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Abstract

This thesis explores the interactions of learning and quantum mechanics. At its heart, learning consists

of extracting information from data. We will consider two types of data; random and deterministic.

When data is random, one usually tries to learn an approximation to a desired object, when it is

deterministic, one usually tries to learn an exact description of an object. Chapters 2 and 3 of this

thesis focus on approximate learning of classical data embedded in quantum systems. The quantum

mechanical nature of the physical systems leads to inherent randomness, even if the classical data is

embedded in a deterministic way. In the final chapter we turn to exact learning of quantum objects,

where we explore learning succinct characterisation of quantum objects from verbose descriptions.

Chapter 1 gives a brief motivation for quantum information, and gives a review of notation used

throughout the thesis.

Chapter 2 introduces quantum metrology, the quantum generalisation of parameter estimation. Pa-

rameter estimation is a foundational area of modern statistics. In parameter estimation, one considers

data generated from an instance of a parameterised model, with the aim of inferring the values of the

parameters that generated the dataset. Parameter estimation is ubiquitous across modern science and

thus has a rich and well-developed theory. Quantum metrology is a comparatively modern theory of

parameter estimation, where classical parameters are encoded in quantum systems.

Existing literature in quantum metrology focuses on the so-called asymptotic regime, corresponding

to understanding the limit of attainable precision as experimental resources (and time) tend to infin-

ity. We consider the non-asymptotic regime, of particular relevance when experimental resources are

limited; often the case for quantum systems. We generalise the classical framework of non-asymptotic

parameter estimation to quantum metrology. This generalisation prescribes a non-asymptotic, oper-

ational method to determine if one measurement is better than another. We say that a measurement

is admissible if there is no measurement that is strictly better than it; a measurement is optimal if

it is as least as good as any other candidate measurement. Note that optimality is a much stronger

condition than admissibility - there may be many incomparable admissible measurements, none of

which are optimal. We prove several results within our non-asymptotic framework. First, we give a

complete characterisation of when an optimal measurement exists - if and only if a parameterised state

lies in a very restrictive class, called classical parameterised states. Second, we give three sufficient

conditions for when an approximately optimal measurement exists, giving explicit bounds on the level

of optimality. Finally, we give several necessary conditions, and one sufficient condition, for when a

measurement is admissible. Given the fundamental nature of admissibility within classical parameter

estimation, our results serve as a foundation for non-asymptotic quantum metrology.
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Second, we explore an emerging technique in quantum metrology, known as quantum filtering (or

postselection). Quantum filtering considers how one can distil information (on classical parameters)

from many copies of a parameterised quantum state into few copies of a quantum state. Recently,

a filter was discovered that can losslessly compress information into arbitrarily few quantum states,

as long as one has a suitable initial guess of the parameter. First, we completely characterise which

filters allow for lossless compression, showing that the known lossless filter lies within a more general

family. Our discovery of the family of lossless filters allows for flexibility in the design of experiments.

Second, we show that filters that are optimal for noiseless systems may be sub-optimal in the presence

of noise. This counter-intuitive result shows the subtlety of filter design. Third, we show that lossless

compression is not achievable in classical experiments (except in trivial cases), showing that lossless

compression is a genuine quantum effect. The quantum nature of lossless compression has already

been explored, by appealing to established indicators of classicality, rather than operational quantities.

Our proof, however, is purely operational in nature, completely characterising the limited cases where

classical lossless compression is possible. Finally, we give the first practical, iterative quantum filter-

ing algorithm. All existing literature on filtering assumes the asymptotic regime, and does not give

a concrete way to realise a practical advantage. Our algorithm is the first result in non-asymptotic

quantum filtering. In our explicit scheme, we show that the quantum effect of filtering can have a

subtle interplay with the classical theory of admissibility of estimators.

Chapter 3 considers probably approximately correct (PAC) learning, which underpins of all modern

machine learning. We consider quantum machine learning of classical data, where classical objects are

encoded in quantum states. Existing literature has demonstrated a wide range of quantum speedups

in PAC learning, ranging from polynomial to exponential. However, all known improvements apply

to special cases - not to the general theory. Indeed, it was recently shown that established access

models do not admit a generic asymptotic quantum speedup. We consider a natural extension to

the most widespread quantum access model, and argue it is applicable to most quantum scenarios of

interest. We show that in this new access model, there is a generic quadratic reduction in the quan-

tity of resources required for PAC learning. Furthermore, we prove that this quadratic improvement

is optimal. Given the success of modern machine learning algorithms, our results pave the way for

generic improvements in quantum machine learning.

Chapter 4 considers classical, exact learning of elements of the stabiliser formalism. The stabiliser

formalism is a cornerstone of modern quantum computation (see Section 4.1.1 for a more thorough

review). We explore common algorithmic primitives that are used for learning efficient classical de-

scriptions of elements of the stabiliser formalism from inefficient ones. Such primitives have seen

widespread use in classical simulation of quantum computers, and in increasing the efficiency of quan-

tum circuit design. We give several new algorithms for these primitives, that have asymptotic and

realisable speedups over existing implementations. Given the ubiquity of our primitives, these speedups

will be widely useful in a range of problems.
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“Do you guys just put the word quantum in front of everything?”

Scott Lang, Ant-Man and the Wasp, 2018
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Chapter 1

Introduction

1.1 Quantum Mechanics and Quantum Information

The theory of quantum mechanics runs contrary to our intuitive understanding of the universe. Niels

Bohr, one of the founding fathers of the field, once said “Those who are not shocked when they first

come across quantum theory cannot possibly have understood it” [6]. Moreover, the theory has re-

mained fundamentally, metaphysically incomplete since its inception in the early 20th century. For

example, the theory predicts that observing a system changes is behaviour, but provides no satisfac-

tory explanation of how a system should know it is being observed, or indeed a precise definition of

“observation” [7]. Despite this, Quantum mechanics offers astonishingly accurate predictions, match-

ing experimental observations in up to 13 decimal places of precision [8]. Undoubtedly, our universe

is quantum.

Quantum mechanical effects have become increasingly important in microelectronics and computing.

The fundamental building block of a computer is a transistor, a gate that can be toggled to allow

electrons to, or not to, flow. As we make smaller and better transistors, we can make smaller and faster

computers. Since the 1970s, we have observed roughly exponential scaling in the size of transistors,

known as Moore’s law [9], leading to roughly exponential growth in computing power. Yet, quantum

mechanics gives a fundamental limit to how small transistors can be made (via. quantum tunneling

[10]). Thus, if there is any hope to continue Moore’s law, we must understand how to build computers

out of quantum particles, that obey quantum effects.

The idea of utilising quantum systems for building computers long predates issues with transistors.

Feynman first proposed the idea in a 1981 talk [11], famously concluding “Nature isn’t classical,

dammit, and if you want to make a simulation of Nature, you’d better make it quantum mechanical”.

Such observations have spawned an entire field of research: quantum information and computation.

Since its inception, the field of quantum information and computation has exploded. At its core,

the field studies the utility of quantum mechanical systems for information theoretic (e.g. transmit-

ting information securely between two parties) and computational (e.g. computing the product of two

numbers) tasks. One considers whether the quantum system is “better” at the task than a system

described by classical physics, or whether quantum effects are a hindrance. This thesis explores a

variety of such tasks, finding quantum advantages and hindrances.
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2 Learning in Quantum Mechanics

1.2 Notation

1.2.1 General

Let V,W be vector spaces. Unless otherwise stated, we work over the complex numbers. Denote the

set of (bounded) linear maps from V to W by B(V,W ). We write B(V, V ) = B(V ). Let ⟨·, ·⟩ be a

choice of inner product on V . We let Herm(V ) denote the set of Hermitian operators on V , and

S(V ) = {v ∈ V | ∥v∥ = 1}. (1.1)

For A,B ∈ B(V ), we write A ≥ 0 [resp. A > 0] to mean that A is positive semi-definite [resp. positive

definite], with respect to ⟨·, ·⟩. Similarly, we say that A ≥ B [resp. A > B] if A − B ≥ 0 [resp.

A−B > 0]. For A ∈ Herm(V ), we call Ker(A)⊥ the support of A, denoted supp(A). We occasionally

make use of the following properties of positive semi-definite matrices

Proposition 1.1: Suppose that V is an inner product space, A ∈ B(V ) is positive semi-definite,

A ≥ 0. Then

(i) For v ∈ V , Av = 0 iff. ⟨v,Av⟩ = 0.

(ii) For v ∈ V , Av = 0 iff. every eigenvector w of A with non-zero eigenvalue has ⟨v, w⟩ = 0.

(iii) If w is an eigenvector of A with non-zero eigenvalue, then w ∈ supp(A).

Proof: (i) follows by noting A = B†B for some B ≥ 0. (ii) follows by writing A in its spectral

decomposition, and using (i). (iii) follows from (ii).

If V,W are dimension d, d′ over a field F respectively, then B(V,W ) is in bijection with the set of d×d′

matrices over F, denoted Md,d′(F). We let Md(F) = Md,d(F).

Given two linear maps A,B ∈ B(V ), we denote their commutator by [A,B] = AB − BA, and their

anticommutator by {A,B} = AB +BA.

Let f : Rm → Rn be some differentiable function. We denote its derivative by Df : Rm → B(Rm,Rn).

In the case that n = 1 then B(Rm,R) is in bijection with Rm, and we let by ∇f : Rm → Rm, ∇f(x)i =

Df(x)(ei).

For a natural number K ∈ N = {1, 2, . . . }, we let [K] = {1, 2, . . . ,K}. Given a set X with subset

A ⊆ X, we denote the indicator function of A by 1A:

1A : X → {0, 1}, 1A(x) =

1, x ∈ A,

0, x /∈ A.
(1.2)

We let Ac = X \A denote the complement of A (in X).

Let X ⊆ R, let f, g : X → R and y ∈ X. We write
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(i) f = Ox→y(g) if there exist constants C, δ > 0 such that if |x− y| ≤ δ, then f(x) ≤ Cg(x).

(ii) f = Ωx→y(g) if there exist constants C, δ > 0 such that if |x− y| ≤ δ, then f(x) ≥ Cg(x).

(iii) f = Θx→y(g) if f = Ox→y(g) and f = Ωx→y(g).

We may also take y = ∞, in which case e.g. f = Ox→∞(g) if there exist constants C,L > 0 such that

if |x| ≥ L, then f(x) ≤ Cg(x). It is common to write e.g. f = O(g), with the precise limit y implicit.

Most often f will be a function of a “small” parameter (e.g. ϵ) in which case y = 0, or an unbounded

parameter (e.g. n ∈ N), in which case y = ∞. These definitions can also be extended to X ⊆ Rk,

e.g. for k = 2, f = Oϵ→0, d→∞(g) if there exist constants C, δ, L such that if |ϵ| ≤ δ and d ≥ L, then

f(ϵ, d) ≤ Cg(ϵ, d).

1.2.2 Quantum Theory

Let H be a Hilbert space. Unless otherwise stated, we will always take our Hilbert spaces to be finite

dimensional. We denote the set of (quantum) states on H by D(H):

D(H) = {ρ ∈ B(H) | ρ ≥ 0,Tr(ρ) = 1}. (1.3)

For two Hilbert spaces H,H′ we denote the set of completely-positive trace-preserving (CPTP) maps

between them by T (H,H′):

T (H,H′) = {Λ ∈ B(B(H),B(H′)) | Λ is CPTP}. (1.4)

For K ∈ N we let MK(H) denote the set of K-outcome positive operator valued measures (POVMs)

on H:

MK(H) =

{
M= (M1, . . . ,MK) ∈ B(H)K

∣∣∣∣∣Mi ≥ 0,

K∑
i=1

Mi = 1

}
. (1.5)

We let M(H) denote the disjoint union of the MK(H), i.e. the set of POVMs with any number of

allowed outcomes:

M(H) =
⊔
K∈N

MK(H) = {(K,M) | K ∈ N,M ∈ MK(H)}. (1.6)

When the number of outcomes of a POVM is unimportant, given N = (K,M) ∈ M(H), we will write

Ni to mean Mi, i.e. directly index the elements of the POVM.

1.2.3 Statistics

Let (Ω,F ,P) be a probability space, let Xn be a sequence of random variables on the probability space.

We write Xn
a.s.−−→ X to mean Xn converges almost surely to X, Xn

p−→ X to mean Xn converges in

probability to X, and Xn
d−→ X to mean Xn converges in distribution to X.

For Ω finite, and F the power set of Ω, probability measures are in bijection with probability mass

functions, i.e. functions p : Ω → [0, 1] such that
∑

ω∈Ω p(ω) = 1. We denote the set of probability

mass functions on Ω by ∆(Ω).



Chapter 2

Metrology

2.1 Background

2.1.1 Classical Parameter Estimation

In this Section, we introduce classical parameter estimation. Quantum metrology generalises pa-

rameter estimation, and thus the core ideas within parameter estimation are essential to quantum

metrology. Indeed, all of our results will rely on the language introduced in this Section. The ex-

position is self-contained, and aims to motivate many of its core concepts. Naturally, it is far from

exhaustive, and well-removed from the frontier of statistical research, but it covers the prerequisite

background for understanding our results. We begin with some motivational material.

In physics, we are used to describing systems in terms of parameters: position, momentum, energy,

temperature, pressure etc.. A finite collection of these parameters uniquely characterises a system;

given knowledge of the parameters, we can predict the behaviour of the system in the future. Often,

nature provides a system with unknown parameters, which we would like to determine. For example,

“determine the temperature of this liquid” or “find the pressure of this gas”. These are questions

of “parameter estimation” [12], a foundational area of statistics. Parameter estimation problems can

arise from such physical questions, but this is by no means exhaustive, as shown by the following

example:

Example 2.1: Proportion estimation

Suppose there is a large population, with N members. One aims to estimate the proportion p

that have a given property. For example p could be the fraction of an electorate that intend to

vote for a given party, or the proportion of roads in the UK with a pothole. It is usually infeasible

to sample the whole population, instead one takes a sample of n≪ N members of the population,

and determines the number of members X in the sample that have the property. If the sample

is appropriately chosen, then X is binomially distributed: X ∼ B(n, p). Most commonly, the

proportion p is estimated as p̂ = X/n.

We use this example to understand the more abstract theory of parameter estimation. A parameter

θ (p in the example) is an element of a known (measurable) set Θ ⊆ Rk ([0, 1] in the example), called

a parameter space. Often the case k = 1, called “single parameter”, is more simple than the k > 1

“multiparameter” regime. One receives stochastic data depending on the parameter, corresponding

to a random variable X, taking values in a measurable space χ ([n] in the example), whose law Pθ

4
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is unknown, but depends on the parameter in a known way (i.e. we know the map θ 7→ Pθ, like

the parameterised binomial distribution in the example). The map θ 7→ Pθ is called a model - it

describes how the value of the parameter affects the data that we see. The model may arise from

a physical theory (e.g. predicting how a gas at a given temperature and pressure will respond to an

interaction), or other modelling assumptions (such as an appropriate sample being drawn in example

2.1). We say that a model Pθ is identifiable if Pθ = Pθ′ ⇒ θ = θ′. Identifiablity appears as a weak

assumption; without it, there are at least two values of the parameter that cannot be discriminated by

observing X. However, we shall see that non-identifiable models naturally arise in quantum mechanics.

In the case that the random variable X takes value x ∈ χ, one estimates the parameter, we denote the

by estimate θ̂(x) (p̂ in the example). The (measurable) function θ̂ : χ→ Rk is called an estimator1. We

consider the estimator p̂ from example 2.1 in more detail. We find that E[p̂(X)] = p and Var[p̂(X)] =

p(1 − p)/n. Thus, on average, p̂ will give the correct answer for p, subject to random fluctuations,

characterised by Var[p̂(X)]. We see that if p is close to 0 or 1, then p̂ has small random fluctuations

around the true value of p, whereas if p ≈ 1/2, the random fluctuations of p̂ are comparatively much

larger. Moreover, the size of the fluctuations scales like 1/
√
n in the number of observations n. This

illustrates two important points in parameter estimation

(i) The performance of an estimator θ̂ depends on the underlying parameter θ.

(ii) As more observations are taken, we can estimate θ more accurately.

We explore point (i) now, point (ii) is discussed in Section 2.1.3. Given an estimator θ̂ and a value

of the parameter θ, θ̂(X) is random variable over Rk. We wish to quantify how “good” this random

variable is, i.e. how “close” is it to the true parameter θ. First, we must define a quantative notion of

distance. This is given by a function L : Rk × Θ → [0,∞], called a loss function. L(y, ϕ) quantifies

how “bad” of a guess y is, if the underlying parameter were ϕ. We give several examples:

(i) Least-squares loss: L(y, z) = ∥y − z∥2 :=
∑k

i=1(yi − zi)
2.

(ii) Absolute loss: L(y, z) = ∥y − z∥.

(iii) Discrete loss: L(y, z) = 1 − 1{y}(z).

(iv) Kullback-Leibler (KL) divergence [13]: If the parameters are probability distributions (i.e. pa-

rameters have non-negative entries and their entries sum to unity), and y is also a probability

distribution, then L(y, z) =
∑k

i=1 yi log zi/yi. If y is not a probability distribution, L(y, z) = ∞.

Note that (i)-(iii) are metrics, whereas (iv) is not (it is not symmetric, and does not obey the tri-

angle inequality). The choice of loss function is somewhat arbitrary; it should be motivated by the

particular application of parameter estimation. Least-squares loss is the most common choice of loss

function, given its fundamental connection to variance. Thus, unless stated otherwise, we will always

take least-squares loss as our loss function.

Given a choice of loss function, the performance of the random variable θ̂(X) for parameter value θ

is characterised by the random variable L(θ̂(X), θ), which takes values in [0,∞]. In order to compare

1It is sometimes helpful to allow estimators to take values outside of Θ. For example, it may be sensible to estimate
the temperature of a system as zero. An estimator is called proper if it only takes values in Θ, otherwise it is called
improper.
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Pθ[L(θ̂(X), θ) > η]
Small Large

Eθ[L(θ̂(X), θ]
Small

η η

Large
η . . .

C η . . .
C

Figure 2.1: Contrasting conclusions that can be drawn from thresholding versus expectation. The
plots show possible (schematic) pdfs of the random variable L(θ̂(X), θ). C represents a very large
real number. Note that Markov’s inequality implies that Pθ[L(θ̂(X), θ) > η] ≤ Eθ[L(θ̂(X), θ)]/η,
so that Pθ[L(θ̂(X), θ) > η] cannot be too large if Eθ[L(θ̂(X), θ)] is small. Conversely, as C → ∞,
Eθ[L(θ̂(X), θ)] can be made arbitrarily large whilst Pθ[L(θ̂(X), θ) > η] is simultaneously arbitrarily
small.

estimators, we wish to quantify the performance of this random variable with a single number. There

are two common methods:

(i) Expectation: The expected value Eθ[L(θ̂(X), θ)].

(ii) Thresholding: For a fixed (small) parameter value η, the probability Pθ[L(θ̂(X), θ) > η].

The subscript θ on P,E is used to indicate that the random variable X has law Pθ. Taking the expecta-

tion and using thresholding can give contrasting conclusions on an estimator’s performance, see figure

2.1 for a discussion. Thresholding is particularly common in theoretical computer science [14], most

statistical works use least-squares loss. By introducing a new loss function L′(y, θ) = 1{L(y,θ)>η}(y),

we note that Pθ[L(θ̂(X), θ) > η] = Eθ[L
′(θ̂(X), θ)] may also be written as an expectation of a loss

function. However, in general, L′ will not inherit any “nice” properties of L, such as continuity or

convexity. In summary, the performance of an estimator for a given value of the parameter θ is quan-

tified by Eθ[L(θ̂(X), θ)], where L is a choice of loss function.

Given an estimator θ̂, its performance across the whole parameter space Θ is measured by its risk

function R, defined by

R(θ̂, ·) : Θ → [0,∞], R(θ̂, θ) = Eθ[L(θ̂(X), θ)]. (2.1)

The risk function gives us a way to compare estimators: we say that θ̂1 ≤ θ̂2 if

∀θ ∈ Θ, R(θ̂1, θ) ≤ R(θ̂2, θ). (2.2)

Note that ≤ is not generally a partial order, as we may have R(θ̂1, ·) = R(θ̂2, ·) for distinct θ̂1 ̸= θ̂2.

It is important that two estimators are compared at all values of θ; before an experiment we do not
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know the value of the parameter.

We write θ̂1 < θ̂2 if θ̂1 ≤ θ̂2, but θ̂2 ≰ θ̂1. If θ̂1 < θ̂2, then θ̂1 is theoretically a better estimator than

θ̂2 - whatever the value of the parameter, one expects θ̂1 to perform better2. An estimator θ̂2 is said

to be inadmissible if there exists another estimator θ̂1 such that θ̂1 < θ̂2, otherwise it is said to be

admissible. Most reasonable estimators will be incomparable via ≤; which is better will depend on

the value of the parameter (see figure 2.2 for an illustration). If an estimator θ̂ were a minimum of

≤, then it would be a best estimator. However, in almost all problems of interest, no such minimal

estimator exists.

Lemma 2.1: Suppose L is a loss function such that L(θ, θ) = 0 for all θ ∈ Θ. Then, if ≤ admits

a minimal element θ̂, R(θ̂, ·) ≡ 0.

Proof: Fix θ0 ∈ Θ. Define θ̂θ0 ≡ θ0, called a constant estimator, so that R(θ̂θ0 , θ0) = 0. But

θ̂ ≤ θ̂θ0 , which implies that R(θ̂, θ0) = 0. As θ0 was arbitrary, the result follows.

If R(θ̂, ·) ≡ 0, the parameter estimation problem can always be solved exactly (from the perspective of

the loss function L), in which case the underlying randomness is not important. Thus, in most cases

of interest, there is no “best” estimator.

The worst-case risk of an estimator Rmax(θ̂), is defined by

Rmax(θ̂) = sup
θ∈Θ

R(θ̂, θ). (2.3)

One can also choose to compare estimators by their worst-case risk, giving parameter-agnostic guar-

antees. However, this can lead to sub-optimal performance across most of the parameter space, this is

further discussed in figure 2.2. An estimator θ̂m is called minimax if it minimises the worst case risk,

i.e.

Rmax(θ̂m) = inf
θ̂
Rmax(θ̂). (2.4)

We reiterate that θ̂m is not (usually) a minimal element of ≤, other estimators will perform better

depending on the value of the parameter.

The most common choice of estimator, studied for over 200 years [15] is the maximum-likelihood

estimator (MLE). It can be used when Pθ admits a probability density function (pdf)3 f(x|θ), with

respect to some reference measure µ on χ. Usually, χ ⊆ Rm, and µ is the Lebesgue measure. The

maxinum-likelihood estimator is defined by

θ̂MLE(x) = arg max
θ∈Θ

f(x|θ), (2.5)

with ties broken arbitrarily. The optimisation is often written in terms of the (log-)likelihood function

ℓ:

ℓ(·|x) : Θ → R, ℓ(θ|x) = log f(x|θ). (2.6)

2In practice, there may be other considerations, such as computational cost or stability to noise.
3If χ is finite, then note that a probability density function (with respect to the counting measure) is a probability

mass function.
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Figure 2.2: Schematic plots of two risk functions R(θ̂, ·) for two different estimators, given by the
red and blue curves. The blue estimator has smaller minimax risk than the red estimator, but has
significantly worse performance across most of the parameter space. Moreoever, neither estimator
dominates the other - they are incomparable via ≤.

Clearly, maximising ℓ is the same as maximising f . The MLE captures our intuition in parameter

estimation: the parameter “probably” has a value that induces the highest possible probability of

generating the data we have seen. Note that the estimator in example 2.1 is the MLE. Indeed, there

are some situations in which the MLE is provably optimal (see Section 2.1.3). However, surprisingly,

it is not always admissible, as shown by the following example.

Example 2.2: The James-Stein estimator [16–18]

Suppose that we are trying to estimate the mean θ ∈ Rk, where k ≥ 3, of a Guassian (multivariate

normal) distribution, with known covariance matrix Σ > 0, under least-squares loss. That is to

say, X ∼ N (θ,Σ). The MLE θ̂MLE(x) = x has risk

R(θ̂MLE, θ) = Eθ[∥X − θ∥2] = Tr(Σ). (2.7)

The James-Stein estimator (JSE), θ̂JS is defined by

θ̂JS(x) = x− (k − 2)

∥Σ−1x∥2
Σ−1x, (2.8)

with risk

R(θ̂JS, θ) = Tr(Σ) − (k − 2)2Eθ

[
1

∥Σ−1X∥2

]
. (2.9)

Since the second term is clearly negative, we deduce that θ̂JS < θ̂MLE, i.e. the JSE dominates the

MLE, and the MLE is inadmissible.

Lemma 2.1 illustrates the difficulty of statistics. In order to quantify the performance of estimator,

one must choose an arbitrary loss function. Once the loss function is chosen, there is (usually) no

subsequent best choice of estimator. Thus, extreme care must be taken in choosing a particular

estimator, requiring extensive justification. Finally, example 2.2 shows that it is difficult to define

general classes of (sensible) estimators; the MLE, one of the most pervasive and seemingly sensible
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estimators, can be inadmissible.

2.1.2 Bayesian Statistics

In this Section we introduce Bayesian statistics. The two most common interpretations of probability

are frequentism [19] and Bayesianism [20]. Frequentism, formally introduced in the mid 19th century

[21], interprets probabilities as externally fixed, discoverable by averaging the results of many repeti-

tions of the same experiment. Bayesianism, introduced in the late 18th century [22], however, views

a probability as the quantification of one’s belief, or expectation, that an event will occur. As one

receives new information, one should update their belief, in accordance with Bayes’ rule [23]. This

thesis adopts a frequentest view of probability, but we will use techniques from Bayesian statistics

to prove many of our results. Thus, we briefly introduce the mathematical machinery that we will

require, particularly in Section 2.2.5.

In parameter estimation, Bayesianism amounts to a probability measure π on Θ (with σ-algebra given

by the restriction of the standard σ-algebra of Rk), representing one’s belief about the value of the

parameter, called the prior distribution. We will always assume that π admits a density (with respect

to the Lebesgue measure). For notional brevity, we will also call this density π. Given a prior, we

define the Bayes risk Rπ(θ̂) of an estimator by

Rπ(θ̂) = Eϑ∼π[R(θ̂, ϑ)] =

∫
dθ π(θ)R(θ̂, θ). (2.10)

The Bayes risk quantifies the expected performance of θ̂ - if ones draws θ at random according to π,

how well does one expect θ̂ to perform?

An estimator θ̂B that minimises the Bayes risk is called Bayesian:

Rπ(θ̂B) = inf
θ̂
Rπ(θ̂). (2.11)

It represents an optimal choice of estimator, with respect to the prior π.

Suppose X takes value x, then our belief about the parameter should be updated (via Bayes’ rule) to

give a new probability distribution Π over Θ, called the posterior distribution:

Π(θ|x) =
f(x|θ)π(θ)∫
dθ f(x|θ)π(θ)

. (2.12)

The posterior risk of an estimator, if x is observed, is given by∫
dθΠ(θ|x)L(θ̂(x), θ). (2.13)

An estimator θ̂ is Bayesian iff. it minimises the posterior risk [20]. Bayesian estimators are often

admissible, as shown by the following result

Lemma 2.2: Let π be a prior such that the Bayes estimator θ̂B is unique. Then θ̂B is admissible
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Proof: Suppose θ̂B is inadmissible, then there exists an estimator θ̂ < θ̂B. But then Rπ(θ̂) ≤
Rπ(θ̂B) and θ̂ is also Bayes, contradicting the uniqueness of θ̂B.

There are various generalisations of this result (see Ref. [24] theorems 7.13 and 8.7), which relax the

condition of uniqueness.

The introduction of a prior leads to an (often unique and admissible) optimal estimator. However,

one must have good reason to pick a particular prior π. If the parameter estimation problem has

been repeated many times, then one can build up a suitable prior over time. However, if a parameter

estimation problem is to be performed once, then the choice of prior π is somewhat arbitrary. If one

tries to be prior-agnostic, by choosing the worst-case prior for a fixed estimator θ̂, one finds Bayes risk

equal to the worst-case risk of θ̂:

sup
π
Rπ(θ̂) = Rmax(θ̂), (2.14)

yielding the same issues as discussed in figure 2.2.

2.1.3 The Asymptotic Limit

The (historically) most studied regime of parameter estimation is the asymptotic limit - where infinite

observations are made. Correspondingly, the most commonly studied area of quantum metrology is

also the asymptotic limit. Our results in Section 2.2 are decidedly non-asymptotic, but Section 2.3

relies on some asymptotic quantum theory. Thus, in the next two Sections we give a self-contained

description of classical asymptotic statistical theory. We give more exposition than is strictly neces-

sary for our results, in order to give the reader a better appreciation of the context of the theory. Of

course, our review is far from exhaustive; see Ref. [25] for a thorough approach.

In the asymptotic limit, one usually takes X = (X1, . . . , Xn) as a vector of independent, identically

distributed (iid) random variables, each of whose law depends on the parameter in the usual way.

Instead of a single estimator θ̂, one considers a family of estimators {θ̂n : χn → Rk}, one for each

n ∈ N. Often, the family {θ̂n} is also referred to as an estimator. The asymptotic limit is when

n→ ∞, i.e. one is given infinite data.

The simplest desirable property of estimators is that they should get the “right answer” as n → ∞,

known as consistency. An estimator θ̂n is said to be strongly consistent at the point θ ∈ Θ if

θ̂n
a.s.−−→ θ as n→ ∞. (2.15)

If the convergence is in probability, rather than a.s., it is said to be weakly consistent. An estimator

is said to be strongly (weakly) consistent if it is strongly (weakly) consistent at all θ ∈ Θ.

In most reasonable scenarios, the MLE can be shown to be consistent. Since the MLE is defined for

all n in a uniform sense, it is common to refer to the family θ̂MLE
n by just θ̂MLE.

Lemma 2.3: Suppose that Θ is compact, the model Pθ is identifiable, and that f(x|θ) is

“sufficiently regular”, then θ̂MLE is is weakly consistent
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For a proof, and a discussion of possible regularity assumptions, see Ref. [25], Section 5.2. Under

stronger assumptions, one can also show that the MLE is strongly consistent (see Ref. [26], theorem

2.5). Additionally, for a fixed prior π, one can show a version of consistency for Bayesian estimators.

Lemma 2.4: (Doob’s theorem) Suppose that χ ⊆ Rm for some m, with its Borel σ-algebra, and

that the model Pθ is identifiable. Let π be some prior on Θ, then the Bayesian estimator θ̂B is

strongly consistent on a (measurable) subset A ⊆ Θ, with π(A) = 1.

If there is a neighbourhood U of the true parameter θ such that π(U) = 0, then for all posteriors,

Πn(U |x1, . . . , xn) = 0, and thus θ̂B will not be consistent at θ. This shows the necessity of the π-a.s.

part of Lemma 2.4. Aside from issues of null-sets of priors, Doob’s theorem shows that given enough

information one (almost always) recovers the correct parameter, regardless of one’s initial belief. Thus,

in the asymptotic limit, the arbitrary choice of prior is unimportant.

Consider the behaviour of R(θ̂n, θ) as n → ∞. It is certainly desirable that R(θ̂n, θ) → 0 as n → ∞,

strongly related to consistency4. Moreover, inspired by the variance of sample means (for example,

in example 2.1), we expect that R(θ̂n, θ) should scale as Θ(1/n). For a fixed value of the parameter

θ0 ∈ Θ, We would like to determine the optimal prefactor, O(θ0), in the 1/n scaling - giving a notion

of an asymptotically optimal estimator. Given that the constant estimator θ̂θ0 has R(θ̂θ0 , θ0) = 0, it is

not useful to consider inf θ̂n
nR(θ̂n, θ0) ≡ 0. Instead, O(θ0) is commonly defined as a “local” minimax:

O : Θ → [0,∞], O(θ0) = inf
θ̂n

lim
δ→0

lim sup
n→∞

sup
∥θ−θ0∥≤δ

nR(θ̂n, θ). (2.16)

The limit δ → 0 makes O a local property of the model. Remarkably, this fearsome limit has an

elegant characterisation for most models of interest, as discussed in the next Section.

2.1.4 The Fisher Information

In this Section we introduce the Fisher information, the most important object in the classical asymp-

totic limit, finishing our exposition of classical statistics. We briefly motivate the Fisher information

in a non-asymptotic sense, before relating it to the optimal prefactor O, introduced in the previous

Section. We give several different operational interpretations of the Fisher information, with the aim

of demonstrating its importance.

Consider a model Pθ that admits a pdf f(x|θ). Upon observing X, one intuitively expects the true

parameter to be a maximum of the likelihood function ℓ (the motivation behind the MLE). Assuming

that ℓ is differentiable, we define s, the score function

s(·|x) : Θ → Rk, s(θ|x) = ∇ℓ(θ|x). (2.17)

One can calculate Eθ[s(θ|X)] = 0, indeed showing that the true parameter is expected to be stationary

point of the likelihood function. If ℓ has a very sharp peak, we can be confident that the true parameter

is close to the maximum of ℓ. If ℓ is very flat, we can have little confidence in our estimate of the

parameter. See figure 2.3 for an illustration of the two cases. Assuming ℓ is C2, the “degree of

4In fact, if L is bounded, then this condition is implied by consistency.
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θ∗ θ0

(a)

θ∗ θ0

(b)

Figure 2.3: Possible (schematic) shapes of ℓ, the likelihood function. θ∗ denotes the argmax of ℓ
(i.e. the maximum likelihood estimator), the true parameter is θ0. When the likelihood function is
more sharply peaked (as in (a)), we can be more confident that θ∗ is close to θ (than in (b)).

sharpness” of the peak is quantified by (minus) the second derivative (or curvature) of ℓ. This quantity

is called the Fisher information (matrix):

I(·|P ) : Θ → Mk(R), I(θ0|P )ij = −Eθ0

[
∂

∂θi

∂

∂θj
ℓ(θ0|X)

]
. (2.18)

One can also show that I(θ|P ) = Covθ[s(θ|X)]. When the model P is unambigous, we will write I(θ)

instead of I(θ|P ). I(θ|P ) can be thought of as characterising the distinguishability of the law Pθ from

Pθ′ , for θ′ in an infinitesimal neighbourhood of θ.

The Fisher information elegantly captures many operational quantities in asymptotic statistics. In-

deed, under suitable regularity assumptions, the Fisher information characterises the optimal prefactor

O introduced in the previous Section:

Lemma 2.5: Suppose that Θ is compact, the model Pθ is identifiable, f(x|θ) is “sufficiently reg-

ular”, θ0 is an interior point of Θ, and that I(θ0|P ) is invertible. Then, O(θ0) = Tr
[
I(θ0|P )−1

]
.

For a proof, and discussion of regularity assumptions, see Ref. [25], theorem 8.11 and Section 8.9.

Fewer regularity assumptions are needed to show that O(θ0) ≥ Tr
[
I(θ0|P )−1

]
. The Fisher information

has an additional asymptotic property:

Lemma 2.6: Suppose that that Pθ is “sufficiently regular”. Further suppose, that θ̂n is an

estimator such that for all θ ∈ Θ,
√
n(θ̂n − θ) converges in distribution. Then the set

{θ | lim inf
n→∞

nR(θ̂n, θ) < Tr
[
I(θ|P )−1

]
}, (2.19)

has Lebesgue measure 0.

See Ref. [25], theorem 8.9 for a proof. This shows that for sufficiently “nice” estimators, an improve-

ment over I(θ|P )−1 can only be made on a null set.

Consider example 2.2, i.e. X ∼ N (θ,Σ). One can show that I(θ) = Σ−1 is independent of θ. If we take

n samples, the sample mean has distribution Xn ∼ N (θ,Σ/n), and R(θ̂MLE
n , θ) = Tr(Σ)/n. Aplying
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the James-Stein estimator to the sample mean, we find that

R(θ̂JSn , θ) = Tr(Σ)/n− (k − 2)2

n2
Eθ

[
1∥∥Σ−1Xn

∥∥2
]
, (2.20)

For θ ̸= 0, the second term is O(1/n2), and thus R(θ̂JSn , θ) = Tr
[
I(θ)−1

]
/n + O(1/n2). We consider

the simplifying case Σ = σ21k, for some σ > 0. We find that R(θ̂JSn , 0) = 2σ2/n = (2/k) Tr
[
I(θ)−1

]
/n.

This is an explicit example of an estimator whose risk scales no worse than the inverse Fisher infor-

mation, yet scales better than the inverse Fisher information on a null set: {0}.

We give a final application of the Fisher information to non-asymptotic statistics. For an estimator

θ̂, we define its bias Bθ̂ by

Bθ̂ : Θ → Rk, θ 7→ Eθ[θ̂(X)] − θ. (2.21)

One can bound R(θ̂, θ) in terms of I(θ) without reference to the asymptotic limit. In fact, one can

bound the matrix E(θ̂, θ) := Eθ[(θ̂(X) − θ)(θ̂(X) − θ)T ], whose trace is equal to R(θ̂, θ):

Lemma 2.7: (Cramér-Rao (CR) bound)

E(θ̂, θ) ≥ Bθ̂(θ)Bθ̂(θ)T + [1 +DBθ̂(θ)]I(θ)−1[1 +DBθ̂(θ)]T . (2.22)

Taking the trace of equation (2.22) gives a lower bound on R(θ̂, θ). An estimator is said to be locally

unbiased at a point θ ∈ Θ if Bθ̂(θ) = 0 and DBθ̂(θ) = 0. In this case, the CR bound simplifies to

E(θ̂, θ) ≥ I(θ)−1. The generic dependence of the CR bound on the bias of an estimator limits its

practical applications.

We conclude the Section with the observation that under appropriate regularity assumptions, the

MLE has optimal asymptotic scaling.

Lemma 2.8: Suppose that the model Pθ is identifiable, f(x|θ) is “sufficiently regular”, θ0 is an

interior point of Θ and that I(θ0|P ) is invertible. Then

√
n(θ̂MLE

n − θ)
d−→ N (0, I(θ0|P )−1). (2.23)

Moreover, nR(θ̂MLE
n , θ) → Tr

[
I(θ|P )−1

]
for all θ ∈ Θ.

For a proof, see Ref. [25], Section 8.9.

2.1.5 Quantum Metrology

In this Section we introduce quantum metrology, the central field of this chapter. There are two main

motivations for studying quantum metrology. Firstly, if one wishes build technology from sufficiently

small systems, the systems will be described by the laws of quantum mechanics. Thus, if one wishes to

measure any property of these systems (and thereby extract useful information), it is essential to un-

derstand the interaction of quantum mechanics and parameter estimation. Secondly, there have been

theoretical and experimental demonstrations that quantum effects can lead to enhanced precision in

parameter estimation [27]. We do not explicitly deal with these motivations, instead directly consid-

ering the extant, well-established theory. We will heavily rely on the language of classical statistics,
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as introduced in the preceding Sections.

In quantum metrology, we explicitly describe how quantum systems depend on parameters [27, 28].

Instead of specifying a map θ 7→ Pθ, we fix some Hilbert space H, and consider a map

ρ : Θ → D(H). (2.24)

The map ρ is called a parameterised (quantum) state. If the state ρ is always pure, it is usually

described by a map

|ψ(·)⟩ : Θ → S(H), (2.25)

which induces a corresponding ρ(·) = |ψ(·)⟩⟨ψ(·)|. Such a |ψ(·)⟩ is called a parameterised pure state.

We give two examples of parameterised states.

Example 2.3: Gibbs state

Fix some Hamiltonian H ∈ Herm(H). We take

ρH : [0,∞) → D(H), ρH(β) =
e−βH

Tr(e−βH)
. (2.26)

ρH (called a Gibbs state) corresponds to the thermal equilibrium of a system D(H) with Hamil-

tonian H at inverse temperature β.

Example 2.4: Phase-Encoded state

Fix H = C2, the Hilbert space of a qubit. We take

|ψ(·)⟩ : S1 → S(H), eiθ 7→ 1√
2

(
|0⟩ + eiθ |1⟩

)
. (2.27)

Such states arise in optics when using 2-arm interferometers. They may also be produced by the

interaction of a two-level spin system with a magnetic field.

Given an unknown quantum state ρ(θ), we are tasked with estimating θ, as in the classical case. The

most general quantum process one could use corresponds to a POVM (K,M) ∈ M(H). The choice of

measurement induces a model P
(ρ;M)
θ , which has a probability mass function on [K]:

p
(ρ;M)
θ : [K] → [0, 1], p

(ρ;M)
θ (i) = Tr[Miρ(θ)]. (2.28)

Thus, after the choice of measurement, quantum metrology reduces to classical parameter estimation.

As before, one picks an estimator θ̂M : [K] → Rk. After a choice of loss function, this estimator has

a risk function Rρ(θ̂M , ·). Usually, the parameterised state ρ is obvious from context, and we write

R(θ̂M , ·). In summary, one specifies an approach to estimating the parameter by a measurement-

estimator pair (M, θ̂M ), where M = (K,N) ∈ M(H) and θ̂M : [K] → Rk.

The relation ≤ on estimators immediately induces a relation ≤ on measurement-estimator pairs:

(M, θ̂M ) ≤ (F, θ̂F ) iff. θ̂M ≤ θ̂F . We emphasise that estimators that use different measurements can

still be compared. As in the classical case (Lemma 2.1), we find that there is usually no optimal

measurement-estimator pair:
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Lemma 2.9: Suppose L is a loss function such that L(θ, θ) = 0 for all θ ∈ Θ. Then, if ≤ admits

a minimal element (M, θ̂M ), R(θ̂M , ·) ≡ 0.

Proof: As in Lemma 2.1.

If L is positive definite (i.e L(y, z) = 0 ⇒ y = z), then the existence of a minimal element of ≤ would

imply that the states {ρ(θ) | θ ∈ Θ} can be discriminated with certainty, i.e. they are all orthogonal.

This is an extremely restrictive condition, for example it is is impossible to satisfy if Θ is infinite and

H is finite dimensional, or if ρ is continuous. As before, Lemma 2.9 demonstrates the difficulty of

quantum metrology.

One can also consider Bayesian quantum metrology: given a prior π on the parameter space Θ, then,

as in the classical case, a measurement-estimator pair (M, θ̂M ) has some Bayes risk Rπ(θ̂M ). For a

fixed measurement M , its Bayes risk is defined as the minimum possible Bayes-risk over choice of

corresponding estimators θ̂M :

Rπ(M) = inf
θ̂M

Rπ(θ̂M ). (2.29)

A measurement M [measurment-estimator pair (M, θ̂M )] is called Bayes if it has minimal Bayes risk.

In the single parameter case (and for least squares loss), it is easy to find Bayesian measurement-

estimator pairs [29]. We discuss this further in proposition 2.7. We conclude with a remark that Ref.

[30] has recently considered an interesting approach to thresholding in the quantum Bayesian regime.

They show that optimisation of the measurement-estimator pair can be formulated as a semi-definite

program, allowing for an efficient numerical solution. This approach leads to an intriguing new theory

of both asymptotic and non-asymptotic quantum metrology, with the usual Bayesian drawback of an

arbitrary choice of prior, or an oversimplification in terms of minimax risk.

2.1.6 Quantum Asymptotic Limit and the Quantum Fisher Information

As in the classical case, the most commonly considered regime of quantum metrology is the the

asymptotic limit of infinite resources. As mentioned, our results do not heavily rely on this framework

(though we do use it as motivation), but given its central importance to the field, we give a brief

exposition of the main results of the theory. Asymptotic quantum metrology is significantly more

complicated than its classical counterpart, and not fully understood.

In the quantum asymptotic limit, one considers a sequence of parameterised states ρn : Θ → D(H⊗n).

We will only consider the case where there is some parameterised state σ, and ρn = σ⊗n, i.e. ρn is n

copies of the state σ. We let ρ = ρ1. As in the classical case, one considers a sequence of measurement-

estimator pairs, (Mn, θ̂
Mn). One usually fixes θ and considers the behaviour of R(θ̂Mn , θ) as n → ∞.

We will often refer to θ̂Mn as θ̂n, leaving the choice of measurement implicit.

Given the classical characterisation of the asymptotic limit in terms of the Fisher information, initial

attempts [31] at characterising the optimal behaviour of R(θ̂Mn , θ) focused optimising the fisher in-

formation I(θ|P (ρ;M)) over choices of POVM M . As I is a positive semi-definite matrix, one cannot

“maximise” the Fisher information directly (since most positive semi-definite matrices are incompara-

ble). Instead, motivated by Lemma 2.5, one minimises Tr
[
I(θ|P (ρ;M))−1

]
. This gives rise to the most
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informative bound [32]:

CMIB(·|ρ) : Θ → [0,∞], CMIB(θ|ρ) = inf
M∈M(H)

Tr

(
I
[
θ
∣∣∣P (ρ;M)

]−1
)
. (2.30)

If I
[
θ|P (ρ;M)

]
is not invertible, we adopt the convention Tr

(
I
[
θ
∣∣P (ρ;M)

]−1
)

= ∞.

The optimisation in CMIB is, in general, difficult to perform. Thus, instead of calculating CMIB di-

rectly, proxy functions are defined which are easier to calculate, and that lower bound CMIB. We

will discuss 3 such lower bounds, starting with the symmetric logarithmic derivative (SLD) quantum

Fisher information (QFI) [31, 33].

Let ∂iρ : Θ → Herm(H) denote the i-th partial derivative of ρ. The i-th SLD is the map LSLD
i : Θ →

Herm(H) implicitly defined by the equation

1

2

{
ρ(θ), LSLD

i (θ)
}

= ∂iρ(θ). (2.31)

The SLD QFI is defined as

JSLD(·|ρ) : Θ → Mk(R), JSLD(θ|ρ)ij = Re Tr
[
ρ(θ)LSLD

i (θ)LSLD
j (θ)

]
. (2.32)

We make two remarks:

1. Equation (2.31) may not have a solution, in which case we think of LSLD
i as being “infinite”.

2. The solution to (2.31) is, in general, non-unique. Let the orthogonal projection onto Kerρ(θ)

be Πθ. Let Π⊥
θ = 1 − Πθ. Then ΠθL

SLD
i (θ)Πθ, Π⊥

θ L
SLD
i (θ)Πθ and ΠθL

SLD
i (θ)Π⊥

θ are uniquely

determined by equation (2.31), whereas Π⊥
θ L

SLD
i (θ)Π⊥

θ is arbitrary. One can remove this non-

uniqueness by insisting that Π⊥
θ L

SLD
i (θ)Π⊥

θ vanishes. Note that JSLD does not depend on the

choice of SLDs.

The right-logarithmic derivative (RLD) QFI is defined similarly [34, 35]. The i-th RLD is the map

LRLD
i : Θ → Herm(H) implicitly defined by the equation

∂iρ(θ) = ρ(θ)LRLD
i (θ), (2.33)

and the RLD QFI is defined as

JRLD(·|ρ) : Θ → Mk(C), JRLD(θ|ρ)ij = Tr
[
ρ(θ)LRLD

j (θ)LRLD
i (θ)†

]
. (2.34)

Similar caveats to the definition of LSLD
i also apply to LRLD

i : a solution to equation (2.33) may not

exist (we think of it as infinite) and ΠθL
RLD
i (θ) is arbitrary (yet JRLD is uniquely defined). One can

also define a left logarithmic derivative (LLD), but taking the Hermitian conjugate of equation (2.33),

we see that the LLD is the Hermitian conjugate of the RLD. Due to this redundancy, JLLD = JRLD.

LSLD
i and LRLD

i both attempt to generalise ∂iℓ(θ|x) = ∂if(x|θ)/f(x|θ); the derivative of a pdf divded

by that pdf. In the quantum case, ∂iρ(θ) and ρ(θ) may not commute, so there is no unique way to

take their “ratio”. They both directly bound the Fisher information of any measurement of ρ:
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Lemma 2.10: Let ρ : Θ → D(H) be a C2 parameterised quantum state. Then, ∀θ ∈ Θ and

∀M ∈ M(H), we find that

I
[
θ
∣∣∣P (ρ;M)

]−1
≥ JSLD(θ|ρ)−1 and I

[
θ
∣∣∣P (ρ;M)

]−1
≥ JRLD(θ|ρ)−1. (2.35)

Moreover,

CMIB(θ|ρ) ≥ CSLD(θ|ρ) := Tr
[
JSLD(θ|ρ)−1

]
, (2.36)

CMIB(θ|ρ) ≥ CRLD(θ|ρ) := inf{Tr[X] | X ∈ Mk(R), X ≥ JRLD(θ|ρ)−1}, (2.37)

= Tr
[
Re(JRLD(θ|ρ)−1)

]
+
∥∥Im(JRLD(θ|ρ)−1)

∥∥
1
. (2.38)

See Ref. [32] for more detail. The bounds on CMIB follow from taking the trace of equation (2.35).

We consider one final bound on CMIB, called the Holevo bound. Unlike the SLD and RLD bounds, it

is explicitly a scalar bound - it does not bound I
[
θ
∣∣P (ρ;M)

]
directly. Fix θ ∈ Θ and let

Xθ = {(X1, . . . , Xk) ∈ Herm(H)k | Tr[∂iρ(θ)Xj ] = δij}, (2.39)

Z : Xθ → Mk(C), Z[X]ij = Tr[ρ(θ)XiXj ]. (2.40)

The Holevo bound is given by the optimisation

CH(·|ρ) : Θ → [0,∞], CH(θ|ρ) = inf
X∈Xθ,U∈Mk(R)

{Tr(U) | U ≥ Z[X]}. (2.41)

The Holevo bound CH directly bounds CMIB, and is never worse than the SLD or RLD bounds:

Lemma 2.11: Let ρ : Θ → D(H) be a C2 parameterised quantum state. Then, ∀θ ∈ Θ, we

find that

CMIB(θ|ρ) ≥ CH(θ|ρ), (2.42)

≥ max{CSLD(θ|ρ), CRLD(θ|ρ)}. (2.43)

Additionally, CH(θ|ρ) ≤ 2CSLD(θ|ρ).

For more detail, see Ref. [32]. In general, CSLD and CRLD are incomparable (their relative size can

change depending on the model). We see that CSLD cannot be much worse than CH, however CRLD

may be arbitrarily smaller than CSLD and CH. In general, CH may be strictly smaller than CMIB, see

Ref. [36] for an example. However, when ρ is pure, or we work with single parameter states, many of

the inequalities collapse:

Lemma 2.12: Let ρ : Θ → D(H) be a C2 parameterised quantum state.

1. If Θ ⊆ R (single parameter), then ∀θ ∈ Θ, we find that

CMIB(θ|ρ) = CH(θ|ρ) = CSLD(θ|ρ). (2.44)
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2. If ρ is a pure parameterised state, then ∀θ ∈ Θ, we find that

CMIB(θ|ρ) = CH(θ|ρ). (2.45)

See Refs. [32, 37] for a proof.

We note that CMIB is not defined operationally, only in terms of the classical Fisher information.

Operationally, one should consider the quantum generalisation OQ of the local minimax bound O

(defined in equation (2.16)):

OQ : Θ → [0,∞], OQ(θ0) = inf
M∈M(H)

inf
θ̂Mn

lim
δ→0

lim sup
n→∞

sup
∥θ−θ0∥≤δ

nR(θ̂n, θ). (2.46)

There are three issues with attempting to apply Lemma 2.5 to the quantum case, in order to relate

OQ to CMIB:

(i) Given ρn = σ⊗n, there is no requirement that one should measure the separate copies of σ

with identical measurements (which would lead to iid samples). Indeed, one could collectively

measure the whole ensemble ρn with a non-seperable POVM.

(ii) The set of POVMs that saturate CMIB will generically depend on the unknown parameter θ.

(iii) For any given measurement M ∈ M(H), the model P
(ρ;M)
θ may not be identifiable.

In the pure state case, it has been shown that these issues do not apply: OQ = CH(= CMIB), in

agreement with the classical case (see Ref. [38], Section 5). A simpler scheme for attainability is given

in Ref. [39], at the cost of assuming that for each θ one can pick a POVM Mθ ∈ M(H) that saturates

CMIB and whose model P
(ρ;Mθ)
θ is identifiable.

Somewhat surprisingly, recent work [37, 40–42] has found that if ρ(θ) is full rank for every θ, one can

achieve risk scaling as CH(θ|ρ)/n. As noted above, CH may be strictly less than CMIB, showing a

deviation from the classical setting. Roughly speaking, their estimation protocol consists of two steps

1. Perform full state tomography on nα copies of σ(θ), for some α ∈ (0, 1). Tomography produces

an estimate σ̂ of σ, which can be used to get a rough estimate θ̃ of θ.

2. Measure the remaining n−nα copies of σ with a POVM, chosen using the intial estimate θ̃. Use

the outcome of this measurement to refine θ̃ to a final estimate θ̂.

The first step aims to circumvent the issues (ii) and (iii) above. If the tomography is sufficiently

accurate, one can essentially restrict θ to lie in a small volume, in which there is one POVM that

approximately saturates CH, and whose model P
(ρ;M)
θ is identifiable. However, it is not known what

the asymptotic optimal prefactor is for states ρ of arbitrary rank.

Point (i) proves much harder to address. The Cramér-Rao bound (equation 2.22) lower bounds the risk

of any locally-unbiased estimator in terms of CMIB, but most estimators will not be locally unbiased,

limiting practicability. JSLD and JRLD can be used in the full CR bound to bound the risk of any

estimator, but the bias terms appearing in the bound limit its utility.
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Alternatively, one can bound the asymptotic risk prefactor for various “nice” classes of estimation

strategies. The Cramér-Rao bound can be used to bound the risk of asymptotically unbiased estimators

[37, 40], i.e. those satisfying

lim
n→∞

Bθ̂n
(θ), lim

n→∞
DBθ̂n

(θ) = 0. (2.47)

However, it is not known whether asymptotically unbiased estimators exist for general parameterised

quantum states [40], limiting the applicability of this bound.

A more complex class of boundable estimators was given in Ref. [40]. Fix θ, h ∈ Rk, and define a

“local” sequence of states ρ̃n(h) = ρn(θ+ h/
√
n). Consider a measurement-estimator pair (Mn, θ̂

Mn).

Define the sequence of random variables Xθ,h
n =

√
n(θ̂Mn(Yn) − θ), where Yn is a random variable

denoting the outcome of measuring ρ̃n(h) with Mn. If θ̂Mn(Yn) estimates of θ + h/
√
n, then Xθ,h

n

estimates of the “local shift” h. We say that (Mn, θ̂
Mn) is locally asymptotically covariant (LAC) at

θ if

1. For all h ∈ Rk, Xθ,h
n converges in distribution to some random variable Xθ,h.

2. For all h ∈ Rk, Xθ,h has the same distribution as h+Xθ,0.

If (Mn, θ̂
Mn) is LAC at θ, then lim infn→∞ nR(θ̂Mn , θ) ≥ CH(θ|ρ) (see Ref. [40], theorem 2). Moreover,

the two step estimation process described above is LAC (see Ref. [40], theorem 10), and thus LAC

estimators exist for a wide range of parameterised quantum states. We summarise these asymptotic

statements in a single Lemma:

Lemma 2.13: Let ρ : Θ → D(H) be a “sufficiently regular” parameterised quantum state and

suppose that Θ is compact. Then:

(i) If ρ is pure for every θ ∈ Θ, and θ0 is an interior point of Θ, then OQ(θ0) = CH(θ0) =

CMIB(θ0).

(ii) If ρ is full rank for every θ ∈ Θ, then there exists a measurement-estimator pair (Mn, θ̂
Mn)

such that

lim sup
n→∞

nR(θ̂Mn , θ) = CH(θ). (2.48)

(iii) If ρ is full rank for every θ ∈ Θ, and θ̂n is LAC, then for every θ ∈ Θ

lim inf
n→∞

nR(θ̂n, θ) ≥ CH(θ). (2.49)

We see that the asymptotic limit is only well-understood for pure and full-rank parameterised states.

However, intermediate rank states are not understood. Moreover, a unifying framework for pure and

full rank-states, as well as simple estimation strategies that achieve asymptotic limits are yet to be

discovered.

2.1.7 Quantum Filtering

In this Section, we give an overview of quantum filtering, which is essential for all of our results in Sec-

tion 2.3. Quantum filtering, a special case of a more general technique known as postselection, allows

for enormous increases in parameter estimation accuracy, which have been practically demonstrated
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[43]. The application of postselection to quantum metrology is a relatively new theory, and thus we

give a short, self-contained overview that covers most existing results.

In some experimental systems (particularly in optics), one can produce states ρ(θ) (through the in-

teraction of a probe and a system of interest) much faster than one can measure them [44, 45]. Thus,

experimental resources are limited by the number of measurements one takes, not the number of copies

of a parameterised state. Moreover, collective, entangled measurements on a large number of copies

of the state are often practically infeasible, limiting measurements to single copies of ρ(θ).

Suppose, per unit time, one could produce N copies of ρ(θ), but can only measure M ≤ N . Only

preparing M states is equivalent to discarding a fraction (1 −M/N) of the available information. In-

stead of discarding a random fraction, one could use a more complex “filter”, distilling the information

in many copies of ρ(θ) into a fewer states. Such a filtering technique was first described in Ref. [46],

and further refined in Ref. [47].

A quantum filter is described by a two outcome measurement. Since the post-measurement state of the

filter is important, we cannot describe the measurement by a POVM. Instead, we explicitly consider

its two Kraus operators K, K̃ satisfying K†K + K̃†K̃ = 1. The corresponding POVM operators are

given by F = K†K, F̃ = K̃†K̃ = 1 − F . Filtering corresponds to postselecting on the measurement

outcome corresponding to K; states that have outcome K̃ are blocked by the filter. Thus, the filter

gives a new parameterised quantum state

ρpsK : Θ → D(H), ρpsK (θ) =
Kρ(θ)K†

Tr(ρ(θ)F )
. (2.50)

In order to measure the information content in ρps, it is common to consider JSLD(·|ρps). For notational

brevity, we shall shorten JSLD to J when discussing quantum filtering. The QFI of the postselected

state ρpsK may be much larger than the QFI of the original state. However, the gain in information

from filtering is always balanced by the small probability of successful postselection. Indeed, for a

filter with Kraus operator K, we define the probability of successful postselection as

ppsρ,K : Θ → [0, 1], ppsρ,K(θ) = Tr(ρ(θ)F ). (2.51)

The rate of information arriving at the detector is thus given by

Rρ,K : Θ → Mk(R), Rρ,K(θ) = ppsρ,K(θ)J
(
θ | ρpsK

)
. (2.52)

The factor of ppsρ,K(θ) in Rρ,K accounts for states that are blocked by the filter; Rρ,K measures the

rate of information arriving at the detector. A version of the data-processing inequality [48] applied

to the QFI says that it cannot be increased by CPTP maps, and thus that

∀θ ∈ Θ, Rρ,K(θ) ≤ J(θ|ρ). (2.53)

We say that the filter K is lossless at the point θ ∈ Θ if there is equality in equation (2.53). If

ppsρ,K(θ) = p is fixed, then a lossless filter achieves the maximum possible information amplification,

i.e. it maximises J(θ|ρpsK ) over all filters with ppsρ,K(θ) ≥ p.
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Ref. [47] gave an example of a lossless filter for pure states: the Jenne Arvidsson-Shukur Lupu-

Gladstein (JAL) filter. The JAL filter depends on a parameter t ∈ (0, 1] and θ0 ∈ Θ:

KJAL
θ0 = (t− 1) |ψ(θ0)⟩⟨ψ(θ0)| + 1. (2.54)

The performance of the JAL filter is summarised by the following Lemma.

Lemma 2.14: Let ρ : Θ → D(H) be a pure parameterised quantum state. The JAL filter leads

to unbounded, lossless amplification of information at the point θ0 ∈ Θ. In particular,

J(θ0|ρpsKJAL
θ0

) = J (θ0 | ρ) /t2, pps
ρ,KJAL

θ0

(θ0) = t2. (2.55)

For a proof, see Ref. [47]. This remarkable unbounded amplification of J has been shown to be a

genuinely quantum effect (see Section 2.3.3). There are two main drawbacks of the JAL filter:

(i) The amplification is only described in terms of the QFI J, not an operational quantity such as

the risk of an estimator.

(ii) The JAL filter depends on the parameter to be estimated (similar in spirit to how a measurement

that saturates CMIB depends on the parameter).

Point two was partially addressed in Ref. [47], where they show that if θ0 is sufficiently close to the

true parameter θ ∈ Θ, the JAL filter is still approximately lossless:

Lemma 2.15: Let θ ∈ Θ, and let δ = θ − θ0, then

J(θ0|ρpsKJAL
θ0

) = J (θ0 | ρ) /t2 +O(∥δ∥2/t2), pps
ρ,KJAL

θ0

(θ0) = t2 +O(∥δ∥2/t2). (2.56)

Lemma 2.15 shows that that ∥δ∥ ≪ t is sufficient for good performance of the JAL filter. In general,

it is also expected that this condition is necessary. The constraint ∥δ∥ ≪ t may be interpreted in two

ways. Firstly, one could consider a desired filter strength characterised by t, in which case one needs

to estimate θ to accuracy ∼ t before one filter to the desired level. Alternatively, given a guarantee

on ∥δ∥, the maximum possible filter strength is given by ∼ ∥δ∥.

We conclude by noting that a proof-of-principle experiment using the JAL filter was recently carried

out in Ref. [43]. They obtained an increase in information content by up to two orders of magnitude,

demonstrating the practicality of the JAL filter. However, noise limitations meant that information

amplification could not be made unbounded.
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2.2 Non-Asymptotic Quantum Metrology

We have seen that the asymptotic limit allows one to define a meaningful of notion of optimality

for measurements and estimators. However, its practicality is limited; in reality one receives a finite

number of copies of a quantum state. Moreover, in many scenarios, the number of copies is severely

limited - they are often very expensive to produce (or measure). Thus, the non-asymptotic regime,

whilst mathematically inconvenient, is a closer match to experimental reality. In Section 2.2, we

present a series of foundational results in non-asymptotic metrology (based off Ref. [1]), generalising

many of the concepts from Section 2.1.1 to quantum metrology.

2.2.1 Comparing Measurements

To capture the non-asymptotic limit, it is enough to consider a single state ρ : Θ → D(H), and a single

measurement estimator pair (M, θ̂M ). As before, one can take ρ = σ⊗n to include the case of multiple

copies of a quantum state. In this setting, Lemma 2.9 tells us that there is no optimal choice of mea-

surement and estimator. However, this does not preclude the possibility of an optimal measurement.

As shown in Lemma 2.1, there is usually no best choice of estimator (and therefore trivially no best

choice of measurement and estimator). In order to decide the existence of an optimal measurement, we

must define a notion of optimality of measurements that is agnostic to a subsequent choice of estimator.

We begin by defining an operational relation ⪯ on measurements [1]. We say that a measurement

M ∈ M(H) is as least as good as a measurement F ∈ M(H), written M ⪯ F , if

∀θ̂F ∃θ̂M s.t. θ̂M ≤ θ̂F . (2.57)

If M ⪯ F , then, from the perspective of risk, one should always change measurements from F to M .

Whatever estimation strategy θ̂F was in use before, there is always a new one θ̂M that is at least

as good as θ̂F , regardless of the true underlying parameter. If M ⪯̸ F , then there will be at least

one estimation strategy θ̂F such that whatever new strategy θ̂M one picks, there are some values of

the underlying parameter where one would expect to do worse. Thus, our definition is the natural

and only way one can define M as being at least as good as F , without further assumptions on the

estimation problem. We say that M dominates F , written M ≺ F , if M ⪯ F , but F ⪯̸ M . In

analogue with the classical case, we say that a measurement M is admissible if no other measurement

dominates it. Clearly, as in the classical case, admissibility of a measurement is strongly desirable.

2.2.2 Characterising Optimal Measurements

In view of equation (2.57), there is a natural definition of an optimal measurement - a minimal element

of ⪯. That is, we say that M ∈ M(H) is optimal if for all other possible measurements F ∈ M(H),

M ⪯ F . We emphasise that this is the strongest and most general definition of optimality one could

make; any other definition must make some additional modelling assumptions (e.g., some a priori be-

lief about the unknown parameter). Nonetheless, and somewhat surprisingly, optimal measurements

do exist for a family of parameter estimation problems, as shown by the following Lemma.
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Lemma 2.16: Let Θ ⊆ Rk and let L be a choice of loss function that is convex in its first

argument. Suppose that ρ(θ) =
∑

i pθ(i) |i⟩⟨i|, for some probability distribution {pθ(i)} and a

fixed, θ-independent, basis {|i⟩}, then the measurement Mi = |i⟩⟨i| is optimal.

Proof: Suppose F ∈ M(H) is some other measurement with a choice of estimator θ̂F . Fix θ ∈ Θ.

Let mk,i = Tr(Fk |i⟩⟨i|). Note that mk,i ≥ 0,
∑

kmk,i = 1 and
∑

i pθ(i)mk,i = p
(ρ;F )
θ (k). Define an

estimator using M by θ̂M (i) =
∑

kmk,iθ̂
F (k). Then

R(θ̂M , θ) =
∑
i

pθ(i)L

(∑
k

mk,iθ̂
F (k), θ

)
, (2.58)

≤
∑
i,k

pθ(i)mk,iL(θ̂F (k), θ) = R(θ̂F , θ). (2.59)

Consequently, by swapping θ̂F to θ̂M we can only decrease risk (regardless of the value of the

parameter) and thus M ⪯ F .

Parameterised states of the form ρ(θ) =
∑

i pθ(i) |i⟩⟨i| are known as classical5 [32]. The Gibbs state

(example 2.3) is the canonical example of a classical parameterised state; Lemma 2.16 implies that

measuring the energy of a Gibbs state is always optimal for estimating (inverse) temperature. The

following condition shows that classical states may be alternatively characterised by commutation

Proposition 2.1: A paramaterised state ρ : Θ → D(H) is classical iff.

∀θ1, θ2 ∈ Θ, [ρ(θ1), ρ(θ2)] = 0, (2.60)

Proof: Clearly, if ρ is classical, equation (2.60) holds. Suppose equation (2.60) holds, fix θ1 in Θ

and decompose H as a direct sum of ρ(θ1)’s (distinct, orthogonal) eigenspaces H = ⊕jVj . If this

is an eigenspace decomposition of ρ(θ) for every θ ∈ Θ, then by definition ρ is a classical state.

Otherwise, take θ2 such that some Vj is not an eigenspace of ρ(θ2). But, [ρ(θ1), ρ(θ2)] = 0 and thus

Vj must decompose a sum of eigenspaces of ρ(θ2), Vj = ⊕V ′
j , giving a refined decomposition of H

into eigenspaces of ρ(θ1) and ρ(θ2). We may repeat this process, noting that it must terminate

as each eigenspace must have dimension at least one, to see that ρ(θ) must be classical.

Lemma 2.16 may lead one to hope that the issues of Lemma 2.9 all stem from the (classical) choice of

estimator, and that there is always an optimal choice of (quantum) measurement. We extend example

2.4 to show that this is not the case

Example 2.5: No optimal measurement for the Phase-Encoded State

Recall the phase-encoded state is

|ψ(θ)⟩ =
1√
2

(|0⟩ + eiθ |1⟩), (2.61)

5Classical is an unfortunately overloaded term in quantum information. Indeed, the states |i⟩ appearing in the
decomposition of ρ may be very “non-classical” according to other definitions, e.g. they could be very entangled, or
have a high magic content. Parameterised states of the form ρ(θ) =

∑
i pθ(i) |i⟩⟨i| could perhaps be better described as

classically encoded, but this terminology is non-standard.
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for θ ∈ [0, 2π). Consider a measurement M of the state in the {|+⟩ , |−⟩} basis. Define an esti-

mator by θ̂M (+) = 0, θ̂M (−) = π. Note that R(θ̂M , 0) = R(θ̂M , π) = 0. Thus, any measurement

that is as least as good as M must discriminate |+⟩ and |−⟩ (with certainty). Consider a different

measurement F , with respect to the rotated basis

|e1⟩ =
1√
2

(|0⟩ + eiπ/4 |1⟩),

|e2⟩ =
1√
2

(e−iπ/4 |0⟩ − |1⟩), (2.62)

and define an estimator θ̂F (1) = π/4, θ̂F (2) = 3π/4. As above, R(θ̂F , π/4) = R(θ̂F , 3π/4) = 0

and thus any measurement that is as least as good as F must discriminate |e1⟩ and |e2⟩. It is not

difficult to show no measurement exists that simultaneously discriminates |+⟩ , |−⟩ , |e1⟩ and |e2⟩.
Thus, no optimal measurement exists. We note that M and F saturate CMIB (for all θ) [27].

In fact (for L the least square loss function), we show that the existence of an optimal measurement

for ρ implies that it must be classical (under mild assumptions on the parameter space):

Lemma 2.17: Suppose that ρ : Θ → D(H) is some parameterised quantum state, where

Θ ⊆ Rk is convex. If ρ admits an optimal measurement (under least-squares loss), then it is

classical.

We prove Lemma 2.17 in Section 2.2.5, it requires a long series of technical propositions. The Lemma

shows that the difficulty of quantum metrology is (generically) twofold that of classical parameter

estimation: there is no best choice of measurement and there is subsequently no best choice of esti-

mator. It is important to note that not all measurements are good choices, only that there are many

measurements that are incomparable.

We combine Lemmas 2.16 and 2.17 into a single theorem:

Theorem 2.1: Suppose that ρ : Θ → D(H) is some parameterised quantum state, where Θ ⊆ Rk

is convex. Then ρ admits an optimal measurement (under least-squares loss) iff. it is classical.

Theorem 2.1 provides a complete characterisation of when a parameterised quantum state admits an

optimal measurement. It may be viewed as alternative generalisation of Lemma 2.1, and therefore it is

a foundational result in non-asymptotic quantum metrology. It may be intuitively understood through

pairwise distinguishablity of states. For σ, ν ∈ D(H) quantum states, the optimal measurement to

distinguish them [28] is with respect to the eigenbasis of σ − ν. If ρ is a classical parametrised state,

then for any θ1, θ2 ∈ Θ the eigenbasis of ρ(θ1) − ρ(θ2) is the same, and thus the same measurement is

optimal for distinguishing all possible pairs of states. Since it is pairwise optimal, it is intuitive that

this measurement is then “globally” optimal for parameter estimation. Conversely, if such a globally

optimal measurement exists, it must intuitively also be “pairwise” optimal.

2.2.3 Approximately Optimal Measurements

The previous Section shows that optimal measurements (under least-squares loss) only exist for the

very restrictive class of classical parametrised states. It is natural to ask whether this result is robust:

does an approximately optimal measurement imply that a state is approximately classical? Does an
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approximately classical state imply the existence of an approximately optimal measurement? In this

Section we show the latter of these to hold, i.e. we give a robust version of Lemma 2.16.

There are three clear candidates for when a measurement is approximately optimal:

(i) A measurement M is ϵ-additively optimal if, for any other measurement-estimator pair (F , θ̂F )

there exists an estimator θ̂M such that for all θ ∈ Θ,

R(θ̂M , θ) ≤ R(θ̂F , θ) + ϵ. (2.63)

(ii) A measurement M is η-multiplicatively optimal if, for any other measurement-estimator pair

(F , θ̂F ) there exists an estimator θ̂M such that for all θ ∈ Θ,

R(θ̂M , θ) ≤ (1 + η)R(θ̂F , θ). (2.64)

(iii) A measurement is δ-locally optimal if, for any other measurement-estimator pair (F , θ̂F ) there

exists an estimator θ̂M and subset S ⊆ Θ such that S has measure less than or equal to δ and

for all θ ∈ Sc,

R(θ̂M , θ) ≤ R(θ̂F , θ). (2.65)

We can combine the third definition with either of the first two. For example, a measurement is

ϵ-additively and δ-locally optimal if, for any other measurement-estimator pair (F , θ̂F ) there exists

an estimator θ̂M and subset S ⊆ Θ such that S has measure less than or equal to δ and for all θ ∈ Sc,

R(θ̂M , θ) ≤ R(θ̂F , θ) + ϵ. (2.66)

For each of the three definitions of approximate optimality, there is a corresponding notion of “close-

ness” of quantum states such that if ρ is close to being classical, there is an approximately optimal

measurement: approximately classical implies an approximately optimal measurement.

We start with additive optimality, considering closeness in trace norm: for any matrix A, define its

trace norm as

∥A∥1 = Tr
(√

A†A
)
. (2.67)

We denote
√
A†A as |A|. We show that closeness in trace norm implies an approximately additively

optimal measurement:

Lemma 2.18: Suppose ρ : Θ → D(H) is some parametrised state and σ : Θ → D(H) is some

classical state. Suppose further that Θ has finite diameter d = supθ,ϕ L(θ, ϕ). If, for all θ ∈ Θ,

∥ρ(θ) − σ(θ)∥1 ≤ ϵ, then there is a (2dϵ)-additively optimal measurement M .

Proof: Since σ is classical, we can fix some optimal measurement M . Fix another measurement
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F ∈ M(H), estimator θ̂F and θ ∈ Θ. Then note that

|Rρ(θ̂F , θ) −Rσ(θ̂F , θ)| =

∣∣∣∣∑
i

Tr[Fi(ρ[θ] − σ[θ])]L(θ̂F (i), θ)

∣∣∣∣, (2.68)

≤ d
∑
i

|Tr[Fi(ρ[θ] − σ[θ])]|. (2.69)

Fix some Fi ≥ 0. Diagonalising ρ(θ) − σ(θ) =
∑

j λj |j⟩⟨j|, note that

|Tr[Fi(ρ(θ) − σ(θ))]| ≤
∑
j

|λj | ⟨j|Fi |j⟩ , (2.70)

= Tr(Fi|ρ(θ) − σ(θ)|). (2.71)

Substituting inequality (2.71) into (2.69), we see that

|Rρ(θ̂F , θ) −Rσ(θ̂F , θ)| ≤ dϵ. (2.72)

Since M is optimal with respect to σ there exists θ̂M such that for all θ, Rσ(θ̂M , θ) ≤ Rσ(θ̂F , θ).

Then applying (2.72) twice, we see

Rρ(θ̂M , θ) −Rρ(θ̂F , θ) ≤ Rσ(θ̂M , θ) −Rσ(θ̂F , θ) + 2dϵ, (2.73)

≤ 2dϵ. (2.74)

For multiplicative robustness, we need a different notion of closeness, namely the maximum relative

entropy [49]. For quantum states ρ, σ ∈ D(H), we define

Dmax(ρ||σ) = inf{γ : ρ ≤ eγσ}. (2.75)

The maximum relative entropy has the following useful property (relating it to the measured maximum

relative entropy):

Proposition 2.2: For two states ρ, σ

Dmax(ρ||σ) = log sup
0≤M≤1

Tr(Mρ)

Tr(Mσ)
. (2.76)

We omit the proof, it is given in Ref. [49]. We use this proposition to show that closeness in maximum

relative entropy implies an approximately multiplicatively optimal measurement:

Lemma 2.19: Suppose ρ : Θ → D(H) is some parametrised state and σ : Θ → D(H) is some

classical state. If, for all θ, we have that exp{Dmax(ρ[θ]||σ[θ]) + Dmax(σ[θ]||ρ[θ])} ≤ 1 + η, then

there is a η-multiplicatively optimal measurement M .
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Proof: Fix some measurement F ∈ M(H), and estimator θ̂F , note that

Rρ(θ̂F , θ)

Rσ(θ̂F , θ)
=

∑
i Tr(ρ(θ)Fi)L(θ̂F (i), θ)∑
i Tr(σ(θ)Fi)L(θ̂F (i), θ)

, (2.77)

≤ max
i

Tr(ρ(θ)Fi)

Tr(σ(θ)Fi)
, (2.78)

≤ eDmax(ρ||σ), (2.79)

where we used Tr(ρ(θ)Fi) = Tr(σ(θ)Fi)(Tr(ρ(θ)Fi)/Tr(σ(θ)Fi)) in the first inequality, and Lemma

2.2 in the second. Fixing an optimal measurement for σ and using the inequality (2.79) twice,

the result follows.

The final closeness result is for local optimality. For a subset of real vectors Y ⊆ Rk, denote its

Lebesgue measure by |Y |. We find the following locally-optimal result:

Lemma 2.20: Suppose ρ : Θ → D(H) is some parametrised state, which is classical on some

subset Γ ⊆ Θ. Then there is a (|Θ| − |Γ|)-locally optimal measurement M .

Proof: Take the optimal measurement for ρ|Γ. This clearly has the desired property.

2.2.4 Admissibility of Measurements

In classical parameter estimation, there has been significant effort to characterise the set of admissible

estimators for common choices of model Pθ [50–53], which allows one to ensure a choice of estimator is

indeed admissible. In this setting we provide the beginnings of a such a theory for quantum metrology,

proving two necessary conditions on a measurement for it to be admissible:

(i) The probabilities of the measurement outcomes depend on the parameter.

(ii) None of the post-measurement states of the measurement depend on the parameter.

These desirability of these conditions is evident: if (ii) does not hold the system can be measured

further, allowing for a better estimate of the parameter, if (i) does not hold then the measurement is

clearly unfit for purpose. However, without further specifying the parameterised quantum state ρ, it

is difficult to give general criteria for when a measurement is inadmissible.

We prove (i) and (ii) for any loss function satisfying the following pair of properties:

(P1) L is strictly convex in its first argument.

(P2) For any prior π on Θ, the Bayes estimator θ̂B is unique and is given by the posterior mean

θ̂B(x) = Eπ[θ|outcome x].

Condition (P2) may seem strong, both (P1) and (P2) are satisfied by a ubiquitous family of Loss

functions, known as Bregman divergences (see Ref. [54]). Least-squares loss and the KL divergence are

both examples of Bregman divergences. We require three additional technical results on admissibility

of estimators.
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Proposition 2.3: Let L be a loss function that satisfies (P2). Suppose the model Pθ admits

a parameterised probability mass function {pθ(i)}, and that there exist θ1, θ2 ∈ Θ such that

pθ1(1)pθ2(2) ̸= pθ1(2)pθ2(1). Then, there exists an admissible estimator θ̂ where θ̂(1) ̸= θ̂(2).

Proof: Define a Prior on Θ of uniformly random choice of θ1 or θ2, that is to say,

P(X = θ) =

1/2, θ ∈ {θ1, θ2},

0, o.w.
(2.80)

In this case, by property (P2), we know that

θ̂B(i) = Eπ[θ|i], (2.81)

= Π(θ1|i)θ1 + Π(θ2|i)θ2. (2.82)

Since this is a convex combination of θ1 and θ2 which must be distinct to satisfy the conditions

of the proposition, we deduce that θ̂B(1) = θ̂B(2) iff. Π(θ1|1) = Π(θ1|2). But

Π(θ1|i) =
pθ1(i)

pθ1(i) + pθ2(i)
. (2.83)

So

Π(θ1|1) = Π(θ1|2) ⇔ pθ1(1)

pθ1(1) + pθ2(1)
=

pθ1(2)

pθ1(2) + pθ2(2)
, (2.84)

⇔ pθ1(1)pθ2(2) = pθ1(2)pθ2(1). (2.85)

Thus, by the assumption, θ̂B(1) ̸= θ̂B(2). Moreover, by Lemma 2.2, θ̂B is admissible.

Proposition 2.4: Let L be a loss function that satisfies (P1). Suppose that θ̂ is an admissible

estimator, and that θ̃ ≤ θ̂. Then θ̂ = θ̃ with probability 1 (for all values of the parameter).

Proof: Let θ̂ ′(x) = [θ̂(x)+θ̃(x)]/2. By strict convexity of L in its first argument, R(θ̂ ′, ·) ≤ R(θ̂, ·).
Since θ̂ is admissible, there must be equality for all θ and the result follows from strict convexity.

Proposition 2.5: Let L be a loss function that satisfies (P1). Suppose the model Pθ does not

depend on θ. Then an estimator θ̂ is admissible iff. it is constant with probability 1.

Proof: Let θ̂ be an estimator. Consider the constant estimator θ̂θ0 = EX∼Pθ
[θ̂(X)], which is well

defined by the assumption that Pθ is constant in θ. Then,

R(θ̂, θ) = EX∼Pθ
[L(θ̂(X), θ)], (2.86)

Jensen’s inequality and (P1), ≥ L(θ0, θ) = R(θ̂θ0 , θ). (2.87)

By proposition 2.4, θ̂ is admissible only if it equals θ0 with probability 1.

We can now prove the two necessary conditions for admissibility. Firstly, we show condition (i)
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Lemma 2.21: Let L be a loss function on Θ that satisfies (P1) and (P2), and let ρ : Θ → D(H)

be some non-constant parametrised state. Suppose that F ∈ M(H) is a measurement whose

outcome probabilities are independent of θ, then F is inadmissible.

Proof: Suppose there exists a measurement M ∈ M(H) and a non-constant admissible estimator

θ̂M. By proposition 2.5, every admissible estimator of F is constant (with probability one) and thus

M ⪯ F . Suppose there exists a non-constant admissible estimator θ̂M. If there exists θ̂F ≤ θ̂M,

then (by proposition 2.3), WLOG θ̂F = θ̂θ0 is constant. Then, by proposition 2.4, θ̂M is constant,

contradicting our assumption. Thus if such an θ̂M exists we see that F ⪯̸M , completing the proof.

By the Helstrom bound [28], there is some measurement M ∈ M2(H) where p
(ρ;M)
θ1

(1) ̸= p
(ρ;M)
θ2

(1).

Then, note that

p
(ρ;M)
θ1

(1)p
(ρ;M)
θ2

(2) = p
(ρ;M)
θ1

(2)p
(ρ;M)
θ2

(1), (2.88)

⇔ p
(ρ;M)
θ1

(1) = p
(ρ;M)
θ2

(1). (2.89)

An application of proposition 2.3 gives a non-constant admissible estimator θ̂M.

In order to consider condition (ii), we must consider the post-measurement state of the system. Fix

a measurement N = (K,M) ∈ M(H) and suppose it admits Kraus operators {Fi}Ki=1, i.e. Mi = F †
i Fi.

If one observes outcome i, the post measurement state is

ρi =
FiρF

†
i

Tr
(
FiρF

†
i

) : Θ → D(H). (2.90)

We say that the measurement M is refineable if it admits a choice of Kraus operators, such that

at least one of the post-measurement states (WLOG the first) is non-constant. That is, there are

θ1, θ2 ∈ Θ such that

1. ρ1(θ1) ̸= ρ1(θ2).

2. p
(ρ;M)
θ1

(1), p
(ρ;M)
θ2

(1) ̸= 0.

The second of these conditions is to ensure that the outcome 1 is possible at θ1 and θ2. Otherwise, the

post measurement state is not well-defined. We show that refineable measurements are inadmissible:

Lemma 2.22: Let L be a loss function on Θ that satisfies (P1) and (P2), and let ρ : Θ → D(H)

be some non-constant parametrised state. Suppose that F ∈ MK(H) is a refineable measurement,

then F is inadmissible.

Proof: Fix some choice of Kraus operators Fi = G†
iGi, and θ1, θ2 ∈ Θ such that conditions 1 and 2

above are satisfied. Since ρ1(θ1) ̸= ρ1(θ2), by the Helstrom Bound [28], there is some measurement

M ∈ M2(H) where p
(ρ1;M)
θ1

(1) ̸= p
(ρ1;M)
θ2

(1). Consider the concatenated measurement MF ∈
M2K(H) corresponding to measuring first with F and then M . That is,

MF(i,j) = G†
iMjGi, (2.91)

for i ∈ [K], j ∈ [2]. Note that for any estimator θ̂F we can construct an estimator θ̂MF
F (i, j) =
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θ̂F (i) satisfying R(θ̂MF
F , ·) = R(θ̂F , ·). Thus, MF ⪯ F . It remains to show F ⊀MF .

Suppose we find an MF -admissible estimator θ̂MF satisfying θ̂MF (1, 1) ̸= θ̂MF (1, 2). If there is

an estimator θ̂F such that θ̂F ≤ θ̂MF , then using the construction above, we find θ̂MF
F ≤ θ̂MF .

But, by construction, θ̂MF
F ̸= θ̂MF (with non-zero probability), contradicting proposition 2.4, and

hence F ⊀MF . Thus, it suffices to find such an estimator θ̂MF .

By proposition 2.3 it is sufficient to show p
(ρ;MF )
θ1

(1, 1)p
(ρ;MF )
θ2

(1, 2) ̸= p
(ρ;MF )
θ1

(1, 2)p
(ρ;MF )
θ2

(1, 1).

But by expanding probabilities and dividing through by p
(ρ;F )
θ1

(1)p
(ρ;F )
θ2

(1), we find that

p
(ρ;MF )
θ1

(1, 1)p
(ρ;MF )
θ2

(1, 2) = p
(ρ;MF )
θ1

(1, 2)p
(ρ;MF )
θ2

(1, 1), (2.92)

⇔ p
(ρ1;M)
θ1

(1)p
(ρ1;M)
θ2

(2) = p
(ρ1;M)
θ1

(2)p
(ρ1;M)
θ2

(1), (2.93)

⇔ p
(ρ1;M)
θ1

(1) = p
(ρ1;M)
θ2

(1). (2.94)

However, by the construction of M , the final equality (2.94) cannot hold.

Finally, we provide a method to show a measurement M is admissible, generalising Lemma 2.2 to the

quantum setting.

Lemma 2.23: Suppose that ρ : Θ → D(H) is some parameterised quantum state, and that π

is some prior distribution on Θ. If M ∈ M(H) is a unique Bayes measurement (with respect to

π), then M is admissible

Proof: Suppose that F dominates M . Let θ̂M be the Bayes estimator of M , as M is a Bayes

measurement, θ̂M minimises the Bayes risk across all choices of measurement and estimator.

However, as F ⪯ M , there exists θ̂F such that θ̂F ≤ θ̂M . Then Rπ(θ̂F ) ≤ Rπ(θ̂M ) and F must

also be Bayes. This contradicts the uniqueness of M .

2.2.5 Proof of Lemma 2.17

We now present the proof of Lemma 2.17 as a series of propositions. We first consider the single

parameter (Θ ⊆ R) case. We fix θ1, θ2 ∈ Θ and consider the restricted parameter space {θ1, θ2} ⊆ Θ

and show that if an optimal measurement M exists, then ρ(θ1) and ρ(θ2) commute. This is achieved

by considering the Bayesian measurements associated with all possible priors on {θ1, θ2}. This shows

that if an optimal measurement exists on Θ, all {ρ(θ) : θ ∈ Θ} must commute, and thus ρ is classical.

In higher dimensions, we restrict the parameter estimation problem to lines, which allows us to use the

single parameter result. Throughout this Section we return to the convention that our loss function

L is always least-squares. We now give the series of propositions needed for Lemma 2.17.

Proposition 2.6: Suppose ρ : Θ → D(H) is some parametrised state with an optimal measure-

ment M . Then M is a Bayes measurement for any prior π on Θ.

Proof: Suppose we have some Bayes estimator θ̂F . Then since M is optimal, M ⪯ F , and thus

there is an estimator θ̂M satisfying θ̂M ≤ θ̂F . But then, by definition, θ̂M must also be Bayes.
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Thus for any prior, we can always measure with M and pick a Bayes estimator based on the

resulting probability distribution.

We introduce some notation from [29], useful in single parameter quantum Bayesian estimation. For

any measurement-estimator pair (F, θ̂F ), we define

Λ =
∑
i

Fiθ̂
F (i), Λ2 =

∑
i

Fiθ̂
F (i)2, (2.95)

Furthermore, for any prior π on Θ, we define two operators

ρ̄ =

∫
dθπ(θ)ρ(θ), ρ̄′ =

∫
dθπ(θ)ρ(θ)θ. (2.96)

Proposition 2.7: Suppose ρ : Θ → D(H) is some single parameter state (Θ ⊆ R). Suppose

further we have some prior π on Θ and that ρ̄ has full rank. Then a measurement F ∈ M(H) is

Bayesian iff. the following hold

(i) F is the projective measurement onto Λ’s eigenspaces, or a fine-graining of it.

(ii) {Λ, ρ̄} = 2ρ̄′.

Proof: Note that this proposition, and most of this proof, is presented in [29] as a sufficient con-

dition. We prove that the conditions (i) and (ii) are also necessary. Suppose some measurement-

estimator pair (F, θ̂F ) is Bayesian. Note that we may write the Bayesian risk in terms of Λ and

Λ2:

Rπ(θ̂F ) =

∫
dθ
∑
i

π(θ) Tr(Fiρ(θ))(θ̂F (i) − θ)2, (2.97)

= Tr(Λ2ρ̄) − 2 Tr
(
Λρ̄′
)

+

∫
dθπ(θ)θ2. (2.98)

We note that

0 ≤
∑
i

(θ̂F (i)1− Λ)†Fi(θ̂
F (i)1− Λ), (2.99)

= Λ2 − Λ2, (2.100)

and thus Tr(Λ2ρ̄) ≥ Tr
(
Λ2ρ̄

)
. If F does not saturate this inequality, let M be the projective

measurement onto the eigenspaces of Λ, and θ̂M output the corresponding eigenvalue. Then

Rπ(θ̂M) < Rπ(θ̂F), contradicting that θ̂F is Bayesian, and we deduce that Tr(Λ2ρ̄) = Tr
(
Λ2ρ̄

)
.

and thus equation (2.99) must be an equality. Note that for any positive semi-definite operator

A,

Tr(ρ̄A) = 0 ⇔ Tr
(

(
√
ρ̄
√
A)†

√
ρ̄
√
A
)

= 0, (2.101)

⇔
√
ρ̄
√
A = 0, (2.102)

⇔ A = 0, (2.103)



32 Learning in Quantum Mechanics

where we used the assumption that ρ̄ is full rank, and hence that
√
ρ̄ is invertible. Thus,∑

i(θ̂
F (i)1 − Λ)†Fi(θ̂

F (i)1 − Λ) = 0. But since this is a sum of positive semi-definite opera-

tors, this implies that, for each i, (θ̂F (i)1−Λ)†Fi(θ̂
F (i)1−Λ) = 0. If θ̂F (i) is not an eigenvalue of

Λ, then Fi = 0. Otherwise (by prop. 1.1 (i)), Fi must only have support on the θ̂F (i) eigenspace

of Λ. Since Λ =
∑
Fiθ̂

F (i), condition (i) follows.

We see that Λ must minimise the function

C : Herm(H) → R, C(X) = Tr
(
X2ρ̄

)
− 2 Tr

(
Xρ̄′

)
, (2.104)

over all Hermitian operators X. By differentiating with respect to X and setting the derivative

to zero, we see that there is a unique minimum Λ and that it satisfies

1

2
{Λ, ρ̄} = ρ̄′. (2.105)

Proposition 2.8: Suppose ρ : Θ → D(H) is some single parameter state with an optimal

measurement M under least-squares loss. Fix θ1, θ2 ∈ Θ distinct. If ρ(θ1), ρ(θ2) both have full

rank, then there exist simultaneously diagonalisable Hermitian maps Γ,Γ′ satisfying

{Γ, ρ(θ2)} = ρ(θ1), {Γ′, ρ(θ1)} = ρ(θ2). (2.106)

Proof: For notational convenience, let ρi = ρ(θi) for i = 1, 2. For p ∈ (0, 1) fix a prior on

Θ where we are given ρ1 with probability p and ρ2 with probability 1 − p. Note that for any

p ∈ (0, 1), ρ̄ has full rank. By proposition 2.6 we see that M must be Bayesian for any value

of p - let θ̂Mp be a Bayes estimator for a fixed value of p. Then Λ =
∑

iMiθ̂
M
p (i) and M must

satisfy condition (i) of proposition 2.7. We say i ∼ j if, for all p ∈ (0, 1), θ̂Mp (i) = θ̂Mp (j). If

i ≁ j, take p such that θ̂Mp (i) ̸= θ̂Mp (j). Then Mi only has support on the θ̂Mp (i) eigenspace of

Λ, whereas Mj only has support on the θ̂Mp (j) eigenspace, and thus Mi and Mj have orthogonal

supports. Hence, the subspaces Si = ⊕j∈[i]supp(Mj), are orthogonal. Since
∑

iMi = 1, it follows

that
∑

j∈[i]Mj = ΠSi . Hence, we may expand Λ =
∑

k µk(p) |k⟩⟨k| - in an eigenbasis that does

not depend on p (but whose eigenvalues will generically depend on p).

By condition (ii) of Lemma 2.7, for any value of p ∈ (0, 1) we know that Λ satisfies

1

2
{Λ, pρ1 + (1 − p)ρ2} = pθ1ρ1 + (1 − p)θ2ρ2. (2.107)

As well as being invertible, the smallest eigenvalue of ρ̄, λmin(p) is bounded below by the minimum

of the eigenvalues of ρ1 and ρ2. Consider equation (2.107) in the limit of p→ 0. Let Γ be defined

implicitly as the solution to the equation

{Γ, ρ2} = ρ1. (2.108)

By expanding equation (2.108) in the eigenbasis of ρ2, and using that ρ2 is invertible, we see that



2. Metrology 33

Γ is well defined and is furthermore Hermitian. For some “remainder” matrix R, we expand Λ as

Λ = θ21 + 2p(θ1 − θ2)Γ + R. Substituting this ansatz into equation (2.107), we see that R must

satisfy the equation
1

2
{R, ρ̄} = p2(θ2 − θ1){Γ, ρ1 − ρ2}. (2.109)

Expanding in an eigenbasis of ρ̄ and recalling that all the eigenvalues of ρ̄ are bounded below by

λmin (which is independent of p), we see that R = O(p2). Consider an eigenstate |ψ⟩ of Λ with

eigenvalue µ(p), then note that∥∥∥∥Γ |ψ⟩ − µ(p) − θ2
2p(θ1 − θ2)

|ψ⟩
∥∥∥∥ = O(p). (2.110)

Taking the limit as p→ 0, we see that |ψ⟩ must be an eigenstate of Γ. But, by symmetry, in the

limit p→ 1, we may define Γ′ by the equation

{Γ′, ρ1} = ρ2, (2.111)

and |ψ⟩ must also be an eigenstate of Γ′. Thus Γ and Γ′ must be simultaneously diagonalisable

in Λ’s eigenbasis.

Proposition 2.9: Suppose A,B are positive definite and Γ,Γ′ are simultaneously diagonalisable

Hermitian maps satisfying

{Γ, A} = B, {Γ′, B} = A. (2.112)

Then A and B commute.

Proof: Let Γ and Γ′ be simultaneously diagonalisable in the orthonormal basis {|i⟩}ni=1. Let

Γ |i⟩ = λi |i⟩, Γ′ |i⟩ = µi |i⟩, ⟨i|A |j⟩ = Aij and ⟨i|B |j⟩ = Bij , for i, j ∈ [n]. By positive definite-

ness, note that Aii, Bii > 0 for any i. Rewriting equations (2.112) in components of this basis, we

reach the set of equations

(λi + λj)Aij = Bij , (µi + µj)Bij = Aij . (2.113)

Setting i = j we deduce that

λi = Bii/2Aii, µi = Aii/2Bii. (2.114)

Equation (2.113) shows that Aij = 0 ⇔ Bij = 0. Suppose Aij ̸= 0, then multiplying the two

individual equations in (2.113) and dividing by AijBij we see that

(Aii/2Bii +Ajj/2Bjj) (Bii/2Aii +Bjj/2Ajj) = 1,

⇔ AiiBjj

BiiAjj
+
BiiAjj

AiiBjj
= 2. (2.115)

But x+ 1/x = 2 iff. x = 1 and we deduce that

Aii

Bii
=
Ajj

Bjj
. (2.116)
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Consider a graph G on n nodes, with an edge between i and j iff. Aij ̸= 0. If G is connected,

then for any nodes i, j in G there is path between them. Assuming connectedness, we apply the

result of equation (2.116) along the path, we deduce that AiiBjj = BiiAjj for every i, j ∈ [n]. But

then summing over j, we deduce that Aii = Tr(A)
Tr(B)Bii. Substituting this into equations (2.113) and

(2.114), we see that A and B are proportional and thus commute. If G is not connected, then

we can apply the above procedure to each connected component of G. The result is that A and

B are block diagonal, with the diagonal matrix entries proportional and thus A and B commute.

Proposition 2.10: Suppose ρ : Θ → D(H) is some single parameter state (Θ ⊆ R) with an

optimal measurementM ∈ ML(H). Fix θ1, θ2 ∈ Θ distinct, then ρ(θ1), ρ(θ2) commute (regardless

of their rank).

Proof: Again, for notational convenience, let ρi = ρ(θi) for i = 1, 2. Redefine our parameter

space Θ = {θ1, θ2}, but we still allow estimators to take any real value. Note that, by definition,

M must also be optimal for this parameter estimation problem.

Suppose that U = ker(ρ2)∩ker(ρ1) ̸= {0}. Let U⊥ be the orthogonal complement of U and let ΠU⊥

be the orthogonal projection matrix onto U⊥. Then note that replacing M with the measurement

(ΠU⊥MiΠU⊥ ,1 − ΠU⊥) ∈ ML+1(H) does not change any of the measurement probabilities when

measuring ρ1 or ρ2. Thus, we may WLOG restrict our Hilbert space to U⊥, i.e. we take H = U⊥,

which still has an optimal measurement for this restricted parameter estimation problem (given

above). Furthermore ΠUρ1ΠU and ΠUρ1ΠU commute iff. ρ1 and ρ2 do.

Suppose that ρ2 is not full rank, i.e. it has some non-trivial kernel K ≤ H. Take a measurement

E = (ΠK ,ΠK⊥) ∈ M2(H), along with an estimator θ̂E(K) = θ1, θ̂
E(K⊥) = θ2 so that

R(θ̂E , θ2) = 0, (2.117)

R(θ̂E , θ1) = (θ1 − θ2)
2[1 − Tr(ΠKρ1)]. (2.118)

Since M is optimal, we have that M ⪯ E. Then, in particular, there must be an estimator θ̂M

satisfying θ̂M ≤ θ̂E . In particular, θ̂M must have zero risk at θ2 and thus if Tr(ρ2Mi) ̸= 0, then

we must have θ̂M (i) = θ2. Let I = {i | Tr(ρ2Mi) = 0}, then, by the above, θ̂M must satisfy

R(θ̂M , θ1) ≥ (θ1 − θ2)
2

(
1 −

∑
i∈I

Tr(ρ1Mi)

)
, (2.119)

with equality iff. for every i ∈ I, θ̂M (i) = θ1. WLOG, assume that this holds, so that we satu-

rate equation (2.119). If Tr(ρ2Mi) = 0, then, as Mi ≥ 0, every eigenvector of Mi with non-zero

eigenvalue must lie in K and thus
∑

i∈I Mi ≤ ΠK . Thus, R(θ̂M , θ1) ≥ R(θ̂E , θ2) with equality

iff. ρ1
(
ΠK −

∑
i∈I Mi

)
= 0. Since ρ1 does not kill any vector in K (as we restricted to U⊥) we

get equality iff.
∑

i∈I Mi = ΠK . Thus, as
∑L

i=1Mi = 1, for i /∈ I and |k⟩ ∈ K, Mi |k⟩ = 0. Using

proposition 1.1 (ii), we deduce that, if i ∈ I, then Mi = ΠKMiΠK and MiΠK⊥ = 0, and if i /∈ I,

then Mi = ΠK⊥MiΠK⊥ and MiΠK = 0
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Now, for p ∈ (0, 1) fix a prior on Θ where we are given ρ1 with probability p and ρ2 with proba-

bility 1− p. Note that (as we restricted to U⊥), ρ̄ has full rank. By proposition 2.6, there exists a

Bayesian estimator θ̂Mp . Taking Λ =
∑

iMiθ̂
M
p (i) we find that Λ decomposes as Λ = ΛK + ΛK⊥ ,

where ΛK = ΠKΛKΠK and ΛK⊥ = ΠK⊥ΛK⊥ΠK⊥ . Furthermore, in order for our estimator to be

Bayes, we must always guess θ1 in the case of a K outcome i.e. ΛK = θ1ΠK .

Taking the inner product of condition (ii) of Lemma 2.7 with |k⟩ ∈ K and |ℓ⟩ ∈ K⊥, we find that

⟨ℓ|ΛK⊥ρ1 |k⟩ = θ1 ⟨ℓ| ρ1 |k⟩ . (2.120)

Note that as p → 0, we must have ΛK⊥ → ΠK⊥θ2, as our estimates must approach θ2 for our

estimator to be Bayes. Thus the only way for equation (2.120) to be satisfied for all p ∈ (0, 1)

is for ⟨ℓ| ρ1 |k⟩ = 0. Thus ρ1 fixes K and we may decompose it as ρ1 = ΠKρ1ΠK + ΠK⊥ρ1ΠK⊥ .

Thus equation (2.107) becomes

1

2
{ΛK⊥ , pΠK⊥ρ1ΠK⊥ + (1 − p)ΠK⊥ρ2ΠK⊥},

= pθ1ΠK⊥ρ1ΠK⊥ + (1 − p)θ2ΠK⊥ρ2ΠK⊥ . (2.121)

We observe that ρ1 and ρ2 commute iff. ΠK⊥ρ1ΠK⊥ and ΠK⊥ρ2ΠK⊥ do.

Consider the restricted estimation problem ρ̃ : {θ1, θ2} → D(K⊥), ρ̃(θ) = ΠK⊥ρ(θ)ΠK⊥ . Suppose

that F ∈ MJ(K⊥), and we have some estimator θ̂F , we can extend it to a measurement F̄ ∈
MJ+1(H) by

F̄i =

Fi, i ̸= J + 1,

ΠK , i = J + 1.
(2.122)

Similarly, we extend θ̂F to an estimator θ̂F̄ by θ̂F̄ |[J ] = θ̂F and θ̂F̄ (J + 1) = θ1. By optimal-

ity of M , there is some estimator θ̂M ≤ θ̂F̄ , where WLOG (as this cannot increase the risk),

for i ∈ I, we take θ̂M (i) = θ1. Consider the restricted measurement M̃ ∈ M(H) given by

M̃ = (ΠK⊥MiΠK⊥)i/∈I , with corresponding estimator θ̂M̃ = θ̂M |[L]\I . A brief calculation shows

that θ̂M̃ ≤ θ̂F . Thus, ρ̃ admits an optimal measurement M̃ . Hence, we may restrict our Hilbert

space to K⊥, on which ρ2 has full rank.

We may then repeat the above procedure, reducing our Hilbert space to one on which both ρ1

and ρ2 have full rank. The key insight is that if ρ2 = ΠKρ2ΠK + ΠK⊥ρ2ΠK⊥ has full rank, then

so too does ΠK⊥ρ2ΠK⊥ , and thus ρ2 remains full rank after repeating the procedure. We then

apply propositions 2.8 and 2.9, and the result follows.

Note that the proof of proposition 2.10 may be seen as a generalisation of example 2.5. In light

of propositions 2.1 and 2.10, we see that Lemma 2.17 holds in the single parameter case, for any

parameter space Θ, without the assumption of convexity. We can use the single parameter case to

prove the full version of the Lemma:

Lemma 2.2: Suppose that ρ : Θ → D(H) is some parameterised quantum state, where Θ ⊆ Rk

is convex. If ρ admits an optimal measurement (under least-squares loss), then it is classical.
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Proof: Fix θ1, θ2 ∈ Θ and let T = [0, ||θ2 − θ1||]. By convexity, for t ∈ T , γ(t) = θ1 + t(θ2 −
θ1)/||θ2 − θ1|| is in Θ. Thus ρ̃ : T → D(H), ρ̃(t) = ρ(γ(t)) gives a single parameter parameterised

state. We have constructed this state such that the least-squares loss functions agree - that is for

s, t ∈ T ,

||γ(t) − γ(s)||2 = |t− s|2. (2.123)

But then (by projecting any estimators θ̂M onto the line segment between θ1 and θ2) M must

also be optimal for ρ̃, and thus, by proposition 2.10, ρ(θ1) and ρ(θ2) commute.

2.2.6 Outlook

Above, we have introduced, and provided several central results, within the theory of admissibility of

measurements in quantum metrology. The theory of admissibility of classical estimators is rich, and

the corresponding theory for measurements should prove more complex. This complexity is already

evident in the disparity between the existence of optimal measurements (see Lemma 2.16) and lack of

existence of optimal estimators (see Lemma 2.1).

With regards to optimal measurements, it would be desirable to generalise theorem 2.1 to other loss

functions, such as other p-norms, or the loss functions used in thresholding. It would also be desirable

to relax the requirements on Θ. For example, the parameter space S1 of the phase-encoded state

(example 2.4) is naturally embeddable into R2, but it is not convex. It can also be thought of as

S1 ≃ [0, 2π), but the least squares loss function on [0, 2π) does not respect the periodicity of the

problem. Indeed, a more sensible choice of loss function, which locally reproduces least-squares, but

respects global periodicity, would be L(θ1, θ2) = 4 sin2([θ1−θ2]/2) 6, to which our result does not apply.

With regards to approximately optimal measurements, we anticipate it to be harder to construct a

robust converse result (i.e. a robust version of Lemma 2.17), given the more involved nature of the

original proof. Nonetheless, it would be desirable to characterise the existence of approximately op-

timal measurements, and moreover develop fast classical algorithms to find approximately optimal

measurements when they exist.

In the asymptotic limit, we expect (approximately) optimal measurements to exist (as discussed in

Section 2.1.6. A large number of copies of a pure state |Ψ(θ)⟩ = |ψ(θ)⟩⊗n , n ≫ 1 is never classi-

cal, yet we expect approximately optimal measurements to exist that saturate the QFI. Note that

[ |Ψ(θ1)⟩⟨Ψ(θ1)| , |Ψ(θ2)⟩⟨Ψ(θ2)| ] ∼ | ⟨ψ(θ1)|ψ(θ2)⟩ |n, and thus we expect exponential decay in the size

of commutators. Thus, the state |Ψ(θ)⟩ looks more classical in the asymptotic limit. We hope that

such intuition could be made more rigorous to show the existence of asymptotically optimal measure-

ments in the sense of ⪯, without reference to a particular estimator.

Finally, we hope that one could make a complete characterisation of the admissible measurements

for a given parameterised state ρ. To the best of our knowledge, there is no complete classical

characterisation of admissible estimators in full generality, and thus a full quantum solution may

prove challenging.

6This loss function also arises as the restriction of the R2 least squares loss function to S1.
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2.3 Performance of Quantum Filters

Section 2.1.7 provided a theoretical background, including motivation, for quantum filtering. In Sec-

tion 2.3, we give a series of novel results in quantum filtering. Firstly, we completely characterise

lossless quantum compression for parameterised pure states. Secondly, we show that the JAL filter

(and indeed other optimal filters) are not optimal in the presence of noise (or more abstractly for

mixed parameterised quantum states). Thirdly, we give an operational justification for why lossless

compression by filtering is a genuine quantum effect. Finally, we give a concrete iterative scheme for

quantum filtering in the ubiquitous model of Gaussian shift estimation (defined below). The results

are mostly drawn from Refs. [2, 3]

2.3.1 Conditions for an Optimal Filter

In order to design quantum filters, it is essential to understand under what conditions a filter is lossless.

In this Section we completely characterise lossless filters for parameterised pure states. We will use

the following useful expression for the QFI, derived in Ref. [47].

Proposition 2.11: Let |ψ(·)⟩ : Θ → S(H) be a parameterised (pure) quantum state and let K

be a Kraus operator of a filter. Then, for θ ∈ Θ, the QFI of the postselected state has the form

J(θ|ρpsK )i,j = 4 Re

(
1

ppsρ,K(θ)
⟨∂iψ(θ)|F |∂jψ(θ)⟩

− 1

ppsρ,K(θ)2
⟨∂iψ(θ)|F |ψ(θ)⟩ ⟨ψ(θ)|F |∂jψ(θ)⟩

)
. (2.124)

With proposition 2.11, we can give a characterisation of when a filter is lossless:

Theorem 2.2: Let |ψ(·)⟩ : Θ → S(H) be a parameterised (pure) quantum state, where Θ ⊆ Rk.

Fix θ ∈ Θ, and assume that J(θ|ψ)i,i ̸= 0, for every i ∈ [k]. Let U = span{|ψ(θ)⟩ , |∂iψ(θ)⟩ |i ∈ [k]}
and ΠU be the orthogonal projection onto U . Let K be a Kraus operator of a filter,

(i) The postselected Fisher information J(·|ρpsK ) : Θ → Mk(R) only depends on Fu := ΠUK
†KΠU ,

not K.

(ii) K is lossless at θ iff. Fu = (p− 1) |ψ(θ)⟩⟨ψ(θ)| + ΠU , for some p ∈ (0, 1].

Proof: (i) follows immediately from proposition 2.11.

We note that for all θ ∈ Θ, ⟨ψ(θ)|ψ(θ)⟩ = 1. Taking the derivative of this expression, we see that

for all θ ∈ Θ and j ∈ [k],

Re(⟨∂jψ(θ)|∂ψ(θ)⟩) = 0. (2.125)

Fix θ ∈ Θ, in view of equation (2.125), we may expand

|∂jψ(θ)⟩ = ixj |ψ(θ)⟩ + αj

∣∣∣ψ⊥
j (θ)

〉
, (2.126)
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where xj ∈ R, αj ∈ C and
∣∣∣ψ⊥

j (θ)
〉
∈ S(H) satisfies

〈
ψ(θ)

∣∣∣ψ⊥
j (θ)

〉
= 0. We define

⟨ψ(θ)|Fu|ψ(θ)⟩ = ppsρ,K(θ) ∈ [0, 1], (2.127)〈
ψ⊥
j (θ)

∣∣∣Fu

∣∣∣ψ⊥
j (θ)

〉
= Bj ∈ [0, 1], (2.128)〈

ψ(θ)
∣∣∣Fu

∣∣∣ψ⊥
j

〉
= Cj ∈ C. (2.129)

Using proposition 2.11, we find that for j ∈ [k],

J(θ|ρpsK )j,j =
4

ppsρ,K(θ)

(
x2jp

ps
ρ,K(θ) + |αj |2 + ixj [α

∗
jC

∗
j − αjCj ]

)
− 4

ppsρ,K(θ)2
|ixjppsρ,K(θ) + αjCj |2,

(2.130)

= 4

[
|αj |2Bj

ppsρ,K(θ)
− |αjCj |2

ppsρ,K(θ)2

]
. (2.131)

By considering the case of K = F = 1, we see that

J(θ|ρ) = 4|αj |2. (2.132)

We deduce ppsρ,K(θ)J(θ|ρpsK )j,j = J(θ|ρ)j,j iff.

|αj |2(Bj − 1) − |αjCj |2

ppsρ,K(θ)
= 0. (2.133)

Since αj ̸= 0 by assumption, we deduce that this condition holds iff. Bj = 1 and Cj = 0. Note

that 1 − F ≥ 0, so using proposition 1.1 (i), we see that the diagonal entries of ppsρ,K(θ)J(θ|ρpsK )

and J(θ|ρ) are equal iff.

Fu = (ppsρ,K(θ) − 1) |ψ(θ)⟩⟨ψ(θ)| + ΠU . (2.134)

To prove point (ii) it remains to show that for such Fu, the off diagonal entries of J(θ|ρpsK ) and

J(θ|ρ) are equal. This is a straightforward calculation.

The condition that J(θ|ρ)j,j be non-zero for all j ∈ [k] is a natural requirement - it is equivalent to

saying that there is information on θ contained in ρ to begin with, so that it can be compressed.

Indeed, if J(θ|ρ)j,j = 0 for a single j ∈ [k], then there exists a vector v ∈ Rk such that vTJ(θ|ρ)v = 0,

and thus by proposition 1.1 (i), J(θ|ρ) is non-invertible.

It may be that U has dimension u less than d = dimH. For example, this will always happen if

k + 1 < d, where k is the number of parameters: Θ ⊆ Rk. In general, if u < d, then there is not a

unique lossless filter. For a fixed θ ∈ Θ, the subspace U encodes the local changes in the state |ψ⟩
that can arise from infinitesimal variations in the parameter, see figure 2.4 for a intuitive discussion.

We note that the JAL filter is always lossless, regardless of U . In this sense, it is thus the canonical

choice of lossless filter.
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|ψ(·)⟩

|ψ(θ)⟩

|n⟩

|∂ψ(θ)⟩

Figure 2.4: Schematic diagram of a Hilbert space with a single-parameter parameterised quantum
state |ψ(·)⟩. At the point θ ∈ Θ, we see that there is one direction in H arising from infinitesimal
variations in the parameter: the tangent |∂ψ(θ)⟩. The third direction |n⟩ is (locally) unimportant.

2.3.2 Non-optimality of the JAL Filter with Noise

Filtering of mixed states is more complicated than pure states, see Ref. [2] for a discussion of filtering

pure states that have been acted upon by depolarising noise. One finds that unbounded amplification

of information is no longer possible, and that lossless compression may not exist. In this Section, we

give an explicit example where the JAL filter is not optimal for a parameterised mixed state. Our

parameterised mixed state is a depolarised parameterised pure state in a 3-dimensional Hilbert space:

dimH = 3.

First, we prove a useful result for calculating the QFI of postselected states in the single parameter

case

Proposition 2.12: Suppose that ρ : Θ → D(H) is a single parameter (Θ ⊆ R) parameterised

quantum state, and that p : Θ → (0, 1] is a parameterised probability. Let ρ′ : Θ → B(H) be

defined by

ρ =
ρ′

p
. (2.135)

Then, for all θ ∈ Θ,

J(θ|ρ) =
1

p(θ)

[
J(θ|ρ′) − (Tr[∂ρ′(θ)])2

p(θ)

]
. (2.136)

Here, we extend the definition of the QFI to include non-normalised positive semi-definite oper-

ators in the natural way.

Proof: We calculate that

∂ρ =
∂ρ′

p
− ∂p

p
ρ. (2.137)

Fix θ ∈ Θ, let Λ = LSLD(θ). We define a new operator Λ′ by the equation

Λ = Λ′ − ∂p(θ)

p(θ)
1. (2.138)
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Using the defining property of Λ, we see that Λ′ satisfies the reduced equation

1

2
{Λ′, ρ′(θ)} = ∂ρ′(θ), (2.139)

and thus is a choice of SLD for ρ′. We expand the QFI of ρ as

J(θ|ρ) = Tr
(
ρ(θ)Λ2

)
, (2.140)

= Tr

(
1

2
{ρ(θ),Λ}Λ

)
, (2.141)

= Tr(∂ρ(θ)Λ), (2.142)

= Tr

[(
∂ρ′(θ)

p(θ)
− ∂p(θ)

p(θ)
ρ(θ)

)(
Λ′ − ∂p(θ)

p(θ)
1

)]
, (2.143)

=
1

p(θ)

[
J(θ|ρ′) − ∂p(θ)

p(θ)
Tr
(
ρ′(θ)Λ′)− ∂p(θ)

p(θ)
Tr
[
∂ρ′(θ)

]
+

[∂p(θ)]2

p(θ)

]
. (2.144)

Taking the trace of equation (2.137) (noting that Tr(ρ) is constant, and therefore Tr(∂ρ)) van-

ishes), we find that

Tr
(
∂ρ′(θ)

)
= ∂p(θ). (2.145)

Substituting this into equation (2.144) and using that Tr(ρ′(θ)Λ′) = Tr({ρ′(θ),Λ′})/2 = Tr[∂ρ′(θ)],

the result follows.

We now consider the effect of depolarising noise on the JAL filter. We consider some parameterised

pure state |ψ(·)⟩ : Θ → S(H), which is affected by depolarising noise. For notational brevity, we

consider a noise rate of 1/2, so that the preselected state has the form

ρ : Θ → D(H), ρ(θ) =
1

2
(|ψ(θ)⟩⟨ψ(θ)| + 1/3), (2.146)

Fix a filter with Kraus operator K, which gives rise to the non-normalised postselected state

ρ′ : Θ → B(H), ρ′(θ) = K |ψ(θ)⟩⟨ψ(θ)|K† +KK†/3. (2.147)

Fix some θ ∈ Θ. As in the proof of Lemma 2.2, we decompose

|∂ψ(θ)⟩ = ix |ψ(θ)⟩ + α
∣∣∣ψ⊥

〉
, (2.148)

where x ∈ R, α ∈ C, and
∣∣ψ⊥〉 is normalised and orthogonal to |ψ(θ)⟩. We further assume that α ̸= 0,

i.e. that J(θ|ψ) ̸= 0, so that there is information to compress. Since H is 3-dimensional, we can find

a state |n⟩ ∈ S(H) such that {|ψ(θ)⟩ ,
∣∣ψ⊥〉 , |n⟩} is an orthonormal basis of H. In this basis, consider

a filter with a single off-diagonal term:

K =

t 0 b

0 1 0

0 0 0

 , (2.149)
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where t, b ∈ [0, 1]. K has POVM operator

F = K†K =

t
2 0 tb

0 1 0

tb 0 b2

 . (2.150)

The eigenvalues of F are 0, 1, t2 + b2. Thus, for b ∈ [0,
√

1 − t2], we find that 0 ≤ F ≤ 1 and therefore

K is a valid filter. One can explicitly calculate

ρ′(θ) =

(4/3)t2 0 tb/3

0 1/3 0

tb/3 0 b2/3

 , and ∂ρ′(θ) =

 0 α∗t 0

αt 0 0

0 0 0

 . (2.151)

We also explicitly find Λ′:

Λ′ =

 0 Λ′∗
12 0

Λ′
21 0 Λ′∗

23

0 Λ′
32 0

 , (2.152)

We note that ∂ρ′(θ) is traceless, and thus by proposition 2.12

Rρ,K(θ) = J(θ|ρ′). (2.153)

Finally, we calculate

Λ′∗
12 = Λ′

21 =
6(1 + b2)tα

1 + b2 + (4 + 3b2)t2
, (2.154)

Λ′∗
23 = Λ′

32 = − 6bt2α

1 + b2 + (4 + 3b2)t2
. (2.155)

We can further calculate

Rρ,K(θ) = J(θ|ρ′) =
12|α|2(1 + b2)t2

1 + b2 + (4 + 3b2)t2
, (2.156)

=
12|α|2t2

1 +

(
3 +

1

1 + b2

)
t2
, (2.157)

which is manifestly increasing in b. Surprisingly, we see that the off-diagonal term b is beneficial to

filter performance. Therefore, it is, counter-intuitively, beneficial to mix the noisy subspace spanned

by |n⟩ with U .

We compare K to a diagonal Kraus operator, a generalisation of the JAL filter

K̃ =

t 0 0

0 1 0

0 0 r

 , (2.158)

where r ∈ [0, 1] controls the probability of transmitting an |n⟩ state (which can only come from noise).
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When r = 1, K̃ is the JAL filter. Similarly, one can calculate

Rρ, K̃(θ) =
12|α|2t2

1 + 4t2
, (2.159)

As r is increased, the postselection probability increases, but the information in a transmitted states

decreases. These two effects cancel, so that Rρ, K̃(θ) does not depend on r. Comparing equations

(2.157) and (2.159), we see that Rρ,K(θ) ≥ Rρ, K̃(θ), with equality iff. b = 0. Thus, the JAL filter is

only optimal in the degenerate case t = 1 (no filtering), for all t < 1 it is outperformed by K. We

conclude that the JAL filter may not be optimal for mixed states. Finding such optimal filters remains

an open question.

2.3.3 A New Perspective on Classical Filtering

Ref. [46] considers a quasi-probabilitic description of quantum filtering, using the (extended) Kirkwood-

Dirac (KD) distribution [55]. They showed that if the postselected QFI J(θ|ρpsK ) passes a certain

threshold, then the KD-distribution must contain some negativity. They label such negativity as a

hallmark of quantum effects, given the well-established nature of the KD distribution in quantum

foundations. Note, if the required postselection probability is sufficiently small, then by this definition

of quantumness, any lossless filter implies quantum effects.

In this Section, we consider a more operational approach to proving that lossless compression is a

quantum effect, and consider classical filtering of arbitrary random variables. We show that classical

filtering can lead to an increase in postselected FI, but that this filtering is almost never lossless.

Let X : Ω → χ be some random variable, with parameter-dependent law Pθ. We assume that Pθ

admits a pdf. f(x|θ). A classical filter is defined by a (measurable) function t2 : χ → [0, 1], where

t2(x) is the probability that x passes the filter. We call the function t2 a (classical) filter. A sample

of the ”postselected” variable Y can be obtained via the following procedure:

1. Sample X, giving outcome x ∈ X.

2. Generate a number u uniformly in [0, 1], if t2(x) ≤ u, then output x. Otherwise return to step

1.

We calculate the probability that a single sample of X passes the filter, i.e. the probability of trans-

mission:

p(θ) =

∫
χ
f(x|θ)t2(x)dx. (2.160)

We require that p(θ) > 0 for every θ ∈ Θ, so that (almost surely) the procedure to generate a sample

of Y terminates in a finite number of steps.

In analogy with the quantum case, we say that a classical filter is lossless at θ ∈ Θ if p(θ)I(Y |θ) =

I(X|θ). We will find that, in contrast to the quantum setting, lossless classical compression of infor-

mation via filtering is almost always impossible.
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Proposition 2.13: Let X : Ω → χ be a random variable which admits a parameter dependent

pdf. f(x|θ), and let t2 : χ→ [0, 1] be a filter. The postselected variable Y admits a pdf

g(y|θ) =
f(x|θ)
p(θ)

t2(y), (2.161)

where p(θ) is the probability of transmission, as defined in equation (2.160).

Proof: Let B ⊆ χ be a measurable subset. Then,

Pθ(Y ∈ B) =

∫
B
f(x|θ)t2(x)dx+ (1 − p(θ))Pθ(Y ∈ B). (2.162)

Rearranging, we find that

Pθ(Y ∈ B) =

∫
B

f(x|θ)
p(θ)

t2(x)dx, (2.163)

and the result follows.

Proposition 2.14: Let X : Ω → χ be a random variable which admits a parameter dependent

pdf. f(x|θ), and let t2 : χ→ [0, 1] be a filter. Denote the postselected variable by Y . Fix θ ∈ Θ,

then

p(θ)I(θ|Y ) =

∫
χ

[∂θf(y|θ)]2

f(y|θ)
t2(y)dy − [∂θp(θ)]

2

p(θ)
, (2.164)

where p(θ) is the probability of transmission.

Proof: First, we calculate the derivative of the pdf. of Y (see proposition 2.13):

∂θg(y|θ) =

[
∂θf(y|θ) − f(y|θ)

p(θ)
∂θp(θ)

]
t2(y)

p(θ)
. (2.165)

We can then directly calculate

p(θ)I(θ|Y ) =

∫
χ
p(θ)

[∂θg(y|θ)]2

g(y|θ)
dy, (2.166)

=

∫
χ

[
∂θf(y|θ) − f(y|θ)

p(θ)
∂θp(θ)

]2 t2(y)

f(y|θ)
dy, (2.167)

=

∫
χ

[∂θf(y|θ)]2

f(y|θ)
t2(y)dy (2.168)

− 2
∂θp(θ)

p(θ)

∫
χ
∂θf(y|θ)t2(y)dy +

[∂θp(θ)]
2

p(θ)2

∫
χ
f(y|θ)t2(y)dy. (2.169)

Finally, we note that p(θ) =
∫
χ f(y|θ)t2(y)dy and ∂θp(θ) =

∫
χ ∂θf(y|θ)t2(y)dy, and the result

follows.

For a (measureable) subset A ⊆ χ, we define the information contained in A (with respect to X)

IA(X|θ) as its contribution to the total Fisher information:

We can now characterize the set of lossless classical filters.
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Lemma 2.24: Let t2 : χ→ [0, 1] be a filter on a random variable X : Ω → χ. Then t2 is lossless

at θ ∈ Θ iff. {x ∈ X : ∂θf(x|θ) ̸= 0, t2(x) < 1} has measure 0.

Proof: Fix θ ∈ Θ, using proposition 2.14, we know that

p(θ)I(θ|Y ) =

∫
χ

[∂θf(y|θ)]2

f(y|θ)
t2(y)dy − [∂θp(θ)]

2

p(θ)
. (2.170)

Let Z = {x ∈ X : ∂θf(x|θ) ̸= 0, t2(x) < 1}. We find that

p(θ)I(θ|Y ) ≤
∫
χ

[∂θf(y|θ)]2

f(y|θ)
t2(y)dy, (2.171)

=

∫
Z

[∂θf(y|θ)]2

f(y|θ)
t2(y)dy +

∫
Zc

[∂θf(y|θ)]2

f(y|θ)
t2(y)dy, (2.172)

≤
∫
Z

[∂θf(y|θ)]2

f(y|θ)
dy +

∫
Zc

[∂θf(y|θ)]2

f(y|θ)
dy, (2.173)

= I(θ|X). (2.174)

We have equality in (2.171) iff. ∂θp(θ) = 0. The inequality (2.173) is saturated iff. Z has measure

0. Note that if Z has meausre 0, then ∂θp(θ) =
∫
∂θf(x|θ)t2(x)dx =

∫
∂θf(x|θ) = 0. We conclude

that Z having zero measure is necessary and sufficient for the filter t2 to be lossless.

Lemma 2.24 shows that classical filtering is lossless if and only if one filters on a subset that has no

local parameter dependence. If, as is often the case, ∂θf(x|θ) is non-vanishing for all x ∈ χ, then only

the trivial filter t2 = 1 (almost everywhere) is lossless. This is in stark contrast to the quantum case,

where one can find a lossless filter for any choice of (non-zero) transmission probability p(θ). This

demonstrates the truly quantum nature of filtering in an operational fashion, without reference to any

other preconceived notions of classicality.

2.3.4 Iterative Filtering

As noted in Section 2.1.7, existing work on postselected metrology has focused on theoretical calcu-

lations using the quantum Fisher information, rather than concrete protocols. In this Section, we

introduce the first explicit postselected quantum parameter estimation scheme. We give an algorithm

for a specific parameterised quantum state, where one starts with no prior knowledge on the parameter

to be estimated, that repeatedly updates the quantum filter. As the filter is updated, the risk of the

corresponding estimator (the output if the algorihtm was terminated) decreases arbitrarily below its

non-postselection version, demonstrating the advantage that postselection can give. Additionally, we

consider the application of the James-Stein estimator (see example 2.2) to postselection. We see that

the (genuinely quantum) effect of postselection can boost the James-Stein estimator’s advantage over

the MLE.

Unlike other Sections, we take H to be infinite dimensional, and consider an explicit parameterised

pure state. Specifically, for some k ∈ N, we take

H = L2(Rk,C) :=

{
f : Rk → C

∣∣∣∣ ∫ dkx |f(x)|2 <∞
}
/ ∼, (2.175)
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where f ∼ g iff. f = g almost everywhere. We consider a parameterised state with parameter space

Θ = Rk:

|ψ·⟩ : Rk → S(H), θ 7→ |ψθ⟩ , |ψθ⟩ (x) = Ck/2e−∥x−θ∥2/B, (2.176)

for some known B > 0 and C =
√

2/πB. In the position basis, |ψθ⟩ is a Gaussian, with mean θ and

variance
√
B/2.

Suppose that we use filter with Kraus operator K on |ψ⟩. We denote the postselected state by

∣∣ψK
〉

: Θ → S(H), θ 7→
∣∣ψK

θ

〉
=

K |ψθ⟩
∥K |ψθ⟩∥

. (2.177)

Given its theoretical properties, we will use the JAL filter, with parameters θ0 ∈ Θ and t ∈ [0, 1]. We

will show that the postselected state can be well approximated as a Gaussian state, for θ0 close to θ.

We require a brief technical proposition to do so.

Proposition 2.15: Let a ∈ Rk, then

sup
x∈Rk

e−∥x∥2 |ea·x − (1 + a · x)| = O(∥a∥2), (2.178)

as a→ 0.

Proof: From Lagrange’s form of the remainder of a Taylor series [56], we know that

|ea·x − (1 + a · x)| =
1

2
(a · x)2eξ, (2.179)

where ξ ∈ R is bounded: |ξ| ≤ |a · x|. By Cauchy-Schwartz, we deduce that

|ea·x − (1 + a · x)| ≤ 1

2
∥a∥2∥x∥2e∥a∥∥x∥. (2.180)

Using that ∥x∥2 ≤ e∥x∥, we find that

e−∥x∥2 |ea·x − (1 + a · x)| ≤ 1

2
∥a∥2∥x∥2e∥a∥∥x∥−∥x∥2 , (2.181)

≤ 1

2
∥a∥2e(1+∥a∥)∥x∥−∥x∥2 , (2.182)

=
1

2
∥a∥2e−(∥x∥−(1+∥a∥)/2)2+(1+∥a∥)2/4, (2.183)

≤ 1

2
∥a∥2e(1+∥a∥)2/4. (2.184)

Taking the supremum of both sides, the result follows.

We now show an approximation for the postselected state. Suppose that the true value of the parameter

is θ ∈ Θ, and let δ = θ − θ0. We first show following approximation

Proposition 2.16: Suppose K = KJAL
θ , and |ψθ⟩ is defined as in equation (2.176). Then, for

x ∈ Rk ∣∣ψK
θ

〉
(x) = Ck/2e−∥x−θ0−δ/t∥2/B[1 +O(∥δ∥2/t2)], (2.185)
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(almost everywhere). Furthermore, the probability of postselection satisfies

ppsρ,K(θ) = t2 +O(∥δ∥2). (2.186)

Proof: First, we calculate the overlap

⟨ψθ0 |ψθ⟩ = Ck

∫ ∞

−∞
dkx e−(∥x−θ∥2+∥x−θ0∥2)/B, (2.187)

= Ck

∫ ∞

−∞
dkx e−(2∥x−θ/2−θ0/2∥2+∥θ−θ0∥2/2)/B, (2.188)

= e−∥δ∥2/2B. (2.189)

We deduce that K |ψθ⟩ = |ψθ⟩ − (1− t)e−∥δ∥2/2B |ψθ0⟩. Define f ∈ H by f(x) = K |ψ(θ)⟩ (x+ θ0).

For x ∈ χ, we find that

f(x) = Ck/2(e−∥x−δ∥2/B − (1 − t)e−∥δ∥2/2Be−∥x∥2/B), (2.190)

= Ck/2e−∥δ∥2/Be−∥x∥2/B[e2x·δ/B − (1 − t)e∥δ∥
2/2B]. (2.191)

Using proposition 2.15 twice, we find that

f(x) = Ck/2e−∥δ∥2/Be−∥x∥2/B[t+ 2x · δ/B +O(∥δ∥2)], (2.192)

= tCk/2e−∥δ∥2/Be−∥x∥2/B[1 + 2x · δ/tB +O(∥δ∥2/t2)], (2.193)

= tCk/2e−∥δ∥2/Be−∥x∥2/Be2x·δ/tB[1 +O(∥δ∥2/t2)], (2.194)

= tCk/2e−∥x−δ/t∥2/Be∥δ∥
2(1/t2−1)/B[1 +O(∥δ∥2/t2)], (2.195)

= tCk/2e−∥x−δ/t∥2/B[1 +O(∥δ∥2/t2)]. (2.196)

Finally, we note that ppsρ,K(θ) = ∥K |ψθ⟩∥2 =
∫
dx|f(x)|2.

Proposition 2.16 may be seen as a non-asymptotic version of Lemma 2.15 for the particular example

of a Gaussian state. The amplification of J by a factor of 1/t2 is demonstrated by the increased

sensitivity of the postselected state to changes in θ (by a factor of 1/t). We will show how to use this

approximation to construct an explicit protocol for estimating θ.

Because we require that t ≫ ∥δ∥, one cannot decrease t (increasing the strength of the filter) until

one has a good estimate θ0 of θ. We start with no knowledge of θ, and hence no suitable guess θ0.

We run an iterative algorithm (described below), where one estimates δ (using sample variance) and

then decreases t when one is confident that δ is sufficiently small. We remark that this algorithm is

heuristic, we do not explicitly prove its convergence properties. We do, however, emperically demon-

strate its performance. . In this way, the Gaussian approximation of proposition 2.16 is expected to

hold at all steps in the algorithm.
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Algorithm 2.1:

Input: An unknown parameter value θ ∈ Rk and N ∈ N, the number of measurements

to be taken

Output: An estimate of the parameter θ

1. Set θ0 = 0, t = 1, i = 1

2. Measure the position of the postselected state

∣∣∣∣ψKJAL
θ0

θ

〉
, denote the outcome Xi. We let

Yi = θ0 + t(Xi − θ0). By proposition 2.16, if ∥δ∥ ≪ t, we expect that Yi ∼ N (θ,Bt2/41),

3. Let θ̂i = θ̂(Yi) be an estimate of θ made using Yi. Update a collated estimate given by θ̄i,

the sample mean of θ̂1, . . . , θ̂i.

4. Let θ̄i be the sample mean of θ̂1, . . . , θ̂i, a collated estimate of θ. Let σ̂i be the sample

standard deviation of θ̂1, . . . , θ̂i. We let δ̂i = σ̂i/
√
i, an estimate of δ

5. If δi is less than 0.3t, we set t to 3δ̂i and θ0 to θ̄i: our current best estimate of θ.

6. If i = N , then output θ̄i as our estimate of θ. Otherwise, increase i by 1 and return to

step 2.

We reiterate that we are working with the approximation that the limiting factor in estimating θ is

measuring the states

∣∣∣∣ψKJAL
θ0

θ

〉
. As one decreases t, decreasing the chance of successful postselection,

one can increase the intensity of probes input to the system to produce states

∣∣∣∣ψKJAL
θ0

θ

〉
.

Algorithm 2.1 relies on an estimator θ̂ : Rk → Rk for estimating the mean of an unknown Gaussian

distribution N (θ,Σ), with known covariance matrix Σ. We first consider the algorithm with the MLE:

θ̂MLE(x) = x, and denote the corresponding collated estimates θ̄n by θ̂pMLE
n (shorthand for postse-

lected MLE).

Suppose that when Xi is sampled, t has value ti. Under the Gaussian approximation of proposition

2.16, we thus expect

θ̂pMLE
n ∼ N

(
θ,
B

4n
t̄2n 1

)
, R(θ̂pMLE, θ) =

kB

4n
t̄2n, (2.197)

where t̄2n = (1/n)
∑n

i=1 t
2
i is the average value of t2. For comparison θ̂MLE

n ∼ N (θ,B/4n1) and

R(θ̂MLE
n , θ) = kB/4n. We see that postselection improves the risk by a factor of t̄2n.

We expect tn → 0 as n→ ∞ and thus, by Cesàro’s Lemma, we expect t̄2n → 0, and that postselection

gives an unbounded advantage in estimating θ. Of course, in practice, one cannot truly decrease t→ 0,

as this would make the postelection probability arbitrarily small. There will be some lower bound

t ≥ tmin corresponding to the maximum intensity at which one can input probes to a system of interest.

In this case, t̄2n → t2min, and postselection leads to a constant (but potentially very large) improvement.

An explicit demonstration of the advantage from postselection is seen in figure 2.5. After an initial

period (in which an initial estimate θ0 is collected), we see that the advantage of postselection appears

to increase linearly (and unboundedly) with the number of samples.
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Figure 2.5: Plot showing the advantage of postselection when using the MLE. Here, k = 4, B = 1 and
θ = (1,−2, 3, 1.5)/30.

As shown by example 2.2, the MLE is inadmissible for estimating the mean of a normal distribution

when k ≥ 3. Thus, we consider our protocol using the James-Stein estimator (see example 2.2).

However, we note that θ̂JS only has a non-negligible advantage over θ̂MLE when θ is close to some

known value7 θ0 ∈ Rk. But in this setting, we can immediately decrease t, which will shift θ to

θ0 + (θ0 − θ)/t, which is far from θ0 and thus destroys the JS advantage. Thus, we consider a

modified version of the James-Stein estimator θ̂mJS that can be applied to our scenario. Instead of

shrinking the vector x towards the origin like θ̂JS, θ̂mJS shrinks x in the direction of the isotropic

vector e = (1, . . . , 1) ∈ Rk. To be precise, for x ∈ Rk, we define xm = (
∑k

i=1 xi/k)e ∈ Rk, and for

k ≥ 4 we define θ̂mJS as

θ̂mJS(x) = x− (k − 3)Σ−1

∥Σ−1(x− xm)∥2
(x− xm). (2.198)

The risk of θ̂mJS is given by

R(θ̂mJS, θ) = Tr(Σ) − (k − 3)2E
[

1

∥Σ−1(X −Xm)∥2

]
, (2.199)

so that θ̂mJS also dominates θ̂MLE. In analogy to θ̂pMLE, we denote the collated estimates θ̄n when

using θ̂ = θ̂mJS by θ̂pmJS
n .

In order to consider the effect of postselection on the JS advantage, we consider the “postselected

7By shifting the origin, we can take this value to be non-zero.



2. Metrology 49

10 20 30 40 50
n

0.98

1.00

1.02

1.04

1.06

1.08

1.10

PA
D(

n,
)

v( ) = 0.01
v( ) = 0.1
v( ) = 2.0
v( ) = 10.0

Figure 2.6: Comparison of the effect of postselection on the James-Stein advantage for various θ,
B = 1. The small kink in the blue curve is due to computational shot noise.

advantage” (PAD) given by the ratio

PAD : N× Rk → [0,∞), PAD(n, θ) =
R(θ̂pMLE

n , θ)

R(θ̂pmJS
n , θ)

· R(θ̂mJS
n , θ)

R(θ̂MLE
n , θ)

. (2.200)

If PAD > 1, then postselection has increased the James-Stein advantage (compared to the non-

postselected case). In light of equation (2.199), we expect that the behaviour of PAD(n, θ) will

depend on how “isotropic” θ is. We quantify this by

v(θ) =
∑

(θi − θ̄)2, (2.201)

related to the variance of θ. In figure 2.6, we plot PAD(n, θ) against n for 4 different values of θ ∈ R4,

each with a different v(θ). the James-Stein estimator allows stronger postselection for smaller n, so

that PAD > 1. However, as n increases, the 1/t factor in sensitivity increases v(θ) by a factor of

1/t2, which degrades the James-Stein advantage. Thus, PAD eventually decreases. These effects are

magnified when v(θ) is smaller.

Our results demonstrate the subtle interplay between postselection and parameter estimation. Postse-

lection gives a potentially unbounded, uniform amplification in estimation accuracy, as demonstrated

in figure 2.5. However, it can have a much more complex effect on the advantage of one estimator over

another, as demonstrated in figure 2.6. Moreover, this effect depends on the value of the underlying

parameter.
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2.3.5 Outlook

In this Section we have further explored the application of postselection to quantum metrology. We

have provided a range of results, each of which is a valuable contribution within their own right.

Despite recent theoretical advancements [2, 3, 47] in quantum filtering, and even a theoretical demon-

stration [43], there are still many open problems.

Firstly, we need a better understanding of concrete algorithms for filtering. The scheme in Section

2.3.4 could be further optimised, with a systematic study of when it is best to reduce the value of t,

and by how much it should be reduced. Additionally, it is important to consider explicit algorithms for

other common parameterised states, such as the phase-encoded state (example 2.4). More generally,

it would be desirable to have an iterative procedure that works for any parameterised state ρ, with

guarantees on performance of the estimation strategy.

Secondly, filtering of mixed states is very poorly understood. It remains an open problem to maximise

Rρ,K over choices of filter K when ρ is mixed. The example in Section 2.3.2 shows that existing

results for pure states do not generalise easily to the mixed case. Some sufficient conditions for lossless

compression have been found in Ref. [57], but they are not known to be necessary. Mixed states are

particularly important for accounting for noise, which is always present in physical systems. Filtering

with depolarising noise and/or photon loss has been explored in Ref. [2], but the case of depolarising

noise is not fully solved. Section 2.3.2 shows that this problem is complex, even in dimension three.

Moreover, other noise models (such as individual qubit noise) have not yet been studied.



Chapter 3

Probably Approximately Correct

Learning

3.1 Background

3.1.1 Classical PAC Learning

In recent years, machine learning has shown remarkable success. Applications have been found in text

generation [58], image processing [59], cybersecurity [60], healthcare [61] and biochemistry [62]; to say

this list is non-exhaustive is undoubtedly an understatement. Most modern machine learning has its

mathematical foundations in probably approximately correct (PAC) learning, as introduced by Valiant

in 1984 [63]. In this Section, we introduce the classical framework of PAC learning, in a self-contained

manner. This is an essential prerequisite to understanding our results, presented in Section 3.2. As in

the previous chapter, we give more exposition than is strictly required for our work, in order to give

sufficiently motivating context.

In this thesis, we will focus on PAC learning with the simplest type of object, called a classifier,

which partitions a set into YES and NO instances. For example, a facial recognition algorithm decides

whether or not an image contains a specific face. In analogy to decision problems in complexity the-

ory, these simple YES/NO objects are among the most studied object in theoretical machine learning;

much of the theory developed for classifiers can be applied to more general cases [64].

Mathematically, a classifier is a function f : X → {0, 1}, where X is the set of valid inputs to f , called

the input space. We will focus on the case where X is finite; often the input to f is a length n bistring,

i.e. X = {0, 1}n. It is certainly possible to work with infinite X , but one has to deal with technical

aspects of measurability [64]. We denote the set of all possible classifiers on X by {0, 1}X . Sometimes,

a classifier f is thought of as the subset f−1({1}), or its “truth-table” - a list of f(x) for every x ∈ X .

If there was no known structure in learning problems, machine learning would be extremely difficult -

there are 2|X | possible classifiers, so an exponential amount of information is needed to even describe

a generic classifier. Yet, there is anthropological evidence that it is possible to efficiently learn faces

- young children can recognise faces. Our brains filter out most of the irrelevant information in the

input image, extracting important details to recognise a face. More abstractly, the rich structure of

the problem allows it to be solved efficiently. In general, the structure of a machine learning algorithm

51
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is given by specifying a subset C ⊆ {0, 1}X , called a concept class. For example, C could be the set of

functions that do not change if their input is reflected.

A key insight in PAC learning is that it is enough to learn a function f approximately, rather than

exactly - if you are correct 99.999% of the time, that is usually good enough in practice. This is mod-

elled by some probability distribution D on X , representing the distribution of inputs to the classifier.

For example, a facial recognition algorithm is much more likely to receive an image corresponding to

a photograph than pixelated noise. The distribution induces a distance on classifiers1

d : {0, 1}X × {0, 1}X → [0, 1], d(f, g) = PX∼D[f(X) ̸= g(X)]. (3.1)

We say that f is an ϵ-approximation to g if d(f, g) ≤ ϵ. In the simplest type of learning, known as

realisable learning, there is some unknown classifier c ∈ C. An algorithm succeeds if its output g

satisfies d(c, g) ≤ ϵ, i.e. the output is a good approximation to the true classifier.

A machine learning algorithm receives data (often called the training phase), and then outputs a clas-

sifier g. If we insist g ∈ C, the learning algorithm is called proper, otherwise (if g may be in {0, 1}X \C)

the algorithm is called improper. In this Section, we only consider one type of access to data, known

as random labelled examples. See Section 3.2.1 for a discussion of various different access models. In

realisable learning, a random labelled example is a tuple (X, c(X)) ∈ X × {0, 1}

Suppose a learning algorithm A receives a number of random labelled examples in its training phase.

Then, with respect to the randomness of the training data (and any other randomness in the learning

algorithm), the output g of A is itself random. In analogy to allowing a small error in the output

g, we also allow for the learning algorithm to fail with some small probability δ. To be precise, A is

said to be an (ϵ, δ) learner if, with probability at least 1 − δ, it outputs g satisfying d(g, c) ≤ ϵ, for all

possible inputs (i.e. unknown classifiers c and distributions D).

In practice, it is often difficult to pin down a simple concept class C that the true classifier belongs

to, i.e. the structure of the problem is hard to describe. Instead, we specify some C (e.g. the set of

possible configurations of a neural network), without the promise that an unknown classifier f is in

C. We define the optimal error of C with respect to an unknown classifier f by

OPTC(f) = min
g∈C

d(f, g). (3.2)

In this type of learning, known as functional agnostic learning, instead of outputting an ϵ-approximation

to f , we wish to output a classifier g whose error is not much worse than the best case using C. That

is, an algorithm succeeds if d(f, g) ≤ OPTC(f)+ϵ. One hopes that by choosing a suitably “expressive”

concept class C, OPTC(f), and therefore the error of the output of the learning algorithm, will be

small.

In some cases, an ideal classifier f may not even exist. For example, it can be ambiguous whether or

1In general, when learning functions of the form f : X → Y, we introduce a loss function (as in metrology) L :
Y ×Y → [0,∞] and take d(f, g) = EX∼D[L(f(X), g(X))]. If Y is finite, L is usually taken to be discrete loss (see Section
2.1.1).



3. Probably Approximately Correct Learning 53

Setting Distribution Unknown learn-
ing object

Succeeds if
output g has
d(g, ·) ≤

Random la-
belled example
(aka. sample)

Realisable D on X c ∈ C ϵ
(X, c(X)),
X ∼ D

Functional Agnostic D on X f ∈ {0, 1}X OPTC(f) + ϵ (X, f(X)),
X ∼ D

Distributional Agnostic D′ on X ×{0, 1} D′ OPTC(D′) + ϵ (X,Y ) ∼ D′

Table 3.1: Summary of different settings for PAC learning.

not an image contains a face, or data can be noisy. This is modelled by a joint distribution D′ over

X × {0, 1}. The conditional probability D′(x, y)/D′(x) represents the likelihood that the input x is

classified as y. We extend our notion of distance to include distributions:

d : {0, 1}X × ∆(X × {0, 1}), d(f,D′) = P(X,Y )∼D′ [f(X) ̸= Y ]. (3.3)

Again, we define the optimal error of C with respect to a distribution D′ as

OPTC(D′) = min
g∈C

d(g,D′). (3.4)

This type of learning is known as distributional agnostic learning. In this paradigm, a random labelled

example is a tuple (X,B), drawn from the distribution D′. A learning algorithm succeeds if its output

g satisfies d(g,D′) ≤ OPTC(D′) + ϵ. Note that functional agnostic learning is a special case of distri-

butional agnostic learning, and that realisable learning is a special case of functional agnostic learning.

The different learning scenarios discussed above are summarised in table 3.1.

The sample [resp. time] complexity of a learning algorithm A is the number of samples T used by

[resp. runtime of] A. The sample [resp. time] complexity of a learning task is the minimum sample

[resp. time] complexity of any (ϵ, δ)-learner. Time complexity is more practically relevant than sample

complexity, but harder to bound; one can give upper bounds for specific concept classes C, but it is

difficult to give generic upper bounds. Moreover, it is hard to give explicit, non-trivial, lower bounds.

Sample complexity certainly lower bounds time complexity, but it can be much smaller:

Lemma 3.1: There exist a family of concept classes Cn for which the sample complexity of

realisable learning grows at most polynomially (in 1/ϵ, 1/δ and n), but if the time complexity of

realisable learning were to also grow at most polynomially, then RP = NP.

Proof: For a proof of the RP = NP claim see Ref. [65], chapter 1 theorem 1.3. The sample

complexity growing polynomially is a consequence of Lemma 3.2 and theorem 3.1 below.

Here, RP is the set of languages L for which there exists a polynomial time randomised algorithm A

such that (i) if x /∈ L, then A(x) = 0 with certainty, (ii) if x ∈ L then A(x) = 1 with probability at

least 1/2. Note that RP is contained in BPP ∩ NP, where the random bits consumed by A act as a
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witness.

In this thesis, we will focus on sample complexity, which we shall call complexity. The complexity

of PAC learning a concept class C depends on three things: ϵ, δ and some measure of structure

within the class C. For sample complexity, the correct measure of complexity of C is known to

be its Valiant-Chapernikis (VC) dimension [66]. For a subset Y ⊆ X, and a concept c ∈ C, let

c|Y : Y → {0, 1} y 7→ c(y) denote the restriction of c to the subset Y . Furthermore, we define

C|Y := {c|Y : c ∈ C} as the restriction of the concept class to Y . We say that C shatters Y if

C|Y = {0, 1}Y , i.e. if all possible labellings of Y appear in concepts in C. The VC dimension of C,

VC(C), is the maximum size of a shattered subset

VC(C) = max{|Y | : Y ⊆ X is shattered by C}. (3.5)

On shattered sets, C has no exploitable structure; even if one learns the value of c on every element of

Y bar one, there is no way to infer the value of c on the remaining element of Y . It is often difficult

to exactly calculate VC(C), but it can be conveniently bounded in terms of |C|:

Lemma 3.2:

VC(C) ≤ log |C| ≤ log

VC(C)∑
i=0

(
|X |
i

) ≤ VC(C) log |χ|. (3.6)

Proof: For Y ⊆ X , |{0, 1}Y | = 2|Y | and thus if C shatters Y , 2|Y | ≤ |C|. The lower bound

follows by taking Y a shattered set of maxmimal size. The upper bound on log |C| is known as

the Sauer-Shelah Lemma [67]. The last inequality follows from a simple counting argument.

The importance of the VC dimension is shown by the following theorem, sometimes called the “Fun-

damental Theorem of PAC learning” [68].

Theorem 3.1: Suppose C is a concept class with VC(C) = d. Let ϵ, δ > 0. Then the sample

complexity for realisable PAC learning of C, denoted TC(ϵ, δ, C), scales as

TC = Θ

[
1

ϵ

(
d+ log

[
1

δ

])]
. (3.7)

Moreover, the sample complexity for distributional agnostic PAC learning of C, denoted T dag
C ,

scales as

T dag
C = Θ

[
1

ϵ2

(
d+ log

[
1

δ

])]
. (3.8)

The proof of the lower bound on TC is from Ref. [69], which also gave an upper bound that was

only worse by a factor of log ϵ. The matching upper bound on TC was given in Ref. [70]. The

lower bound on T dag
C was given in Ref. [71], the upper bound was given in Ref. [72]. Functional

agnostic learning is more complex: some classes require Ω(d/ϵ2) samples, whilst others require only

O[d/ϵ(log[d/ϵ] + log[1/δ])], see Ref. [73] for a discussion. For the remainder of this thesis, we will only

focus on realisable learning. It is perhaps the least realistic access model, but provides a simple set-

ting from which results can be generalised. Thus, we say “PAC learn” to mean “realisably PAC learn”.
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1
-2
ϵ

Y

2ϵ
/d

X \ Y

One element has almost all the weight

No weight
outside of
shattered

set

Remaining elements of
Y have small, but
non-negligble total weight

Figure 3.1: The worst case distribution for PAC learning algorithms

We give a brief sketch on the lower bound of TC , which will be useful in motivating our quantum

results. Suppose that VC(C) = d + 1 ≥ 2. Let Y ⊆ X be shattered by C, with |Y | = VC(C). Pick

some element y ∈ Y , let Z = Y \ {y}, and define a “perturbed” delta function distribution on X :

Dwc(z) =


1 − 2ϵ, z = y,

2ϵ/d, z ∈ Z,

0, o.w.

(3.9)

See figure 3.1 for a pictorial distribution of Dwc. Since Dwc only has support on Y , a shattered set,

there is no structure to exploit. It takes, on average, Ω(1/ϵ) samples to learn the value of c on an

element of Z, and we must learn at least half of these values to learn an ϵ-approximation to c. Thus,

intuitively, Ω(d/ϵ) samples should be required. This can be made rigorous: see [69]. Even if one knows

the distribution is Dwc beforehand, one still requires Ω(d/ϵ) samples. Since this lower bound matches

the known upper bound, Dwc is a worst case distribution for a learning algorithm.

The upper bound on TC from from Ref. [69] follows from a very simple algorithm, known as “Occams

razor”2. The learning algorithm A takes T samples S = (x1, y1), . . . (xT , yT ), and outputs any concept

in C that is consistent with the samples. If T is chosen large enough (only a log factor worse than

TC), then the algorithm is a proper (ϵ, δ)-learner. In practice (as shown by Lemma 3.1) it may not

be possible to find such a classifier, so one attempts to find a classifier f in C that agrees with a large

fraction of the samples, or equivalently minimises the empirical risk:

R̂S(f) =
1

T

∑
i

1{f(xi) ̸=yi}(i). (3.10)

The distance d(f, c) of f from the true concept c is known as its generalisation error. Empirical risk

minimisation, and bounding generalisation error, forms much of the basis of modern machine learning

algorithms.

2This name is inspired by the original, philosophical definition.
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3.1.2 Quantum PAC Learning

In this Section we describe quantum PAC learning, the basis for our machine learning results. Quan-

tum machine learning has received much attention as a potential application of quantum computers,

see Ref. [74] for a review. We will briefly review the fundamental theory of quantum PAC learning,

and provide a brief discussion of known quantum advantages. Then, we describe a recent result that

calls into question generic quantum machine learning advantages. Our main results, presented in the

subsequent Section, show how to circumvent this no-go result, and we give the first generic, rigorous

theory of quantum advantage in PAC learning.

The quantum generalisation of PAC learning was first formalised by Bshouty and Jackson [75] in 1996.

Instead of a sample (X, c(X)), one receives a quantum state

|ψc⟩ =
∑
x∈X

√
D(x) |x c(x)⟩ , (3.11)

chosen so that measuring |ψc⟩ in the computational basis gives a random labelled example. The

state |ψc⟩ is called a quantum sample; the sample complexity of a quantum learning algorithm is

the number of quantum samples it uses. Since one can always measure the quantum state, and then

use a classical algorithm, the quantum learning complexity of C cannot be worse than the classical one.

In the special case of quantum PAC learning under the uniform distribution, it has been shown that

one can obtain quantum sample complexity advantages in specific learning tasks [75–77]. These ad-

vantages rely on Fourier sampling, in which one applies the Hadamard transform on every qubit

followed by a measurement of the resulting state in the computational basis. One observes a bit string

s with probability given by its squared Fourier coefficient3 |ĉs|2 and can thus directly infer properties

of the Fourier spectrum of the unknown function. However, such advantages rely on the distribu-

tions D being (approximately) uniform. For other specific concept classes, or closely related machine

learning tasks, there are known time complexity advantages to quantum learning [79–81], which can

be exponential. However, again, these advantages only apply to very specific concept classes, often

pathologically constructed (e.g. based on factorisation). In addition, there are often caveats to when

quantum exponential machine learning speedups apply, see Ref. [82] for a discussion.

In fact, for an arbitrary distribution D, the quantum sample complexity has exactly the same asymp-

totic scaling as the classical learning complexity, ruling out everything but constant factor advantages.

Theorem 3.2: Suppose C is a concept class with VC(C) = d. Let ϵ, δ > 0. Then the sample

complexity for quantum realisable PAC learning of C, denoted TS(ϵ, δ, d), scales as

TC = Θ

[
1

ϵ

(
d+ log

(
1

δ

))]
. (3.12)

Note that the upper bounds on TC follow from the classical case, the lower bounds are proved in Refs.

[83, 84]. The worst case distributions for the quantum learners are exactly the same as those for the

classical learners. The main idea used in the proof of the lower bound is to use coding theory to

3For a function f : {0, 1}n → {0, 1} and bitstring s ∈ {0, 1}n, its Fourier coefficient ĉs is given by
1/(2n)

∑
x∈Zn

2
(−1)f(x)+x·s. For further detail, see Ref. [78]
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reduce quantum PAC learning to quantum state discrimination, and utilise existing bounds on state

discrimination. Our main result is a new approach to quantum machine learning that circumvents

this lower bound.
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3.2 Quantum PAC learning with the source code

3.2.1 Access Model

We consider a generalisation of Bshouty and Jackson’s quantum samples, in which ones has access to

a unitary Qc that prepares |ψc⟩, as well as the inverse unitary Q†
c. Precisely, we assume that there is

a concept-independent known state |IN⟩ such that

Qc |IN⟩ = |ψc⟩ . (3.13)

We are not given any promise on how the oracle Qc might act on other states in our Hilbert space.

We define the learning complexity of any algorithm as the total number of queries to Qc or Q†
c. The

minimum learning complexity of any (ϵ, δ)-learner is denoted TO(ϵ, δ, C).

This access model (or strongly related access models) has recently received attention in many different

areas of quantum information. It has been studied in Ref. [85] in the context of quantum state to-

mography, in Ref. [86] in the context of quantum channel tomography and in Ref. [87], in the context

of estimating the mean of a random variable.

Since Valiant introduced PAC learning, a plethora of access models have been proposed, inspired by

different real-world scenarios. We provide a brief discussion of the access model considered in this

Section (access to Qc and Q†
c), and its relationship to three other popular models. We compare to

random labelled examples (X, c(X)), quantum samples |ψc⟩, and membership queries - where a learner

can submit an x ∈ X and receives c(x) in return.

Random labelled examples are the most commonly considered access model in the machine learning

literature. Even if learning complexity is polynomial, there may be no (time) efficient learner [88].

Some classes have time-efficient learners with random labelled examples and membership queries, but

not with only random labelled examples [89]. Curiously, we are not aware of a work that gives a

learning complexity lower bound on random labelled examples and membership queries. For certain

concept classes (such as concepts which label exactly d elements of X as 1), we believe that the stan-

dard lower bound distribution for random labelled examples should give the same lower bound for

random labelled examples and membership queries. However, for example, when considering the con-

cept class of all possible functions, membership queries give a learning upper bound of |X |, which may

give a significant improvement over the |X |/ϵ samples required by random labelled examples alone.

Thus in general, membership queries can be much stronger than either random labelled examples or

our model; given random labelled examples or quantum samples, it takes on average 1/D(x) queries to

find c(x). Given our access model, one can perform amplitude amplification such that only 1/
√

D(x)

samples are required, which may also be large. Indeed, if D(x) = 0, then a membership query of x

is impossible using random labelled examples, quantum samples or our model. Thus, membership

queries are incomparable with our model.

Quantum samples were introduced as the natural quantum generalisation of random labelled exam-

ples. However, in practice it is unclear how to prepare |ψc⟩, given that it depends on c and D. Whether

or not this is reasonable depends on how the random labelled examples are classically generated - if
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they are completely “black-box”, then it seems unlikely that quantum samples will be an appropri-

ate resource without very strong quantum data loading subroutines, such as QRAM. If c and D are

“white-box”, i.e. there is some circuit producing them, then an appropriate quantisation procedure

will lead to Qc. Given a circuit description of Qc, one can theoretically perform Q†
c. Thus, in most

scenarios where quantum samples are sensible for learning classical data, our model is also reasonable.

A more promising case for quantum samples is when data is inherently quantum. Suppose a quantum

process produces
∣∣∣ψ̃c

〉
=
∑

x

√
D(x)eih(x) |x, c(x), g(x)⟩, where h(x), g(x) are some extraneous func-

tions. In this case, learning c allows us to make physical predictions of the c(x) register given the x

register, without knowledge of g(x). This is useful, e.g., in learning far-range behaviour/correlations.

By the Stinespring dilation theorem, the quantum process has some unitary representation Qc, which

can be taken as our oracle. Note that our algorithm is insensitive to the addition of the g(x) register

and h(x) phases.

3.2.2 Grover Subroutine

An essential subroutine for our quantum advantage is to use calls to Qc and Q†
c to run a Grover search

[90, 91]. This leads to a quadratic improvement in learning complexity (up to polylogarithmic factors)

over classical PAC learning. In this Section, we describe our Grover subroutine.

Our Grover subroutine takes as an input a “good” subset G ⊆ {(x, b) : x ∈ X , b ∈ {0, 1}}, where we

wish to find an x such that (x, c(x)) ∈ G. We define a corresponding “good” subspace by

G = span{|x b⟩ : (x, b) ∈ G}. (3.14)

In order to implement Grover’s search, we need to implement the Grover operator, defined by

D = (1− 2 |ψc⟩⟨ψc|)(1− 2ΠG), (3.15)

where ΠG is the orthogonal projection map onto G. We show that implementing D requires a constant

number of queries.

Proposition 3.1: For any choice of G, one can implement the Grover operator D with one call

to Qc and one to Q†
c.

Proof: Note that (1−2ΠG) is independent of c and, therefore, may be implemented by a (possibly

exponentially sized circuit) without any queries. To implement (1− 2 |ψc⟩⟨ψc|), note that

1− 2 |ψc⟩⟨ψc| = Qc(1− 2 |IN⟩⟨IN|)Q†
c, (3.16)

Note that (1− 2 |IN⟩⟨IN|) is independent of c and, therefore, may be implemented by a (possibly

exponentially sized circuit) without any queries.

One can uniquely decompose

|ψc⟩ = sin(θ) |g⟩ + cos(θ) |b⟩ , (3.17)
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where |g⟩ , |b⟩ are orthonormal, θ ∈ [0, π/2], |g⟩ ∈ G and |b⟩ ∈ G⊥. It is well known that [90]

Dn |ψ⟩ = sin((2n+ 1)θ) |g⟩ + cos((2n+ 1)θ) |b⟩ . (3.18)

Thus, if we knew θ exactly, we could apply Dn such that sin((2n+ 1)θ) ≈ 1. However, since θ depends

on D, which is unknown, this is impossible. Instead, we use a well-established [92] version of Grover’s

search for an unknown number of items. Our exact subroutine is given below; algorithm 3.1.

Algorithm 3.1:

Input: G ⊆ {(x, b) : x ∈ X , b ∈ {0, 1}} a good subspace, ϵ > 0 a tolerance

Output: labelled example (x, c(x)). Succeeds if (x, c(x)) ∈ G

1. Produce |ψc⟩ = Qc |IN⟩

2. Pick N from 0, 1 . . . , ⌈2/
√
ϵ⌉ − 1 uniformly at random

3. Apply D, the Grover operator, N times to |ψc⟩

4. Measure the resulting state in the computational basis

The properties of our algorithm are summarised in the following Lemma

Lemma 3.3: Let G ⊆ {(x, b) : x ∈ X , b ∈ {0, 1}} be a good subset, ϵ > 0 be a fixed tolerance.

Suppose that we run Algorithm 3.1 with these inputs, then

(i) In the worst case, the algorithm makes O(1/
√
ϵ) oracle (or inverse oracle) calls.

(ii) If PX∼D [(X, c(X)) ∈ G] ≥ ϵ then the algorithm succeeds, i.e., returns (x, c(x)) ∈ G, with

probability at least p = 0.09.

(iii) Conditional on succeeding, the output of the algorithm (X, c(X)) is distributed according

to

P [(X, c(X))|algorithm succeeds] =
PX∼D [X]

PX∼D [(X, c(X)) ∈ G]
. (3.19)

Proof: Part (i): From the definition of the algorithm and Lemma 3.1, the worst case number of

oracle calls is 1 + 2(⌈2/
√
ϵ⌉ − 1) = O(1/

√
ϵ).

Part (ii): Let M = ⌈2/
√
ϵ⌉, let θ be as in equation (3.17) and let ρps be the probability that

the algorithm succeeds. Note that PX∼D [(X, c(X)) ∈ G] ≥ ϵ ⇔ sin(θ) ≥
√
ϵ. We use Lemma 2

(Section 6) from [92], which claims

ρps =
1

2
− 1

4M

sin(4Mθ)

sin(2θ)
. (3.20)

For sin(θ) ∈ [
√
ϵ, 1/

√
2]:
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M ≥ 2

sin(θ)
, (3.21)

≥ 1

sin(2θ)
, (3.22)

and thus

ρps ≥ 1

2
− 1

4
=

1

4
> 0.09. (3.23)

Note that for θ ∈ [π/4, π/2],

sin(2θ) ≥ π/2 − θ

π/4
, (3.24)

Thus, for θ ∈ [π/4, (1/2 − 1/4M)π], we have that

ps(θ) ≥
1

2
− 1

4M
· 4/π

π/2 − (1/2 − 1/4M)π
, (3.25)

=
1

2
− 4

π2
> 0.09. (3.26)

Finally, for θ ∈ [(1/2 − 1/4M)π, π/2], note that sin(2θ) ≥ 0 and sin(4Mθ) ≤ 0 so that ps(θ) ≥
1/2 > 0.09.

Part (iii). This follows from the form of Dn |ψc⟩; the relative magnitude of the amplitudes in |g⟩
is unchanged by the Grover operator D.

We discuss how to combine the Grover subroutine with the algorithm of Section 3.2.3 to achieve a

quantum learning complexity advantage in Section 3.2.4.

3.2.3 Learning with Imperfect Equivalence Queries

Equivalence queries are an alternative learning model for PAC learning. It was recently shown [93]

that PAC learning with equivalence queries gives an exponential advantage over learning with labelled

examples. In this Section, we show how to use imperfect equivalence queries to PAC learn a concept

class, which is a core component of our quantum algorihtm.

An (ideal) equivalence query consists of submitting a candidate hypothesis h for an underlying true

concept c. If h = c then we are told YES. Otherwise, we receive a labelled example (x, c(x)) where

c(x) ̸= h(x) at random, according to the distribution P(y) = D(y)/D({x : c(x) ̸= h(x)}). Such a

labelled example where h(x) ̸= c(x) is called a counterexample. Equivalence queries are a very strong

learning model, and perhaps unrealistic. Thus, we assume we can only implement them probabilisti-

cally.

An imperfect equivalence query consists of submitting a candidate hypothesis h for the underlying

concept c. In return we receive some labelled example (x, c(x)) with the following promises

• There is some known probability p, independent of the concept c, and the values of ϵ and

δ. Moreover, If d(h, c) ≥ ϵ, then the probability of receiving a counterexample (i.e. that

c(x) ̸= h(x)) is at least p
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• The distribution of (X, c(X)) conditional on being a counterexample is the same as an ideal

equivalence query. More precisely, P[receive (y, c(y)) | c(y) ̸= h(y)] = D(y)/D({x : c(x) ̸=
h(x)}).

Note that we can tell whether our imperfect equivalence query failed or not - we can look at the result

(x, c(x)) and check whether h(x) = c(x). If they are equal, the equivalence query failed. Otherwise, it

succeeded. Classically, we can implement an imperfect equivalence query using 1/ϵ random labelled

examples - we just sample 1/ϵ times and see whether c(x) ̸= h(x) for any of our samples. On a

quantum computer we can do this in 1/
√
ϵ time using Grover’s algorithm, as described in Section

3.2.2 in Lemma 3.3.

We need one additional tool from classical learning theory to run our algorithm, the weighted majority

vote. Suppose we have a set of classifiers H ⊆ {0, 1}X and a distribution ρ on H. Then the weighted

majority vote [94], WMVH, ρ ∈ {0, 1}X is defined such that it maximises

Ph∼ρ [WMVH, ρ(x) = h(x)] , (3.27)

for every x (ties can be broken arbitrarily).

Suppose we have a classical algorithm A that uses TE(ϵ, δ, d) (ideal) equivalence queries to PAC learn

a concept class C. We show how to use O(TE + log(1/δ)) imperfect equivalence queries to PAC learn

the same concept class. The full detail of the algorithm is given below in algorithm 3.2. It works

by running A, replacing every equivalence query with repeated imperfect equivalence queries until

one succeeds. We terminate if the learning algorithm A terminates or if we make a total of R(TE , δ)

imperfect equivalence queries.

Algorithm 3.2:

Input: δ > 0, ϵ > 0 (the usual PAC parameters) and A a classical equivalence query

learning

algorithm with worst case query complexity TE > 0

Output: Hypothesis h ∈ {0, 1}X

1. Set the maximum imperfect equivalence query budget as R = 6TE/p+ (3/2p2) log(1/δ). If

R total imperfect equivalence queries have ever been made, go to step 3

2. Run A, whenever it requires an equivalence query to a hypothesis h, repeatedly make

imperfect equivalence queries until one succeeds (note, we can check whether the imperfect

equivalence query succeeded, by comparing c(x) and h(x)). If A terminates, output the

output of A

3. Let H = {h1, . . . , hk} be the set of hypothesis we ran imperfect equivalence queries on (so

that k ≤ TE). Suppose we spent ni imperfect equivalence queries on hi (so that
∑
ni = R).

Let ρ(hi) = ni/R and output h = WMVH, ρ

We give some rough intuition for why the algorithm works before proving so. If A terminates, then

with high probability, it outputs an approximately correct hypothesis. If we pick R large enough,
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then with high probability TE ideal queries to hypotheses hi with d(hi, c) ≥ ϵ would all succeed in

< R/3 imperfect equivalence queries. Thus, if the algorithm A does not terminate and we make R

total imperfect equivalence queries, with high probability, we spent > 2/3 of our imperfect equiva-

lence queries on hypotheses hi with d(hi, c) < ϵ. Hence, if we take the weighted majority vote of all

of the hypotheses we queried, weighted by the number of imperfect equivalence queries spent on each

hypothesis, most of the vote will be decided by hypotheses that are close to the concept c. Thus, the

weighted majority vote will also be close to c.

The full proof of why algorithm 3.2 works is given as two propositions. They require some new ter-

minology. A transcript of a run of algorithm 3.2 is given by the list of hypotheses H = {hi} that

the algorithm queried along with a corresponding collection of natural numbers ni > 0, where ni is

the number of imperfect equivalence queries spent on hi. The corresponding time-spent distribution

ρ is the probability distribution on H given by ρ(hi) = ni/
∑

i ni. Finally, F = {i : d(hi, c) ≥ ϵ}
is called the “feasible” set, where our imperfect equivalence query succeeds with probability at least

p. Correspondingly I = {i : d(hi, c) < ϵ} is the “infeasible” set, where there is no promise on the

probability of success.

Firstly, we show that with high probability that a bounded number of queries is spent on the feasible

set

Proposition 3.2: With probability ≥ 1 − δ the total number of imperfect equivalence queries

to feasible hypotheses is at most

2TE/p+ (1/2p2) log(1/δ). (3.28)

Proof: A imperfect equivalence query of a feasible hypothesis has (by definition) a chance ≥ p of

succeeding, and the individual imperfect equivalence queries are independent. Additionally, there

are at most TE feasible hypotheses to query (since the classical algorithm makes at most TE total

equivalence queries). Thus, the probability that we succeed on all the feasible hypotheses using

at most m imperfect queries feasible hypotheses is lower bounded by the probability of getting

at least TE successes from a binomial distribution B(m, p). Thus, the chance of failure is lower

bounded by the chance of fewer than TE successes from B(m, p).

Let X ∼ B(m, p). Applying Hoeffding’s inequality [95], for m ≥ TE/p we see that

P [X < t] ≤ e−2m(p−TE/m)2 . (3.29)

Thus it is sufficient for

2m

(
p− TE

m

)2

≥ log(1/δ). (3.30)

In turn, it is sufficient that

2mp2 − 4pTE ≥ log(1/δ), (3.31)

whence we deduce our bound.
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Next we prove that if we make enough imperfect equivalence queries on infeasible hypotheses, the

weighted majority vote of the transcript must be close to the underlying concept c

Proposition 3.3: Suppose we make R total imperfect equivalence queries, and spend at least

2R/3 imperfect equivalence queries on infeasible hypotheses. Then the weighted majority vote

M of the transcript with the time-spent distribution has d(M, c) < 4ϵ.

Proof: Fix the transcript h1, . . . hk. Let ρ be the time-spent distribution and let ρ′ be the

time-spent distribution conditioned on the infeasible set. That is, for i ∈ I, ρ′(hi) = ρ(hi)/ρ(I).

Similarly let ρ̃ the the time-spent distribution conditioned on the feasible set. We first show that

if the infeasible set overwhelmingly votes for a bit y, then the whole transcript must also vote for

that y. To be precise, if Ph∼ρ′ [h(x) = y] > 3/4, then

Ph∼ρ [h(x) = y] = Ph∼ρ′ [h(x) = y]Ph∼ρ [h ∈ I] + Ph∼ρ̃ [h(x) = y]Ph∼ρ [h ∈ F ] , (3.32)

>
3

4
· 2

3
, (3.33)

=
1

2
. (3.34)

Let M = WMVH, ρ. By the above, if Ph∼ρ′ [h(x) = c(x)] > 3
4 , then M(x) = c(x). We deduce

(inspired by [94]) that

PX∼D [M(X) ̸= c(X)] ≤ PX∼D

[
Ph∼ρ′ [h(X) ̸= c(X)] ≥ 1

4

]
, (3.35)

Markov’s inequality, ≤ 4EX∼DEh∼ρ′ [1{h(X )̸=c(X)}], (3.36)

= 4Eh∼ρ′ [d(h, c)], (3.37)

definition of infeasible set, < 4ϵ. (3.38)

We can now prove the performance of our algorithm

Lemma 3.4: Let the maximum number of imperfect equivalence queries of algorithm 3.2 be

R(TE(ϵ, δ, d), δ) = 6TE(ϵ, δ, d)/p+ (3/2p2) log(1/δ), (3.39)

then algorithm 3.2 produces a hypothesis h with d(h, c) ≤ 4ϵ with probability at least 1 − 2δ.

Proof: By proposition 3.2, with probability ≥ 1− δ we spend at most R/3 imperfect equivalence

queries on feasible hypotheses - suppose this happens. If we succeed in an equivalence query for

every hypothesis required by A then with probability at least 1 − δ, A outputs a hypothesis h

with d(h, c) ≤ ϵ. Otherwise, we spend at least 2R/3 imperfect equivalence queries on infeasible

hypotheses (as we assumed the feasible ones took at most R/3 imperfect equivalence queries) and

then by Lemma 3.3 the weighted majority vote WMVH, ρ has d(WMVH, ρ, c) < 4ϵ. Thus algorithm

3.2 outputs a 4ϵ-approximately correct hypothesis with probability at least (1−δ)2 ≥ 1−2δ.
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3.2.4 Upper bound on Quantum PAC Learning

Here, we combine the results of Sections 3.2.2 and 3.2.3 to give an upper bound on TO, the learning

complexity of PAC learning with a state preparation oracle Qc (and its inverse).

Theorem 3.3: Let C be a concept class with VC dimension d. Then, for every ϵ, δ > 0, there

exists a (ϵ, δ)-quantum PAC learner for C that makes at most

O

(
1√
ϵ

[
d+ log

(
1

δ

)]
log9(1/ϵ)

)
, (3.40)

calls to an oracle that generates a quantum sample (Qc) or its inverse (Q†
c).

Proof: Suppose that it takes E(ϵ) queries to perform an imperfect equivalence query for a

hypothesis h. If we have a classical equivalence learning algorithm A with an equivalence query

complexity of TE(ϵ, δ, d), then we can use algorithm 3.2 of Section 3.2.3 to get a quantum PAC

learning algorithm with learning complexity

E(ϵ/4)R(TE(ϵ/4, δ/2, d), δ/2). (3.41)

The current best known TE [93] has a worst-case query complexity of

TE = O

([
d+ log

(
1

δ

)]
log9

(
1

ϵ

))
. (3.42)

If we use the Grover subroutine (Section 3.2.2 algorithm 3.1) with G = {(x, 1 − h(x)) : x ∈ X}
to implement the imperfect equivalence queries, we find E(ϵ) = O(1/

√
ϵ). On substituting these

values of TE and E into the bound from equation (3.41), the result follows

We note that theorem 3.3 is a square-root improvement (up to polylogarithmic factors) over the

classical PAC learning sample complexity of theorem 3.1.

3.2.5 Lower bound on Quantum PAC Learning

In this Section, we prove a lower bound on quantum PAC learning with a state preparation oracle

(and its inverse). We show that Ω(d/
√
ϵ) oracle calls are necessary. Up to polylogarithmic factors,

this shows that our quadratic improvement is optimal.

Suppose we have a concept class C with VC dimension d + 1. Then there is a set Z of size d + 1 in

X which is shattered by C. We pick a marked element x0 ∈ Z and let Y = Z \ {x0}. We define our

distribution D as a perturbed delta-function, the standard distribution used to prove lower bounds in

learning:

D(x) =


0, if x /∈ Z,

1 − 4ϵ, if x = x0,

4ϵ/d, if x ∈ Y.

(3.43)

We also restrict our concept class to C̃ = {c ∈ C : c(x0) = 0}. If our PAC algorithm works on C, it

will certainly work on C̃. Since our distribution is restricted to Z we need only identify the behaviour
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of our concept on Z. Thus, we can index our concepts by bit-strings u ∈ {0, 1}d and index them with

elements of Y . To be precise, we identify a concept c ∈ C̃ with a bit-string u ∈ {0, 1}d, where uy = c(y).

For a given bit-string u ∈ {0, 1}d, the state preparation oracle acts as

Qu |IN⟩ =
√

1 − 4ϵ |x0 0⟩ +

√
4ϵ

d

∑
x∈Y

|x ux⟩ . (3.44)

Our main approach is to reduce to the following fact from Lemma 51 in [85].

Lemma 3.5: Let u ∈ {0, 1}d be a bit string, and let Ou be a weak phase-kickback oracle, that is

Ou |x⟩ = e2iηux |x⟩ . (3.45)

Then recovering more than 3/4 of the bits of u with high probability requires at least Ω(d/η)

calls to Ou, its inverse or controlled versions of these.

Proof: See [85]

We will use calls to controlled versions of Ou (denoted c-Ou) to implement the PAC state generation

oracle Qu. We fix η ∈ [0, π/2] such that sin(η) =
√

4ϵ.

Proposition 3.4: One can implement Qu using one call to c-Ou, one to c-O†
u and two qubit-

ancillae.

Proof: First, it is convenient to shift the phase to have a ± symmetry. Define a constant phase

gate as

Pα |x⟩ = eiα |x⟩ . (3.46)

Then let

Õu = PηO
†
u, (3.47)

so that

Õu |x⟩ = eiηûx |x⟩ , (3.48)

where

ûx = (−1)ux . (3.49)

We start by generating a uniform superposition of indices with the two-qubit ancillae in the |+⟩
state:

1

2
√
d

∑
x∈Y

|x⟩ [|00⟩ + |01⟩ + |10⟩ + |11⟩]. (3.50)

We next apply 4 controlled gates - either c-Pη, c-P−η c-Õu and c-Õ†
u, such that each term in the
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superposition in equation (3.50) picks up a different phase:

7→ 1

2
√
d

∑
x∈Y

|x⟩
[
eiη |00⟩ + e−iη |01⟩ + eiηûx |10⟩ + e−iηûx |11⟩

]
. (3.51)

Note that this requires two calls to singly controlled versions of the oracle - we can implement a

double-controlled version by using a CCNOT (Toffoli) gate followed by a controlled oracle. Next,

we apply a Hadamard gate to the second qubit register

7→ 1√
2d

∑
x∈Y

|x⟩ [|0⟩ (cos(η) |0⟩ + i sin(η) |1⟩) + |1⟩ (cos(ηûx) |0⟩ + i sin(ηûx) |1⟩)] . (3.52)

We then apply S† to the second qubit register (to remove the factors of i). We also use the

even/odd ness of cos/sin to regroup the terms:

7→ 1√
2d

∑
x∈Y

|x⟩ [cos(η)(|0⟩ + |1⟩) |0⟩ + sin(η)(|0⟩ + ûx |1⟩) |1⟩] . (3.53)

We then apply a Hadamard gate to the first qubit register:

7→ cos(η)

(
1√
d

∑
x∈Y

|x⟩

)
|00⟩ + sin(η)

(
1√
d

∑
x∈Y

|x ux⟩

)
|1⟩ . (3.54)

Conditional on the final qubit being in the state |0⟩, we apply a unitary to the first register that

maps the uniform superposition over Y into the state |x0⟩:

7→ cos(η) |x0 0 0⟩ + sin(η)

(
1√
d

∑
x∈Y

|x ux⟩

)
|1⟩ . (3.55)

Finally, conditional on the first register not being in the state |x0⟩, we apply an X gate to the

second qubit register, followed by an H gate on the second qubit register:

7→

[
cos(η) |x0 0⟩ + sin(η)

(
1√
d

∑
x∈Y

|x ux⟩

)]
|+⟩ . (3.56)

But by the definition of η, we see that this is exactly equal to the action of the PAC oracle:

(Qu |IN⟩) |+⟩ . (3.57)

We deduce our bound

Theorem 3.4: TO = Ω
(

d√
ϵ

)
.

Proof: We can replace every call to Qu (or its inverse) in our PAC algorithm with the unitary

process described in proposition 3.4, which requires a constant number of calls to (a controlled)

Ou (or its inverse). If the PAC algorithm outputs a correct hypothesis, then by construction of

our distribution, it must agree on at least 3/4 of the bits of u. Thus, the algorithm replaced with
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calls to Ou (and its inverse) satisfies the conditions of Lemma 3.5, and thus it must use at least

Ω(d/η) calls to Ou. Hence, we reach a lower bound of

TO = Ω

(
d

arcsin
√

4ϵ

)
= Ω

(
d√
ϵ

)
. (3.58)

Note that our lower bound matches our upper bound (theorem 3.3), up to polylogarithmic factors.

3.2.6 Application to Learning k-juntas

A k-junta is a function f : {0, 1}n → 0, 1 that only depends on a subset of k bits. Letting X = {0, 1}n,

we can consider the concept class C = {f ∈ {0, 1}X : f is a k junta}. k-juntas are a particularly

important concept class in PAC learning - they represent the fact that many systems depend on lots

of parameters, but only a few are important. We bound

|C| ≤
(
n

k

)
2(2

k), (3.59)

since there are
(
n
k

)
ways to choose the k bits determining the junta, and then 2(2

k) choices for the

underlying function. Using Lemma 3.2 we deduce that

d ≤ log

[(
n

k

)]
+ 2k ≤ k log(en/k) + 2k. (3.60)

Thus, our learning algorithm can PAC learn a k-junta with

O

(
1√
ϵ

[
k log

(n
k

)
+ 2k + log

(
1

δ

)]
log9(1/ϵ)

)
, (3.61)

oracle calls. This has a worse scaling in n than algorithms presented in [77], but has a better scaling

in ϵ and works for any underlying distribution, whereas previous work has focused on the uniform

distribution.

3.3 Outlook

Our work leaves several interesting avenues for further research. Firstly, one could attempt to tighten

the upper bound (theorem 3.3) to remove polylogarithmic factors and prove a tight matching lower

bound. The removal of a log(1/ϵ) factor in the query complexity for classical PAC learning took 27

years [8, 69]; we hope that the quantum case will be simpler. Moreover, in order to achieve 1/
√
ϵ scal-

ing with our method, one would require the optimal classical equivalence query learning complexity

to have no ϵ dependence. Thus, a different approach is likely to be required.

Secondly, it is interesting to consider the power of quantum learning algorithms with access to the

oracle Qc, but not its inverse Q†
c. The inverse oracle seems necessary for Grover’s search, and therefore

it is unclear if a quantum advantage is possible. The lack of such an advantage would have interesting

implications for understanding what makes quantum computing more powerful than classical com-

putation. It is additionally interesting to consider if there is any suitable classical analogue for the



3. Probably Approximately Correct Learning 69

inverse oracle Q†
c.

Thirdly, one could attempt to find analogous sample complexity improvements in agnostic learning,

in both the functional and distributional cases. There are many existing algorithms for estimating the

mean of a random variable that admit quadratic quantum improvements [87, 96]. These algorithms

could be applied to the distributional case.

Finally, we briefly consider potential applications to boosting. Boosting is a technique in classical

machine learning that combines several “weak” hypotheses into a single “strong” hypothesis (see Ref.

[97] for a review). The weak hypotheses are produced by a weak-learner, which is promised to always

output a hypothesis h that is slightly better than random guessing: d(h, c) ≤ 1/2−γ for some (small)

parameter γ ∈ (0, 1/2].

Boosting algorithms run the weak learner many times. Importantly, they change the distribution on

X that they sampling from between calls to the weak learner: more weight is assigned to x’s which

are incorrectly classified by previous hypotheses. This is most commonly achieved by taking an initial

(large) training sample (using D), starting with a uniform distribution on this training sample, an

subsequently altering this distribution. The boosting algorithm outputs a hypothesis with small em-

pirical risk which, for a sufficiently large training sample, has small generalisation error. The precise

way in which the distribution is updated depends on the boosting algorithm in use: common choices

include AdaBoost [98] and SmoothBoost [99].

In quantum boosting, the underlying weak learner is assumed to be a quantum algorithm, which is fed

copies of the example state |ψc⟩. By changing the amplitudes in |ψc⟩, one can run boosting algorithms.

This has already been studied in Refs. [100, 101], where one finds a quadratic improvement in VC-

dimension over classical algorithms, but slightly worse dependence on γ. There is a natural appeal

to use quantum algorithms for boosting, due to the relationship between updating distributions and

changing quantum amplitudes. For example, in Adaboost, the distribution updates in a simple way:

every x for which the previous hypothesis h was wrong has D(x) increase by the same factor, the

remaining x’s have D(x) decrease by a different factor. The factor is chosen in such a way that

the probability of the set {x | h(x) ̸= c(x)} (under D) is exactly 1/2. This is closely linked to

amplitude amplification: we define a good subspace as being spanned by states |x b⟩ where h(x) ̸= c(x)

and b ∈ {0, 1}. The Adaboost distribution update corresponds to amplifying the magnitude of the

projection of |ψc⟩ onto the good subspace to be exactly 1/2. If one has access to the unitary Qc that

prepares |ψc⟩, and its inverse, this can be achieved by e.g. the quantum singular value transformation

[102]. By repeating this procedure, one can run a boosting algorithm. Unfortunately, the recursive

nature of this approach will lead to exponential scaling. Suppose that the amplification subroutine

has a very simple form: Q†
cUQcV for some unitaries U and V (that depend on the choice of good

subspace). In the first round of boosting, we apply this circuit to produce modified example states

|̃ψc⟩. In the second round of boosting, we apply the circuit C = Q̃c
†
ŨQ̃cṼ , where Q̃c is a unitary

that prepares |̃ψc⟩. But then C = (V †Q†
cU †Qc)Ũ(Q†

cUQcV )Ṽ makes 4 calls to Qc or Q†
c. Similarly,

the next round of boosting will make 8, and so on. We note that although this leads to exponential

scaling in γ, one can use this approach to construct an algorithm no dependence on VC dimension. If

one can successfully modify this approach, then there is potential for a large quantum advantage.



Chapter 4

Exact Learning Within the Stabiliser

Formalism

4.1 Background

4.1.1 The Stabiliser Formalism

In this Section we will introduce the stabiliser formalism, one of the cornerstones of quantum compu-

tation. We will proceed to introduce several (classical) computational primitives within the stabiliser

formalism, and explain their importance. Our main results, in subsequent Sections, are new, faster

algorithms for these primitives.

The computational importance of the stabiliser formalism was first studied in the context of the

Gottesmann-Knill theorem [103, 104], which roughly states that the stabiliser formalism may be clas-

sically efficiently simulated. Since then, a plethora of related simulation results have been published,

showing where the original simulation result may, and may not, be strengthened, see Ref. [105] for a

review.

The stabiliser formalism has become central in the field of quantum error correction [106], which is

essential for any realisation of a quantum computer. Almost all error correcting codes make use of

the stabiliser formalism: quantum data is encoded in stabiliser “states”. Moreover, in most of these

codes, the only measurements and gates that can be implemented in a noise-tolerant way correspond

to elements of the stabiliser formalism. Indeed, most modern proposals for quantum computers use

elements of the stabiliser formalism supplemented with very specific non-stabiliser resources [107].

The full theory of the stabiliser formalism is far too rich to give a full review here - we will give

a barebones description of what is required for our results, for a review see Refs. [106, 108]. We

will focus on the (most commonly studied) case of a qubit (H = C2), but our results can be easily

generalised to higher dimensions. The fundamental objects in the stabiliser formalism are the Pauli

operators, which have matrices

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
, (4.1)

70
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with respect to the computational basis. Note that Y = iXZ. On n-qubits, Paulis are given by

the tensor product of single-qubit Paulis. With suitable choices of phases, they form a group (under

multiplication), called the (n-qubit) Pauli group, Pn:

Pn = {(±1)(±i)A1 ⊗ · · · ⊗An | Ai ∈ {1, X, Y, Z}}. (4.2)

Paulis clearly have a classical, efficient representation: there are 4 choices for the phase, and 4 choices

for the operator on each qubit. In order to leverage this representation, we briefly introduce some

notation. Given a collection of operators {Ui}ni=1, and a vector z⃗ ∈ Zn
2 , we let

U z =

n∏
i=1

U zi
i . (4.3)

We define Xi ∈ Pn as X acting on the i-th qubit and identity on the rest, and Zi similarly. Using

that Y = iXZ, we may represent any Pauli as a tuple (c, d, p⃗, q⃗) ∈ Z2 × Z2 × Zn
2 × Zn

2 corresponding

to the Pauli

(−1)c(−i)dX p⃗Z q⃗. (4.4)

We often refer to c as the sign-bit of the tuple. Note that Xi, Zi are Hermitian, and anticommute.

A Pauli is Hermitian iff. d = p⃗ · q⃗, where · is the Zn
2 dot product, and thus Hermitian Paulis are be

specified by c, p⃗ and q⃗. Two paulis (c1, d1, p⃗1, q⃗1) and (c2, d2, p⃗2, q⃗2) commute iff. p⃗1 · q⃗2 + q⃗1 · p⃗2 = 01.

Ignoring global phase, the Paulis form an orthonormal basis of B(H):

Proposition 4.1: The operators {X p⃗Z q⃗ | p⃗, q⃗ ∈ Zn
2} are an orthonormal basis of B(H) (with

respect to the Hilbert-Schmidt inner product)

Proof: Note that Tr(Zi) = Tr(Xi) = Tr(XiZi) = 0. The result then follows from observing that

X p⃗Z q⃗X r⃗Z s⃗ ∝ X p⃗+r⃗Z q⃗+s⃗, where + is over Z2.

Composition of Paulis induces a binary operation on tuples:

(c1, d1, q⃗1, p⃗1) ◦ (c1, d1, q⃗1, p⃗1) ≃ (−1)c1(−i)d1X q⃗1Z p⃗1(−1)c2(−i)d2X q⃗2Z p⃗2 , (4.5)

≃ (c1 + c2 + p⃗1 · q⃗2 + d1d2, d1 + d2, q⃗1 + q⃗2, p⃗1 + p⃗2). (4.6)

◦ is linear, except on the power of −1, which has a quadratic term (d1d2).

A stabiliser group is a maximal abelian subgroup of Pn that does not contain −1. We show that a

stabiliser subgroup always has size 2n:

Proposition 4.2: Let G ≤ Pn be a stabiliser subgroup, then |G| = 2n. Moreover, there is a

unique state |ψ⟩ ∈ H (up to global phase) that is stabilised by every member of G:

∀g ∈ G, g |ψ⟩ = |ψ⟩ . (4.7)

1This is precisely the symplectic inner product on the concatenated vectors (p⃗1, q⃗1) and (p⃗2, q⃗2). See Ref. [109] for
more of a discussion
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Proof: The Pauli subgroup ⟨Z1, . . . Zn⟩ is an abelian subgroup of size 2n that does not contain

−1, and therefore (by maximality) |G| ≥ 2n.

Suppose P ∈ G is anti-Hermitian. Then 1 = PP † = −P 2, so −1 ∈ G, which is forbidden. Thus,

every element of G is Hermitian and unitary, and therefore of order 2. Take a minimal generating

set P1 . . . Pk of G. Since the Pi are independent, commute, and are of order 2, |G| = 2k. Note

that, since every Pi is Hermitian and unitary, it has eigenvalues ±1. Hence the orthonormal

projector onto the +1 eigenspace of Pi is given by (1 + Pi)/2. Since the Pi commute, the joint

+1 eigenspace has a projector given by

k∏
i=1

1 + Pi

2
. (4.8)

The dimension of this space can be found by taking the trace of the orthogonal projection:

Tr

(
k∏

i=1

1 + Pi

2

)
=

1

2k

∑
s∈Zk

2

Tr(P s). (4.9)

If ±i1 ∈ G, then (±i1)2 = −1 ∈ G. Moreover, by minimality of the generating set, no non-trivial

product of the Pi can equal the identity. We deduce that all non-trivial products of the Pi are

not proportional to the identity, and hence traceless. Therefore, the dimension of the mutual +1

eigenspace of the Pi is 2n/2k. We deduce that k ≤ n, and hence k = n. Therefore, |G| = 2n, and

there is a unique state (up to a global phase) stabilised by every member of G.

A state that is stabilised by every member of some stabiliser group is called a stabiliser state. Note that

a stabiliser group (or equivalently stabiliser state) has an efficient representation as a (non-unique)

choice of generating set, i.e. n commuting, independent (no non-trivial product gives the identity)

Paulis. Note that any Pauli in a stabiliser group must be Hermitian (or it would square to −1), and

thus may be represented by a sign bit and two vectors, as noted above.

Our work heavily relies on the following characterisation of stabiliser states, in terms of their ampli-

tudes in the computational basis:

Theorem 4.1: A (normalised) state |ψ⟩ ∈ H is a stabiliser state iff. there exists a vector subspace

V ≤ Zn
2 , a vector s⃗ ∈ Zn

2 , a linear map ℓ : V → Z2 and a quadratic form Q : V → Z2 such that

|ψ⟩ =
1√
|V |

∑
z⃗∈V

(−1)Q(z⃗)iℓ(z⃗) |z⃗ + s⃗⟩ . (4.10)

For a proof, see Ref. [dehaene2003Clifford]. As a consequence of this theorem, the support of any

stabiliser state (the indices z⃗ ∈ Zn
2 such that ⟨z⃗|ψ⟩ is non-zero) is an affine space of Zn

2 . Since we

are working over Z2, one cannot represent quadratic forms by symmetric bilinear forms. We will let

R(−,−) denote some choice of bilinear form such that Q(−) = R(−,−).

A unitary that conjugates Pauli operators to Pauli operators is called a Clifford. The collection of
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Clifford operators forms the n-qubit Clifford group:

Cn = {C ∈ U(2n) | ∀P ∈ Pn, CPC
† ∈ Pn}. (4.11)

Since CP1C
†CP2C

† = CP1P2C
†, the action of a Clifford by conjugation on the Pauli group is uniquely

specified by its action on the Paulis Xi, Zi. In fact this uniquely determines the Clifford up to a phase:

Proposition 4.3: Suppose that U, V ∈ U(2n) satisfy ∀P ∈ Pn, UPU † = V PV †. Then U = eiθV

for some θ ∈ R.

Proof: Let W = V †U , then W conjugates every Pauli to itself: ∀P ∈ Pn, WPW † = P . Since

the Pauli group spans B(H) (by proposition 4.1), its natural representation is irreducible. Thus,

by Schur’s Lemma, W = λ1, for some λ ∈ C. But W is also a unitary, so |λ| = 1 and the result

follows.

Thus, Cliffords have a classical efficient representation, given by recording the image of each Xi, Zi

under conjugation, and noting its global phase. Since global phases are irrelevant in quantum me-

chanics, the global phase of the Clifford is often ignored.

The stabiliser formalism, sometimes called stabiliser subtheory, considers quantum operations built

using stabiliser states, Clifford gates and Pauli measurements (measuring in the eigenbasis of a Pauli

operator). We have seen that each of these elements has an efficient classical representation. In fact,

one can efficiently update these representations to efficiently clasically simulate the stabiliser formalism

(the Gottesmann-Knill theorem), but we will not consider that here. Note that stabiliser states, Paulis

and Cliffords also have inefficient classical representations. A stabiliser state may also be descried by

its amplitudes in the computational basis, i.e. a vector in C2n , called a statevector. A Clifford (or

Pauli) may be described as a unitary matrix of size 2n × 2n with respect to the computational basis.

These inefficient representations fit into the framework of general quantum computation. Often, it is

necessary to convert between efficient and inefficient representations at the interface of the stabiliser

formalism with general quantum computation/information. In Sections 4.2 and 4.3 we give several

new, fast algorithms for such conversions. We give a few specific use-cases below.

One can combine (generically exponentially) many efficient simulations of stabiliser operations to sim-

ulate universal quantum computation. When doing so, one aims to minimise the number of stabiliser

simulations that need to be carried out. To achieve this, the input vector needs to be decomposed as a

linear combination of stabiliser states, using as few stabiliser states as possible. This process requires

expressing stabiliser states as vectors, or alternatively the ability to test whether a vector corresponds

to a stabiliser state. Our algorithms have found application in this setting [110] (indeed, this was the

original motivation for their creation).

Secondly, a recently proposed [111] approach to finding proofs of quantum advantage in boson sampling

(using a specific type of photonic quantum computer [112]), involves translating photonics circuits into

unitary matrices, and checking whether those matrices are Cliffords.
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Finally, we note that our algorithms have already found applications in synthesising certain types of

unitaries, known as Clifford isometries [113]. They use our algorithm to rapidly convert a stabiliser

statevector into an efficient representation.

We note that the choice of efficient representation of stabiliser operations is not particuarly impor-

tant; converting between different efficient representations is usually itself efficient. Thus, in most

algorithms, the time limiting step is transforming the inefficient representation into an efficient one,

or vice-versa.

Finally, we note two notational conventions for this chapter. Firstly, we let N = 2n for notational

brevity. Secondly, it will be useful to index elements of Zn
2 by elements of Zn

2 . To be precise, let

I : Zn
2 → Z, I(z⃗) =

∑n−1
i=0 2izi map the binary representation of an integer to that integer. Then, for

y⃗, z⃗ ∈ Zn
2 , we write y⃗z⃗ to mean y⃗I(z⃗). Note we are zero-indexing our vectors.

4.1.2 Existing Conversion Algorithms

Given the extensive motivation for converting between efficient and inefficient representations of sta-

biliser states and Cliffords, it is unsurprising algorithms for these conversions have already been

developed. We will consider existing implementations from the popular python libraries Qiskit [114]

and stim [115].

Stabiliser state statevector → efficient description of stabiliser state

The Qiskit implementation of this conversion is based off the implementation in stim.

stim converts the amplitudes of a stabiliser state into a circuit of one- and two-qubit Clifford gates,

which produces the stabiliser state when acting on the |0⟩⊗n computational basis state. The method

is currently implemented in the stabiliser state vector to circuit function in the file circuit -

vs amplitudes.cc. On input |ψ⟩ ∈ CN , stim runs the following algorithm:

1. By applying a series of X gates, move the element with the largest amplitude to the first entry

of the statevector.

2. Find a non-zero element in the vector which is not the first entry, suppose it has index k⃗ ∈ Zn
2 .

If no such entry exists, terminate the algorithm.

3. Let i ∈ [n] be the smallest index such that k⃗i = 1. Apply a series of CX gates between qubit

i and qubit j, for every j ̸= i such that k⃗j = 1. Finally, depending on the value of the 2i-th

amplitude of the statevector, apply one of four different single-qubit Cliffords to qubit i. If the

size of the support of the statevector has not halved, output that the original state was not a

stabiliser state. Otherwise, return to step 2.

Their algorithm relies on the fact that if |ψ⟩ is a stabiliser state, then step 3 halves the support of

the statevector on every iteration. Conversely, if their algorithm terminates, they produce a Clifford

circuit C such that C |0⟩ = |ψ⟩ (up to a phase), in which case |ψ⟩ is a stabiliser state (whose stabiliser

group is generated by CZiC
†). Thus, the algorithm can be used to extract an efficient representation,

as well as verify whether |ψ⟩ was a stabiliser state.
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Since the support of the statevector halves after every iteration, in the worst case the algorithm will

run step 3 n times. Each iteration of step 3 involves applying Ω(n) CX gates in the worse case, as

well as a single qubit gate. Each application of a CX (or single qubit) gate to |ψ⟩ requires Ω(N) steps.

Thus, in the worst-case, stim’s algorithm runs in time Ω(N log2N) and produces a circuit of size Ω(n2).

n commuting, independent Paulis → stabiliser state statevector

As far as we can tell, this is not implemented in Qiskit.

stim currently implements this conversion in the state vector from stabilizers method in vec-

tor simulator.h. Given a list of suitable Paulis Pi, the algorithm generates a random intial vector in

CN , and then applies the sequentially orthogonal projection matrix onto the +1 eigenspace of Pi, for

i = 1, . . . , n, to the statevector. In their implementation, applying the projector takes time Ω(N logN)

and thus the algorithm runs in time Ω(N log2N).

Clifford Matrix → efficient representation of Clifford

Qiskit implements the conversion via the from matrix method of the Clifford class. It is imple-

mented by a brute-force approach - the matrix CPC† is calculated for P every Xi and Zi, taking

time Ω(N3 logN). Note that this approach additionally verifies that C is a Clifford, by checking that

CPC† does correspond to a Pauli (which takes time Ω(N2)).

In stim, the conversion is implemented in the unitary to tableau function in stabilizers vs -

amplitudes.inl. The function returns a decomposition of the Clifford into one- and two-qubit Clifford

gates. On input matrix C stim runs the following algorithm:

1. Find a Clifford U (and its circuit representation) such that U
∣∣∣⃗0〉 = C

∣∣∣⃗0〉 (i.e. run the stabiliser

state statevector algorithm above on the first column of C).

2. CalculateM = U †C. If C is a Clifford, thenM will be a Clifford that permutes the computational

basis vectors with phases.

3. Find a circuit implementing M . In this step, they verify that M is a Clifford, which in turn

verifies that C is a Clifford.

4. Concatenate the circuits for U and M to find a circuit representation of C.

In particular, step 2 involves multiplying U † and M . The circuit for U has size Ω(n2) in the worst-case

(see above), and multiplying C by a one or two qubit gate takes time Ω(N2). Thus step 2, and hence

stim’s algorithm, runs in time Ω(N2 log2N) in the worst case.

Efficient description of a Clifford → Clifford matrix

In Qiskit, the conversion is the to matrix method of the Clifford class. The algorithm first de-

composes the Clifford as a circuit of one- and two-qubit gates, using the method of [116], and then

finds the matrix of that circuit. As noted above, if the circuit is size s, computing the matrix from

the circuit by multiplication takes time Ω(sN2). In the worst-case (as with stim’s stabiliser state

algorithm), s = Ω(n2) and thus Qiskit’s algorithm has a worst-case runtime of Ω(N2 log2N).

In stim, the conversion is implemented by tableau to unitary method in stabilizers vs ampli-

tudes.inl. It relies on the fact that flattening a Clifford matrix (i.e. stacking the columns to produce
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a long vector) produces a stabiliser state. In fact, if C is a Clifford such that CZiC
† = Ui and

CXiC
† = Vi, then flattening the columns of C gives rise to a stabiliser state whose stabiliser group is

generated by Zi⊗Ui, Xi⊗Vi. This can be seen by writing the flattened vector as |ψ⟩ =
∑

z⃗∈Zn
2
|z⃗⟩C |z⃗⟩.

stim runs the stabiliser group to stabiliser statevector algorithm above, with stabilisers given by Zi⊗Ui,

Xi⊗Vi and then reshapes the resulting statevector back into a matrix. Thus, the worst-case complexity

is the determined by the stabiliser conversion algorithm, Ω(N2 log2N).
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4.2 Converting between representations of stabiliser states

In this Section, we give our algorithms for converting between representations of stabiliser states. We

will use 3 representations of a stabiliser state |ψ⟩:

(S1) A statevector: an element of CN .

(S2) A compact description of the amplitudes of |ψ⟩, using theorem 4.1: A basis for a vector space

V ≤ Zn
2 , a constant vector s⃗ ∈ Zn

2 and a linear and quadratic form on V (described by their

action on the basis).

(S3) A list of n commuting, independent, Hermitian Paulis that generate the stabiliser group of |ψ⟩,
called a check matrix.

Note that (S2) and (S3) are efficient descriptions of |ψ⟩, whereas (S1) is inefficient.

4.2.1 Converting from (S1) to (S2)

We are given a statevector of a stabiliser state |ψ⟩ ∈ CN as input. Our algorithm can be split into

two distinct stages

1. Find a compact description of the support of |ψ⟩, i.e. a basis for the vector space V ≤ Zn
2 and

the constant “shift” vector s⃗.

2. Find a compact description of the amplitudes in |ψ⟩, i.e. the linear and quadratic forms on V .

When finding the support of |ψ⟩, we use the ordering on Zn
2 induced by I, i.e. we say z⃗ < y⃗ ⇔ I(z⃗) <

I(y⃗). This is the same as the lexicographical ordering on Zn
2 (read from right to left). We will need

the following two technical Lemmas:

Lemma 4.1: Suppose that V ≤ Zn
2 is a dimension k vector subspace of Zn

2 . Suppose that we

order V = {v⃗0, . . . v⃗2k−1}, i.e. v⃗i < v⃗j iff. i < j. Then the map α : Zk
2 → V , α(⃗a) = v⃗I(a⃗) is a

linear isomorphism. In particular, {v⃗2j | j = 0, . . . , k − 1} is a basis of V .

Proof: Take some basis w⃗0, . . . , w⃗k−1 of V . Take a matrix W whose rows are given by the w⃗i (as

elements of Zn
2 ). Let W ′ be the reduced row-echelon form of W ; the rows of W ′ still form a basis

of W . Let u⃗j be the n− jth row of W ′ for j = 0, . . . , n−1. Suppose that the leftmost 1 of u⃗j is in

position hj . As W ′ is in reduced row-echelon form, the hi’th element of u⃗j is δij . Thus, one can tell

whether u⃗j is present in the linear decomposition of v⃗ ∈ V by checking whether the hj ’th element

is 0 or 1. Since the ordering < on Zn
2 is decided by the rightmost position at which two vectors

disagree, we deduce that
∑n

i=0 ziu⃗i <
∑n

i=0 yiu⃗i iff. z⃗ < y⃗. But then α(⃗a) =
∑n−1

i=0 aiu⃗i = v⃗I(a⃗) is

a linear isomorphism as claimed.

Lemma 4.2: Let A ⊆ Zn
2 be an affine space. Let s⃗ ∈ A be the minimal element of A (with

respect to <). Let V = s⃗+ A and take v⃗, w⃗ ∈ V . Then v⃗ < w⃗ iff. v⃗ + s⃗ < w⃗ + s⃗.
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Proof: Suppose v⃗ < w⃗, then v⃗ = (⃗a, 0, b⃗), w⃗ = (d⃗, 1, b⃗) for some bitstrings a⃗, b⃗ and d⃗. Let

s⃗ = (f⃗ , x, g⃗), where the length of g⃗ is the same as b⃗. Then, we see that v⃗ + s⃗ < w⃗ + s⃗ iff. x = 0.

If, however, x = 1 then v⃗ + w⃗ + s⃗ = (⃗a + d⃗ + g⃗, 0, g⃗) < s⃗ is a smaller element of A than s⃗,

contradicting our assumption. Thus, v⃗+ s⃗ < w⃗+ s⃗. The converse direction follows similarly.

Lemmas 4.1 and 4.2 give a method for extracting an efficient description of the support of |ψ⟩. We

find the smallest index of |ψ⟩ which has a non-zero amplitude, and we take s⃗ to be (the binary repre-

sentation of) this index. We iterate through the remaining entries of |ψ⟩, any time we find a non-zero

entry at index z⃗, we add z⃗ + s⃗ to a list. This list will contain all of the vectors in V ; it will have size

2k, where k is the dimension of V . By Lemma 4.2, the entries of this list will be sorted (in increasing

order) as s⃗ was chosen as to be minimal. By Lemma 4.1, we may take the 2jth element of our list,

which we call u⃗j , for j = 0, . . . , k − 1, as a basis for V .

It remains to find a suitable linear map ℓ and quadratic form Q on V . First, we divide all amplitudes

of the statevector by ⟨s⃗|ψ⟩ so that they take values in {±1,±i}. Second, by looking at ⟨s⃗+ u⃗j |ψ⟩ for

each j we deduce the value of ℓ(u⃗j) and R(u⃗j , u⃗j). Finally, by considering the values of ⟨s⃗+ u⃗j + u⃗k|ψ⟩
for k ̸= j, we deduce the value of R(u⃗j , u⃗k) + R(u⃗j , u⃗k) for each j ̸= k. But these values fully specify

Q and ℓ, and the algorithm can be terminated.

We give a brief summary of our algorithm below:

Algorithm 4.1:

Input: An (S1) description of a stabiliser state, i.e. a statevector |ψ⟩ ∈ CN

Output: An (S2) description of |ψ⟩, i.e. a basis for a vector space V , a constant vector

s⃗ ∈ Zn
2 , and a linear map ℓ and quadratic form Q on V (specified by their action

on the basis)

1. Find the smallest (binary) index s⃗ of a non-zero element of |ψ⟩

2. Add s⃗ to all the indices of non-zero elements of |ψ⟩. This preserves their order. Suppose

there are 2k such indices (so that V has dimension k). Take the non-zero indicies in positions

2j , for j = 0, . . . , k − 1 as a basis of V , which we call {u⃗j}

3. Find the action of ℓ,Q on V by considering the amplitudes of the form ⟨s⃗+ u⃗j |ψ⟩ and

⟨s⃗+ u⃗j + u⃗k|ψ⟩.

Finally, we analyse the complexity of our algorithm:

1. Finding the smallest nonzero amplitude takes O(N) time.

2. Adding s⃗ to each non-zero index takes time O(Nn)2.

3. Extracting ℓ takes time O(n). Extracting Q takes time O(n2).

We see that step 2 dominates the algorithm, and thus it runs in time O(Nn). This is a factor of n

faster than the best existing algorithm.

2Since this addition is over Zn
2 , it corresponds to XORing two integers, which is practically very fast. Depending on

implementation, it could even be done in constant time, reducing the worst-case runtime of our algorithm.
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4.2.2 Converting from (S2) to (S1) and Verifying (S1)

Given an (S2) representation of a stabiliser state, there is an obvious method for producing a statevec-

tor: one can iterate through all possible linear combinations of the basis vectors in order, i.e. iterate

through the vectors a⃗ ∈ Zk
2, with corresponding expansions

∑n−1
i=0 aiu⃗i. To find the amplitude for a

particular a⃗, one evaluates ℓ and Q. The remaining entries of the statevector are all zero. Evaluat-

ing
∑n−1

i=0 aiu⃗i + s⃗ takes time Θ(n2), evaluating ℓ and Q also takes time Θ(n2). Thus, this approach

would take time Θ(2kn2), where k is the dimension of V . In the worst-case, this is Θ(Nn2) operations.

This algorithm can be improved by iterating through the elements of V in a more efficient manner.

In particular, if a single aj changes in each step, then one only needs to add u⃗j to the current value

of
∑n−1

i=0 aiu⃗i + s⃗ to find the new value. Moreover,

Q(v⃗ + u⃗i) +Q(v⃗) = R(u⃗i, u⃗i) +
n−1∑
j=0

vj [R(u⃗i, u⃗j) +R(u⃗j , u⃗i)] (4.12)

can be evaluated in O(n) time. Similarly, ℓ(v⃗+u⃗i)+ℓ(v⃗) = ℓ(u⃗i) takes constant time to evaluate. Thus,

if we iterate through the elements of V in such a manner, keeping track of the values of
∑n−1

i=0 viu⃗i + s⃗

and iℓ(v⃗)(−1)Q(v⃗), we only need O(n) to find each new amplitude.

The problem of iterating through Zk
2, flipping a single bit in each step, is well-studied. One of the

simplest such schemes is known as the Gray code [117]. The ith iterate of the Gray code can be

computed in time O(k), which allows for efficient iteration. Thus, using the Gray code, one can find

the statevector of a stabiliser state in time O(Nn). We give a brief overview of our algorithm below:

Algorithm 4.2:

Input: An (S2) description of |ψ⟩, i.e. a basis for a vector space V , a constant vector

s⃗ ∈ Zn
2 , and a linear map ℓ and quadratic form Q on V (specified by their action

on the basis).

Output: An (S1) description of a stabiliser state, i.e. a statevector |ψ⟩ ∈ CN .

1. Initialise a statevector of length N of all zeros.

2. Initialise a⃗ = (0, . . . 0) ∈ Zk
2, keep track of the values of E [⃗a] =

∑n−1
i=0 viu⃗i + s⃗ and θ(⃗a) =

iℓ(v⃗)(−1)Q(v⃗)

3. Iterate a⃗ through the Gray code, so that a single bit changes in every iteration. At each step,

update E and θ (using equation (4.12)), to set the non-zero amplitudes of the statevector.

One can use algorithms 4.1 and 4.2 in sequence to test whether a statevector is a stabiliser state:

Algorithm 4.3:

Input: A statevector, i.e. |ψ⟩ ∈ Cn

Output: Yes if |ψ⟩ is a stabiliser state, No otherwise

1. Run algorithm 4.1, if at any point it fails (e.g. an entry is not in {±1,±i} when it should

be), output No
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2. Run algorithm 4.2 on the output of step 1, giving |ϕ⟩.

3. If |ψ⟩ = |ϕ⟩ (up to a global phase), ouput Yes, otherwise output No.

The correctness of algorithm 4.3 follows from the iff. in theorem 4.1. Steps 1 and 2 have complexity

O(Nn), step 3 has complexity O(N). Thus, the algorithm runs in time O(Nn). This is a factor of

n faster than the best existing algorithm. We note that in practice, one can slightly improve the

run time of this algorithm by removing duplicate steps. For example, one only needs to check that

the non-zero amplitudes are equal in step 3. However, the complexity will not be reduced by such

optimisations.

4.2.3 Converting between (S2) and (S3)

We begin by establishing some required relations between a stabiliser state expressed in (S2) form

and the Pauli gates that stabilise it. Recall the expression of the amplitudes of a stabiliser state from

Theorem 4.1. An arbitrary stabiliser state |ψ⟩ can be expressed in the form:

|ψ⟩ ∝
∑
z⃗∈V

(−1)Q(z⃗)iℓ(z⃗) |z⃗ + s⃗⟩ , (4.13)

where V ≤ Zn
2 is a vector subspace of dimension k ≤ n, s⃗ ∈ Zn

2 , and Q, ℓ : V → Z2.

Suppose a Pauli P stabilises |s⟩. Since P has a +1 eigenvalue, it must be Hermitian, and thus takes

the form P = (−1)c(−i)p⃗·q⃗X q⃗Z p⃗. We can see immediately that p⃗ ∈ V or else P changes the support

of |s⟩. Moreover, by comparing the amplitudes of |ψ⟩ and P |ψ⟩, we find that P stabilises |ψ⟩ iff.

ℓ(q⃗ ) = p⃗ · q⃗, (4.14)

For all z⃗ ∈ V : Q(z⃗) = c+Q(z⃗ + q⃗) + p⃗ · (z⃗ + q⃗ + s⃗) + (p⃗ · q⃗ )ℓ(z⃗) (4.15)

We can then express equation (4.15) as

[R(q⃗, z⃗) +R(z⃗, q⃗) + (p⃗ · q⃗ )ℓ(z⃗) + p⃗ · z⃗] + [R(q⃗, q⃗) + p⃗ · (q⃗ + s⃗) + c] = 0, (4.16)

where the first term is a linear function of z⃗ ∈ V and the second term is a constant. This holds

iff. both terms are identically zero. Therefore, P stabilises |ψ⟩ iff.

q⃗ ∈ V, (4.17)

ℓ(q⃗ ) = p⃗ · q⃗, (4.18)

c = p⃗ · (q⃗ + s⃗) +R(q⃗, q⃗), (4.19)

p⃗ · z⃗ = R(q⃗, z⃗) +R(z⃗, q⃗) + (p⃗ · q⃗)ℓ(z⃗), (4.20)

where the latter equality is as linear functions from V to Z2. Equations (4.17)-(4.20) can be read

in two different ways; firstly if ℓ, R, V and s⃗ are known and we wish to find suitable p⃗, q⃗ and c, or

vice-versa. This allows us to convert between (S2) and (S3).

Firstly, suppose we are given a list of n commuting Paulis that generate the stabiliser group of the

stabiliser state: (ci, a⃗i, b⃗i) for i = 1, . . . n (they are Hermitian, so we do not need to specifiy the power
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of i). We collect the Paulis into the rows of a matrix:

M =


a⃗1 b⃗1 c1
...

...
...

a⃗n b⃗n cn

 . (4.21)

Swapping two rows of M corresponds to permuting the generators of the stabiliser group. Adding two

rows together, and then adjusting the sign bit according to equation (4.5), corresponds to composing

two generators, which still gives a valid list of generators of the stabiliser group. Thus, we may perform

row reduction on M until the first 2n columns are in reduced row-echelon form:

M ′ =



q⃗1 p⃗1 c1
...

...
...

q⃗k p⃗k ck

0⃗ ρ⃗1 γ1
...

...
...

0⃗ ρ⃗n−k γn−k


. (4.22)

The rows of M ′ still form a generating set of the stabiliser group.

We can take the q⃗i as a basis for V . The shift s⃗ may be taken as any solution to the system of n− k

equations ρ⃗i · s⃗ = γi. By equation (4.18) and the fact that all the stabilising Pauli gates must have

order 2, we can extract ℓ and define it on the basis for V via the equations ℓ(q⃗i) = p⃗i · q⃗i.

We can extract the diagonal entries of R by rearranging equation (4.20):

R(q⃗i, q⃗i) = ci + p⃗i · (q⃗i + z⃗0). (4.23)

Finally, we can extract the remaining entries of R by rearranging equation (4.20):

R(q⃗i, q⃗j) +R(q⃗j , q⃗i) = p⃗i · q⃗j + (p⃗i · q⃗i)(p⃗j · q⃗j). (4.24)

The resulting (S2) state is stabilised by all the rows of M ′, and thus must correspond to the correct

stabiliser state. We summarise our conversion algorithm below:

Algorithm 4.4:

Input: An (S3) description of |ψ⟩, i.e. a list of n-commuting, independent, Hermitian

Pauli gates

Output: An (S2) description of |ψ⟩, i.e. a basis for a vector space V , a constant vector

s⃗ ∈ Zn
2 , and a linear map ℓ and quadratic form Q on V (specified by their action

on the basis)

1. Collect the Paulis into a matrix, as in equation (4.21). Row reduce the first 2n columns

whilst updating the sign bits consistently (to ensure that the resulting check matrix repre-

sents the same stabiliser state), until it is in the form of equation (4.22).



82 Learning in Quantum Mechanics

2. Take the q⃗i as a basis for V and a solution to ρ⃗i · s⃗ = γi for the shift vector s⃗.

3. Compute ℓ(q⃗i) = q⃗i · p⃗i and store these as a vector representing ℓ (with respect to the basis

{q⃗1, . . . , q⃗k} of V ).

4. Compute a matrix representing R relative to the same basis using equations (4.19) and

(4.20).

We give a complexity analysis of algorithm 4.4:

1. Gaussian elimination for row reduction takes time O(n3).

2. Finding a solution to the row reduced equation takes time O(n).

3. Computing ℓ takes time O(k), where k is the dimension of the affine subspace.

4. Computing Q takes time O(k2).

Thus, algorithm 4.4 runs in time O(n3).

Conversely, suppose we have s⃗, a basis for V and ℓ, R with respect to this basis. We can generate the

q⃗i by row reducing the basis v⃗i. As we perform the row reduction, we update the matrices of ℓ and R

such that they are valid with respect to the new basis.

Applying equation (4.20) to (p⃗, q⃗) = (ρ⃗i, 0⃗), we see that the ρ⃗i can be taken to be a basis of the null

space of matrix whose rows are q⃗i, i.e. a basis of V ⊥. We can then extract γi using equation (4.19):

γi = ρ⃗i · s⃗.

Using equations (4.18) and (4.20) we can use our R and ℓ to give linear systems for each p⃗i:

p⃗i · q⃗j = R(q⃗i, q⃗j) +R(q⃗j , q⃗i) + ℓ(q⃗i)ℓ(q⃗j). (4.25)

These determine each p⃗i up to the addition of an element of V ⊥. Finally, we compute the ci using

equation (4.19):

ci = p⃗i · (q⃗i + s⃗) +R(q⃗i, q⃗i). (4.26)

We note that these the generated Paulis commute, are Hermitian, and are independent and thus must

generate the correct stabiliser group. We summarise our conversion algorithm below:

Algorithm 4.5:

Input: An (S2) description of |ψ⟩, i.e. a basis for a vector space V , a constant vector

s⃗ ∈ Zn
2 , and a linear map ℓ and quadratic form Q on V (specified by their action

on the basis).

Output: An (S3) description of |ψ⟩, i.e. a list of n-commuting, independent, Hermitian

Pauli gates.

1. Row reduce the basis {u⃗1, . . . , u⃗k} of V to find {q⃗1, . . . , q⃗k} and a basis {ρ⃗1, . . . , ρ⃗n−k} of

V ⊥. Update the representations of ℓ and R to this new basis.

2. Using the notation of equation (4.22), compute γi = ρ⃗i · s⃗.
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3. Find a solution for each of the p⃗i from the (underdetermined) linear systems of equation

(4.25).

4. Compute ci = p⃗i · (q⃗i + s⃗) +Q(q⃗i).

We give a complexity analysis of algorithm 4.5:

1. Row reduction takes time O(nk2), where k is the dimension of V . Finding a basis for the null

space then takes time O((n − k)k). Computing the new matrices for R and ℓ can be done in

parallel to this step, altering after each row operation. Each update takes constant time (as it

corresponds to swapping a row or adding two rows together) and thus this does not affect the

complexity.

2. This takes time O((n− k)n).

3. This takes time O(kn).

In general, when k = Ω(n), Algorithm 4.5 runs in time O(n3). We note that if one wishes to convert

(S1) to (S3), one can run algorithms 4.1, 4.5 sequentially. The basis of V from algorithm 4.1 is already

row reduced, and thus step 1 can be skipped, and algorithm 4.5 runs in time O(n2).

4.3 Converting between representations of Clifford operators

In this Section, we give our algorithms for converting between representations of Clifford operators.

We will use 2 representations of a Clifford operator C:

(C1) A matrix: an element of MN (C).

(C2) A compact description of the image of the basic Pauli gates under conjugation: Ui = CZiC
†,

Vi = CXiC
†. Each Ui and Vi will be Hermitian, so admits a more compact description (as noted

above).

4.3.1 Converting from (C1) to (C2)

We are given the matrix representing a Clifford C. We wish to extract Ui = CZiC
† and Vi = CXiC

†

for i = 1, . . . , n. We begin by examining the stabiliser group of the first column of C.

Lemma 4.3: For a Clifford gate C, the stabiliser group of C
∣∣∣⃗0〉 (the first column of C) is

generated by Ui = CZiC
†.

Proof: UiC
∣∣∣⃗0〉 = CZi

∣∣∣⃗0〉 = C
∣∣∣⃗0〉. The Ui are independent since the Zi are.

We can rapidly extract a set of generators Pi of the stabiliser subgroup of C |0⟩ using algorithms 4.1

and 4.5 in series. Since Pi and Ui generate the same stabiliser subgroup, we have that Pi = U ρ⃗i for

some ρ⃗i ∈ Zn
2 . Thus,

PiC |z⃗⟩ = U ρ⃗iC |z⃗⟩ = CZ ρ⃗i |z⃗⟩ = (−1)ρ⃗i·z⃗C |z⃗⟩ . (4.27)

Suppose that Pi corresponds to (ci, q⃗i, p⃗i). Fix j ∈ [n]. We find a non-zero entry of the e⃗j ’th column

of C: C |e⃗j⟩. Suppose it has index z⃗. Then, by comparing ⟨z⃗ + q⃗i|C|e⃗j⟩ and (−1)ci+p⃗i·z⃗ip⃗i·q⃗i ⟨z⃗|C|e⃗j⟩
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we can find (ρ⃗i)j . By repeating this for i, j = 1, . . . , n, we can find all of the ρ⃗i.

As the Pi are independent, the ρ⃗i are also linearly independent. Thus, we may invert the matrix whose

columns are ρ⃗i; we call the rows of this inverse µ⃗i. We deduce that P µ⃗ = U , and thus we find the Ui.

Having found the Ui, we must now find the Vi. First, we find Pauli gates Wi of order 2 such that Ui and

Wj anticommute if and only if i = j. Constructing such Wi is straightforward. If Ui ∝ X q⃗iZ p⃗i , define

U to be the n× 2n matrix over Z2 whose i-th row is (q⃗i, p⃗i). As these rows are linearly independent,

U+ = UT (UUT )−1 is a right inverse: UU+ = 1. We may thus take Wi to be (−i)α⃗i·β⃗iX β⃗iZα⃗i where

(α⃗i, β⃗i) is the i-th column of U+. We make use of the following Lemma:

Lemma 4.4: Suppose the n Pauli gates Ui generate a stabiliser group, the Pauli gates Vi, Wi

are of order 2, and that Vi commutes (or anticommutes) with Ui if and only if Wi does. Then

Vi = (−1)ci(−i)diWiU
v⃗i for some v⃗i ∈ Zn

2 and ci, di ∈ Z2.

Proof: Define the Pauli gates Ti = idiWiVi where di is 0 if Wi and Vi commute and 1 if they

anticommute. They commute with every Uj : TiUj = idiWiViUj = idiUjWiVi = UjTi. Further,

the Ti are of order 2. Therefore, for each i, either Ti or −Ti is a member of the stabiliser group

generated by Ui.

Therefore, in the notation of Lemma 4.4, our final task is to find the Vi is to determine the appropriate

v⃗i ∈ Zn
2 and ci, di ∈ Z2. We note that

C |z⃗ + e⃗i⟩ = CXi |z⃗⟩ , (4.28)

= ViC |z⃗⟩ , (4.29)

= (−1)ci(−i)diWiU
v⃗iC |z⃗⟩ , (4.30)

= (−1)ci(−i)diWiCZ
v⃗i |z⃗⟩ , (4.31)

= (−1)v⃗i·z⃗+ ci(−i)diWi C |z⃗⟩ , (4.32)

where e⃗i is the i-th unit vector of Zn
2 .

By comparing the relative phases of the columns of C corresponding to z⃗ and z⃗ + e⃗i, we gain infor-

mation about the required variables v⃗i, ci, di. Choosing z⃗ = 0⃗, we determine the ci, di. Choosing z⃗

to be of Hamming weight 1, we determine the components of the v⃗i. We can then multiply Wi by

(−1)ciidiU v⃗i to find Vi.

To determine the relative phases of two columns, we need only check two nonzero entries: one from

each column. To avoid potentially having to perform a high number of checks for columns that contain

many zeros, we can compute the support of each column first. We do this using that the fact that the

support of C |z⃗⟩ is the same as the support of W z⃗C
∣∣∣⃗0〉, as each Ui either stabilises or antistabilises

every column. We give a summary of our algorithm below:
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Algorithm 4.6:

Input: A (C1) description of a Clifford C, i.e. a unitary matrix in MN (C).

Output: A (C2) description of C, i.e. a compact description of Ui = CZiZ
† and Vi =

CXiC
† for every i = 1, . . . n.

1. Compose algorithms 4.1 and 4.5 to extract generators Pi for the stabiliser group of C
∣∣∣⃗0〉.

2. For each z⃗ with Hamming weight 1, find a nonzero entry of C |z⃗⟩. For each i, use these

nonzero entries to determine ρ⃗i satisfying PiC |z⃗⟩ = (−1)ρ⃗i·z⃗ |z⃗⟩.

3. Invert the n× n matrix over Z2 whose columns are ρ⃗i to find one with rows µ⃗i. Conclude

that Ui = P µ⃗i .

4. Compute the bitstrings specifying the Wi (up to sign) by taking the pseudoinverse of the

matrix whose rows are the bitstrings specifying the Ui.

5. Correct the Wi to Vi by comparing two nonzero entries of the z⃗-th and z⃗ + e⃗i-th columns

of C for z⃗ being 0⃗ or having Hamming weight 1.

We give a complexity analysis of algorithm 4.6:

1. The conversion (S1) to (S3) takes O(Nn) time as discussed above.

2. In the worst-case, we search for time O(N) to find a nonzero element of a given column. Once

we have found one for each column of Hamming weight 1, taking time O(Nn), we can extract

all the ρ⃗i vectors in time O(n2).

3. It takes time O(n3) to find the pseudoinverse of the U . In fact, the output of our (S1) to (S3)

conversion gave us the row-reduced version of U ; by keeping track of the row operations when

constructing the Ui from the Pi, we can construct the pseudoinverse simultaneously. We then

require time O(n2) to find each of the Wi.

4. Comparing the relative phase of the columns corresponding to Hamming weight 1 and 2 takes

time O(n3) as there are n2 such columns and finding a nonzero element takes time O(n). Then,

finding the Vi involves multiplying each Wi by O(n) Pauli gates, where each Pauli multiplication

takes time O(n). Thus, this step also runs in time O(n3).

The algorithm is dominated by Steps 1 and 2 and thus takes time O(Nn). This is a factor of Nn

faster than the best existing algorithm. Since N = 2n, this is an exponential advantage in runtime.

4.3.2 Converting from (C2) to (C1) and Verifying (C1)

We now suppose that we are given the Ui = CZiC
†, Vi = CXiC

†, and wish to find the matrix of C (up

to a global phase). By Lemma 4.3, the first column of C is stabilised by all of the Ui. Thus, the first

column can be quickly computed by combining algorithms 4.4 and 4.2. Then, to find the remaining

columns, we iterate through the Gray code (see above). By equation (4.29), columns corresponding

to consecutive iterates of the Gray code will differ by the application of a single Vi (corresponding

to the bit at which the iterates differ). Thus, to produce one column from the previous one, we
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need to multiply a vector by a single Pauli. We can perform this multiplication in time O(Nn):

If P ≃ (c, d, q⃗, p⃗) then P |z⃗⟩ = (−1)c+p⃗·z⃗id |z⃗ + q⃗⟩ takes time o(n) to evaluate. We summarise our

algorithm below:

Algorithm 4.7:

Input: A (C2) description of C, i.e. a compact description of Ui = CZiZ
† and Vi =

CXiC
† for every i = 1, . . . n.

Output: A (C1) description of a Clifford C, i.e. a unitary matrix in MN (C).

1. Find the first column of C by running algorithms 4.4 and 4.2 sequentially, with input

U1, . . . , Un.

2. Find the remaining columns by iterating through the Gray code, multiplying the current

column by a single Vi in every step

We give a complexity analysis of algorithm 4.7:

1. Running algorithms 4.4 and 4.2 takes time O(Nn), as described above.

2. As discussed, finding the column corresponding to the next iterate of the Gray code from the

previous takes time O(Nn). There are N such columns and thus this step takes time O(N2n).

The algorithm is dominated by step 2, giving a total time of O(N2n). Again, this is a factor of n

faster than existing implementations.

As with the stabiliser state case, one can use algorithms 4.6 and 4.7 in sequence to test whether a

matrix is a Clifford:

Algorithm 4.8:

Input: A matrix C ∈ MN (C).

Output: Yes if C is a Clifford, No otherwise.

1. Run algorithm 4.6, if at any point it fails (e.g. an entry is not in {±1,±i} when it should

be), output No.

2. Run algorithm 4.7 on the output of step 1, giving a matrix M .

3. If M = C (up to a global phase), ouput Yes, otherwise output No.

If the algorithm outputs yes, then U is a Clifford matrix (as algorithm 4.7 only outputs Cliffords),

and thus the algorithm is correct. Step 1 has complexity O(Nn), step 2 has complexity O(N2n), step

3 has complexity O(N2). Thus, the algorithm runs in time O(N2n). This is a factor of n faster than

the best existing algorithm. As in the stabiliser state case, one can reduce redundancy between steps

1 and two of the algorithm (e.g. one does not need to find the first column again in step 2).

4.4 Benchmarking our Algorithms

Implementations of our algorithms are available at https://github.com/WilfredSalmon/Stabiliser.

In this Section, we benchmark the implementation of our algorithms against the existing implemen-

tations provided by stim and Qiskit. We find that in almost all cases, the asymptotic advantage of

https://github.com/WilfredSalmon/Stabiliser
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our algorithm translates into a practical speedup. We also consider theoretically worse-case inputs to

our algorithms. We find that our algorithms still have fast runtimes on these extremal cases.

4.4.1 Stabiliser Algorithms

We begin by benchmarking the conversion (S1) → an efficient representation. Our algorithm converts

(S1) to (S2), stim converts (S1) to a circuit that synthesises the stabiliser state (see Section 4.1.2).

In figure 4.1 we compare (log) the execution time of our algorithm to stim’s, for different numbers of

qubits. We consider the average case input to the algorithm - i.e. a uniformly sampled stabiliser state.

We consider two paradigms for our algorithm, one where we assume the input is a stabiliser state

(labelled as “with assumption”), and one where we do not guarantee the input is a stabiliser state

(labelled as “without assumption”). In the latter case, we must run our (S1) → (S2) conversion, and

additionally verify that the input is a stabiliser state (stim’s algorithm is the same in both cases). We

shade the 33-66th percetile range of execution times (across 1000 different runs of the algorithm on

each input), to observe the variance in runtimes. We see that our algorithm is between a half and two

orders of magnitude faster than stim’s implementation, in average case runtime, and on the majority

of stabiliser states.
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Figure 4.1: Comparison of our (S1) → efficient representation algorithm (i.e. (S1) → (S2)) with stim’s.
The algorithms were run 1000 times for each qubit number, with a uniformly random stabiliser state
as input. For each input, we plot (log base 10) the average execution time (solid line), and shade
the 33-66th percentile range. We test our algorithm in two paradigms: when its input is declared to
be stabiliser state (labelled as “with asssumption”), and when there are no guarantees on its input
(labelled as “without asssumption”).

We also consider the running time of our algorithm in two theoretically extremal cases. Firstly, we

consider the computational basis state |0⟩⊗n, which has a single non-zero amplitude. Secondly, we

consider a random full support stabiliser state, i.e. we fix V = Zn
2 , and sample ℓ and Q uniformly
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at random. In both cases, we do not assume that the input to our algorithm is a stabiliser state.

Theoretically, these correspond to the best and worst-case inputs to our algorithm, respectively. The

computational basis state |0⟩⊗n requires checking every entry of the vector exactly once, whereas the

full support state requires the maximal number of steps in our algorithm. We plot the (average)

execution times for these inputs in figure 4.2. Unsurprisingly, we see that our algorithm is much faster

with input |0⟩⊗n, than the average case. Surprisingly, our algorithm also executes much faster than

average on a random full support stabiliser state, showing a disconnect between theory and practical

implementations. This is likely due to overheads in implementation (such as speculative code execu-

tion and memory layout).
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Figure 4.2: Comparison of the execution time of our (S1) → (S2) algorithm, for a variety of inputs.
The algorithms were run 1000 times for each qubit number and type of input. For each type of input,
we plot (log base 10) the average execution time (solid line), and if the input is inherently random, we
additionally shade the 33-66th percentile range. We test our algorithm on a random stabiliser state,
both with and without a guarantee on the input, the computational basis state |0⟩⊗n, and a uniformly
random stabiliser state with full support. For the latter two inputs, we do not assume that the input
is a valid stabiliser state.

Finally, we benchmark our algorithm for verifying whether a statevector |ψ⟩ ∈ CN is a stabiliser state.

We note that the (S1) → (S2) conversion algorithm, without an assumption on its input, is identical

to the verification algorithm. Thus, we have already tested the worst-case for acceptance. It remains

to benchmark the worst-case for rejecting. This corresponds to a statevector whose amplitudes are

almost identical to those of a full-support stabiliser state, but differ in a single entry. We call such a

state an “almost” stabiliser state. We benchmark our algorithm by uniformly sampling from “almost”

stabiliser states - we sample a full-support stabiliser state uniformly at random, and then modify a

single entry uniformly at random (such that the resulting state is not a stabiliser state). The execution

times for our algorithm, as well as stim’s algorithm are plotted in figure 4.3. As before, we see that
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our algorithm is significantly faster than stim’s on a random stabiliser state input. Our algorithm

is faster on a uniformly random “almost” stabiliser state than a uniformly random stabiliser state,

since the algorithm can terminate as soon as an inconsistent entry is found. Furthermore, it is slightly

faster than stim’s, on average. We remark that “almost” stabiliser states are a “good” case for stim

- they are usually rejected within one iteration (see Section 4.1.2 for a description of their algorithm),

and despite this, our algorithm is still faster than stim’s. We deduce that our algorithm has good

performance across a wide range of inputs.
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Figure 4.3: Comparison of our algorithm for testing whether a statevector is a stabiliser state with
stim’s. The algorithms were run 1000 times for each qubit number and type of input. For each type of
input, we plot (log base 10) the average execution time (solid line), and shade the 33-66th percentile
range. We test the algorithms with a uniformly random stabiliser state, and a uniformly random
“almost” stabiliser state (a statevector that differs from a full rank stabiliser state in a single entry).

4.4.2 Clifford Algorithms

In this Section, we benchmark our algorithms for dealing with Clifford conversions against those in

stim and Qiskit. We begin by benchmarking the conversion (C1) → an efficient representation.

Our algorithm, stim and Qiskit (see Section 4.1.2) convert (C1) to (C2). In figure 4.4 we compare

(log) the execution time of our algorithm to stim’s and Qiskit’s, for different numbers of qubits.

We consider the average case input to the algorithm, i.e. a uniformly sampled Clifford matrix (using

Qiskit’s implementation of the algorithm in Ref. [116]). As in the stabiliser state case, we run our

algorithm twice, once with the assumption that the input is a Clifford matrix, and once without this

assumption, requiring us to additionally verify the input (stim and Qiskit run the same algorihtm

in both cases). The 33-66th percentile range is too small to be visible on the graph; it is on the order

of 0.01 for each algorithm. We see that our algorithm is roughly one and a half orders of magnitudes

faster than stim’s and Qiskits’s, for the considered qubit numbers. Qiskit has a theoertically much
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slower running time that stim, but, surprisingly, has a faster average run time, for large numbers

of qubits. This is due to the high level of optimisation of matrix multiplication in scientific python

packages.
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Figure 4.4: Comparison of our (C1) → efficient representation algorithm (i.e. (C1) → (C2)) with
stim’s and Qiskits’s. The algorithms were run 1000 times for each qubit number, with a uniformly
random Clifford matrix as input. For each input, we plot (log base 10) the average execution time
(solid line), and shade the 33-66th percentile range (though these are too small to see). We test our
algorithm in two paradigms: when its input is declared to be Clifford (labelled as “with assumption”),
and when there are no guarantees on its input (labelled as “without assumption”).

We also consider the running time of our algorithm in several theoretically extremal cases. Firstly, we

consider two sparse matrices; the identity matrix and a matrix with ones on the leading anti-diagonal,

and zeros elsewhere, which we call the anti-identity matrix. Secondly, we consider the n-fold tensor

product of the Hadamard matrix: H⊗n, which has a non-zero amplitude in every entry. In all cases, we

do not assume the input to our algorithm is a Clifford matrix (so that we must run the conversion, and

additionally verify the input). These inputs correspond to the theoretical extremes of our algorithm:

in the sparse case, the algorithm spends a significant amount of time searching for non-zero entries.

In the Hadamard matrix case, it spends a significant time verifying the matrix is indeed a Clifford.

We plot the (average) execution times in figure 4.2. As expected, for large input numbers, we see that

the extremal inputs are worst-cases for our algorithm. However, the execution time is very similar in

all cases, showing that our algorithm has good performance on all Clifford matrices.

We conclude by benchmarking our algorithm for verifying whether a matrix M ∈ MN (C) is a Clifford.

Similarly to the stabiliser state case, we note that the (C1)→ (C2) conversion algorithm, without an

assumption on its input, is identical to the verification algorithm. Thus, we have already tested the

worst-case for acceptance. It remains to benchmark the worst-case for rejecting. This corresponds to a
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Figure 4.5: Comparison of the execution time of our (C1) → (C2) algorithm, for a variety of inputs.
The algorithms were run 1000 times for each qubit number and type of input. For each type of input,
we plot (log base 10) the average execution time (solid line), and if the input is inherently random,
we additionally shade the 33-66th percentile range (though these are too small to see). We test our
algorithm on a random Clifford matrix, both with and without a guarantee that on the input, the
identity matrix 1, the anti-identity matrix, and the n-fold tensor product of the Hadamard matrix
(which we label “Hadamard”). For the latter three inputs, we do not assume that the input is a valid
stabiliser state.

matrix that differs from a Clifford in a single entry, or has an incorrect relative phase between columns.

we call such a matrix an “almost” Clifford matrix. We benchmark our algorithm by sampling from

“almost” Clifford matrices - we sample a random Clifford matrix uniformly at random, then with

equal probability, we modify a single entry uniformly at random or change the relative phase of a

uniformly random column, such that the resulting matrix is no longer a Clifford. The execution times

for our algorithm, as well as stim’s and Qiskit’s are plotted in figure 4.6. As before, we see that

our algorithm is significantly faster than stim and Qiskit on a random Clifford matrix input, and

Qiskit outperforms stim for large qubit numbers. Our algorithm has similar performance on “almost”

Clifford matrices to actual Clifford matrices, despite the early termination of the algorithm. This is

due to the large initial overhead in finding the Ui, which is not usually terminated early by an “almost”

Clifford input. stim shows similar behaviour, albeit significantly slower than our algorithm. Qiskit is

slightly faster on an “almost” Clifford, since this is usually a best-case scenario - with high probability

the “almost” Clifford M will not conjugate Z1 to a Pauli, and thus can be rejected after a single

matrix multiplication MZ1M
†. We emphasise that this single matrix multiplication is theoretically

asymptotically slower than our entire algorithm, but is highly optimised in practice.
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