like
aluminum (Al).

What makes MZMs exceptional is that they obey non-Abelian exchange statistics,
unlike typical fermions or bosons. This means that braiding two MZMs—a process of
adiabatically exchanging their positions—does not just permute their labels but enacts
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a unitary transformation on the quantum state of the system. The result of braiding
depends on the order in which the exchanges are performed, which provides a method for
performing quantum gates that are inherently fault-tolerant.

A topological qubit can be constructed using four MZMs, typically located at the ends
of two nanowires or within a Y-junction geometry. The logical qubit states 10) and |1) are
encoded in the fermionic parity—the occupation number—of the paired Majorana modes.
Importantly, this qubit is nonlocally encoded, meaning that no single local measurement
can collapse the entire state. This nonlocality is a major reason why Majorana qubits exhibit
natural resistance to local decoherence, as any environmental noise affecting one end of the
wire does not have access to the complete quantum information.

Furthermore, the system is protected by a superconducting energy gap, which sup-
presses thermal excitations that could disturb the quantum state. If the device operates
at sufficiently low temperatures (typically < 100 mK), and the system remains within
the topological phase, the encoded quantum information can persist for remarkably
long times [15,31].

This makes Majorana-based qubits fundamentally different from conventional super-
conducting qubits (like transmons) or photonic qubits. In standard qubits, coherence times
are limited by charge noise, photon loss, or material imperfections. In contrast, topological
protection means that quantum information in a Majorana qubit is effectively “hidden”
from most sources of decoherence.

These features have inspired topological quantum computing architectures, notably
pursued by Microsoft’s Station Q and several academic collaborations [32]. In such archi-
tectures, computation is carried out by braiding MZMs and measuring their joint parity.
Notably, braiding operations are geometric rather than dynamic, meaning that they depend
on the path taken, not the speed or exact timing—offering further immunity to control noise.

In practical devices, braiding operations—which are essential for implementing
non-Abelian quantum gates in Majorana-based systems—typically require Y-shaped
or X-shaped junction geometries where three or more semiconductor-superconductor
nanowires meet at a central node. These junctions allow for the controlled exchange or
coupling of multiple spatially separated MZMs through the modulation of gate voltages or
tunneling amplitudes. The Y-shape geometry enables the selective tuning of hybridization
between pairs of MZMs while keeping others isolated, effectively implementing parity
measurements or braids in a topologically protected subspace. These configurations are
necessary to go beyond linear nanowire systems, as linear chains do not support topologi-
cally nontrivial braiding operations without overlap, and hence lack universality. Recent
experimental designs and proposals have demonstrated how T-junctions, tri-junctions, and
Y-networks allow for the manipulation of MZMs without violating parity conservation
or inducing decoherence, thereby supporting nonlocal qubit manipulations essential for
fault-tolerant topological quantum computing [33,34].

The non-Abelian anyon nature of Majoranas also opens the possibility for exotic
forms of quantum entanglement and nonlocal quantum gates, which are ideal for quantum
teleportation schemes where maintaining coherence and entanglement across long distances
is essential [20].

In short, Majorana fermions offer not only a promising route to building a fault-
tolerant quantum computer, but also a uniquely stable substrate for long-lived entangled
states, robust qubits, and high-fidelity quantum teleportation. Their realization represents
a convergence of condensed matter physics, quantum information science, and materials
engineering at the frontier of next-generation technology. The measurement-only telepor-
tation protocol replaces geometric braiding with sequences of joint-parity measurements,
but it does not circumvent the Ising-anyon universality limit: the gate set realized here is
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Clifford-only. We make no claim of implementing non-Clifford gates (e.g., T or 7t/8) or
magic-state distillation; those resources are outside the scope of this work (see Appendix A,
Theorem A4).

3. Preserving Coherence via Topological Protection

In this work we distinguish two notions: decoherence suppression and entropy preser-
vation. Decoherence suppression refers to the exponential protection of off-diagonal logical
coherences achieved by nonlocal (topological) encoding and separation (see Equation (17)).
Entropy preservation refers to the statement S(p’) = S(p) under ideal QND parity
measurements when [P,p] = 0 and no residual system-meter entanglement remains
(Theorems A5 and A6). Outside these ideal conditions (e.g., finite visibility, leakage, me-
ter back-action), one generally has S(p’) > S(p). Our entropy statements are therefore
operational and limited to the specified QND regime, whereas decoherence suppression
concerns the encoding and device-level parameters.

The stability of MZMs against decoherence and local disturbances arises from a
two-fold physical mechanism. The total decoherence rate scales as I' ~ A? e(=2L/%)
as shown in Lemma A1 (see Equation (A14)), where local operators acting on a single
Majorana mode are proven to commute with the logical parity operator. First, the system is
protected by a bulk energy gap (A) in the topological superconducting phase. This energy
gap separates the ground state manifold—which hosts the MZMs—from higher-energy
excitations. As long as external perturbations remain smaller than this gap, they cannot
drive the system out of its topological phase or excite unwanted quasiparticles.

Second, and crucially, the logical qubit is encoded nonlocally in the fermionic parity of
two spatially separated MZMs. Defining a Dirac fermion as, the occupation number n = ctc
determines the qubit states 10) and |1). Local operations acting on only one Majorana
operator cannot change this parity; only simultaneous perturbations to both y; and vy, can
affect the logical state. Therefore, even if a local error disturbs one part of the system, it does
not collapse or decohere the encoded quantum information. This nonlocal encoding acts
as a passive error-protection mechanism. In combination with the energy gap, it provides
exponential suppression of decoherence as the Majorana separation L increases. The total
decoherence rate scales as I', where £ is the superconducting coherence length. This is
shown in Lemma A1 (see Equation (A3)), where local operators acting on a single Majorana
mode are proven to commute with the logical parity operator.

Thus, the topological protection of MZMs is due to both the presence of an energy gap
that prevents excitation and a nonlocal qubit structure that shields the encoded state from
local noise.

To clarify the distinction made in this manuscript, we note that ‘entropy preservation’
and ‘decoherence suppression’ refer to related but physically distinct concepts. Decoher-
ence refers to the loss of quantum coherence due to entanglement with the environment,
resulting in the decay of off-diagonal terms in the system’s density matrix. In contrast,
entropy exchange refers to thermodynamic information flow—specifically, the increase in
von Neumann entropy due to energy and disorder transferred between the system and
its surroundings.

In topological systems based on MZMs, decoherence is suppressed due to the nonlocal
encoding of qubits in the fermionic parity of spatially separated MZMs. This encoding
renders the logical qubit immune to local perturbations. Meanwhile, entropy exchange is
limited because operations such as braiding, and parity measurement are non-dissipative
and often quantum non-demolition (QND) in nature. These operations preserve the sys-
tem’s total entropy by avoiding direct energy exchange with the environment. Thus,
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although related, entropy preservation arises from thermodynamic isolation, while deco-
herence suppression arises from topological encoding and symmetry constraints.

To describe the protection mechanism mathematically, we consider the Kitaev chain
Hamiltonian [14]:

H= —pu Zcﬁ ¢j — Z(t ¢ifci1+ Acjcjpr + h.c.) (1)
j j

This model supports MZMs at the ends of a 1D chain in the topological phase
(|u| < 2t). The Majorana operators are defined as y; 1 = ¢j + c]-Jr and 7y; = —i(c]- — cj+).
In this phase, edge-localized MZMs < and v, emerge with zero energy, separated by an
energy gap A.

The logical qubit is encoded in the nonlocal fermionic mode ¢ = (v + i72)/2,
with number operator n = cfc € {0, 1}. The qubit states are [0;) = |n = 0) and
|11) = |n = 1). The associated parity operatoris P = iy 72 = 1 — 2n.

The stability arises because local perturbations cannot change the nonlocal parity:
[O1car, P] = 0 for local operators Oy, Hence, the overlap (01|Ojpcq1|1) = 0. Moreover,
the decoherence rate due to hybridization of the two Majoranas scales as I' ~ exp(—L/¢),
where L is their separation and & is the superconducting coherence length. Thus, topological
protection arises from both the spectral gap that suppresses excitations and the nonlocal
encoding that renders logical operations immune to local errors.

One of the most pressing challenges in quantum information science is maintaining
the coherence of quantum states over time. Decoherence—caused by unavoidable interac-
tions with the surrounding environment—Ieads to the loss of quantum information and
ultimately limits the performance of quantum computers and communication networks. In
conventional qubit systems, such as superconducting transmons or trapped ions, quantum
information is localized in physical degrees of freedom (like current or spin), which makes
them vulnerable to even minimal environmental disturbances [10,34,35].

Since Majorana fermions encode information nonlocally using the joint parity of
two spatially separated MZMs located at opposite ends of a topological superconducting
nanowire, if local noise—say, an electric field fluctuation or phonon interaction—affects
only one end of the wire, it does not collapse the quantum state or cause a bit-flip. The
quantum information is not stored at one end but rather distributed across the two ends.
Consequently, only a correlated disturbance affecting both MZMs simultaneously could
compromise the qubit’s logical state—a scenario that is exponentially less likely to occur.
See Lemma Al in Appendix A for a formal proof that logical states encoded in Majorana
qubits are immune to local operators.

This structural feature acts as a passive error correction mechanism. Unlike traditional
qubit systems that rely on active error correction codes (requiring additional overhead
in terms of qubits and gate operations), Majorana qubits have error suppression built
into the physical substrate itself. This form of topological protection makes them attrac-
tive for any protocol that relies on maintaining entangled states for extended periods,
especially teleportation [27].

Another coherence-preserving aspect of Majorana systems is the adiabatic braiding
of Majorana modes to perform quantum operations. In most quantum computers, logical
gates require precise timing and control of interactions between qubits, which can introduce
errors. In contrast, braiding operations in Majorana systems depend only on the topology
of the path—not the timing or shape of the trajectory—making them inherently robust
to timing jitter or slow control signal noise. If the system is kept in the ground state and
transitions are avoided across the superconducting energy gap, the braiding operation
completes a well-defined unitary transformation.
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This robustness has profound implications for quantum teleportation. A standard
quantum teleportation protocol involves a Bell-state measurement and classical commu-
nication of the outcome to reconstruct the original state. In traditional systems, this
measurement step typically collapses the state and is subject to fidelity loss due to im-
perfect entanglement or decoherence during measurement. In a Majorana-based system,
teleportation can be implemented via projective parity measurements that do not destroy
the logical qubit and can be made fault-tolerant through topological encoding [27].

Moreover, Majorana qubits maintain their coherence for longer durations compared
to standard qubits. This enables long-range entangled resource states—essential for
teleportation—to be prepared ahead of time and stored without rapidly degrading. Studies
suggest that even in environments with thermal noise or fluctuating magnetic fields, topo-
logically encoded information can be preserved if the system stays below a certain energy
threshold and within the topological phase.

Recent research has also introduced the concept of “measurement-only” topological
quantum computation, where all quantum operations are implemented using sequences of
parity measurements, and no actual braiding is needed [36,37].

Recent research has introduced “measurement-only” topological quantum computa-
tion, in which braiding transformations are affected by sequences of topological-charge
(parity) measurements, so no physical braiding is required [28,36,37]. This paradigm fur-
ther reduces operational complexity and makes teleportation not only feasible but efficient
and programmable. In this scheme, qubit teleportation is effectively equivalent to moving
the logical qubit from one Majorana pair to another, without physically transporting any
particles—minimizing decoherence during the process.

Lastly, Majorana-based teleportation is resilient even in partially decohered or “mixed”
quantum states. While standard teleportation protocols suffer from fidelity loss when
entanglement is imperfect, the topological entanglement structure of Majorana systems
ensures that some forms of noise can be naturally filtered or rendered ineffective. This
leads to higher average teleportation fidelities even under non-ideal conditions.

In summary, topological protection provides a quantum shield for information en-
coded in Majorana systems. By preventing local disturbances from collapsing qubits,
ensuring robustness to gate errors, and enabling non-destructive teleportation protocols,
topological qubits represent a paradigm shift in how quantum coherent.

4. Teleportation Using Majorana Fermions

Quantum teleportation transmits an unknown quantum state from one party (Alice)
to another (Bob) using two key resources: a shared entangled state and a classical com-
munication channel. Majorana-based protocols adapt this model by encoding each logical
qubit in spatially separated Majorana zero modes (e.g., y1,72 for Alice and 73,74 for Bob)
and using parity measurements as the core operation. Figure 1 (minimal 4-MZM case)
illustrates the entanglement-generation primitive: a joint parity measurement of vy, and
Y3 projects the system into an entangled state | @) ,5. This entangled pair provides the
quantum channel. The full teleportation protocol—which uses this AB resource together
with classical messages and applies the appropriate parity-conditioned correction on a
third encoded qubit C—is shown in Figure 2.

In this teleportation scheme, Qubit A is the logical input qubit initially held by Alice.
Qubit B is an ancillary system that participates in parity measurements but does not receive
the teleported state. Qubit C is held by Bob and ultimately receives the teleported quantum
information after corrections. As shown in Figure 1, the parity projection between 7, (Alice)
and 3 (Bob) generates entanglement between topological qubits nonlocally. This allows
teleportation to proceed via measurement-only logic.
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Qubit A (4, v2) Qubit B (y3, va)
— 1y2Y3

0 O (oo }——0O O

V1 Y2 V3 V4

Post —projection entangled state

Figure 1. Entanglement distribution protocol using topological (Majorana-based) qubits. Alice holds
a logical qubit encoded in the pair 71, 72, while Bob holds another qubit encoded in 73, 74. A
joint fermionic parity measurement between 7, and <3 (via iy23) is performed. This operation
projects the system into an entangled state | @) shared between the two topological qubit halves,
thereby distributing entanglement across spatially separated regions. Dashed line indicates the
post-projection entanglement resource (a Bell link) between Qubits A and B, i.e., the state | @) 5. It's
a conceptual correlation, not a physical wire or coupling.

Alice-Qubit A (yy, ¥2) Middle-Qubit B (y3, v4) Bob-Qubit C (¥s, ¥¢)
Vi Y2 Y2 V3 Ys Ve

/Step 1 — Prepare entangled resource (B-C) Entaupleditesource

Project B and C into an entangled state via a joint-parity projection Parity project h

O O (e.g., measure Pys = iy4]/5)o O
N\ J
\ |®) B-C
gtep 2 - Joint —parity measurement (A-B) @p 4- Recovery on c\
Measure the joint parity between y,and y3; record outcome p € {1, -1} If p = 1: do nothing
: Measure - iy,y3 [_] If p = —1: apply X on qubit C

G ipulation

P pariiy) B
across distinct Majoranas (not with
in one pair) or measurement —only
get teleportation

-
Step 3-Classical communication Sendp € {1,—13
Send parity bit p to Bob
O O apply X
Vs Ye

ot

.

[ Legend: dashed line =entanglement resource; dashed arrow=classical bit J

Figure 2. Protocol flow for Majorana-based, measurement-only teleportation. Step 1: prepare an
entangled resource between B (73,74) and C (75, ¥6) via a joint-parity projection (e.g., measure
Py5 = i7y475). Step 2: perform a joint-parity measurement on A — B (measure Py3 = —iy23) and
record the outcome p € {+1, —1}. Solid arrow (Step 2): the physical coupling path used to perform the
joint-parity measurement on 7y, y3 (i.e., you momentarily turn on a tunnel/hybridization to read out
the operator i7y,3). Boxed “M”: the parity meter/readout (e.g., quantum-dot/transmon/charge sensor)
that performs a projective measurement giving the outcome p. Step 3: send p to Bob over a classical
channel. Step 4: apply the Pauli correction on C: if p = +1 do nothing, if p = —1 apply Xc. In our
architecture X is realized by parity manipulation across distinct Majoranas or by measurement-only
gate teleportation; braiding within a single pair cannot implement X (see Section 4 and Theorem A4).
Ideal QND readout underlying Steps 2-3 is the regime addressed by Theorems A5 and A6.

Unlike conventional teleportation protocols, which rely on Bell-state measurements
and classical corrections sensitive to decoherence and timing delays, Majorana-based tele-
portation uses topologically protected parity measurements between nonlocally encoded
qubits. This section presents a mathematical formulation of the protocol, highlighting its
robustness to noise and suitability for measurement-only quantum computation.
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In the simplest Majorana teleportation scheme, consider three logical qubits, each

encoded in a pair of MZMs:

Qubit A (the state to be teleported),
Qubit B (entangled with Qubit C), and
Qubit C (held by the receiver, Bob).

Teleportation proceeds through the following topologically protected steps:

Entanglement Preparation: Qubits B and C are entangled via a joint parity operation.
In practice, this is achieved by coupling the MZMs through a controlled tunneling
interaction or via an auxiliary quantum dot. The resulting state encodes shared
fermionic parity between the two qubit pairs. This process is formally described in
Theorem Al in Appendix A, which shows that parity projections preserve logical
coherence and entangle MZMs deterministically.

Projective Measurement: Alice performs a joint parity measurement between Qubit
A and Qubit B. This measurement entangles the unknown state of A with B and
collapses the system into a superposition conditioned on the measured parity. Unlike
a conventional Bell measurement, this step can be done non-destructively in Majorana
systems using charge sensing or interferometry.

Classical Communication: The result of the parity measurement is transmitted to Bob
via a classical channel. Because Majorana-based gates are Clifford operations, the
necessary correction is typically a Pauli operation (X, Y, or Z) or a controlled-phase
gate, depending on the measurement outcome.

Recovery Operation: Bob applies the correction to Qubit C, effectively reconstructing
the original state of Qubit A. Importantly, the information has now been relocated—
not copied—to a new topological region, satisfying the no-cloning theorem, supported
by Theorem A2 while completing the teleportation.

See Theorem A3 in Appendix A for a mathematical formulation of topological protec-

tion under parity-based teleportation.

Protocol setup. We consider three logical qubits: A holds the unknown state

| p)=a | 0)+p | 1) to be teleported; B is the entangled ancilla (shared resource); C is
Bob’s receiver qubit. Each logical qubit is encoded nonlocally by a pair of Majorana zero
modes (MZMs):

Qubsit A: 71,72, Qubit B: 3, 74, Qubit C: 73, 6.

Encoding and algebra

The Majorana operators satisfy:

vi=" {vn) =20k

Define Dirac fermions for each pair (so that {c,,c,"} = 1):

¢ —L( +i7),¢ —L( +ivs), C —L( +i7e) 2)
A—\/E'Yl 7213—\@73 ’Y4fc—ﬁ75 76)-
Logical Z for each qubit is its pair parity,

Za =1v172, ZB = i73Y4, Zc = iY576,

with logical basis

10), & Z=41,[1); & Z=—1. 3)
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For qubit B, the vacuum/occupied states are

el 05 =0,|1)5 =cp'| 0)p (4)

A product basis state for BC is, e.g.,

| 00)pc = [0)p® [ 0)¢ - ©)
Step 1: Prepare entanglement between B and C
Use a joint parity projection to prepare the logical Bell state

1
V2

e.g., by projecting an inter-pair parity (one convenient choice in this layout is)

| @pct+) = —=([0)g 0)c + [ 1] 1)c), (6)

Pys = iv4776 ()

(Physically, the parity projection is implemented by interferometric or charge-sensing
readout; see [28,37-41]).

Step 2: Joint parity measurement between A and B

Alice holds
[ $)a=wal0)4+B[1)4 8)

She measures the link parity
Py =imays € {+1,-1} ©)
Let IT;(23) =12 %(I + i7,73) be the projectors. Acting on the initial state
pin = 9) (9 [4® | @7)(P |5
the selective post-measurement state is

oo (IT,(23) @ Ic) pi (IT,(23) @ I¢)
PABC (P) - P TT’[(Hp(Z?)) ® I(f) pin] ;P € {+11_1} (10)

(With a Bell resource, Pr(p) = %1 for each outcome).

Step 3: Classical communication and correction rule

Alice sends the one-bit outcome p to Bob. The required correction on C is a logical
Pauli conditioned on p:

1—p
Uy=Xc 2 = { I(p= +_1i), a logical X on qubit C. (11)

One implementation in this geometry is the parity-generated operation

Xc =ivas (12)
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Step 4: Recovery on C
Bob applies U, and discards A, B:

pc™ (p) = Trag| (1as ® Up) pasc'(p) (11ap © Up') | =1 9)(¢ | (13)

Equivalently, for pure states,

[ P)c=a|0)c+B]1)c (14)

Notes. (i) The operations I, X, Z, XZ used here are Clifford (see Theorem A4); no
non-Clifford gates are assumed. (ii) When the outcome p is not used (no feed-forward),
the map on C reduces to dephasing in the X basis; with feed-forward, the channel is the
identity on the logical subspace.

Thus, the quantum information originally encoded in Qubit A has been relocated to
Qubit C—not cloned—satisfying the no-cloning theorem and completing the teleportation,
as proven in Theorem A2 and Equation (A9), which shows the reduced state at the sender
becomes maximally mixed after teleportation.

In our teleportation protocol, Alice performs a joint parity measurement between
Majorana modes 7, and 73, using the operator P»3. The projection operator is defined in
Equation (A1) in Appendix A. While y3 belongs to Qubit B (which is entangled with Qubit
C), this operation does not require Alice to control the full logical state of Qubit B. As shown
in Figure 2 (Step 1), we prepare a B-C resource by a joint-parity projection (e.g., P45 = i7475).
In Majorana-based systems, it is physically feasible to couple two Majorana modes—even
from different devices—via an intermediate quantum dot or superconducting island. This
setup enables a joint parity measurement without collapsing the full entangled state.

Such measurements are non-demolition and topologically protected, acting only on
the parity degree of freedom. They have been well-established in the literature as primitives
for measurement-only topological quantum computation. For example, Vijay, Haah, and
Fu (2016) proposed a dimensional hierarchy of quasiparticles based on such parity projec-
tions [37]. Similarly, Karzig et al. (2017) detailed scalable architectures in which joint parity
measurements using quantum dots mediate topologically robust logical operations [28].

Therefore, although Alice performs a measurement involving <3, she does so through
an accessible and non-destructive mechanism that operates at the level of Majorana parity,
not full qubit manipulation.

In conventional teleportation protocols, the Bell pair |®+) used for entanglement is
subject to environmental decoherence. If Bob must wait for Alice’s measurement result
before applying a correction, any delay may degrade the quantum state fidelity during that
window [10,42]. In standard teleportation, Bob’s ability to recover the original state is fully
dependent on receiving Alice’s classical outcome. This forces a synchronization bottleneck
and prevents parallel computation [1,43].

This model of teleportation avoids direct exposure of the quantum state to environ-
mental noise. Moreover, the non-local encoding of Majorana qubits ensures that even if
one MZM sulffers a local perturbation during the protocol, the full quantum information
can still be recovered. Additionally, the entire process can be conducted without physically
moving qubits, reducing the risk of control-induced decoherence.

In certain architectures, such as measurement-only topological quantum computing,
teleportation is the central primitive. Rather than implementing quantum gates by dynami-
cally braiding MZMs, operations are simulated through a network of teleportation steps.
By measuring joint parities in a specific sequence, one can effectively move and manipu-
late quantum states across a Majorana qubit network without ever exposing the encoded
information to a noisy channel. This “braiding without braiding” approach, proposed by
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Vijay and Fu in 2016, underlines how teleportation in a Majorana system is not merely a
communication protocol but a computational engine [37].

Topological qubits based on Majorana fermions also provide a unique opportunity
to explore entropy-preserving quantum operations. Mathematically, this suppression can
be understood as conservation of entropy under parity-preserving QND operations, as
proven in Theorem A5. Unlike standard qubits where entropy increases rapidly due to
environmental coupling, the joint parity of spatially separated MZMs allows for an effective
suppression of entropy production at the local level. This is because decoherence pathways
are constrained by the topological nature of the encoding, limiting entropy exchange with
the environment. Entanglement entropy between subsystems in a topological quantum
circuit remains stable over longer durations, enabling more accurate teleportation fidelity
under noise. These features make Majorana systems not just physically robust, but thermo-
dynamically efficient carriers of quantum information, aligning with the core mission of
entropy-sensitive quantum computation [23,44,45]. This is made precise in Theorem A6,
which shows no entropy increase under ideal QND parity measurement under quantum
non-demolition parity measurements, as formally derived in Equation (A23), where the
von Neumann entropy is shown to be preserved under parity projective measurement.

Another significant advantage of Majorana-based teleportation is its compatibility
with error detection and correction. Since the parity measurements project the system
into a known subspace, any unexpected outcome (e.g., forbidden parity) can be flagged
as an error. This enables passive detection of certain fault types during the teleportation
sequence, offering further protection to quantum information.

Furthermore, Majorana-based teleportation protocols are scalable and modular. Unlike
conventional qubit systems, where longer chains of qubits and entangled pairs suffer from
exponential fidelity loss, the topological robustness of Majorana qubits allows entangled
states to be maintained and distributed across larger distances or arrays [20]. This scalability
is essential for building quantum repeaters, distributed quantum computing networks, or
even the foundations of a quantum internet. Parity manipulation across distinct Majoranas
using island-mediated tunnel links is exactly the mechanism proposed in Majorana box-
qubit architectures [46].

5. Experimental Milestones (2020-2025)

The last five years have witnessed rapid progress in demonstrating the physical
feasibility of Majorana-based quantum teleportation. From early signatures of teleportation-
like behavior to prototype quantum hardware designed specifically for Majorana qubit
control, the field has matured from theoretical speculation to engineering reality. The
following table summarizes key experimental and theoretical milestones.

Table 1 summarizes selected developments in the field, from the first phase-coherent
teleportation through Majorana islands (2020) to recent device-level demonstrations
and proposals relevant to scalable topological architectures. It includes both hardware
milestones and foundational theoretical advances, providing a chronological perspec-
tive on progress toward stable, error-resilient quantum teleportation using Majorana
zero modes [9,22,27,30,32].
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Table 1. Major experimental and theoretical milestones in Majorana-based quantum teleportation
(2020-2025).

Year

Milestone Summary

2020

Whiticar et al. demonstrated phase-coherent

Phase-Coherent Teleportation via single-electron transport via MZMs in InAs /Al

Majorana Islands

nanowires, confirming teleportation-like behavior
with oscillations in a topological regime [24].

2021

Quantum Simulation of Majorana Teleportation

Huang et al. simulated a Kitaev chain-based
teleportation protocol on a superconducting processor,
achieving error-resistant qubit transfer and
demonstrating fidelity beyond classical limits [27].

2022

Long-Distance and Mixed-State Theories

Jahromi and others proposed teleportation using
noisy entangled states [9]. Xu and Zhou modeled
Ising anyon-based teleportation of multi-anyon
systems, proving error-robust fidelity [30].

6. Advantages over Standard Qubit Approaches

Majorana-based systems offer a compelling suite of advantages that set them apart

from conventional quantum computing and communication platforms. While standard

qubit technologies—such as superconducting transmons, trapped ions, and photonic

qubits—have shown promising developments in speed, gate fidelity, and scaling, they

remain fundamentally limited by their sensitivity to decoherence and noise. In contrast,

topologically encoded Majorana qubits inherently mitigate many of these challenges due

to their nonlocal and fault-tolerant structure. This section outlines the critical benefits of

using Majorana fermions in quantum teleportation and beyond:

1.

Extended Coherence Times via Nonlocal Encoding. One of the most significant
advantages of Majorana-based qubits is their exceptionally long coherence times.
Unlike conventional qubits, which store information in localized degrees of freedom,
Majorana qubits encode quantum information in the joint parity of two spatially
separated zero modes. This encoding prevents local perturbations—like stray electric
fields or background noise—from collapsing the qubit state, allowing entangled
Majorana pairs to persist far longer [21].

Built-In Error Protection at the Hardware Level. Topological qubits serve as physical
error-correcting codes. Their architecture suppresses both bit-flip and phase-flip
errors without requiring active correction cycles. This greatly enhances reliability for
quantum teleportation protocols and simplifies the system architecture [28,38].
Resilience in Noisy and Mixed-State Environments. Teleportation using standard
qubits degrades rapidly under environmental noise. In contrast, studies have shown
that Majorana qubits can maintain high-fidelity teleportation even when the entangled
resource is partially decohered or in a mixed state—greatly enhancing potential in
practical applications.

Deterministic, Topologically Protected Operations. Operations using Majorana
qubits—such as braiding or parity measurements—are topologically protected and
deterministic. They are immune to small control inaccuracies, unlike pulse-driven
gates in other qubit types, making them particularly attractive for repeatable and
high-fidelity teleportation [19].

Reduced Overhead for Error Correction. Unlike conventional systems that require ex-
tensive redundancy and syndrome detection, Majorana qubits embed error resilience
into their hardware. Teleportation protocols thus become simpler and more scalable,
requiring fewer physical qubits per logical operation [40].
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6.  Scalability and Modular Design. Topological qubit networks can be laid out mod-
ularly using repeating nanowire segments and Y-junctions. This design lends itself
naturally to teleportation circuits, distributed computing, and fault-tolerant quantum
networks—forming a promising architecture for the future quantum internet [33].

In summary, the stability, robustness, and design flexibility of Majorana qubits offer a
clear path forward for reliable and efficient quantum teleportation systems.

7. Experimental and Physical Realization of Majorana-Based
Quantum Teleportation

Recent advances in topological quantum materials and hybrid semiconductor—
superconductor systems have enabled the experimental and physical realization of quan-
tum teleportation using MZMs. In this approach, quantum information is encoded non-
locally in pairs of MZMs at the ends of superconducting nanowires, such as InAs or InSb
wires with epitaxially grown Al or Nb shells. Under suitable magnetic fields and gate
voltages, these nanowires support topologically protected zero-energy modes that can be
used to encode qubits through their fermionic parity [33,42].

To initiate the teleportation protocol, an unknown quantum state | ) =« | 0)+5 | 1)
is prepared in a topological qubit consisting of two MZMs (Y1, y2). In parallel, an entangled
state is generated between two other topological qubits: one held by Alice (73, v4) and the
other by Bob (75, 74). Physically, this entangled Bell-like state

1
V2

is produced by initializing a fixed total parity over a shared superconducting Coulomb

| @+) = —=(] 00)+ [ 11)) (15)

Island or through coherent tunneling across a controlled capacitive link between dis-
tant nanowires [16,38].

The teleportation process begins when Alice performs a joint parity measurement
between one Majorana from her unknown qubit (7;) and one from the entangled pair (ys).
This sequence is illustrated schematically in Figure 3, showing the layout of Alice’s and
Bob’s qubits, the parity measurement via a quantum dot, and the corrective operation on
Bob’s side.

This measurement is implemented using a quantum dot or a superconducting mi-
crowave resonator coupled to both MZMs. The energy level of the dot or the resonator
response shifts depending on the joint parity of the two Majoranas. A nearby charge sensor
(e.g., quantum point contact or single-electron transistor) or dispersive readout enables
non-demolition readout of the parity eigenvalue (+1 or —1) [39,47].

Based on this measurement, Alice sends a single classical bit (even or odd parity
outcome) to Bob over a conventional communication channel. If the outcome is even, Bob
takes no action. If it is odd, Bob performs a corrective Pauli-X (bit-flip) operation on his
Majorana qubit (75, ve)-

Implementation of X¢. The Pauli-X correction cannot be achieved by braiding within
a single Majorana pair (which preserves parity). Instead, X¢ is implemented by parity
manipulation across distinct Majoranas—e.g., by temporarily enabling a parity-changing
tunnel/coupling between different pairs or by measurement-only gate teleportation that
conditions on joint parity outcomes [16,28,38]. This is consistent with our Appendix A proof
that single-pair braiding preserves parity and thus cannot flip the qubit’s logical occupation.
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Figure 3. Experimental setup for Majorana-based quantum teleportation. Alice holds an unknown
quantum state | i) encoded in two Majorana zero modes (1, 72) at the ends of a superconducting
nanowire (InAs/Al). An entangled parity pair | &) e 18 generated between Alice’s auxiliary qubit
(73, v4) and Bob’s qubit (y5, 7). A quantum dot is used to perform a joint parity measurement
P,y = —ivp74 between Alice’s unknown state and the entangled resource. The parity-dependent
outcome is read non-destructively using charge sensing or microwave dispersive shift and communi-
cated to Bob via a classical channel. Bob applies a corrective Pauli-X operation if needed, recovering
the original quantum state on his side.

The Pauli-X correction shown in Equation (12) cannot be implemented by braiding
operations within a single pair of Majorana modes, such as 5 and <. Braiding two
Majoranas within the same fermionic mode (i.e., forming the same Dirac fermion) does not
alter the occupation number of the fermionic mode, and therefore cannot flip the logical
qubit state. This is because such braiding operations preserve the fermionic parity and
effectively induce only phase transformations within the fixed-parity subspace.

In other words, the Hilbert space of a single fermionic mode, defined by ¢ = %(75 + i),

consists of the states | 0) and | 1) = c' | 0). The parity operator P = i757, has eigenvalues
+1, and any unitary generated by braiding within the 75, 76 pair commutes with P, and
hence cannot change the parity—i.e., it cannot flip the qubit. To implement an effective
Pauli-X gate, which does flip the parity (i.e., maps | 0) <+| 1)), one must couple MZMs
from different qubit pairs or introduce an ancillary parity degree of freedom through pro-
jective measurement or measurement-based gate teleportation. For example, a controlled
Pauli-X can be implemented by measuring the joint parity iy4ys and conditioning on
the result. This form of logic is consistent with measurement-only topological quantum
computation schemes [47].

Therefore, while braiding is an essential tool for generating non-Abelian operations,
Pauli-X corrections in Majorana-based teleportation must be applied using parity manipu-
lation between distinct Majorana pairs, not within a single pair.

To verify teleportation, Bob measures the state of his qubit by converting fermion
parity into charge and using quantum state tomography. Repeating this process for multiple
input states and bases allows the construction of the teleported density matrix. The fidelity
of teleportation is computed as

F = Tr(pideal - pteleported), (16)
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where F—1 when parity is accurately measured and corrected [40,41].

Theoretical models predict that the decoherence/hybridization error rate scales as I
in Equation (17), where A is the superconducting gap, L is the MZM separation, and ¢ is
the coherence length [40].

I~ A%e2L/E, (17)

Feasibility & error budget: end-to-end teleportation fidelity 2 (parity-readout fi-
delity) x exp(—2L/&) as bounded in Theorem A3; device-level factors (finite T, charge noise,
quasiparticle poisoning, disorder) renormalize prefactors and effective &; Equation (17)
is an ideal-limit expression. This exponential suppression is supported by experimental
observations in nanowire-based devices, where coherence times of Majorana states appear
significantly extended compared to conventional charge qubits [47]. The fidelity is sup-
pressed exponentially with MZM separation and gap as formalized in Theorem A3 and
Equation (A12), which bounds fidelity.

Our finite-temperature parity-readout model uses Gaussian hypothesis testing for
the readout misclassification probability, includes Poissonian quasiparticle poisoning dur-
ing the integration window, and adds a hybridization term o e~2L/¢, following stan-
dard treatments [16,18,25,26,28,32]. We model the joint-parity measurement as a binary
hypothesis test on a continuous readout x with Gaussian statistics conditioned on the
parity eigenvalue m = =£1. The temperature-dependent signal amplitude scales as
u(T) o« V(T) = tanh(A/2kBT), while the noise standard deviation is ¢(T) (dominated
by amplifier noise plus a small thermal component). The optimal threshold yields a
misclassification probability

(T) = %el’fC (\/%ET’];’)T) ) ’ Fread(T> =1- S(T)' (18)

During the integration window T, quasiparticle poisoning is treated as a Poisson
process with rate I';p, giving pgp >~ I, Ty in the small-rate limit. If poisoning occurs, we
conservatively take the outcome fidelity to be 1/2. The effective readout fidelity is then

. (19)

NI~

Feff(Tr Tm) ~ (1 - quTm) Fread(T) + (F‘WT’”)

Finally, we fold in hybridization as a parity-flip/dephasing channel with weight
Chybe’zu ¢, giving the conservative multiplicative bound

Ftel 2 Feff(T,tm)(1 — Chybe —2L/¢), (20)

which captures the expected trends: F,s; improves with L/¢ and A/kBT, but degrades
with I}, and overly short 7, (SNR-limited). See Table 2 for the corresponding error-
budget parameters [16,18,25,26,28,32]. It provides a compact way to translate device-level
parameters into a predicted teleportation fidelity band for experimental planning.

Device Limitations. Equation (17) is an ideal-limit expression for topological sup-
pression. In practical devices, several effects renormalize the prefactor and the effective
suppression length: finite temperature (thermally activated quasiparticles), charge/phase
noise (fluctuations of couplings and readout), quasiparticle poisoning (setting a floor
I' 2 1/1,), and disorder-induced subgap states (reducing A and enlarging an effective
coherence length G,r). Operationally, one should read Equation (17) as I' ~ A,¢ f2 e 2L/ Gt
with A, ¢ determined by device engineering. Our claims are therefore asymptotic/ideal;
practical rates depend on the realized A, sy, poisoning times, and readout fidelity.
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Table 2. Dominant error channels for a single teleportation shot and how they combine in our
conservative bound. See Refs. [16,18,25,26,28,32].

Error Channel

Symbol/Scaling Typical Knobs (Device) Contribution to Infidelity

(per Shot)

Integration time Tm; amplifier
Parity readout misclassification  F,,,; (readout fidelity) SNR; interferometric/ AF 00 =~ 1= Fropa

charge-sensor visibility

. . . . o I s FUPTP T

Qua}mpartlcle poisoning Poisson rate Iy Gap A; filtering; shielding; pgp=l—e ot o TypTm
during readout normal traps (small-rate limit)
Hybridization/overlap oL . . - oL/
of MZMs e 4 Separation L; coherence length & AFy,, ~ Cyyp e ¢

Thermal excitation/contrastloss ~ V(T) ~ tanh(A/2kBT) Temperature T; A o—A/KET

Low-freq charge noise/drifts

AFy ~ Cr [1— V(T)] or
when applicable
AFypise ~ (UeTrﬂ)z

Oc OVer Ty, Gate stability; filters .
(Gaussian approx.)

While current efforts focus on teleporting single logical qubits, the same architec-
ture can, in principle, be scaled up to enable the teleportation of macroscopic quantum
information. To achieve this, one would:

1.  Encode a complex quantum object—e.g., a mesoscopic system or register—into an
array of nonlocal Majorana qubits.

2. Perform multi-qubit parity measurements between the object’s logical qubits and
shared entangled parity states distributed across devices or regions.

3. Use correlated classical bits from these measurements to guide corrections on the
receiving side.

4. Reconstruct the full macroscopic state in the receiver’s device without moving any
physical particles.

This approach requires careful management of parity conservation across multiple
nonlocal encodings but offers the revolutionary possibility of teleporting entire many-body
quantum states without loss of coherence. Because Majorana qubits are protected from
local errors, this type of teleportation would preserve global entanglement in a way that is
currently impossible with fragile photonic or spin systems.

Such a protocol would build directly upon the measurement-only framework proposed
by Vijay, Haah, and Fu [37] and extended in networked architectures by Karzig et al. [28].
With coherent coupling and distributed parity readout, a macroscopic teleportation scheme
could redefine the scope of long-distance quantum communication and distributed quan-
tum computing.

Entanglement and the Challenge of Distance. An important conceptual point arises in
considering whether distant teleportation using Majorana systems necessarily requires the
sharing of an entangled state—particularly in the form of a photon-mediated entangled pair,
such as through absorption and emission of photons. In traditional quantum teleportation
protocols, entanglement is distributed between sender and receiver, often using photons as
carriers of nonlocal quantum correlations. However, in the Majorana-based architecture
developed here, quantum information is transferred via joint parity measurement and clas-
sical communication, without physically transporting entangled particles. The nonlocality
is embedded in the parity-conserving structure of the topological system itself.

Still, the question of how to physically realize distant entanglement, especially across
cryogenic boundaries or between separate hardware platforms, remains a key challenge.
One possible avenue is to mediate the entanglement of two spatially separated Majorana
systems (e.g., 74 and 75) using an entangled photon link, wherein the photon couples to
the parity degree of freedom via engineered cavity-QED or spin-photon interfaces. This
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remains an open area of exploration and may bridge the topological and photonic realms.
Alternatively, the model developed in this work may circumvent the need for pre-shared
entanglement by exploiting measurement-based teleportation over fixed parity manifolds.

Ultimately, the boundary between topological parity transfer and conventional en-
tanglement distribution warrants deeper investigation. We acknowledge that further
clarification—both theoretical and experimental—is required to fully understand the in-
terplay between Majorana parity dynamics and photonic entanglement in long-distance
quantum state transfer.

Figure 4 illustrates two complementary approaches to teleportation in Majorana-
based quantum systems. In the left panel, an entangled photon pair establishes a nonlocal
quantum link between v4 (on Alice’s chip) and y5 (on Bob’s chip), enabling the remote
sharing of an entangled Majorana parity state. This hybrid architecture supports long-
distance quantum information transfer while preserving topological protection, an essential
feature for scalable and fault-tolerant quantum networks [19]. The right panel shows a
fully local, measurement-based teleportation scheme in which Alice performs a joint
parity measurement between v, (from her input qubit) and v, (from the entangled pair),
using a quantum dot or resonator. The result is sent classically to Bob, who applies
a Pauli-X correction to his qubit (ys—yg), thereby completing the teleportation without
physically moving any quantum particle. Both approaches demonstrate how Majorana
systems leverage topological encoding and parity-preserving operations to enable robust,
decoherence-resistant quantum communication.

Entangled State Measure-Based
Sharing? Teleportation
Entangled Photon Pair
Alice Bob
0 0 N\NNN 0 —o — o
Y1 V2 l _ YV ¥s " Y2 Vs 143
Parity X
Measurement !
:
1
- — — — M| —o
£ V3 Va4 ¥s Ve V2 Vs Vs Ve
Superconducting Superconducting
Nanowires Nanowires

Figure 4. Entangled Photon Sharing vs. Measurement-Based Teleportation in Majorana Systems.
(Left) A schematic illustrating how an entangled photon pair can mediate a nonlocal entangled state
between spatially separated Majorana modes v, (Alice) and ys5 (Bob). Alice’s unknown qubit is
encoded in y1—y;, while Bob’s target qubit resides in y5—y¢. This hybrid architecture combines super-
conducting nanowires and optical links to establish long-distance entanglement without physical
proximity. Blue waves: entangled photon pair used to share a Bell state. Red lightning: classical
heralding/communication signal from photon detection. (Right) A standard measurement-based
Majorana teleportation protocol. Alice performs a joint parity measurement between v, (her qubit)
and y4 (her entangled pair), using a quantum dot or resonator (M). She sends the parity outcome via
a classical channel, and Bob applies a Pauli-X correction to y5—yg if needed. Throughout, topological
protection is maintained by encoding information nonlocally in fermion parity.

For example, a minimal realization of the Kitaev chain was demonstrated in coupled
quantum dots [48], showcasing the feasibility of engineering topological superconducting
phases in nanoscale systems. Building on this foundation, enhanced stability was achieved
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in three-site quantum dot chains [49,50], illustrating the robustness of such architectures
against environmental decoherence and fabrication imperfections. These developments
enable precise control over MZM hybridization and fermionic parity, both of which are
critical ingredients for implementing reliable quantum teleportation protocols.

Additional experimental evidence has supported the presence of both edge and bulk
Majorana states in quantum dot arrays [51], further validating the topological nature of
these engineered systems. Complementing these observations, theoretical models have
captured nontrivial fusion phenomena in extended dot networks [52], providing important
insights into the manipulation of non-Abelian excitations. Taken together, these advances
suggest that quantum-dot arrays not only serve as promising and scalable platforms
for hosting MZMs but also constitute a practical and tunable medium for executing the
parity-based measurements required in topological quantum teleportation. Moreover,
demonstrating a full Majorana-based teleportation protocol remains a near-term research
goal; ongoing efforts report ingredients such as parity readout and non-local correlations,
but a complete implementation is future work.

8. Discussion: Limitations and the Challenge of Macroscopic Teleportation

While Majorana-based quantum teleportation presents a robust and theoretically
sound method for transmitting quantum information with topological protection, extending
such a protocol to macroscopic or biological systems faces fundamental limitations. The
teleportation described in this framework is restricted to the transfer of quantum states, not
physical matter. MZMs only exist under cryogenic conditions—typically in the millikelvin
range—required to stabilize the topological superconducting phase [28]. These ultra-cold
temperatures are essential for maintaining the superconducting topological phase that hosts
non-Abelian quasiparticles and enables fermionic parity encoding. As such, all operations
involving Majorana-based qubits—preparation, entanglement, parity measurement, and
correction—must be performed in cryogenic environments.

Teleportation in this context operates by encoding quantum information into the parity
of spatially separated MZMs. A joint parity measurement and classical communication
suffice to transfer the quantum state between distant nodes without moving any physical
qubit. However, teleporting a macroscopic object would require mapping every degree of
freedom of that system—including position, spin, and vibrational states—into a quantum
register with exceptional isolation from the environment. Biological systems decohere
rapidly at room temperature, on the order of femtoseconds, making them fundamentally
incompatible with the required quantum coherence lifetimes [53].

Even for engineered systems, several critical challenges must still be addressed before
Majorana-based teleportation can be deployed in scalable quantum networks:

1.  Engineering Stable Majorana Modes: A key requirement is the reproducible and scal-
able generation of MZMs in solid-state nanowires. Although signatures of MZMs have
been observed, reliably creating topological superconducting phases with stable zero-
energy modes remains a materials and fabrication challenge [15,16,53]. Future work
must focus on heterostructure refinement, disorder reduction, and high-fidelity control.

2. Gate Set Limitations—Non-Universality of Ising Anyons: Majorana-based qubits
support Clifford operations through braiding, but this gate set is insufficient for
universal quantum computation. Realizing non-Clifford gates requires ancillary
operations like magic state distillation, which adds significant overhead [54]. Hybrid
approaches that embed Majoranas into more universal quantum architectures are a
promising direction.

3.  Interfacing with Photonic Systems for Long-Distance Teleportation: Since Majorana
qubits are hosted in cryogenic environments, achieving long-distance teleportation
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will require hybrid interfaces between photonic qubits and Majorana modes. Such
interfaces are in early stages of development and remain a major bottleneck for
integrating Majorana systems into quantum communication networks [55].

4.  Experimental Readout and Control: Joint parity measurements are central to Majo-
rana teleportation, but current methods such as tunneling spectroscopy and charge
sensing lack the required fidelity and scalability. Advances in quantum-dot coupling,
resonator-based readout, and measurement-only control architectures are needed to
reliably access and manipulate fermionic parity [56].

5. System-Level Scalability and Fault-Tolerant Architectures: Although topological
protection offers intrinsic noise suppression, it does not eliminate the need for active
error correction. Realizing scalable teleportation requires modular architectures that
support parallel operation, fault-tolerant correction, and compatibility with quantum
memory and networking protocols [28].

In this sense, while Majorana teleportation is a powerful tool for transferring quantum
information within cryogenic, engineered environments, it does not enable teleportation
of physical or biological objects as imagined in science fiction. The cold environment is
not the fundamental limiting factor—the real issue is that such complex systems cannot
be coherently and completely mapped into a quantum information architecture without
destroying the very structure we aim to preserve.

Thus, the scope of Majorana-based teleportation is best understood as a platform
for transferring quantum logic, not classical matter. It holds promise for distributed
quantum computing, error-resilient communication between superconducting qubit nodes,
and potentially teleporting many-body quantum states engineered within cold, coherent
systems—but not for transferring warm, living, or structurally complex matter across space.

Future Outlook. The path forward is promising. Theoretical work has laid a rigorous
foundation for Majorana teleportation protocols, and experimental advances in nanowire
engineering, parity readout, and measurement-based logic are falling into place. Over
the next decade, we expect to see this architecture applied to quantum repeater systems,
topological quantum networks, and robust quantum error correction. While macroscopic
teleportation of physical matter remains unattainable due to decoherence and scalability
limits, Majorana-based teleportation of many-body quantum states in engineered systems
could become a practical and powerful building block for scalable quantum technology.

9. Conclusions

The development of quantum teleportation protocols using Majorana fermions repre-
sents a transformative step toward building robust, scalable, and fault-tolerant quantum
systems. Unlike conventional approaches that are vulnerable to environmental noise
and require extensive error correction, Majorana-based systems offer intrinsic protection
through topological encoding. This nonlocal nature enables stable quantum information
transfer—even under decoherence—making them ideal candidates for next-generation
quantum networks.

Over the last five years, both theoretical proposals and experimental achievements
have laid a strong foundation for the realization of teleportation using Majorana zero
modes. From phase-coherent transport experiments to quantum simulations and prototype
hardware, the building blocks are coming into place.

However, substantial challenges remain. Creating scalable arrays of Majorana qubits,
integrating them with photonic systems, and expanding their computational universality
will require multidisciplinary collaboration across physics, materials science, and quan-
tum engineering.
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Despite these hurdles, the trajectory is clear: Majorana fermions have the potential
to solve one of quantum computing’s greatest challenges—decoherence. By leveraging
their exotic topological properties, we move closer to realizing not only stable quantum
teleportation but also the infrastructure for a global quantum internet. This work pro-
vides a Clifford-level teleportation primitive in a measurement-only Majorana architecture;
universality would require additional non-Clifford resources provided externally.
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Appendix A. Formal Theorems and Proofs in Majorana-Based Teleportation

Overview: This appendix rigorously presents the formal theorems and corresponding
proofs relevant to measurement-only teleportation using Majorana zero modes (MZMs).
All operations are assumed to act within the topologically protected logical subspace of
non-Abelian anyons in a 1D topological superconductor [14]. Notation follows standard
conventions in fermionic quantum information.

Let each logical qubit be encoded in a pair of MZMs: 71,7, and 13,74, such that the
associated Dirac fermion is defined by: ¢; = %(')/1 +ivp),c0 = %(')/3 + i4) with logical
states: | 0p)= | 0).,|11) = c'|0)..

Preliminaries (measurement model used below). We model a non-selective,
ideal QND measurement of the joint parity Pz = i7y27Y3 by the Liiders instrument
M(p) =IpIly + H_pIl_, I1+ = %(1 =+ Pa3).

Under the commuting assumption [Py3,p] = 0, the entropy property and identity
action of M are proved later (see Theorem A5, Equations (A18) and (A19)). We now
analyze the selective outcome p = +1 explicitly (projector action, normalization, and
parity-conditioned Clifford correction).

Theorem Al. Parity-Based Entanglement is Unitary on Logical Subspace

Statement: A projective parity measurement between Majorana qubits A and B preserves
the logical subspace and can be interpreted as a unitary transformation followed by a known
Pauli correction.

Proof of Theorem Al. Let qubit A be encoded in Majorana modes 71, 72, and qubit B in
1 1
73, v4. The Dirac fermion operators are defined as: c4 = 5 (v1+72),¢c8 = 5 (73 + 74). The

logical basis states are: | 0r)= | 0),,| 11) = c'| 0).. A general two-qubit logical state is:
|) = «|00) + B|11). We now perform a parity measurement between (from A) 7, and
(from B) 73, using the operator:

Py3 = iv273 (A1)
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with projectors:
I+p-iyys
1, = szv). (A2)
The variable p € {+1, —1} represents the measured eigenvalue (outcome) of the
fermionic parity operator iy,73.
Let us apply IL; to |1):

1 )
I [¢) =5 («]00) + BI11) +ivy73(2[00) + B[11))). (A3)
To compute this, use the fact that ,73|00) = |11) and 7,73|11) = —|00). Thus:
i7273(¢[00) + B[11)) = ia|11) —ip|00) . (A4)

Substitute back into the expression:

I |y) = S[(a —iB)[00) + (B +ia)[11)] (A5)

N =

This is an unnormalized state. To normalize, compute the norm:

[la B2 + 18 +ia?] = 2 (12 +16P%) (A6)

N

1T [ 9) | =

So, the normalized state is:

¢,) = ! (o~ iB)[00) + (B + i) 11) ] (A7)

2(laf” + 1)

This procedure is consistent with the general rule for post-measurement states:

_ Ip(pa @ pp)IIp
Tr[ITy(pa ® p3)]

(A8)

where is the projector onto the parity eigenspace and is the normalized post-measurement
state. Up to a known phase, this is a unitary transformation of the original state within the
logical subspace. A Pauli or correction (depending on measurement outcome) recovers the
standard entangled form. Hence, the parity projection acts unitarily on the logical subspace,
modulo a known correction. [J

Theorem A2. No-Cloning in Majorana-Based Teleportation

Statement: The teleportation process collapses the original qubit to a maximally mixed state,
ensuring compliance with the quantum no-cloning theorem.

Proof of Theorem A2. Consider teleportation of a qubit state | ) from site A to site C via
projective parity measurements. After applying correction at C, the state is reconstructed.
However, the parity measurement collapses A’s state, resulting in a maximally mixed

reduced state: I

pa = Trc(paC) = 5 (A9)

N

This ensures that no duplicate copy exists at A after the process, in full compliance
with the quantum no-cloning theorem.
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Let the initial state of the three-qubit system (A: source, B: ancilla, C: target) be:

%) ape = (| 0}, + 8] 1)) © éu 00) e+ | 11) 5c)- (A10)

This is a product of the input qubit and a maximally entangled Bell pair.

Apply joint parity measurements between A and B, and between B and C. These
parity projections collapse the system onto an entangled subspace, transferring the
quantum state from A to C up to a Pauli correction: | ¥) ;pc = | X)4 ® | ) where
| ¥)c=a|0),+B|1),and | x) 4 is an unentangled residual state.

To confirm that cloning does not occur, trace out B and C:

pa=Trsc(|¥)(¥]) = 51 (A11)

The reduced density matrix at site A is maximally mixed, regardless of «, 8.

Meanwhile, the output state at C is pure: p4 = [ )(¢|. This demonstrates that
although the quantum state has been reconstructed at C, no information remains at A. The
process destroys the original and does not violate the no-cloning theorem. [

Theorem A3. Measurement-Only Teleportation is Topologically Protected

Statement: The teleportation of a Majorana-encoded qubit using only joint parity measure-
ments and Pauli corrections operates entirely within the topologically protected code space and is
robust to local decoherence.

Proof of Theorem A3. Teleporting qubit A (1, ¥2) to qubit C (75, ¥6) through an entangled
pair B (3,74) involves only joint parity projections and Clifford corrections. The entire
protocol remains within the topologically encoded code space.

Because MZMs are spatially separated by distance L, and the system is protected by a
superconducting gap 4, the fidelity is bounded as:

L
F>1—ae ¢ — pe A/ (A12)

This implies robustness to thermal fluctuations and local decoherence, thus demon-
strating the topological protection of the teleportation protocol. []

Lemma A1. Local Operators Cannot Distinguish Logical States

Statement: Any operator acting on a single Majorana mode commutes with the logical parity
and cannot distinguish between | 0); and | 1);.

Proof of Lemma A1. Consider a qubit encoded using the Dirac fermion ¢ = (%27172)
The logical states are:
| 0), =| vac), | 1), = c' | vac) (A13)

Let O be a Hermitian operator that acts only on 7 i.e., O = f(y1) with no dependence
on y;. Then:
P=iy17, 50 [0,P] =0 (A14)

Now consider the specific case O = 1. Observe:

11 0)p o< | 1) and 1 | 1)} o [ 0)f (A15)
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Thus, 71 maps | 0); <> | 1);, but it does not distinguish them—it flips the states
rather than measuring them.
To see this more formally, consider the expectation values:

(0[0]0),= (1]O[1), =0, (0[O[1), # 0 (Al6)

So, while O (e.g., v1) may transform logical states, it cannot extract information about
which logical state the system is in. Therefore, no observable constructed from a single
Majorana mode can resolve the logical basis—a signature of nonlocal encoding. [

Theorem A4. Correction Operations Lie in the Clifford Group

Statement: All Pauli corrections resulting from parity measurement outcomes are elements of
the Clifford group.

Proof of Theorem A4. Consider a teleportation protocol involving three Majorana

qubits A, B, and C, encoded using pairs of Majorana zero modes: cx = %(72)(—1 + 72x),
X € {A, B,C}. The logical states are eigenstates of the Dirac occupation number operator
ny = ckcx, corresponding to even and odd fermion parity respectively.

The teleportation proceeds via two joint parity measurements:

1. Pap =iv24728
Ppc = iv2p+172c. Each has eigenvalues %1, yielding four possible combinations of
outcomes. These projections collapse the total state into one of four correlated subspaces.

Let the initial state be:
1
[9) 4 © [ DT) pe = (#]0) +B|1)) 4 + \ﬁ(|00> +111) ) pc (A17)

After parity measurements, the resulting state (before correction) is of the form:
| Yout) ¢ = Ucorr(|0) + B| 1) ) where Ucoyr € {I,X,Y, Z} depends on the parity outcomes.
Since these correction operators are from the Pauli group %1 = {I,X,Y, Z}, and the
Pauli group is preserved under conjugation by Clifford gates, it follows that:
o  The set of operations involved in this teleportation protocol (i.e., joint parity measure-
ments and Pauli corrections) lies within the Clifford group &;.

By definition, the Clifford group is: €, = {U € U(2") : U%P,U" C P, } Since each
Pauli operator (including measurement-induced corrections) satisfies this property, we
conclude: Uy € 1. Therefore, the entire teleportation protocol can be described by
Clifford operations. [

Theorem A5. Entropy Conservation Under Repeated QND Parity Measurements

Statement: For a state that is diagonal in the parity basis, repeated quantum non-demolition
(QND) measurements with commuting parity operators do not increase entropy: S(p') = S(p).
Let P = i7;7y; be a parity operator with projectors

IT. = ~(1+D)

NI~

Assume the state p is diagonal in the parity basis (equivalently, [P, p] = 0). An ideal,
non-selective QND parity measurement is described by the Liiders map

M(p) = ITLyp ITy + 1T pIT (A18)
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Then the von Neumann entropy is invariant:
S5(M(p)) = S(p) (A19)

Proof. Since [P, p] = 0, we also have [IT+,p] = 0. Decompose p = I1,pII, +I1 . pII_ +
II_pIl, +11 pII . Because I1, 11 =II_I1=0, the crosstermsvanishandp = I1 pIl; +
IT_pII_. Hence the Liiders map leaves the state unchanged, M(p) = p,so S(M(p)) = S(p),
proving Equation (A19). [

Theorem A6. Entropy Invariance After Ideal QND Parity Measurement

Statement: Let p be the state of a system encoded in the parity subspace of two spatially
separated Majorana zero modes y1, o, and let P = ivy17y; be the fermionic parity operator. Consider
a non-selective, ideal QND parity measurement of P (implemented by a pointer model with no
residual system—meter entanglement, or equivalently by the Liiders instrument). Assume [P,p] =0
(i.e., p is block-diagonal in the parity basis). Then the post-measurement state p’ satisfies

S(e') = S(e)
where S(-) = —Tr[-log(-)] is the von Neumann entropy.
Proof. Let the parity operator be
P =iyiy,, P2 =1, Pt =P. (A20)

Its projectors onto the parity eigenspaces are

I = %(Ii P) (A21)

Because [P, p] = 0, p is block-diagonal in the parity basis and can be written as
p=II oIl +1I_pIl_ (A22)

A non-selective ideal QND measurement of PPP updates the state by the Liiders rule,
o =TIl plly +I1_pIl- (A23)

Comparing Equations (A22) and (A23) gives p’ = p, hence S(p") = S(p). O

Remark A1l. Outside the ideal QND conditions (e.g., if [P,p] # 0 or residual system—meter
correlations remain), the general statement is S(p") > S(p), not equality.

Physical Interpretation:

o  The QND parity measurement does not extract or disturb quantum coherence within
the parity eigenspace.

e  The measurement apparatus does not entangle with the system, and hence no entropy
is transferred to the environment.

e  Since Majorana qubits are encoded in parity subspaces, the information is immune
not just to local perturbations (decoherence) but also to entropy leakage.

Summary: This result shows that Majorana parity measurements are thermodynami-
cally reversible in ideal QND settings, enabling quantum logic operations that preserve
entropy. This contrasts with conventional measurement models, where entropy increases
due to wavefunction collapse or entanglement with the measuring device.
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