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ABSTRACT

We discuss high-energy inelastic neutrino—m;cleon inelastic processes
in the light of recent theoretical and experimental developments for the
corresponding electroproduction procésses. We review ghe kinematics
for the process in a form especially convenient for experimental analysis.
We discuss sum-rules and results related to current commutation relations.
Consequences of the parton model and diffractive fnodels are considered.
Other results are (1) the vector and axial contributions to the total cross
section are equal, provided the only symmetry breaking term in the energy
density transforms liké a quark mass term under U(6) @ U(6). (2) Scale-
invariance of one of the three form factors (v or sz) describing the
process implies a neutrino total cross section which fises linearly with
laboratory energy, provided the lepton current is local and there is no
W-boson. The effect of a W-boson on this result is studied. (3) The
relation of existing neutrino data and electroproduction data given by
the conserved vector current hypothesis is studied and found compatible

with experiment.
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I. INTRODUCTION

Recent experiments on inelastic electron-proton scattering:l have stimulated
considerable theoretical interestz'8 in their interpretation. The purpose of this
paper is to s’tudy the closely-related neutrino-induced inelastic processes and to
discuss these interpretations and implications for such experiments.

We first review the kinematics of neutrino-nucleon processes in a hopefully
convenient and tfransparent fqrm for experimental analysis. Sum rules and results
related to current commufation-relations are discussed, and then we consider the
results of the parton model. Finally we discuss a few consequences of the
Pomeranchuk—trajectory—exchailge model, such as proposed by Harari, 7 and by
Abarbanel, Goldberger and Treiman, 6 Much in this paper has a considerable
overlap with published work and we have included it in the interest of clarity and
completeness, Contributions specific to this paper include :‘

a) A kinematical analysis and choice of variables which appear to have special
convenience, and which parallel the choice found to be useful in electroproduction
experiments, In particuiar we show. that provided only one of the three form
factors describing the neutrino brocess (vB or v&Vz) is scale-invariant, then
the total neutfino cross section rises linearly with laboratory neutrino energy.

b) If the only term in the energy derisity which breaks chiral SU(2) ® SU(2)
symmetry has the tran;sformation properties of a quark mass term under chiral
U(6) & U(6), we can relate the vector and axial contributions to the total neutrino
cross section. This is shown to be compatible with experiment.

c¢) For the quark version of the parton model, we cétalogue several sum rules,

d) We argue that in the Pomeranchuk-exchange model as defined by Harari,

_ the axial-vector contribution to the neutrino total cross section is probably larger




than the vector contribution, in order to fit the data. The contribution of the
vector current can be bounded above by the electroproduction data with the use

of the conserved vector current hypothesis.
II. KINEMATICS

We discuss in some detail the kinerﬁatics of inelastic néutrino—-proton scat-
tering in order to obtain formulae easily comparable with experiments. Upon
neglect of the muon mass, ‘the V-A form of the leptonic current determines the
polarization state of the final muon {as well as that of the incident neutrino) and
thus def_.ines a pure polarization state for the "virtual W" exchanged between the
leptons and hadrons. It is therefore natural, as observed by Lee and Yang, 9 to
describe the process in terms of cross sections corresponding to the three helicity~
states of the virtual W: right-handed (R), left-handed (L) and scalar (S). The
formulae we get correspond to those widely used in inelastic electron-proton
and p-proton scattering.

The kinematics of the process is shown in Fig. 1, where

p = four-momentum of neutrino

p' = four-momentum of muon

1

q = p - p' = momentum transformed from leptons to hadrons

v = E - E' = energy transfei', in laboratory frame

IP = four-momentum of target nucleon

0 = angle of produced muon relative to incident neutrino
6' = angle of g relative to incident neutrino

Qz =-q2 = 4EE! sin2 6/2




Neglecting the muon mass, we can write the leptonic current as

_ E'p +Ep' - p* p'+ie
3P = Spy (- up) = 2 —E—B_BE__ 0 (2.1)
* H VEE' cos &

the current in terms of three orthonormal polafizatidn vectors whose spatial
components lie along the axes shown in Fig. 1; the z-axis lies along 9% This
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Q <. vz, which is all we consider here. The exact formula is given at the end

of this section and discussed in Appendix I. The polarization vectors are, in the

high-energy approximation
2

B Vv Q
€ = 1, 0,0, 1~ =5
K \/Q‘"( 2v2)
R 1

€ = 0, 1,14, 0
TN )

= £ 1 -1, 0 (2.2)

while the current, evaluated in the laboratory frame, becomes (up to an overall

.lept E'Q /E' E L
‘Jy : 2E y. \% (2.3)

The polarization vectors satisfy the conditions es— +1, eR L=" S R 1 9= 0.

The only change in (2. 3) in going over to antineutrino-induced processes is the

phase)

interchange R L.
For the hadronic current-operator, we use the Cabibbo-current

lasl=1

&0 sin 00 (2.4)

A
J(0)=(V -A 6 -
(0 = (v, = A )77 cos 6 +(V -4 )




The normalization is such that in the quark model
Ry - ! o '
| JM(O) = p"y#(l _'y‘5)(n’ cos Qc +A! sin Qc) _ (2.5)

where p', n', A' are the qpark field operators. The cross section into a group

| of final hadronic states In ) is given by

dO'(n) _.m do .,_.‘Gz 'Q_2
- 2
v

- G E lept
szdv EE! A0dE! 2r E

<n

J(O)lP) (27r) 8 (P ~-P-q)

(2.6)
Using the current (2.3), we see the cross section is the sum of 3 helicit& Cross
sections and 3 interference terms, Pais and Treimanm have made the folléwing
.general comment: Let I be the set of final-state hadrori momenta which are
measured. [This may include a partial summation over the pé;rticl‘e momenta in
the states ln)]. Let I'' = RI"’ be the set of momenta obtained by rigid rotation
of I about ¢ by angle ¢ (the muon and neutrino momenta are not rotated). Then

under this rotation the only change in the cross section is to replace j;ept in (2.3)

j;ept 4 EE!Q [ /;;E; R i¢ , /ZEI:::, L - 1¢>] @.7)

Accordingly, the interference terms between S-R, S~-L, and L-R are proportional

!
to \/QEE' cos (¢ +3), | /‘2'%? cos (¢ +8'), cos (2¢ +8") respectively. By taking

appropriate moments of the data, these interference terms may be isolated. We

as follows:

emphasize that this "azimuthal test' for interference terms can be made for any
hadron configuration, even when some particle momenta have been summed out,
Likewise, if ¢ is averaged out, or if there is no ¢-dependence, the interference
terms cancel. Assuming the ¢-average taken, we get, in the high-energy limit

(see Appendix I)
2 2 - 2\|d d d
9 _do_ G E'g,(__@_)[.‘i's+_.@:.ﬁ+.§_ "L]
(2.8)

27 szdvdF o E v ar 2E dr 2E'" dr




The do:i /dr are the appropriate helicity cross sections for virtual W-nucleon ab-
sorption into final phase-space dI", defined analogously to the Hand cross secl/:ﬁions11
used in electroproduction. They depend only upon q“ and hadron variables. Thus
in principle they can be separately obtained by varying E and E' with g fixed and
studying the dependence. | This is analogous to the "Rosenbluth straight-line
plot! used in electron-scattering experiments. |

For cross sections with all hadron states summed over, another notation is

12,13

convenient and widely used. These use invariant form factors o, B8, ¥y

(or W., W,, W) instead of TR O, and gy. In elgctroproduct.lon, it has been
found convenient to use a "hybrid" form14 utilizing one of these form factors, Wz,'
. and using the cross section ratio O‘T/(O‘T + ag) for the other. A similar form is

convenient for the ncatrino process. We write, at high energies only

2
do G E!' 2 v v
—5— =3~ T B(Q ,V)[1+——(L)-—1(R)] (2.9)
aQ“ay 27 E E' E
where ' , .
o a.
L R
(L) = — <1 (R) = ————5— <1 (2.10)
Opt 0y, %20y OptOL,t20

is a convenient shorthand for the cross section ratios. The relationship between

B, ,,ng and the cross sections O'R,L, gis, in general

2 2
=W, = L Q@ 1 .9
F=Wo=2 3 & (1'2Mu) (2og + o +oy) (2.11)
(1+—-—2~
14

Had no approximation beyond mu = 0 been made, (2.10) would be replaced by

2 2 2 2 2 '
do _ G E 2 Q v +Q (E+EYVy +Q
> T o _ET' ‘B(Q s V) [1 T 4ER! + SLR' (R+ 1)+ SEET (L*R)

(2.12)




and the expression (2. 3) for lepton current would be replaced by
2 .
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1+ _Qa_ "f + .Q.... f + _Q.__.
2 _ 2 2
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(2.13)
2 e el . 2,-1
As Q" —0, °R and oL, approach finite quantities, but 3 diverges as (Q7) .
The coefficient is proportional to (nlqu Jt (O)IP) 2. For AS= 0 processes,
Adler's theorem > relates this term to 7 absorption on nucleons, with the aid
of the PCAC hypothesis. The formula is (Qz < m1zr)
do F2 inz. 2 dor
B P T T ’ (2.14)
ar QZ qur ¥ QZ ar »
with F7r ~ 0.9 m, the pion decay constant and o the appropriate T - nucleon
crosé section.
We close this section with a comment on isotopic spin questions. For AS =0
transitions, charge symmetry says that
+
do (Wp) do; (Wn)
i _ i
ar = (2.15)

where I and I' are related by a 180° rotation in isotopic spin space (the charge
symmetry operation e11rT2 ). Thus o(vp) - o(vn) is a measure of O'L(vp) - o‘R(vp),
because, under v—7, R—L in (2.3) and (2.8). Likewise o(vn) - 0'(7;ip) measures
QL(VH) -~ O'R(Vl'l). Therefore neutrino;alltineutrino comparisons in D2 or light nuclei

are an excellent way to test for differences in R and o -

. SUM RULES

In this section, we catalogue in our notation the sum rules which express integrals

over the data in terms of equal-time commutators of currents with each other




and their time derivatives. Some of these may be written as follows

[ [F(v, Q- b, Q2>] =350 (3.1)
0 .
Lim f dv [ﬁ(v,Qz)(_ﬁﬂ“f) - B, @) (R+L )] =dn . 8.2)
2 0 :
Q%o , :
1lim fdv [F(v, Qz)(i - R) + B(L- R)] =1 (3.3)
QP 0 | Y

where L, R, T, R are defined as in (2.10). The superscript bar refers to anti~
neutrino-induced processes‘. Altogether there are twelve such sum rules for which
it might eventually be practical to test; there are separate sum rules for'p and n
targets and for AS = 0 and lASl =1 transitions.

The right-hand sides of these sum rules are equal-time current commutators

evaluated as B~ in particular

T = ]1;:; ﬁi3x< ]PZJ[JM(E, 0) JZ(O)] ,IPZ). (3.4)
Equation (3.1) is the Adler™? (]§‘ubini16 - Gell-Mann - Dashen”) sum rule and
depends on a reliable current-commutator J 00’ but not a totally reliable derivation.
Equation (3.2) is the ""backward' asymptotic sum rulen18 Equation (3.3) is a sum
rule of Gross and Llewellyn-Smith, 13 The right-hand sides of the last two sum
rules are model-dependent. Furthermore it is not clear, even given the model,
that they can be calculated from the 'maive’ canonical commutation relations of

the model. We catalogue in Table I, only as an example, the results for Juv in the
"naive' quark model. We consider these commutators to be postulated, rather
than derived, as done by Feynman, Gell-Mann, and Zweig19 in their formulation

of chiral U(6) @ U(6).




TABLE I

Proton Target Neutron Target
AS =0 |as|= 1 AS=0 las] =1
2 .2 ) 2 : L2
I00 2 cos Gc 4 sin” § | -2 cos” @ +2 sin 0,
J 2cos% 0 |  4sin® @ -2 cos” @ +2 sin® 6.
XX c c c c
iJ_ 6 cos2 0 4 s.in2 0 6 cos2 0 2 sin2 0
Xy c c c c

An additional hierarchy of sum rules involve commutators of space-components of
the current with various time-derivatives of the current at infinite momentum. A

prototype is that given essentially by Callan and Gross20 and by Cornwall and -

Norton.21
lim de[Vﬁ(v Q)(R+L)+Vﬁ(v,Q)(R+L)] =
Q-—-oo
= 1i 9——’5<1P ?ji‘— by, 3Tl |lP > 3.5
-—IPlir:o ]PO 7 St %)’ X() 7 =0 (3.5)
> ‘
where
_ Q
X = 5 (3. 6)

Notice that for AS = 0 transitions, —B'p = ﬁn, ﬁp = Rn’ etc., so that this integral

can be related to the behavior of the sum of vp and vn cross sections.

The properties of commutators such as in (3.5) are theoretical terra incognita.

Deductions from Lagrangian models appear to be unreliable. Here we add one
more such deduction in a model of commutators suggested by the "naive' quark
model and to some extent the model of symmetry-breaking of Gell-Mann, Oakes,
and Renner.22 We make the following assumptions: The Hamiltonian may be
written as

H = Hp(t) + H (t) + 11'(t)

-9 .




with

@  [-8,0 Hp(0)] =0 | (3.7)

(b) [\L(O)+Ay(0), HL(O)] =0 | (3.8)

() Under chiral U(6)® U(6), H' transforms as (6, §) ® (6, 6), i.e., in
the same way as a quark mass term: H' is the term _re‘éponsible for thé breaking
of chiral symmetry.

As an example, the ''gluon' model satisfies these conditions. From the above |
assumptions it is possible to (formally) prove the following theorem on “asymptotic
~ chiral symmetry': R - -

Theorem: Under the above assumptions

3 V(% t)  BA(x, )
. d x i i\ ¥ t
lim /—-—-]P (P, [ 5t 5t Vi(0) +A{(0)
P~ 0
VA .
This is shown in Appendix II.

P> =0
2 " =0

(3.9)

Upon spin-average over the nucleon state IIPZ) it follows that the V-A cross
terms do not contribute to these commutators, and therefore we have the corollary.

Coréll:irx: The vector and axial-vector contributions to

lim /1 dx [vﬁ(R+L)+ vﬁ(‘ﬁ+"1:)] (3.10)
2 0 i
Qe
and to 1
lim f dx[v B(S) + vﬁ(s?)] (3.11)
2 Yo
Q=0
are equal,

It is possible to test this corollary, using the neutrino and electroproduction
data. But first we ﬂote that "scale-invariance, ' as evidenced in electroproduction
data1 and quite possibly in the existing neutrino data, 23 implies that vg and vf are
nontrivial functions of x for large Qz. The cross section ratios R, L, -ﬁ, T are

also scale—invarivant, barring pathologies. Such a behavior is clearly compatible

-10 -




with the sum rules (3.1) - (3.3), (3. 5) and the corollary (3- 10) and (3.11). It

also leads to a total neutrino cross section rising linearly with laboratory neutrino
energy. We discuss next the total neutrino cross section and obtain bounds for
the integral over B, which then is used in testing the cqrollary.

Using (2.9) and scale-invariance (i.e., vf a function of x alone), ‘we find

2 2My .2
do ~ G E' d 2
& T E Bve@, 0 [+ g - m)
~0

1
2 | " fvB_+ B
~ GME v v n
* S Efp -3 <R>]'/0d"('—%—*) (3.12)
where (R) , (L) implies that the appropriate averages over x have been taken.
Then the total cross section is
2 vB_+vp '
_ G ME n}jl_ 1 1
0, = Sk fdx (—R————z ){2 +5 <L) -5 (R)} (3.13)

0 :
The factor in curly brackets lies between 1 and 1/3. In particular

(1 op=0g=0

: R
2 e e
1.1 1 5 °RT L BT
g+l -g<®> = ¢ 1
5 (T'R = O'L =0
i = g =0 3.14
\ 3 o= %" o 314
From (3.13) we see that a linear rise in Ttot depends only on the assumption that
vB be scale invariant. The neutrino measurements23 give
2
- G ME
Ot = — 1 (0.6 + 0,15) (3.195)
and we get '
. vB +v(3n
0.620.15< [ dx{—P=—")<1.8+0.45 (3. 16)
/0
- 11 -




Neglecting AS¥ 0 transitions, the vector AS = 0 part of the neutrino cross
section can be related via the c_onserved vector current hypothesis to the isovector
contribution of the electroproduction data. For AS= 0 transitions, we have, from

an isotopic rotation

isovector

&0 850, @yedy 250, @) = 2 [y v, @)Wy, @] Y @10)
where sz' q 2re the corresponding electroproduction structure functionf:. Using
the results of the corollary, :
1 1 1 isovector
j; dx [vﬁp+vﬁn]As=O =2 _/0' dx [Vﬁp+vﬁn]v’ AS=0_ 4 ‘/0. dx[vWva+ vwzn] only
<4 _[ dx[vW2p+vW2n] (3.18)

The electroproduction data, 1 with the assumption 05K O, gives

1
_4'dwi2p= .18+, 02 (3.19)

The inequalities (3.16) and (3.19) read

vB. +vp 1 W, +W, W, +W.
p n 2 2n - 2 2n
0.6+ .155-/(;éx(-—-——-—-——2 )54 ( dx”sz(_L"‘zw ) 2+ ,08¢ 22205 (3.20)

2p 2p

where { D again implies that the appropriate average over x has been taken. The
agreement is satisfactory albeit inconclusive in view of the statistics of the neutrino-
data, the uncertainties in (R) and (L) , the uncertainties in Wl/W2 and in

Wzn/W p’ and the unknown magnitude of the isoscalar contribution in the electro-

production process.
IV. POMERANCHUK -~ EXCHANGE

Abarbarnel, Goldberger and Treiman, 6 and Harari7 have argued that the

v - dependence of the electroproduction data suggests that the dominant dynamical

-12 -




mechanism for large v/Q2' is exchange of the Pomeranchuk trajectory. Harari?
by using a duality argument, has suggested that for large Q2 and all v only the
Pomeranchuk trajectory contributes. The most characteristic prediction of the
Pomeranchuk-exchange class of models are the equality of ep and en cross sections,
and likewise of vp, vn, vp and yn cross sections, both total and differential. In
addition sz-———f(QZ) for large v at fixed Qz, and {(R)>, (L) likewise tend to
constants. The feature of scale-invariance, i.e., f(Qz)——>constant, is more
difficult to explain in such models. Furthermore, in these models there is no
V- A cross term, and consequently O;R: 0y - Ignoring AS # 0 transitions the
‘vector (as opposed to axial) contribution to the total neutrino cross section can
be obtained from electroproduction data, as we did in Section III, Eq. (3.18).

= pB, we find

Taking that result and using the notation vﬁp =pB i

fdxvﬁ=fdx(vﬁv’+v{3A)z0.9:i:0.2 (4.1)

where we have taken (8) = 0, as suggested by the data. 123 We can now estimate

the vector contribution to (4.1) and thus obtain a value of the axial part. From

the conserved vector current argument

fdx v = zfdx yW,SOVEOT <« 36 1 .06 (4.2)

An SU(3) or quark-model estimate would give

fdx Wlsoscalar i fdx 1sove§tor (4.3)
Thus a "best'" estimate for the isovector contribution might be
f dx Wls°"e°t°r ;3;- fdx PWy = .13 # . 02 (4.4)
giving
\Y
fdxv,’i’ = ,26%,04 (4.5)

- 13 -




This would imply that the axial contribution is
A .
dxvf = .64 % .2 (4.6)

indicating that it is larger than the vector contribution. Without assuming (4.4),
we still obtain the bound
ro A L. 4
devﬁ 2 .54 .2 (%.7)
It is perhaps surprising that the axial contribution should be larger than the
vector, owing to the fact that the axial current is mediated by heavier states
(e.g., Alvs p) than the vector current. However in the present state of the data

and theory, none of this can be considered as very conclusive.
V. THE PARTON MODEL

In the parton model, 3,4 the scattering process is described in an infinite
momentum frame. In such a frame we visualize that the proton conéists of N
point-like constituents (partons) with probability P(N). The parton longitudinal
momentum distribution in this frame is given by fN(x), where x is thé fraction of
the proton longitudinal momentum carried by the parton. The physical cross
section is obtained by assuming that the lepton scatters incoherently, with the
point cross section, from the partons. The point cross section is then averaged
over the parton momentum distributions fN(x) and over the proton configurations:
N. These ideas are discussed more fully bin Refs. 2 and 4. For definiteness, we
shall hereafter assume the partons to have spin 1/2, and in most cases we shall
take them to be "point quarks.’

We begin by cataloguing the high-energy cross sections for neutrinos and
antineutrinos on (point) spin 1/2 partons :ind antipartons. The results are given

in Tahle II:

- 14 -




TABLE II

9 - helicity of | helicity of | nonvanishing
do/dQ” dv neutrino recoiling helicity
parton cross section
2 [ & -
v + parton - 8(v- 5 L L o,
(isospin down)
2 2 2 :
v + parton —%——- 5(v - —ZQM) (1 - TEIL) R L o
(isospin up) ,
2 2 2
v + antiparton —%— 8(v - —2%7[) (1 - —é’:—) L R R
(isospin down) ‘
2 2
v+ antiparton %—- 5(v - -%\-;f) R R on
(isospin up)

In Table II we have omitted the factors of cos2 Oc'or sin2 Bc coming from the
Cabibbo structure of the w,eak current. We have also assumed the contributing
parténs to have spin 1/2, isospin 1/2, and coupled by V- A to the leptons.
Fdr spin 1/2 parvtvons, only o, contributes to the neutrino cross section as v,

QZ——»«:; i.e., o = 0g = 0. To see this, we observe that in this limit, it is always
. possible to find a Breit frame for which the parton is extreme-relativistic before
and afterv the collision (Fig. 2). The V- A structure of the weak current guarantees
that it be left-handed. Therefore the ''virtual W' must also be left-handed.
Furthermore, for the case of backward scattering in the center-of-mass frame,

the cross section vanishes unless the incident lepton is left-handed. This condition
corresponds to E'—0 (or y —E) in the laboratory frame. Therefore under these
circumstances p —parton (and y - antiparton) scattering‘vanishes. This same argument
reveals why in the general formula (2.9) only the contributionv of oz survives as

L

v—E for neutrino-induced and O’R for antincutrino-induced processes.

We now may compute the neutrino cross sections in the parton model. Following

the procedure of Refs. 2 and 4, and assuming that each kind of parton has the same

- 15 -




distribution fN(x) of longitudinal momentum x]Pu, we find (see also Ref. 13)

1 2
B@»)(R) = TRNING, [ dx £y za(v— .9;%:;)= 5 TPOONG () (5.1)
A |

with

2 - o
x:% o (5.2)

M
and (R) = 'rR/(o'R +0p + 205) as defined in (2.10).
N is the number of partons (here taken to be quarks-antiquarks) in a.given

configuration, I\%, is the number of p' antiquarks (or more generally isdspin down

antipartons) in the saine configuration. Aécording to Table 'II, only p' antiquarks

contribute to f(R). In the same way we find
vB(R) = 2 Zx\; P(N) N, x £1(%)
vB(R) = 2 %P(N) [Nﬁ, cos” §_+ N, sin’ oc] x£ (%)
VB(L) = 2 %P(N)[Nn, cos® §_+N,, sin” Oc]fo(x)

vB(T) = 2 ‘L;,P(N) N xfyo(x)

The integral over § or B times the cross section ratio therefore measures the
mean number of the appropriate kind of partons in the nucleon. [This integral

may well diverge logarithmically]:

1 1
f:lv B, @) (R) = f X (uB(R)=2 EI;P(N) N, f dx £ (x) = 2 %P(N) Ngr = 2N,
0 0 0
We get the results (Qz——-oo)
fdvﬂ(v,Qz)(R) = 2<N’p">
0

o0
- 2 2 . 2
{dv Blv,Q ) (R) = 2<Nﬁ, cos 9c+ NX' sin 0c>

-~ 16 -
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(5.4)



| 1;d:z B, Q) (L) = 24N cos” g + N, sin” 9,
| 'jo‘def(v, Q%) (@) = 2Ny | (5.5)

The sum rules (3.1)-(3.3) have a simple meaning in this (quark) parton model

12

(remember oy = 0). The Adler™ sum rule (3.1) is

= 2 / 2
| fdv(ﬁ—ﬁ) 2N+ 008 0 - Np, = N cos” 6>

cos2 Bc +2 sin2 00 proton target
= 2 , :
_cos? 9, + sinZ 0, neutron target (5.6)

in agreement with Table I. Because oy = 0, (3.2) is a special case of (3.1). The
Gross-Llevv}éllyn—Smit;h13 sum rule (3.3) becomes (Qz——no)

o0
e _ 2 . 2 2 .2
fodv[ﬂ(L-_R)+ﬁ(L-R)] = Z(Np,+Nn, cos 0c+N sin oc—N_ —Nﬁ, cos OC-N.X, sin” 6,5

A p'
2 .2 |
3 cos Gc + 2 sin Hc proton target
=2
3 cos2 oc + sinz, Oc neutron target (5.7)

We can obtain another set of sum rules using the stronger assumption that all
partons in a configuration have the Same distribution of longitudinal fraction fN(x).

It then follows that

s
fdx xf(x) =Ni (5.8)
. 0
and we find (Q"— ) '
And we L | .
4' dx vB(R) = 2 %P(N)Nb., J; dx %(x)
Nesy N
_ P\ _ :
= 2§P(N)(-N—) = 2¢-%-> (5.9)

-17 -




R R T C——

This gives us the results (Qz-—oao)

- N,
{dx VB(R) = 2¢5>
1 N ' N-
s o N oo Ny
dev (R) = 2{~cos 6, + 5 sin 90>
1 N . N,
_ oo_n! 2 A2
~g\dx VB(L) = 2 cos 6 + 5 sin 00)'
1 o N, '
f ax vB(T) = 2<—I§’—> | (5.10)
0

Using the measurement of the total neutrino cross section (3.17) and aséuming

scale-invariance and 0g=0, we have from (3. 15)
fdx vﬁ[<L> +% <R>] =0.6%,15 (5.11)

where § is averaged over neutron and proton farget nucleons. Therefore, from
(5.10) _ .
N N_ N
: 2 n' 1 1 .2 Ao
cos oc( X >+3 (—RN >+ sin oc (—-—N >= 0.3 +,08 (5.12)
The average { ) now includes an average over neutron and proton target nucleons

and it implies

*

N t ’ N 1 N—' 3 1
("N‘B'> = <—NE) = ("ﬁ%) +3 (F (5.13)
We can now rewrite (5.12) as
N N
2 1 ! , 2 ! 1 1
(cos 0c+ E) <T‘1_R> + sin Gc (—ﬁ)\-) -3 (-I;]-) = 0,3 +,08 (5.14)
and find
<§R'> N (.22 £.06) + S (2 - 5.15
N ~~ (. . ) 8 N . v ( . )

a reasonable value when it is compared with the electroproduction data and their

interpretation in terms of the (quark) parton model.
A difference in neutrino and antineutrino total cross sections even when averaged

over n and p targets, is characteristic of parton models.4’ 5 Using only charge
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symmetry, some scale-invariance, and the high energy approximation

—

‘ 2
v v _2 GME 2 o - T
Tiot " %tot =3 7 CO8 chdx vB(L-R) +(,AS| 1 contrlbut.lon) (5.16)

In the (quark) parton model, we find from (5.10) (5.13) and (3.17)

- 2. o 2 C L
v v G ME tot} ., GME 1
Thot ™ Tpor = (0.6 %.18) = 1 - L2 | =3 220 (o (5.17)
' Ttot
Therefore -
_ o7
1. _ tot
(F> =(0.3£.08) {1- ” (5.18)
Ttot /
Thus the model predicts, at least
v v |
oot (B) 207 (E) (5.19)

For (-%I-) > 0. 1, as perhaps suggested by the shape of the electroproduction data

for vW2p, we ﬁnd |
v v ’
crtot(E) < (0.7 .l)a-tot(E) i (5.20)

where, again, the cross sections are averaged over neutron and proton.

One cannot overestimate the crudity of this model. However, what can be
émphasized is the richnesé to be found in the comparison of the various kinds of
neutrino-induced 'processes; both with regard to the internal quantum numbers of
target and projectile and the helicity states of the "virtual W' exchanged between

lepton and hadron.
VI. EFFECT OF AN INTERMEDIATE BOSON ON SCALE-INVARIANCE

Throughout this paper we have assumed that the intermediate boson does not
exist, or if it does, that it is sufficiently heavy so its effects are not observable.

As a last topic it is interesting to study how our considerations are modified if
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a W exists., The basic formulae are only changed by the replacement

2 GZ

G
2
(1 +—Q—§“)2
m

2
If scale-invariance remains valid, when s = 2ME > me, then the total cross

(6.1)

section no longer rises linearly with energy. To estimate the modification we

go back to (3. 12) and change variables from (Qz, v) to (x, y) with

QZ
X = 5xe andy=—”E- . (6.2)
We then obtain 1 | .
o
ME 1 A
Thot = < dxdy F(x) s \Z [1-y+y <L) -y(1-y) <R>]
1+ —-—E—Xy
0 Ty (6.3)
For = > 1
m@ ol
. v G My s \
Ot = 37 F(0)log (""‘2 ) (6.4)
. mw

We chose for F(x) the same functional form as in electroproduction and also

(L) =1, (R.> = 0 (to simplify the estimation). In Fig. 3 we plot o}tJot

as a
function of s/ m2
W.
The most that can be stated is that an observed linear rise in cross section
would be evidence against the existence of a W with a mass below a certain value.

Were the cross section not to. rise linearly with energy, a breakdown of scale-

invariance, due to a mechanism other than W-exchange, could also be responsible,
ViI. CONCLUSIONS

High energy neutrino-nucleon interactions provide a rich and complementary

study to that of "deep inelastic' electroproduction. Some of the questions which

should be practical to study experimentally are:
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1) The linear rise of total cross section with energy is a strong indicator for
the scale-invariance of Adler's form factor vf.
2) A difference in neutrino-nucleon and antineutrino-nucleon cross sections

R
3) The class of interactions for which v/E = 1 (large energy transfer, low

measures ((0'L - o-R)/ (O'L + oy + 20~S)), a model-sensitive quantity,

secondary muon energy) are highly sensitive to the presence of o, in neutrino-

induced processes and %R in antineutrino-induced procesvses.

The magnitude and enérgy-dependence of the measured neutrino cross section
is approximately what might have been expected from the electroproduction data
by using the conserved-vector-current hypothesis along with various combinations
of auxiliary hypotheses. If anything, it is a little larger (< 50%) than might have
been anticipated. However, theory is in much too crude a condition to allow an
incisive comparison.

One of us (J . D. B) wishes to thank E. Gbldwasser and the National Accelerator
Laboratory for their kind hospitality at the 1969 Aspen Summer Study. Much of
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colleagues at SLAC for useful discussions.
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APPENDIX I

The steps involved in deriving the exact (to within the m”_ =~ 0 approximation)
results of (2.12) and (2.13) are algebraically lengthy and we give here some of the
intermediate steps. In replacing the trigonometric funétions of 8 and @ by the

more convenient variables QZ, v, E and E' we note that:
2

2 g _
PX - AEE? . (A° 1)

sin

and the corresponding cosine follows trivially. Toobtain sin #'and sin(f' +9) we

use conservation of momentum in two different directions:

Perpendicular to vxv)q E' sin ¢ = \/Vz + Qz sin @' - (A.2)
‘Perpendicular to & E sin §'= E' sin@’ +0) (A.3)
so that ' 2 1/2

e\ (1
sing'= X (E — 2R (A.4)

v \E 2

R 1+ .%.

v

The components of the leptonic' current can be read from (2.1) with the help of

(A.1) - (A.4). Equation (2.1) itself may, be obtained by trace tec/hmques 24
Q" 1/2
lept _ 4 1- 4EE' 2 )

1 — ! - 3
o EE 5 4 /EE ( LLLEE, (A.5)
COS =
2
lept 1+ E_E5 Q E+E
o = 2,/EE sinfr=2 X (A.6)
cos - v + Q

lept _sinf
= 2i /EE'
D

COoS -2—

= 2iQ (A.T)

The z-component is obtained from j 0 by using current conservation
1/2

2 |
EPERS (1 + 97) (A.8)

4
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while the right and left-hand combinations follow from (A.6) and (A.7):

2\-1/2 T
<X ) [(E + E')i\/v2+Q2] (A.9)

14

le

. lept |
JR,I;_‘ =7 Uy ¥ 1) = ﬁgv’ (1""
By collecting (A.5), (A.8) and (A.9) Eq. (2.13) follows. The cross section follows

by analogy to (2. 6)

2 2 '
do G E Q <t n Jept # 2.,..3.4
—y T = 5 m T3 J « J(0)\P>|7(2m) 37 (P_-p-q) (A.10)
dQ°dydr 2r E v2 Z < ‘u | | n

The summation 31 is over all final-state variables except for the set of -.final—state
hadron momenta T, whicﬁ are measured. We define the helicity cross sections
for the *'virtual"” W-nucleon absorption into fihal hadronic spaCe spanning the
phase space dI' by:
do-(i) T 1 '
L D)

&
2My

and by arguments described in Section II we can obtaini (2. 8) and (2.12).

e, Hofp>|fem’s* @ -p-0 Ay

We finally give the relations between the cross sections defined in this paper
2,12,13

and the form factors Wl and W3:
W, =B+ 2 /A R+ )] (A.12)
Wy = 5%2 v 14+%/Q° [(L)-(R)] | (A.13)
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APPENDIX II

In proving the theorem, Eq. (3.9), it is sufficient to tak;a the case for which
H' = f &x H'(x) = f a(x) M q(x) &°x
with M a 3 x 3 mass matrix” and q = (', n', AN a quaik field operator satisfying
canonical commutation relations, This is because all that we shall use is the
Lorentz-transformation property of the double commutator in (3.9); this property

depends only on the group structure and not the specific representation we use

here. Then at {= 0: : ,

o L« B, B
q [A +B ys]q

where o and 8 are SU(3) labels, and A and B 3 x 3 SU(3) matrices. Consequently,

it

<P‘E(A + Bys)qlP> = %—% U(p) (a + byy) u(p)-P;—-—-O(—P]l-)

Z, Z

and the double commutator (3.9) is 0(__1?) as Pz—wo.
P

Z
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FIGURE CAPTIONS

Inelastic neutrino-nucleon scattering together with the coordinate system
used in decomposing the leptonic current. o

Breit frame for the lepton-parton collision.
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