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Abstract. Analytical form of quantum corrections to quasi-periodic solution of Sine-Gordon
model and periodic solution of φ4 model is obtained through zeta function regularisation with
account of all rest variables of a d-dimensional theory. Qualitative dependence of quantum
corrections on parameters of the classical systems is also evaluated for a much broader class of
potentials u(x) = b2f(bx) + C with b and C as arbitrary real constants.

1. Introduction
Since the seminal work of Dashen et al. [1], where the determinant approximation of path
integrals proposed by Maslov [2] was first used for quantisation of a φ4 kink, there is a constant
interest in semiclassical quantisation of nonlinear field theories. Over the years many different
methods of obtaining quantum corrections to energy basing either on the Feynman form of
propagation operator (see [3]), or alternative form of path integral formulation of quantum
mechanics proposed by Garrod [4] were developed. A year after publications of Dashen et al.
Korepin and Faddeev calculated energy corrections for the static Sine-Gordon soliton [5] in
1 + 1 dimensions. In the late seventies generalised zeta function was introduced as a powerful
tool for regularisation procedure. This development allowed Konoplich to quantise the Sine-
Gordon soliton in a general d-dimensional space [6] as well as account for non-zero temperature
[7]. At the same time Hawking used generalized zeta function to define field quantisation on
curved manifolds [8]. Many other methods and variations of existing ones were developed in
subsequent years including direct mode summation [9] and use of contour integrals for zeta
function construction [10, 11], which allowed Pawellek to quantise periodic solutions of Sine-
Gordon and φ4 models [12, 13] without inclusion of any rest variables. It is of note, that the
final integrals obtained by Pawellek have a very similar form to those derived by Bordag in [9].

Our aim is to quantise the quasi-periodic solution of Sine-Gordon system as well as the
periodic solution of φ4 model using zeta function regularisation in form used by Konoplich [6]
in order to examine the influence of rest variables on the energy corrections in those cases,
since results for the kink solutions of respective models show a very strong dependence on the
overall number of dimensions [6, 14, 15]. Additionally we provide general qualitative analysis
of semiclassical quantisation for a large class of potentials, which provides an interesting new
insight into effects of scaling of the classical system onto its quantum counterpart as well as the
meaning of the mass scale and its dependence on physical parameters.

Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013) IOP Publishing
Journal of Physics: Conference Series 482 (2014) 012023 doi:10.1088/1742-6596/482/1/012023

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



2. Semiclassical corrections to energy
For the purpose of this publication we use quantisation procedure presented by Maslov in [2] with
regularisation procedure proposed by Konoplich in [6]. The scheme is based on the expansion

of the action (with unitless variables xn = x′n
a and t = t′

T )

S(ψ, T ) = Tad
∫ 1

0

∫
R×[0,l]d−1

(
M

2T 2

(
∂ψ

∂t

)2

− G

2a2

d∑
n=1

(
∂ψ

∂xn

)2

− V (ψ)

)
d∏

n=1

dxndt (1)

in path integral formulation of the propagator

〈φ|e−
i
~TH |φ〉 =

∫
C0,T
φ,φ

Dψe
i
~S(ψ,T ) (2)

in a Taylor series around the classical solution ϕ and cutting it at the first non-trivial term with
T as an arbitrary time period. The series is cut at the first nontrivial element (second derivative)
and energy corrections can be formally represented as

∆E = − ~
iT

ln (det [L]) , (3)

with L as the second functional derivative of the Lagrangian taken at the classical solution

L = − iTad

2π~r2

(
−M
T 2

∂2

∂t2
+
G

a2

d∑
n=1

∂2

∂x2n
− V ′′(ϕ)

)
(4)

Necessary regularisation consists of two steps: subtraction of analogous expression for classical
vacuum solution

∆E = − ~
iT

ln

(
det [L]

det [L0]

)
, (5)

and a choice of a multiplicative constant r2 in L and L0 operators (the so called mass scale)
connected to the norm of base functions used in (2), which cuts logarithmic divergences. On
purely mathematical level r2 can be viewed as a free parameter of the theory (which is a reason
for keeping it unspecified in works of Konoplich [6]). Yet, to obtain physically relevant results
one has to find a way of fitting its value. This problem will be further discussed in section 3.
Similar issues might arise with the L0 for fields spanning over a finite domain, where any choice
of the constant potential leads to finite results. However, known results for fields spanning
over infinite domains suggest, that the lowest eigenvalue of L0 should coincide with start of the
unbound states band. The above regularisation is realised by means of generalised zeta function

∆E = − ~
iT

lim
s→0+

∂

∂s

1

Γ(s)

∫ ∞
0

τ s−1
∫
[0,1]×R×[0,l]d−1

(gL(τ,−→x ,−→x )− gL0(τ,−→x ,−→x ))d−→x dτ, (6)

with −→x covering all variables of the classical system including time and gL as a Green function
of the following equation (

∂

∂τ
+ L

)
gL(τ,−→x ,−→x 0) = δ(τ)δ(−→x −−→x 0) (7)

For convenience we will also define

γL(τ) =

∫
[0,1]×R×[0,l]d−1

gL(τ,−→x ,−→x )d−→x , (8)
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γ(τ) =

∫
[0,1]×R×[0,l]d−1

(gL(τ,−→x ,−→x )− gL0(τ,−→x ,−→x ))d−→x (9)

and

ζ(s) =
1

Γ(s)

∫ ∞
0

τ s−1γ(τ)dτ. (10)

Since the classical fields considered in this publication depend on a single spatial variable, we will
use the fact, that for an operator L expressable as a sum of operators working on independent
variables (L =

∑
i Ln), heat equation Green function can be constructed as a product of Green

functions for Ln (see [16]). For this purpose we will define

L1 = A

(
∂2

∂x21
− a2V ′′(ϕ(x1))

G

)
(11)

L2 = −A
c2
∂2

∂t2
(12)

L3 = A

d∑
n=2

∂2

∂x2n
(13)

with

A = − iTGa
d−2

2π~r2
(14)

c2 =
GT 2

Ma2
(15)

and can readily write

γL2 =

√
c2

4πAτ
(16)

γL3 =

(
− l

4πAτ

) d−1
2

(17)

3. General results
All potentials considered in following sections have many similarities, so it is useful to study
general properites of a family of potentials of form

u(x) = b2f(bx) + C (18)

where b and C are some real constants and f is an arbitrary integrable function. Our goal will
be to extract as much information from (6) as possible without explicitly solving the Green
function problem. This will be most useful for quasi-periodic solution of Sine-Gordon and
periodic solution of φ4 model, where exact analytic solutions are difficult to obtain. Let us
begin with the Green function equation for L1 with (18) as the potential(

∂

∂τ
+A

(
∂2

∂x2
− b2f(bx)− C

))
gL1(τ, x, x0) = δ(τ)δ(x− x0) (19)

We will now try to remove b from the equation by a series of substitutions

xb = bx (20)
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will give us (
∂

∂τ
+Ab2

(
∂2

∂x2b
− f(xb)−

C

b2

))
gL1(τ, xb, xb,0) = bδ(τ)δ(xb − xb,0) (21)

Next we rescale τ
τ =

τb
|A|b2

(22)

obtaining (
∂

∂τb
− i
(
∂2

∂x2b
− f(xb)−

C

b2

))
gL1(τb, xb, xb,0) = bδ(τb)δ(xb − xb,0) (23)

From here we can extract both b and C by rescaling the Green function

gL1(τb, xb, xb,0) = be
C
b2
τbgL1,b(τb, xb, xb,0) (24)

after inserting that form into (23), we find that gL1,b(τb, xb, xb,0) solves the equation(
∂

∂τb
− i
(
∂2

∂x2b
− f(xb)

))
gL1,b(τb, xb, xb,0) = δ(τb)δ(xb − xb,0) (25)

The same procedure has to be done for the Green function of operator L0 - both rescaling of the
x and τ variables as well as potential shift by C

b2
(if done after rescaling of τ) even if the constant

potential in L0 has a different value than C
b2

. As for the Green functions (or γ functions (8)) of
L2 and L3 operators, it is most convenient to express them through τb as well

γL2(τb) =

√
ic2b2

4πτb
(26)

γL3(τb) =

(
l2b2

i4πτb

) d−1
2

(27)

With this information we can reproduce the formula for energy corrections remembering to
change the integration over x to integration over xb.

∆E = <

(
lim
s→0

∂

∂s

~cbdld−1

2d+1π
d
2 T (|A|b2)−sΓ(s)

∫ ∞
0

i1−
d
2 τ

s− d+2
2

b e
C
b2
τb

∫
R

(gL1,b(τb, xb, xb)− gL0,b(τb, xb, xb)) dxbdτb

)
(28)

Interestingly, in all cases considered in this work C is proportional to b2, so we can rightfully
substitute

C = Cbb
2 (29)

and obtain

∆E = <

(
lim
s→0

∂

∂s

~cbdld−1

2d+1π
d
2 T (|A|b2)−sΓ(s)

∫ ∞
0

i1−
d
2 τ

s− d+2
2

b eCbτb

∫
R

(gL1,b(τb, xb, xb)− gL0,b(τb, xb, xb)) dxbdτb

)
(30)

Unfortunately, extracting Cb out of the Mellin transform is not a trivial task. Nevertheless at
this point we have most of physical parameters of the classical system extracted out of the Green
function. Apart from qualitative estimations of quantum corrections, it helps us in choosing the
renormalisation parameter r2, since the logarithmic divergences will arise from differentiation of
exponential components of the zeta function. This does not concern divergence in T parameter
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only - it is also reasonable to assume, that if the classical solution vanishes, corrections should
vanish as well. This means, that r2 should contain b2 The same argument can be used to
cut divergences in all physically relevant parameters, thus it seems valid to propose for the
renormalisation factor to cancel the whole (|A|b2)−s term. Yet, there is no strict way of choosing
the value of r2, so in practice we will fit its value to recover well known results in the cases
obtainable by different methods.

At this point it is also worth noting, that in our chosen dimensionless variables c is linearly
dependent on T , so it cancels out the T component in the denominator. This would not be the
case, if we didn’t include the kinetic energy component in the action integral and later on in
calculation of energy corrections. Combined with the strong dependence of the result on the
number of spatial dimensions included it indicates that one should never omit any components
of the action integral even if it would be valid for the classical solution.

One of the most important findings going beyond the chosen class of potentials, if we consider
a τA = |A|τ scaling, is that quantum corrections to energy don’t depend on the scale of the
classical system. If we were to amplify the action integral by a constant factor, it would have
no impact on the quantum corrections.

4. Cnoidal waves
We will consider periodic solutions of two well known models (Sine-Gordon and φ4). Considering
the findings of the previous section, we will present them in a simplified form:

S(ψ, T ) =

∫ 1

0

∫
R×[0,l]d−1

(
1

2c2

(
∂ψ

∂t

)2

−
d∑

n=1

(
∂ψ

∂xn

)2

− V (ψ)

)
d∏

n=1

dxndt (31)

with
VSG(ψ) = m2(1− cos(ψ)) (32)

for Sine-Gordon and

Vφ4 =
m2

2V 2
ψ4 − m2

2
ψ2 +

m2V 2

8
(33)

for φ4 model. Static, periodic solution of respective systems:

ψSG(x) = 2 arcsin(ksn(mx; k)) + π (34)

ψφ4(x) =

√
k2

1 + k2
V sn

(
m√

1 + k2
x; k

)
(35)

They will give following potential for the L1 operator:

V ′′SG(ψSG(x)) = uSG(x) = m2(2k2 − 1− 2k2cn2(mx; k)) (36)

uφ4(x) = m2

(
5k2 − 1− 6k2cn2

(
m√

1 + k2
x; k

))
(37)

After the scaling procedure from previous section (with b = m for Sine-Gordon and b = m√
1+k2

for φ4 model) we calculated respective Laplace transforms of Green function diagonals using the
method described in [17]:

GSG(p, z) = i
ip− k2z

2
√
ip(ip− (k2 − 1))(k2 − ip)

(38)
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Gφ4(p, z) = i
−p2 + 9k2(1 + k2(−1 + z))z − 3(ip+ k2pz)

2
√

(3− ip)ip(ip− 3k2)((ip− 1− k2)2 − 4(1− k2 + k4))
(39)

with z = cn2(xb; k). At this point we perform the vacuum cut-off with

G0(p) =
i

2
√
C − ip

(40)

with the constant C chosen separately for both systems to coincide with the only root of the
polynomial in the denominator, which does not become degenerate in the k → 1 limit, which
corresponds to the boundary of the unbound state band of our potential. Next we integrate
the function over half-period of the classical solution (2K(k)) in both cases with K as complete
elliptic integral of the first kind to obtain Laplace transform of the γ function

γ̂(p) =

∫ K(k)
−K(k)

(iG(ip, xb)− iG0(ip)) dxb (41)

γ̂SG(p) = i
−E(k) +

(
−1 + k2 + ip− ip

√
1−k2
ip + 1

)
K(k)√

(ip+ 1− k2)(k2 − ip)ip
(42)

γ̂φ4(p) = i 3(1+k2−ip)E(k)+(−3+k2(3−3ip)−p2)K(k)√
(3k2−ip)p(3i+p)((ip−1−k2)2−4(1−k2+k4))

+

i K(k)√
(−1−k2−2

√
1−k2+k4+ip)

(43)

where E is the complete elliptic integral of the second kind. We now have to perform an inverse
Laplace transform of obtained functions, which unfortunately proves to be beyond our reach at
the moment. However, we managed to obtain approximate results by expanding problematic
parts of γ̂ functions in a power series around k = 1 treating elliptic integrals as independent
parameters. We will showcase the procedure on the Sine-Gordon case.

γ̂SG(p) ≈ −i E(k)
ip
√
1−ip + i(k − 1)E(k)(1−2ip)+3K(k)(p2+ip)

(−1+ip)p2
√
1−ip

−i(k − 1)2 E(k)(−3+7ip+5p2+2ip3)+K(k)(7ip+17p2−7ip3+3p4)
(−1+ip)2p3

√
ip−1 + ...

(44)

Inverse Laplace transform of this function is easily obtained, since any function of form∏N
j=1(p−aj)∏N

j=1(p−bj)
√
b0−p

can be rewritten as a sum of 1
(p−bj)n

√
b0−p

for which inverse Laplace transforms

are well known. We will obtain

γSG(τb) = −E(k)Erf(
√
iτb) + (k − 1)

(
1√
π
e−iτbE(k)

√
iτb + 1

2
(6K(k)− E(k)(1 + 2iτb))Erf(

√
iτb)
)

− 1
8
(k − 1)2

(
2√
π
e−iτb

√
iτb(8K(k)(1 + iτb) + 5E(k)(1 + 2iτb))+

Erf(
√
iτb)(4K(k)(1− 14iτb) + E(k)(−5 + 4iτb + 12τ2b ))

)
+ ...

(45)

With this result we can readily use formula (30) to obtain energy corrections assuming value of
r2 as noted in the previous section

∆E1(k) =
~cm
4Tπ

(
−4E(k) + 12(k − 1)K(k)− (k − 1)2

8
(80K(k)− 10E(k)) + . . .

)
(46)

∆E2(k) = ~cm2l
8Tπ (2E(k) + (k − 1) (−6K(k) + E(k)(− ln(4)))−

(k−1)2
8 (K(k)(−20 + 28(− ln(4))) + E(k)(8− 2(− ln(4)))) + . . .

) (47)
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∆E3(k) = ~cm3l2

16Tπ2

(
10
9 E(k) + (k − 1)

(
−15

3 K(k) + E(k)
(
−5 + 5

9

))
−

(k−1)2
8

(
K(k)

(
−20

9 − 128
)

+ E(k)
(
10 + 25

9

))
+ . . .

) (48)

The d = 1 case in the k → 1 limit coincides with other quantisation methods [5, 12]. Using the
same method we also obtained energy corrections for the φ4 cnoidal wave with r2 chosen in a
way, that ensures 4|A|b2 = 1 in order to reproduce the results of Daschen et al. [1] for the k → 1
limit in the d = 1 case.

∆E1(k) = − ~mc
4Tπ
√
1+k2

(
2E(k)(6− π√

3
) + (k − 1)

(
− 2π√

3
K(k)− 6(E(k)− 2K(k))

)
+

(k − 1)2
(
−15K(k) + 3

2E(k) + π√
3
(K(k)− 2E(k))

)
+ . . .

) (49)

∆E2(k) = − ~lcm2

8Tπ(1+k2)

(
−E(k)(12 + 3 ln(3))− (k − 1)32(E(k) + 2K(k))(4 + ln(3))+

(k − 1)2 38(E(k)(6− 33arccoth(2)) +K(k)(−40 + 6 ln(3))) + . . .
) (50)

∆E3(k) = − ~l2m3c

48π2T (1+k2)
3
2

(
4E(k)(

√
3π − 18) + (k − 1)4(

√
3(K(k) + E(k))π − 9(2K(k) + E(k)))−

(k − 1)2(2K(k)(7 + 2
√

3π)− E(k)(14
√

3π − 27)) + . . .
)

(51)
It is important to note, that in the k → 1 limit the results converge to those obtained by
Konoplich in [6]. As yet we were unable to obtain convergence radius for the power series
approximation and in this sense the results are incomplete, we are however able to calculate as
many terms in this series as needed. It is evident, that the dependence of the results on the
elliptic parameter (which is connected to the period of classical solutions) is heavily influenced
by the number of spatial dimensions included in the quantisation procedure.

5. Conclusions
If we carry all physical constants through the calculations, it becomes evident, that quantum
corrections to energy are independent of the energy scale of the classical system. If we were to
multiply the classical action integral by any constant, it would not affect the corrections due to
the way parameter A is cut by regularisation. Even if our choice of the regularisation coefficient
r2 was incorrect, scaling of the classical Hamiltonian would at most result in a logarithmic
change in quantum corrections. In a way it coincides with the intuition, that quantum effects
should only be noticeable in small scale systems.

The zeta-function regularisation scheme is incomplete in the sense, that it doesn’t give clear
method of choosing the regularisation coefficient r2. The choice of vacuum cutoff in the case of
fields over a finite interval is not necessarily straightforward as well. We can solve the problem
by comparing the energy corrections for cases solved by other methods and extending the results
to those otherwise unattainable as we did for the φ4 and Sine-Gordon models.

Energy corrections show strong dependence on the overall number of dimensions of the
classical system. It would be of interest to calculate energy corrections without the continuum
approximation to research the system’s geometry effect on energy in semiclassical regime.
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