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Abstract
This thesis discusses an implementation of automated all orders calculations in pertur-
bative quantum chromodynamics and its application to measurements at recent collider
experiments. It is realised as a plugin to the SHERPA event generator framework. The
theoretical basis is provided by the well established CAESAR formalism. This allows
one to take into account the leading and next-to-leading logarithmic enhanced terms.
NLO+NLL0 accuracy is achieved by matching the resulting expressions to calculations at
next-to-leading order in the strong coupling constant. Non-perturbative corrections are
transferred from Monte Carlo simulations to the all orders distributions. Going beyond
the original CAESAR formalism, soft drop groomed observables as well as jet substructure
variables are discussed in the same framework. Use cases are illustrated with various
examples. In electron positron annihilation, the resummation of high multiplicity jet
rates is presented, as well as an analysis of the potential of soft drop grooming, applied
to the thrust observable, to improve fits of the strong coupling constant. Relevant to
the currently operating Large Hadron Collider are the phenomenological studies of soft
drop groomed global event shapes in proton proton collisions and predictions for jet
substructure observables. The latter are compared to recent measurements by the CMS
experiment.
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Chapter 1

Introduction

The development of high energy particle colliders started with the first proposals to
collide two beams of fast moving particles [1, 2] in the 1950’s [3]. Since then, a large
number of facilities have been built to perform this kind of experiment, at ever increasing
energies and using various types of particles in the colliding beams. Fig. 1.1 shows an
overview of the experiments performed over the last decades. The first examples are
colliders working with beams of electrons and positrons at energy scales below and
around 1 GeV [4–12]. An early example for a proton-proton collider are the Intersecting
Storage Rings (ISR) [13, 14] at the European Organisation for Nuclear Research (CERN).
Truly high energy experiments with electrons were performed at the Stanford Linear
Accelerator (SLAC) [15].

The latest series of experiments to have finished include the HERA collider at DESY

collecting data from electron proton collisions, at the four experiments H1 [16], ZEUS [17],
HERMES [16] and HERA-B [18]. Experiments with proton-antiproton collisions at high
energies were most recently performed by the D0 [19] and CDF [20] collaborations
at the Tevatron collider at Fermilab reaching energies of almost 2 TeV. The highest
energies in electron-positron collisions, up to 209 GeV, were achieved by the Large
Electron Positron collider (LEP), again at CERN. The four experiments ALEPH [21],
DELPHI [22], OPAL [23] and L3 [24] also collected a large amount of data at lower
energies, in particular at the Z-pole around 91.2 GeV.

LEP was replaced by the currently operating Large Hadron Collider (LHC). It is collecting
data at the ATLAS [25], CMS [26], LHCb [27] and Alice [28] experiments. Most collisions
were recorded at energies of 7 TeV and 13 TeV with proton beams. The LHC is also
performing runs with heavy ions like lead, and similarly the dedicated Relativistic Heavy
Ion Collider (RHIC) [14], is another example for a current experiment collecting data
from proton collisions. The exploration of electron-positron annihilation continues
currently at lower energies for example at the KEK facilities, with Belle II [29] being the
latest experiment dedicated to the study of B-hadron physics at the O(10 GeV) scale.
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CHAPTER 1. QCD AND THE SM

The discoveries made at those experiments at increasing energies were met by devel-
opments in the theoretical understanding of the fundamental components of matter
surrounding us and the interactions between them. This is summarised in the standard
model (SM) of particle physics. A key role is played by the strong interactions governing
the physics of hadrons. Their understanding has played a major role in the past and
current collider experiments, either with the setup being dedicated to their study, or as
a main contributor of background noise to the actual physics goals.

The study of the standard model has gone from a quest for qualitative explanations of the
observed effects towards precision calculations of specific quantities. The following thesis
will provide a framework for such calculations in perturbative quantum chromodynamics
at all orders, in an automated fashion. This will be put into context over the next chapter,
dedicated to reviewing key topics of the SM and the theory of strong interactions
in particular. The third chapter will introduce necessary phenomenological tools and
techniques, followed by a summary of the CAESAR formalism used to achieve the
precision aimed for here. The fifth chapter documents details of the approach to this
formalism within the SHERPA framework. The final chapter is dedicated to illustrating
use cases of this implementation.

colliders called ³particle factories´ were focused on detail exploration 

ı

ı ı

A=4ʌı ı

Figure 1.1: Colliders over the decades.
Figure and caption taken from Ref. [3].
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Chapter 2

Quantum chromodynamics and the standard
model of particle physics

The modern formulation of the standard model of particle physics is in terms of a local
relativistic quantum field theory. It contains all degrees of freedom known to date to
be necessary to collectively describe in particular data from collider experiments. The
progress of the field is regularly reviewed by the particle data group, and the latest
edition of this review, [30], is to be regarded as the principal reference for factual
statements and concrete parameters in the following, if no other reference is given.

This chapter is mostly meant to set the frame for the original work presented later
by introducing known results within the SM, as they are discussed in advanced but
standard text books, e.g. [31–39], but with no particular claim of completeness regarding
tangential topics. In addition to the textbooks, relevant review articles are [40, 41] for
the physics discussions and [3, 42] for the historical developments. The following also
serves to establish the notation employed in the later chapters of this thesis.

The final section of this chapter focuses on Quantum Chromodynamics (QCD) and
mainly the necessary developments to perform calculations within the framework of
perturbation theory. Ultimately, this is what is needed to introduce the concepts
reflected in the CAESAR formalism explained later. Of course, approaches like lattice
gauge theory to QCD, for example [43–45], are also very important. On the one
hand they provide numerical calculations that would not be available in perturbation
theory. On the other hand, they underline the concepts and ideas that arise from the
perturbative study of QCD but can not yet be proven rigorously on a mathematical
basis.
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CHAPTER 2. QCD AND THE SM

2.1 The standard model
The matter content of the SM consists of 12 fermionic degrees of freedom, distinguished
by their masses and participation in the various interactions. All known interactions are
described by gauge theories, and are separated into an electroweak part, described as
a SU(2)⇥ U(1) gauge theory [46–48] broken by the Higgs mechanism [49–53], and
QCD. For the latter, the appropriate gauge group is SU(3).

At relatively low energies, ⇡ O(100 MeV) � O(10 GeV), QCD is argued to exhibit
effective degrees of freedoms called hadrons. The most well known probably are protons
and neutrons at masses of ⇡ 1 GeV that make up the nuclei of all atoms comprising
everyday matter. Experimentally however, one observes a full zoo of shorter lived
mesons and baryons in this energy range. The symmetry patterns [54, 55] observed in
those historically led to the postulate that hadrons are in fact bound states composed
of the more fundamental quarks [56, 57]. At the same energy scale, only one of
the four bosons implied by the SU(2) ⇥ U(1) gauge symmetry remains massless
after electroweak symmetry breaking. It is identified with the photon of quantum
electrodynamics (QED), while the Z boson (MZ ⇡ 91.2 GeV) and the oppositely
charged W bosons (MW ⇡ 80 GeV) are associated with much higher mass scales.
The picture at low energies is then that of a spectrum of hadrons at their respective
energies, that can be electrically charged or neutral and correspondingly interact and
decay due to both QED and strong interactions. Effective four point interactions,
historically named after Fermi [58], and nowadays derived from the exchange of the
massive gauge bosons, also play a role. They however are suppressed by factors of
O(1/M2

Z) ⇡ O(1/M2
W ), and usually are only significant when the other interactions are

absent due to some symmetry and corresponding conservation law. Yet lower energies
are associated with larger time scales, such that only the stable or very long lived
hadrons remain available. These are mostly protons and neutrons, which themselves
form bound states via effective strong interactions and lead to nuclear physics with
binding energies of ⇡ 1 � 10 MeV. One eventually arrives at the QED picture of
electrons, protons/nuclei and photons which governs atomic and molecular physics in
various non-relativistic approximations.

The work in this thesis is however on collider phenomenology at higher energy scales,
or at the very least in the range of hadronic physics at 1� 10 GeV. Relevant additional
energy scales are set by the W and Z bosons mentioned before, the scalar Higgs
boson, the last of the SM particles to be confirmed experimentally [59, 60], with
MH ⇡ 125 GeV and the top quark at mt ⇡ 173 GeV. These will in the following
be relevant to determine the physical values of the energy scales and for kinematic
restrictions to the phase space of collision products. The physical effects associated
with them will however not be discussed in detail. In fact, only the last one, the top
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2.1. THE STANDARD MODEL

quark, actually corresponds to a degree of freedom appearing in QCD. The majority of
experiments performed so far were not able to produce top quarks due to their lower
collision energy (an energy of 2mt ⇡ 350 GeV would be necessary to produce a pair of
top quarks, exceeding even the highest energies reached at LEP). They are only studied
at the latest two hadron colliders, the Tevatron where they were discovered [61, 62],
and the LHC. Even there however, the effective center of mass energies are rarely
high enough to neglect the top mass. The main effects taken into account here are
suppressed for quarks with a significant mass relative to the overall energy scale. Hence
top quarks will not play a major role in the following. The other quark masses are
at or below the scales of hadronic physics. The lightest three, the up, down and
strange quark, have masses well below 1 GeV, and can be regarded as massless for
all practical purposes in the following. The charm and bottom quarks have masses of
mc ⇡ 1.28 GeV and mb ⇡ 4.8 GeV, making corrections associated with them worth
considering in some cases. Nevertheless, the main theory used in the following will be
that of QCD with 5 exactly massless quarks.

The idea that hadrons are effectively bound states of quarks is further supported
by experiments examining scattering of leptons off nuclei like protons [63–65]. At
sufficiently high energies, when the proton is destroyed in the process ("deep inelastic
scattering", DIS), one observes that the interaction, mediated by the photons of QED,
indeed appears to effectively be with smaller charged constituents inside the proton.
This can be formalised as a particular scaling behaviour of the so called structure
functions effectively describing the deviation of nuclei from point-like particles [66].
Further developments lead to the parton model [67, 68]. The picture is that of hadrons
containing valence quarks of the various types, matching their overall quantum numbers
and each carrying a fraction x of the momentum of the respective hadrons. One
then works with distributions fhadron

q (x), describing the probability to find a parton of
type q with momentum fraction x of the hadron momentum inside the hadron. In
addition there might be quark-antiquark pairs with cancelling quantum numbers, and
one can relate properties Ohadron of a given hadron to the equivalent property of its
quark constituents Oparton, schematically

Ohadron =
X

q,q̄

Z 1

0

dx fhadron
q (x,Q2)Oparton(x) . (2.1)

The actual distribution functions f(x,Q2) need to be determined from experiments. An
energy scale Q2 is added as a second dependence, anticipating that Bjorken scaling is
not exact. This approach needs to be extended to not only quarks but also electrically
neutral gluons [69] to explain the interactions between the quarks, guided and confirmed
by further experimental observations in DIS [70, 71]. It can later be justified in the
context of lowest order approximations in full QCD.

5



CHAPTER 2. QCD AND THE SM

2.2 Quantum chromodynamics as a gauge theory
The most complete formulation of the strong interaction in terms of a quantum field
theory we know of is as a Yang-Mills theory [72]. This is a gauge theory with a
non-abelian gauge group. The massless1 Yang-Mills Lagrangian density is given by

L = �1

4
F a
µ⌫F

a,µ⌫ +
X

nF

q̄i

⇣

�µ@µ + ig�µtaijA
a
µ

⌘

qj , (2.2)

with F a
µ⌫ = @µA

a
⌫ � @⌫A

a
µ � gfabcAb

µA
c
⌫ . (2.3)

Here, the spinors qi represent the quarks, which occur in nF identical copies called
flavours. The field strength tensor F a

µ⌫ is build from the gluon fields Aa
µ. The quark

fields carry a fundamental representation of the gauge group, indicated by the index i,
while the gluons are associated with the adjoint representation. The coupling between
them is explicitly proportional to the generators ta of the fundamental representation,

h

ta, tb
i

⌘ ifabctc , (2.4)

while the gluon self coupling, the third term in Eq. (2.3), is proportional to the structure
constants fabc of the gauge group. For QCD, the relevant group is SU(Nc). The
physical "number of colours" is Nc = 3, but it is convenient to leave this open for now.
The commutator in Eq. (2.4) does not define the ta in a completely unique way. One
might thus choose to work in a basis where

taijt
b
ji = TR�ab . (2.5)

An explicit example fulfilling this for the fundamental representation is provided by
the so called Gell-Mann matrices. The normalisation TR is a matter of convention. A
typical choice is TR = 1/2. With a basis like this it is possible to eliminate the structure
constants, since

� i

TR

⇣

taijt
b
jk � tbijt

a
jk

⌘

tcki =
1

TR

fabdtdikt
c
ki = fabc , (2.6)

with the middle equality being a direct application of the definition Eq. (2.4). A useful
relation in practical calculations involving these operators is

taijt
a
kl = TR

✓

�jk�il �
1

Nc

�ij�kl

◆

, (2.7)

known as Fierz identity. It allows one to express any product of colour matrices ta,
and via Eq. (2.6) also structure constants fabc, as a product of �ij ’s that are 1 if i = j

1Nothing is preventing the introduction of a standard mass term for the q fields here, but as argued
in the previous section, the focus here shall be strictly on massless QCD.
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2.2. QCD AS A GAUGE THEORY

and 0 otherwise, rendering the numerical evaluation straightforward (though of course
possibly time consuming if many terms are involved). Note that the indices of the
fundamental representation run from i = 1 . . . Nc, such that �ii = Nc. With these
identities at hand it is for example easy to evaluate the quadratic Casimir invariants of
the fundamental and adjoint representations

taijt
a
jk = TR

✓

Nc�ik �
1

Nc

�ij�jk

◆

= TR
N2

c � 1

NC

�ik ⌘ CF �ik (2.8)

fabcfabd =

✓�i

TR

◆2
⇣

taijt
b
jk � tbijt

a
jk

⌘⇣

talmt
b
mn � tblmt

a
mn

⌘

tckit
d
nl (2.9)

= 2

✓�i

TR

◆2
⇣

taijt
a
lmt

b
jkt

b
mn � taijt

a
mnt

b
jkt

b
lm

⌘

tckit
d
nl

= �2

 

✓

�jl�im � 1

Nc

�ij�lm

◆✓

�km�jn �
1

Nc

�jk�mn

◆

�
✓

�jm�in �
1

Nc

�ij�mn

◆✓

�kl�jm � 1

Nc

�jk�lm

◆

!

tckit
d
nl

= �2

 

✓

�nl�ik �
2

Nc

�in�lk +
1

N2
c

�ik�ln

◆

�
✓

Nc�in�kl �
2

Nc

�in�kl +
1

N2
c

�ik�nl

◆

!

tckit
d
nl

= 2Nct
c
knt

d
nl = 2TRNc�cd ⌘ CA�cd .

Note that multiplying out the two brackets in the first line in Eq. (2.9) leads to four
terms that are pairwise equal after renaming indices. The terms in the second to last
line that do not cancel between the two brackets are of the form �ijt

a
ij , apart from the

one that equals the final result. As the ta are generators of SU(Nc), and hence their
trace is zero, those terms vanish. With TR = 1/2 and for Nc = 3 one has CF = 4/3
and CA = 3.

To make contact with collider experiments, the principal quantities of interest are
scattering cross-sections,

Σ (Θ) =
X

C

Z

dChC|CiΘ(C) . (2.10)

Here C = Cin[Cout is the collection of all particles, i.e. the set of momenta and flavours,
in the initial and final state of a collision, and the sum is in principle over all possible

7



CHAPTER 2. QCD AND THE SM

configurations. The notation will be simplified to treat this just as a set of momenta or
flavours if appropriate for the context in the following. For example, the integral over
dC represents the integration over the kinematic variables of the final state. It contains
all the momentum conserving delta functions and associated factors to make it the fully
Lorentz invariant phase space element. The object |Ci appearing in the cross section
is the amplitude for scattering from the initial state Cin to the final state Cout. As is
implied by the notation, it can usually be viewed as a vector in a space of adequate
quantum numbers, and the average and sum over those is understood to be implied
by the product between the amplitude and its conjugate, h·|·i. This squared matrix
element is related to the probability of a scattering from the initial to the final state.
The cross section Σ depends on the various cuts made in an experiment, represented
by Θ. It is indeed usually in the form of a collection of ✓ functions,

✓(x) =

(

1 if x > 0

0 else,
(2.11)

depending on variables calculated from C. Typically, the initial state Cin does not vary
within a given experiment, so conditions on it will be omitted in the Θ function. A
typical example is an inclusive cross-section, i.e. without a kinematic cut and with
some final state particle required, say for the sake of concreteness a Z boson and fix
the initial state to two protons. This can be expressed as

Θ(C) =

(

1 if Z 2 Cout

0 else
(2.12)

�DY ⌘ Σ
DY =

Z

dC(Q2, y)hpp ! Z|pp ! Zi (2.13)

+
X

X

Z

dX dC(Q2, y)hpp ! Z +X|pp ! Z +Xi .

As the notation suggests, this is an example of a Drell-Yan (DY) process. It has been
made explicit that the kinematics of the Z boson can be parametrised by its virtuality
Q2 and its rapidity y, and the sum has been separated into a term where the final state
only consists of the Z boson, and one where the sum over an additional collection of
arbitrary final state particles X is executed. Another important example is the case
where a single number V (C) is calculated from all momenta of the final state particles,
and a cut v on this number is placed:

Θ (C) = ✓
�

v � V (C)
�

(2.14)

Σ(v) =
X

C

Z

dChC|Ci✓
�

v � V (C)
�

. (2.15)

8



2.2. QCD AS A GAUGE THEORY

At the end of the day this, might be combined with additional requirements on C. Note
that, from the knowledge of Σ as a function of v, one can reconstruct a differential
cross-section

d�

dv
⌘ dΣ

dv
=
X

C

Z

dChC|Ci�
�

v � V (C)
�

. (2.16)

A problem that has not been addressed so far is that experiments are performed with
hadrons in the initial state, and are also observed to always produce hadrons as final
states, but QCD is formulated in terms of quarks and gluons. If one accepts the
parton model, with the quarks and gluons of QCD as partons, this connection is a
straightforward application of the concept expressed in Eq. (2.1). Taking again the
Drell-Yan cross section as an example, one writes

�DY =
X

a,b=q,q̄,g

Z 1

0

dxa dxb f
proton
a (xa, µ

2
F )f

proton
b (xb, µ

2
F ) (2.17)

⇥ Σ
�

{a, xap1}, {b, xbp2};Z +X
�

=
X

a,b=q,q̄,g

Z 1

0

dxa dxb f
proton
a (xa, µ

2
F )f

proton
b (xb, µ

2
F )

⇥
Z

dC(Q2, y)hab ! Z|ab ! Zi+ . . . .

Here the dots represent the sum over additional final state particles similar to the second
line in Eq. (2.13). The partonic initial state in the first line represents partons a and b,
with respective four momenta xap1, xbp2 , p1 and p2 being the momenta of the initial
state protons. Note that the sum contains gluons as initial states. At leading order this
contribution is of course absent since there is no fundamental gg ! Z interaction. At
higher orders a Z can be produced with one or two gluons in the initial state however.

This approach can be applied to all kinds of hadronic processes, like the DIS process
introduced earlier or proton-(anti-)proton collisions with different final states, within
the parton model. Careful analyses can justify it in the form of rigorous factorization
theorems within QCD, typically validating it up to power corrections O(1/Q2) for some
relevant energy scale Q2, see for example Ref. [73]. The precise formulation of those
theorems is omitted here, and the focus will be on performing precise calculations for
the partonic part within QCD.

An analogous approach is available if one is for example interested in a particular
hadron in the final state, C = h + X. Here the partonic calculation is carried out
for all possible partonic final states and then convoluted with fragmentation functions
fparton
h (x), empirically representing the probability to produce hadron h with energy

fraction x from a specific parton. Alternatively, one might attempt to directly apply

9



CHAPTER 2. QCD AND THE SM

the final state cuts in Θ to the partonic final state. This is certainly justified if one
considers inclusive hadron production, Θ = 1.The same might be done conceptually if
Θ contains cuts that are mainly measuring the overall energy distribution of the final
state, an assumption known as parton-hadron duality. Typically however, there is some
modelling input required in those cases to match actual experimental data.

10



2.3. PERTURBATIVE QUANTUM CHROMODYNAMICS

2.3 Perturbative quantum chromodynamics
In the previous section, it was assumed that one just knows the amplitudes once the field
theory is fixed by the Lagrangian density. Indeed, following textbook treatment such
as [74], the LSZ reduction formula [75] provides the link between scattering amplitudes
from asymptotic free incoming to free outgoing states [76, 77] and n-point functions of
the quantum field theory. The main approach to calculating those, at least taken here,
is that of perturbation theory. That is, they are calculated as a series in the coupling
parameter g present in the interaction terms in Eq. (2.2) and Eq. (2.3).

|Ci =
X

n=0

g2n

(4⇡)n
|C(n)i , (2.18)

|C(n)i = gnBorn |Cni .

Note that it has been anticipated that only corrections with an even power of g are
appearing in practise. Because of this, it is useful to introduce the notation

↵s ⌘
g2

4⇡
. (2.19)

The inclusion of the factor of 4⇡ is purely conventional at this point and just modifies
the definition of the coefficient |C(n)i. Depending on the cuts in Θ(C) there will be
a lowest order nborn at which amplitudes contribute, those will be called Born level
amplitudes. Note that the superscript (n) in |C(n)i denotes the orders additional to
nBorn, as indicated in the second line of Eq. (2.18). Higher order corrections for the
same amplitude add internal lines and are called virtual corrections. They lead to a
"loop" topology, cf. the example in the left of Fig. 2.1, with an additional loop per
non-vanishing order in g2, hence e.g. the first order corrections are also called one-loop
amplitudes.

Note that the sum over C in Eq. (2.10) includes final states where the Born level is
at different orders if this is permitted by the measurement function Θ, such that the
contributions to a cross section Σ at a given order in g can mix virtual and Born
type corrections. In that sense the leading order amplitude for an observable is given
by the lowest order amplitude where that observable is non-zero in a non trivial way,
while higher order corrections with additional particles in C are referred to as "real"
corrections for that observable.

The practical calculation of the amplitudes at a given order proceeds via the well known
Feynman diagram calculus. Additional to the external momenta specified by C, the
loops appearing at higher orders contain internal momenta. Those need to be integrated
over. It is well known that these integrals are not necessarily finite in the physical 4

11



CHAPTER 2. QCD AND THE SM

spacetime dimensions. In the following it will be assumed that they are regularised in
dimensional regularisation. This means that integrals are calculated in D = 4 � 2✏
dimensions.

Consider e.g. the quark self energy in Fig. 2.1, which can be evaluated to2

iΣ(p) = µ2✏

Z

dDk

(4⇡D)
(�ig)2 tailt

a
lj�

µ i(k↵�
↵ + p↵�

↵)

(k + p)2
�⌫�igµ⌫

k2
. (2.20)

See any standard textbook mentioned at the beginning of this section for the necessary
Feynman rules, for concreteness the convention used corresponds to Ref. [36] and all
expressions are given in the Feynman gauge. Note the introduction of the energy scale
µ to preserve the dimension of the integral measure.

The necessary colour factor equals tailt
a
lj = CF �ij as shown in Eq. (2.8). A lot of

standard techniques exist to deal with integrals at one loop. One example is the
Passarino-Veltman decomposition [78], reducing vector and tensor valued integrals
to scalar ones. This explicitly exposes the divergence as 4 spacetime dimensions are
approached from the general D = 4� 2✏ as poles 1/✏. These can be dealt with using
multiplicative renormalisation. One shifts all parameters of the Lagrangian according to

q ! Z1/2
q q ⇠

�

1 + �q/2
�

q , (2.21)

Aµ ! Z
1/2
A Aµ ⇠

�

1 + �A/2
�

Aµ , (2.22)

g ! Zgµ
✏g ⇠ (1 + �g)µ

✏g . (2.23)

The expansion of the factors Zi in terms of �i at one loop lead to the addition of counter
term diagrams as shown on the right of Fig. 2.1. One determines the � coefficients
by requiring finite results for physical observables. The final result for the quark self
energy is, cf. for example [36]

iΣ(p) = ip↵�
↵

"

g2

16⇡2

2CF

✏
+ finite + �q

#

. (2.24)

Note the part that is finite for ✏ ! 0 is ignored here. The pole in ✏ can be absorbed by
setting

�q = �↵sCF

4⇡

2

✏
. (2.25)

2Note the doubling of the symbol Σ here in order to follow conventional notation. In later chapters,
Σ will exclusively refer to cross sections.

12



2.3. PERTURBATIVE QUANTUM CHROMODYNAMICS

Figure 2.1: Feynman diagram and counter term contributing to the quark self energy
at one loop order.

The analogous result for the gluon self energy implies

�A =
↵s

4⇡

✓

5

3
CA � 4

3
TRnf

◆

2

✏
. (2.26)

The corrections to the three-point function depends on all three renormalisation param-
eters,

�g + �q + �A/2 = �↵s

4⇡
(CA + CF )

2

✏
(2.27)

) �g =
↵s

4⇡

✓

�11

6
CA +

2

3
TRnf

◆

2

✏
. (2.28)

Note how the shift of g in Eq. (2.23) depends on the scale µ introduced earlier. This
dependence can be absorbed into the physical coupling constant gphys ⌘ Zgµ

✏g. Since
µ is an arbitrary scale, physical results should not depend on it. This can be guaranteed
by requiring that,

0 =
dg2phys

d lnµ2
⌘ ✏µ2✏Z2

gg
2 + µ2✏�(↵s)

dZ2
gg

2

d↵s

, (2.29)

where the second term on the right hand side defines the function �(↵s) = d↵s / d lnµ
2.

Note that the derivative of the coupling squared has been taken, and with respect to
the log of the scale µ. Those are choices, the only point being that independence is
expressed by the fact that the derivative is zero. The dependence of Zg on ↵s is via �g
in Eq. (2.28). The � function can be determined order by order in ↵s

d↵s

�

µ2
�

d lnµ2
= ��0↵

2
s � �1↵

3
s +O(↵4

s ) , (2.30)
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with [79, 80]

�0 =
11CA � 2nf

12⇡
, (2.31)

�1 =
17C2

A � 5CAnf � 3CFnf

24⇡2
. (2.32)

This renormalisation group equation relates the strong coupling at a reference scale, a
typical choice is the Z mass M2

Z with ↵s(M
2
Z) ⇡ 0.118, to an arbitrary scale,

↵1L
s

�

µ2
�

=
↵s

�

M2
Z

�

1 + ↵s

�

M2
Z

�

�0 lnµ2/M2
Z

. (2.33)

The "1L" superscript indicates that the running has been computed at one-loop accuracy.
Including the �1 coefficient in Eq. (2.30), one obtains

↵s

�

µ2
�

= ↵1L
s

�

µ2
�

+ ↵2L
s

�

µ2
�

, (2.34)

with the two loop part of the running of the strong coupling given by

↵2L
s

�

µ2
�

= ↵2
s

�

M2
Z

� �1

�0

ln
⇣

1 + ↵s

�

M2
Z

�

�0 lnµ
2/M2

Z

⌘

1 + ↵s

�

M2
Z

�

�0 lnµ2/M2
Z

. (2.35)

Historically, the realisation that the � function is negative3 was an important step
in establishing QCD as the underlying fundamental theory of the strong interaction.
As can be seen from Eq. (2.33), it leads to a decrease of ↵s with the energy scale,
↵s

�

µ2 ! 1
�

! 0. This supports the parton model picture, where partons are strongly
bound and confined to hadrons at low energies, but are weakly bound and asymptotic
free at higher energies. This observation is known as asymptotic freedom. Investigating
the low energy behaviour, the one loop running exhibits the so-called Landau pole,
approached when the denominator in Eq. (2.33) is zero. At one loop, this happens
when µ2 equals

Λ
2
QCD = M2

Ze
�1/↵s(M2

Z)�0 . (2.36)

If one uses realistic values for MZ and ↵s

�

M2
Z

�

, this is at very low energies ΛQCD <
100 MeV. However, higher order corrections heavily modify this, as well as the energy
thresholds corresponding to the heavier b and c quarks. Realistically, the Landau pole
sets an energy scale of ⇡ 100� 400 MeV [32].

The poles in ✏ discussed so far were all associated to the high energy behaviour of the
amplitudes (in analogy to electromagnetic radiation, this is referred to as the ultra-violet
(UV) regime). It can be traced to the fact that the nominator in integrals does not
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2.3. PERTURBATIVE QUANTUM CHROMODYNAMICS

Figure 2.2: Example diagram giving rise to collinear divergencies if k is on-shell k2 = 0
and collinear to either pi or pj, and to a soft divergence if k ! 0.

vanish quick enough for k ! 1, relative to the denominator build from the propagators
involved in the loop.

Equivalently, one might expect problems when k ! 0, if the powers of k in the numerator
are smaller than in the denominator and the integrand hence potentially diverges. Those
are known as infrared (IR) divergences. They correspond to configurations where the
internal propagator lines of a loop correction are on their mass shell, l2i = 0. As an
example consider the insertion of a gluon between two final state legs {pi, pj} ⇢ C of
an amplitude as shown in Fig. 2.2. The product of propagators will be of the form

/ 1

k2(pi + k)2(pj � k)2
. (2.37)

This is naively divergent if

kµ ! 0 ) k2 ! 0, (2.38)

corresponding to a soft gluon, and the cases where the gluon momentum is collinear to
leg i or j,

kµ ! zip
µ
i ) (pi + k)2 ! (1 + zi)

2p2i = 0 , (2.39)

kµ ! zjp
µ
j ) (pj � k)2 ! (1� zj)

2p2j = 0 , (2.40)

for some proportionality constant

0 < zi, zj < 1 . (2.41)

3The obvious caveat to this statement is that nf can not be too large, which is no problem at the
physical nf  6, well established at the experimentally relevant energies.
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Note that in principle, those zeros in the denominator do not necessarily lead to
actual divergencies of the integrals, and of course there could be more that are missed
here. A careful analysis of this [34, 40] leads to more precise conditions called Landau
equations [81]. They confirm this is the general structure appearing also at higher
order, i.e. with more virtual gluons (or quark loops, in principle) inserted. In general, IR
divergences occur whenever all the loop momenta that are on-shell are either collinear
to one of the external legs, ki ! pi or are zero ki ! 0. Possible off shell momenta
can be ignored for this purpose. The physics picture emerging from this discussion is
that of collimated jets of gluons, along the directions given by the hard legs in the
amplitude, accompanied by clusters of additional soft gluons. To analyse the situation

Figure 2.3: Lund plane illustrating the collinear and soft phase space of the ij dipole
for ⌘ > 0.

in Fig. 2.2 more closely, it is practical to introduce the so called Sudakov decomposition
of k in terms of pi and pj,

k = zipi + zjpj + k? , (2.42)

where k? is a four momentum with k? ·pi = 0 = k? ·pj and k2
? = �k2

t is the transverse
momentum of k with respect to the ij dipole,

k2
t ⌘

(k · pi)(pj · k)

pi · pj
(2.43)

= zizjQ
2
ij . (2.44)
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The center-of-mass energy of the radiating dipole is given by

Q2
ij = 2pi · pj . (2.45)

The equality �k2
t = k2

? is implied by the masslessnes of the gluon momentum k, i.e.
k2 = 0. This leaves one degree of freedom for k?, corresponding to the azimuthal
orientation � of the transverse momentum in the plane perpendicular to pi and pj . To
construct it one picks two independent directions transverse to the reference momenta
to define a plane and chooses a vector in this plane in polar coordinates using � as the
angle. This detail can be ignored for the moment. The Sudakov components zi, zj are
also referred as light-cone momentum fractions. Their ratio defines a further useful
quantity, the rapidity of k relative to the ij dipole,

⌘ =
1

2
ln

zi
zj

. (2.46)

Taking Eq. (2.43) and Eq. (2.46) together, the Sudakov decomposition Eq. (2.42) can
also be cast as

k =
kt
Qij

�

e⌘pi + e�⌘pj �Qijn?

�

(2.47)

with

n? =
k?
kt

. (2.48)

Now, the soft limit, where all components of the four momentum k approach 0,
corresponds to a vanishing kt or

ln
kt
Qij

! �1 . (2.49)

The collinear limits, zi, zj ! 0 are reflected by arbitrarily large positive or negative
rapidity. The condition from Eq. (2.41) however limits

ln
kt
Qij

< ⌘ < � ln
kt
Qij

. (2.50)

Solutions here of course only exist if kt < Qij. This situation can be illustrated in so
called Lund plane diagrams [82, 83]. An example is depicted in Fig. 2.3. It is cut at
⌘ = 0, the negative ⌘ part would be mirrored but otherwise identical. The diagonal
line marks the boundary given by Eq. (2.50), and the red fill is the area valid for k. It
fades out towards the soft and soft-collinear limit, where the divergences identified here
are located. In practice, it is often useful to choose a coordinate system where the
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reference momenta are back-to-back, and their spatial momenta are along the positive
and negative z-direction, for pi and pj respectively,

pi/j =
Qij

2
(1, 0, 0,±1) . (2.51)

In this frame, components of the gluon momentum from Eq. (2.47) can be expressed as

k = kt (cosh ⌘, sin�, cos�, sinh ⌘) . (2.52)

Figure 2.4: Examples of cut diagrams correlated by soft and collinear divergencies.

The Kinoshita-Lee-Nauenberg theorem [84, 85], a general version of the Bloch-Nordsieck
theorem [86], guarantees that those divergences cancel between real and virtual correc-
tions. They rely on the unitarity of the quantum field theory. This can be formalised in
the so called cut rules [87]. A cut diagram is obtained by setting a loop momentum in
a virtual correction on its mass shell and replacing the loop integral by a phase space
integral. Unitarity of the theory then allows sums over all cuts in a diagram to be
calculated by generalised versions of the optical theorem, relating them to a forward
scattering cross section that can be argued to be finite on physical grounds. Fig. 2.4
shows an example of virtual and real amplitudes that are related by unitarity. Note
there are more diagrams contributing, with a similar topology but for example with the
gluon connecting the left lower to the right upper leg and alike.

The implication is that the sum over final states C in e.g. Eq. (2.10) needs to be such
that this cancellation is not broken. This is a requirement on the Θ (C). Whenever a
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momentum k 2 C = {p1, . . . , pn, k} becomes soft, k ! 0, one needs to be able to
remove it without changing Θ. Likewise, if k approaches the collinear limit of one of
the other particles pi, those can be combined with no effect on Θ. Formally this can
be expressed as

lim
k!0

Θ(
�

p1, . . . , pn, k}
�

= Θ(
�

p1, . . . , pn}
�

, (2.53)

lim
k!zpi

Θ(
�

p1, . . . , pn, k}
�

= Θ(
�

p1, . . . , pi + k, pn}
�

. (2.54)

This requirement is referred to as infrared and collinear safety (IRC safety). In the
example of the virtual insertion from Fig. 2.2, this implies that the real and virtual
corrections illustrated in Fig. 2.4 always need to be considered together.

The scope of this work ultimately is the calculation of cross sections of the type in
Eq. (2.15). The relevant observables V ({p}) will typically be non-zero from some
final state multiplicity (n + 1) on, and hence measure the deviation from the Born
multiplicity n. It will from now on be assumed that the function Θ includes additional
limits that, in an IR safe way, imply that the n Born momenta are all well separated and
significantly non-zero. At Born order the sum over final states C is over the different
channels �,

Σ(v) =
X

�

Σ
�(v) , (2.55)

where the � mark a particular assignment of flavours to the n Born partons. In the
following, the final states C corresponding to the Born final states for the observable in
question will hence be referred to as B�. At this order the observable is trivial V (B) = 0,
so the cross section is constant

Σ
�,(0)(v) =

Z

dB�hB�|B�i = �(0) . (2.56)

Note that the different orders of Σ will be denoted by

Σ = Σ
(0) + Σ

(1) + Σ
(2) +O(↵nBorn

s ↵3
s ) . (2.57)

At first order, according to the discussion above, one has to add the one-loop correction,
integrated over the loop momentum k, and the cut diagrams, integrated over the phase
space of n+ 1 particles B� [ {k}:

Σ
�,(1)(v) =

Z

dDk

(4⇡D)
2Re

⇣

hB�,(1)|B�i
⌘

(2.58)

+

Z

d(B� [ {k})hB� [ {k}|B� [ {k}i✓
⇣

v � V (B�, k)
⌘

.
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Note how the loop correction |B�,(1)i contributes via interference with the Born level
amplitude, since both correspond to the same configuration of partons. The ✓ function
cutting on V is hence still trivial for them. It however affects the real corrections,
disturbing the cancellation between uncut and cut diagrams. To make it more explicit,
use

1 = ✓
⇣

v � V (B�, k)
⌘

+ ✓
⇣

V (B�, k)� v
⌘

, (2.59)

to rewrite the ✓ function,

Σ
�,(1)(v) =

Z

dB�

Z

dDk

(4⇡D)
2Re

⇣

hB�,(1)|B�i
⌘

(2.60)

+

Z

d(B� [ {k})hB� [ {k}|B� [ {k}i

�
Z

d(B� [ {k})hB� [ {k}|B� [ {k}i✓
⇣

V (B�, k)� v
⌘

.

The focus will now be on the insertion of gluons approaching the soft limit, k ! 0. IR
safety requires that in this limits, the first and second line cancel. The real contribution
in the third line factorises in the same limit as

hB [ {k}|B [ {k}i ⇠ g2
X

I,J2B

pI · pJ
(pI · k) (k · pJ)

hB|TITJ |Bi . (2.61)

Here the TI denote colour insertion operators that map the colour structures of the
B configuration to the appropriate one for the amplitude with an additional gluon
attached at leg J in the amplitude and at leg I in the conjugate amplitude. The phase
space factorises similarly, and the integration over the soft collinear gluon momentum
k will be expressed in the Sudakov components relative to the dipoles. The third line
of Eq. (2.60) can now be written as

Σ
�,(1)(v) ⇠

X

I 6=J

Z

dB�

Z

dk2
t d⌘

d�

2⇡

↵s

⇡

pI · pJ
(pI · k) (k · pJ)

hB� |TITJ | B
�i (2.62)

⇥ ✓
⇣

V (B�, k)� v
⌘

,

⌘
X

I 6=J

Z

dB�hB�|RB�

IJ |B
�i . (2.63)

Note that the integral over k only covers a region away from the soft collinear divergen-
cies, as long as v is finite v > 0, and can hence after UV renormalisation it can directly
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be performed in 4 dimensions. The integration boundaries are given by Fig. 2.3 and
the additional ✓ function in Eq. (2.62).

To explore it further, assume that the function V (B, k) can, in some arbitrary frame,
be parametrised with coefficients al, bl, dl as, cf. Ref. [88],

V (B, k) = dl

 

k
(l)
t

µQ

!al

e�bl⌘
(l)

(2.64)

when k approaches the l = I, J collinear limit. Here k
(l)
t and ⌘(l) are the transverse

momentum and rapidity with respect to l. They can be identified with the ones defined
in terms of the dipole IJ earlier in the center of mass frame of the dipole,

k
(I)
t = kt (2.65)

while ⌘l in a general frame is obtained from the invariant introduced earlier by

⌘(I) = ⌘ + ln
2EI

QIJ

. (2.66)

The energy scale µQ is introduced to arrive at a dimensionless V .

The idea is now to use this approximation with l = I for ln kt/QIJ < ⌘ < ⌘min and
with l = J for ⌘min < ⌘ < � ln kt/QIJ . The usual choice for ⌘min = 0 splits the dipole
into two parts, corresponding to the I and J collinear region. For one of those one
obtains, after carrying out the � integration that is assumed to be trivial for simplicity,

RB
IJ = TITJ

⇣

RB
I;J +RB

J ;I

⌘

, (2.67)

RB
J ;I =

Z

dk2
t

k2
t

Z lnQIJ/kt

⌘min

d⌘
↵s

⇡
✓

0

@dJ

 

kJ
t

µQ

!aJ

e�bJ⌘
(J) � v

1

A . (2.68)

The interplay between the ⌘ integration limits and the ✓ function can be analysed by
visualising the integration boundaries in the Lund plane. This is shown in Fig. 2.5 for
b = 1. The ✓ function implies the red line. The dashed line marks kt/µQ = v1/(a+b). It
separates the kt integral into a region where kt is larger than this, where the ✓ function
is trivial, and a region where the ✓ function is determining the upper ⌘ limit alone.
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Figure 2.5: Lund plane illustrating the integration boundary for b = 1 and the
separation between the two integration regions, see text for details.

The integrand, apart from the ✓ function, at this level of approximation is independent
of ⌘, so

RB
J ;I =

Z µ2
Q

µ2
Qv2/(a+b)

dk2
t

k2
t

↵s

⇡

✓

� ln
kt
QIJ

� ⌘min

◆

(2.69)

+

Z µ2
Qv2/(a+b)

µ2
Qv2/a

dk2
t

k2
t

↵s

⇡

0

B

@

1

b
ln

2

4

d

v

 

kt
µQ

!a
3

5� ln
2EJ

QIJ

� ⌘min

1

C

A
,

=

Z µ2
Q

µ2
Qv2/(a+b)

dk2
t

k2
t

↵s

⇡

 

� ln
kt
µQ

� ⌘min

!

(2.70)

+

Z µ2
Qv2/(a+b)

µ2
Qv2/a

dk2
t

k2
t

↵s

⇡

0

B

@

1

b
ln

2

4

d

v

 

kt
µQ

!a
3

5� ln
2EJ

µQ

� ⌘min

1

C

A

+

Z µ2
Qv2/(a+b)

µ2
Qv2/a

dk2
t

k2
t

↵s

⇡
ln

µQ

Qsoft

�
Z µ2

Q

µ2
Qv2/a

dk2
t

k2
t

↵s

⇡
ln

QIJ

Qsoft

.

In the second step, the dependence on the dipole mass QIJ has been isolated, allowing
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to define a function rJ equal to the first two lines and the first terms in the third
line that truly only depend on J . Note that the auxiliary scale Qsoft was introduced,
to keep all dependence on µQ in rJ . However, at this step it is obvious that the full
expression is exactly independent of this scale. Using the fixed coupling approximation,
↵s = const., the new rJ can be given in terms of the logarithm L ⌘ � ln v

rBJ =
2

a(a+ bJ)

0

@

↵s

2⇡
L2 +

↵s

2⇡
L

 

ln dJ � bJ ln
2EJ

µQ

!

1

A . (2.71)

Now the radiator function for the full IJ dipole looks like

RB
IJ = TITJr

B
J +TITJr

B
I + 2TITJTf.c.(L/a) ln

QIJ

Qsoft

, (2.72)

with the function

Tf.c.(L) =

Z µ2
Q

µ2
Qe�2L

dk2
t

k2
t

↵s

⇡
. (2.73)

Note the subscript f.c. indicating the fixed coupling approximation, since a similar
function will later be introduced including the running of ↵s.

Some more tidying up is in order. The sum over all dipoles can be rearranged into a
sum over the individual legs and an additional piece containing the correlations between
them

X

I 6=J

RB
IJ =

X

I

X

J 6=I

TITJr
B
I + Tf.c.(L/a)

X

I 6=J

TITJ ln
QIJ

Qsoft

(2.74)

⌘
X

I

RB
I + Tf.c.(L/a)Γ (2.75)

with

RB
I ⌘ TI

0

@

X

J 6=I

TJ

1

A rBI , (2.76)

Γ ⌘
X

I 6=J

TITJ ln
QIJ

Qsoft

. (2.77)

The Born amplitudes B are necessarily colour singlets, implying
X

J2B

TJ |Bi = 0 , (2.78)

)
X

J 6=I

TJ |Bi = �TI |Bi , (2.79)
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and the radiator function can be simplified to

RB
I = �T

2
Ir

B
I = �CIrI , (2.80)

with the Casimir factor CI corresponding to the flavour of leg I, CA for a gluon and CF

for a quark. The main point here is the general structure of the first order cross section
in the small v, large L limit. As is revealed in Eq. (2.71), the leading term in that limit
is / ↵sL

2. It should be noted that the analysis is based on the eikonal approximation
in Eq. (2.61), which indeed reproduces this term correctly. It originates from the phase
space where the gluon is both soft k ! 0 and collinear to one of the external lines.
There are additional terms / ↵sL that are non-vanishing in the L ! 1 limit but are
subleading with respect to the L2 terms. The eikonal approximation is appropriate in
the soft limit, where the gluon is not necessarily collinear. This is referred to as the
soft wide-angle part of phase space. Another effect comes from configurations that are
collinear to say parton I, but are not soft, hence called hard-collinear region. In this
limit the eikonal approximation is not correct. The correct limit in this case is given by
the Altarelli-Parisi splitting functions [89–92], in terms of the Sudakov component z of
the emitted gluon in terms of the emitter I,

Pqq(z) = CF



2

1� z
� (1 + z)

�

, (2.81)

Pgg(z) = CA



z

1� z
+

1� z

z
+ z(1� z)

�

, (2.82)

Pgq(z) = TR

⇥

z2 + (1� z)2
⇤

. (2.83)

The factorisation in terms of those is valid in the hard- and the soft collinear regions.
To avoid double counting, the collinear limit of the eikonal approximation has to be
subtracted, leaving only the terms that are finite for z ! 1. The coefficients of the
single logarithmic terms are then obtained by integrating over z

2CFBq ⌘ �CF

Z 1

0

dz(1 + z) = �3

2
CF (2.84)

which is applicable if I is a quark. For gluons, one needs to take into account the case
where a gluon splits into a pair of collinear quarks Eq. (2.83), with nf flavour options,
as well as into two collinear gluons represented by Eq. (2.82). The result is

2CABg ⌘ �11CA � 4TRnf

12CA

. (2.85)

The coefficients Bl are also referred to as collinear anomalous dimensions. Since their
effects are relevant in the hard region only, they contribute to rI with a term

/ CIBITf.c.

✓

L

a+ bI

◆

. (2.86)
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This completes the single logarithmic terms at order ↵s. The remaining contributions
to Eq. (2.60) are either constants or vanish in the v ! 0 limit. Analysing higher orders,
this structure repeats, in the sense that there are always logarithms with up to twice
the powers as ↵s. The full structure at all orders is of the form

Σ(v) ⇠ �(0)
h

1+ (2.87)
✓

↵s

2⇡

◆

�

D1(v) + C1 +G11L+G12L
2
�

+

✓

↵s

2⇡

◆2
�

D2(v) + C2 +G21L+G22L
2 +G23L

3 +G24L
4)
�

+

✓

↵s

2⇡

◆3
�

D3(v) + C3 +G31L+G32L
2 +G33L

3 +G34L
4 +G35L

5 +G36L
6)
�

+ . . .
i

.

The functions Di vanish in the small observable limit,

Di(v) ! 0 as v ! 0 . (2.88)

All other coefficients are just constants that can in principle be calculated, e.g. G12

and G22 can be read off from Eq. (2.71). The individual rows in Eq. (2.87) correspond
to a computation order by order in normal perturbation theory, i.e. as an expansion in
↵s. The goal of all orders statements is to first take into account the most important
terms from each line in the v ! 0 limit. This is literately re-summing Eq. (2.87), by
first adding up all terms at the end of each line, then all second to last terms, and so
on. This is simplified for suitable observables, which will be specified later, for which
the re-summed cross section has the structure [88]

Σ(v) /
�

1 + C(↵s)
�

exp
⇥

Lg1(↵sL) + g2(↵sL) + ↵sg3(↵sL) . . .
⇤

(2.89)

with the gi being power series in ↵sL. This means that the first expression, including the
L in front, contains terms of the form ↵n

s L
n+1 and the second one, g2, contains terms

with equal powers in ↵s and L. The C in Eq. (2.89) is also a power series in ↵s. It is
clear that, for such an observable, knowing g1 and g2 allows one to obtain the leading
and a lot of the subleading terms in Eq. (2.87). The focus here will be on observables
where this structure holds. By convention, expressions for Σ are called LL correct if they
contain all terms generated by g1, and NLL correct if they contain the terms obtained
from g2 in Eq. (2.89). Notice however that there is a term / ↵s generated from the
first order expansion of C in Eq. (2.89), combined with the ↵sL

2 term generated from
Lg1(↵sL) in the series expansion of the exp function, that contributes to G22↵

2
sL

2

in Eq. (2.87). It is thus not sufficient to know g2 to correctly obtain this term. The
accuracy where the C is included to order ↵s, and the g1 and g2 functions are included
to reach NLL accuracy, is referred to as NLL0 accuracy in the following.
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Chapter 3

Tools and techniques for theory and
phenomenology

Over the last decades of experiments researching QCD, or dealing with QCD contribu-
tions as dominant backgrounds, several techniques have emerged and proven useful in
phenomenological studies. At the same time, a huge set of tools is available nowadays
to perform and check calculations. With an involved subject like QCD, those two are
never completely separate, with tools being constructed to meet the requirements in
phenomenology and experiments, and at the same time studies being designed to make
best use of the available tools. The following section is dedicated to a more detailed
introduction to those tools and techniques.

The main goal of the first two sections is to introduce specific examples for observables
V that are suitable to be used in the calculation of cross sections of the form Eq. (2.15).
The first section introduces examples of global event shapes. Those include the standard
examples to which the formalism, specified precisely later in Ch. 4, is natively applicable.
The second section describes the formal definition of jets, introducing resolution scales
as another standard example. Additional observables arise from the substructure of
jets. For those, the final result still takes a similar structure to Eq. (2.89), but the
details differ. In the third section, the soft drop technique to remove non-perturbative
contributions from final states is introduced.

The remainder of the chapter describes the tools used in order to perform practical
one-loop calculations, and reviews the literature on so called general purpose Monte
Carlo generators. This refers to tools meant to give a complete account of collider
events, by combining insight into perturbative calculations with models of hadronisation
and the effects associated with hadronic initial states.
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3.1 Global event shapes
The simplest thing to do if one wishes to study QCD experimentally is to define a
function of all the momenta in the final state and measure the cross section differential
in that. The general picture one has in mind is that of a hard born configuration with n
hard legs and a function of the final momenta that vanishes if only n particles are present
V ({p}) = 0. The observable defined by that function can then be said to measure the
deviation from the n particle configuration. A standard example here is thrust [93] in
hadron production from lepton-lepton collisions. It is defined by considering

T
�

{p}
�

⌘ max
n

P

pi2{p}
|~n · ~pi|

|~p|event with |~p|event ⌘
X

pi2{p}

|~pi| (3.1)

VThrust

�

{p}
�

= ⌧ ⌘ 1� T
�

{p}
�

, (3.2)

where T is the historical thrust observable while ⌧ is actually vanishing in the two
particle limit. Many recent calculations involving thrust prefer to work with ⌧ instead
of T . The vector ~nT that maximises the sum in Eq. (3.1) defines the so called thrust
axis. In an event with only two outgoing particles, which are necessarily on one axis
(~p1 = �~p2) in the lab frame due to momentum conservation, ~nT is parallel to this axis
and T = 1, ⌧ = 0. For events with three particles, it can be shown that the thrust
axis is along the direction of largest momentum. The following will assume this is p1,
~nT = ~p1/|~p1|. Thrust is in this case given by

⌧ |~p|event = |~p|event �
 

|~p1 · ~p2|

|~p1|
+

|~p1 · ~p3|

|~p1|
+

|~p1|
2

|~p1|

!

(3.3)

|~p|event = |~p1|+ |~p2|+ |~p3| . (3.4)

Taking p3 to represent a soft gluon momentum, expressed like in Eq. (2.52) with p1
and p2 as the references, and ignoring the recoil of the additional gluon,

~p1 = |~p|(0, 0,�1) , ~p2 = |~p|(0, 0, 1) , (3.5)

~p3 = kt(cos�, sin�, sinh ⌘) , (3.6)

one can calculate

|~p1 · ~p2| = |~p|2 = |~p1|
2 = |~p2|

2 (3.7)

|~p3 · ~p1| = |~p|kt sinh ⌘ , |~p3|
2 = k2

t (1 + sinh2 ⌘) = k2
t cosh

2 ⌘ . (3.8)

Inserting this into Eq. (3.3), thrust is given by

⌧ |~p|event = kt(cosh ⌘ � sinh ⌘) = kte
�⌘ . (3.9)
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Comparing to Eq. (2.64), thrust corresponds to coefficients a = 1 and b = 1. The
parameters are equal for both legs, hence the indices are suppressed.

Note that momentum conservation forces all three particles into a common plane. As
a next step, one might want to define observables measuring the deviation from those
planar configurations. This can again be done based on the construction of thrust.
First, project the momenta in the event into the plane perpendicular to the thrust axis
~nT . Then perform the same maximisation procedure as for thrust on those projections
to define the thrust major axis ~nM ,

VThrust-Major

�

{p}
�

= TM

�

{p}
�

⌘ max
n?nT

P

pi2p
|~n · pi|

|~p|event . (3.10)

Thrust major is an example of an observable that does not scale with ⌘. in terms of
Eq. (2.64) this is expressed by a = 1 and b = 0. Finally, one can define the thrust
minor as

VThrust-Minor

�

{p}
�

= Tm

�

{p}
�

⌘
P

pi2p
|~nm · pi|

|~p|event (3.11)

~nm ⌘ ~nT × ~nM , (3.12)

with the trust minor axis ~nm. Thrust major, as thrust itself, is non-zero for events with
three particles, and hence referred to as an example of three-jet observables. Thrust
minor on the other hand is a four-jet observable that is measuring the deviation from
planar three-jet events.

The thrust axis conveniently allows to split the final state C into two hemispheres,
according to the sign of ~nT · ~pi

HL = {i 2 C|~nT · ~pi < 0} , (3.13)

HR = {i 2 C|~nT · ~pi > 0} , (3.14)

where the indices L,R label the left and right hemisphere (what is labelled as "left"
and "right" depends on the chosen coordinate system and is ultimately meaningless,
the point is that every event is split into two hemispheres in a unique way). These can
be used to define observables that measure properties of those hemispheres instead of
the full event. Examples are the masses

m2
L =

⇣

P

pi2HL
pi

⌘2

|~p|event , m2
R =

⇣

P

pi2HR
pi

⌘2

|~p|event , (3.15)

VHeavy Mass

�

{p}
�

= m2
H = max

�

{m2
L,m

2
R}
�

. (3.16)
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For a single soft emission, the scaling of the heavy hemisphere mass mH in terms of
Eq. (2.64) is the same as for thrust. Another example for a scaling proportional to the
relative transverse momentum only, b = 0, is the wide hemisphere broadening BW , that
can be defined as

BL =

P

pi2HL
|~pi × ~nT |

|~p|event , BR =

P

pi2HR
|~pi × ~nT |

|~p|event (3.17)

VWide Broadening

�

{p}
�

= BW = max
�

{BL, BR}
�

. (3.18)

A similar approach is available in hadron-hadron collisions. As explained before, the
physics picture for such interactions is that of two partons, one from each of the
colliding hadrons, interact with each other. Those partons will only have a fraction of
the hadronic momentum, hence the overall center of mass frame is unknown. Since
they are still collinear to the hadron directions however, the sums of the transverse
momenta cancel in the laboratory frame. Observables for hadronic collisions are hence
usually defined only referring to the transverse components of the particle momenta.
The hadronic version of thrust, called transverse thrust in the following, can be defined
as

VTransverse Thrust

�

{p}
�

= ⌧? ⌘ 1�max
~n?

 

P

i |~pT,i · ~n?|
�

pT,tot

�event

!

, (3.19)

�

pT,tot

�event
=
X

i

pT,i . (3.20)

As in the lepton collider version, transverse thrust by definition vanishes in the limit of
2 final state particles. Note that this means 4 coloured legs are involved in the Born
events, including the initial state. Eq. (3.19) again implicitly defines the transverse
thrust axis. This similarly divides the event into two hemispheres. Based on those, one
can define the same kinds of event shapes as in the e+e� case above.
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3.2 Jet algorithms and jet substructure
In the preceding section, the word "jet" has been used to loosely mean a collimated
bunch of particles. As the earlier analysis suggests, this is in fact a typical occurrence in
hadron production events. To gather a quantitative description of jets, it is necessary to
formalise their definition. Early attempts on this were based on first defining a jet as all
particles within a geometrical cone around some direction [94]. Stable cones are then
defined by iteratively using the sum of the particle momenta inside the cones as new
directions, see e.g. [95] for a review. Out of the several versions of these definitions,
only the latest iterations, like the one in Ref. [96] are IRC safe.

A second class of jet algorithms are the so called sequential clustering algorithms [97, 98].
They usually depend on some distance measure between two final state particles dij
and between a final state particle and the beam diB, and on some stopping criterion.
The procedure is as follows:

0. Start with the list O of all final state objects that enter the clustering, the beams
B and B̄, and the list of clustered jets J .

1. Check if the stopping criterion is met. If yes, add all remaining objects in O to
J and terminate the algorithm. The list J contains the jets.

2. Determine the pair {i, j} 2 O that minimises some distance measure dij, and
the object k that minimises the beam distance measure dkB.

3. The next step is determined by d = min
�

dij, dkB
�

:

(a) If d = dij, update O by removing objects i and j and adding a new object
with four momentum pi + pj.

(b) If d = dkB, update O and J by moving object k from O to J .

Go back to step 1.

In this form, jets will be defined throughout this thesis. Some relevant variations that
exist in the literature include

Different combination schemes: If two final state objects i and j are combined,
the four momentum of the new object might be determined from the original pi
and pj in other ways than by simply adding them. Common variations are ones
where the combined object remains massless, which can for example be achieved
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by explicitly setting the energy to the magnitude of the spatial momentum
component, ~pi+j = ~pi + ~pj, pi+j =

�

|~pi+j|, ~pi+j

�

.

Inclusive and exclusive algorithms In cases where the minimal distance is dkB, i.e.
a distance with respect to the beam, instead of adding k to J it might just be
dropped. This might for example be the appropriate procedure in cases where
those objects are supposed to be interpreted as radiation from the beam particles.

Different sequential combination algorithms are distinguished by the definition of the
distance measures, and by the stopping criterion. In the case of colour singlet initial
states, the beam distance measures are usually ignored, note this might formally be
incorporated in the above scheme by setting diB to infinity. The usual stopping criteria
are:

In cases diB is calculated, and i is moved to J if diB is the minimal measure,
the algorithm can just be run until O is empty. This shall be the default choice
here for hadronic initial states.

The algorithm can terminate if the distances between all particles are larger than
some dcut. In general, the distance measure used for terminating the algorithm
might be different from the one used to determine which clustering is to happen
next. Nevertheless, placing a cut in the same distance measure as is used in the
algorithm will be the default choice for lepton-lepton collisions.

A very general class of algorithms, depending on a parameter p is specified by the
distance measure

diB = k2p
t,i (3.21)

dij = min(k2p
t,i , k

2p
t,j)

✓

∆Rij

R

◆2

(3.22)

where kt is the transverse momentum relative to the beam. The angular distance ∆Rij

is given by

∆R2
ij =

�

yi � yj
�2

+
�

�i � �j

�2
(3.23)

with the rapidity yi and azimuthal angle �i of particle i, again relative to the beam axis.
Note that ambiguities in choosing the coordinate system, like which of the two beams
is in forward, y > 0 direction and where the � = 0 reference is located, are dropping
out of this distance. The parameter R can be used to set the intended radius of the jet.
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In addition, it is often convenient to define dimensionless versions of the distance
measures

yij =
dij
Q2

(3.24)

with some relevant physical energy scale Q2. This is in particular the usual procedure
for measurements in e+e� annihilation, where Q2 is taken to be the center of mass
energy of the collision. In this case it is more conventional to work with a distance
measure of the form

yij =
2min(E2p

i , E2p
j )

Q2
(1� cos ✓ij) , (3.25)

where this time ✓ij is the absolute angle between the momenta,

cos ✓ij =
~pi · ~pj
|~pi||~pj|

, (3.26)

and Ei labels the energy of particle i, both defined in the center of mass frame of the
collision. Note again that no beam distance measure is defined or needed in this case.

In both the hadron and lepton collider version, p is most commonly taken to be
p = 1 (Durham or kt algorithm, cf. [99–101] for lepton and [102, 103] for hadron
colliders), p = 0 (Cambridge-Aachen (C/A) algorithm, cf. [104, 105]) or p = �1
(anti-kt algorithm, cf. [106]). Those three names will in the following be used to refer
to both distance measures, Eq. (3.21) and Eq. (3.25), with the corresponding values
of p, understanding that the one appropriate for the collider type being discussed is
meant. The FASTJET [107] package will be used in the following to access the various
clustering algorithms.

A first important class of observables that can be defined based on these jet algorithms
are jet resolution scales at which a new jet emerges. For the sake of simplicity, consider
the Durham measure in e+e� annihilation. If the algorithm is run in the default version,
i.e. until all remaining yij > ycut, then yn is defined to be the minimal value ycut can
be set to such that the list J at the end consists of at least n objects. In practice, it
can be determined by running the algorithm, and terminating it when n objects are left
in O. Then calculate the distance measures once more, the smallest one is yn. As the
name suggests, the distance measure in the kt algorithm corresponds to the relative
transverse momentum squared between the two particles in the soft-collinear limit. This
observable can hence be parametrised in terms of Eq. (2.64) by the parameters a = 2
and b = 0.

It is also possible to look at observables measuring properties and substructure of a
given jet, in complete analogy to the properties of the hemispheres in the last section.
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With the normalisation most common in the literature, e.g. the jet mass reads

VMass (J ) = ⇢ =

⇣

P

i2J pi

⌘2

Rp2T
. (3.27)

The mass of jets produced in hadron collisions has been studied extensively, both in
theory [108–114] and experiment [115–120] , cf. [121–123] for reviews. A class of
observables is summarised by the so called angularities [124], depending on a parameter
↵:

VAngularity (J ) = �↵ =
X

i2J

pT,i
pT,tot

✓

∆RiJ

R

◆↵

. (3.28)

Here ∆RiJ denotes the angular distance between jet constituent i and the overall
jet axis associated with J , calculated according to Eq. (3.23). There is a choice
possible for what exact axis is associated with the jet. Here, the definition will follow
Ref. [IV], taking the jet axis as the sum of the jet momenta for ↵ > 1. For ↵  1, it
is defined to be the Winner-Take-All (WTA) axis [125] as defined in Ref. [126]. This
avoids additional sensitivity of the observable to collinear recoil [127, 128]. Relevant
calculations for this observable in various setups have been performed in [129–133]. In
terms of Eq. (2.64), the angularities are parametrised for a soft gluon collinear to the
jet axis by a = 1 and b = ↵ � 1. For ↵ = 2, this is the same scaling as for the jet
mass, Eq. (3.27). Note that sometimes a yet more general version is defined where the
transverse momentum fraction of each particle in the jet also enters with a variable
power . The usually studied parameter variations  = 0, ↵ = 0 (note in this case
the sum in Eq. (3.28) just counts the particles) and  = 2, ↵ = 0, are not IRC safe
however, and will hence not be further discussed here.
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3.3 Soft drop grooming
The general approach to predictions here is perturbation theory. However, there are
important effects outside of its scope. Next to modelling those non-perturbative
effects, it is well motivated to try and define observables that are as insensitive to
them as possible. While perturbative corrections are predominantly associated with the
directions of the hard legs in the process, other effects tend to be uncorrelated, and
hence dominate the (soft) physics at wide angles.

An array of methods is based on attempts to clean up a given jet, or even a full event,
from such contributions, cf. the reviews in [39, 134]. An example, that will be used
here, is the soft drop grooming procedure. It was originally proposed in the context of
hadron-hadron collisions [135]. For lepton-lepton collisions slight modifications [136],
similar to the differences in cluster algorithms, are conventional. The structure of the
algorithm is given by the following steps:

0. Start with the list O of all objects that shall be subject to the grooming procedure.

1. Run the C/A cluster algorithm on O until it contains only one object.

2. Undo the last combination to obtain two objects {I [ J} = O. Calculate the
soft drop condition:

for the hadron-like algorithm
min

�

pT,I , pT,J
�

pT,I + pT,J
> zcut

✓

∆RIJ

R

◆�

, (3.29)

for the lepton-like algorithm
min (EI , EJ)

EI + EJ

> zcut

✓

1� cos ✓IJ
1� cosR

◆�/2

.

(3.30)

3. If the soft drop condition is true, terminate the algorithm. The groomed object
O0 consists of all particles in the single object in O.

4. Otherwise, remove the softer of I, J , where "softer" here refers to the object
with smaller transverse momentum pT (energy E) for the hadron-like (lepton-like)
algorithm. After this, O consists of the harder of I, J alone.
Go back to step 2.

The adjustable parameters are zcut, � � 0. With the requirement � � 0, the discussion
here is restricted to what is referred to as "grooming mode", and excludes the "tagging
mode" � < 0, see e.g. [135]. The � = 0 case coincides with the modified mass drop
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tagger, which was introduces in the literature earlier [137]. The soft drop condition
technically also contains a radius parameter R, but note that a change in it can always
be absorbed into a redefinition of zcut. A typical choice for the parameters is zcut ⇡ 0.1
and � = 0, 1, 2, . . . , cf. for example Ref. [III].

The original application is to jets, in which case R would be set to the radius of the
jet, i.e. to the maximal angular distance two particles inside the jet can be apart. The
technique has been applied to more global event shapes in e+e� annihilation [136, 138]
by using the hemispheres defined by the thrust axis as inputs to the soft drop algorithm.
The groomed hemispheres H0

X with X = L,R then contain all particles of the original
hemispheres that are not removed by the grooming algorithm.

The same approach is taken in Ref. [III] to groom the full final state at hadron colliders.
Having cleaned the event in this way, one can calculate just the same observables on
the groomed final state object, either a jet or the two hemispheres, in principle. Some
care has to be taken in the precise definition of those observables however, to avoid
IRC unsafety that might in particular enter via the normalisation of the observable, cf.
Ref. [I], in particular App. A.

For concreteness, a definition of thrust after soft drop in e+e� annihilation, cf. Ref. [I]
is given by
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Similarly, the proposed hadron collider version of transverse thrust from Ref. [III] is
formulated as
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In both cases, the relevant axes in both hemispheres are redefined in a way to ensure
that the observables vanish if there are only two partons that survive grooming. With
similar reasoning, one could in principle also define soft drop groomed versions for the
other event shapes mentioned in Sec. 3.1.

A particularly well studied example is the groomed version of the jet mass introduced in
the last section [112, 119, 120, 136, 139–143]. Likewise, the angularities as defined in
Eq. (3.28) can be measured on a jet after grooming. See [144, 145] for measurements
and [146] for relevant calculations besides those mentioned earlier for the plain angular-
ities. Similar considerations apply to the normalisation. For example, the transverse
momentum pT of a jet after grooming is not an IRC safe observable in itself. So dividing
by it, as is done in many definitions of jet observables since it represents the typical
physical scale of relevance, is problematic. See Ref. [142] for a detailed discussion
concerning the use of the groomed jet pT . The definition given in Eq. (3.28) can
however directly be applied to a jet after grooming. Note that there the normalisation
is given by the scalar sum of the transverse momenta of the jet constituents.

To arrive at an interpretation of soft drop grooming in the Lund plane introduced
earlier, note that the condition in Eq. (3.29) can be rewritten in terms of the Sudakov
composition of a gluon momentum soft-collinear to a final state leg l by using, cf.
Ref. [III],

pT,k = k
(l)
t

e⌘
(l)

2
sin ✓ , pT,l = El sin ✓ , (3.35)
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2e�⌘(l) cos�

sin ✓
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If the gluon is not groomed, its momentum has to obey the condition

k
(l)
t e(1+�)⌘(l)

2El

� zcut

✓

R sin ✓

2

◆��

⌘ z0cut . (3.37)

Note that here the effective soft drop parameter z0cut was defined, consistent with the
earlier comment that a change in R can be absorbed into the definition of zcut. The
corresponding Lund plane picture is shown in Fig. 3.1. The blue area illustrates the
region of phase space where a gluon is groomed away that would otherwise contribute
to an observable with bl = 1 and a = 1. The solid blue area is groomed for � = 0,
while the hatched area is removed if � = 1. The effect of choosing a larger � is to
suppress grooming in the more collinear region, as is evidenced by the behaviour of
the blue dashed boundary of the � = 1 area relative to the � = 0 case. Comparing
to Eq. (3.29) and noting that the angular distance is positive ∆RIJ > 0, grooming is
completely inactive in the � ! 1 limit.
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bl = 1
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Figure 3.1: The emission phase space in the Lund plane illustrating the kinematic
constraints [. . . ] with grooming [. . . ]. The blue areas [. . . ] mark the
phase-space region removed by grooming with boundaries corresponding
to � = 0 (solid line and area) and � = 2 (dashed line, hatched area).
Figure and caption taken from Figure 3 (right) in

Ref. [III]

The above analysis is only requiring the scaling behaviour of the grooming procedure in
the soft and collinear limits, and hence is applicable to both groomed hemispheres and
groomed jets. Though it used the notation and definitions of the hadron collider case,
the arguments in terms of the behaviour in the Lund plane equally apply to the e+e�

case.
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3.4 One-loop calculations
With a better idea of what kind of observables are of interest, it is now time to discuss
the practicalities of performing the relevant calculations. First, consider a fixed order
calculation, of a cross section as introduced in Eq. (2.15). For the Born calculation, the
contributing final states C all have the same multiplicity of coloured final state particles
n and are distinguished by different numbers of quarks and gluons, n = nq + ng. The
integral over the n-particle phase space �n is typically done with Monte Carlo methods.
For low multiplicity final states, fully analytic results are available, but for the purpose
of this discussion the Monte Carlo method will always be assumed as a default. A
review of the various Monte Carlo methods used in particle physics is not within the
scope of this thesis, Refs. [30, 147] provide an overview.

This creates a difficulty in extending a calculation beyond the Born order. The virtual
corrections to a particular n-parton process, at first order, are automated nowadays
and are readily available in software with standard interfaces, see below for examples.
However, the loop integrals are performed, as in Sec. 2.3, in dimensional regularisation,
with the divergencies exposed as poles in ✏. Those will indeed be cancelling against
the singularities in integration of the n+ 1 particles phase space necessary for the real
correction, which however is supposed to be done via Monte Carlo sampling. This
requires that the cancellation of the divergencies is local in the real correction n+ 1
particle phase space.

A very elegant method to achieve this at one-loop accuracy was introduced in [148, 149].
The idea is to introduce an approximation of the real corrections, that has the same
singlarities but is simple to integrate analytically over the phase space of the soft-collinear
parton. The same factorisation as in Sec. 2.3 can be exploited, conceptually

hB [ {k}|B [ {k}i ⇠
X

I 6=J

hB|S✏
IJ(k)|Bi , (3.38)

where SIJ is chosen to correctly reflect the collinear and soft limits with respect to
dipole IJ , meaning that the integral

X

I 6=J

IIJ ⌘
Z

dk✏
+1

X

I 6=J

hB|S✏
IJ(k)|Bi =

Z

dk✏
+1hB [ {k}|B [ {k}i+O(✏0) , (3.39)

with the poles in powers of 1/✏ being equal. The phase space dk+1 here denotes the
factorised one emission phase space

d(B [ {k}) = dB dk+1 , (3.40)
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and the superscript ✏ reiterates that the integration is performed in D = 4 � 2✏
dimensions. Overall infrared finiteness means that those poles cancel against the ones
produced in the loop integrals. Hence, the two components
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are IR finite, assuming that Θ is IR safe, and their sum is equal to the total cross
section

Σ
(1) = VI +RS . (3.43)

The phase space integrals for VI and RS can then be performed via Monte Carlo
methods. They return finite results that can just be added up. The generation of tree
level matrix elements for the Born calculation and the real correction is automated in
the SHERPA framework [150]. This includes the ingredients to perform the subtraction
procedure described above, in particular the subtraction terms S and their integrated
version I. The generation of virtual corrections, as an expansion in ✏, is automated and
the results are available in the form of libraries. Examples include BLACKHAT [151–154],
MCFM [155–158], MADGRAPH [159–161], GOSAM [162, 163] and NJET [164]. The
main tools used here will be OPENLOOPS [165, 166] which are based on the techniques
of [167, 168] and RECOLA [169–171]. Both use the COLLIER library [172–175] as well
as other external tools [176, 177]. With that, the calculation of first order corrections
can be considered as fully automated1. A similar automation is provided in the
EVENT2 [148, 178] framework.

In terms of cross sections of the form in Eq. (2.15) that shall mainly be discussed here,
this enables the calculation of both Σ(0) and Σ(1), with an arbitrary cut V (C) < v. It
is possible to calculate Σ(2) partially. More precisely, the quantity

Σ
(2)
(v) ⌘ Σ

(2)(1)� Σ
(2)(v) =

Z

dC
d�

dC
Θ(V (C)� v) , (3.44)

i.e. the cross section for events with the observable V larger than some cut, can
still be calculated. The contribution with two real corrections can be regularised with
an additional cut V (B, {k, l}) > vcut. This implies that only one of the momenta k
or l can be arbitrarily soft and/or collinear. The divergence related to the limiting
behaviour of that single momentum can be treated with the same subtraction methods

1There are several additional considerations to be made in practice, in particular when including
coloured initial states, that have not been discussed here for simplicity.
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as described above, cancelling with the poles of the one-loop virtual corrections to
the B [ {k} final state with only one additional particle. The same cut eliminates the
two-loop virtual corrections, as those are always at V = 0.

This procedure does not reproduce the overall cross section at order ↵2
s relative to the

Born process. It does however correctly calculate the normalised differential distribution.
This can explicitly be verified by expanding the prescriptions given in Sec. 5.5 in ↵s

and checking that they correctly reproduce such normalised cross sections.
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3.5 General purpose Monte Carlo event generators
A complete understanding of arbitrary hadronic final states at either lepton-lepton,
lepton-hadron or hadron-hadron colliders generally requires at least some modelling input.
General purpose event generators are tools aimed to simulate and describe all aspects
of such collision events. An overview can for example be found in Refs. [179, 180]. The
general strategy is to start from a perturbative fixed order calculation of some hard
core processes, represented by the red blob in Fig. 3.2. This is dressed with emissions
of soft and collinear quarks and gluons, following the general logarithmic structure of
QCD matrix element as discussed at the end of the last chapter, in tools called parton
showers.

The picture shows a hadronic collision, so the incoming particles of the hard process
are partons taken out of the incoming hadrons according to the corresponding PDFs,
cf. Eq. (2.1). Like the final state partons, the initial state can also radiate before
entering the hard interaction. A physical effect not discussed so far is represented
by the purple blob in Fig. 3.2. The remaining partons in the hadrons may further
interact with each other, causing a secondary interaction. The partons eventually reach
energies of the order of the Landau pole, cf. Eq. (2.36) and transition to hadrons.
Practically, the parton shower evolution will be cut off at a scale of ⇡ 1 GeV and
dedicated hadronisation models take over. The produced hadrons then further decay to
lighter hadrons until stable configurations are reached.

Parton showers operate by obtaining emission probabilities dP from approximate matrix
elements, like the splitting functions in Eq. (2.81). It is subject of the particular parton
shower implementation what exactly the probability P is, here the goal is just to
illustrate the general procedure. Integrating between two energy scales t, t0, that can
be thought of equivalent to the kt scales involved in Eq. (2.70),

Z t

t0
dP (3.45)

is interpreted as probability to emit a parton between those two scales. The probability
that no emission happens is then one minus the probability that any number of emissions
happens,

Π(t, t0) = 1�
1
X

n=1

Z t

t1

dP

Z t1

t2

dP· · ·

Z tn

t0
dP . (3.46)

This can be simplified by modifying the integral limits to cover the full range (t, t0) and
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divide by the symmetry factor n!,
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This so called Sudakov form factor [182] corresponds to the probability to obtain no
emissions at all between the scales. If dP was independent of the parton shower scale,
the emission would just follow a Poisson distribution. This is clearly not quite the case
as is clear from Eq. (2.70). The ⌘ boundaries, and realistically also the argument of ↵s,
will depend on the energy scale. Emissions can still be generated efficiently according
to Eq. (3.47) using the Sudakov veto algorithm [183] or variants thereof [184, 185].
Note that, in practice, in initial state evolution, it is necessary to also correct the PDF
scale for the emitted parton energy and the interpretation of the Sudakov factor as
no-emission probability is not so straightforward [147].

The main generators in use include [179] the ARIADNE program [186], HERWIG in its
original form [187–189] as well as the more recent iterations [190–193], PYTHIA being
rooted in the JETSET code [194–197] and then being extended to the fully fledged
PYTHIA generator [198–204] with its latest variants in [183, 205, 206]. The SHERPA

generator [207–209] completes this list. This thesis describes the implementation of
semi-analytic resummation as a plugin to SHERPA. Some aspects of it shall hence be
explained here in more detail.

The hard process in SHERPA can be calculated using one of two internal matrix element
generators, AMEGIC [210] based on the method of [211–213] or COMIX [214] based
on Berends-Giele recursion relations [215, 216]. Both can also be used for fixed
order calculations at NLO as described in the previous section. The necessary virtual
corrections can be obtained by the same tools as mentioned there, or via standardised
interfaces [217, 218].

There are two options for parton showers in SHERPA. The CSSHOWER [219] will be
treated as the default in the following, and it should be understood that this is used if
nothing else is stated explicitly. The Dire [220] parton shower will be used for systematic
studies of differences. It is particularly useful in this instance that the shower model
can be changed while leaving all other variables the same. Other studies of this kind
usually default to using different event generators as whole packages.

The most important effects, for the purpose of this work, in the non-perturbative realm
are the hadronisation of final state particles, and the multiple parton interactions due
to the underlying event. The latter is modelled in SHERPA by an implementation of the
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Figure 3.2: Pictorial representation of a tth event produced by an event generator.
The hard interaction (big red blob) is followed by the decay of both
top quarks and the Higgs boson (small red blobs). Additional hard
QCD radiation is produced (red) and a secondary interaction takes place
(purple blob) before the final-state partons hadronise (light green blobs)
and hadrons decay (dark green blobs). Photon radiation occurs at any
stage (yellow).
Figure and caption taken from Figure 1.1 of Ref. [181].

Sjostrand-van-der-Zijl model, named after the authors of Ref. [221].

For hadronisation corrections, there are two main approaches commonly used, the Lund
string model [222] and the cluster hadronisation model [223]. A version of the latter is
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available as a native implementation in SHERPA [224]. The Lund model is mainly used
in PYTHIA, but via an interface to PYTHIA 6.4 perturbative events from SHERPA can be
hadronised with the string model as implemented in that PYTHIA version. Similarly to
the comments on the two parton showers, this enables a comparison of two different
hadronisation models with equivalent perturbative input.

As a final point, SHERPA comes with a wide set of tools to include exact higher order
corrections to the hard process. The simplest are matrix element corrections [225–228],
applying a weight to the first emission generated by the parton shower to correct it
to the corresponding tree level matrix element. Methods to include the full one-loop
correction to a particular Born process together with the exact real matrix element
are the POWHEG [229] and the MC@NLO methods [230, 231]. SHERPA provides an
implementation of the latter [232].

Going beyond that in some aspects is the merging of different multiplicities. The sum
over finals states C in the definition of the cross sections contains final states with
different jet multiplicities as defined by a suitable algorithm as described in Sec. 3.2. If
these jets are well separated, the amplitudes should be calculated based on the fixed
order expressions. If a jet approaches the soft or collinear region however, logarithmic
enhancements as seen in Sec. 2.3 are unavoidable. In this region, the parton shower
will provide a better description.

The CKKW-L [233, 234] merging prescription, with the acronym abbreviating the
author names of the references, introduces an energy scale Qcut. The parton shower is
then allowed to fill the phase space below this energy scale, while the phase space above
it is filled by a tree level matrix element generator producing the exact amplitudes. The
hard matrix element is interpreted as a configuration reached by the parton shower
after several emission steps. It can be assigned a core process by a cluster algorithm
that inverts the parton shower. The parton shower is then run starting from this core,
vetoing emissions that occur before Qcut. This effectively multiplies the matrix element
by the correct Sudakov factor according to the shower model.

This procedure suggests a particular scale choice for the evaluation of ↵s in the hard
matrix element. Typically, in a fixed order calculation, all powers of ↵s would be
evaluated at the same scale µR. In the shower picture above however, the powers
of ↵s present in the core process would be evaluated at some scale µcore, while the
scale of the additional factor of ↵s associated with the emission of the additional jet
are determined from the scale at which this emission occurs in the parton shower
approximation. In practice, the scale for the evaluation of the hard matrix element is
indeed chosen according to the inverted shower history.
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While the shower emissions are vetoed above Qcut, it is allowed to add additional
radiation below this scale. The approach can then be iterated, separating that radiation
into a range where it is produced by the parton shower and one where it is described
by an exact tree level matrix element of yet higher multiplicity. A simulation with this
approach as implemented in SHERPA [235] will be referred to as being of MEPS@LO

accuracy. The LO indicates that the hard matrix elements are evaluated at tree level. It
is however possible to combine this prescription with the MC@NLO method mentioned
earlier [236–239]. Simulations using that formalism will be called MEPS@NLO accurate.

For comparison and validation, also Monte Carlo samples from PYTHIA and HERWIG

will be used in the following. The latest versions of HERWIG implement two different
showers, a dipole based shower [240] similar to the ones in SHERPA and the more
traditional angular ordered parton shower [241]. The latter will be used here if not
explicitly stated otherwise. The hadronisation model in HERWIG is an implementation
of the cluster model [242]. In principle, similar matching and merging schemes are
available [243, 244].

PYTHIA also features a dipole based parton shower, with hadronisation traditionally
modelled by the Lund fragmentation model [245] . See [234, 246–248] for the work
on matching and merging algorithms in this context. In addition, PYTHIA features
an alternative parton shower called VINCIA [249, 250] based on antenna functions.
Matching to higher order matrix elements in this version is available through iterated
matrix element corrections [251]. This approach avoids the introduction of an explicit
energy scale to separate the phase space into a hard matrix element region and a shower
region as seen for the CKKW prescription above. Still, from a technical point of view
it is sensible to regularise high multiplicity matrix elements at a scale Qmatch [251].

46



Chapter 4

Soft gluon resummation and the CAESAR

formalism

A way to obtain all order statements for QCD observables was outlined in Sec. 2.3.
There is a long history [99, 252–269]1 of publications performing analyses for particular
observables. The emerging structures are usually of a form similar to Eq. (2.89), or
can be recast that way.

Other methods include the derivation of formal renormalisation group equations for the
jet and soft functions derived for a particular process. Ultimately, the factorisation can
already be made explicit at the level of the operators entering the Lagrangian. This
leads to the development of effective field theories, in this particular case known as
soft-collinear effective theory (SCET) [270–277].

The CAESAR formalism [88, 278–284] represents the generalisations of the first approach,
working by essentially directly reorganising the perturbative series for suitable observables.
In particular, one needs a general strategy to first formalise the notion of "suitable"
observables, and perform the resummation at NLL for them. In this section it shall briefly
be explained how the CAESAR formalism addresses those questions. Those developments
were summarised in Ref. [88], and this first section will mostly be paraphrasing the
arguments given there for completeness.

The development leads to a relatively simple "master formula" that will be briefly
discussed. The following sections will then introduce some additional points, adding
observables that are not directly within the original CAESAR formalism, but whose NLL
resummation takes a very similar structure and can be obtained by making simple
changes to the master formula and its components.

1Despite the large size of the list, it is not claimed to be exhaustive, even for the time period
⇡ late 1970’s - early 2000’s it covers.
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4.1 Prerequisites
The CAESAR formalism applies to observables fulfilling the requirement of recursive
IRC (rIRC) safety, which requires that adding more soft gluons to a given ensemble
of soft gluons emitted from the dipoles formed by the hard legs of the process does
not significantly change the behaviour of the observable. It can formally be stated as
follows [88]:

First, introduce the notation of a momentum i(⇣i) defined by2

V (B,i(⇣i)) ⌘ ⇣i (4.1)

with the requirement that its azimuth with respect to the relevant dipole is independent
of ⇣i. It is also convenient to introduce the notation

vi ⌘ V (B, ki) (4.2)

for the individual contribution of a momentum ki taken out of a set of momenta {kj}.
An observable V is rIRC safe if the following limits are well defined, for any set of
momenta {i(v̄⇣i)}:

(i) lim
v̄!0

V (B [ {i(v̄⇣i)})

v̄
(4.3)

(ii) lim
⇣!0

lim
v̄!0

V (B [ {i(v̄⇣i)} [ {(v̄⇣)})

v̄
= lim

v̄!0

V (B [ {i(v̄⇣i)})

v̄
(4.4)

(iii) lim
a!xb

V (B [ {i(v̄⇣i)} [ {a(v̄⇣),b(v̄⇣)})

v̄
= (4.5)

lim
v̄!0

V (B [ {i(v̄⇣i)} [ {a(v̄⇣) + b(v̄⇣)})

v̄
.

Note that the equality between the limits is meant as a further requirement on the
observable V . The first limit in the second to last line denotes collinear limit between
a and b.

Further, the scaling behaviour of the observable in the soft and collinear limit with
respect to any external momentum is assumed to be of the general form of Eq. (2.64).
More precisely, to accommodate a non-trivial dependence on the azimuthal angle �,
the assumed scaling will be

V (B, k) = gl(�)dl

 

k
(l)
t

µQ

!a

e�bl⌘
(l)

. (4.6)

2The requirement does not, in fact, uniquely specify the momentum. See Ref. [88] for a concrete
representation.
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The full CAESAR formalism also requires the conditions of globalness, eliminating any
regions of phases space where the observable is 0 away from the limit of arbitrary soft
gluons, and continuous globalness. The latter is stated in Ref. [88] as follows:

@V (B, {k})

@ ln k
(l)
t

�

�

�

�

�

fixed ⌘(l),�(l)

= a (4.7)

@V (B, {k})
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(l)
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�

�

�

�

�

fixed ln k
(l)
t +⌘(l),�(l)

= a+ bl . (4.8)

Note that a is not indexed with the leg l as the scaling in the soft limit is assumed to
be universal over the full phase space. This was already reflected in the notation before.

Together, this is sufficient to guarantee that the cross sections at NLL accuracy take
the form of Eq. (2.89). The formalism relies on the property of coherence exhibited
by QCD amplitudes with several soft gluon emissions. Whenever those are at largely
different rapidity ranges, their emission factorises and can be treated as independent.

The above conditions are needed to deal with the effect of correlated emission of
gluons close in rapidity. An observable that is global in the sense specified here will
not be able to resolve such emissions and can approximately be computed on the
overall momentum of such a cluster. Thus, only the weight of such an emission is
modified, in a way that can be absorbed into the running of the strong coupling. This
leads to the physical coupling scheme, often named after the authors of Ref. [285],
Catani-Marchesini-Webber (CMW) scheme. It implies a shift

↵s(µ
2) ! ↵s(µ

2)

0

@1 + ↵s(µ
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�0 ln
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!

1

A , (4.9)

where, in the MS scheme, K is given by

K =
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18
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9
TRnf . (4.10)

Next, the effect of emissions at much smaller scales vi < ✏v can be neglected in the
calculation of

Θ

⇣

v � V
�
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for some value of ✏ > 0. This statement is supposed to hold in the sense that corrections
only lead to contributions to Σ(v) that are at most NNLL. This means that the phase
space integral for every emission can be separated into three parts, the one where
vi > v, one where v > vi > ✏v and the one where ✏v > vi. In the first and last region,
there is no combined effect of the ✓ function containing all momenta at once, and the
contribution of n emissions is just proportional to the nth power of the single emission
result. Summing over the number of emissions leads to exponentiation of the single
emission result, in the same way as the no-splitting probability, Eq. (3.47), emerged
in Sec. 3.5. Then, the sum over the emissions integrated over the region where they
contribute together, can be collected in a function, cf. Eq. (2.37) in Ref. [88],

F = e
�R0 ln v

✏v1

Z

dk1
hB [ k1|B [ k1i

hB|Bi

1
X

m=0

1

m!

m+1
Y

i=2

Z v1

✏v1

dki
hB [ ki|B [ kii

hB|Bi (4.12)

⇥ ✓
�

v � V (B, k1, {ki})
�

.

Here v1 > vi is assumed to be the largest contribution of the momenta in the ensemble.
Eq. (4.12) still contains subleading contributions that need to be eliminated in order
to arrive at a pure NLL formula. This can of course be done easily if it is possible
to treat the observable calculation V ({ki}) analytically. Ref. [88] showed a way to
achieve this also in a numerical evaluation of Eq. (4.12). The resummation framework
in SHERPA has options for both analytically calculated F functions, as well as to read
in and interpolate numerically evaluated integrals. In the context of Ref. [II], also an
internal code implementing a version of the procedure used in Ref. [88] was set up.
This will briefly be commented on later.
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4.2 The master formula
The final result for the resummed cross section to NLL accuracy for an rIRC safe
observable can be expressed in a relatively simple master formula. In full generality, it
can be stated as

Σres(v) =
X

�

Σ
�
res(v) , (4.13)

Σ
�
res(v) =

Z

dB� d�
�

dB
exp

2

4�
X

l2B�

RB�

l (L)

3

5SB�

(L)PB�

(L)FB�

(L)ΘB�

hard . (4.14)

Here Θhard regularises the Born cross section and ensures that the legs l 2 B� are all
well separated. The full Θ applied to all possible final states C is

Θ = Θhard(C)✓(V (C)� v) . (4.15)

Of course, the restrictions of IRC safety apply to Θhard as well. To include the effect
of initial state emission, the scales used in the PDFs have to be corrected. This is
achieved by multiplying by the PDF fraction

PB�

(L) =
fa(xa, e

�2L/(aa+ba)µ2
F )

fa(xa, µ2
F )

fb(xb, e
�2L/(ab+bb)µ2

F )

fb(xb, µ2
F )

. (4.16)

The soft function corresponds to the exponentiation of the single logarithmic terms
proportional to the colour insertion operators. It has the general structure

SB�

(L)(t) =
hB�|e�

t
2
Γ
†

e�
t
2
Γ|B�i

hB�|B�i . (4.17)

The exponent Γ also contains the dependence on Coulomb gluons [286–288] in the
case of coloured initial states, and is in general given by [289]

Γ = �2
X

I<J

TITJ ln
QIJ

Qsoft

+ i⇡
X

IJ=final-final
IJ=initial-initial

TITJ . (4.18)

The dependence of S on the relevant logarithm L is via

S(L) ⌘ S(T (↵s�0L/a)) , (4.19)

and T needs to be calculated using the running coupling at one loop order. The result
depends on a generic combination of L, ↵s and �0, and it is conventional to introduce

� ⌘ ↵s(µ
2)�0L . (4.20)
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To achieve NLL accuracy it is sufficient to calculate T with one-loop running of the
strong coupling,

T (�) =

Z µ2

µ2e
�

2�
↵s�0

dk2
t

k2
t

↵s(k
2
t )

⇡
=

� ln(1� 2�)

⇡�0

. (4.21)

Likewise, the radiators are to be calculated taking into account the running of the
strong coupling, in the form of Eq. (4.9). Note that the terms associated with K are
of order ↵2

s and hence at most lead to NLL terms, which is why this was not important
in the evaluation of S since it only starts at NLL order itself. At this accuracy, it is
permissible to average over the azimuthal angle � of the soft momentum with respect
to the radiating dipole [88]. The only remaining dependence is proportional to

ln d̄ ⌘ ln d+

Z

d�

2⇡
g(�) . (4.22)

The final results can for example be found in App. A of Ref. [88] and will be reported
here for completeness. The radiator for leg l has the form

Rl(L) = Cl

⇥

rl(L) +r0l(L)

 

ln d̄l � bl ln
2El

µQ

+BlT
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.

Note that, deviating from Ref. [88], it was allowed here explicitly that the boundary
⌘min is non-zero. Of course, the correct result is only obtained if the full phase space is
covered. For the global observable case it will always be assumed also here that the
dipoles are split at

⌘min = 0 ) ⌘
(l)
min = ln

2El

Qsoft

. (4.24)

The function r0l is the logarithmic derivative of rl. To NLL accuracy it can be calculated
as

r0l(L) =
1

bl

"

T

✓

L

a

◆

� T

✓

L

a+ bl

◆

#

(4.25)

! 1

a⇡�0

2�/a

1� 2�/a
as bl ! 0 . (4.26)

On the one hand it is clear from the integral defining rl, Eq. (2.70), that r0l has to take
this form. Of course, this result could also be obtained and verified by actually taking

52



4.2. THE MASTER FORMULA

the derivative of the LL part of rl, to be reported in Eq. (4.30). For completeness, the
following abbreviations are also used

R0
l(L) = Clr

0
l(L) , R0(L) =

X

l2B�

R0
l(L) , (4.27)

R(L) =
X

l2B�

Rl(L) . (4.28)

Notice that, in all NLL parts one can in principle choose an arbitrary scale for the
evaluation of ↵s, since this will always be associated with an ↵2

s correction. Changing
the scale in the LL part however one needs to subtract the resulting NLL term. The
remaining ingredient, containing the full LL behaviour of the distribution, is3

rl(L) =
1

↵s(µ2)
r1,l(L) + r2,l(L) . (4.29)

Performing the integrals while taking the running coupling into account and evaluating
it at a scale of k2

t , the following results are computed, cf. App. A of Ref. [88],

r1,l(L) =
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2⇡�2
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1� 2�

a

◆

ln

✓

1� 2�
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(4.30)

�(a+ bl)

✓

1� 2�

a+ bl

◆

ln

✓

1� 2�

a+ bl

◆

#

! � 1
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a
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1� 2�
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#

as bl ! 0 , (4.31)

3Note that Ref. [88] extracts an explicit factor L instead of 1/αs from r1,l. The convention followed
here is that of Ref. [III].
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r2,l(L) =
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The addition of 2⇡�0 lnµ
2/µ2

Q to K in the definition of r2,l corrects the choice of the
scale in ↵s(µ

2) to µ2
Q at NLL accuracy. It will be the default convention to associate

the scale used in the evaluation of ↵s with µ2
R, the scale used in the computation of

the hard scattering process. Note that the limits for bl ! 0 are given explicitly here.
Of course the limits are straightforward analytically. However, in a numerical code the
bl = 0 case needs to be implemented separately.

The final missing piece is the multiple emission function F . The default in the CAESAR

formalism is to extract it numerically. The code for this, e.g. used in Ref. [II] is
factorised from the remaining pieces within the SHERPA framework. Sec. 5.3 will briefly
document the options for numerical evaluation. Here, it shall just be mentioned that
for additive observables, defined by the property

V (B, {kj}) =
X

vj , (4.34)

it is relatively simple to calculate F analytically, since the relevant Θ function factorises
in Laplace space,

Θ

0

@v �
X

j

vj

1

A =

Z

d⌫

2⇡i⌫
e⌫ve�

P

j vj⌫ =
Y

j

Z

d⌫

2⇡i⌫
e⌫ve�vj⌫ . (4.35)

Inserting this into Eq. (4.12) and evaluating the inverse Laplace transform, the F
function takes the rather simple form

F(L) =
e��ER0(L)

Γ
⇥

1 +R0(L)
⇤ . (4.36)

Similar results can also be extracted for the observables where fully analytic resummed
calculations have been performed.
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4.3 Extension to jet observables
The original CAESAR formalism as for example summarised in Ref. [88] is explicitly
only applicable to global observables, i.e. observables that are sensitive to radiation
everywhere in phase space. This property is clearly broken by the jet substructure
observables introduced in Sec. 3.2. The only final state particles that contribute are
the ones that are clustered by the chosen jet algorithm into the jet on which the
measurement is performed. This excludes in particular partons collinear to any of the
other hard final state legs, and to the initial states. In addition, the phase space for
soft-wide angle radiation is cut off at the jet boundary. Nevertheless, NLL resummed
predictions often have a very similar structure to Eq. (4.13). They can hence be treated
with few modifications to the framework.

The blue-print for the modifications will be Ref. [108] where the jet mass, cf. Eq. (3.27),
was resummed at NLL accuracy. The discussion is restricted to anti-kt jets, with a
radius R. This avoids the appearance of cluster logarithms at NLL [290–293]. The
analysis will be further restricted to observables that scale like

V (B, k 2 J ) / k
(J)
t

µQ

e�bJ⌘
(J)

(4.37)

in the limit where the momentum k is inside the jet J and the scaling is relative to
the hard leg inside the jet. This is true for both the jet mass and the jet angularities,
cf. Eq. (3.28). Note there always has to be one hard parton to trigger a jet. On the
other hand, it is assumed that more than one hard parton inside a jet will already have
a significant value V ⇠ 1. Thus, there is only one parton for which the collinear limit
of k contributes, assumed to have index J . The radiator corresponding to J is indeed
almost that of the usual CAESAR formalism, with parameters a = 1 and bl = bJ . The
normalisation gldl needs to be derived from the particular definition of the observable.
Evidently, nothing changes in the J-collinear limit, if k is inside the jet the observable is
supposed to be a smooth function and does not know of the behaviour outside the jet.
The only difference is the angular scale where the radiation from J stops contributing.
In the previous section, this was assumed to happen at ⌘ = 0 for every dipole, and at
that point the other half of that dipole would take over. Now, the contribution needs
to be cut off at the jet boundary. That can conveniently be achieved by setting

⌘Jmin = ln

✓

2
cosh(yJ)

R

◆

, (4.38)

where R is the radius of the jet and yJ the rapidity of J . The fact that there is no
contribution from the collinear limits of the other hard partons is expressed by setting
their radiators to zero,

Rl / �lJ . (4.39)
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Similarly, since the contributions to the PDF ratio, Eq. (4.16), are originated by radiation
collinear to the initial state, it can be ignored and set to one,

P = 1 . (4.40)

The multiple emission function similarly only receives contributions from the J collinear
limit, but behaves as usual inside the jet. Restricting to additive observables, this means

F(L) =
e��ER0

J (L)

Γ
⇥

1 +R0
J(L)

⇤ . (4.41)

Two effects are entering the soft function S. Soft wide-angle emissions can either
directly contribute to the jet J and set an observable value. The radiation from each
dipole needs to be integrated over the jet area. The J collinear part of the dipoles
involving J is already taken care of due to the radiator RJ . Since the only property
of the observable that matters in the soft limit is the scaling with kt, i.e. not the
bJ parameter determining the collinear behaviour, the results from Ref. [108] for the
jet mass are applicable to all observables that are linear in kt in that region. This is
precisely the restriction made in Eq. (4.37).

The other effect important for S are so called non-global logarithms. They arise because
not all soft, but finite, emissions result in a non-zero value of the observable. This
violates the assumption that the observable should be global, which guaranteed that
only the different flavour combinations with a given parton multiplicities form the
Born events B around which the resummation is to be performed. Now, in addition
to performing the resummation around the n parton final states, it also has to be
performed around the n+ 1 parton final states, at least in the phase space where the
additional parton is not inside the jet.

Going through the steps sketched in Sec. 2.3, one would naively obtain a similar
structure of exponentiated logarithms inserted into the hB [ {ki /2 J }|B [ {k /2 J i
matrix element. This might at first seem not that bad since those configurations are
of course suppressed with at least one power of ↵s with respect to the hB|Bi used in
the original resummation. However, the additional emission, even if not inside the jet,
can be soft enhanced. This can lead to a final state containing arbitrary many soft
gluons, that at some point contribute radiation inside the jet area. Since this is only
possible starting at order ↵2

s , one emission is outside and one inside the jet, this leads
to next-to-leading logarithms only.

This problem was discussed in Ref. [294], and a solution was proposed in the form of a
Monte Carlo algorithm. This algorithm works in the Nc ! 1 limit. Ref. [108] used
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this technique to resum the non-global logarithms for the jet mass in this approximation.
The general form of the soft function exponent Γ used there corresponds to

tΓ = �2
X

I<J

TITJ

⇣

tIB
�

IJ + fB�

IJ (t)
⌘

+ i⇡
X

IJ=final-final
IJ=initial-initial

TITJt , (4.42)

where IIJ are the results of the integration over the global part described earlier, they
can be calculated analytically as a power series in the jet radius R [108]. The functions
fIJ are obtained from a Monte Carlo algorithm like the one introduced in Ref. [294].
The results of this algorithm are then either fit with a suitable function, or interpolated
based on a grid in the parameter t, and evaluated at the corresponding value T (L).
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4.4 Extension to soft drop groomed observables
Including the effect of the soft drop procedure outlined in Sec. 3.3 requires a partial
re-computation of the radiator functions Rl. This calculation was carried out in
Ref. [III]. The context there were resummed predictions for event shapes after soft drop
grooming the hemispheres defined by the transverse thrust axis. An explicit expression
for the definition of soft drop groomed transverse thrust was given in Eq. (3.33). The
calculation of the radiator is more general however, and also applicable to jet observables
with the modifications introduced in the last section.

The resummation for soft drop groomed observables is performed in the v ⌧ zcut ⌧ 1
limit. In this range, it is appropriate to neglect powers of zcut, i.e. terms vanishing
as zcut ! 0, and only take into account logarithms of zcut that are enhanced by NLL
terms in v. Technically, the relevant argument of the logarithms is z0cut introduced in
Eq. (3.37). Analogous to the logarithms of the observable L, those will be denoted by

Lz = � ln z0cut . (4.43)

The difference between zcut and z0cut is by a factor
�

RSD sin ✓ /2
���

. Note that the
hard final state legs are assumed to be well separated from the beam in any case.
Assuming specifically central hard jets, i.e. sin ✓ ⇠ O(1), and choosing R ⇠ O(1),
one indeed arrives at z0cut/zcut ⇠ O(1) in the relevant limit collinear to the final state
particles. With this assumption the two cases v ⌧ z0cut ⌧ 1 and v ⌧ zcut ⌧ 1 hence
are equivalent. Of course, with any particular choice of grooming parameters and event
selection cuts, it should be evaluated how well the full all orders QCD result is expected
to be approximated.

As discussed in Sec. 3.3, the effect of grooming is to remove the soft-wide angle corner
in the Lund diagram for the radiation from a final state leg. The blue area marked in
Fig. 3.1 hence does not need to be integrated over, the integral for the radiator should
only cover the red area in that figure. Alternatively, one can subtract the integral of
that blue area from the result of integrating over the full phase space, cf. Eq. (2.70).

The relevant point where the red line limiting the observable and the blue line limiting
the grooming region meet is, in general, given by

f
�

v, z0cut

�

⌘ v
2(1+�)

bl+al(1+�)
�

z0cut

�

2bl
bl+al(1+�) = v2p
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�2p
(z)
l , (4.44)

where in the second equality implicitly defines

p
(v)
l ⌘ 1 + �

bl + al (1 + �)
and p

(z)
l ⌘ bl

bl + al (1 + �)
. (4.45)
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The new radiator can now be computed to be
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where the first two lines can be recognised as the original contribution of the full red
triangle in Fig. 2.5, while the last two lines subtract the area of the blue triangle in
Fig. 3.1. Note that the dipole scale QIJ has already been replaced by a generic scale
Q, which one is free to do as already discussed. In the default CAESAR formalism the
dependence on Q is reflected by the soft function S. Here, it leads to a contribution
of the form T (↵s�0Lz) lnQ/µQ, which can immediately be ignored at the required
accuracy, i.e. in the v ⌧ zcut limit.

The integrals are straightforward, and the result can be cast into a form similar to
Eq. (4.23), i.e. the ungroomed case, as

R (v, zcut) =
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Here, the additional function ṙl was introduced, representing the derivative of rl with
respect to Lz, rather than L, as for r0l. The functions already present in the standard
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case are also modified, and the explicit expressions are

rl (L, Lz) =
1
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The functions r1,l and r2,l are analogous to Eq. (4.30) and Eq. (4.32), representing the
LL and some of the NLL terms,
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The initial state radiator need special consideration in the groomed case. The soft drop
procedure as introduced in Sec. 3.3 for global event shapes, is such that the evaluation
of the soft drop condition, cf. Eq. (3.29) if coloured initial stats are present, is always
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bl = 0

β = 0

β = 2

soft-gluon grooming (initial state)
ln
(k

(l
)

t
/µ

Q
)

η(l)

Figure 4.1: The Lund diagram showing the kinematic constraints for soft drop applied
to initial-state emissions. As examples al = 1 with bl = 0 and � = 0
(solid line and area) and � = 2 (dashed line, hatched area) are shown.
Figure and caption taken from Figure 18 of Ref. [III].

evaluated by comparing two final objects. This leads to the kinematic constraint
depicted in the Lund diagram in Fig. 4.1. Evidently, for small enough observable
values v there is no contribution at all, i.e. the blue area in Fig. 4.1 cuts out the full
soft-collinear phase space for the initial state legs. The resulting integrals would hence
at most lead to logarithms of z0cut. Those are excluded in the limit v ⌧ zcut ⌧ 1 where
the calculation is performed. This justifies to ignore the initial state radiators and the
PDF ratios,

Rl = 0 for l 2 Bin , (4.53)

P = 1 , (4.54)

for soft drop groomed observables. Note that those settings are in any case in place
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for the jet substructure observables discussed in Sec. 4.3. Since the jet direction is by
definition not the initial state direction, Eq. (4.39) enforces Eq. (4.53) anyways.

A similar argument applies to the soft function S for contributions from both initial
and final state legs. An infinitely soft but not collinear emission will always be groomed
away. This was already observed in the discussion below Eq. (4.46). Soft emissions
only lead to logarithms of z0cut, and the soft function can hence also be set to

SSD(L) = 1 . (4.55)

At last, it should be made clear that, since logarithms of zcut that are not enhanced by
any logarithms of the observable are regarded as subleading, one can of course also
include some of them without changing the formal accuracy. This corresponds to, for
example, setting

SSD(L) = S(Lz) (4.56)

in the groomed distribution. This can be useful, since for v > zcut grooming is usually
assumed to be inactive, and the final prediction is made by using the groomed cross
section below and the ungroomed cross section above zcut. This however might lead
to discontinuities in the overall prediction, since for example the soft function would
approach S(Lz) for v ! zcut, v > zcut, but be constant S(L) = 1 for v < zcut. This
discontinuity can be avoided by using

S(L) ! S(min(L,Lz)) . (4.57)

over the full range. Of course, the discontinuity would be of an order that is neglected
in the calculation, and will be resolved at higher orders. In particular in a binned
distribution, it might not be visible if the binning around v ⇡ zcut is not fine enough.
So both options, Eq. (4.55) or Eq. (4.56), might be viable in certain circumstances.

62



4.5. ANALYSIS OF NON-PERTURBATIVE SCALES

4.5 Analysis of non-perturbative scales
In the limit of very soft gluon momenta, at scales ⇠ ΛQCD, perturbation theory
is expected to break down. This is evidenced phenomenologically by the presence
of hadrons, fundamentally non-perturbative objects, at those scales. One expects
observables to be sensitive to non-perturbative physics whenever the integrals in the
Lund plane need to be extended over such scales. This is visible as logarithmic branch
cuts, cf. also [41], in the individual ingredients of the master formula, resulting from
integrating ↵s over the Landau Pole. The analysis here will closely follow Ref. [III].

Without grooming, cf. Sec. 4.2, the branch cuts are located at

2� = al + bl , (4.58)

2� = al . (4.59)

These can easily be expressed in terms of the observable v = e��/↵s�0 , which yields

vHad, collinear =
⇣

e�1/2↵s�0

⌘al+bl
=

✓

ΛQCD

µR

◆al+bl

, (4.60)

vHad, wide-angle =
⇣

e�1/2↵s�0

⌘al
=

✓

ΛQCD

µR

◆al

. (4.61)

As the notation suggests, the first one corresponds to the collinear limit while the
second one is approached in the soft, wide-angle limit. Non-perturbative effects will
become important as v approaches the larger of the two solutions, such that,

vHad =

✓

ΛQCD

µR

◆al+bl

, for bl  0 , (4.62)

vHad =

✓

ΛQCD

µR

◆al

, for bl > 0 , (4.63)

If grooming is included, cf. the equations in Sec. 4.4, the branch cuts are pushed to

2� = al + bl , (4.64)

2p
(v)
l � = 1� 2p

(z)
l �z . (4.65)

Note that it is assumed �z < 1/2. This condition corresponds to z0cut > ΛQCD/µR. If
that is not true, the full groomed part of the distribution shifts into the non-perturbative
region and the whole discussion in terms of perturbative physics is pointless. Expressing
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those in terms of the observable in the same way yields

vHad, collinear =
⇣

e�1/2↵s�0

⌘al+bl
=

✓

ΛQCD

µR

◆al+bl

, (4.66)

vHad, wide-angle =
⇣

e�1/2↵s�0

⌘al+bl/(1+�) ⇣

eLz

⌘bl/(1+�)

=

✓

ΛQCD

µR

◆al
✓

ΛQCD

µRz0cut

◆bl/(1+�)

.

(4.67)

The first solution, emerging from the collinear limit, is unchanged. However, the second
solution is approached for the softest wide-angle emissions allowed by grooming now.
This pushes the observable value associated with hadronisation corrections to lower
values compared to the same observable without grooming. Checking which value is
approached first, one obtains

vHad =

✓

ΛQCD

µR

◆al+bl

, for bl  0 , (4.68)

vHad =

✓

ΛQCD

µR

◆al
✓

ΛQCD

µRz0cut

◆bl/(1+�)

, for bl > 0 . (4.69)

This can be validated for example by comparing with Ref. [136], which reported results
for the energy-energy correlations e

(↵)
2 with ↵ > 1. Those are another class of jet

substructure observables with parameters a = 1, bJ = ↵� 1. Ref. [136] finds,

e
(↵)
2

�

�

�

NP
⇡
✓

ΛQCD

zcutQ

◆
↵�1
1+� ΛQCD

Q
, ↵ > 1 , (Ref. [136] Eq. (4.7))

with Q representing the hard scale in Ref. [136], equivalent to µR in the above equations.

The behaviour of vHad for different CAESAR parameter choices and different options for
grooming is illustrated in Fig. 4.2. Note that the x-axis is in terms of the dimensionless
ration µR/ΛQCD. In all cases, the observable scale vHad at which hadronisation correc-
tions are expected to dominate decreases with an increasing hard scale µR relative to
ΛQCD. The black line represents the most common global observables as a baseline.
The angular coefficient is positive, bl  0, and the wide angle emissions are dominating
soft physics. All observables are for a = 1, but of course a different power would just
correspond to a re-scaling of the y-axis in that case. Examples where the black line is
applicable are most event shapes, for example thrust, Eq. (3.2), as well as the wide
hemisphere broadening Eq. (3.18) and heavy hemisphere mass Eq. (3.16). The dashed
line showcases the bl < 0 case at the example of bl = �1/2. This is for example the case
for the jet angularities �↵ with ↵ < 1, cf. Eq. (3.28). The bl = �1/2 case corresponds
to ↵ = 1/2. Here the sensitivity to soft physics comes from the collinear limit. Hence,

64



4.5. ANALYSIS OF NON-PERTURBATIVE SCALES

200 500 1000 1500 2000 2500

µR/ΛQCD

−14

−12

−10

−8

−6

−4

−2

ln
(v

H
a
d
)

al = 1, bl = −1/2

(un)groomed

al = 1, bl ≥ 0

ungroomed

al = bl = 1

groomed

β = 2, z0
cut

= 0.1

β = 2, z0
cut

= 0.2

β = 1, z0
cut

= 0.1

β = 1, z0
cut

= 0.2

β = 0, z0
cut

= 0.1

β = 0, z0
cut

= 0.2

al = bl = 1

groomed

β = 2, z0
cut

= 0.1

β = 2, z0
cut

= 0.2

β = 1, z0
cut

= 0.1

β = 1, z0
cut

= 0.2

β = 0, z0
cut

= 0.1

β = 0, z0
cut

= 0.2

Figure 4.2: Observable value vHad where to expect dominance of non-perturbative
corrections, i.e. hadronisation effects, as a function of the dimensionless
quantity µR/ΛQCD. Results are given for different combinations of CAESAR

parameters. For the case al = bl = 1, relevant for example for the
thrust observable, we present results for different grooming parameter
combinations.
Figure and caption taken from Figure 4 of Ref. [III].

hadronisation corrections enter at much larger observable values, assuming equal values
of the hard scale µR/ΛQCD. It is evident that soft drop grooming significantly reduces
the value of the observable at which non-perturbative effects are expected to enter for
a given hard scale. This is illustrated using the example of a = 1, bl = 1, applicable for
example to groomed thrust, Eq. (3.31) or Eq. (3.33), and angularities with ↵ = 2. The
behaviour with the grooming parameters is as expected. More grooming, i.e. grooming
parameters leading to a larger cut out area in the Lund plane equivalent of the blue
area in Fig. 3.1, leads to smaller non-perturbative scales. The largest suppression is
observed for the � = 0 case, and with increasing �, corresponding to the colour codes
in Fig. 4.2 the original behaviour without grooming is slowly approached. Increasing
the parameter zcut again shifts vNP to lower values for a given hard scale and angular
parameter �. This is shown by the dashed lines, which replace z0cut = 0.1 in the solid
coloured lines by z0cut = 0.2.
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Chapter 5

CAESAR resummation within the SHERPA

framework

The plugin to the SHERPA framework implementing the computation of the necessary
ingredients of the CAESAR formalism was first presented in Ref. [295]. The general idea
is that configurations corresponding to the Born process for a particular observable are
dressed with the ingredients of the master formula Eq. (4.13), in the same style as a
parton shower would be applied. The phase space integration technology available in
SHERPA can be used to sample over the Born processes B� and sum over the channels
�.

Certain components like the radiators are trivial in principle, and just need to be
available as functions in the code. There are however certain subleading choices that
can be made, modifying those terms potentially in way that depends on the kinematics
of the Born event considered. The options for those choices available will be described
in the first of the following sections.

A key feature of resummation in the SHERPA framework is the availability of colour
ordered matrix elements from SHERPA’s matrix element generator COMIX. This can be
exploited to obtain the soft function S for multijet configurations. It was one of the
major motivations for the original implementation in Ref. [295], the current status will
also be described here. More advanced options to include the multiple emission F
function were introduced to the plugin in Ref. [II].

The fixed order capabilities of SHERPA are also used to automatically calculate the LO
and NLO corrections for the selected observable. The matrix element generators are
differential also in the parton flavours, enabling the determination of the C�

1 coefficients
for more complicated final states. Additionally, this requires the use of appropriate
matching schemes when combining the resummed and fixed order calculations. The
final topic in this chapter will be a practical way to apply non-perturbative corrections
obtained from a fully fledged Monte Carlo simulation to the resummed calculation.
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5.1 Choices for subleading terms
While the formalism described in Ch. 4 fixes the analytic form of the results to
NLL accuracy, there are certain ambiguities left beyond this precision. Those are
primarily represented by the choice of the scales µ2

R, µ
2
F used for the renormalisation

and factorisation of the hard process. They can be varied to estimate the perturbative
fixed order uncertainty. This can be done on-the-fly within the SHERPA framework [296].

In addition some choices can modify the resummed distribution by adding terms that
vanish in the v ! 0 limit. Since the formal accuracy is defined in this limit, it is not
altered by such an addition. First, it is common to modify the logarithms L to

ln

✓

1

v

◆

! 1

p
ln

 

✓

xv

v

◆p

�
✓

xv

vmax

◆p

+ 1

!

= L , (5.1)

and subtracting the corresponding change of the leading logarithm. This achieves that
L(v = vmax) = 0 while still L ! ln xv/v ⇠ ln 1/v in the limit where v ⌧ 1. The
value of vmax can then be set to the physical endpoint of the distribution, or to the
endpoint of a fixed order calculation carried out at a particular accuracy. If the fixed
order calculation is carried out within the plugin, the maximal values for each observable
encountered are provided in the output.

The choice of xv ⇠ O(1) reflects the ambiguity to choose the normalisation of the
observable. One approach [280] in choosing a value is to set it to

ln xv =
1

n

X

l2B

ln d̄l , (5.2)

with n the number of coloured final state legs in B. If d̄l is the same for all legs,
this just divides out the normalisation of the observable. On the other hand, one
can of course let xv = 1, but should make sure in this case that the normalisation is
chosen appropriately to ensure that logarithms of ln d̄l are not artificially enlarged by an
arbitrary choice in the normalisation, i.e. make sure that d̄l = O(1). Variations of xv

can be used to estimate the size of uncertainties associated with logarithmic subleading
contributions.

The value of p modifies the power with which corrections of the form v/vmax vanish.
The default value is p = 1. It can be varied to estimate uncertainties related to power
corrections in v.

Finally, while the above procedure ensures that the cross section Σ approaches one at
the physical endpoint vmax, the derivative at this point might not smoothly approach
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zero, leading to artefacts in differential distributions. To fix this, the distribution can
be shifted by power corrections obtained from terms in the expansion of Σ to order ↵s

that are linear in L,

∆Σ ⌘ 2⇡
Σ(1)

↵sL

�

�

�

�

�

L=0

. (5.3)

The resulting shift in lnΣ is then implemented as

lnΣ(L) ! lnΣ(L)� ↵s

2⇡
L

✓

v

vmax

◆p

∆Σ (5.4)

In the same way, one can modify where exactly the transition between groomed and
ungroomed distributions occur for observables with grooming. Naively, the transition
takes place at v ⇠ zcut, however this is modified by fixed order corrections. As
documented in Ref. [III], the argument of Lz can be shifted,

Lz = � ln
�

z0cut

�

! � ln
�

z̃acut/xv

�

a
, (5.5)

by taking into account the correction

R ! R +
1

al
ṙl (L, Lz)

2

4al ln

 

2El

µQ

!

(5.6)

+
�

al (1 + �) + bl
�

ln

✓

Q

2El

◆

+ ln
�

d̄l
�

#

.

The shift in L can be performed as in Eq. (5.1). When choosing xv, the reasoning
leading to Eq. (5.2) would lead to a similar formula but only include a sum over the
final state legs in the groomed case. Finally, a shift

exp
h

R̃ (L, Lz)
i

! exp

"

R̃ (L, Lz)� R̃ (0, Lz)�
✓

v

vmax

◆p

R̃0 (0, Lz)L

#

, (5.7)

is implemented, with R̃ including the multiple-emission function F next to the usual
radiator R, and R̃0 denoting its derivative with respect to L. Subtracting R̃(0, Lz)
removes all pure logarithms Lz, leaving only those that are also associated with
logarithms L of the observable.
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5.2 The soft function
The soft function S has the form given in Eq. (4.17). To make practical use of it, one
first needs to obtain an explicit expression for the insertion operators TITJ in some
basis for the colour space of the process. A simple example is the so called trace basis.
To construct it, the identity in Eq. (2.6) is used to express all structure constants in
terms of generators taij. Similar to the examples in Eq. (2.8) and Eq. (2.9), the colour
structure will be decomposed into traces

tail . . . t
a
ki / |btracei , (5.8)

where the exact structures appearing depend on the process under consideration. The
Born amplitude can then be written as

|Bi =
X

↵

A↵|b↵i . (5.9)

Note that the "trace" superscript was removed in Eq. (5.9) relative to Eq. (5.8), since
other bases can be used in general, and an index ↵ was added to label the different
colour structures. The coefficients A↵ are the corresponding amplitudes stripped of the
colour structure, containing all the information on the kinematics of the Born process.
Next, one introduces the matrices

c↵� = hb↵|b�i (5.10)

H↵� = A
↵
A� . (5.11)

With this at hand, the matrix element squared for the Born process, which on the
colour space takes the form of a product between vectors, can be expressed as a trace
over the c and H matrices

hB|Bi = c↵�H
↵� . (5.12)

Note that the elements of the matrices, c↵� and H↵�, are indeed just numbers so can
immediately be implemented programmatic by computing the product between two
real valued matrices and then taking the trace of the result. Similarly, the insertion
operators are expressed as matrices

T↵� = hb↵|TITJ |b�i (5.13)

Γ↵� = hb↵|Γ|b�i , (5.14)

with Γ defined in Eq. (4.18). In order to obtain the correct structure in the exponential,
cf. Ref. [295] it has to be defined according to

exp [xΓ] ⌘ c↵� exp
h

xc��Γ��

i

(5.15)
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where c with raised indices is determined by

c↵�c
��|b�i ⌘ |b↵i . (5.16)

This implicitly defines c�� as the generalised inverse on the set {|b↵i}. Ref. [295]
explicitly derived this for the QCD case by working in Nc = 3+ ✏ dimensions and taking
the ✏ ! 0 limit at the end. If the basis set was minimal, it would hold that c↵�c�� = ��↵
and the two matrices would truly be inverse to each other. In general the basis sets are
however allowed to be overcomplete. The most commonly used, including the trace
basis exemplified here, are overcomplete at least for high enough multiplicities. The
calculation of the matrices T↵� and c↵� in a variety of bases for arbitrary processes has
been automated in Ref. [297] in the context of the SHERPA resummation framework.
Other approaches include [298–301].

The relevant inputs for most processes needed in practice are available as input files
and do not need a dedicated re-computation. Likewise, the hard matrix H↵� can
be obtained from COMIX as described in Ref. [295]. The plugin then only needs to
implement the algebra to calculate the inverses, exponentials and traces of matrices
and products of matrices, to arrive at the final function

S(t) =
Tr
h

He�
t
2
Γ
†

ce�
t
2
Γ

i

Tr [cH]
. (5.17)

For the more delicate of those tasks, external software packages are used. In particular,
Ref. [302] is used to calculate the generalised inverse of matrices, and Ref. [303] for
the matrix exponential.

In order to validate this part of the calculation, several tests can be automatically
performed within the SHERPA implementation. The first is to check the generalised
inversion procedure. Since a generalised inverse c�1 of a matrix c is not unique, one
can shift

c�1 ! c�1 +
⇥

1� cc�1
⇤

R , (5.18)

where R is a matrix with random entries of the correct dimensionality and 1 is diagonal
with entries equal to 1 on the diagonal and zero otherwise. Since the two inverses are
equivalent on the relevant space, in the sense that both fulfil the implicit definition in
Eq. (5.16), one might perform such a shift and check that the calculation returns the
same result. Of course, this is trivial if the basis set is not overcomplete and cc�1 = 1.
Note that, if one indeed chooses a completely random matrix R, numerical inaccuracies
in cancellations might still be relatively large. Still, since the cancellation can be checked
on the basis of an individual phase space point, this is a powerful consistency test of
the implementation. Likewise, the correctness of the colour insertion operators can
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be tested by verifying that they obey the relations implied by colour conservation, cf.
Eq. (2.78).

Finally, one can explicitly check that the insertion operators correctly reproduce the soft
limit for a single emission, which is reflected in the eikonal approximation Eq. (2.61).
In the notation established in this section, it can be expressed by defining the current

� = �2g2
X

i<j

pi · pj
(pi · ks)(pj · ks)

T↵�c
↵� . (5.19)

The quantity of interest is then the ratio

Rs =
Tr [�cnHn]

Tr [�cn+1Hn+1]
. (5.20)

Here the subscripts label the Born multiplicity, i.e. the denominator is the matrix
element squared for the (n+ 1) parton matrix element, while the numerator is the one
for n partons with the eikonal current inserted. This ratio should then approach 1 in
the limit where ks = �sk, �s ! 0. This test was performed in the original Ref. [295]
as well as in the context of Ref. [II]. The results of the latter are shown in Fig. 5.1 for
various Born final states. The test is performed in jet final states in electron positron
annihilation at

p
s = 91.2 GeV. The different lines in Fig. 5.1 correspond to individual

(n+ 1) parton configurations. Those are drawn randomly, in a phase space regularised
by requiring that the Durham resolution scale, cf. Eq. (3.25), is yn,n+1 > 0.02. One of
the gluons is then picked and its momentum scaled down.

The upper row of plots in Fig. 5.1 displays the soft limit of a 5 parton matrix element,
containing in addition to the gluon that approaches the soft limit either two quark-
antiquark pairs on the right, or an quark-antiquark pair and two more gluons on the
left. Since the production mode for the jets here is the decay of a Z boson, there is no
channel that would contain only gluons. The bottom row of plots shows the same test
with an additional hard gluon in the matrix element. In all cases, unity is approached
for small �s, confirming the validity of the current implementation.

In order to systematically asses the effect of subleading colour, an option is implemented
to consider the full resummed calculation in the strict Nc ! 1 limit with ↵sNc =
↵s,0 = const. fixed, known as the t’Hooft limit [304]. In terms of the usual QCD
parameters, this implies

CF

2⇡�0

! 3

11
,

CA

2⇡�0

! 6

11
, ↵s�0 !

11

12⇡
↵s,0 , (5.21)

K

2⇡�0

! 67/3� ⇡2

11
,

�1

�2
0

! 102

121
. (5.22)
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Figure 5.1: Ratio of the eikonal approximation to the exact e+e� ! 5-, 6-parton
tree-level matrix element versus the softness parameter �s.
Figure and caption taken from Figure 1 in Ref. [II].

To evaluate the colour insertion operators in the large-Nc limit, one needs to calculate

↵s

hb↵|T iT j

�

�b�
↵

|b↵||b�|
! ↵s,0 hb↵|T iT j

�

�b�
↵

LNC
(5.23)

with the identification

hb↵|T iT j

�

�b�
↵

LNC
= lim

Nc!1

hb↵|T iT j

�

�b�
↵

Nc|b↵||b�|
. (5.24)

An additional option is the "improved LC" scheme used in Ref. [II], which consist of
making the replacement in Eq. (5.23) but evaluate all other quantities at finite Nc. This
means in particular that the correct Casimirs are used in the radiators that are identified
with a particular leg and its flavour. Likewise, the � function coefficients, Eq. (2.31)
and Eq. (2.32), and collinear anomalous dimensions, Eq. (2.84) and Eq. (2.85), are
calculated at Nc = 3 in this case. This is closer to the approximations made in practical
parton shower implementations, which, while only claiming to be correct in the large
Nc limit, would not usually implement a strict limit but attempt to set as many colour
factors as possible to the correct values.
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5.3 The multiple emission function
The F function can be calculated from Eq. (4.12) at NLL accuracy. However, the form
given there still does contain subleading contributions. If the integrals are supposed to
be calculated numerically, this can be done by scaling the gluon momenta to become
indeed infinitely soft and probe the behaviour of the observable V in that limit. This is
the general strategy taken in Ref. [88]. The final form of the F function found there,
in the notation of Ref. [II], is given by

FB�(L) = lim
✏!0

eR
0 ln ✏

1
X

m=0

R0m

m!

0

@

m+1
Y

i=1

X

li2�

R0
li

R0

Z 1

✏

d⇣i
⇣i

Z 1

0

d⇠i
Nli

Z 2⇡

0

d�i

2⇡

1

A �(ln⇣1)

(5.25)

⇥ exp

✓

�R0 ln lim
v̄!0

V (B�;1(⇣1v̄), ...,m+1(⇣m+1v̄))

v̄

◆

,

with

Nli =

✓

1 +
a+ (1� ⇠i)bli
a(a+ bli)

2�

◆Z 1

0

d⇠̃i
1

1 +
a+(1�⇠̃i)bli
a(a+bli )

2�
. (5.26)

Here ⇠i is the fraction of the maximal rapidity for leg li, and V (i(⇣iv̄)) = ⇣iv̄ implies
⌘i,max = ln

�

1/⇣iv̄
�

/(a+ bli). The numerical evaluation of the integrals and limits has
been implemented, in the context of the SHERPA plugin discussed here, in Ref. [305].
Fig. 5.2 shows the results of this implementation for the Durham jet resolution scales.
The right hand side illustrates how the limit v̄ ! 0 is approached for several values
of R0. The rows correspond to different Born multiplicities n and the corresponding
Durham resolution scales yn,n+1, cf. Eq. (3.25).

The plugin implements the technology needed to extrapolate the functions calculated on
a grid, usually in R0. This makes use of cubic Hermite splines to exploit the monotonicity
of F as described in [306, 307]. The left hand side validates the various explicit results
for the F functions corresponding to the white dots, compared to the interpolated
function (solid line) that is practically used for the resummation.

Of course, in cases where the F function is known in analytic form, this is used in
the plugin. Likewise, the numerical F functions provided with the plugin code could
easily be exchanged with externally generated values. In the simplest case this could be
achieved by saving them in the same format, essentially just as a space separated list
of R0, F and optionally the uncertainty ∆F . To asses the effect of the uncertainty on
the final result, the resummed cross section Σ can be recalculated with a variation of
F by ∆F .
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Figure 5.2: Multiple-emission function F for the different Born channels � appearing
in the resummation of y34, y45 and y56 respectively. While the left column
emphasises the dependence on the large logarithm, i.e., ln

�

yn,n+1

�

, the
right column shows the convergence of the numerical evaluation of the
limit v̄ ! 0 for selected values of R0. The lines with error bands mark
the value and statistical uncertainty for v̄ = 10�1500. Note that for y34 as
well as the other F functions with R0 = 1, the dot sizes are larger than
the error bar would be.
Figure and caption taken from Figure 1 in Ref. [II].
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5.4 Flavour mapping and NLL0 accuracy
As was anticipated at the end of Sec. 2.3, in order to correctly compute the contributions
of order ↵2

sL
2 to the cross sections Σ, it is necessary to take into account the cross

terms between LL contribtions, of order ↵sL
2, and corrections of order ↵s relative to the

respective Born process that are constant in the observable, i.e. that are not enhanced
by logarithms, but also do not vanish in the v ! 0 limit. The full O(↵s) contribution
to Σ has the general form, cf. Eq. (2.87),

Σfo(v) = �(0)

0

@1 +
↵s

2⇡
L2A1 +

↵s

2⇡
LB1 +

↵s

2⇡
C1 +

↵s

2⇡
D1(v) +O

 

✓

↵s

2⇡

◆2
!

1

A

(5.27)

lim
v!0

D1(v) = 0 , (5.28)

with some coefficients A1, B1, C1, D1. Here D1 is itself a function of the observable
value that however vanishes in the small observable limit as indicated in the second line.
The subscript 1 indicates that those are the coefficients of one power of ↵s relative to
the Born process. Similarly, the resummed predictions can be expanded in terms of ↵s.
This expansion will of course only contain the logarithmic terms,

Σres(v) = �(0)

0

@1 +
↵s

2⇡
L2A1 +

↵s

2⇡
LB1 +O

 

✓

↵s

2⇡

◆2
!

1

A (5.29)

with the same coefficients A1 and B1. For the simplest observables, like 3-jet observables
in e+e� annihilation, the relevant coefficient C1 can hence be extracted by simply
taking the difference

↵s

2⇡
C1 = lim

v!0

Σfo(v)� Σres(v)

�(0)
. (5.30)

Note that it is not necessary here to further specify the coefficients A,B,C,D, so it
is a matter of convention what expansion parameter is used. For example, one could
have used ↵s instead of ↵s/2⇡ or absorb �(0) into the coefficients.

The C1 coefficient is particularly simple in this case. This is because the Born final
states in e+e� ! qq̄ are the same if one ignores the orientation relative to the beam
directions. In general, the equivalent structure giving rise to the ↵2

sL
2 correction is

given by [282]
Z

dB�

 

dΣ
�,(1)
fo � dΣ

�,(1)
res

dB

!

Σ
(1),LL

B�

��,(0)
. (5.31)
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Here Σ
(1),LL

B� denotes the LL part of the leading order expansion for the resummed cross
section appropriate for the phase space point B�. It should be noted that, at this stage
one might equally replace it by the full exponent ΣLL

B , and include any set of NLL
terms without changing anything at the formal NLL0 accuracy. The only thing that is
relevant for this is the first order, double logarithmic expansion of whatever is written
in this place.

This piece will be determined by radiation that is simultaneously soft and collinear.
Because of this, the only way it can depend on the colour structure is through the
Casimir factors of the hard legs in B. Likewise, it does not depend on the detailed
kinematics of the full final state. This can explicitly be verified by inspecting the LL
parts of the explicit results, cf. Eq. (4.30). Physically, this should be clear fact that
collinear emissions only depend on the hard leg they are emitted from.

Thus, the Σ
(1),LL

B� does not depend on the integration variables in Eq. (5.31). One
might write, splitting the integral over the difference into two integrals

Σ
(1),LL,�
res

R

dB� dΣ
(1)
fo

dB
�
R

dB� dΣ
(1)
res

dB

��,(0)
= Σ

(1),LL,�
res

Σ
(1),�
fo � Σ

(1),�
res

�(0),�
. (5.32)

This allows to work effectively with an averaged coefficient given by the difference of
the two O(↵s) cross sections on the right hand side. In analogy to Eq. (5.30), the
relevant coefficient is defined as:

↵s

2⇡
C�

1 ⌘ lim
v!0

Σ
�,(1)
fo � Σ

�,(1)
res

��,(0)
. (5.33)

The left hand side here should be understood in a symbolic sense; if the renormalisation
scale µR that is used in the calculation, in particular as an argument to the strong
coupling, is determined dynamically based on the kinematics, there would be no unique
way to split the right hand side of Eq. (5.33) into a constant times ↵s.

It is important to note that this version of the C1 coefficient still depends on the
channel �. There is some freedom in its detailed definition, but it should be such that
all final state configurations that are sorted into the same channel � exhibit the same
LL behaviour with respect to the observable in question. This LL behaviour is mostly
determined by the Casimir factors associated with the Born legs, i.e. how many of the
Born partons are quarks and gluons. In order to calculate the difference in Eq. (5.33),
one hence needs to associate a given configuration with higher multiplicity to one of
the flavour channels present at Born level.

A way to do this in an infrared safe way has been proposed in Ref. [308]. This algorithm
will be referred to as BSZ algorithm after the authors of Ref. [308]. The procedure was
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used by the same authors in Ref. [282] to achieve what is called NLL0 accuracy here1.
The algorithm is a sequential recombination algorithm similar to the ones described in
Sec. 3.2. Instead of just working with the momenta, this time also the flavour of the
objects is taken into account however.

The flavour of an object is practically implemented as a list of nf integers, corresponding
to the nf possible quark flavours. For a quark this list contains zeros, apart from the
entry corresponding to the flavour of the quark, which is 1. For an antiquark, the single
non-zero entry has a value of �1, whereas for a gluon all entries are zero. If objects are
combined, their flavours are added together entry by entry. This means that a quark
and antiquark of the same flavour are combined into a flavourless object, i.e. with
all entries set to zero. A priori, it is however not excluded that objects with multiple
flavours, or absolute values larger than 1 for some flavour, emerge in the algorithm.

To be precise, the general procedure of the sequential recombination algorithm is altered
as follows, with the changes to Sec. 3.2 marked in bold font:

0. Start with the list O of all final state objects that enter the clustering, the beams
B and B̄, and the list of clustered jets J . An object is described by its
four-momentum and flavour.

1. Check if the stopping criterion is met. If yes, add all remaining objects in O to
J and terminate the algorithm. The list J contains the jets.

2. Determine the pair {i, j} 2 O that minimise some distance measure dij , and the
objects k and m that minimises the beam distance measure dkB and dmB̄.

3. The next step is determined by d = min
�

dij, dkB,dmB̄

�

:

(a) If d = dij, update O by removing objects i and j and adding a new object
with four momentum pi + pj and the combined flavour of i and j.

(b) If d = dkB (d = dmB̄), update O by assigning the combined flavour
of k,B (m, B̄) to beam B (B̄).

Go back to step 1.

This creates a final list of objects with associated flavours. The natural stopping
criterion here is to run the algorithm until the Born configuration for the observable
in question is met. For practical purposes, several flavour assignments obtained this

1The accuracy containing the same terms was referred to as NNLLΣ in Ref. [282].
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way might be combined to form a channel � in the context of extending a resummed
result to NLL0 accuracy. Commonly, it is for example sufficient to label a channel by
the number of quarks and gluons, i.e. single flavoured and flavourless objects in the
final list J , sorting any configuration that leads to J containing objects with multiple
flavours to a separate "other" channel. In other cases it might however be desirable to
maintain at least the ordering of the types of particles in some hardness measure, or to
further split up the channels based on kinematic regions. The implementation within
the SHERPA framework is flexible in this regard, first doing the clustering keeping all
the flavour information and only at the very end naming the channel.

A main concern Ref. [308] is the question of how to define the distance measures d,
in order to achieve an infrared safe flavour assignment. The primary example for how
this fails for an arbitrary definition like the ones given in Sec. 3.2, is the case of a
gluon splitting into an quark-antiquark pair. In the limit where the intermediate gluon
becomes soft, i.e. the sum of the quark and antiquark four momenta approach zero,
this should not alter the flavour assignment. However, it is in general not guaranteed
that the two quarks would end up in the same jet in this case. If they are for example
clustered together respectively with two different gluons, this would lead to two objects
treated as quark jets, even if the momenta of the quarks are infinitely soft.

To avoid such scenarios, and based on the general structure of QCD matrix element
and similar considerations, Ref. [308] argued for the following distance measures in the
case of colour neutral initial states:

dij =

8

<

:

min
⇣

E2
i , E

2
j

⌘

(1� cos ✓ij) , if softer of i, j is a gluon

max
⇣

E2
i , E

2
j

⌘

(1� cos ✓ij) , if softer of i, j is a quark
, (5.34)

where as in Sec. 3.2 the initial state is ignored in this case. The words "quark" and
"gluon" are used here to indicate flavoured and flavourless objects respectively, for the
sake of brevity. Further note that Ref. [308] actually defined the yij equivalents of the
measures given here.

In the presence of hadronic initial states, those need to be taken into account and
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Figure 5.3: The O(↵2
s ) contribution to the ‘other’ channel in the limit ⌧? ! 0.

Figure and caption taken from Figure 5 of Ref. [III].

distance measures have to be defined for them. Ref. [308] suggests to use

dij =

8

<

:

min
⇣

p2T,i, p
2
T,j
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∆R2
ij , if softer of i, j is a gluon

max
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2
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ij , if softer of i, j is a quark

, (5.35)
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where
pT,B(y) =

P

j pT,j
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The precise considerations for the choice of the beam distance measure shall not be
repeated here, since for the purpose of this work it is only important that it indeed
achieves an IRC safe definition of the jet flavour. This was proven also in Ref. [308].

A powerful test of the IRC safety of the flavour assignment is to check that the flavour
channels that are not present at Born level indeed vanish. As explained before, those
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contributions are collected in one single channel labelled "other". Since the IRC safety
issues of generic jet algorithms only start at order ↵2

s , it is particularly important to
check that the NLO contributions to that channel vanish in the infrared limit, in order
to validate the implementation of the algorithm. An example for such a test is presented
in Fig. 5.3. Here transverse thrust, cf. Eq. (3.19), is used to parameterise the soft
limit of radiation around dijet configurations in proton-proton collisions. Indeed, that
contribution is vanishing in the ⌧? ! 0 limit.

Having checked this, it is possible to introduce a "bland" variant of the algorithm. It
is defined by setting the distance measures between any two object to infinity if their
combination would lead to more than one overall flavour. This effectively excludes these
combinations and guarantees that one ends up with objects that can be interpreted as
quark, antiquark or gluon. It is of course not mandatory to proceed in this way. Since
these contributions vanish in the v ! 0 limit, the logarithmic accuracy is unaffected by
how they are handled. They could be left in the separate "other" channel, be sorted to
the physical Born channels by the way corresponding to the "bland" algorithm or even
be sorted to channels randomly, as far as the logarithmic accuracy is concerned.

Considerations for groomed event shapes

There are some subtleties arising in the application of the above algorithm in the case
of soft drop grooming. In short, everything works out at the end, but some additional
arguments are required. They are laid out here in the same way as presented in Ref. [III].
The main cause of trouble is that for groomed observables, the limit vSD ! 0 does
not uniquely impose the soft limit for all particles beyond the Born multiplicity. This
implies that the Σ

�,(1)
fo receives several contributions.

As in the ungroomed case, at vSD = 0 the virtual+real corrections contribute with
a constant. For the real correction, there is a part of phase space where nothing is
groomed. In this region everything works as in the ungroomed case, contributing a
finite remainder between the integral of this fixed order phase space and Σ

�,(1)
res .

Due to grooming, there is an addition part of the real correction that results in vSD = 0
because one particle is groomed away. The proper treatment for those would be to
multiply with the Sudakov factors for the corresponding (n + 1)-particle final state.
However, as explained previously, the only important term as far as NLL0 accuracy is
concerned are the cross terms with the LL part of the Sudakov factors. Those are the
same as for the 2 ! 2 configuration obtained by ignoring the groomed parton.
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Figure 5.4: Left: The emission phase space in the Lund plane with the CAESAR

parameters al = 1 and bl = 1 (valid for thrust). The green area marks
the phase-space region where the emitting particle will be removed by
grooming with boundaries corresponding to � = 0 (solid line and area)
and � = 2 (dashed line, hatched area). The blue area marks the region
where the emitted gluon is removed, cf. Fig. 3.1. Right: Displays of
the transverse plane of several LO final-state configurations. The colour
codes indicate jet association according to the BSZ algorithm, groomed
particles are in light shade and dashed in the case of quarks. (a) Sample
event from the green area, where the quark is groomed instead of the
gluon. (b), (c) Sample events with two quarks in one hemisphere, with
the softer one getting groomed, for different jet clusterings. (d) Sample
event from the blue area, a soft gluon is groomed.
Figure and caption taken from Figure 6 of Ref. [III].

This means that it is still valid to just cluster all fixed order events according to the
BSZ algorithm. The different configurations that can be encountered in LO 2 ! 3
events are illustrated in Fig. 5.4. Panel (d) shows the "usual" case, where a soft gluon
is groomed. In this case the gluon always has the smallest of the three transverse
momenta. Momentum conservation also excludes the case where the other two particles
are collinear. The gluon will hence always be clustered first. Clustering a gluon does
not change the flavour assignment of the other two objects, so this is the same as if the
gluon was discarded. The same reasoning applies if a quark is groomed but clustered
to the beam. Since the soft drop observables do not receive contributions from initial
state radiation at NLL accuracy, the flavour assignment of the beams does not matter
in the end.
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A more careful analysis is required if a groomed quark is clustered together with a final
state particle. The relevant cases where two quarks are in the same hemisphere are
panels (b) and (c) of Fig. 5.4, which the BSZ algorithm classifies as quark-quark (b)
and gluon-gluon (c) like final states. In a fourth case, the quark can be in the same
hemisphere as a gluon, and clustered together with that gluon. In the soft gluon limit,
only the gluon can be groomed. However, at fixed order there is also the case shown in
panel (a) of Fig. 5.4 where the quark is actually groomed. The relevant phase space
region for this is marked in green in the Lund diagram on the left of Fig. 5.4. The cases
(a), (b) and (c) are all suppressed with powers of zcut, and can hence be neglected
in the zcut ⌧ 1 limit in which the calculations in Sec. 4.4 were performed. They are
enhanced by logarithms of L in the � = 0 case and need to be considered if the goal is
to claim NLL accuracy including finite zcut effects, cf. [142, 309]. With � > 0, they
would enter at NLL0 accuracy only, and still be suppressed by zcut. Finite zcut effects are
not implemented in the SHERPA resummation framework currently, and their discussion
is beyond the scope of this work.

Considerations for jet observables

For observables defined on anti-kt jets, that can be resummed as described in Sec. 4.3,
there are some modifications necessary to achieve the proper structure at NLL0 accu-
racy. The discussion here will follow that already presented in Ref. [IV]. The reason
modifications are necessary is in the non-global structure of such observables, i.e. the
fact that they can be zero at any perturbative order if no additional particle is inside
the jet on which the observable is defined. This requires in principle a resummation to
be performed on arbitrary multi-jet configurations.

The considerations are similar to the groomed observables above. To achieve NLL0

accuracy, it is enough to dress the LO configurations with the appropriate LL Sudakov
factor. This can effectively be achieved by multiplying those events with the full NLL
Σ�

res, corresponding to the channel � obtained after dropping all other jets. This will
contain the correct LL factor, since this only depends on the jet flavour and not the
other details of the configuration.

Consider the situation depicted in Fig. 5.5 (b) for example. Their flavour channel need
to be defined by the single object inside the measured jet alone. On the other hand,
in the example shown in Fig. 5.5 (a), the quarks need to be clustered, at least in the
collinear limit. The jet will then be identified as a gluon jet. IRC safety guides the
correct prescription for the situations shown in Fig. 5.5 (c) and (d). As discussed before,
The g ! qq̄ splitting is undone first in the soft gluon limit.
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Figure 5.5: Examples for partonic input configurations to the flavour assignment
algorithm. Configuration (a) needs to be identified as a gluon jet in the
collinear limit, whereas for (b) we need to perform the LL resummation
for a quark jet. IR safety requires that configurations (c) and (d) in the
limit where pg ! 0 are identified as gluon and quark jet, respectively.
Figure and caption taken from Figure 5 of Ref. [IV]

Ref. [IV] proposed the following algorithm, that shall be directly quoted here

0. Start with the list O of all coloured final-state objects, containing particle four-
momenta and flavour labels, and the beams B, B̄ with their respective flavours.

1. Run the standard anti-kt algorithm with radius parameter R0 on O, and obtain
the objects in the leading, i.e. highest pT , jet J ⇢ O.

2. If J consists of only one object, J = {j 2 O}, terminate the algorithm. The
flavour of j defines the flavour channel �.

3. Otherwise, determine the pair {i, k} ⇢ O that minimises the BSZ measure dBSZ
ik

and the objects l,m that have minimal BSZ distances to the beams dBSZ
lB , dBSZ

mB̄
.

Perform a cluster step according to dBSZ = min(dBSZ
ik , dBSZ

lB , dBSZ
mB̄

):

(a) If dBSZ = dBSZ
ik , update O by removing i and k and adding a new object

with momentum pi + pk and the combined flavour of objects i and k.

(b) If dBSZ = dBSZ
lB (dBSZ = dBSZ

mB̄
), update O by removing l (m) and assign the

combined flavour of l and B (m and B̄) to the beam B (B̄).

Go to step 1 and repeat.

Note that, while the prescription refers to the leading jet this can trivially be extended
to other IRC safe identifications of the measured jet.
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5.5 Matching to fixed order
With the flavour channel assignment in place, schemes can be devised that actually
achieve NLL0 accuracy by combining the fixed order calculation in an appropriate way
with the resummation. The general idea is to add the fixed order calculation Σfo and the
resummed cross section Σres, and subtract the overlap. This should be enough to obtain
a distribution that is correct up to the order in ↵s at which the fixed order calculation
was performed, and at the same time contains all logarithms at NLL accuracy.

As a second requirement, also the C1 coefficient dealt with in Sec. 5.4 should be
included. Ideally, this should happen without having to extract it explicitly. To this end,
the following matched cross section is defined, for each Born channel � based on the
resummed cross section Σres and the fixed order result Σfo:

Σ
�
mult = Σ

�
res

"

1 +
(Σ

�,(1)
fo � Σ

�,(1)
res )

��,(0)
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The quantity Σ was introduced in Eq. (3.44). The counting of powers of ↵s follows
Eq. (2.57), i.e.

Σ
(i) / ↵nBorn

s ↵i
s . (5.40)

At order ↵2
s relative to the Born accuracy, Eq. (5.39) equals the NLO cumulative

distribution, apart from a missing additive constant ��,(2)
fo . For the logarithmic accuracy,

one needs to investigate the limit v ! 0. Eq. (5.39) reduces to

Σ
�
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✓
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↵s
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s )

◆

Σ
�
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with C1 given by Eq. (5.33),

↵s

2⇡
C�

1 ⌘ lim
v!0

Σ
�,(1)
fo � Σ

�,(1)
res

��,(0)
. (repeats 5.33)

Hence, the correct NLL0 terms are effectively included by this matching scheme. Since
the resummed and fixed order cross section are multiplied rather than added, this
matching scheme is referred to as "multiplicative matching".

An alternative is the matching scheme that in the literature [258, 282] is often referred
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to as LogR matching scheme for historical reasons2. Here, the precise definition of it
shall be

Σ
�
LogR = Σ

�
res exp

 

Σ
�,(1)
fo � Σ

�,(1)
res

��,(0)

!

exp

2

6
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�,(2)
res �

⇣

Σ
�,(1)
fo

⌘2
�
⇣

Σ
�,(1)
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⌘2

2��,(0)

��,(0)

3

7

7

5

.

(5.42)
After expanding the exp functions, to first order one recovers the multiplicative match-
ing scheme, and the equivalent arguments regarding the accuracy apply. The final
distributions are then obtained by adding the different channels

Σmatch =
X

�2B

Σ
�
match +

X

�/2B

Σ
�
fo , (5.43)

where the second sum accounts for channels not corresponding to any structure found
in the physical Born process, but permitted by the jet-clustering algorithm, e.g. the
"other" channel in Sec. 5.4.

An important validation step is the comparison of the expansion of the resummed cross
section to the fixed order result at equal orders in ↵s. The example given for this in
Fig. 5.6 is again for Durham jet scales with various multiplicities, with the Born events
regulated as before,

yn,n�1 > ycut = 0.02 .

The figure first illustrates the derivatives of the cross sections at order ↵s. The
distribution Σ

(1)
res itself is quadratic in L, so its derivative (blue) is linear. Fig. 5.6

shows that the difference to the fixed order result (red) vanishes. The fixed order
result at the next higher order is shown in green. It contains logarithms to fourth,
third and second power as well as terms linear in L, cf. Eq. (2.87). Only the first
two are completely contained in the second order expansion of the resummed result
(orange). This leads to a linear difference in the derivatives with respect to L . After
including the C1 coefficient (purple line), in the same way it is implicitly included in the
matching schemes described above, the ↵2

sL
2 terms are reproduced. This is confirmed

by observing only a constant offset in the derivatives, e.g. the purple and green lines in
the top panels in Fig. 5.6. The difference between these two is shown in purple in the
respective bottom panels and can be confirmed to approach a constant in the soft limit.
This confirms that the matching includes the correct coefficient and indeed achieves
NLL0 accuracy.

2Those references use R to refer to the cross sections that are called Σ here. Following this, the
matching scheme should be called LogΣ scheme. Here the convention from Ref. [II] to use "LogR"
will be used.
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The same test can be done for observables evaluated after soft drop grooming and
for jet observables. The results that have been presented in Ref. [III] and Ref. [IV]
to validate the implementation in those cases are shows in App. A for completeness.
Fig. A.1 illustrates the case of soft drop groomed global event shapes. The analysis for
jet observables is explicitly split up into the gluon channel in Fig. A.2 and the quark jet
contribution in Fig. A.3. They exhibit the same general behaviour as Fig. 5.6, hence
the discussion given above also applies to them.
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Figure 5.6: Fixed-order predictions for y34, y45, and y56. We show the expansion of
Σres to the relevant orders, and the expansion to second order including
the expression approaching the C1 coefficient in the soft limit. The lower
panels show the total difference between fixed order and expansion.
Figure and caption taken from Figure 5 of Ref. [II].
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5.6 Extraction of non-perturbative corrections
There are several ways used in the literature to correct resummed calculations for
non-perturbative effects. Next to dedicated models, cf. for example [141, 309–328], for
specific processes and observables, such corrections can be estimated from Monte Carlo
simulations, cf. Sec. 3.5 for an overview of the relevant models and tools. This usually
involves taking the perturbative input, after the parton shower stage, and comparing it
to the full simulation, including the effects of hadronisation and underlying event and
multiple parton interaction effects.

Applying a correction in this way involves making some implicit assumptions about
the relation between the perturbative stage of the event generator and the resummed
calculation. If they are assumed to be equivalent, the simplest way forward is to take
the ratio between parton level (PL) stage and the hadron level (HL) corresponding to
the full simulation,

R(v) =
d�MC

HL / dv

d�MC
PL / dv

. (5.44)

If resummation and parton shower would be exactly equivalent, the hadron level for the
resummed or matched cross section Σres/match can be obtained by calculating

dΣHL

dv
= R(v)

dΣres/match

dv
. (5.45)

Of course, practically the parton level and the resummation will not be exactly equal.
Otherwise, the parton shower prediction could just be used instead of the analytical
resummed prediction. If they are sufficiently similar, one might however still hope that
applying a ratio of this kind captures the dominant non-perturbative effects.

The above approach has a few weaknesses. First, it assumes that the parton shower
and resummation are relatively closely related. Practically, this leads in particular to
problems related to the region of the observable sensitive to energy scales close to the
parton shower cutoff tcut ⇡ 1 GeV. In this region the two formalism will vary significantly,
since the parton shower stops filling the full phase space. The hadronisation model
however will be tuned to the particular shower with the cutoff, and will tend to fill that
missing phase space. This can lead to an artificially enlarged ratio R between parton
and hadron level.

This can be mitigated by defining a transition operator, corresponding to the conditional
probability for the observable to equal vHL at the hadron level configuration H(P),
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given that it equals vPL at the parton level configuration P

T (vPL, vHL) =

R

dP d�
dP

�
�

vPL � V (P)
�

�
⇣

vHL � V
�

H (P)
�

⌘

R

dP d�
dP

�
�

vPL � V (P)
� . (5.46)

Note that it is not necessarily specified here what exact phase space the parton level P is
integrated over, and how the hadron level H is related to it. Any given implementation
of a parton shower interfaced to a model of non-perturbative effects implicitly defines
them though. The final result is then obtained as

dΣHL

dv
=

Z

du T (u, v)
dΣres/match

du
. (5.47)

If one works with binned distributions, this operator can be made discrete. To obtain
the cross section ∆Σb of a certain bin b with upper edge vb,max and lower edge vb,min,
the integrals would be performed over the region defined by

Θb(C) = ✓(V (C)� vb,min)✓(vb,max � V (C)) . (5.48)

∆Σ
b =

Z

dC
d�

dC
Θb (C) . (5.49)

The probability that an event is at parton level in bin p and at hadron level in bin h is
then given by the transition matrix

Tph =

R

dP d�
dP

Θp (P)Θh

�

H (P)
�

R

dP d�
dP

Θp (P)
. (5.50)

Consequently, the binned hadron level distribution is obtained from the corresponding
parton level via

∆Σ
b
HL =

X

p

Tpb ∆Σ
p
res/match . (5.51)

A second complication is the implicit assumption that the event selection implemented
via Θhard, cf. Eq. (4.15), does not require any non-perturbative correction, i.e. that
any event that passes this cut at parton level also passes it at hadron level, and the
other way around, if an event is outside the considered region at parton level in can
not contribute to the hadron level. An example might be to measure an observable
based on jets in a certain range of the jets transverse momentum pT . This could be
implemented by setting Θhard to

Θhard(J ⇢ B) = ✓(pT,J � pT,min)✓(pT,max � pT,J ) . (5.52)
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A jet at a transverse momentum slightly lower than pT,min might however pick up
additional energy for example from the underlying event, proportional to its jet radius.
Thus it might end up in the measured range of jets and contribute to the distribution
of the observable considered. The approach using a simple ratio could only take this
into account by modifying the cross section by a constant factor.

It is suggested to use a higher dimensional transition matrix to take this effect into
account. In a first step, the resummation is performed over a larger region Θinclusive

of Born events. This range should be inclusive enough such that there is a negligible
probability for Born events that are outside of it at parton level to migrate into the
original measurement region given by Θhard. This might be separated into n regions,

Θinclusive =
n
X

r=1

Θ
r
hard , (5.53)

with the requirement that there is a subset of these regions that form the original
measurement region. For simplicity it will be assumed that those correspond to the
first nhard regions,

Θhard =

nhard
X

r=1

Θ
r
hard . (5.54)

The transition matrix approach can then be extended by defining the probability to
transition from the bin p in region i at parton level to bin h in region j at hadron level.

T ij
ph =

R

dP d�
dP

Θp (P)Θh

�

H (P)
�

Θi
hard (P)Θj

hard

�

H (P)
�

R

dP d�
dP

Θp (P)Θi
hard (P)

. (5.55)

The binned distribution in the region given by Θhard can then be calculated as

∆Σ
b
HL =

nhard
X

r=1

n
X

i=1

X

p

T ir
pb ∆Σ

p,i
res/match , (5.56)

where ∆Σ
p,i
res/match denotes the resummed or matched result for bin b in region i.

The transition matrices can easily be calculated from Monte Carlo simulations if events
are accessible at different stages of the simulation. It should be noted that they of
course still depend on the model used to derive them, however in a milder way than the
ratios. The matrices are based on the conditional probabilities for transitions between
bins, and only depend on the parton shower insofar as it determines what exact phase
space those probabilities are averaged over.
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Case studies

In this final chapter, several studies shall be presented to illustrate the use of the
tools developed in the previous sections. Most of the results have been published,
in Refs. [I-V]. The phenomenological studies in those references were accompanied
by theoretical and technological advancements of the tools described in the previous
sections. The focus in this chapter will be on the methods used in the particular cases,
like the concrete choices of phase space cuts, scales and other ambiguities, and the
final phenomenological results and conclusions. This will naturally to a large extend
be paraphrasing the descriptions and summaries of the relevant sections in Refs. [I-V].
However, particular emphasis will be given to the details that are directly connected to
the developments within this thesis. The typical structure of the analyses performed in
those studies is a division between an analytical calculation and a Monte Carlo study
based on general purpose event generators. Comparisons to Monte Carlo studies form
an important step in the interpretation of the results obtained, in particular in the
cases where no measurement exists yet to compare to. Simulations using SHERPA at
various levels of accuracy were routinely performed within the work of this thesis. A
detailed Monte Carlo study, investigating also the differences to other generators, was
contributed to Ref. [I]. Hence, in the corresponding Sec. 6.1 the used generators and
performed simulations will be introduced in more detail. Ref. [II] used a similar setup
as Ref. [I] for the SHERPA simulation. The other event generator results were usually
contributed by collaborators and will only be discussed as far as they are necessary for
the interpretation of the resummed and fixed order results or provide motivation or
justification for choices made in the semi-analytic calculation. An exception to this is
Sec. 6.4, where, deviating from Ref. [IV], hadronisation corrections are extracted from
SHERPA using the method described in Sec. 5.6. The results are also extended to the
dijet case here. Hence a dedicated simulation was performed in the context of this
thesis. If some parts of the studies were contributed solely by the other collaborators,
but still need to be included here for context, this is of course indicated, which should
however not be taken as a claim that the other parts would not be the result of a
collaborative effort.
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6.1 Soft drop groomed thrust at the

Large Electron Positron collider
Ref. [I] studies an extension of the thrust event shape, as introduced in Sec. 3.1, that
includes the effects of the soft drop procedure described in Sec. 3.3. The precise
definition of the observable is as in Eq. (3.31). The resummation of soft drop thrust
in the e+e� ! jets process was already presented in Ref. [138] in this case. The
fixed order calculation there was performed using EVENT21. Ref. [I] rather focused on
studying the potential of this observable to improve the accuracy of the determination
of the strong coupling constant. No measurement of soft drop thrust was performed at
LEP, or any earlier collider for that matter since soft drop was only introduced into
the literature in [135], well after the last run of LEP. Because of this, the investigation
is based on pseudo data generated from SHERPA. This section will focus mainly on
the event generator methodology, to also serve as exemplary for the equivalent Monte
Carlo studies accompanying the later results.

Motivation

As the previous chapters indicated, the strong coupling constant ↵s is a primary input
to all theoretical efforts in perturbative QCD. There are various ways to determine
its value. The most precise input actually is not entirely from pQCD but is based on
lattice QCD calculations [329–334]. Apart from that, fits of event shape distributions
measured at e+e� colliders play an important role [335–344]. The value recommended
by the Particle Data Group (PDG) is ↵s

�

M2
Z

�

= 0.1179 ± 0.0010 [30]. This result
is strongly determined by the above mentioned lattice calculations. Fits to collider
data often suffer from larger uncertainties. One of those uncertainties comes from
the unknown, or at best estimated, effect of the non-perturbative parton to hadron
transition.

The size of this contribution is illustrated in Fig. 6.1, where a measurement of thrust
by the ALEPH collaboration [345], performed at LEP at a center of mass energy of
91.2 GeV, is compared to predictions from SHERPA and the analytic calculation. Details
on the SHERPA simulation can be found in the next subsection. It is performed once
without non-perturbative corrections (Parton Lev.), and with two different hadronisation
models, the cluster (Cluster Frag.) and the Lund (Lund Frag.) fragmentation model.
The lowest panel illustrates the ratio from the parton level to the two predicted hadron

1I am grateful to my collaborators on Ref. [I] for handling this, as well as the minor changes
implemented with respect to the calculation in Ref. [138]
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−

−

−

−

1 σ

d
σ

d
τ

τ

Figure 6.1: Plain thrust distribution as measured by ALEPH compared to SHERPA at
parton level and with Cluster and Lund fragmentation, and compared to
the nominal resummed distribution matched to NLO. The lower panel
shows the hadronisation corrections as obtained from SHERPA with the
two fragmentation models MEPS@NLO with up to 5 jets at NLO.
Figure and caption taken from Figure 2 of Ref. [I].

levels, indicating that corrections are � 20% for ⌧ < 0.05, making a fit in this region
unpractical. For larger values of thrust, the corrections become smaller and can be as
small as O(1%) for some bins. This is however with a relatively strong dependence
on the hadronisation model used, with the Cluster model generally predicting larger
corrections, at best O(5%). As the middle panel in Fig. 6.1 clearly shows, the Monte
Carlo predictions with either fragmentation model are in good agreement with the
ALEPH data over the full range, whereas the central value NLO + NLL calculation is
at significantly lower values which would need to be compensated by non-perturbative
corrections. As discussed and illustrated in Sec. 3.3 and Sec. 4.5, soft drop grooming has
the potential to significantly reduce those corrections. While thrust without soft drop
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can and has been computed to high perturbative accuracy, NNLO + N3LL [340, 346],
this study is focused on exploring the viability of performing a fit with soft drop thrust
and the extend to which non-perturbative uncertainties are indeed reduced.

Methods

The soft drop procedure and the subsequent calculation of the thrust observable was
implemented using the RIVET [347] package and relying on FASTJET for the jet clustering,
cf. Sec. 3.2. A selection of soft drop parameters,

zcut 2 {0.05, 0.1, 0.2, 0.33}, (6.1)

� 2 {0, 1, 2} , (6.2)

is studied. The soft drop thrust distribution is binned in the same way as the ALEPH

thrust measurement [345]. Based on fits performed for plain thrust [340, 346], the
range

0.06  ⌧SD < 0.25 (6.3)

is considered. The upper boundary is chosen relatively low since the analysis is only
performed at NLO accuracy instead of NNLO in [340, 346]

To simulate the primary Monte Carlo samples, SHERPA version 2.2.5 was used. As
the perturbative input, final states with different parton multiplicities were generated
for an e+e� collider at a center of mass energy of

p
s = 91.2 GeV, and merged with

the MEPS@NLO method in the standard CSSHOWER in SHERPA. The required hard
matrix elements were calculated with the matrix element generators provided with
SHERPA, AMEGIC and COMIX , and virtual amplitudes obtained from OPENLOOPS version
1.3.1. See Sec. 3.5 for an overview of those methods and tools and the corresponding
references.

Hadronisation corrections for the SHERPA samples were modelled with the default cluster
hadronisation, and with the Lund fragmentation model from PYTHIA 6.4. To optimally
fit the available reference data from LEP, the strong coupling was set to

↵s

�

M2
Z

�

= 0.117 . (6.4)

The main parameters of the Lund model were set to values that gave the best description
of data from Ref. [345],

a = 0.3 (PARJ(41)), b = 0.6 GeV�2 (PARJ(42)), (6.5)

� = 0.36 GeV (PARJ(21)) .
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To validate the size of the hadronisation corrections that are expected for soft drop
thrust, several additional Monte Carlo samples were obtained. The angular-ordered
parton shower implemented in HERWIG 7.1.4 was used, as well a the default parton
shower in PYTHIA 8.235 with the Lund fragmentation model. In addition, the SHERPA

implementation of the Dire parton shower was used, with otherwise the same setup as
described above for SHERPA. See Sec. 3.5 for a more detailed overview of the various
tools.

This test was performed based only on LO 2 ! 2 matrix element as input to the
various parton showers and fragmentation models. The main reason for this is the large
number of different generators studied and the longer computation times required for
matched and merged calculations. It is however justified since the goal is mainly to
detect differences in the non-perturbative modelling.

It can be verified from Fig. 6.2 that the modelling is consistent within this generator
selection. The lower panels of the various plots show the ratios between the full
prediction and the parton level of the respective generator. In the central region, they
are in all cases of the order of 10%. Another observation is that the difference between
the default SHERPA shower with cluster and Lund fragmentation ("Sherpa CS Cluster
Frag." and "Sherpa CS Lund Frag.") in most cases, in the central region, covers the full
spread of the predictions between the different generators. Based on this observation,
the main study is performed using only this shower, and uncertainties associated with
hadronisation corrections are obtained by taking an envelope of the predictions based
on the cluster and Lund model.

Two different samples were obtained in this SHERPA setup, with a different maximal
number of final state partons included in the MEPS@NLO merging. The first sample,
with up to 5-jet matrix elements at NLO, intended to be used as pseudo-data for the
fits of the analytic calculation. Results from this sample were already previewed in
Fig. 6.1, validating its use in this scenario.

While the Monte Carlo can be run relatively quickly to produce basically arbitrary
statistical precision, an experimental analysis might not achieve that, in particular not
a reanalysis of the existing LEP data. In addition, the systematic uncertainties that
might be present due to for example detector effects are not represented in the Monte
Carlo at all. In order to obtain a realistic set of pseudo data, the central values were
taken from the SHERPA sample mentioned above. They supplied a correlation matrix
between bins i and j

Vij = �ijs
2
stat +min

⇣

s2sys,i, s
2
sys,j

⌘

(6.6)
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Figure 6.2: Predictions from general-purpose Monte Carlo generators for soft drop
thrust with various zcut and � values at parton shower accuracy. Shown
are nominal distributions at hadron level and the ratios of hadron level to
the respective and underlying parton level predictions.
Figure and caption taken from Figure 11 of Ref. [I].
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obtained from the ALEPH measurement of plain thrust, according to

sstat = sALEPH
stat

s

d�MC / d⌧

d�ALEPH / d⌧
(6.7)

ssys = sALEPH
sys . (6.8)

That is, the systematical uncertainties ssys correspond to the ALEPH ones, while the
statistical uncertainties sstat are rescaled by the change in bin height, reflecting the
changed number of events N in that bin, assuming that the error will scale Poisson-like
s /

p
N .

The analytic calculation is fit against these pseudo data by minimising the �2 function
defined by

�2 =
X

i,j

∆ijV
�1
ij ∆ij , (6.9)

where the sum is over the pairs of bins i, j and the difference between (pseudo-)data
and theoretical values, normalised to the respective inclusive cross section, given by

∆ij =

✓

1

�

d�

d⌧
(⌧i)

◆

exp

�
✓

1

�

d�

d⌧
(⌧i)

◆

th

. (6.10)

The second sample has up to 3 hard matrix element jets. It was used to obtain
hadronisation corrections for the analytic calculation. This was in this instance done by
simply taking the ratio between hadron and parton level Monte Carlo and multiplying
the analytic calculation by that ratio, cf. Eq. (5.45). The difference between using
the ratios of the cluster and Lund models is entered as an uncertainty into the fit, in
addition to the other theoretical uncertainties.

This is significantly simpler than the procedure advertised in Sec. 5.6 using a transition
matrix. However, in this case the measurement is relatively inclusive, in the sense that
all events contribute to the histogram somewhere and there is no way for hadronisation
corrections to push the events out of the measurement region, or into it from the
outside. Additionally, in the region where the fit is ultimately performed, the correction
in particular for the groomed observables are not that large anyway, and one might
expect to get the same result from the two methods, using a transition matrix or a
ratio, anyway. That this is indeed the case is illustrated in Fig. 6.3, where those two
methods are applied to the analytic calculation using hadronisation corrections from
the cluster model. Different values of ↵s are shown to illustrate that this statement
does not depend on its value.
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Figure 6.3: Comparison of different methods to apply hadronisation corrections ob-
tained from Monte Carlo to the analytic calculations, for plain thrust
(left) and soft-drop thrust (right) with zcut = 0.2, � = 0. The corrections
are obtained from simulations at parton shower accuracy and are applied
either by multiplying the analytic calculation at various ↵s values by the
ratio from Monte Carlo, as described in the main text (solid) or alterna-
tively by applying a bin-by-bin transition matrix obtained from the same
Monte Carlo run (dotted). The cluster hadronisation model is used in all
cases, the blue band indicates the uncertainty assigned to the calculation
for ↵s = 0.117 based on the difference to using the Lund model. The
bottom panel shows the ratio between the distributions using the two
methods for equal values of ↵s.
Figure and caption taken from Figure 12 of Ref. [I].

An implicit assumption in obtaining hadronisation corrections as ratios from Monte
Carlo, as mentioned in Sec. 5.6, is that the analytic calculation and the parton level of
the generator should not be too different. Otherwise, one would need to conclude that
significantly different effects are missing in the respective perturbative inputs, which
would inevitably to some extend be absorbed into different hadronisation corrections.
At any rate, the practical performance would likely suffer from too big of a miss match.
For this reason, a comparison is presented in Fig. 6.4. The ratio between analytic
calculation and Monte Carlo prediction for the parton level is flat for most choices
of zcut and � over a large range corresponding to the fit region, cf. Eq. (6.3). This
validates the use of hadron to parton ratios for the purpose of this study.

In Ref. [I], an additional analytic approach to hadronisation correction was explored,
based on earlier work in [141, 309, 322]. This model includes an additional parameter Ω,
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Figure 6.4: Comparison of NLO + NLL matched predictions for soft-drop thrust to
SHERPA MEPS@NLO simulations with up to 3 jets at NLO at parton level
and with cluster and string fragmentation applied.
Figure and caption taken from Figure 3 of Ref. [I].
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representing an energy scale for non-perturbative physics. This was fit simultaneously
with ↵s, while the Monte Carlo based model only has one free parameter.

Results

The resulting values of ↵s from performing fits to the pseudo data are illustrated in
Fig. 6.5. In each sub-figure, the points from the left to right correspond to fits based on
predictions of increasing accuracy, first only at NLO fixed order (FO), then including the
effects of resummation (Res) and finally with the two versions of taking into account
non-perturbative corrections (NP (MC) and NP (ana)). The three plots show the
different � values and all contain the same result for plain thrust, i.e. thrust without
grooming, in black and the result for the respective � value with different zcut according
to the coloured legend.

A significant impact is visible from including the resummation, i.e. in going from the
"FO" to the "Res" column. This is true for ungroomed and groomed thrust, though
somewhat reduced for the most aggressive choices of grooming parameters at � = 0.
In the groomed case, the effect of additionally including non-perturbative corrections is
generally reduced compared to the ungroomed case. The uncertainties are however not
observed to reduce significantly.

Fitting the plain thrust to the pseudo data leads to a central value of ↵s(M
2
Z) = 0.1248.

The values obtained with smallest zcut value considered here are consistent with that,
ranging from ↵s(M

2
Z) = 0.1211 for � = 0 to ↵s(M

2
Z) = 0.1305 for � = 2. With

increasing zcut, the best fit value is generally decreasing for a given value of �. The
smallest central value is obtained for � = 0 with zcut = 0.2 and zcut = 0.33, where
in both cases the best fit is obtained for ↵s(M

2
Z) = 0.111. As can be read of from

Fig. 6.5, the results are all consistent with each other when taking into account the
uncertainties.

The overall picture seen for the Monte Carlo based hadronisation corrections is confirmed
by the analytic model, however with some exceptions and outliers. Generally, the best fit
values tend to be smaller than what is obtained for the equivalent grooming parameters
using hadronisation corrections from Monte Carlo. As this model is not the main point
of consideration here, it shall just be mentioned that, after Ref. [I] appeared, a different
approach to include hadronisation corrections in soft drop groomed observables has
been published in Ref. [327]. Developments along those lines might lead to a more
consistent picture in the future.
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Figure 6.5: Results for fits of ↵s

�

M2
Z

�

to Monte Carlo pseudo data using theoretical
predictions at different levels: FO for NLO, Res for NLO+NLL and NP
for the inclusion of non-perturbative effects. The non-perturbative effects
are modelled based on either the Monte Carlo based hadron-to-parton
level rations (NP (MC)) or an analytical model with a single parameter Ω
(NP (ana)). The band indicates the total uncertainty, the shaded region
displays the hadronisation-related uncertainty.
Figure and caption taken from Figure 6 of Ref. [I].

As a final point, Fig. 6.6 illustrates analytical predictions using the best fit value of ↵s

for the respective distribution, for the full selection of soft drop parameters � and zcut,
compared to the generated pseudo data. It is evident that the best fit predictions are
indeed in excellent agreement with the data they are based on, indicating a high quality
of the fits. Stronger deviations are visible for larger values of ⌧SD, where fixed order
corrections become important.
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Figure 6.6: Pseudo data (SHERPA MEPS@NLO 2� 5j) and NLO + NLL results with
best-fit values for ↵s

�

M2
Z

�

and the analytic (red) and Monte Carlo (blue)
hadronisation corrections. Uncertainties of the pseudo data are determined
by rescaling of the uncertainties for the ALEPH ungroomed thrust data.
Figure and caption taken from Figure 8 of Ref. [I].
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6.2 Multi-jet rates at the

Large Electron Positron collider
The results in this section are based on Ref. [II]. The goal is to explore the colour
structures arising at high jet multiplicities in e+e� annihilation. This is achieved by
studying the jet resolution scales, yij, as defined in Eq. (3.25), for the Durham kt
cluster algorithm. The study is performed at a center of mass energy of the collider
corresponding approximately to the Z pole mass ⇡ 91.2 GeV. They are particularly
suited for this, as their definition is easily extended to various multiplicities.

Motivation

Durham jet resolution scales are an important and interesting observable used in
QCD phenomenology. They are actively used in event generator tuning and validation
[348, 349], and formed an integral part of the LEP program [350, 351]. In particular
the three jet resolution scale y23, like thrust in the previous section, is heavily used in
the context of ↵s extractions [338, 339, 342, 352], likewise are simultaneous fits to
higher jet resolution scales [353].

For the three jet scale, calculations are available at high accuracy of NNLO+NNLL [354],
achieved in the ARES [355, 356] extension of the CAESAR formalism used in this thesis.
The focus here will however be on reaching NLL accuracy for the higher multiplicities,
where studies are limited to fixed order calculations at NNLO, while the resummation
accuracy is limited [99, 348].

A special motivation to explore higher multiplicities are the presence of non-trivial colour
correlations in this case, as compared to the case with 2 partons in the Born process.
This is of particular interest in the light of attempts to include such corrections in
parton shower algorithms. Those algorithms conventionally work formally by neglecting
corrections in 1/Nc. Recent developments to go beyond that include [357–365] as
well as Ref. [VI]. The results presented here can be useful as benchmarks for such
improved algorithms and to gauge whether the subleading colour corrections explored
in those works can be expected to be the dominant effects missing in conventional
parton showers, at least for the jet rates as defined here. A particular emphasis will
hence be put on also deriving predictions in the large Nc limit.
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Methods

The goal here is to study the n-jet rate as a deviation from a final state with n � 1
hard jets. To achieve this, the phase space is restricted by requiring

yn�1,n > ycut = 0.02 . (6.11)

The choice of ycut is a compromise, with a too large cut reducing the cross section
significantly, while a too small cut would compromise the stability and validity of the
calculation.

A complication relative to the calculation of an observable vanishing in the two jet limit
is the fact that there are potentially a lot more different physical scales involved in a
multijet process. This is of course somewhat negated by the requirement of ycut above,
but still just setting all scales to Q =

p
s as one would do in e+e� ! qq̄ seems too

simplistic. This is a problem well explored in the context of merging prescriptions for
parton showers. The strategy here is to mimic the CKKW prescription as described in
Sec. 3.5. The relevant picture is that of a forward evolution from a 2 parton final state,
where subsequent emissions happen at scales corresponding to their relative transverse
momenta, which are estimated by the Durham jet resolutions of lower multiplicities.
This leads to

↵s

�

µ2
R

�n�2
= ↵s

�

y23Q
2
�

· · · · · ↵s(yn�1,nQ
2) . (6.12)

For the purpose of setting the scale in the resummed calculation, Eq. (6.12) can be
solved analytically assuming leading order running. In terms of the scale set by the
Landau pole, cf. Eq. (2.36), one obtains

µ2
R = Λ

2
QCD exp

"

Qn
i=3(1� �i)

1/(n�2)

↵s�0

#

, (6.13)

with �i = ↵s�0 ln yi�1,i corresponding to the various resolution scales present in the
hard part of the event. The resummation scale is assumed to be set by the smallest
resolution scale of the Born jets, i.e.

µ2
Q = yn�1,nQ

2 , (6.14)

for the resummation of yn,n+1. This reflects the picture of subsequent emissions, where
a potential evolution would have started with the two parton kinematics and continued
until that scale.

The procedure described in Sec. 5.1, in particular Eq. (5.2) is used to set xv. Since dl
is the same for all legs l, dl = d, this means xv = d = yn�1,n. At last, the endpoint in
Eq. (5.1) is set to

ymax = min(ykin, yn�1,n) , (6.15)
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with ykin the maximal kinematic value of yn,n+1. The second condition requires that
the new jet is indeed at a smaller scale the previous ones, yn,n+1 < yn�1,n, for scale
choices where this is not trivially the case.

The results presented, here and in Ref. [II], are for y34, y45 and y56, i.e. the 4-, 5- and
6-jet resolution scales, at a center of mass energy of

p
s = 91.2 GeV. Uncertainties

are estimated by varying µR, µQ as well as p from Eq. (5.1), by factors of 0.5 and 2.
Those variations are carried out independently and the final uncertainty is obtained by
considering the envelope of all predictions. The LogR scheme Eq. (5.42) is used to
match the resummed predictions to the fixed order calculation at LO and NLO. The
difference to other matching schemes, such as the multiplicative scheme, was found to
be negligible relative to the uncertainties considered, hence no specific uncertainty for
the matching is included in the final results.

These results are compared against state of the art Monte Carlo predictions at parton
level. SHERPA was used to merge simulations both at MEPS@LO and MEPS@NLO

accuracy, with the LO calculation including up to 5-parton matrix element. The NLO
sample includes one-loop corrections for the 2,3 and 4 parton final state, and additionally
the 5 parton matrix element tree level. In both cases, the merging parameter Qcut, cf.
Sec. 3.5, is set to

Q2
cut

E2
CMS

= 10�2 . (6.16)

Hadronisation corrections in SHERPA were modelled in the default cluster model imple-
mented in SHERPA and via the string fragmentation model as implemented in PYTHIA 6.4.
Additional Monte Carlo samples were produced using PYTHIA 8 with the VINCIA antenna
shower. It is matched to matrix elements obtained from MADGRAPH including up to 3
final state partons at one-loop accuracy and emissions leading to matrix final states
with up to 6 partons are corrected to the exact LO matrix elements via matrix-element
corrections. The matching scale regularising the higher multiplicity matrix elements,
with 5 and 6 final state particles, was set to

Qmatch

ECMS

= 0.05 . (6.17)

Non-perturbative corrections in this case are obtained via the standard Lund model in
PYTHIA 8.

See Sec. 3.5 for an overview of the event generation methods and the corresponding
references.
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Results

Fig. 6.7 shows the main outcome of this calculation, at LO + NLL0 (greed dashed line)
and LO + NLL0 (red solid line) accuracies. The yellow band illustrates the theoretical
uncertainty, determined from scale variations as described in the previous section, of the
LO matched calculation. This is significantly reduced when considering the calculation
matched to NLO, as the orange band shows.
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Figure 6.7: Resummed predictions for the Durham jet-resolutions y34, y45, y56 in
electron-positron annihilations at

p
s = 91.2 GeV. The lower panels

show the local NLO K-factor.
Figure and caption taken from Figure 4 of Ref. [II].

This reduction of uncertainties holds for the peak region of all three distributions. In
this region, the effect of the NLO corrections on the central value is rather small in all
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Figure 6.8: Durham splitting scales yn,n+1 at NLO+NLL0 accuracy, in the NC ! 1
limit, and in the improved LC scheme. The lowest panels show the
corresponding ratios additionally at LO + NLL0 accuracy and for the
resummation without any matching.
Figure and caption taken from Figure 6 of Ref. [II].
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cases, such that the main effect is indeed the reduction in uncertainty. For y34, this
statement holds for the whole region where the distribution is appreciably different
from zero. For the higher multiplicities, the NLO corrections are larger away from the
maximum of the distribution. This is in particular in the region where the kinematic
endpoint is approached. In any case, the NLO matched prediction stays within the LO
uncertainty band, consistent with overall convergence of the perturbative series.

Fig. 6.8 aims to asses the effect of subleading colour corrections. Apart from the
strict t’Hooft large-NC limit, this includes the improved large-NC scheme described in
Sec. 5.1. The three ratio plots are calculated for the two different colour approximations,
with respect to the full prediction, at different levels of perturbative accuracy. The
strict NC ! 1 limit indeed appears to imply a rather strong effect on the NLL result,
illustrated in the lowest panels in Fig. 6.8. Already here however, the deviation between
the full colour and improved leading colour results is rather small, in particular for y34
away from the endpoint region. For the higher multiplicity jet rates, larger effects are
still visible at this accuracy.

After including LO and NLO matching in the middle two panels however, the improved
leading colour scheme agrees with the full colour calculation for all multiplicities
considered here to within a few percent. The only exception to this statement is the
very soft tail of the y56 Durham scale. The large effects of taking the full large NC

limit however remain at least with LO matching, only at NLO is the agreement between
full colour and strict leading colour within the uncertainty of the full calculation.

As described in the motivating paragraph, one might hope that those observations can
guide the further development of parton showers, that traditionally operate in some
version of a leading colour approximation. Usually, those approximations are closer to
the improved leading colour prescription used here than to the strict t’Hooft NC ! 1
limit. This indicates that the gain of potentially including subleading colour corrections,
and eventually reaching full colour accuracy, might be relatively small for this kind of
observable. This is in particular the case since matching and merging in parton showers,
as done in the samples used here, is a standard technique, and correspondingly the
matched comparisons in Fig. 6.8 are perhaps the more relevant ones.

In any case, the resummed result is shown again together with the results from the
SHERPA samples, with merging at LO and NLO, in Fig. 6.9. With regards to the
observations in the last paragraph, one notes that the deviations between parton shower
and resummed result are neither quantitatively nor qualitatively similar to the full colour
corrections. In general, the predictions are in good agreement, considering that no
specific uncertainties are determined for the shower but those would have to be assumed
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Figure 6.9: Comparison of resummed NLO + NLL0 predictions for y34, y45 and y56 to
parton-level parton-shower simulations from SHERPA and VINCIA [. . . ].
Figure and caption taken from Figure 7 (left) of

Ref. [II].

to be of a similar size to the uncertainties of the resummation. The additional results
from VINCIA support those conclusions.

Since no actual data are available for this particular variation of the Durham jet scales,
no hadronisation corrections were obtained in a form that could be applied to the
resummed calculation directly. Nevertheless, the qualitative behaviour and general size
that can be expected for them can be gauged by comparing the parton and hadron
levels of the Monte Carlo samples introduced before. This comparison is shown in
Fig. 6.10, with the two options for the hadronisation model in SHERPA as described
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Figure 6.10: Parton shower predictions from SHERPA and VINCIA at parton level
compared to the corresponding hadron level results. See text for details.
Figure taken from Figure 7 (right) of Ref. [II].

before.

The non-perturbative corrections are certainly non negligible for any of the multiplicities.
The modelling is qualitatively similar between SHERPA and VINCIA, although the two
models within SHERPA are significantly more similar to each other than to VINCIA. The
soft end of the distributions is in all cases significantly suppressed. As one might expect,
no large corrections are visible in the hard tail. Overall, this leads to substantially
narrower distributions. While there are quantitative differences between SHERPA and
VINCIA of the order of 10% up to 20% depending on the region considered, they agree
reasonably considering that no uncertainty is estimated in this case.
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6.3 Soft drop groomed event shapes at the

Large Hadron Collider
The goal of Ref. [III] was to promote the use of soft drop grooming in the study of
global event shapes at hadron colliders. This is particularly relevant in the context of
potentially measuring those event shapes based on particle tracks. It can be noted
that most analyses of event shapes by the LHC experiments, CMS [366, 367] and
ATLAS [368, 369], are based on jet momenta. This prescription differs quite a lot
from what is assumed in a resummed calculation as it is performed here, making it
inapplicable. The treatment of systematic uncertainties is however simplified with jets
that just cover a known area in the ⌘ � � plane of the detector. Analyses based on
particle tracks are however more susceptible to uncorrelated soft corrections that would
be parametrised by the multiple parton interactions (MPI) or underlying event (UE)
models in event generators. The idea behind the study in Ref. [III] was to indeed use
particle tracks in the definition of the observables but combat those corrections by soft
drop grooming.

Motivation

The suffering of global event shapes measured on particle tracks from large non-
perturbative corrections is illustrated in Fig. 6.11. The figure shows the transverse
thrust, as introduced in Eq. (3.19), obtained from SHERPA at MEPS@NLO accuracy. As
before, see Sec. 3.5 for the generator details and references.

The two plots correspond to two different hard energy scales, set by the minimal
transverse momentum of the leading jet plead

T > 200 GeV and plead
T > 500 GeV. The

full phase space is the same as specified later, cf. Eq. (6.18) and Eq. (6.19) and the
explanation given to them in the text. Naively, the expectation is that events associated
with higher energy scales would be affected by non-perturbative corrections less, in
accordance with asymptotic freedom. To investigate those effects, the SHERPA sample
was analysed at three different levels. At parton level (PL, shown in blue) only the
effects of the parton shower are included. The second level also includes the additional
particles produced by the underlying event model, this is referred to as PL+UE (red).
The full prediction (HL+UE, shown in green) also models the transition from partons
to hadrons.

It is clearly visible from Fig. 6.11 that there is a large impact of including the underlying
event in addition to the parton shower effects. The distribution receives a significant
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Figure 6.11: The transverse-thrust distributions for events with a leading-jet trans-
verse momentum plead

T > 200 GeV (left) and plead
T > 500 GeV (right).

[. . . ] Shown are MEPS@NLO predictions obtained with SHERPA at parton
level (PL), with the underlying event included (PL+UE), and at full
hadron level (HL+UE). The lower panels show the ratios with respect
to the PL+UE prediction.
Figure and caption taken from Figure 1 of Ref. [III].

shift towards larger values of ⌧SD. This observation is true for both choices of transverse
momentum. The numerical size appears somewhat reduced for the plead

T > 500 GeV
selection. If for example measured by the relative change in the peak height it is
reduced from ⇡ 30% in the lower transverse momentum selection to ⇡ 25%. In any
case, the underlying event effects can in no sense be treated as a minor correction or
uncertainty. Additionally including hadronisation corrections has a much smaller, yet
noticeable effect. In the region where most of the overall cross section is distributed, it
is limited to ⇡ 10%, but can be much larger in the soft tail region. Again, the effect is
somewhat smaller for the distribution with larger physical scale, but not appreciably
different in terms of the qualitative behaviour.

It is clear from this that, if one intends to measure global event shapes on charged
particle tracks, non-perturbative corrections and in particular the underlying event
need to be either very well understood or mitigated. As a way to avoid them, global
event shapes are studied here with the inclusion of soft drop grooming, cf. Sec. 3.3
for the method and Sec. 4.4 for the details on the resummation of such observables.
A pre-study considered a larger variety of event shapes2, confirmed that grooming

2I am grateful to my collaborators on Ref. [III] for conducting this pre-study, that also considered
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generally achieves the goal of reducing the impact of the underlying event corrections
for sensible choices of the grooming parameters, and settled on transverse thrust, cf.
Eq. (3.19) and Eq. (3.33) for the version after soft drop, as the main example.

Transverse thrust is one of the standard event shapes studied in hadron-hadron collisions,
by both the Tevatron [370] and LHC experiments [366–369]. On the theoretical side,
it has been studied as part of automated calculations at NLO [371] and NLO + NLL0

[279]. Dedicated analyses in soft-collinear effective field theory have reached NNLL
accuracy [372, 373]. The extension to a calculation based on a soft drop groomed final
state for transverse thrust however is one of the new results, to be presented here and
published in Ref. [III].

Methods

The analysis is based on studying event shapes measured in an inclusive dijet selection
in proton-proton collisions at a center of mass energy of

p
s = 13 TeV. The phase

space is specified by selecting two anti-kt jets with a radius of R = 0.4, cf. Sec. 3.2.
They are required to be in a central rapidity range,

|yj| < 1 . (6.18)

The Born type events for the dijet process are severely restricted in their kinematics due
to energy and momentum conservation. In particular, the two final state partons that
form the jets are back-to-back, i.e. have opposite momenta. This strict requirement is
broken by any kind of radiation outside of those jets that could contribute to momentum
conservation, leading to instabilities if this kind of process is considered beyond fixed
leading order. To avoid these instabilities, the transverse momentum requirement is
formulated as an asymmetric cut,

plead
T � pT,min , (6.19)

p2nd
T � pT,min

2
. (6.20)

In order to cover a range of physical scales, the two choices pT,min = 200 GeV and
pT,min = 500 GeV are considered. It should be noted again at this point that the
observable calculation is ultimately performed on all final-state particles, as long as
the final state contains jets fulfilling those requirements. The soft drop procedure, cf.
Sec. 3.3, is applied to the hemispheres defined by the original thrust axis, cf. Sec. 3.1.

different technical details in the application of soft drop grooming to the full final state in hadron-hadron
collisions and the exact definition of the observable in this case.
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The radius parameter appearing in Eq. (3.29) is fixed at RSD = 1, and the other
parameters of the groomer are considered in representative ranges

zcut 2 {0.1, 0.2, 0.3} , (6.21)

� 2 {0, 1, 2} . (6.22)

For the fixed order calculation and the resummation, the scales are chosen to be
identical. They are identified with half of the scalar sum of the transverse momenta of
all partons in the final state

µ =
1

2
HT ⌘ 1

2

X

i

pt,i . (6.23)

The resummation is performed with the usual treatment of the endpoint- and transition
point corrections, cf. Sec. 5.1. The value of the endpoint is numerically extracted from
the NLO calculation. The value of xv in Eq. (5.1) is chosen according to Eq. (5.2),
but as explained in Sec. 5.1 only including the final state legs in the sum. This is
appropriate since, as argued in Sec. 4.4, the groomed observables are insensitive to
initial state radiation.

The perturbative uncertainties are estimated by taking the envelope of a standard
7-point variation of the renormalisation and factorisation scales

(µvar
R /µR, µ

var
F /µF ) 2 {(0.5, 0.5), (0.5, 1), (1, 0.5), (1, 1), (1, 2), (2, 1), (2, 2)}. (6.24)

The resummation scale is also varied by a factor of 0.5 and 2 with the central choice of
the µR and µF . An additional variation is obtained by changing the parameter p in
Eq. (5.1) from the default 1 to p = 2. The overall envelope of all variations is shown
as uncertainty band in the following.

Results

The main results that shall be discussed within this thesis are the resummed predictions
for transverse thrust after soft drop grooming. Ref. [III] also presents an extensive
discussion of Monte Carlo results and a corresponding comparison. Some examples of
this comparison will be followed up on at the end of this section.

The results for the somewhat softer pT > 200 GeV selection are compiled in Fig. 6.12. It
summarises the predictions made at NLO, NLL and the matched NLO+NLL0 accurate
predictions. The various plots correspond to different choices of grooming parameters.
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Figure 6.12: NLO + NLL0 predictions for groomed transverse thrust for � 2 {0, 1, 2}
(columns) and zcut 2 {0.1, 0.2, 0.3} (rows) for the pT,min = 200 GeV
event selection in comparison to the NLO result and the pure NLL
resummation.
Figure and caption taken from Figure 8 in Ref. [III].

Note that all predictions are scaled by the leading order cross section �LO = �(0) + �(1),
rather than their respective cross sections. With this choice the NLL and NLL0 cross
section are expected to approach the same value in the soft limit, which would not be
the case if the NLL cross section was scales by �(0). Note this does not apply to the
NLO+NLL0 cross section, due to the additional logarithms / ↵2

sL present at NLO but
not at NLL or NLL0.
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The left column of Fig. 6.12 collects the results for � = 0, with increasing values of
zcut 2 {0.1, 0.2, 0.3}. All distributions show marked features when grooming starts to
take effect at the transition point ⌧SD ⇡ zcut. This produces a significant peak with the
cross section dropping of suddenly to the left of the transition, followed by an almost
flat distribution towards smaller observable values. Note that the LO expectation in
this range is indeed a constant. The matched distribution is rather close to the fixed
order NLO calculation it is matched to, with only very little effect of the resummed
calculation. This parameter choice might therefore be preferred in exploring precision
fixed order calculations, cf. [374] for example.

In the middle column, � is increased to � = 1. The features around the transition
point are significantly reduced. There is still a pronounced edge visible in the zcut = 0.1
case, while the zcut = 0.2 and zcut = 0.3 distributions are rather smooth. Towards
the endpoint region, the matched result is dominated by the fixed order calculation
and both approach the same value. In the soft tail however, there is a clear deviation
to the NLO calculation, and the NLL resummed prediction is rather mimicked by the
matched distribution. Note that, as discussed before, the matched calculation contains
additional logarithms from the NLO calculation.

The � = 2 case is represented by the third column in Fig. 6.12. The trend observed
when going from � = 0 to � = 1 continues, the features around the transition point
are washed out even more, also for the smallest zcut = 0.1 considered here. As required,
the soft and hard regions of the matched distribution are dominated by the fixed order
and resummed calculation similar to the � = 1 case. Note that the y-axes are limited
to positive values. The NLO calculation is here visibly approaching negative values in
the soft limit and resummation is clearly needed to even obtain a physical distribution.

Fig. 6.13 contains the same plots as discussed above, but for the pT > 500 GeV
selection. In principle the same qualitative comments apply to the calculation with
this somewhat harder scale. It should be noted however that the same numerical soft
drop parameters are not equivalent across different scales in terms of the expected
phenomenology and the ability to suppress non-perturbative corrections. In terms of
the anatomy of the perturbative calculation as discussed here, it is however appropriate
to consider equal values.

Comparing to Fig. 6.12, the maximum height of the distributions is lower for the
pT > 500 GeV than the one with the same parameter choice for pT > 200 GeV. The
effect is the strongest in the � = 0 case, which exhibits the most pronounced peak
structures. In particular the � = 0, zcut = 0.3 distribution, corresponding to the
most aggressive choice of grooming parameters made here, is significantly suppressed
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Figure 6.13: NLO + NLL0 predictions for groomed transverse thrust for � 2 {0, 1, 2}
(columns) and zcut 2 {0.1, 0.2, 0.3} (rows) for the pT,min = 500 GeV
event selection in comparison to the NLO result and the pure NLL
resummation.
Figure taken from Figure 9 and caption adapted from

Figure 8 in Ref. [III].

and shows almost no remaining features. Otherwise, it still applies that the � = 0
matched cross sections in the leftmost column are almost entirely determined by the
fixed order calculation at NLO, in the range of transverse thrust considered here. In
the distributions corresponding to � > 0, the matched distribution interpolates again
between the fixed order result and the resummed cross section within the visible range.
The need for resummation to obtain a physical distribution is similarly demonstrated
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for the two larger � choices.

To summarise the findings of Ref. [III], Fig. 6.14 shows the comparison of a selection
of the resummed results to Monte Carlo simulations made with SHERPA at MEPS@NLO

accuracy. The simulation is analysed at parton level and at full hadron level including
the underlying event. The analysis of the hadron level is restricted to charged particles
that would be visible as tracks in a particle detector.
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Figure 6.14: The groomed transverse-thrust distributions for events with a leading-jet
transverse momentum plead

T > 200 GeV, with zcut = 0.3 and � = 1
(left) and plead

T > 500 GeV, with zcut = 0.05 and � = 1 (right). Shown
are results at NLO + NLL0 accuracy as well as MEPS@NLO predictions
obtained with SHERPA at parton level (PL), full hadron level (HL+UE),
the latter based on charged tracks with ptrack

T > 500 MeV. In all cases
we only include final-state particles with |y| < 2.6 in the observable
evaluation. The lower panels show the ratios with respect to the HL+UE
prediction.
Figure and caption taken from Figure 17 in Ref. [III].

The distributions shown here correspond to the pT > 200 GeV selection with � = 1
and zcut = 0.3 on the left. The pT > 500 GeV selection is represented by the � = 1,
zcut = 0.05 parameter choice on the right. The soft drop procedure here allows for an
almost complete removal of the transition from parton level to even the charged hadron
level. One might thus hope to be able to directly compare the resummed calculations
to data measured on charged particle tracks. In the first case shown in Fig. 6.14 one
then could validate both shower and analytic predictions. The right hand plot in the
same figure illustrates a case where sufficiently precise data could discriminate between
the two predictions, potentially guiding further developments in either case.
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6.4 Jet substructure at the

Large Hadron Collider
In this section the study of jet substructure observables will be explored at the example
of the jet angularities introduced in Eq. (3.28). Observables of this kind are measured
at the various LHC experiments, cf. [144, 145, 375]. This study will follow the precise
measurement prescription used by the CMS collaboration in the preliminary measurement
documented in Ref. [145]. The results can hence directly be compared to those data.
Ref. [145] measured the angularities in events with two jets (dijet) and in events with a
Z boson and an additional jet (Z+jet). The theoretical prediction in the Z+jet case
were already presented in Ref. [IV].

Motivation

Jet angularities are a standard way to probe the internal structure of jets. With the
adjustable parameter ↵ they conveniently allow one to probe different regions of phase
space with similar definition of observables. They are routinely used as benchmark points
in studies on the differences between quark and gluon jets, cf. the relevant sections
in [376–378] for example. Improving the understanding of this both in theoretical
calculations and modelling [379–383], cf. also Refs. [VIII,IX], are ongoing research
efforts. To test tools in regards to this, one needs to obtain experimental samples that
are actually expected to be enhanced in either quark or gluon jets. The process where
a jet is produced in association with an electroweak Z boson at Born level receives a
larger contribution from diagrams where the final state jet is a quark jet. For two jet
production, at the LHC, the larger contributions tend to come from gluon jets. This
statement is somewhat dependent on the phase space point considered however. In
general, more central jets tend to be more strongly dominated by gluons. To study
the differences of quark and gluon jets, it is hence a useful notion to treat the Z+j
process as a proxy for quark jets and the more central dijet process as a proxy for gluon
jets. The differences between the more central and more forward dijet can contain
additional information. The basis of such studies are precise predictions for the various
jet selections, that will be the topic of this study. A potential use case in the context
of PDF fits was outlined in [378]. This idea is further explored in Ref. [V]. The general
idea here is that, at LO in the Z+jet case, the final state flavour also determines the
initial state. If the jet is a quark jet, the initial state has to contain a gluon, whereas a
gluon jet is arising from two quarks in the initial state. Since the distribution of the
angularities is different for quark and gluon jets, a cut at a specific value can generate
a sample that is additionally enhanced in quark jets. This sample, at LO, would then
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receive a larger contribution from the gluon PDF and would allow to determine it
more stringent. The analysis presented in the following contributes to the thorough
theoretical understanding that is needed for a practical application of this idea.

Methods

As mentioned earlier, the event selection will follow Ref. [145] (and Ref. [IV] in the
Z+jet analysis, which in turn used Ref. [145]). For the Z+jet case, the Z bosons
is assumed to decay into muons. They are required to have a minimal transverse
momentum pT,µ and be sufficiently central in terms of their rapidity ⌘µ,

pT,µ > 26 GeV ,
�

�⌘µ
�

� < 2.4 . (6.25)

To select muon pairs from Z decays, the invariant mass of the combined momentum is
required to be in a window around the Z mass,

70 GeV < mµ+µ� < 110 GeV . (6.26)

Like the individual momenta, also the combined momentum of the muons should pass
a certain threshold,

pT,µ+µ� > 30 GeV . (6.27)

The jet is obtained via anti-kt clustering, cf. Sec. 3.2, with radius parameter R = 0.4
and R = 0.8. The leading jet, i.e. the one with the largest transverse momentum, is
the one on which the measurement is performed. It is also required be relatively central,

�

�yjet

�

� < 1.7 . (6.28)

The Z boson and the jet are required to have a large angular separation in the transverse
plane,

�

��Z � �jet

�

� > 2 . (6.29)

In addition, it is required that they are of similar transverse momentum, by imposing a
cut on the asymmetry

�

�

�

�

�

pT,jet � pT,µ+µ�

pT,jet + pT,µ+µ�

�

�

�

�

�

< 0.3 . (6.30)

Note that this is trivial for Born events, where due to momentum conservation pT,jet =
pT,µ+µ� . The cut controls the size of NLO QCD corrections and justifies the picture
of a leading jet balancing against the Z boson at higher orders. The measurement is
performed inclusive regarding other jets of lower transverse momentum.
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In the dijet case, the cuts are very similar. Jets are again clustered with the anti-kt
algorithm with R = 0.4 and R = 0.8. The measurement is performed on the two
jets with the largest transverse momentum. They are required to meet the centrality
requirements as the jet in the Z+jet case, Eq. (6.28). Additionally, their transverse
momenta should satisfy

pT,jet > 30 GeV . (6.31)

The two jets are ordered by their rapidity y, and referred to as the "central" and
"forward" jet, with

|ycentral| < |yforward| . (6.32)

They are required to be separated with respect to each other similar to the separation
cuts between Z and jet, cf. Eq. (6.29) and Eq. (6.30),

|�central � �forward| > 2 , (6.33)
�

�

�

�

�

pT,central � pT,forward

pT,central + pT,forward

�

�

�

�

�

< 0.3 . (6.34)

In total, data are hence available for two jet radii (R = 0.4 and R = 0.8) times three
types of jets, those from the Z+jet selection and the central and forward jets from the
dijet selection. Each measurement is averaged over a range in pT of the measured jet.
The edges of the ranges considered here are

{88, 120, 150, 186, 254, 326, 408, 481, 614, 800, 1000, 4000} for dijet, (6.35)

{88, 120, 150, 186, 254, 326, 408, 1500} for Z+jet . (6.36)

In each range, the angularity of the jet is calculated as defined in Eq. (3.28), for three
values of ↵. The choices are commonly named as jet thrust ↵ = 2, jet width ↵ = 1
and "Les Houches angularity" ↵ = 0.5. Additionally, each jet is groomed with soft
drop grooming, cf. Sec. 3.3, with parameters zcut = 0.1 and � = 0.

The focus here will be on the comparison of the NLO + NLL0 results to those data.
The scales in the calculation are chosen as

µ2
R = µ2

F = p2T,µ+µ� , (6.37)

µ2
Q = R2p2T,µ+µ� , (6.38)

in the Z+jet and

µ2
R = µ2

F = H2
T/4 , (6.39)

µ2
Q = R2p2T,jet , (6.40)
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in the dijet case. Note that the scalar sum of the transverse momenta HT equals twice
the transverse momentum of one of the jets for born events, so the scale for dijets is
just the p2T in that case. Likewise, the transverse momentum of the Z boson is equal
to that of the jet in the event around which the resummation is performed.

The parameter xv in Eq. (5.1) is per default set to 1, and varied up and down by a factor
of 2 with the default choice of µ2

R and µ2
F to estimate the logarithmic uncertainties.

Likewise, renormalisation and factorisation scales are varied independently excluding
the most extreme combinations, i.e.

(µvar
R /µR, µ

var
F /µF ) 2 {(0.5, 0.5), (0.5, 1), (1, 0.5), (1, 1), (1, 2), (2, 1), (2, 2)}. (6.41)

The envelope of all these combinations is regarded as perturbative uncertainty.

Non-perturbative corrections are applied via the transition matrix method described in
Sec. 5.6. The necessary input is derived from SHERPA simulations at MC@NLO accuracy,
cf. Sec. 3.5. The same binning in terms of the measured jet pT is used to define the
regions outside the measured phase space. Fig. 6.15 illustrates the migration between
different pT bins. Note that this is technically dependent on the observable considered,
the illustration is done for ↵ = 2.

There is a clear effect of event migration to the neighbouring bins from parton to
hadron level. The black line corresponds, for each bin, to the cross section for events to
be in that bin at parton level and not be shifted to a different pT region at hadron level.
This is the largest contribution in all cases. The blue area represents events that are in
one of the neighbouring bins at parton level, but are shifted to the bin in question by
non-perturbative effects. While there is a relatively large effect from this, the additional
contribution including up to four neighbouring bins, shown in green, is already much
smaller. It should be mentioned that the calculation includes two more bins below
88 GeV, including pT as low as 50 GeV. Apart from those, bins are not included if they
are outside the range on either side, i.e. including up to 4 bins for the highest pT bin
only includes the 4 bins with lower transverse momentum. Due to the quick decrease in
cross section with larger pT this should be well justified. Virtually no additional effect
is gained by including up to 8 neighbouring bins, this is represented by the red area
that is barely visible however. It is concluded that including the 4 neighbouring bins is
sufficient in all cases to capture the physical effects.

In principle, there is no problem in including all possible bins once the calculation is
done. However, the Monte Carlo calculation of the migration matrices corresponding to
bins very far away from the target one tends to be unstable. Hence, only the 4 closest
bins will be used with the justification given above. It has been checked explicitly
that including more bins has no practical effect on the resulting distributions, unless
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Figure 6.15: Cross section in various jet pT bins for the leading jet in the Z+jet
selection (top left), the central (top right) and the forward (bottom)
dijet, obtained by applying transition matrices obtained from SHERPA at
MC@NLO accuracy, to the NLO + NLL0 distribution of �2. The colour
coding represents the cross section where the transverse momentum is
equal at hadron and parton level (white), where the hadron level pT
corresponds to migration by at most a single bin (blue), by up to 4 bins
(green) and by up to 8 bins (red) relative to the parton level. See text
for details.

statistical artefacts become important. The equivalent of Fig. 6.15 for the larger jet
radius R = 0.8 can be found in Fig. B.1 in App. B. The same conclusions hold in that
case.

Variations for the non-perturbative corrections are determined solely using SHERPA in
this study. Note that Ref. [IV] also studied other generators and did not find any major
differences. The parameter that is used for this is the RESCALE_EXPONENT, cf.
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Ref. [209]3, that stirs the evolution of the underlying event tune between different
energy scales. This way, the tune can be considered as fixed at lower energies, for
example the scales where it can be determined from Tevatron data. The central value
considered is

RESCALE_EXPONENT = 0.16 , (6.42)

with a symmetrical variation corresponding to RESCALE_EXPONENT = 0.08 and
RESCALE_EXPONENT = 0.24. This hence produces three different versions of the
transition matrices that can be applied to the variations obtained from the scale choices
in the resummed calculation independently. The overall envelope is used as an estimate
of the total theoretical uncertainty. Ref. [145] also performed measurements based on
charged particles instead of all hadrons inside the jet. Non-perturbative corrections for
this case can likewise be produced and applied to the resummed result in the fashion
described above.

The global soft wide-angle contribution IB
�

IJ entering Eq. (4.42) can be taken from
the appendix of Ref. [108], as power series in the jet radius R. Note the differing
conventions to define the function called T here, Eq. (4.21), leading to differences by
constant factors in the functions reported here. With the initial states labelled as a
and b, the measured jet as J and the auxiliary final state jet as f , they are given by

IBab =
R2

4
, (6.43)

IBaJ = IBbJ =
R2

16
+O(R4) , (6.44)

IBaf =
R2

8

exp
�

yJ � yf
�

1 + cosh
�

yJ � yf
� +O(R4) , (6.45)

IBbf =
R2

8

exp
�

yf � yJ
�

1 + cosh
�

yf � yJ
� +O(R4) , (6.46)

IBfJ =
R2

16
tanh

�

yJ � yf
�

+O(R4) . (6.47)

Here yi denotes the distance in rapidity between the respective jet axes. This is the
only part that actually depends on the Born configuration B in this case. The nonglobal
logarithms are taken into account by the functions fB

IJ in Eq. (4.42). As explained in
Sec. 4.3, their calculation proceeds via an external Monte Carlo algorithm that is not
subject of this thesis. The results in the Z+jet case were reported in Ref. [IV]. Details
on the additional complications in the dijet case, will be discussed in an upcoming
publication4 [384].

3A more detailed manual with explanations of the parameters is available online at
https://sherpa.hepforge.org/doc/SHERPA-MC-2.2.10.html

4I am grateful to Gregory Soyez for supplying the corresponding results for fB

IJ in for the Z+jet
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Results

With groomed and ungroomed distributions measured on all as well only charged
hadrons for three different values of ↵, two jet radii R in 8 (Z+jet) and two times 12
(dijet) pT bins, in principle there would in total be 2⇥ 2⇥ 3⇥ 2⇥ (8 + 12+ 12) = 768
plots to be described. The discussion here will hence be limited to the analysis with no
restrictions on the charge of the particles. The focus will further be on the distributions
for the smaller jet radius R = 0.4. A selection of additional results can be found in
App. B.

Distribution of averages. To gain an overview of the full range of transverse jet
momentum, Ref. [145] calculated the averages of the angularity distributions in the
various pT bins. The average is calculated based on the binned distribution, so the
corresponding predictions can easily be obtained from the resummed calculation for the
appropriate binning. This section will describe the results of this for the ungroomed
angularities, for the different kinds of jet selections described in the previous section.

The distribution of the average angularity depending on the jet pT in the Z+jet selection
is shown in Fig. 6.16. With increasing transverse momentum, the value of the average
is observed to be decreasing. The largest averages are obtained for the ↵ = 0.5 Les
Houches angularity, with the data ranging from ⇡ 0.22 in the highest pT bin to ⇡ 0.32
in for the lowest pT range. For larger ↵ the average is significantly smaller, only reaching
⇡ 0.18 and ⇡ 0.091 respectively. In the largest pT bin, the average drops to ⇡ 0.115
and ⇡ 0.058 for ↵ = 1 and ↵ = 2.

As a general observation, the central values for the predicted averages are smaller than
that of the CMS data. The deviation is of the order of 10%� 20%. However, in many
cases the average agrees with the data within the respective theoretical uncertainty.
The agreement is on the same level that Ref. [145] found for a large selection of general
purpose Monte Carlo generators.

The sub-figures of Fig. 6.16 compare the predictions for the three values of ↵ to the
data. In the ↵ = 0.5 case the agreement appears to be somewhat better at low pT .
The uncertainty band covers the data up to pT > 408 GeV, but the ratio appears to be
systematically decreasing even before that. The predictions for ↵ = 1 and ↵ = 2 behave
different with respect to the data, with the ratio starting out below 90% for the first
bin. However, the ratio is then approaching 1 with increasing transverse momentum.
This is most pronounced for ↵ = 2, while the ratio of the ↵ = 1 prediction relative to

case in Ref. [IV] as well as the additional contributions for the dijet case.
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Figure 6.16: Average distribution of the Les Houches angularity (top left), width (top
right) and thrust (bottom) of the leading R = 0.4 jet in the Z+jet
selection. The blue curve excludes the non-perturbative migration
between different pT bins from the full calculation shown in red.

the measured values almost remains flat. Taking into account uncertainties, the best
overall agreement is found for the high pT region in the ↵ = 2 case.

Fig. 6.16 also includes the averages of the perturbative prediction without the non-
perturbative shift between pT bins applied. The effect does not appear to be overly
large. As one might expect, it reduces even more with increasing jet pT . This can in
particular be observed for ↵ = 1 and ↵ = 2, whereas the correction on the average for
↵ = 0.5 is almost invisible over the full range. The observations made also hold for
R = 0.8 jets, cf. Fig. B.2, with the non-perturbative correction having a somewhat
larger effect at small pT for all values of ↵. This might be expected due to the increased
susceptibility to underlying event corrections / R2.
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Figure 6.17: Average distribution of the Les Houches angularity (top left), width (top
right) and thrust (bottom) of the leading R = 0.4 jet in the central
dijet selection. The blue curve excludes the non-perturbative migration
between different pT bins from the full calculation shown in red.

The calculation for the central jet in the dijet selection can be found compared to the
data in Fig. 6.17. The absolute values measured by CMS tend to be larger than observed
for Z+jet, but are still roughly in the same ranges. The averages for ↵ = 0.5 for
example now reach ⇡ 0.37 instead of the ⇡ 0.32 observed before. This is for equivalent
jet pT . The region with the largest transverse momentum considered corresponds to
a larger scale in the dijet case. Nevertheless, the averages are of similar size in those
regions.

The same conclusions as in the Z+jet case stand for the overall agreement, of the
order of 80% to 90% depending on the value of ↵ and the transverse momentum range
considered. The regions where the theory agrees with the data within uncertainties
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Figure 6.18: Average distribution of the Les Houches angularity (top left), width (top
right) and thrust (bottom) of the leading R = 0.4 jet in the forward
dijet selection. The blue curve excludes the non-perturbative migration
between different pT bins from the full calculation shown in red.

appears to be slightly smaller however.

The dependence on the angularity parameter ↵ is qualitatively the same as in the Z+jet
case. For ↵ = 0.5, the distribution of the average starts out at similar values as the
data at low pT , but then drops of significantly faster. In this case, the deviation exceeds
the theoretical uncertainty already starting at 150 GeV. It should however be noted that
the same systematic deviation is visible in the Z+jet case, and the deviation is still of
the order of the uncertainty. The agreement within uncertainties for the range between
150 GeV and 408 GeV in Fig. 6.16 is probably also not very stable under variations of
the procedure to estimate the uncertainties.
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Figure 6.19: Average distribution of the groomed Les Houches angularity (top left),
groomed width (top right) and groomed thrust (bottom) of the leading
R = 0.4 jet in the Z+jet selection. The blue curve excludes the non-
perturbative migration between different pT bins from the full calculation
shown in red.

Likewise, for ↵ = 1 the ratio to data is almost flat at ⇡ 90%, with a somewhat smaller
error than in the Z+jet case. The ↵ = 2 prediction again exhibits the best agreement
to data, at least in the large transverse momentum region. The corrections due to
non-perturbative pT migration appear also to be of the same (small) order of magnitude
in the dijet case. Again, the same figure for R = 0.8 jets is Fig. B.3 and confirms the
above findings with increased non-perturbative effects.

Finally, Fig. 6.18 shows the same comparison for the more forward jet of the two
leading dijets. It should be noted that the resummation for this is essentially the same
as for the more central dijet, if considered event by event. The main difference is
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due to the different contribution of quark and gluon jets in those regions. They are
however relatively similar in the lower pT region, at least when both are compared
to the composition in the Z+jet case. Of course, fixed order corrections can also
potentially be slightly different. One should therefore expect a very similar behaviour
of the calculation.

This expectation is confirmed by the findings in Fig. 6.18. It holds in both data
and theory prediction. The overall agreement is on the same level as in the central
dijet selection. The systematic behaviour with ↵ is also mimicked. If anything, the
agreement in the high pT tail for ↵ = 2 might be somewhat better for the more forward
dijet, however the difference is so small that it might very well be due to statistical
fluctuations. The corresponding figure for the R = 0.8 case is Fig. B.4.

Effect of grooming. Next to the angularities calculated on all jet constituents,
Ref. [145] also measured the angularities based on the particles left after soft drop
grooming as described before. The effect is again illustrated based on the averages of
the binned distributions in the various transverse momentum regions.

The results for the Z+jet selection are shown in Fig. 6.19 and can be compared to the
ungroomed case in Fig. 6.16. The value of the average groomed angularity appears to
be slightly reduced relative to the ungroomed case. The largest value obtained is now
h�0.5i ⇡ 0.28 in the lowest transverse momentum bin, with the average in the highest
pT bin below ⇡ 0.2 now even for ↵ = 0.5. For ↵ = 2, the average is at most 0.06 in
the range considered here, and is at ⇡ 0.036 in the last transverse momentum bin.

The reduction in the averages can also be observed in the predicted values. The effect
is however smaller and even decreasing with increasing jet pT . As a net result, the
agreement between NLO + NLL0 results and the CMS data is significantly increased,
with almost all pT bins compatible within the estimated theoretical uncertainty.

Maybe somewhat surprising, no significant reduction in the size of the effects of non-
perturbative pT migration is observed. Of course, it was rather small for the averages
to begin with. It should also be noted that the averages are computed over the full
range of the observable. As discussed in Sec. 4.5, soft drop grooming systematically
reduces the value where a given observable is dominated by hadronisation corrections.
The averages however represent integrals over the full observable range starting from
�↵ = 0, so the hadronisation dominated region will always be included at some point,
even with grooming applied.

For ↵ = 0.5, the top left sub-figure in Fig. 6.19, the central values agree within 5%,
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Figure 6.20: Average distribution of the groomed Les Houches angularity (top left),
groomed width (top right) and groomed thrust (bottom) of the leading
R = 0.4 jet in the central dijet selection. The blue curve excludes
the non-perturbative migration between different pT bins from the full
calculation shown in red.

apart from maybe the last pT bin. In any case, all bins are compatible with the data
within the uncertainties. Despite the improved agreement, the same systematic effect
as before can be observed for the central values, which all tend to be at lower values
than the averages of the measured distributions. The ratio is however flat compared
to that in the top left plot of Fig. 6.16, with only a slight decrease of the ratio with
increasing jet pT .

The averages for the larger values of ↵ show the same systematic behaviour at low
transverse momentum, tending to be small compared to the data. Taking into account
uncertainties they are also compatible in the groomed case however. The improvement
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Figure 6.21: Average distribution of the groomed Les Houches angularity (top left),
groomed width (top right) and groomed thrust (bottom) of the leading
R = 0.4 jet in the forward dijet selection. The blue curve excludes
the non-perturbative migration between different pT bins from the full
calculation shown in red.

with increasing pT also appears to be somewhat more pronounced for ↵ = 1 when
compared to the same angularity parameter in Fig. 6.16. In both cases, the uncertainties
are increased by a small amount compared to the ungroomed case. This might be
expected, since the calculation for the groomed observables is performed in the v ⌧ zcut

limit, while the average integrates over the full distribution including the transition
point. The corresponding figures for a jet radius of R = 0.8 can be found in Fig. B.5.

Fig. 6.20 contains the data to theory comparison based on the more central of the
leading dijets. Similar conclusions as in the Z+jet case apply when comparing to
Fig. 6.17. The absolute values of the averages are reduced in a similar manner, with the
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Figure 6.22: Jet thrust �2, for the jet in Z+jet (top left), the central (top right) and
the forward (bottom) of the dijets.

largest value being now ⇡ 0.33 for the ↵ = 0.5 case in the first pT bin. Consistently,
this is a reduction with respect to the ungroomed case, but corresponds to a larger value
than observed in the groomed Z+jet case. The averages for ↵ = 2 reach h�2i ⇡ 0.08
in the dijet case. They are as low as 0.035 for the highest pT bin.

As before, the agreement between theory and data is generally improved with grooming.
The central values in the ↵ = 0.5 case however maintain a visible slope over the full
range of the observable. The theoretical prediction in the first few bins for ↵ = 1 and
↵ = 2 is likewise visibly lower when compared to the measured values for the averages.
The deviation appears to be somewhat larger compared to the theoretical uncertainty
than what was observed in the Z+jet case.

The last set of averages are the ones for the groomed observables in the forward
selection of the dijet phase space. They can be found in Fig. 6.21. As in the ungroomed
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Figure 6.23: Jet width �1, for the jet in Z+jet (top left), the central (top right) and
the forward (bottom) of the dijets.

case, the picture is very similar to the more central jets. The central value in the highest
transverse momentum bins again shows minor improvements in the data comparison
relative to Fig. 6.20, but similar comments as in the ungroomed case apply. The
R = 0.8 versions of Fig. 6.20 and Fig. 6.21 are in Fig. B.6 and Fig. B.7.

Differential distributions for ungroomed angularities. While the averages are a
convenient way to summarise the behaviour with varying jet pT , there is clearly more
information contained in the binned differential distributions for a given transverse
momentum range. In making a selection of the pT range, one has to compromise
between the reliability of the perturbative prediction and statistical precision that
the experimental measurement achieves. The first is improved by going to higher
energy scales, while the cross section and hence the events available in experiment
decrease for larger pT . Both Ref. [145] and Ref. [IV] partially focused on the range
120 GeV < pT < 150 GeV.
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Figure 6.24: Les Houches angularity �0.5, for the jet in Z+jet (top left), the central
(top right) and the forward (bottom) of the dijets.

The ↵ = 2 angularity is similar to the well studied jet mass, and might hence be
expected to be understood the best. Fig. 6.22 shows the distribution of that observable,
at the usual NLO + NLL0 accuracy with non-perturbative corrections in the transverse
momentum range mentioned above. The plots correspond to the leading jet in the
Z+jet selection in the top left, and the central in the top right and forward dijet in the
bottom sub-figure.

Comparing the three distributions, the two dijet variants look very similar, with almost
no visible difference that could not be attributed to statistics. The histogram for the
Z+jet selection is peaked somewhat stronger towards low values of �2 and then falls
off quicker than in the dijet case as the angularity increases. In the dijet case on the
other hand, the first and second bin are still compatible with each other, within the
uncertainties of both data and theoretical prediction.
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Overall the data follow the distribution predicted by the resummed calculation, at least
within the uncertainties. The only exception is the very last bin. This corresponds
to the endpoint region, i.e. the part of phase space that is only filled by extreme
configurations. Those are often only possible kinematically at higher orders, where
more particles are involved and hence the individual momenta are less restricted by
conservation laws. In addition, since the cross section in this bin is very small, even a
minor absolute change can have a significant relative effect.

Despite the good agreement between data and theory, a systematic trend is visible
for the central value, which tends to overestimate the data in the small �2 region
and underestimate it on the opposite end. This is visible for all three distributions to
a certain degree. This results in the tentatively smaller average of the distribution
observed before.

In this context it should be noted that the error band in Fig. 6.22 does not indicate
any correlation between variations of the different bins. It is obtained by just taking all
different scale variations and forming an envelope. There is however not necessarily a
consistent choice of scales that produces an arbitrary combination of bin heights even
within that envelope, since certain changes in the bin heights are correlated. This is
particularly true for normalised distributions. The uncertainties of the averages are
obtained by calculating them based on the final distribution corresponding to each
variations considered. The spread of those results then defines the uncertainty of the
average. This hence takes into account the correlation between different bins. It is
therefore possible that the average appears to be inconsistent with the data, despite the
comparison between data and theory being consistent for each individual bin according
to the uncertainty envelope. Of course, since the differential distributions contain more
information the opposite is also an option, vastly different distributions can lead to the
same averages.

Equivalent plots for the R = 0.8 case can be found in Fig. B.8. Similar conclusions can
be drawn in this case, however the uncertainties tend to be larger.

The results for the ↵ = 1 angularity in the same pT range are shown in Fig. 6.23.
Towards larger �1 values it can be observed that the distribution in the jet of the Z+jet
selection falls off more quickly compared to the dijet case, as was the case for �2. The
peak height is on similar levels for �1. In this case however the soft region is resolved
better and it is visible that the differential cross section approaches zero in this range.
This is happening slower in the Z+jet version, where the decrease is barely significant
whereas it is dramatic for the two dijet distributions.
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Figure 6.25: Groomed jet thrust �2, for the jet in Z+jet (top left), the central (top
right) and the forward (bottom) of the dijets.

The data is consistent with the calculation in the Z+jet case, shown in the top left plot.
The trend of the prediction being screwed towards smaller angularity values observed
for the jet thrust is however even more pronounced. This is yet more the case for the
two dijet options. Overall, this leads to ⇡ 50% deviations even if excluding the last bin,
to which a similar discussion as in the � = 2 case applies. The R = 0.8 distributions
are collected in Fig. B.9.

Finally, there is the � = 0.5 Les Houches angularity. The results for the three jet
selections are presented in Fig. 6.24. The distribution measured in the Z+jet process
raises steeply from the first to the second bin, which corresponds to the maximum
for this example. The raise is somewhat slower in the dijet case where the maximum
is correspondingly shifted to the right. The trend in the data to theory comparison
continues and is more extreme. This is somewhat masked by the large relative uncertainty
in the first bin present in all three cases. Towards large �0.5, the decrease in the cross
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Figure 6.26: Groomed jet width �1, for the jet in Z+jet (top left), the central (top
right) and the forward (bottom) of the dijets.

section is significantly faster in the resummed calculation compared to the data this
times. This leads to significant differences in the last few bins even in the Z+jet case.
The equivalent results for jet radius of R = 0.8 are in Fig. B.10.

Differential distributions for groomed angularities. In the case of the distribution
of the averages, grooming lead to a general improvement of the data to theory
comparison. The groomed versions of the angularities in the same 120 GeV < 150 GeV
range as above are presented below. Note that the bin widths in terms of �↵ used in
Ref. [145] for groomed observables differ compared to the histograms for the ungroomed
angularities. A direct comparison of groomed against ungroomed distributions is thus
not quite straightforward.

First, Fig. 6.25 illustrates the results for �2 after grooming. In the binning used, the
data distribution is peaking very strongly in the first bin. This is reproduced in the
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Figure 6.27: Groomed Les Houches angularity �0.5, for the jet in Z+jet (top left),
the central (top right) and the forward (bottom) of the dijets.

theory prediction. In general, a similar agreement as in the ungroomed version is
observed, which might be interpreted stronger due to the finer binning. The groomed
jet thrust for the three jet versions can be found in Fig. B.11.

For the ↵ = 1 angularity corresponding to the jet width, the measurement on the
groomed jets again allows for a finer resolution of the peak region. Still, the agreement
between data and theory in this area is on the same level as before. The deficiencies in
the large �1 tail is not resolved however. Since grooming is not active in that region, this
should not really be expected in any case. Still, it should be noted that the agreement
in the Z+jet case is almost perfect within the uncertainty of both data and theory.

Lastly, the predictions for �0.5 after grooming are compared to the CMS data in Fig. 6.27.
Similar to the ↵ = 1 case, no significant improvement is observed in the region of large
angularities. The finer resolution in the peak and soft tail region here however allows
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for a different observation than before. In all other distributions considered so far the
resummed calculation was overestimating the data for small �↵, and underestimating
the hard tail. In this case however, the central values tend to in fact underestimate the
data in the soft and hard tail, while overestimating it in the peak region. Instead of a
simple shift, the predicted distributions appear to be narrower than the measured ones.
This might motivated the investigation of higher moments than just the average.

This effect is visible in all three versions of jet selections as well as in the measurement
based on the R = 0.8 jets in Fig. B.13. A shift as observes before is in fact relatively
easy to produce by an appropriate scale choice, so one might hope that this could
relatively easily be resolved through insights into higher order corrections that might
indicate more appropriate scale choices. This not the case for an increase of the
width of the distributions as it would be required here. It should be noted that the
Monte Carlo predictions made in Ref. [IV] differ in some cases significantly from the
resummed distributions. Insights into the differences between parton shower algorithms
and resummed calculations at similar accuracy might thus also contribute to the
understanding next to genuine higher order calculations.
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Chapter 7

Summary and Outlook

This thesis reported on the implementation of automated resummation using the CAESAR

formalism in the SHERPA framework, continuing the work started in Ref. [295]. Key
developments presented here are

• the automated application of flavour sensitive matching schemes to achieve
NLL0 accuracy, including the implementation of infrared safe flavour clustering
algorithms and their validation,

• the extension of the framework towards soft drop groomed observables, including
the calculation and implementation of the modified radiators and a discussion of
the subtleties involved in the flavour assignment to the groomed final states,

• the inclusion of jet substructure observables, necessitating a more flexible cal-
culation of the soft function, as well as additional developments in the flavour
sensitive clustering algorithms necessary to separate different flavour channels,

• improvements in the standard to apply non-perturbative corrections obtained from
hadron level Monte Carlo simulations to the resummed and matched calculations,
using an approach based on transition matrices instead of simple ratios between
parton and hadron levels,

• the first application of the framework to high multiplicity final states in e+e�

annihilation, including studies on the effects of subleading colour corrections in
Durham jet rates.

• the application of calculations to phenomenology at the LHC and comparison to
data measured by the CMS experiment.

The other developments are also illustrated in concrete phenomenological studies. The
presented analyses of QCD observables in electron positron collisions are not directly
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applicable to measured data for various reasons. It should be noted however that this
simpler collider setup is a common testing ground for parton shower developments,
with systematic comparisons to resummed calculations being a recent driver of the
community, see for example [385–389] as well as Ref. [VII], where the framework
presented here could be used to produce additional benchmark results for example
for higher multiplicity observables. The same applies to the development of showers
taking into account subleading colour corrections, e.g. [357–365] and Ref. [VI]. On the
other hand, re-analyses of LEP data might explore those observables. In that context
the recent analysis of jet substructure using ALEPH data [390], including the soft drop
groomed jet mass, is noteworthy.

A direct application towards phenomenology at the LHC was presented in Sec. 6.4. As a
direct followup, Ref. [V] explored the application of those calculations to tag initial state
flavours in the context of PDF fits. The framework is in principle set up to perform
similar studies for other observables or other experimental setups. A possible further
development would for example be the extension of the study detailed in Sec. 6.2 to an
LHC setup, with the aim to derive predictions for analyses like [391]. Jet resolution
scales have also been used in [392] to gauge different parton shower algorithms in the
context of Higgs production via vector boson fusion. Providing benchmarks for this
comparison is another possible future application of the framework discussed here.

Next to these immediate possible applications, calculations like the ones performed here
will continue to play a major role in the future development of the field in general. The
LHC is set to continue data taking in the upcoming years, including its high luminosity
phase [393]. The planned electron ion collider (EIC) [267] will provide new data on deep
inelastic scattering in the future. Despite no examples of this were explored here, the
formalism is fully applicable to electron proton collisions, and no major hurdles should
prevent a treatment within the SHERPA framework. Possible colliders yet further in the
future include new generations of electron positron colliders [394–396], probing higher
energy scales than the LEP experiments. This would in particular increase the range
where the logarithmic corrections treated in the CAESAR formalism are important and
undisturbed by non-perturbative physics. The same holds for possible future hadron
colliders. Those will hence benefit from an easy availability of resummed calculations
for a large set of observables. Conversely, they will benefit the theoretical calculations
by providing precise data to validate them, and hopefully pose exciting challenges to
the theory community.
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Appendix A

Validation of fixed order results

This appendix collects additional results for the validation of the expansion of the
resummed cross section as implemented in the SHERPA framework against fixed order
calculations. See Sec. 5.5 for the interpretation and explanation of the comparisons in
general.

Fig. A.1 shows the validation plots for the expansion of the cross sections for soft drop
groomed observables. See Sec. 3.3 for an explanation of the soft drop parameters,
Sec. 4.4 for the expressions entering the expansion, and Sec. 6.3 for the concrete setup
of the calculation.

Fig. A.2 and Fig. A.3 show the validation plots for the expansion of the cross sections
for jet substructure observables, with and without grooming. See Sec. 3.2 for the
observable definition, Sec. 4.3 for the expression entering the expansion and Sec. 6.4
for the concrete setup of the calculation. The validation is performed for the Z+jet
final state. Fig. A.2 shows the results for gluon jets, Fig. A.3 contains the same plots
for quark jets. See Sec. 5.4 for the algorithm used to define quark and gluon jets in the
higher order fixed order calculations.
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Figure A.1: Comparison of the expansion of the NLL resummation and fixed-order
results for soft-drop groomed thrust at LO and NLO accuracy. The lower
panels show the difference between expansion and fixed order at LO and
NLO.
Figure and caption taken from Figure 7 in Ref. [III].
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Figure A.2: Fixed-order predictions for the gluon channel, identified with the BSZ
algorithm, for ungroomed (left column) and groomed (right column)
angularities �1

↵, for ↵ 2 {1/2, 1, 2}, compared to the expansion of the
resummation at the corresponding order of ↵s, see text for details. The
jet transverse momentum is constrained to pT,jet 2 [408, 1500] GeV.
Figure and caption taken from Figure 6 of Ref. [IV].
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Figure A.3: Fixed-order predictions for the quark channel, identified with the BSZ
algorithm, for ungroomed (left column) and groomed (right column)
angularities �1

↵, for ↵ 2 {1/2, 1, 2}, compared to the expansion of the
resummation at the corresponding order of ↵s, see text for details. The
jet transverse momentum is constrained to pT,jet 2 [408, 1500] GeV.
Figure and caption taken from Figure 7 of Ref. [IV].
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Appendix B

Additional results for jet angularities

The following results for jet angularities are also available as referred to in the main
text. See Sec. 6.4 for details of the setup.
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Figure B.1: Cross section in various pT bins for the leading Z+jet, the central and the
forward dijet (from left to right), obtained by applying transition matrices
to the NLO + NLL0 distribution of �2. The colour coding represents the
cross section where the transverse momentum is equal at hadron and
parton level (white), where the hadron level pT corresponds to migration
by at most a single bin (blue), by up to 4 bins (green) and by up to 8
bins (red) relative to the parton level.
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Figure B.2: Average distribution of the Les Houches angularity (left), width (middle)
and thrust (right) of the leading R = 0.8 jet in the Z+jet selection. The
blue curve excludes the non-perturbative migration between different pT
bins from the full calculation shown in red.
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Figure B.3: Average distribution of the Les Houches angularity (left), width (middle)
and thrust (right) of the leading R = 0.8 jet in the central dijet selection.
The blue curve excludes the non-perturbative migration between different
pT bins from the full calculation shown in red.
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Figure B.4: Average distribution of the Les Houches angularity (left), width (middle)
and thrust (right) of the leading R = 0.8 jet in the forward dijet selection.
The blue curve excludes the non-perturbative migration between different
pT bins from the full calculation shown in red.
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Figure B.5: Average distribution of the groomed Les Houches angularity (left),
groomed width (middle) and groomed thrust (right) of the leading
R = 0.8 jet in the Z+jet selection. The blue curve excludes the non-
perturbative migration between different pT bins from the full calculation
shown in red.
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Figure B.6: Average distribution of the groomed Les Houches angularity (left),
groomed width (middle) and groomed thrust (right) of the leading
R = 0.8 jet in the central dijet selection. The blue curve excludes
the non-perturbative migration between different pT bins from the full
calculation shown in red.
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Figure B.7: Average distribution of the groomed Les Houches angularity (left),
groomed width (middle) and groomed thrust (right) of the leading
R = 0.8 jet in the forward dijet selection. The blue curve excludes
the non-perturbative migration between different pT bins from the full
calculation shown in red.
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Figure B.8: Jet thrust �2, for the jet in Z+jet (left), the central (middle) and the
forward (right) of the dijets.
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Figure B.9: Jet width �1, for the jet in Z+jet (left), the central (middle) and the
forward (right) of the dijets.
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Figure B.10: Les Houches angularity �0.5, for the jet in Z+jet (left), the central
(middle) and the forward (right) of the dijets.
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Figure B.11: Groomed jet thrust �2, for the jet in Z+jet (left), the central (middle)
and the forward (right) of the dijets.
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Figure B.12: Groomed jet width �1, for the jet in Z+jet (left), the central (middle)
and the forward (right) of the dijets.
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Figure B.13: Groomed Les Houches angularity �0.5, for the jet in Z+jet (left), the
central (middle) and the forward (right) of the dijets.
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