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Abstract

We present a topologically protected teleportation protocol based on projective parity

measurements between spatially separated Majorana zero modes (MZMs), eliminating

the need for dynamic braiding. Unlike conventional teleportation schemes, our method

preserves logical information through nonlocal encoding and suppresses decoherence

exponentially with Majorana separation. We provide a rigorous mathematical framework

that includes six theorems and a lemma, proving fidelity bounds, no entropy increase

under ideal QND parity measurement under quantum non-demolition (QND) measure-

ments, and compliance with the no-cloning theorem. We demonstrate that all correction

operations lie within the Clifford group, enabling efficient, fault-tolerant implementation.

Furthermore, we outline a scalable architecture for multi-qubit teleportation and relate

our framework to recent experimental advances in quantum-dot-based Kitaev chains and

superconducting nanowire platforms. These results position Majorana-based teleportation

as a thermodynamically stable and experimentally viable approach to scalable quantum

information transfer. All operations discussed are Clifford-only; achieving universality

requires non-Clifford resources and lies outside our scope.

Keywords: Majorana zero modes; quantum teleportation; parity measurement; topological

quantum computation; quantum coherence; quantum state fidelity

1. Introduction

Quantum teleportation is a foundational protocol in quantum information science

that transfers an unknown quantum state between distant parties using shared entangle-

ment and classical communication [1–3]. It relies on quantum entanglement and classical

communication and has been demonstrated across several platforms—including photonic

systems, trapped ions, and superconducting circuits—spanning both discrete-variable and

continuous-variable regimes—with recent work achieving logical-level teleportation using

transversal gates and lattice surgery [3–6]. Despite these advances, reliable high-fidelity

teleportation over long distances and in noisy environments remains a central challenge

for scalable quantum networks [3,7,8] and, in the near term, motivates architectures that

minimize error-correction overhead in the NISQ regime [9].

The standard teleportation protocol suffers from vulnerabilities to decoherence and

environmental noise, especially when implemented in systems that store quantum infor-
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mation locally [3,7,8,10]. These imperfections not only reduce fidelity but also require

elaborate quantum error correction techniques, which can limit scalability and increase

resource overhead [11–13].

Majorana fermions, originally proposed in high-energy physics and now realized as

quasiparticles in condensed matter systems, present a transformative opportunity [14–19].

These exotic states of matter are their own antiparticles and exhibit non-Abelian statistics,

making them fundamentally different from conventional fermions or bosons [20,21]. In

one-dimensional topological superconductors, Majorana zero modes (MZMs) appear at

the ends of topological superconducting wires and can be used to encode qubits in a

nonlocal manner [14].

MZMs provide an alternative route: qubits can be encoded nonlocally at the ends of

topological superconducting wires, offering protection against local noise via fermion-parity

conservation [14,16,20,22,23]. Experiments on hybrid superconductor–semiconductor de-

vices have reported phase-coherent transport through “Majorana islands” consistent with

nonlocal encoding [24], while theory and device studies show that hybridization-induced

splittings—and associated error rates—can be exponentially suppressed with increasing

separation relative to the coherence length [25]. In parallel, the statistical and computa-

tional framework of non-Abelian anyons underpins the appeal of Majorana platforms for

fault-tolerant operations [20].

This topological encoding offers intrinsic protection against certain local decoherence

channels: hybridization-induced splittings (and associated error processes) can be exponen-

tially suppressed by increasing MZM separation relative to the coherence length, consistent

with both theory and experiment [16,25,26].

From a thermodynamic and information-theoretic viewpoint, parity-preserving (QND)

measurements need not increase system entropy, providing a principled basis for low-

dissipation state transfer when ideal conditions hold [2,23]. Complementing device-level

progress, emulation studies have realized Majorana-encoded teleportation primitives on

gate-model hardware by mapping Kitaev-chain dynamics to spin circuits [14], helping to

clarify resource requirements and control strategies that inform future experiments on true

topological hardware [14,24,27].

In this work we analyze Majorana-based teleportation protocols that leverage nonlocal

encoding and parity operations to enhance robustness against local noise. We explore

how their nonlocal properties and topological protection can enable teleportation protocols

that are naturally resistant to decoherence and errors. We outline how these ingredients

can be used to implement teleportation primitives within the encoded space, discuss

realistic constraints and error budgets, and survey experimental progress and architectural

proposals toward scalable implementations [18,28].

2. Majorana Fermions and Topological Qubits

Majorana fermions, first theorized by Ettore Majorana in 1937 [29], are unique in

that they are their own antiparticles [30]. While elementary Majorana particles have not

been found in high-energy physics, condensed matter systems—particularly topological

superconductors—have provided platforms where Majorana zero modes (MZMs) can

emerge as quasiparticle excitations. These modes appear at the ends of 1D nanowires

in a topologically nontrivial superconducting phase, such as those made from indium

arsenide (InAs) or indium antimonide (InSb) coupled to conventional superconductors like

aluminum (Al).

What makes MZMs exceptional is that they obey non-Abelian exchange statistics,

unlike typical fermions or bosons. This means that braiding two MZMs—a process of

adiabatically exchanging their positions—does not just permute their labels but enacts
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a unitary transformation on the quantum state of the system. The result of braiding

depends on the order in which the exchanges are performed, which provides a method for

performing quantum gates that are inherently fault-tolerant.

A topological qubit can be constructed using four MZMs, typically located at the ends

of two nanowires or within a Y-junction geometry. The logical qubit states |0〉 and |1〉 are

encoded in the fermionic parity—the occupation number—of the paired Majorana modes.

Importantly, this qubit is nonlocally encoded, meaning that no single local measurement

can collapse the entire state. This nonlocality is a major reason why Majorana qubits exhibit

natural resistance to local decoherence, as any environmental noise affecting one end of the

wire does not have access to the complete quantum information.

Furthermore, the system is protected by a superconducting energy gap, which sup-

presses thermal excitations that could disturb the quantum state. If the device operates

at sufficiently low temperatures (typically < 100 mK), and the system remains within

the topological phase, the encoded quantum information can persist for remarkably

long times [15,31].

This makes Majorana-based qubits fundamentally different from conventional super-

conducting qubits (like transmons) or photonic qubits. In standard qubits, coherence times

are limited by charge noise, photon loss, or material imperfections. In contrast, topological

protection means that quantum information in a Majorana qubit is effectively “hidden”

from most sources of decoherence.

These features have inspired topological quantum computing architectures, notably

pursued by Microsoft’s Station Q and several academic collaborations [32]. In such archi-

tectures, computation is carried out by braiding MZMs and measuring their joint parity.

Notably, braiding operations are geometric rather than dynamic, meaning that they depend

on the path taken, not the speed or exact timing—offering further immunity to control noise.

In practical devices, braiding operations—which are essential for implementing

non-Abelian quantum gates in Majorana-based systems—typically require Y-shaped

or X-shaped junction geometries where three or more semiconductor-superconductor

nanowires meet at a central node. These junctions allow for the controlled exchange or

coupling of multiple spatially separated MZMs through the modulation of gate voltages or

tunneling amplitudes. The Y-shape geometry enables the selective tuning of hybridization

between pairs of MZMs while keeping others isolated, effectively implementing parity

measurements or braids in a topologically protected subspace. These configurations are

necessary to go beyond linear nanowire systems, as linear chains do not support topologi-

cally nontrivial braiding operations without overlap, and hence lack universality. Recent

experimental designs and proposals have demonstrated how T-junctions, tri-junctions, and

Y-networks allow for the manipulation of MZMs without violating parity conservation

or inducing decoherence, thereby supporting nonlocal qubit manipulations essential for

fault-tolerant topological quantum computing [33,34].

The non-Abelian anyon nature of Majoranas also opens the possibility for exotic

forms of quantum entanglement and nonlocal quantum gates, which are ideal for quantum

teleportation schemes where maintaining coherence and entanglement across long distances

is essential [20].

In short, Majorana fermions offer not only a promising route to building a fault-

tolerant quantum computer, but also a uniquely stable substrate for long-lived entangled

states, robust qubits, and high-fidelity quantum teleportation. Their realization represents

a convergence of condensed matter physics, quantum information science, and materials

engineering at the frontier of next-generation technology. The measurement-only telepor-

tation protocol replaces geometric braiding with sequences of joint-parity measurements,

but it does not circumvent the Ising-anyon universality limit: the gate set realized here is
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Clifford-only. We make no claim of implementing non-Clifford gates (e.g., T or π/8) or

magic-state distillation; those resources are outside the scope of this work (see Appendix A,

Theorem A4).

3. Preserving Coherence via Topological Protection

In this work we distinguish two notions: decoherence suppression and entropy preser-

vation. Decoherence suppression refers to the exponential protection of off-diagonal logical

coherences achieved by nonlocal (topological) encoding and separation (see Equation (17)).

Entropy preservation refers to the statement S(ρ′) = S(ρ) under ideal QND parity

measurements when [P, ρ] = 0 and no residual system–meter entanglement remains

(Theorems A5 and A6). Outside these ideal conditions (e.g., finite visibility, leakage, me-

ter back-action), one generally has S(ρ′) ≥ S(ρ). Our entropy statements are therefore

operational and limited to the specified QND regime, whereas decoherence suppression

concerns the encoding and device-level parameters.

The stability of MZMs against decoherence and local disturbances arises from a

two-fold physical mechanism. The total decoherence rate scales as Γ ∼ ∆2 e(−2L/ξ)

as shown in Lemma A1 (see Equation (A14)), where local operators acting on a single

Majorana mode are proven to commute with the logical parity operator. First, the system is

protected by a bulk energy gap (∆) in the topological superconducting phase. This energy

gap separates the ground state manifold—which hosts the MZMs—from higher-energy

excitations. As long as external perturbations remain smaller than this gap, they cannot

drive the system out of its topological phase or excite unwanted quasiparticles.

Second, and crucially, the logical qubit is encoded nonlocally in the fermionic parity of

two spatially separated MZMs. Defining a Dirac fermion as, the occupation number n = c†c

determines the qubit states |0〉 and |1〉. Local operations acting on only one Majorana

operator cannot change this parity; only simultaneous perturbations to both γ1 and γ2 can

affect the logical state. Therefore, even if a local error disturbs one part of the system, it does

not collapse or decohere the encoded quantum information. This nonlocal encoding acts

as a passive error-protection mechanism. In combination with the energy gap, it provides

exponential suppression of decoherence as the Majorana separation L increases. The total

decoherence rate scales as Γ, where ξ is the superconducting coherence length. This is

shown in Lemma A1 (see Equation (A3)), where local operators acting on a single Majorana

mode are proven to commute with the logical parity operator.

Thus, the topological protection of MZMs is due to both the presence of an energy gap

that prevents excitation and a nonlocal qubit structure that shields the encoded state from

local noise.

To clarify the distinction made in this manuscript, we note that ‘entropy preservation’

and ‘decoherence suppression’ refer to related but physically distinct concepts. Decoher-

ence refers to the loss of quantum coherence due to entanglement with the environment,

resulting in the decay of off-diagonal terms in the system’s density matrix. In contrast,

entropy exchange refers to thermodynamic information flow—specifically, the increase in

von Neumann entropy due to energy and disorder transferred between the system and

its surroundings.

In topological systems based on MZMs, decoherence is suppressed due to the nonlocal

encoding of qubits in the fermionic parity of spatially separated MZMs. This encoding

renders the logical qubit immune to local perturbations. Meanwhile, entropy exchange is

limited because operations such as braiding, and parity measurement are non-dissipative

and often quantum non-demolition (QND) in nature. These operations preserve the sys-

tem’s total entropy by avoiding direct energy exchange with the environment. Thus,
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although related, entropy preservation arises from thermodynamic isolation, while deco-

herence suppression arises from topological encoding and symmetry constraints.

To describe the protection mechanism mathematically, we consider the Kitaev chain

Hamiltonian [14]:

H = −µ ∑
j

cj
† cj − ∑

j

(

t cj
†cj+1 + ∆cj cj+1 + h.c.

)

(1)

This model supports MZMs at the ends of a 1D chain in the topological phase

(|µ| < 2t ). The Majorana operators are defined as γ2j−1 = cj + cj
† and γ2j = −i

(

cj − cj
†
)

.

In this phase, edge-localized MZMs γ1 and γ2N emerge with zero energy, separated by an

energy gap ∆.

The logical qubit is encoded in the nonlocal fermionic mode c = (γ1 + iγ2)/2,

with number operator n = c†c ∈ {0, 1}. The qubit states are |0L⟩ = |n = 0⟩ and

|1L⟩ = |n = 1⟩. The associated parity operator is P = i γ1 γ2 = 1 − 2n.

The stability arises because local perturbations cannot change the nonlocal parity:

[Olocal , P] = 0 for local operators Olocal . Hence, the overlap ⟨0L|Olocal |1L⟩ = 0. Moreover,

the decoherence rate due to hybridization of the two Majoranas scales as Γ ∼ exp(−L/ξ),

where L is their separation and ξ is the superconducting coherence length. Thus, topological

protection arises from both the spectral gap that suppresses excitations and the nonlocal

encoding that renders logical operations immune to local errors.

One of the most pressing challenges in quantum information science is maintaining

the coherence of quantum states over time. Decoherence—caused by unavoidable interac-

tions with the surrounding environment—leads to the loss of quantum information and

ultimately limits the performance of quantum computers and communication networks. In

conventional qubit systems, such as superconducting transmons or trapped ions, quantum

information is localized in physical degrees of freedom (like current or spin), which makes

them vulnerable to even minimal environmental disturbances [10,34,35].

Since Majorana fermions encode information nonlocally using the joint parity of

two spatially separated MZMs located at opposite ends of a topological superconducting

nanowire, if local noise—say, an electric field fluctuation or phonon interaction—affects

only one end of the wire, it does not collapse the quantum state or cause a bit-flip. The

quantum information is not stored at one end but rather distributed across the two ends.

Consequently, only a correlated disturbance affecting both MZMs simultaneously could

compromise the qubit’s logical state—a scenario that is exponentially less likely to occur.

See Lemma A1 in Appendix A for a formal proof that logical states encoded in Majorana

qubits are immune to local operators.

This structural feature acts as a passive error correction mechanism. Unlike traditional

qubit systems that rely on active error correction codes (requiring additional overhead

in terms of qubits and gate operations), Majorana qubits have error suppression built

into the physical substrate itself. This form of topological protection makes them attrac-

tive for any protocol that relies on maintaining entangled states for extended periods,

especially teleportation [27].

Another coherence-preserving aspect of Majorana systems is the adiabatic braiding

of Majorana modes to perform quantum operations. In most quantum computers, logical

gates require precise timing and control of interactions between qubits, which can introduce

errors. In contrast, braiding operations in Majorana systems depend only on the topology

of the path—not the timing or shape of the trajectory—making them inherently robust

to timing jitter or slow control signal noise. If the system is kept in the ground state and

transitions are avoided across the superconducting energy gap, the braiding operation

completes a well-defined unitary transformation.
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This robustness has profound implications for quantum teleportation. A standard

quantum teleportation protocol involves a Bell-state measurement and classical commu-

nication of the outcome to reconstruct the original state. In traditional systems, this

measurement step typically collapses the state and is subject to fidelity loss due to im-

perfect entanglement or decoherence during measurement. In a Majorana-based system,

teleportation can be implemented via projective parity measurements that do not destroy

the logical qubit and can be made fault-tolerant through topological encoding [27].

Moreover, Majorana qubits maintain their coherence for longer durations compared

to standard qubits. This enables long-range entangled resource states—essential for

teleportation—to be prepared ahead of time and stored without rapidly degrading. Studies

suggest that even in environments with thermal noise or fluctuating magnetic fields, topo-

logically encoded information can be preserved if the system stays below a certain energy

threshold and within the topological phase.

Recent research has also introduced the concept of “measurement-only” topological

quantum computation, where all quantum operations are implemented using sequences of

parity measurements, and no actual braiding is needed [36,37].

Recent research has introduced “measurement-only” topological quantum computa-

tion, in which braiding transformations are affected by sequences of topological-charge

(parity) measurements, so no physical braiding is required [28,36,37]. This paradigm fur-

ther reduces operational complexity and makes teleportation not only feasible but efficient

and programmable. In this scheme, qubit teleportation is effectively equivalent to moving

the logical qubit from one Majorana pair to another, without physically transporting any

particles—minimizing decoherence during the process.

Lastly, Majorana-based teleportation is resilient even in partially decohered or “mixed”

quantum states. While standard teleportation protocols suffer from fidelity loss when

entanglement is imperfect, the topological entanglement structure of Majorana systems

ensures that some forms of noise can be naturally filtered or rendered ineffective. This

leads to higher average teleportation fidelities even under non-ideal conditions.

In summary, topological protection provides a quantum shield for information en-

coded in Majorana systems. By preventing local disturbances from collapsing qubits,

ensuring robustness to gate errors, and enabling non-destructive teleportation protocols,

topological qubits represent a paradigm shift in how quantum coherent.

4. Teleportation Using Majorana Fermions

Quantum teleportation transmits an unknown quantum state from one party (Alice)

to another (Bob) using two key resources: a shared entangled state and a classical com-

munication channel. Majorana-based protocols adapt this model by encoding each logical

qubit in spatially separated Majorana zero modes (e.g., γ1,γ2 for Alice and γ3,γ4 for Bob)

and using parity measurements as the core operation. Figure 1 (minimal 4-MZM case)

illustrates the entanglement-generation primitive: a joint parity measurement of γ2 and

γ3 projects the system into an entangled state | Φ⟩AB. This entangled pair provides the

quantum channel. The full teleportation protocol—which uses this AB resource together

with classical messages and applies the appropriate parity-conditioned correction on a

third encoded qubit C—is shown in Figure 2.

In this teleportation scheme, Qubit A is the logical input qubit initially held by Alice.

Qubit B is an ancillary system that participates in parity measurements but does not receive

the teleported state. Qubit C is held by Bob and ultimately receives the teleported quantum

information after corrections. As shown in Figure 1, the parity projection between γ2 (Alice)

and γ3 (Bob) generates entanglement between topological qubits nonlocally. This allows

teleportation to proceed via measurement-only logic.
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Figure 1. Entanglement distribution protocol using topological (Majorana-based) qubits. Alice holds

a logical qubit encoded in the pair γ1, γ2, while Bob holds another qubit encoded in γ3, γ4. A

joint fermionic parity measurement between γ2 and γ3 (via iγ2γ3) is performed. This operation

projects the system into an entangled state | Φ⟩ shared between the two topological qubit halves,

thereby distributing entanglement across spatially separated regions. Dashed line indicates the

post-projection entanglement resource (a Bell link) between Qubits A and B, i.e., the state | Φ⟩AB. It’s

a conceptual correlation, not a physical wire or coupling.

Figure 2. Protocol flow for Majorana-based, measurement-only teleportation. Step 1: prepare an

entangled resource between B (γ3, γ4) and C (γ5, γ6) via a joint-parity projection (e.g., measure

P45 = iγ4γ5). Step 2: perform a joint-parity measurement on A − B (measure P23 = −iγ2γ3) and

record the outcome p ∈ {+1,−1}. Solid arrow (Step 2): the physical coupling path used to perform the

joint-parity measurement on γ2, γ3 (i.e., you momentarily turn on a tunnel/hybridization to read out

the operator iγ2γ3). Boxed “M”: the parity meter/readout (e.g., quantum-dot/transmon/charge sensor)

that performs a projective measurement giving the outcome p. Step 3: send p to Bob over a classical

channel. Step 4: apply the Pauli correction on C: if p = +1 do nothing, if p = −1 apply XC. In our

architecture XC is realized by parity manipulation across distinct Majoranas or by measurement-only

gate teleportation; braiding within a single pair cannot implement X (see Section 4 and Theorem A4).

Ideal QND readout underlying Steps 2–3 is the regime addressed by Theorems A5 and A6.

Unlike conventional teleportation protocols, which rely on Bell-state measurements

and classical corrections sensitive to decoherence and timing delays, Majorana-based tele-

portation uses topologically protected parity measurements between nonlocally encoded

qubits. This section presents a mathematical formulation of the protocol, highlighting its

robustness to noise and suitability for measurement-only quantum computation.
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In the simplest Majorana teleportation scheme, consider three logical qubits, each

encoded in a pair of MZMs:

• Qubit A (the state to be teleported),

• Qubit B (entangled with Qubit C), and

• Qubit C (held by the receiver, Bob).

Teleportation proceeds through the following topologically protected steps:

1. Entanglement Preparation: Qubits B and C are entangled via a joint parity operation.

In practice, this is achieved by coupling the MZMs through a controlled tunneling

interaction or via an auxiliary quantum dot. The resulting state encodes shared

fermionic parity between the two qubit pairs. This process is formally described in

Theorem A1 in Appendix A, which shows that parity projections preserve logical

coherence and entangle MZMs deterministically.

2. Projective Measurement: Alice performs a joint parity measurement between Qubit

A and Qubit B. This measurement entangles the unknown state of A with B and

collapses the system into a superposition conditioned on the measured parity. Unlike

a conventional Bell measurement, this step can be done non-destructively in Majorana

systems using charge sensing or interferometry.

3. Classical Communication: The result of the parity measurement is transmitted to Bob

via a classical channel. Because Majorana-based gates are Clifford operations, the

necessary correction is typically a Pauli operation (X, Y, or Z) or a controlled-phase

gate, depending on the measurement outcome.

4. Recovery Operation: Bob applies the correction to Qubit C, effectively reconstructing

the original state of Qubit A. Importantly, the information has now been relocated—

not copied—to a new topological region, satisfying the no-cloning theorem, supported

by Theorem A2 while completing the teleportation.

See Theorem A3 in Appendix A for a mathematical formulation of topological protec-

tion under parity-based teleportation.

Protocol setup. We consider three logical qubits: A holds the unknown state

| ψ⟩= α | 0⟩+β | 1⟩ to be teleported; B is the entangled ancilla (shared resource); C is

Bob’s receiver qubit. Each logical qubit is encoded nonlocally by a pair of Majorana zero

modes (MZMs):

Qubit A: γ1, γ2, Qubit B: γ3, γ4, Qubit C: γ5, γ6.

Encoding and algebra

The Majorana operators satisfy:

γj = γj
†,

{

γj, γk

}

= 2δjk

Define Dirac fermions for each pair (so that
{

cl , cl
†
}

= 1):

cA =
1√
2
(γ1 + iγ2), cB =

1√
2
(γ3 + iγ4), cC =

1√
2
(γ5 + iγ6). (2)

Logical Z for each qubit is its pair parity,

ZA := iγ1γ2, ZB := iγ3γ4, ZC := iγ5γ6,

with logical basis

| 0⟩L ↔ Z = +1, | 1⟩L ↔ Z = −1. (3)
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For qubit B, the vacuum/occupied states are

cB | 0⟩B = 0, | 1⟩B = cB
† | 0⟩B (4)

A product basis state for BC is, e.g.,

| 00⟩BC = | 0⟩B ⊗ | 0⟩C . (5)

Step 1: Prepare entanglement between B and C

Use a joint parity projection to prepare the logical Bell state

| ΦBC+⟩ = 1√
2
( | 0⟩B | 0⟩C + | 1⟩B | 1⟩C), (6)

e.g., by projecting an inter-pair parity (one convenient choice in this layout is)

P46 = iγ4γ6 (7)

(Physically, the parity projection is implemented by interferometric or charge-sensing

readout; see [28,37–41]).

Step 2: Joint parity measurement between A and B

Alice holds

| ψ⟩A = α | 0⟩A + β | 1⟩A (8)

She measures the link parity

P23 = iγ2γ3 ∈ {+1,−1} (9)

Let Π±(23) = 12
1

2
(I ± iγ2γ3) be the projectors. Acting on the initial state

ρin =| ψ⟩ ⟨ψ | A⊗ | Φ+
〉〈

Φ+ |
BC

the selective post-measurement state is

ρABC
′(p) =

(

Πp(23)⊗ IC

)

ρin

(

Πp(23)⊗ IC

)

Tr
[(

Πp(23)⊗ IC

)

ρin

] , p ∈ {+1,−1} (10)

(With a Bell resource, Pr(p) =
1

2
1 for each outcome).

Step 3: Classical communication and correction rule

Alice sends the one-bit outcome p to Bob. The required correction on C is a logical

Pauli conditioned on p:

Up = XC

1 − p

2 =

{

I (p = +1)

XC (p = −1)
, a logical X on qubit C. (11)

One implementation in this geometry is the parity-generated operation

XC ≡ iγ4γ5 (12)
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Step 4: Recovery on C

Bob applies Up and discards A, B:

ρC
out(p) = TrAB

[

(

IAB ⊗ Up

)

ρABC
′(p)

(

I IAB ⊗ Up
†
)]

=| ψ⟩⟨ψ |C (13)

Equivalently, for pure states,

| ψ⟩C = α | 0⟩C + β | 1⟩C (14)

Notes. (i) The operations I, X, Z, XZ used here are Clifford (see Theorem A4); no

non-Clifford gates are assumed. (ii) When the outcome p is not used (no feed-forward),

the map on C reduces to dephasing in the XC basis; with feed-forward, the channel is the

identity on the logical subspace.

Thus, the quantum information originally encoded in Qubit A has been relocated to

Qubit C—not cloned—satisfying the no-cloning theorem and completing the teleportation,

as proven in Theorem A2 and Equation (A9), which shows the reduced state at the sender

becomes maximally mixed after teleportation.

In our teleportation protocol, Alice performs a joint parity measurement between

Majorana modes γ2 and γ3, using the operator P23. The projection operator is defined in

Equation (A1) in Appendix A. While γ3 belongs to Qubit B (which is entangled with Qubit

C), this operation does not require Alice to control the full logical state of Qubit B. As shown

in Figure 2 (Step 1), we prepare a B–C resource by a joint-parity projection (e.g., P45 = iγ4γ5).

In Majorana-based systems, it is physically feasible to couple two Majorana modes—even

from different devices—via an intermediate quantum dot or superconducting island. This

setup enables a joint parity measurement without collapsing the full entangled state.

Such measurements are non-demolition and topologically protected, acting only on

the parity degree of freedom. They have been well-established in the literature as primitives

for measurement-only topological quantum computation. For example, Vijay, Haah, and

Fu (2016) proposed a dimensional hierarchy of quasiparticles based on such parity projec-

tions [37]. Similarly, Karzig et al. (2017) detailed scalable architectures in which joint parity

measurements using quantum dots mediate topologically robust logical operations [28].

Therefore, although Alice performs a measurement involving γ3, she does so through

an accessible and non-destructive mechanism that operates at the level of Majorana parity,

not full qubit manipulation.

In conventional teleportation protocols, the Bell pair |Φ+〉 used for entanglement is

subject to environmental decoherence. If Bob must wait for Alice’s measurement result

before applying a correction, any delay may degrade the quantum state fidelity during that

window [10,42]. In standard teleportation, Bob’s ability to recover the original state is fully

dependent on receiving Alice’s classical outcome. This forces a synchronization bottleneck

and prevents parallel computation [1,43].

This model of teleportation avoids direct exposure of the quantum state to environ-

mental noise. Moreover, the non-local encoding of Majorana qubits ensures that even if

one MZM suffers a local perturbation during the protocol, the full quantum information

can still be recovered. Additionally, the entire process can be conducted without physically

moving qubits, reducing the risk of control-induced decoherence.

In certain architectures, such as measurement-only topological quantum computing,

teleportation is the central primitive. Rather than implementing quantum gates by dynami-

cally braiding MZMs, operations are simulated through a network of teleportation steps.

By measuring joint parities in a specific sequence, one can effectively move and manipu-

late quantum states across a Majorana qubit network without ever exposing the encoded

information to a noisy channel. This “braiding without braiding” approach, proposed by
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Vijay and Fu in 2016, underlines how teleportation in a Majorana system is not merely a

communication protocol but a computational engine [37].

Topological qubits based on Majorana fermions also provide a unique opportunity

to explore entropy-preserving quantum operations. Mathematically, this suppression can

be understood as conservation of entropy under parity-preserving QND operations, as

proven in Theorem A5. Unlike standard qubits where entropy increases rapidly due to

environmental coupling, the joint parity of spatially separated MZMs allows for an effective

suppression of entropy production at the local level. This is because decoherence pathways

are constrained by the topological nature of the encoding, limiting entropy exchange with

the environment. Entanglement entropy between subsystems in a topological quantum

circuit remains stable over longer durations, enabling more accurate teleportation fidelity

under noise. These features make Majorana systems not just physically robust, but thermo-

dynamically efficient carriers of quantum information, aligning with the core mission of

entropy-sensitive quantum computation [23,44,45]. This is made precise in Theorem A6,

which shows no entropy increase under ideal QND parity measurement under quantum

non-demolition parity measurements, as formally derived in Equation (A23), where the

von Neumann entropy is shown to be preserved under parity projective measurement.

Another significant advantage of Majorana-based teleportation is its compatibility

with error detection and correction. Since the parity measurements project the system

into a known subspace, any unexpected outcome (e.g., forbidden parity) can be flagged

as an error. This enables passive detection of certain fault types during the teleportation

sequence, offering further protection to quantum information.

Furthermore, Majorana-based teleportation protocols are scalable and modular. Unlike

conventional qubit systems, where longer chains of qubits and entangled pairs suffer from

exponential fidelity loss, the topological robustness of Majorana qubits allows entangled

states to be maintained and distributed across larger distances or arrays [20]. This scalability

is essential for building quantum repeaters, distributed quantum computing networks, or

even the foundations of a quantum internet. Parity manipulation across distinct Majoranas

using island-mediated tunnel links is exactly the mechanism proposed in Majorana box-

qubit architectures [46].

5. Experimental Milestones (2020–2025)

The last five years have witnessed rapid progress in demonstrating the physical

feasibility of Majorana-based quantum teleportation. From early signatures of teleportation-

like behavior to prototype quantum hardware designed specifically for Majorana qubit

control, the field has matured from theoretical speculation to engineering reality. The

following table summarizes key experimental and theoretical milestones.

Table 1 summarizes selected developments in the field, from the first phase-coherent

teleportation through Majorana islands (2020) to recent device-level demonstrations

and proposals relevant to scalable topological architectures. It includes both hardware

milestones and foundational theoretical advances, providing a chronological perspec-

tive on progress toward stable, error-resilient quantum teleportation using Majorana

zero modes [9,22,27,30,32].
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Table 1. Major experimental and theoretical milestones in Majorana-based quantum teleportation

(2020–2025).

Year Milestone Summary

2020
Phase-Coherent Teleportation via
Majorana Islands

Whiticar et al. demonstrated phase-coherent
single-electron transport via MZMs in InAs/Al
nanowires, confirming teleportation-like behavior
with oscillations in a topological regime [24].

2021 Quantum Simulation of Majorana Teleportation

Huang et al. simulated a Kitaev chain-based
teleportation protocol on a superconducting processor,
achieving error-resistant qubit transfer and
demonstrating fidelity beyond classical limits [27].

2022 Long-Distance and Mixed-State Theories

Jahromi and others proposed teleportation using
noisy entangled states [9]. Xu and Zhou modeled
Ising anyon-based teleportation of multi-anyon
systems, proving error-robust fidelity [30].

6. Advantages over Standard Qubit Approaches

Majorana-based systems offer a compelling suite of advantages that set them apart

from conventional quantum computing and communication platforms. While standard

qubit technologies—such as superconducting transmons, trapped ions, and photonic

qubits—have shown promising developments in speed, gate fidelity, and scaling, they

remain fundamentally limited by their sensitivity to decoherence and noise. In contrast,

topologically encoded Majorana qubits inherently mitigate many of these challenges due

to their nonlocal and fault-tolerant structure. This section outlines the critical benefits of

using Majorana fermions in quantum teleportation and beyond:

1. Extended Coherence Times via Nonlocal Encoding. One of the most significant

advantages of Majorana-based qubits is their exceptionally long coherence times.

Unlike conventional qubits, which store information in localized degrees of freedom,

Majorana qubits encode quantum information in the joint parity of two spatially

separated zero modes. This encoding prevents local perturbations—like stray electric

fields or background noise—from collapsing the qubit state, allowing entangled

Majorana pairs to persist far longer [21].

2. Built-In Error Protection at the Hardware Level. Topological qubits serve as physical

error-correcting codes. Their architecture suppresses both bit-flip and phase-flip

errors without requiring active correction cycles. This greatly enhances reliability for

quantum teleportation protocols and simplifies the system architecture [28,38].

3. Resilience in Noisy and Mixed-State Environments. Teleportation using standard

qubits degrades rapidly under environmental noise. In contrast, studies have shown

that Majorana qubits can maintain high-fidelity teleportation even when the entangled

resource is partially decohered or in a mixed state—greatly enhancing potential in

practical applications.

4. Deterministic, Topologically Protected Operations. Operations using Majorana

qubits—such as braiding or parity measurements—are topologically protected and

deterministic. They are immune to small control inaccuracies, unlike pulse-driven

gates in other qubit types, making them particularly attractive for repeatable and

high-fidelity teleportation [19].

5. Reduced Overhead for Error Correction. Unlike conventional systems that require ex-

tensive redundancy and syndrome detection, Majorana qubits embed error resilience

into their hardware. Teleportation protocols thus become simpler and more scalable,

requiring fewer physical qubits per logical operation [40].
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6. Scalability and Modular Design. Topological qubit networks can be laid out mod-

ularly using repeating nanowire segments and Y-junctions. This design lends itself

naturally to teleportation circuits, distributed computing, and fault-tolerant quantum

networks—forming a promising architecture for the future quantum internet [33].

In summary, the stability, robustness, and design flexibility of Majorana qubits offer a

clear path forward for reliable and efficient quantum teleportation systems.

7. Experimental and Physical Realization of Majorana-Based
Quantum Teleportation

Recent advances in topological quantum materials and hybrid semiconductor–

superconductor systems have enabled the experimental and physical realization of quan-

tum teleportation using MZMs. In this approach, quantum information is encoded non-

locally in pairs of MZMs at the ends of superconducting nanowires, such as InAs or InSb

wires with epitaxially grown Al or Nb shells. Under suitable magnetic fields and gate

voltages, these nanowires support topologically protected zero-energy modes that can be

used to encode qubits through their fermionic parity [33,42].

To initiate the teleportation protocol, an unknown quantum state | ψ⟩= α | 0⟩+β | 1⟩
is prepared in a topological qubit consisting of two MZMs (γ1, γ2). In parallel, an entangled

state is generated between two other topological qubits: one held by Alice (γ3, γ4) and the

other by Bob (γ5, γ6). Physically, this entangled Bell-like state

| Φ+⟩ = 1√
2
(| 00⟩+ | 11⟩) (15)

is produced by initializing a fixed total parity over a shared superconducting Coulomb

Island or through coherent tunneling across a controlled capacitive link between dis-

tant nanowires [16,38].

The teleportation process begins when Alice performs a joint parity measurement

between one Majorana from her unknown qubit (γ2) and one from the entangled pair (γ4).

This sequence is illustrated schematically in Figure 3, showing the layout of Alice’s and

Bob’s qubits, the parity measurement via a quantum dot, and the corrective operation on

Bob’s side.

This measurement is implemented using a quantum dot or a superconducting mi-

crowave resonator coupled to both MZMs. The energy level of the dot or the resonator

response shifts depending on the joint parity of the two Majoranas. A nearby charge sensor

(e.g., quantum point contact or single-electron transistor) or dispersive readout enables

non-demolition readout of the parity eigenvalue (+1 or −1) [39,47].

Based on this measurement, Alice sends a single classical bit (even or odd parity

outcome) to Bob over a conventional communication channel. If the outcome is even, Bob

takes no action. If it is odd, Bob performs a corrective Pauli-X (bit-flip) operation on his

Majorana qubit (γ5, γ6).

Implementation of XC. The Pauli-X correction cannot be achieved by braiding within

a single Majorana pair (which preserves parity). Instead, XC is implemented by parity

manipulation across distinct Majoranas—e.g., by temporarily enabling a parity-changing

tunnel/coupling between different pairs or by measurement-only gate teleportation that

conditions on joint parity outcomes [16,28,38]. This is consistent with our Appendix A proof

that single-pair braiding preserves parity and thus cannot flip the qubit’s logical occupation.
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Figure 3. Experimental setup for Majorana-based quantum teleportation. Alice holds an unknown

quantum state | ψ⟩ encoded in two Majorana zero modes ( γ1, γ2) at the ends of a superconducting

nanowire (InAs/Al). An entangled parity pair | Φ+
〉

BC is generated between Alice’s auxiliary qubit

(γ3, γ4) and Bob’s qubit (γ5, γ6). A quantum dot is used to perform a joint parity measurement

P̂24 = −iγ2γ4 between Alice’s unknown state and the entangled resource. The parity-dependent

outcome is read non-destructively using charge sensing or microwave dispersive shift and communi-

cated to Bob via a classical channel. Bob applies a corrective Pauli-X operation if needed, recovering

the original quantum state on his side.

The Pauli-X correction shown in Equation (12) cannot be implemented by braiding

operations within a single pair of Majorana modes, such as γ5 and γ6. Braiding two

Majoranas within the same fermionic mode (i.e., forming the same Dirac fermion) does not

alter the occupation number of the fermionic mode, and therefore cannot flip the logical

qubit state. This is because such braiding operations preserve the fermionic parity and

effectively induce only phase transformations within the fixed-parity subspace.

In other words, the Hilbert space of a single fermionic mode, defined by c =
1

2
(γ5 + iγ6),

consists of the states | 0⟩ and | 1⟩= c† | 0
〉

. The parity operator P = iγ5γ6 has eigenvalues

±1, and any unitary generated by braiding within the γ5, γ6 pair commutes with P, and

hence cannot change the parity—i.e., it cannot flip the qubit. To implement an effective

Pauli-X gate, which does flip the parity (i.e., maps | 0⟩↔| 1⟩), one must couple MZMs

from different qubit pairs or introduce an ancillary parity degree of freedom through pro-

jective measurement or measurement-based gate teleportation. For example, a controlled

Pauli-X can be implemented by measuring the joint parity iγ4γ5 and conditioning on

the result. This form of logic is consistent with measurement-only topological quantum

computation schemes [47].

Therefore, while braiding is an essential tool for generating non-Abelian operations,

Pauli-X corrections in Majorana-based teleportation must be applied using parity manipu-

lation between distinct Majorana pairs, not within a single pair.

To verify teleportation, Bob measures the state of his qubit by converting fermion

parity into charge and using quantum state tomography. Repeating this process for multiple

input states and bases allows the construction of the teleported density matrix. The fidelity

of teleportation is computed as

F = Tr(ρideal · ρteleported), (16)
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where F→1 when parity is accurately measured and corrected [40,41].

Theoretical models predict that the decoherence/hybridization error rate scales as Γ

in Equation (17), where ∆ is the superconducting gap, L is the MZM separation, and ξ is

the coherence length [40].

Γ ∼ ∆2e−2L/ξ , (17)

Feasibility & error budget: end-to-end teleportation fidelity ≳ (parity-readout fi-

delity) × exp(−2L/ξ) as bounded in Theorem A3; device-level factors (finite T, charge noise,

quasiparticle poisoning, disorder) renormalize prefactors and effective ξ; Equation (17)

is an ideal-limit expression. This exponential suppression is supported by experimental

observations in nanowire-based devices, where coherence times of Majorana states appear

significantly extended compared to conventional charge qubits [47]. The fidelity is sup-

pressed exponentially with MZM separation and gap as formalized in Theorem A3 and

Equation (A12), which bounds fidelity.

Our finite-temperature parity-readout model uses Gaussian hypothesis testing for

the readout misclassification probability, includes Poissonian quasiparticle poisoning dur-

ing the integration window, and adds a hybridization term ∝ e−2L/ξ , following stan-

dard treatments [16,18,25,26,28,32]. We model the joint-parity measurement as a binary

hypothesis test on a continuous readout x with Gaussian statistics conditioned on the

parity eigenvalue m = ±1. The temperature-dependent signal amplitude scales as

µ(T) ∝ V(T) = tanh(∆/2kBT), while the noise standard deviation is σ(T) (dominated

by amplifier noise plus a small thermal component). The optimal threshold yields a

misclassification probability

(T) =
1

2
er f c

(

µ(T)√
2σ(T)

)

, Fread(T) = 1 − ε(T). (18)

During the integration window τm, quasiparticle poisoning is treated as a Poisson

process with rate Γqp, giving pqp ≃ Γqpτm in the small-rate limit. If poisoning occurs, we

conservatively take the outcome fidelity to be 1/2. The effective readout fidelity is then

Fe f f (T, τm) ≈
(

1 − Γqpτm

)

Fread(T) +
(

Γqpτm

)1

2
. (19)

Finally, we fold in hybridization as a parity-flip/dephasing channel with weight

Chybe−2L/ξ , giving the conservative multiplicative bound

Ftel ≳ Fe f f (T, τm)(1 − Chybe − 2L/ξ), (20)

which captures the expected trends: Fe f f improves with L/ξ and ∆/kBT, but degrades

with Γqp and overly short τm (SNR-limited). See Table 2 for the corresponding error-

budget parameters [16,18,25,26,28,32]. It provides a compact way to translate device-level

parameters into a predicted teleportation fidelity band for experimental planning.

Device Limitations. Equation (17) is an ideal-limit expression for topological sup-

pression. In practical devices, several effects renormalize the prefactor and the effective

suppression length: finite temperature (thermally activated quasiparticles), charge/phase

noise (fluctuations of couplings and readout), quasiparticle poisoning (setting a floor

Γ ≳ 1/τp), and disorder-induced subgap states (reducing ∆ and enlarging an effective

coherence length ξe f f ). Operationally, one should read Equation (17) as Γ ∼ ∆e f f
2 e−2L/ξe f f ,

with ∆e f f determined by device engineering. Our claims are therefore asymptotic/ideal;

practical rates depend on the realized ∆e f f , poisoning times, and readout fidelity.
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Table 2. Dominant error channels for a single teleportation shot and how they combine in our

conservative bound. See Refs. [16,18,25,26,28,32].

Error Channel Symbol/Scaling Typical Knobs (Device)
Contribution to Infidelity
(per Shot)

Parity readout misclassification Fread (readout fidelity)
Integration time τm; amplifier
SNR; interferometric/
charge-sensor visibility

∆Fread ≈ 1 − Fread

Quasiparticle poisoning
during readout

Poisson rate Γqp
Gap ∆; filtering; shielding;
normal traps

pqp ≈ 1 − e−Γqpτm ≃ Γqpτm

(small-rate limit)
Hybridization/overlap
of MZMs

∝ e−2L/ξ Separation L; coherence length ξ ∆Fhyb ≈ Chyb e−2L/ξ

Thermal excitation/contrast loss V(T) ∼ tanh(∆/2kBT) Temperature T; ∆
∆FT ∼ CT [1 − V(T)] or

∼ e−∆/kBT when applicable

Low-freq charge noise/drifts σϵ over τm Gate stability; filters
∆Fnoise ∼ (σϵτm)

2

(Gaussian approx.)

While current efforts focus on teleporting single logical qubits, the same architec-

ture can, in principle, be scaled up to enable the teleportation of macroscopic quantum

information. To achieve this, one would:

1. Encode a complex quantum object—e.g., a mesoscopic system or register—into an

array of nonlocal Majorana qubits.

2. Perform multi-qubit parity measurements between the object’s logical qubits and

shared entangled parity states distributed across devices or regions.

3. Use correlated classical bits from these measurements to guide corrections on the

receiving side.

4. Reconstruct the full macroscopic state in the receiver’s device without moving any

physical particles.

This approach requires careful management of parity conservation across multiple

nonlocal encodings but offers the revolutionary possibility of teleporting entire many-body

quantum states without loss of coherence. Because Majorana qubits are protected from

local errors, this type of teleportation would preserve global entanglement in a way that is

currently impossible with fragile photonic or spin systems.

Such a protocol would build directly upon the measurement-only framework proposed

by Vijay, Haah, and Fu [37] and extended in networked architectures by Karzig et al. [28].

With coherent coupling and distributed parity readout, a macroscopic teleportation scheme

could redefine the scope of long-distance quantum communication and distributed quan-

tum computing.

Entanglement and the Challenge of Distance. An important conceptual point arises in

considering whether distant teleportation using Majorana systems necessarily requires the

sharing of an entangled state—particularly in the form of a photon-mediated entangled pair,

such as through absorption and emission of photons. In traditional quantum teleportation

protocols, entanglement is distributed between sender and receiver, often using photons as

carriers of nonlocal quantum correlations. However, in the Majorana-based architecture

developed here, quantum information is transferred via joint parity measurement and clas-

sical communication, without physically transporting entangled particles. The nonlocality

is embedded in the parity-conserving structure of the topological system itself.

Still, the question of how to physically realize distant entanglement, especially across

cryogenic boundaries or between separate hardware platforms, remains a key challenge.

One possible avenue is to mediate the entanglement of two spatially separated Majorana

systems (e.g., γ4 and γ5) using an entangled photon link, wherein the photon couples to

the parity degree of freedom via engineered cavity-QED or spin-photon interfaces. This
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remains an open area of exploration and may bridge the topological and photonic realms.

Alternatively, the model developed in this work may circumvent the need for pre-shared

entanglement by exploiting measurement-based teleportation over fixed parity manifolds.

Ultimately, the boundary between topological parity transfer and conventional en-

tanglement distribution warrants deeper investigation. We acknowledge that further

clarification—both theoretical and experimental—is required to fully understand the in-

terplay between Majorana parity dynamics and photonic entanglement in long-distance

quantum state transfer.

Figure 4 illustrates two complementary approaches to teleportation in Majorana-

based quantum systems. In the left panel, an entangled photon pair establishes a nonlocal

quantum link between γ4 (on Alice’s chip) and γ5 (on Bob’s chip), enabling the remote

sharing of an entangled Majorana parity state. This hybrid architecture supports long-

distance quantum information transfer while preserving topological protection, an essential

feature for scalable and fault-tolerant quantum networks [19]. The right panel shows a

fully local, measurement-based teleportation scheme in which Alice performs a joint

parity measurement between γ2 (from her input qubit) and γ4 (from the entangled pair),

using a quantum dot or resonator. The result is sent classically to Bob, who applies

a Pauli-X correction to his qubit (γ5–γ6), thereby completing the teleportation without

physically moving any quantum particle. Both approaches demonstrate how Majorana

systems leverage topological encoding and parity-preserving operations to enable robust,

decoherence-resistant quantum communication.

Figure 4. Entangled Photon Sharing vs. Measurement-Based Teleportation in Majorana Systems.

(Left) A schematic illustrating how an entangled photon pair can mediate a nonlocal entangled state

between spatially separated Majorana modes γ4 (Alice) and γ5 (Bob). Alice’s unknown qubit is

encoded in γ1–γ2, while Bob’s target qubit resides in γ5–γ6. This hybrid architecture combines super-

conducting nanowires and optical links to establish long-distance entanglement without physical

proximity. Blue waves: entangled photon pair used to share a Bell state. Red lightning: classical

heralding/communication signal from photon detection. (Right) A standard measurement-based

Majorana teleportation protocol. Alice performs a joint parity measurement between γ2 (her qubit)

and γ4 (her entangled pair), using a quantum dot or resonator (M). She sends the parity outcome via

a classical channel, and Bob applies a Pauli-X correction to γ5–γ6 if needed. Throughout, topological

protection is maintained by encoding information nonlocally in fermion parity.

For example, a minimal realization of the Kitaev chain was demonstrated in coupled

quantum dots [48], showcasing the feasibility of engineering topological superconducting

phases in nanoscale systems. Building on this foundation, enhanced stability was achieved
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in three-site quantum dot chains [49,50], illustrating the robustness of such architectures

against environmental decoherence and fabrication imperfections. These developments

enable precise control over MZM hybridization and fermionic parity, both of which are

critical ingredients for implementing reliable quantum teleportation protocols.

Additional experimental evidence has supported the presence of both edge and bulk

Majorana states in quantum dot arrays [51], further validating the topological nature of

these engineered systems. Complementing these observations, theoretical models have

captured nontrivial fusion phenomena in extended dot networks [52], providing important

insights into the manipulation of non-Abelian excitations. Taken together, these advances

suggest that quantum-dot arrays not only serve as promising and scalable platforms

for hosting MZMs but also constitute a practical and tunable medium for executing the

parity-based measurements required in topological quantum teleportation. Moreover,

demonstrating a full Majorana-based teleportation protocol remains a near-term research

goal; ongoing efforts report ingredients such as parity readout and non-local correlations,

but a complete implementation is future work.

8. Discussion: Limitations and the Challenge of Macroscopic Teleportation

While Majorana-based quantum teleportation presents a robust and theoretically

sound method for transmitting quantum information with topological protection, extending

such a protocol to macroscopic or biological systems faces fundamental limitations. The

teleportation described in this framework is restricted to the transfer of quantum states, not

physical matter. MZMs only exist under cryogenic conditions—typically in the millikelvin

range—required to stabilize the topological superconducting phase [28]. These ultra-cold

temperatures are essential for maintaining the superconducting topological phase that hosts

non-Abelian quasiparticles and enables fermionic parity encoding. As such, all operations

involving Majorana-based qubits—preparation, entanglement, parity measurement, and

correction—must be performed in cryogenic environments.

Teleportation in this context operates by encoding quantum information into the parity

of spatially separated MZMs. A joint parity measurement and classical communication

suffice to transfer the quantum state between distant nodes without moving any physical

qubit. However, teleporting a macroscopic object would require mapping every degree of

freedom of that system—including position, spin, and vibrational states—into a quantum

register with exceptional isolation from the environment. Biological systems decohere

rapidly at room temperature, on the order of femtoseconds, making them fundamentally

incompatible with the required quantum coherence lifetimes [53].

Even for engineered systems, several critical challenges must still be addressed before

Majorana-based teleportation can be deployed in scalable quantum networks:

1. Engineering Stable Majorana Modes: A key requirement is the reproducible and scal-

able generation of MZMs in solid-state nanowires. Although signatures of MZMs have

been observed, reliably creating topological superconducting phases with stable zero-

energy modes remains a materials and fabrication challenge [15,16,53]. Future work

must focus on heterostructure refinement, disorder reduction, and high-fidelity control.

2. Gate Set Limitations—Non-Universality of Ising Anyons: Majorana-based qubits

support Clifford operations through braiding, but this gate set is insufficient for

universal quantum computation. Realizing non-Clifford gates requires ancillary

operations like magic state distillation, which adds significant overhead [54]. Hybrid

approaches that embed Majoranas into more universal quantum architectures are a

promising direction.

3. Interfacing with Photonic Systems for Long-Distance Teleportation: Since Majorana

qubits are hosted in cryogenic environments, achieving long-distance teleportation
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will require hybrid interfaces between photonic qubits and Majorana modes. Such

interfaces are in early stages of development and remain a major bottleneck for

integrating Majorana systems into quantum communication networks [55].

4. Experimental Readout and Control: Joint parity measurements are central to Majo-

rana teleportation, but current methods such as tunneling spectroscopy and charge

sensing lack the required fidelity and scalability. Advances in quantum-dot coupling,

resonator-based readout, and measurement-only control architectures are needed to

reliably access and manipulate fermionic parity [56].

5. System-Level Scalability and Fault-Tolerant Architectures: Although topological

protection offers intrinsic noise suppression, it does not eliminate the need for active

error correction. Realizing scalable teleportation requires modular architectures that

support parallel operation, fault-tolerant correction, and compatibility with quantum

memory and networking protocols [28].

In this sense, while Majorana teleportation is a powerful tool for transferring quantum

information within cryogenic, engineered environments, it does not enable teleportation

of physical or biological objects as imagined in science fiction. The cold environment is

not the fundamental limiting factor—the real issue is that such complex systems cannot

be coherently and completely mapped into a quantum information architecture without

destroying the very structure we aim to preserve.

Thus, the scope of Majorana-based teleportation is best understood as a platform

for transferring quantum logic, not classical matter. It holds promise for distributed

quantum computing, error-resilient communication between superconducting qubit nodes,

and potentially teleporting many-body quantum states engineered within cold, coherent

systems—but not for transferring warm, living, or structurally complex matter across space.

Future Outlook. The path forward is promising. Theoretical work has laid a rigorous

foundation for Majorana teleportation protocols, and experimental advances in nanowire

engineering, parity readout, and measurement-based logic are falling into place. Over

the next decade, we expect to see this architecture applied to quantum repeater systems,

topological quantum networks, and robust quantum error correction. While macroscopic

teleportation of physical matter remains unattainable due to decoherence and scalability

limits, Majorana-based teleportation of many-body quantum states in engineered systems

could become a practical and powerful building block for scalable quantum technology.

9. Conclusions

The development of quantum teleportation protocols using Majorana fermions repre-

sents a transformative step toward building robust, scalable, and fault-tolerant quantum

systems. Unlike conventional approaches that are vulnerable to environmental noise

and require extensive error correction, Majorana-based systems offer intrinsic protection

through topological encoding. This nonlocal nature enables stable quantum information

transfer—even under decoherence—making them ideal candidates for next-generation

quantum networks.

Over the last five years, both theoretical proposals and experimental achievements

have laid a strong foundation for the realization of teleportation using Majorana zero

modes. From phase-coherent transport experiments to quantum simulations and prototype

hardware, the building blocks are coming into place.

However, substantial challenges remain. Creating scalable arrays of Majorana qubits,

integrating them with photonic systems, and expanding their computational universality

will require multidisciplinary collaboration across physics, materials science, and quan-

tum engineering.
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Despite these hurdles, the trajectory is clear: Majorana fermions have the potential

to solve one of quantum computing’s greatest challenges—decoherence. By leveraging

their exotic topological properties, we move closer to realizing not only stable quantum

teleportation but also the infrastructure for a global quantum internet. This work pro-

vides a Clifford-level teleportation primitive in a measurement-only Majorana architecture;

universality would require additional non-Clifford resources provided externally.
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Appendix A. Formal Theorems and Proofs in Majorana-Based Teleportation

Overview: This appendix rigorously presents the formal theorems and corresponding

proofs relevant to measurement-only teleportation using Majorana zero modes (MZMs).

All operations are assumed to act within the topologically protected logical subspace of

non-Abelian anyons in a 1D topological superconductor [14]. Notation follows standard

conventions in fermionic quantum information.

Let each logical qubit be encoded in a pair of MZMs: γ1,γ2 and γ3,γ4, such that the

associated Dirac fermion is defined by: c1 =
1

2
(γ1 + iγ2), c2 =

1

2
(γ3 + iγ4) with logical

states: | 0L⟩= | 0⟩c, | 1L⟩ = c† | 0⟩c.

Preliminaries (measurement model used below). We model a non-selective,

ideal QND measurement of the joint parity P23 = iγ2γ3 by the Lüders instrument

M(ρ) = Π+ρ Π+ + Π−ρ Π−, Π± =
1

2
(1 ± P23).

Under the commuting assumption [P23, ρ] = 0, the entropy property and identity

action of M are proved later (see Theorem A5, Equations (A18) and (A19)). We now

analyze the selective outcome p = ±1 explicitly (projector action, normalization, and

parity-conditioned Clifford correction).

Theorem A1. Parity-Based Entanglement is Unitary on Logical Subspace

Statement: A projective parity measurement between Majorana qubits A and B preserves

the logical subspace and can be interpreted as a unitary transformation followed by a known

Pauli correction.

Proof of Theorem A1. Let qubit A be encoded in Majorana modes γ1, γ2, and qubit B in

γ3, γ4. The Dirac fermion operators are defined as: cA =
1

2
(γ1 + γ2), cB =

1

2
(γ3 + γ4). The

logical basis states are: | 0L⟩= | 0⟩c, | 1L⟩ = c† | 0⟩c. A general two-qubit logical state is:

|ψ⟩ = α|00⟩ + β|11⟩ . We now perform a parity measurement between (from A) γ2 and

(from B) γ3, using the operator:

P23 = iγ2γ3 (A1)
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with projectors:

Πp =
(I + p · iγ2γ3)

2
. (A2)

The variable p ∈ {+1,−1} represents the measured eigenvalue (outcome) of the

fermionic parity operator iγ2γ3.

Let us apply Π+ to |ψ⟩ :

Π+|ψ⟩ =
1

2
(α|00⟩ + β|11⟩ + iγ2γ3(α|00⟩ + β|11⟩ )). (A3)

To compute this, use the fact that γ2γ3|00⟩ = |11⟩ and γ2γ3|11⟩ = −|00⟩ . Thus:

iγ2γ3(α|00⟩ + β|11⟩ ) = iα|11⟩ − iβ|00⟩ . (A4)

Substitute back into the expression:

Π+|ψ⟩ =
1

2
[(α − iβ)|00⟩ + (β + iα)|11⟩ ] (A5)

This is an unnormalized state. To normalize, compute the norm:

∥Π+|ψ⟩ ∥2 =
1

4

[

|α − iβ|2 + |β + iα|2
]

=
1

2

(

|α|2 + |β|2
)

(A6)

So, the normalized state is:

∣

∣ψ′
+

〉

=
1

√

2
(

|α|2 + |β|2
)

[(α − iβ)|00⟩ + (β + iα)|11⟩ ] (A7)

This procedure is consistent with the general rule for post-measurement states:

ρ′ =
Πp(ρA ⊗ ρB)Πp

Tr
[

Πp(ρA ⊗ ρB)
] (A8)

where is the projector onto the parity eigenspace and is the normalized post-measurement

state. Up to a known phase, this is a unitary transformation of the original state within the

logical subspace. A Pauli or correction (depending on measurement outcome) recovers the

standard entangled form. Hence, the parity projection acts unitarily on the logical subspace,

modulo a known correction. □

Theorem A2. No-Cloning in Majorana-Based Teleportation

Statement: The teleportation process collapses the original qubit to a maximally mixed state,

ensuring compliance with the quantum no-cloning theorem.

Proof of Theorem A2. Consider teleportation of a qubit state | ψ⟩ from site A to site C via

projective parity measurements. After applying correction at C, the state is reconstructed.

However, the parity measurement collapses A’s state, resulting in a maximally mixed

reduced state:

ρA = TrC(ρAC) =
I

2
(A9)

This ensures that no duplicate copy exists at A after the process, in full compliance

with the quantum no-cloning theorem.
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Let the initial state of the three-qubit system (A: source, B: ancilla, C: target) be:

| Ψ⟩ABC = (α | 0⟩A + β | 1⟩A)⊗
1√
2
( | 00⟩BC + | 11⟩BC). (A10)

This is a product of the input qubit and a maximally entangled Bell pair.

Apply joint parity measurements between A and B, and between B and C. These

parity projections collapse the system onto an entangled subspace, transferring the

quantum state from A to C up to a Pauli correction: | Ψ⟩ABC = | χ⟩A ⊗ | ψ⟩C where

| ψ⟩C = α | 0⟩A + β | 1⟩A and | χ⟩A is an unentangled residual state.

To confirm that cloning does not occur, trace out B and C:

ρA = TrBC

( ∣

∣Ψ′ 〉⟨Ψ|
)

=
1

2
I. (A11)

The reduced density matrix at site A is maximally mixed, regardless of α, β.

Meanwhile, the output state at C is pure: ρA = |ψ ⟩⟨ψ| . This demonstrates that

although the quantum state has been reconstructed at C, no information remains at A. The

process destroys the original and does not violate the no-cloning theorem. □

Theorem A3. Measurement-Only Teleportation is Topologically Protected

Statement: The teleportation of a Majorana-encoded qubit using only joint parity measure-

ments and Pauli corrections operates entirely within the topologically protected code space and is

robust to local decoherence.

Proof of Theorem A3. Teleporting qubit A (γ1, γ2) to qubit C (γ5, γ6) through an entangled

pair B (γ3,γ4) involves only joint parity projections and Clifford corrections. The entire

protocol remains within the topologically encoded code space.

Because MZMs are spatially separated by distance L, and the system is protected by a

superconducting gap ∆, the fidelity is bounded as:

F ≥ 1 − αe
− L

ξ − βe−∆/kT (A12)

This implies robustness to thermal fluctuations and local decoherence, thus demon-

strating the topological protection of the teleportation protocol. □

Lemma A1. Local Operators Cannot Distinguish Logical States

Statement: Any operator acting on a single Majorana mode commutes with the logical parity

and cannot distinguish between | 0⟩L and | 1⟩L.

Proof of Lemma A1. Consider a qubit encoded using the Dirac fermion c =
(γ1 + iγ2)

2
.

The logical states are:

| 0⟩L =| vac⟩, | 1⟩L = c† | vac⟩ (A13)

Let O be a Hermitian operator that acts only on γ1 i.e., O = f (γ1) with no dependence

on γ2. Then:

P = iγ1γ2, so [O, P] = 0 (A14)

Now consider the specific case O = γ1. Observe:

γ1 | 0⟩L ∝ | 1⟩L and γ1 | 1⟩L ∝ | 0⟩L (A15)
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Thus, γ1 maps | 0⟩L ↔ | 1⟩L , but it does not distinguish them—it flips the states

rather than measuring them.

To see this more formally, consider the expectation values:

⟨0|O|0⟩L= ⟨1|O|1⟩L = 0 , ⟨0|O|1⟩L ̸= 0 (A16)

So, while O (e.g., γ1) may transform logical states, it cannot extract information about

which logical state the system is in. Therefore, no observable constructed from a single

Majorana mode can resolve the logical basis—a signature of nonlocal encoding. □

Theorem A4. Correction Operations Lie in the Clifford Group

Statement: All Pauli corrections resulting from parity measurement outcomes are elements of

the Clifford group.

Proof of Theorem A4. Consider a teleportation protocol involving three Majorana

qubits A, B, and C, encoded using pairs of Majorana zero modes: cX =
1

2
(γ2X−1 + γ2X),

X ∈ {A, B, C}. The logical states are eigenstates of the Dirac occupation number operator

nX = c†
XcX , corresponding to even and odd fermion parity respectively.

The teleportation proceeds via two joint parity measurements:

1. PAB = iγ2Aγ2B

2. PBC = iγ2B+1γ2C. Each has eigenvalues ±1, yielding four possible combinations of

outcomes. These projections collapse the total state into one of four correlated subspaces.

Let the initial state be:

|ψ⟩ A ⊗
∣

∣Φ+
〉

BC
= (α|0⟩ + β|1⟩ )A +

1√
2
(|00⟩ + |11⟩ )BC (A17)

After parity measurements, the resulting state (before correction) is of the form:

|ψout⟩C = Ucorr(α|0⟩ + β|1⟩ )C where Ucorr ∈ {I, X, Y, Z} depends on the parity outcomes.

Since these correction operators are from the Pauli group P1 = {I, X, Y, Z}, and the

Pauli group is preserved under conjugation by Clifford gates, it follows that:

• The set of operations involved in this teleportation protocol (i.e., joint parity measure-

ments and Pauli corrections) lies within the Clifford group C1.

By definition, the Clifford group is: Cn =
{

U ∈ U(2n) : UPnU† ⊆ Pn

}

Since each

Pauli operator (including measurement-induced corrections) satisfies this property, we

conclude: Ucorr ∈ C1. Therefore, the entire teleportation protocol can be described by

Clifford operations. □

Theorem A5. Entropy Conservation Under Repeated QND Parity Measurements

Statement: For a state that is diagonal in the parity basis, repeated quantum non-demolition

(QND) measurements with commuting parity operators do not increase entropy: S(ρ′) = S(ρ).

Let P = iγiγj be a parity operator with projectors

Π± =
1

2
(1 ± P)

Assume the state ρ is diagonal in the parity basis (equivalently, [P, ρ] = 0). An ideal,

non-selective QND parity measurement is described by the Lüders map

M(ρ) = Π+ρ Π+ + Π−ρ Π− (A18)
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Then the von Neumann entropy is invariant:

S(M(ρ)) = S(ρ) (A19)

Proof. Since [P, ρ] = 0, we also have [Π±, ρ] = 0. Decompose ρ = Π+ρ Π+ + Π+ρ Π− +

Π−ρ Π+ + Π−ρ Π−. Because Π+Π−=Π−Π+=0, the cross terms vanish and ρ = Π+ρ Π+ +

Π−ρ Π−. Hence the Lüders map leaves the state unchanged, M(ρ) = ρ, so S(M(ρ)) = S(ρ),

proving Equation (A19). □

Theorem A6. Entropy Invariance After Ideal QND Parity Measurement

Statement: Let ρ be the state of a system encoded in the parity subspace of two spatially

separated Majorana zero modes γ1, γ2, and let P = iγ1γ2 be the fermionic parity operator. Consider

a non-selective, ideal QND parity measurement of P (implemented by a pointer model with no

residual system–meter entanglement, or equivalently by the Lüders instrument). Assume [P, ρ] = 0

(i.e., ρ is block-diagonal in the parity basis). Then the post-measurement state ρ′ satisfies

S
(

ρ′
)

= S(ρ)

where S(·) = −Tr[· log(·)] is the von Neumann entropy.

Proof. Let the parity operator be

P = iγ1γ2, P2 = I, P† = P. (A20)

Its projectors onto the parity eigenspaces are

Π± =
1

2
(I ± P) (A21)

Because [P, ρ] = 0, ρ is block-diagonal in the parity basis and can be written as

ρ = Π+ρΠ+ + Π−ρΠ− (A22)

A non-selective ideal QND measurement of PPP updates the state by the Lüders rule,

ρ′ = Π+ρΠ+ + Π−ρΠ− (A23)

Comparing Equations (A22) and (A23) gives ρ′ = ρ, hence S(ρ′) = S(ρ). □

Remark A1. Outside the ideal QND conditions (e.g., if [P, ρ] ̸= 0 or residual system–meter

correlations remain), the general statement is S(ρ′) ≥ S(ρ), not equality.

Physical Interpretation:

• The QND parity measurement does not extract or disturb quantum coherence within

the parity eigenspace.

• The measurement apparatus does not entangle with the system, and hence no entropy

is transferred to the environment.

• Since Majorana qubits are encoded in parity subspaces, the information is immune

not just to local perturbations (decoherence) but also to entropy leakage.

Summary: This result shows that Majorana parity measurements are thermodynami-

cally reversible in ideal QND settings, enabling quantum logic operations that preserve

entropy. This contrasts with conventional measurement models, where entropy increases

due to wavefunction collapse or entanglement with the measuring device.
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