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Abstract

This thesis explores the interactions of learning and quantum mechanics. At its heart, learning consists
of extracting information from data. We will consider two types of data; random and deterministic.
When data is random, one usually tries to learn an approximation to a desired object, when it is
deterministic, one usually tries to learn an exact description of an object. Chapters 2 and 3 of this
thesis focus on approximate learning of classical data embedded in quantum systems. The quantum
mechanical nature of the physical systems leads to inherent randomness, even if the classical data is
embedded in a deterministic way. In the final chapter we turn to exact learning of quantum objects,

where we explore learning succinct characterisation of quantum objects from verbose descriptions.

Chapter 1 gives a brief motivation for quantum information, and gives a review of notation used
throughout the thesis.

Chapter 2 introduces quantum metrology, the quantum generalisation of parameter estimation. Pa-
rameter estimation is a foundational area of modern statistics. In parameter estimation, one considers
data generated from an instance of a parameterised model, with the aim of inferring the values of the
parameters that generated the dataset. Parameter estimation is ubiquitous across modern science and
thus has a rich and well-developed theory. Quantum metrology is a comparatively modern theory of

parameter estimation, where classical parameters are encoded in quantum systems.

Existing literature in quantum metrology focuses on the so-called asymptotic regime, corresponding
to understanding the limit of attainable precision as experimental resources (and time) tend to infin-
ity. We consider the non-asymptotic regime, of particular relevance when experimental resources are
limited; often the case for quantum systems. We generalise the classical framework of non-asymptotic
parameter estimation to quantum metrology. This generalisation prescribes a non-asymptotic, oper-
ational method to determine if one measurement is better than another. We say that a measurement
is admissible if there is no measurement that is strictly better than it; a measurement is optimal if
it is as least as good as any other candidate measurement. Note that optimality is a much stronger
condition than admissibility - there may be many incomparable admissible measurements, none of
which are optimal. We prove several results within our non-asymptotic framework. First, we give a
complete characterisation of when an optimal measurement exists - if and only if a parameterised state
lies in a very restrictive class, called classical parameterised states. Second, we give three sufficient
conditions for when an approximately optimal measurement exists, giving explicit bounds on the level
of optimality. Finally, we give several necessary conditions, and one sufficient condition, for when a
measurement is admissible. Given the fundamental nature of admissibility within classical parameter

estimation, our results serve as a foundation for non-asymptotic quantum metrology.
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Second, we explore an emerging technique in quantum metrology, known as quantum filtering (or
postselection). Quantum filtering considers how one can distil information (on classical parameters)
from many copies of a parameterised quantum state into few copies of a quantum state. Recently,
a filter was discovered that can losslessly compress information into arbitrarily few quantum states,
as long as one has a suitable initial guess of the parameter. First, we completely characterise which
filters allow for lossless compression, showing that the known lossless filter lies within a more general
family. Our discovery of the family of lossless filters allows for flexibility in the design of experiments.
Second, we show that filters that are optimal for noiseless systems may be sub-optimal in the presence
of noise. This counter-intuitive result shows the subtlety of filter design. Third, we show that lossless
compression is not achievable in classical experiments (except in trivial cases), showing that lossless
compression is a genuine quantum effect. The quantum nature of lossless compression has already
been explored, by appealing to established indicators of classicality, rather than operational quantities.
Our proof, however, is purely operational in nature, completely characterising the limited cases where
classical lossless compression is possible. Finally, we give the first practical, iterative quantum filter-
ing algorithm. All existing literature on filtering assumes the asymptotic regime, and does not give
a concrete way to realise a practical advantage. Our algorithm is the first result in non-asymptotic
quantum filtering. In our explicit scheme, we show that the quantum effect of filtering can have a

subtle interplay with the classical theory of admissibility of estimators.

Chapter 3 considers probably approximately correct (PAC) learning, which underpins of all modern
machine learning. We consider quantum machine learning of classical data, where classical objects are
encoded in quantum states. Existing literature has demonstrated a wide range of quantum speedups
in PAC learning, ranging from polynomial to exponential. However, all known improvements apply
to special cases - not to the general theory. Indeed, it was recently shown that established access
models do not admit a generic asymptotic quantum speedup. We consider a natural extension to
the most widespread quantum access model, and argue it is applicable to most quantum scenarios of
interest. We show that in this new access model, there is a generic quadratic reduction in the quan-
tity of resources required for PAC learning. Furthermore, we prove that this quadratic improvement
is optimal. Given the success of modern machine learning algorithms, our results pave the way for

generic improvements in quantum machine learning.

Chapter 4 considers classical, exact learning of elements of the stabiliser formalism. The stabiliser
formalism is a cornerstone of modern quantum computation (see Section 4.1.1 for a more thorough
review). We explore common algorithmic primitives that are used for learning efficient classical de-
scriptions of elements of the stabiliser formalism from inefficient ones. Such primitives have seen
widespread use in classical simulation of quantum computers, and in increasing the efficiency of quan-
tum circuit design. We give several new algorithms for these primitives, that have asymptotic and
realisable speedups over existing implementations. Given the ubiquity of our primitives, these speedups

will be widely useful in a range of problems.
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“Do you guys just put the word quantum in front of everything?”
Scott Lang, Ant-Man and the Wasp, 2018
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Chapter 1

Introduction

1.1 Quantum Mechanics and Quantum Information

The theory of quantum mechanics runs contrary to our intuitive understanding of the universe. Niels
Bohr, one of the founding fathers of the field, once said “Those who are not shocked when they first
come across quantum theory cannot possibly have understood it” [6]. Moreover, the theory has re-

0" century. For

mained fundamentally, metaphysically incomplete since its inception in the early 2
example, the theory predicts that observing a system changes is behaviour, but provides no satisfac-
tory explanation of how a system should know it is being observed, or indeed a precise definition of
“observation” [7]. Despite this, Quantum mechanics offers astonishingly accurate predictions, match-
ing experimental observations in up to 13 decimal places of precision [8]. Undoubtedly, our universe

is quantum.

Quantum mechanical effects have become increasingly important in microelectronics and computing.
The fundamental building block of a computer is a transistor, a gate that can be toggled to allow
electrons to, or not to, flow. As we make smaller and better transistors, we can make smaller and faster
computers. Since the 1970s, we have observed roughly exponential scaling in the size of transistors,
known as Moore’s law [9], leading to roughly exponential growth in computing power. Yet, quantum
mechanics gives a fundamental limit to how small transistors can be made (via. quantum tunneling
[10]). Thus, if there is any hope to continue Moore’s law, we must understand how to build computers

out of quantum particles, that obey quantum effects.

The idea of utilising quantum systems for building computers long predates issues with transistors.
Feynman first proposed the idea in a 1981 talk [11], famously concluding “Nature isn’t classical,
dammit, and if you want to make a simulation of Nature, you’d better make it quantum mechanical”.

Such observations have spawned an entire field of research: quantum information and computation.

Since its inception, the field of quantum information and computation has exploded. At its core,
the field studies the utility of quantum mechanical systems for information theoretic (e.g. transmit-
ting information securely between two parties) and computational (e.g. computing the product of two
numbers) tasks. One considers whether the quantum system is “better” at the task than a system
described by classical physics, or whether quantum effects are a hindrance. This thesis explores a

variety of such tasks, finding quantum advantages and hindrances.
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1.2 Notation

1.2.1 General

Let V, W be vector spaces. Unless otherwise stated, we work over the complex numbers. Denote the
set of (bounded) linear maps from V to W by B(V,W). We write B(V,V) = B(V). Let (-,-) be a

choice of inner product on V. We let Herm(V') denote the set of Hermitian operators on V', and
SV)={veV ||| =1} (1.1)

For A, B € B(V), we write A > 0 [resp. A > 0] to mean that A is positive semi-definite [resp. positive
definite], with respect to (-,-). Similarly, we say that A > B [resp. A > B] if A— B > 0 [resp.
A— B >0]. For A € Herm(V), we call Ker(A)* the support of A, denoted supp(A). We occasionally

make use of the following properties of positive semi-definite matrices

Proposition 1.1: Suppose that V' is an inner product space, A € B(V') is positive semi-definite,
A > 0. Then

(i) Forv eV, Av =0 iff. (v, Av) = 0.
(ii) For v € V, Av = 0 iff. every eigenvector w of A with non-zero eigenvalue has (v, w) = 0.

(iii) If w is an eigenvector of A with non-zero eigenvalue, then w € supp(A).

Proof: (i) follows by noting A = BfB for some B > 0. (ii) follows by writing A in its spectral

decomposition, and using (7). (iii) follows from (ii). O

If V, W are dimension d, d’ over a field F respectively, then B(V, W) is in bijection with the set of d x d’
matrices over F, denoted Mg 4 (F). We let Mg(F) = Mg q4(F).

Given two linear maps A, B € B(V), we denote their commutator by [A, B] = AB — BA, and their
anticommutator by {A, B} = AB + BA.

Let f: R™ — R™ be some differentiable function. We denote its derivative by Df : R™ — B(R™ R™).
In the case that n = 1 then B(R™, R) is in bijection with R™, and we let by Vf : R™ — R™ V f(z); =
D f(z)(e:)-

For a natural number K € N = {1,2,...}, we let [K] = {1,2,...,K}. Given a set X with subset
A C X, we denote the indicator function of A by 1 4:

1, x€A,
1a:X —{0,1}, 14(x) = (1.2)
0, =¢A.

We let A= X \ A denote the complement of A (in X).

Let X CR,let f,g: X - Rand y € X. We write
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(i) f = Oz—y(g) if there exist constants C,d > 0 such that if |z —y| < 0, then f(z) < Cg(x).
(i) f = Qu—y(g) if there exist constants C,d > 0 such that if |z — y| <, then f(x) > Cg(x).

We may also take y = oo, in which case e.g. f = O,00(g) if there exist constants C, L > 0 such that
if |x| > L, then f(z) < Cg(x). It is common to write e.g. f = O(g), with the precise limit y implicit.
Most often f will be a function of a “small” parameter (e.g. €) in which case y = 0, or an unbounded
parameter (e.g. n € N), in which case y = co. These definitions can also be extended to X C R,
e.g. for k =2, f = Ocs0,d—00(g) if there exist constants C,d, L such that if |e] < § and d > L, then
fe.d) < Cyle,d).

1.2.2 Quantum Theory

Let H be a Hilbert space. Unless otherwise stated, we will always take our Hilbert spaces to be finite

dimensional. We denote the set of (quantum) states on H by D(H):
D(H) ={peBMH)|p=>0,Tr(p) = 1}. (1.3)

For two Hilbert spaces H,H' we denote the set of completely-positive trace-preserving (CPTP) maps
between them by T (H,H'):

T(H,H')={A € B(B(H),B(H')) | A is CPTP}. (1.4)

For K € N we let Mg (H) denote the set of K-outcome positive operator valued measures (POVMs)
on H:
K
Mg (H) = {M: (My,...,Mg) € BH)® | M; >0, Y M; = ]1}. (1.5)
i=1
We let M(H) denote the disjoint union of the Mg (#H), i.e. the set of POVMs with any number of

allowed outcomes:

M(H) = | | Mx(H) = {(K,M) | K € N,M € M (H)}. (1.6)
KeN

When the number of outcomes of a POVM is unimportant, given N = (K, M) € M(H), we will write
N; to mean M;, i.e. directly index the elements of the POVM.

1.2.3 Statistics

Let (2, F,P) be a probability space, let X, be a sequence of random variables on the probability space.
We write X, 2%y X to mean X, converges almost surely to X, X,, 2y X to mean X,, converges in

probability to X, and X, 9 X to mean X, converges in distribution to X.

For € finite, and F the power set of (), probability measures are in bijection with probability mass
functions, i.e. functions p :  — [0,1] such that }  _op(w) = 1. We denote the set of probability
mass functions on 2 by A(€2).



Chapter 2

Metrology

2.1 Background

2.1.1 Classical Parameter Estimation

In this Section, we introduce classical parameter estimation. Quantum metrology generalises pa-
rameter estimation, and thus the core ideas within parameter estimation are essential to quantum
metrology. Indeed, all of our results will rely on the language introduced in this Section. The ex-
position is self-contained, and aims to motivate many of its core concepts. Naturally, it is far from
exhaustive, and well-removed from the frontier of statistical research, but it covers the prerequisite

background for understanding our results. We begin with some motivational material.

In physics, we are used to describing systems in terms of parameters: position, momentum, energy,
temperature, pressure etc.. A finite collection of these parameters uniquely characterises a system;
given knowledge of the parameters, we can predict the behaviour of the system in the future. Often,
nature provides a system with unknown parameters, which we would like to determine. For example,
“determine the temperature of this liquid” or “find the pressure of this gas”. These are questions
of “parameter estimation” [12], a foundational area of statistics. Parameter estimation problems can
arise from such physical questions, but this is by no means exhaustive, as shown by the following

example:

Example 2.1: Proportion estimation

Suppose there is a large population, with N members. One aims to estimate the proportion p
that have a given property. For example p could be the fraction of an electorate that intend to
vote for a given party, or the proportion of roads in the UK with a pothole. It is usually infeasible
to sample the whole population, instead one takes a sample of n < N members of the population,
and determines the number of members X in the sample that have the property. If the sample
is appropriately chosen, then X is binomially distributed: X ~ B(n,p). Most commonly, the

proportion p is estimated as p = X/n.

We use this example to understand the more abstract theory of parameter estimation. A parameter
6 (p in the example) is an element of a known (measurable) set © C R¥ ([0, 1] in the example), called
a parameter space. Often the case kK = 1, called “single parameter”, is more simple than the £ > 1
“multiparameter” regime. One receives stochastic data depending on the parameter, corresponding

to a random variable X, taking values in a measurable space x ([n] in the example), whose law Py

4
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is unknown, but depends on the parameter in a known way (i.e. we know the map 6 — Py, like
the parameterised binomial distribution in the example). The map 6 — Py is called a model - it
describes how the value of the parameter affects the data that we see. The model may arise from
a physical theory (e.g. predicting how a gas at a given temperature and pressure will respond to an
interaction), or other modelling assumptions (such as an appropriate sample being drawn in example
2.1). We say that a model Py is identifiable if Py = Py = 6 = ¢'. Identifiablity appears as a weak
assumption; without it, there are at least two values of the parameter that cannot be discriminated by

observing X. However, we shall see that non-identifiable models naturally arise in quantum mechanics.

In the case that the random variable X takes value x € x, one estimates the parameter, we denote the
by estimate 6 (z) (p in the example). The (measurable) function 6 : y — R¥ is called an estimator!. We
consider the estimator p from example 2.1 in more detail. We find that E[p(X)] = p and Var[p(X)] =
p(1 — p)/n. Thus, on average, p will give the correct answer for p, subject to random fluctuations,
characterised by Var[p(X)]. We see that if p is close to 0 or 1, then p has small random fluctuations
around the true value of p, whereas if p ~ 1/2, the random fluctuations of p are comparatively much
larger. Moreover, the size of the fluctuations scales like 1/4/n in the number of observations n. This

illustrates two important points in parameter estimation
(i) The performance of an estimator 6 depends on the underlying parameter 6.
(ii) As more observations are taken, we can estimate f more accurately.

We explore point (i) now, point (ii) is discussed in Section 2.1.3. Given an estimator 0 and a value
of the parameter 0, é(X ) is random variable over R*. We wish to quantify how “good” this random
variable is, i.e. how “close” is it to the true parameter 6. First, we must define a quantative notion of
distance. This is given by a function L : R¥ x © — [0, 0], called a loss function. L(y,¢) quantifies

how “bad” of a guess y is, if the underlying parameter were ¢. We give several examples:

(i) Least-squares loss: L(y, 2) = |y — 2[|* == S5, (i — z:)%.

(ii) Absolute loss: L(y,z) = ||y — z||.
(iii) Discrete loss: L(y, 2) = 1 — 1, (2).

(iv) Kullback-Leibler (KL) divergence [13]: If the parameters are probability distributions (i.e. pa-
rameters have non-negative entries and their entries sum to unity), and y is also a probability

distribution, then L(y, z) = Zle yilog z; /y;. If y is not a probability distribution, L(y, z) = occ.

Note that (i)-(iii) are metrics, whereas (iv) is not (it is not symmetric, and does not obey the tri-
angle inequality). The choice of loss function is somewhat arbitrary; it should be motivated by the
particular application of parameter estimation. Least-squares loss is the most common choice of loss
function, given its fundamental connection to variance. Thus, unless stated otherwise, we will always

take least-squares loss as our loss function.

Given a choice of loss function, the performance of the random variable §(X) for parameter value 6

~

is characterised by the random variable L(6(X), #), which takes values in [0, cc]. In order to compare

Tt is sometimes helpful to allow estimators to take values outside of ©. For example, it may be sensible to estimate
the temperature of a system as zero. An estimator is called proper if it only takes values in ©, otherwise it is called
improper.
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Py[L(6(X),0) > n]
Small Large

Small i N

Eg[L(0(X), 6]

A

n C n C'

Large

Figure 2.1: Contrasting conclusions that can be drawn from thresholding versus expectation. The

plots show possible (schematic) pdfs of the random variable L(0(X),0). C represents a very large

~

real number. Note that Markov’s inequality implies that Py[L(A(X),0) > n] < Eg[L(6(X),0)]/n,

so that Pg[L(6(X),0) > 7] cannot be too large if Eg[L(0(X),0)] is small. Conversely, as C' — oo,
Eg[L(0(X),0)] can be made arbitrarily large whilst Pg[L(6(X),0) > n] is simultaneously arbitrarily
small.

estimators, we wish to quantify the performance of this random variable with a single number. There

are two common methods:
(i) Expectation: The expected value Eg[L(0(X),0)].
(ii) Thresholding: For a fixed (small) parameter value 7, the probability Ps[L(6(X),0) > 7).

The subscript 6 on P, E is used to indicate that the random variable X has law Py. Taking the expecta-
tion and using thresholding can give contrasting conclusions on an estimator’s performance, see figure
2.1 for a discussion. Thresholding is particularly common in theoretical computer science [14], most
statistical works use least-squares loss. By introducing a new loss function L'(y,0) = Liz(y.0)5n) (%),
we note that Py[L(A(X),0) > 1] = Eg[L/(6(X),0)] may also be written as an expectation of a loss
function. However, in general, L’ will not inherit any “nice” properties of L, such as continuity or
convexity. In summary, the performance of an estimator for a given value of the parameter 6 is quan-

~

tified by Eg[L(6(X),0)], where L is a choice of loss function.

Given an estimator é, its performance across the whole parameter space © is measured by its risk
function R, defined by
R(6,-):0 —[0,00], R(,60) = Eg[L(0(X),0)]. (2.1)

The risk function gives us a way to compare estimators: we say that él < é2 if
V0 € ©, R(6,,0) < R(6,,0). (2.2)

Note that < is not generally a partial order, as we may have R(6,, ) = R(0,,-) for distinct 0, # 0,.

It is important that two estimators are compared at all values of #; before an experiment we do not
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know the value of the parameter.

We write 0, < 02 if 01 < 6,, but 02 % 0. If «91 < 6,, then @, is theoretically a better estimator than
92 whatever the value of the parameter, one expects 61 to perform better?. An estimator 02 is said
to be inadmissible if there exists another estimator 6, such that 6, < 6,, otherwise it is said to be
admissible. Most reasonable estimators will be incomparable via <; which is better will depend on
the value of the parameter (see figure 2.2 for an illustration). If an estimator f were a minimum of
<, then it would be a best estimator. However, in almost all problems of interest, no such minimal

estimator exists.

Lemma 2.1: Suppose L is a loss function such that L(6,0) = 0 for all § € ©. Then, if < admits

a minimal element 0, R(9,-) = 0.

Proof: Fix 6y € ©. Define §% = 6, called a constant estimator, so that R(éeoﬁo) = 0. But
6 < 6% which implies that R(é ,00) = 0. As 0y was arbitrary, the result follows. O

If R(é, -) = 0, the parameter estimation problem can always be solved exactly (from the perspective of
the loss function L), in which case the underlying randomness is not important. Thus, in most cases

of interest, there is no “best” estimator.

The worst-case risk of an estimator Rmax(é), is defined by

Rax(0) = sup R(6,0). (2.3)
(JS(C]
One can also choose to compare estimators by their worst-case risk, giving parameter-agnostic guar-
antees. However, this can lead to sub-optimal performance across most of the parameter space, this is
further discussed in figure 2.2. An estimator 6™ is called minimax if it minimises the worst case risk,
ie.

Runax (0™) = inf Riax (). (2.4)
0

We reiterate that 6™ is not (usually) a minimal element of <, other estimators will perform better

depending on the value of the parameter.

The most common choice of estimator, studied for over 200 years [15] is the maximum-likelihood
estimator (MLE). It can be used when Py admits a probability density function (pdf)? f(z|@), with
respect to some reference measure p on . Usually, x C R™, and p is the Lebesgue measure. The

maxinum-likelihood estimator is defined by

OMUE (1) = arg max f(x|6), (2.5)
0cO
with ties broken arbitrarily. The optimisation is often written in terms of the (log-)likelihood function
L
(|x) : © = R, £(0)z) = log f(x|0). (2.6)

2In practice, there may be other considerations, such as computational cost or stability to noise.
3If x is finite, then note that a probability density function (with respect to the counting measure) is a probability
mass function.
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Figure 2.2: Schematic plots of two risk functions R(#,-) for two different estimators, given by the
red and blue curves. The blue estimator has smaller minimax risk than the red estimator, but has
significantly worse performance across most of the parameter space. Moreoever, neither estimator
dominates the other - they are incomparable via <.

Clearly, maximising ¢ is the same as maximising f. The MLE captures our intuition in parameter
estimation: the parameter “probably” has a value that induces the highest possible probability of
generating the data we have seen. Note that the estimator in example 2.1 is the MLE. Indeed, there
are some situations in which the MLE is provably optimal (see Section 2.1.3). However, surprisingly,

it is not always admissible, as shown by the following example.

Example 2.2: The James-Stein estimator [16—18]

Suppose that we are trying to estimate the mean § € R¥, where k > 3, of a Guassian (multivariate
normal) distribution, with known covariance matrix ¥ > 0, under least-squares loss. That is to
say, X ~ N(0,%). The MLE 0ME(2) = z has risk

R(6™P, 6) = Eq[| X — 0]%) = Tx(S). (2.7)

The James-Stein estimator (JSE), '8 is defined by

05 (x) =z — HZ_%, (2.8)
with risk ) .
R(675,0) = Tr(D) — (k — 2)%Ey {HEU{HQ} . (2.9)
Since the second term is clearly negative, we deduce that §75 < gMLE , i.e. the JSE dominates the
MLE, and the MLE is inadmissible.

Lemma 2.1 illustrates the difficulty of statistics. In order to quantify the performance of estimator,
one must choose an arbitrary loss function. Once the loss function is chosen, there is (usually) no
subsequent best choice of estimator. Thus, extreme care must be taken in choosing a particular
estimator, requiring extensive justification. Finally, example 2.2 shows that it is difficult to define

general classes of (sensible) estimators; the MLE, one of the most pervasive and seemingly sensible



2. Metrology 9

estimators, can be inadmissible.

2.1.2 Bayesian Statistics

In this Section we introduce Bayesian statistics. The two most common interpretations of probability
are frequentism [19] and Bayesianism [20]. Frequentism, formally introduced in the mid 19th century
[21], interprets probabilities as externally fixed, discoverable by averaging the results of many repeti-
tions of the same experiment. Bayesianism, introduced in the late 18th century [22], however, views
a probability as the quantification of one’s belief, or expectation, that an event will occur. As one
receives new information, one should update their belief, in accordance with Bayes’ rule [23]. This
thesis adopts a frequentest view of probability, but we will use techniques from Bayesian statistics
to prove many of our results. Thus, we briefly introduce the mathematical machinery that we will

require, particularly in Section 2.2.5.

In parameter estimation, Bayesianism amounts to a probability measure 7 on © (with o-algebra given
by the restriction of the standard o-algebra of R¥), representing one’s belief about the value of the
parameter, called the prior distribution. We will always assume that 7 admits a density (with respect
to the Lebesgue measure). For notional brevity, we will also call this density 7. Given a prior, we

A~

define the Bayes risk R;(f) of an estimator by
Ra(8) = By [R(6,9)] = / A0 (0)R(.0). (2.10)

The Bayes risk quantifies the expected performance of 0 - if ones draws 0 at random according to m,

how well does one expect 6 to perform?

An estimator B that minimises the Bayes risk is called Bayesian:
R (%) = inf R.(9). (2.11)
0
It represents an optimal choice of estimator, with respect to the prior .

Suppose X takes value x, then our belief about the parameter should be updated (via Bayes’ rule) to
give a new probability distribution II over ©, called the posterior distribution:

(o)) = - L0 (2.12)

[ do f(]0)m(9)

The posterior risk of an estimator, if x is observed, is given by
/ dOTI(0]2)L(6(z),0). (2.13)

An estimator 6 is Bayesian iff. it minimises the posterior risk [20]. Bayesian estimators are often

admissible, as shown by the following result

I Lemma 2.2: Let 7 be a prior such that the Bayes estimator 6B is unique. Then 6B is admissible
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Proof: Suppose 6B is inadmissible, then there exists an estimator § < 6B. But then Rﬂ(é)

<
Ry (éB) and 6 is also Bayes, contradicting the uniqueness of 65, O

There are various generalisations of this result (see Ref. [24] theorems 7.13 and 8.7), which relax the

condition of uniqueness.

The introduction of a prior leads to an (often unique and admissible) optimal estimator. However,
one must have good reason to pick a particular prior w. If the parameter estimation problem has
been repeated many times, then one can build up a suitable prior over time. However, if a parameter
estimation problem is to be performed once, then the choice of prior 7 is somewhat arbitrary. If one
tries to be prior-agnostic, by choosing the worst-case prior for a fixed estimator é, one finds Bayes risk
equal to the worst-case risk of 6:

sup R (0) = Runax(9), (2.14)

yielding the same issues as discussed in figure 2.2.

2.1.3 The Asymptotic Limit

The (historically) most studied regime of parameter estimation is the asymptotic limit - where infinite
observations are made. Correspondingly, the most commonly studied area of quantum metrology is
also the asymptotic limit. Our results in Section 2.2 are decidedly non-asymptotic, but Section 2.3
relies on some asymptotic quantum theory. Thus, in the next two Sections we give a self-contained
description of classical asymptotic statistical theory. We give more exposition than is strictly neces-
sary for our results, in order to give the reader a better appreciation of the context of the theory. Of

course, our review is far from exhaustive; see Ref. [25] for a thorough approach.

In the asymptotic limit, one usually takes X = (Xi,...,X,,) as a vector of independent, identically
distributed (iid) random variables, each of whose law depends on the parameter in the usual way.
Instead of a single estimator 6, one considers a family of estimators {f, : x — R¥}, one for each
n € N. Often, the family {én} is also referred to as an estimator. The asymptotic limit is when

n — 00, i.e. one is given infinite data.

The simplest desirable property of estimators is that they should get the “right answer” as n — oo,

known as consistency. An estimator én is said to be strongly consistent at the point 6 € © if
0, L2 0 as n — oco. (2.15)

If the convergence is in probability, rather than a.s., it is said to be weakly consistent. An estimator

is said to be strongly (weakly) consistent if it is strongly (weakly) consistent at all 6§ € ©.

In most reasonable scenarios, the MLE can be shown to be consistent. Since the MLE is defined for

all n in a uniform sense, it is common to refer to the family é};/[LE by just GMLE

Lemma 2.3: Suppose that © is compact, the model Py is identifiable, and that f(z|f) is

“sufficiently regular”, then OMLE g is weakly consistent
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For a proof, and a discussion of possible regularity assumptions, see Ref. [25], Section 5.2. Under
stronger assumptions, one can also show that the MLE is strongly consistent (see Ref. [26], theorem

2.5). Additionally, for a fixed prior m, one can show a version of consistency for Bayesian estimators.

Lemma 2.4: (Doob’s theorem) Suppose that y C R™ for some m, with its Borel o-algebra, and
that the model Py is identifiable. Let 7 be some prior on ©, then the Bayesian estimator 6B is

strongly consistent on a (measurable) subset A C O, with w(A) = 1.

If there is a neighbourhood U of the true parameter 6 such that 7(U) = 0, then for all posteriors,
IL,(U|x1,...,2,) = 0, and thus 68 will not be consistent at #. This shows the necessity of the 7-a.s.
part of Lemma 2.4. Aside from issues of null-sets of priors, Doob’s theorem shows that given enough
information one (almost always) recovers the correct parameter, regardless of one’s initial belief. Thus,

in the asymptotic limit, the arbitrary choice of prior is unimportant.

Consider the behaviour of R(6,,,0) as n — oo. It is certainly desirable that R(6,,,0) — 0 as n — oo,
strongly related to consistency*. Moreover, inspired by the variance of sample means (for example,
in example 2.1), we expect that R(,,0) should scale as ©(1/n). For a fixed value of the parameter
0y € ©, We would like to determine the optimal prefactor, O(6y), in the 1/n scaling - giving a notion
of an asymptotically optimal estimator. Given that the constant estimator 6% has R(éoo, 6p) =0, it is
not useful to consider inf 0. nR(6,,0) = 0. Instead, O(fy) is commonly defined as a “local” minimax:

O:0 —[0,00], O(fg) =inf lim limsup sup nR(6,,0). (2.16)

6, 070 n—oo  ||l0—6o[|<s

The limit 6 — 0 makes O a local property of the model. Remarkably, this fearsome limit has an

elegant characterisation for most models of interest, as discussed in the next Section.

2.1.4 The Fisher Information

In this Section we introduce the Fisher information, the most important object in the classical asymp-
totic limit, finishing our exposition of classical statistics. We briefly motivate the Fisher information
in a non-asymptotic sense, before relating it to the optimal prefactor O, introduced in the previous
Section. We give several different operational interpretations of the Fisher information, with the aim

of demonstrating its importance.

Consider a model Py that admits a pdf f(z|f). Upon observing X, one intuitively expects the true
parameter to be a maximum of the likelihood function ¢ (the motivation behind the MLE). Assuming

that ¢ is differentiable, we define s, the score function
s(-]z) : © = R*, s(f|z) = VI(6)x). (2.17)

One can calculate Eg[s(0|X)] = 0, indeed showing that the true parameter is expected to be stationary
point of the likelihood function. If £ has a very sharp peak, we can be confident that the true parameter
is close to the maximum of ¢. If ¢ is very flat, we can have little confidence in our estimate of the

parameter. See figure 2.3 for an illustration of the two cases. Assuming ¢ is C?, the “degree of

4In fact, if L is bounded, then this condition is implied by consistency.
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9* 90 9* 60
(a) (b)
Figure 2.3: Possible (schematic) shapes of ¢, the likelihood function. 6, denotes the argmax of ¢

(i.e. the maximum likelihood estimator), the true parameter is 6. When the likelihood function is
more sharply peaked (as in (a)), we can be more confident that 6, is close to 6 (than in (b)).

sharpness” of the peak is quantified by (minus) the second derivative (or curvature) of £. This quantity

is called the Fisher information (matrix):

0 0

I(|P): © = My(R), I(60|P);; = —Eg, [aaaa-
i OUj

6(00|X)] . (2.18)
One can also show that I(0|P) = Covy[s(0|X)]. When the model P is unambigous, we will write I(6)
instead of I(6|P). I(|P) can be thought of as characterising the distinguishability of the law Py from

Py, for #' in an infinitesimal neighbourhood of 6.

The Fisher information elegantly captures many operational quantities in asymptotic statistics. In-
deed, under suitable regularity assumptions, the Fisher information characterises the optimal prefactor

O introduced in the previous Section:

Lemma 2.5: Suppose that © is compact, the model Py is identifiable, f(z|0) is “sufficiently reg-
ular”, 6 is an interior point of ©, and that I(6y|P) is invertible. Then, O(6y) = Tr[I(6o|P)~"].

For a proof, and discussion of regularity assumptions, see Ref. [25], theorem 8.11 and Section 8.9.
Fewer regularity assumptions are needed to show that O(6p) > Tr[I(6p|P)~!]. The Fisher information

has an additional asymptotic property:

Lemma 2.6: Suppose that that Py is “sufficiently regular”. Further suppose, that én is an
estimator such that for all § € ©, \/n(f,, — 0) converges in distribution. Then the set

{0 nrgmfnR(én,e) < Te[1(0/P)~']}, (2.19)
has Lebesgue measure 0.

See Ref. [25], theorem 8.9 for a proof. This shows that for sufficiently “nice” estimators, an improve-

ment over I(f|P)~! can only be made on a null set.

Consider example 2.2, i.e. X ~ N (6,%). One can show that I(f) = X! is independent of 6. If we take
n samples, the sample mean has distribution X,, ~ N (6, $/n), and R(OM-E 9) = Tr(X)/n. Aplying
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the James-Stein estimator to the sample mean, we find that

(k —2)°

n2

R(0)8,0) = Tx(2)/n — 0

1
—— | (2.20)
==X

For 0 # 0, the second term is O(1/n2), and thus R(02S,0) = Tr[1(0)~']/n + O(1/n?). We consider
the simplifying case ¥ = 021}, for some o > 0. We find that R(025,0) = 20%/n = (2/k) Tr [1(6)~] /n.
This is an explicit example of an estimator whose risk scales no worse than the inverse Fisher infor-

mation, yet scales better than the inverse Fisher information on a null set: {0}.

We give a final application of the Fisher information to non-asymptotic statistics. For an estimator
é, we define its bias By by
By :© — R, 0 Eg[d(X)] - 6. (2.21)

One can bound R(6,6) in terms of I(#) without reference to the asymptotic limit. In fact, one can
bound the matrix E(0,0) := Ey[((X) — 0)(A(X) — 0)T], whose trace is equal to R(6,6):

Lemma 2.7: (Cramér-Rao (CR) bound)

E(0,0) > B;(0)By(0)" + [1 + DB, (0)]1(0) ' [1 + DB;(0)]". (2.22)
Taking the trace of equation (2.22) gives a lower bound on R(6,6). An estimator is said to be locally
unbiased at a point 0 € © if B;()) = 0 and DBy(f) = 0. In this case, the CR bound simplifies to
E(0,0) > I(0)~!. The generic dependence of the CR bound on the bias of an estimator limits its

practical applications.

We conclude the Section with the observation that under appropriate regularity assumptions, the

MLE has optimal asymptotic scaling.

Lemma 2.8: Suppose that the model Py is identifiable, f(z|0) is “sufficiently regular”, 6y is an
interior point of © and that I(6y|P) is invertible. Then

V(ONE — 0) % N (0, 1(66|P) 7). (2.23)
Moreover, nR(AMLE ) — Tr [1(6|P)~!] for all 6 € ©.
For a proof, see Ref. [25], Section 8.9.

2.1.5 Quantum Metrology

In this Section we introduce quantum metrology, the central field of this chapter. There are two main
motivations for studying quantum metrology. Firstly, if one wishes build technology from sufficiently
small systems, the systems will be described by the laws of quantum mechanics. Thus, if one wishes to
measure any property of these systems (and thereby extract useful information), it is essential to un-
derstand the interaction of quantum mechanics and parameter estimation. Secondly, there have been
theoretical and experimental demonstrations that quantum effects can lead to enhanced precision in
parameter estimation [27]. We do not explicitly deal with these motivations, instead directly consid-

ering the extant, well-established theory. We will heavily rely on the language of classical statistics,
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as introduced in the preceding Sections.

In quantum metrology, we explicitly describe how quantum systems depend on parameters [27, 28].

Instead of specifying a map 6 — Py, we fix some Hilbert space H, and consider a map
p:6 — D(H). (2.24)

The map p is called a parameterised (quantum) state. If the state p is always pure, it is usually
described by a map
() : © = S(H), (2.25)

which induces a corresponding p(-) = |[1(-)X¥(+)]. Such a [1(-)) is called a parameterised pure state.

We give two examples of parameterised states.

Example 2.3: Gibbs state
Fix some Hamiltonian H € Herm(H). We take

e_ﬁH

pu :[0,00) = D(H), pu(B) = Tr(e PHY"

(2.26)
pu (called a Gibbs state) corresponds to the thermal equilibrium of a system D(H) with Hamil-

tonian H at inverse temperature (.

Example 2.4: Phase-Encoded state
Fix H = C2, the Hilbert space of a qubit. We take

() : 8" SH), ¢ s — (J0) +¢]1)) (2.27)

il
V2
Such states arise in optics when using 2-arm interferometers. They may also be produced by the

interaction of a two-level spin system with a magnetic field.

Given an unknown quantum state p(), we are tasked with estimating 6, as in the classical case. The

most general quantum process one could use corresponds to a POVM (K, M) € M(#). The choice of

P(P% M)
0

measurement induces a model , which has a probability mass function on [K]:

py M K] = [0, 1], (i) = Te(Mip(0)]. (228)

Thus, after the choice of measurement, quantum metrology reduces to classical parameter estimation.
As before, one picks an estimator M : [K] — RF. After a choice of loss function, this estimator has
a risk function Rp(éM ,+). Usually, the parameterised state p is obvious from context, and we write
R(éM ,+). In summary, one specifies an approach to estimating the parameter by a measurement-
estimator pair (M, M), where M = (K, N) € M(#) and 0™ : [K] — RF.

The relation < on estimators immediately induces a relation < on measurement-estimator pairs:
(M, oM ) < (F, or ) iff. 0M < §F. We emphasise that estimators that use different measurements can
still be compared. As in the classical case (Lemma 2.1), we find that there is usually no optimal

measurement-estimator pair:
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Lemma 2.9: Suppose L is a loss function such that L(#,0) = 0 for all § € ©. Then, if < admits
a minimal element (M,0M), R(6M,.) = 0.

| Proof: As in Lemma 2.1. O

If L is positive definite (i.e L(y,z) = 0 = y = z), then the existence of a minimal element of < would
imply that the states {p(f) | @ € O} can be discriminated with certainty, i.e. they are all orthogonal.
This is an extremely restrictive condition, for example it is is impossible to satisfy if © is infinite and
‘H is finite dimensional, or if p is continuous. As before, Lemma 2.9 demonstrates the difficulty of

quantum metrology.

One can also consider Bayesian quantum metrology: given a prior m on the parameter space ©, then,
as in the classical case, a measurement-estimator pair (M,#M) has some Bayes risk R(0™). For a
fixed measurement M, its Bayes risk is defined as the minimum possible Bayes-risk over choice of
corresponding estimators oM.

R(M) = iérg R (6M). (2.29)
A measurement M [measurment-estimator pair (M, oM )] is called Bayes if it has minimal Bayes risk.
In the single parameter case (and for least squares loss), it is easy to find Bayesian measurement-
estimator pairs [29]. We discuss this further in proposition 2.7. We conclude with a remark that Ref.
[30] has recently considered an interesting approach to thresholding in the quantum Bayesian regime.
They show that optimisation of the measurement-estimator pair can be formulated as a semi-definite
program, allowing for an efficient numerical solution. This approach leads to an intriguing new theory
of both asymptotic and non-asymptotic quantum metrology, with the usual Bayesian drawback of an

arbitrary choice of prior, or an oversimplification in terms of minimax risk.

2.1.6 Quantum Asymptotic Limit and the Quantum Fisher Information

As in the classical case, the most commonly considered regime of quantum metrology is the the
asymptotic limit of infinite resources. As mentioned, our results do not heavily rely on this framework
(though we do use it as motivation), but given its central importance to the field, we give a brief
exposition of the main results of the theory. Asymptotic quantum metrology is significantly more

complicated than its classical counterpart, and not fully understood.

In the quantum asymptotic limit, one considers a sequence of parameterised states p, : © — D(H®").

®n e ppisn

We will only consider the case where there is some parameterised state o, and p, = o
copies of the state . We let p = p1. As in the classical case, one considers a sequence of measurement-
estimator pairs, (M, éM”) One usually fixes 6 and considers the behaviour of R(éM", 0) as n — oc.

We will often refer to M as én, leaving the choice of measurement implicit.

Given the classical characterisation of the asymptotic limit in terms of the Fisher information, initial
attempts [31] at characterising the optimal behaviour of R(6M», ) focused optimising the fisher in-
formation I(#|P®M)) over choices of POVM M. As I is a positive semi-definite matrix, one cannot
“maximise” the Fisher information directly (since most positive semi-definite matrices are incompara-

ble). Instead, motivated by Lemma 2.5, one minimises Tr[1 (| P M ))_1]. This gives rise to the most
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informative bound [32]:

-1
MIB/ | . MIB _ (p; M)
CMIB(|p) : © — [0, 00], CMIB(4]p) Meﬁfﬁ)ﬁ([ [a(P ] > (2.30)

Ifr [9|P(p? M)] is not invertible, we adopt the convention Tr (I [GIP(”; M)] _1) = 0.

CMIB is in general, difficult to perform. Thus, instead of calculating CMB di-

The optimisation in
rectly, proxy functions are defined which are easier to calculate, and that lower bound CMB. We
will discuss 3 such lower bounds, starting with the symmetric logarithmic derivative (SLD) quantum

Fisher information (QFI) [31, 33].

Let 9;p : © — Herm(#H) denote the i-th partial derivative of p. The i-th SLD is the map L$'P : @ —
Herm(H) implicitly defined by the equation

1
L {0(6). L2 0)) = 01pt6 (231)
The SLD QFTI is defined as
JsLp(-]p) 1 © = My(R), Jsup(8]p)i; = Re Tr[p(0) LT (0) L5 (9)]. (2.32)

We make two remarks:

1. Equation (2.31) may not have a solution, in which case we think of LZ-SLD as being “infinite”.

2. The solution to (2.31) is, in general, non-unique. Let the orthogonal projection onto Kerp(6)
be M. Let Iy = 1 — IIy. Then Iy L$YP(0)Iy, I LEEP(9)11y and Iy LELP (0)IT; are uniquely
determined by equation (2.31), whereas IT; L3P (9)II} is arbitrary. One can remove this non-
uniqueness by insisting that Hé‘Lf’LD(H)Hé- vanishes. Note that Jgrp does not depend on the
choice of SLDs.

The right-logarithmic derivative (RLD) QFT is defined similarly [34, 35]. The i-th RLD is the map
LEYD : © — Herm(H) implicitly defined by the equation

9ip(0) = p(0) LI (0), (2.33)
and the RLD QFT is defined as

JrLp(:]p) : © = My(C), Jrp(0lp)ij = Tr|p(0)LFP(0)LFP (0)1]. (2.34)

Similar caveats to the definition of LZ-SLD also apply to L?LD: a solution to equation (2.33) may not
exist (we think of it as infinite) and Iy LRP () is arbitrary (yet Jrrp is uniquely defined). One can
also define a left logarithmic derivative (LLD), but taking the Hermitian conjugate of equation (2.33),
we see that the LLD is the Hermitian conjugate of the RLD. Due to this redundancy, Jirp = JrRLD-

L3P and LEMP both attempt to generalise 9;¢(0|z) = 0;f(2|60)/f(x|0); the derivative of a pdf divded
by that pdf. In the quantum case, 9;p(0) and p(f) may not commute, so there is no unique way to

take their “ratio”. They both directly bound the Fisher information of any measurement of p:
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Lemma 2.10: Let p: © — D(H) be a C? parameterised quantum state. Then, V§ € © and
VM € M(H), we find that

1[o] pen)] > a0l and 1 [o] pei20)] > Tan(0lp) (2.35)
Moreover,
CMB(6]p) > C5P(6]p) := Tr[JsLp(6]p) '], (2.36)
CMB(9]p) = CMP(0]p) := inf{Tr[X] | X € My(R), X > Jrrp(flp) ™'}, (2.37)
= Tr[Re(Jrin(0lp) ")) + [[Im(Jreo(9]p) ™), (2.38)

See Ref. [32] for more detail. The bounds on CM!B follow from taking the trace of equation (2.35).
We consider one final bound on CM®B| called the Holevo bound. Unlike the SLD and RLD bounds, it
is explicitly a scalar bound - it does not bound [ [0|P(p? M )] directly. Fix 6 € © and let

Xy = {(Xl, e ,Xk) S Herm(’H)k | Tl"[azp(e)XJ] = ij}7 (2.39)

The Holevo bound is given by the optimisation

CH(-p) : © = [0,00], CH(0]p) = XEXG}JHGka(R){Tr(U) | U > Z[X]}. (2.41)

The Holevo bound CH directly bounds CMB, and is never worse than the SLD or RLD bounds:

Lemma 2.11: Let p: © — D(H) be a C? parameterised quantum state. Then, V0 € ©, we
find that

CMIB(6]0) > CM(0]0), (2.42)
> max{C5P (6]0), CFP (0]0)}. (2.43)

Additionally, CT(6|p) < 2C5TP(4)|p).

For more detail, see Ref. [32]. In general, CS"P and CRMP are incomparable (their relative size can

change depending on the model). We see that CSP cannot be much worse than C*, however CRMP

MIB
Cha

may be arbitrarily smaller than CS“P and CH. In general, CH may be strictly smaller than see

Ref. [36] for an example. However, when p is pure, or we work with single parameter states, many of

the inequalities collapse:

Lemma 2.12: Let p: © — D(H) be a C? parameterised quantum state.

1. If © C R (single parameter), then V0 € O, we find that

CMIE(6]p) = CM(8lp) = C°HP(0]p). (2.44)
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2. If p is a pure parameterised state, then V0 € ©, we find that
CMIE (9] p) = CH(0]p). (2.45)

See Refs. [32, 37] for a proof.

We note that CMIB is not defined operationally, only in terms of the classical Fisher information.
Operationally, one should consider the quantum generalisation Og of the local minimax bound O
(defined in equation (2.16)):

A~

Og:0 — [0,00], Og(6p) = inf inf lim limsup sup nR(6,,0). 2.46
Q10 0,], Ogf) = | nf inf Jim sy swp nR(, 0. (240

There are three issues with attempting to apply Lemma 2.5 to the quantum case, in order to relate
OQ to CMIB.

(i) Given p, = o®", there is no requirement that one should measure the separate copies of o
with identical measurements (which would lead to iid samples). Indeed, one could collectively

measure the whole ensemble p,, with a non-seperable POVM.
(ii) The set of POVMs that saturate CMB will generically depend on the unknown parameter 6.

(iii) For any given measurement M € M(#), the model P(,(p M) may not be identifiable.

In the pure state case, it has been shown that these issues do not apply: Og = CH(= CcMIB) in
agreement with the classical case (see Ref. [38], Section 5). A simpler scheme for attainability is given
in Ref. [39], at the cost of assuming that for each 6 one can pick a POVM My € M(H) that saturates
CMIB and whose model P(,(p M9) ig identifiable.

Somewhat surprisingly, recent work [37, 40-42] has found that if p(0) is full rank for every 6, one can
achieve risk scaling as C(6|p)/n. As noted above, CH' may be strictly less than CMB, showing a

deviation from the classical setting. Roughly speaking, their estimation protocol consists of two steps

1. Perform full state tomography on n® copies of o(6), for some a € (0,1). Tomography produces

an estimate & of o, which can be used to get a rough estimate 6 of 6.

2. Measure the remaining n —n® copies of o with a POVM, chosen using the intial estimate 6. Use

the outcome of this measurement to refine § to a final estimate 6.

The first step aims to circumvent the issues (i) and (iii) above. If the tomography is sufficiently
accurate, one can essentially restrict # to lie in a small volume, in which there is one POVM that
approximately saturates CH, and whose model Pg(p M) {5 identifiable. However, it is not known what

the asymptotic optimal prefactor is for states p of arbitrary rank.

Point (i) proves much harder to address. The Cramér-Rao bound (equation 2.22) lower bounds the risk
of any locally-unbiased estimator in terms of CMB, but most estimators will not be locally unbiased,
limiting practicability. Jgip and Jgrrp can be used in the full CR bound to bound the risk of any

estimator, but the bias terms appearing in the bound limit its utility.
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Alternatively, one can bound the asymptotic risk prefactor for various “nice” classes of estimation
strategies. The Cramér-Rao bound can be used to bound the risk of asymptotically unbiased estimators
[37, 40], i.e. those satisfying

lim B; (), lim DB, (0) = 0. (2.47)

n—oo n n—oo n
However, it is not known whether asymptotically unbiased estimators exist for general parameterised

quantum states [40], limiting the applicability of this bound.

A more complex class of boundable estimators was given in Ref. [40]. Fix 6,h € R* and define a
“local” sequence of states p,(h) = pn(6 + h/y/n). Consider a measurement-estimator pair (M,,, §M).
Define the sequence of random variables X" = \/n(6M»(Y,) — 6), where Y,, is a random variable
denoting the outcome of measuring p(h) with M,. If 8M(Y,) estimates of 6 + h//n, then xoh
estimates of the “local shift” h. We say that (M,, M) is locally asymptotically covariant (LAC) at
0 if

1. For all h € R, Xg’h converges in distribution to some random variable X",
2. For all h € RF, X%" has the same distribution as h + X%0.

If (M,,, 6M») is LAC at 6, then lim inf,, o, n.R(§M",0) > CH(6|p) (see Ref. [40], theorem 2). Moreover,
the two step estimation process described above is LAC (see Ref. [40], theorem 10), and thus LAC
estimators exist for a wide range of parameterised quantum states. We summarise these asymptotic

statements in a single Lemma:

Lemma 2.13: Let p: © — D(H) be a “sufficiently regular” parameterised quantum state and
suppose that © is compact. Then:

(i) If p is pure for every 6§ € ©, and 6 is an interior point of ©, then Og(y) = CH(6y) =

CMIB ((90)
(ii) If p is full rank for every 6 € O, then there exists a measurement-estimator pair (M, éM”)
such that
lim sup nR(0"",0) = CH(6). (2.48)
n—o0

(iii) If p is full rank for every 0 € O, and én is LAC, then for every 6§ € ©

liminf nR(6,,0) > C1(0). (2.49)

n—oo

We see that the asymptotic limit is only well-understood for pure and full-rank parameterised states.
However, intermediate rank states are not understood. Moreover, a unifying framework for pure and
full rank-states, as well as simple estimation strategies that achieve asymptotic limits are yet to be

discovered.

2.1.7 Quantum Filtering

In this Section, we give an overview of quantum filtering, which is essential for all of our results in Sec-
tion 2.3. Quantum filtering, a special case of a more general technique known as postselection, allows

for enormous increases in parameter estimation accuracy, which have been practically demonstrated
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[43]. The application of postselection to quantum metrology is a relatively new theory, and thus we

give a short, self-contained overview that covers most existing results.

In some experimental systems (particularly in optics), one can produce states p(f) (through the in-
teraction of a probe and a system of interest) much faster than one can measure them [44, 45]. Thus,
experimental resources are limited by the number of measurements one takes, not the number of copies
of a parameterised state. Moreover, collective, entangled measurements on a large number of copies

of the state are often practically infeasible, limiting measurements to single copies of p(0).

Suppose, per unit time, one could produce N copies of p(#), but can only measure M < N. Only
preparing M states is equivalent to discarding a fraction (1 — M/N) of the available information. In-
stead of discarding a random fraction, one could use a more complex “filter”, distilling the information
in many copies of p(f) into a fewer states. Such a filtering technique was first described in Ref. [46],
and further refined in Ref. [47].

A quantum filter is described by a two outcome measurement. Since the post-measurement state of the
filter is important, we cannot describe the measurement by a POVM. Instead, we explicitly consider
its two Kraus operators K, K satisfying KTK + K'K = 1. The corresponding POVM operators are
given by F = KK, F=KK=1-F. Filtering corresponds to postselecting on the measurement
outcome corresponding to K; states that have outcome K are blocked by the filter. Thus, the filter

gives a new parameterised quantum state

Kp(0)Kt

=~ T(pO)F) (2.50)

P+ © = D(H), pi(0)
In order to measure the information content in pP®, it is common to consider Jgr,p(-|pP*). For notational
brevity, we shall shorten Jg,p to J when discussing quantum filtering. The QFT of the postselected
state p} may be much larger than the QFI of the original state. However, the gain in information
from filtering is always balanced by the small probability of successful postselection. Indeed, for a

filter with Kraus operator K, we define the probability of successful postselection as
P © = (011, %c(0) = Te(p(6) ). (251)
The rate of information arriving at the detector is thus given by
Rp i+ O = My(R), Ry k(0) = pp 1 (0)T (0| p) - (2.52)

The factor of pES () in R, i accounts for states that are blocked by the filter; R, x measures the
rate of information arriving at the detector. A version of the data-processing inequality [48] applied
to the QFT says that it cannot be increased by CPTP maps, and thus that

V0 € O, R, k(0) < J(0]p). (2.53)

We say that the filter K is lossless at the point # € © if there is equality in equation (2.53). If
prp>s (0) = p is fixed, then a lossless filter achieves the maximum possible information amplification,

i.e. it maximises J(0|pj’) over all filters with pi°,(6) > p.
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Ref. [47] gave an example of a lossless filter for pure states: the Jenne Arvidsson-Shukur Lupu-
Gladstein (JAL) filter. The JAL filter depends on a parameter ¢ € (0,1] and 6y € ©:

Kt = (t = 1) [(00) b (60)| + 1. (2.54)
The performance of the JAL filter is summarised by the following Lemma.

Lemma 2.14: Let p: © — D(H) be a pure parameterised quantum state. The JAL filter leads

to unbounded, lossless amplification of information at the point 8y € ©. In particular,

J(90|PI;(21AL) = J (0o ’ p) /tQa pz?KgAL (6o) = t2. (2.55)
0 0

For a proof, see Ref. [47]. This remarkable unbounded amplification of J has been shown to be a

genuinely quantum effect (see Section 2.3.3). There are two main drawbacks of the JAL filter:

(i) The amplification is only described in terms of the QFI J, not an operational quantity such as

the risk of an estimator.

(ii) The JAL filter depends on the parameter to be estimated (similar in spirit to how a measurement

that saturates CMB depends on the parameter).

Point two was partially addressed in Ref. [47], where they show that if ) is sufficiently close to the
true parameter 6 € ©, the JAL filter is still approximately lossless:

Lemma 2.15: Let 6 € O, and let § = 6§ — 0y, then

J(6olpieyar) = J (6o | p) /£ 4+ O(16]%/82), Py, g (b0) = £+ O(|3]|*/¢). (2.56)
0 0

Lemma 2.15 shows that that ||§]] < t is sufficient for good performance of the JAL filter. In general,
it is also expected that this condition is necessary. The constraint ||| < t may be interpreted in two
ways. Firstly, one could consider a desired filter strength characterised by ¢, in which case one needs
to estimate 6 to accuracy ~ t before one filter to the desired level. Alternatively, given a guarantee

on ||4]|, the maximum possible filter strength is given by ~ ||4]|.

We conclude by noting that a proof-of-principle experiment using the JAL filter was recently carried
out in Ref. [43]. They obtained an increase in information content by up to two orders of magnitude,
demonstrating the practicality of the JAL filter. However, noise limitations meant that information

amplification could not be made unbounded.
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2.2 Non-Asymptotic Quantum Metrology

We have seen that the asymptotic limit allows one to define a meaningful of notion of optimality
for measurements and estimators. However, its practicality is limited; in reality one receives a finite
number of copies of a quantum state. Moreover, in many scenarios, the number of copies is severely
limited - they are often very expensive to produce (or measure). Thus, the non-asymptotic regime,
whilst mathematically inconvenient, is a closer match to experimental reality. In Section 2.2, we
present a series of foundational results in non-asymptotic metrology (based off Ref. [1]), generalising

many of the concepts from Section 2.1.1 to quantum metrology.

2.2.1 Comparing Measurements

To capture the non-asymptotic limit, it is enough to consider a single state p : © — D(H), and a single
measurement estimator pair (M, oM ). As before, one can take p = 0®" to include the case of multiple
copies of a quantum state. In this setting, Lemma 2.9 tells us that there is no optimal choice of mea-
surement and estimator. However, this does not preclude the possibility of an optimal measurement.
As shown in Lemma 2.1, there is usually no best choice of estimator (and therefore trivially no best
choice of measurement and estimator). In order to decide the existence of an optimal measurement, we

must define a notion of optimality of measurements that is agnostic to a subsequent choice of estimator.

We begin by defining an operational relation < on measurements [1]. We say that a measurement
M € M(H) is as least as good as a measurement F' € M(H), written M < F, if

vor 30M st 0M < 9. (2.57)

If M < F, then, from the perspective of risk, one should always change measurements from F' to M.
Whatever estimation strategy 6F was in use before, there is always a new one OM that is at least
as good as oF , regardless of the true underlying parameter. If M A F, then there will be at least
one estimation strategy 0F such that whatever new strategy 6M one picks, there are some values of
the underlying parameter where one would expect to do worse. Thus, our definition is the natural
and only way one can define M as being at least as good as F', without further assumptions on the
estimation problem. We say that M dominates F, written M < F, if M < F, but F £ M. In
analogue with the classical case, we say that a measurement M is admissible if no other measurement

dominates it. Clearly, as in the classical case, admissibility of a measurement is strongly desirable.

2.2.2 Characterising Optimal Measurements

In view of equation (2.57), there is a natural definition of an optimal measurement - a minimal element
of <. That is, we say that M € M(#) is optimal if for all other possible measurements F' € M(H),
M =< F. We emphasise that this is the strongest and most general definition of optimality one could
make; any other definition must make some additional modelling assumptions (e.g., some a priori be-
lief about the unknown parameter). Nonetheless, and somewhat surprisingly, optimal measurements

do exist for a family of parameter estimation problems, as shown by the following Lemma.
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Lemma 2.16: Let ©® C R* and let L be a choice of loss function that is convex in its first
argument. Suppose that p(0) = ) . pg(i) |i)i|, for some probability distribution {pg(i)} and a

fixed, f-independent, basis {|7)}, then the measurement M; = |i)(i| is optimal.
Proof: Suppose F € M(H) is some other measurement with a choice of estimator . Fix 6 € ©.

Let my.; = Tr(F, |i)i]). Note that my; > 0,5, my; = 1 and 3=, po(i)my; = pi* ) (k). Define an
estimator using M by 0™ (i) = 3, my ;6" (k). Then

R(OM,0) = po(i)L (Z my0F (k), e) : (2.58)
i k

<> po(i)ymyL(O" (), 0) = R(B",0). (2.59)
ik

Consequently, by swapping 6F to 6M we can only decrease risk (regardless of the value of the
parameter) and thus M < F. O

Parameterised states of the form p(6) = >, pp(i) |i)(i| are known as classical® [32]. The Gibbs state
(example 2.3) is the canonical example of a classical parameterised state; Lemma 2.16 implies that
measuring the energy of a Gibbs state is always optimal for estimating (inverse) temperature. The

following condition shows that classical states may be alternatively characterised by commutation

Proposition 2.1: A paramaterised state p: © — D(H) is classical iff.
V01,05 € O, [p(01), p(62)] = 0, (2.60)

Proof: Clearly, if p is classical, equation (2.60) holds. Suppose equation (2.60) holds, fix 6; in ©
and decompose H as a direct sum of p(6;)’s (distinct, orthogonal) eigenspaces H = @;V;. If this
is an eigenspace decomposition of p(f) for every 6 € O, then by definition p is a classical state.
Otherwise, take 05 such that some Vj is not an eigenspace of p(#2). But, [p(61), p(f2)] = 0 and thus
Vj must decompose a sum of eigenspaces of p(62), V; = @V}, giving a refined decomposition of H
into eigenspaces of p(61) and p(f2). We may repeat this process, noting that it must terminate

as each eigenspace must have dimension at least one, to see that p(f) must be classical. O

Lemma 2.16 may lead one to hope that the issues of Lemma 2.9 all stem from the (classical) choice of
estimator, and that there is always an optimal choice of (quantum) measurement. We extend example
2.4 to show that this is not the case

Example 2.5: No optimal measurement for the Phase-Encoded State

Recall the phase-encoded state is

_ L

0
ﬂ(’0>+e 1)), (2.61)

[4(0))

®Classical is an unfortunately overloaded term in quantum information. Indeed, the states |i) appearing in the
decomposition of p may be very “non-classical” according to other definitions, e.g. they could be very entangled, or
have a high magic content. Parameterised states of the form p() = " pa(3) |i)(i| could perhaps be better described as
classically encoded, but this terminology is non-standard.
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for # € [0,27). Consider a measurement M of the state in the {|+),|—)} basis. Define an esti-
mator by 0™ (+) = 0, M (=) = x. Note that R(60™,0) = R(0M,x) = 0. Thus, any measurement
that is as least as good as M must discriminate |[+) and |—) (with certainty). Consider a different

measurement F', with respect to the rotated basis

le1) = %um et/ 1y),
je2) = é(e”“ 0) — 1), (2.62)

and define an estimator 87 (1) = m/4, 6F(2) = 3n/4. As above, R(6F,7/4) = R(0F,37/4) = 0
and thus any measurement that is as least as good as F' must discriminate |e;) and |eg). It is not
difficult to show no measurement exists that simultaneously discriminates |+) ,|—),|e1) and |e2).
Thus, no optimal measurement exists. We note that M and F saturate CMB (for all 9) [27].

In fact (for L the least square loss function), we show that the existence of an optimal measurement

for p implies that it must be classical (under mild assumptions on the parameter space):

Lemma 2.17: Suppose that p : © — D(H) is some parameterised quantum state, where
© C R* is convex. If p admits an optimal measurement (under least-squares loss), then it is

classical.

We prove Lemma 2.17 in Section 2.2.5, it requires a long series of technical propositions. The Lemma
shows that the difficulty of quantum metrology is (generically) twofold that of classical parameter
estimation: there is no best choice of measurement and there is subsequently no best choice of esti-
mator. It is important to note that not all measurements are good choices, only that there are many

measurements that are incomparable.

We combine Lemmas 2.16 and 2.17 into a single theorem:

Theorem 2.1: Suppose that p : © — D(H) is some parameterised quantum state, where © C R”

is convex. Then p admits an optimal measurement (under least-squares loss) iff. it is classical.

Theorem 2.1 provides a complete characterisation of when a parameterised quantum state admits an
optimal measurement. It may be viewed as alternative generalisation of Lemma 2.1, and therefore it is
a foundational result in non-asymptotic quantum metrology. It may be intuitively understood through
pairwise distinguishablity of states. For o,v € D(H) quantum states, the optimal measurement to
distinguish them [28] is with respect to the eigenbasis of o — v. If p is a classical parametrised state,
then for any 601,62 € © the eigenbasis of p(61) — p(#2) is the same, and thus the same measurement is
optimal for distinguishing all possible pairs of states. Since it is pairwise optimal, it is intuitive that
this measurement is then “globally” optimal for parameter estimation. Conversely, if such a globally

optimal measurement exists, it must intuitively also be “pairwise” optimal.

2.2.3 Approximately Optimal Measurements

The previous Section shows that optimal measurements (under least-squares loss) only exist for the
very restrictive class of classical parametrised states. It is natural to ask whether this result is robust:

does an approximately optimal measurement imply that a state is approximately classical? Does an
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approximately classical state imply the existence of an approximately optimal measurement? In this

Section we show the latter of these to hold, i.e. we give a robust version of Lemma 2.16.

There are three clear candidates for when a measurement is approximately optimal:

(i) A measurement M is e-additively optimal if, for any other measurement-estimator pair (F, oF )

there exists an estimator § such that for all 8 € o,

R(OM ,0) < R(6F,0) + €. (2.63)

(ii) A measurement M is np-multiplicatively optimal if, for any other measurement-estimator pair
(F, %) there exists an estimator M such that for all § € O,

R(OM 6) < (1 +n)R(67,0). (2.64)

(iii) A measurement is d-locally optimal if, for any other measurement-estimator pair (F', oF ) there
exists an estimator 0™ and subset S C © such that S has measure less than or equal to ¢ and
for all § € S¢,

R(OM.0) < R(0%,0). (2.65)

We can combine the third definition with either of the first two. For example, a measurement is
e-additively and d-locally optimal if, for any other measurement-estimator pair (F, oF ) there exists

an estimator M and subset S C © such that S has measure less than or equal to 0 and for all 6 € S¢,
R(OM ) < R(,0) + €. (2.66)

For each of the three definitions of approximate optimality, there is a corresponding notion of “close-
ness” of quantum states such that if p is close to being classical, there is an approximately optimal

measurement: approximately classical implies an approximately optimal measurement.

We start with additive optimality, considering closeness in trace norm: for any matrix A, define its

trace norm as

1Al = Tr(\/ﬂ). (2.67)

We denote VATA as |A|. We show that closeness in trace norm implies an approximately additively

optimal measurement:

Lemma 2.18: Suppose p : © — D(H) is some parametrised state and o : © — D(H) is some
classical state. Suppose further that © has finite diameter d = supy 4 L(0, ¢). If, for all 6 € ©,
llp(0) — o (8)]|; <€, then there is a (2de)-additively optimal measurement M.

Proof: Since o is classical, we can fix some optimal measurement M. Fix another measurement
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F € M(H), estimator 0F and 6 € ©. Then note that

A~

B,(07,0) = Ro(07,0)] = | 3" TelFi(ol0) — o0)IL (" (2).0)] (2.68)

< a3 I T (pld] — o 0] (2.69)
Fix some F; > 0. Diagonalising p(#) — o(6) = >_, A; |7)(j|, note that
| Te[E3(p(6) — o (0))]] < Z (Al GLE19) (2.70)
J
— Te(Fi|p(0) — o(6)]). (2.71)
Substituting inequality (2.71) into (2.69), we see that
IR, (6% ,0) — R, (7 ,0)| < de. (2.72)

Since M is optimal with respect to o there exists OM such that for all 0, RU(HAM7 0) < RU(HAF7 0).
Then applying (2.72) twice, we see

R,(0M.,0) — R,(6F,0) < R,(6M,6) — R, (67 ,0) + 2de, (2.73)
< 2de. (2.74)
O

For multiplicative robustness, we need a different notion of closeness, namely the maximum relative

entropy [49]. For quantum states p,o € D(H), we define
Dinax(pllo) = inf{y: p < €’o}. (2.75)

The maximum relative entropy has the following useful property (relating it to the measured maximum

relative entropy):

Proposition 2.2: For two states p, o

Tr(Mp)
Dnax(pllo) =log sup ————%.
a; (pH ) gOSMpg]l TI'(MO')

(2.76)
We omit the proof, it is given in Ref. [49]. We use this proposition to show that closeness in maximum

relative entropy implies an approximately multiplicatively optimal measurement:

Lemma 2.19: Suppose p: © — D(H) is some parametrised state and o : © — D(H) is some
classical state. If, for all 6, we have that exp{Dmax(p[0]||c[0]) + Dmax(c[0]||p[0])} < 1+ n, then

there is a n-multiplicatively optimal measurement M.
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Proof: Fix some measurement F € M(#), and estimator #%, note that

J(07,0) 35 Tr(p(0) F)L(B (i), 0) 0.rm)
Ro(07.0) 32, Tr(o(O)F)L(07 (i), 0) '
Tr(p(0)F3)
< max T (o) F)’ (2.78)
< ePmax(pllo) (2.79)

where we used Tr(p(0)F;) = Tr(o(0)EF;)(Tr(p(0)F;)/ Tr(o(0)F;)) in the first inequality, and Lemma
2.2 in the second. Fixing an optimal measurement for o and using the inequality (2.79) twice,
the result follows. O

The final closeness result is for local optimality. For a subset of real vectors Y C R*, denote its

Lebesgue measure by |Y|. We find the following locally-optimal result:

Lemma 2.20: Suppose p : © — D(H) is some parametrised state, which is classical on some

subset I' C ©. Then there is a (|©| — |T'|)-locally optimal measurement M.

| Proof: Take the optimal measurement for p|p. This clearly has the desired property. O

2.2.4 Admissibility of Measurements

In classical parameter estimation, there has been significant effort to characterise the set of admissible
estimators for common choices of model Py [50-53], which allows one to ensure a choice of estimator is
indeed admissible. In this setting we provide the beginnings of a such a theory for quantum metrology,

proving two necessary conditions on a measurement for it to be admissible:
(i) The probabilities of the measurement outcomes depend on the parameter.
(ii) None of the post-measurement states of the measurement depend on the parameter.

These desirability of these conditions is evident: if (ii) does not hold the system can be measured
further, allowing for a better estimate of the parameter, if (i) does not hold then the measurement is
clearly unfit for purpose. However, without further specifying the parameterised quantum state p, it

is difficult to give general criteria for when a measurement is inadmissible.
We prove (i) and (ii) for any loss function satisfying the following pair of properties:

(P1) L is strictly convex in its first argument.

(P2) For any prior m on O, the Bayes estimator 68 is unique and is given by the posterior mean
0B (2) = Er[0|outcome z].

Condition (P2) may seem strong, both (P1) and (P2) are satisfied by a ubiquitous family of Loss
functions, known as Bregman divergences (see Ref. [54]). Least-squares loss and the KL divergence are
both examples of Bregman divergences. We require three additional technical results on admissibility

of estimators.
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Proposition 2.3: Let L be a loss function that satisfies (P2). Suppose the model Py admits
a parameterised probability mass function {py(i)}, and that there exist 61,02 € © such that
o, (1)pg, (2) # po, (2)pg,(1). Then, there exists an admissible estimator § where 6(1) # 0(2).

Proof: Define a Prior on © of uniformly random choice of 81 or 6o, that is to say,

P(X =) = 12, 0 € {062}, (2.80)

0, 0.W.
In this case, by property (P2), we know that

0B (i) = E,[0]4], (2.81)
= H(91|Z)91 + H(QQ‘Z.)QQ. (2.82)

Since this is a convex combination of #; and #> which must be distinct to satisfy the conditions
of the proposition, we deduce that 68(1) = 68(2) iff. I1(6;]1) = I1(6,]2). But

: o, (4)
I(0:)i) = —2L——. 2.83
O = o 6) + a0 (259
So
p@l(l) Do, (2)
(6 1) = T1(6:]2) < = : 2.84
G =R < ) b ~ pn® + (@) 259
< Po, (1)]702 (2) = Do, (2)]7.92(1)- (285)
Thus, by the assumption, éB(l) #* éB(2). Moreover, by Lemma 2.2, 6B is admissible. ]

Proposition 2.4: Let L be a loss function that satisfies (P1). Suppose that  is an admissible
estimator, and that 6 < 0. Then 0 = 0 with probability 1 (for all values of the parameter).

Proof: Let 6'(z) = [0(x)+6(x)]/2. By strict convexity of L in its first argument, R(6’,-) < R(6,-).
Since 6 is admissible, there must be equality for all § and the result follows from strict convexity.
O

Proposition 2.5: Let L be a loss function that satisfies (P1). Suppose the model Py does not
depend on #. Then an estimator 8 is admissible iff. it is constant with probability 1.

Proof: Let 6 be an estimator. Consider the constant estimator §% = Exp,[(X)], which is well

defined by the assumption that Py is constant in 6. Then,

R(é, 0) = Ex~p, [L(é(X), 0)]7 (2.86)
Jensen’s inequality and (P1), > L(6,0) = R(6%,0). (2.87)
By proposition 2.4, 6 is admissible only if it equals 0y with probability 1. O

We can now prove the two necessary conditions for admissibility. Firstly, we show condition (i)
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Lemma 2.21: Let L be a loss function on © that satisfies (P1) and (P2), and let p: © — D(H)
be some non-constant parametrised state. Suppose that F' € M(H) is a measurement whose

outcome probabilities are independent of 8, then F' is inadmissible.

Proof: Suppose there exists a measurement M € M(#) and a non-constant admissible estimator
oM., By proposition 2.5, every admissible estimator of F' is constant (with probability one) and thus
M < F. Suppose there exists a non-constant admissible estimator OM. If there exists 6F < éM,
then (by proposition 2.3), WLOG 6F = 9% is constant. Then, by proposition 2.4, oM is constant,

contradicting our assumption. Thus if such an OM exists we see that F A M, completing the proof.

By the Helstrom bound [28], there is some measurement M € My () where p((,’lj; M)(l) # p(g; M)(l).
Then, note that

s M s M M M
p M p 0 2) = i M @)p M (1), (2.88)
s M s M
s =pi M ). (2.89)
An application of proposition 2.3 gives a non-constant admissible estimator oM. 0

In order to consider condition (ii), we must consider the post-measurement state of the system. Fix
a measurement N = (K, M) € M(H) and suppose it admits Kraus operators {F;}X,, i.e. M; = FJFZ-.

If one observes outcome i, the post measurement state is

FipF)

pi = W :0 — D(H). (2.90)

We say that the measurement M is refineable if it admits a choice of Kraus operators, such that
at least one of the post-measurement states (WLOG the first) is non-constant. That is, there are
01,65 € © such that

L. p1(61) # p1(62).
2. M (1), pi M (1) # 0.

The second of these conditions is to ensure that the outcome 1 is possible at #; and 0. Otherwise, the

post measurement state is not well-defined. We show that refineable measurements are inadmissible:

Lemma 2.22: Let L be a loss function on © that satisfies (P1) and (P2), and let p: © — D(H)
be some non-constant parametrised state. Suppose that F' € Mg (H) is a refineable measurement,

then F' is inadmissible.

Proof: Fix some choice of Kraus operators F; = GIGZ-, and 01, 02 € © such that conditions 1 and 2
above are satisfied. Since p1(61) # p1(62), by the Helstrom Bound [28], there is some measurement
M € My(H) where pg’f 1;M)(l) # p(gg 1;M)(l). Consider the concatenated measurement MF €
Mo (H) corresponding to measuring first with F' and then M. That is,

MF; ;= GIM;G;, (2.91)

for i € [K],j € [2]. Note that for any estimator 6" we can construct an estimator §M¥ (i, j) =
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0% (i) satisfying R(MF .) = R(@¥,-). Thus, MF < F. It remains to show F £ MF.

Suppose we find an M F-admissible estimator 6MF satisfying éMF(l, 1) # éMF(l, 2). If there is
an estimator 6F such that 6F < éMF, then using the construction above, we find é%F < gMF,
But, by construction, éf\p/[ B4 GMF (with non-zero probability), contradicting proposition 2.4, and
hence F £ MF. Thus, it suffices to find such an estimator GMF .

By proposition 2.3 it is sufficient to show p(p’ MF)(l D)pg, (p; MF) (1, 2) # pHI’MF)(l 2)py, (p; M )(1, 1).
But by expanding probabilities and dividing through by p(p ’ (1)p( piE) (1), we find that

pg, L DR (1,2) = p M L2 (1), (2.92)
) )M 7M 7M
&M Wp M @) = o @l ), (2.93)
& p M (1) = pii M (1), (2.94)
However, by the construction of M, the final equality (2.94) cannot hold. O

Finally, we provide a method to show a measurement M is admissible, generalising Lemma 2.2 to the

quantum setting.

Lemma 2.23: Suppose that p: © — D(H) is some parameterised quantum state, and that 7
is some prior distribution on ©. If M € M(H) is a unique Bayes measurement (with respect to
), then M is admissible

Proof: Suppose that F' dominates M. Let 6M be the Bayes estimator of M, as M is a Bayes
measurement, # minimises the Bayes risk across all choices of measurement and estimator.
However, as F' < M, there exists 0" such that 6 < M. Then R,(6") < R,(6™) and F must
also be Bayes. This contradicts the uniqueness of M. O

2.2.5 Proof of Lemma 2.17

We now present the proof of Lemma 2.17 as a series of propositions. We first consider the single
parameter (© C R) case. We fix 0,6, € © and consider the restricted parameter space {61,602} C ©
and show that if an optimal measurement M exists, then p(f;) and p(f3) commute. This is achieved
by considering the Bayesian measurements associated with all possible priors on {6, 62}. This shows
that if an optimal measurement exists on ©, all {p(#) : § € ©} must commute, and thus p is classical.
In higher dimensions, we restrict the parameter estimation problem to lines, which allows us to use the
single parameter result. Throughout this Section we return to the convention that our loss function

L is always least-squares. We now give the series of propositions needed for Lemma 2.17.

Proposition 2.6: Suppose p: © — D(H) is some parametrised state with an optimal measure-

ment M. Then M is a Bayes measurement for any prior 7 on ©.

Proof: Suppose we have some Bayes estimator 6F. Then since M is optimal, M < F', and thus
there is an estimator 6™ satisfying 6M < 9F. But then, by definition, 6M must also be Bayes.
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Thus for any prior, we can always measure with M and pick a Bayes estimator based on the

resulting probability distribution. O

We introduce some notation from [29], useful in single parameter quantum Bayesian estimation. For

any measurement-estimator pair (F, oF ), we define
A=) "F67>), A=) Fi6" (i), (2.95)
i i

Furthermore, for any prior 7 on O, we define two operators

= / dom(0)p(0), 7 = / 67 (0)p(6)6. (2.96)

Proposition 2.7: Suppose p : © — D(H) is some single parameter state (© C R). Suppose
further we have some prior 7 on © and that p has full rank. Then a measurement F' € M(H) is

Bayesian iff. the following hold

(i) F is the projective measurement onto A’s eigenspaces, or a fine-graining of it.
(i) {A, 5} =27

Proof: Note that this proposition, and most of this proof, is presented in [29] as a sufficient con-
dition. We prove that the conditions (i) and (ii) are also necessary. Suppose some measurement-
estimator pair (F, or ) is Bayesian. Note that we may write the Bayesian risk in terms of A and
A22

L(0F) = / d Z o(0))(0F (3) — 0)2, (2.97)

= Tr(Asp) — 2 Tr(AP) + / dom(6)6>. (2.98)

We note that
0< Z 07 ()1 — AT E; (07 (1)1 — A), (2.99)
= Ay — A2 (2.100)

and thus Tr(Agp) > Tr(AQﬁ). If F' does not saturate this inequality, let M be the projective
measurement onto the eigenspaces of A, and oM output the corresponding eigenvalue. Then
R.(0M) < R,(6Y), contradicting that 6 is Bayesian, and we deduce that Tr(Agp) = Tr(A%p).
and thus equation (2.99) must be an equality. Note that for any positive semi-definite operator
A,

Te(pA) = 0 Tr((VAVA)VAVA) =0, (2.101)
& VpVA=0, (2.102)
e A=0, (2.103)
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where we used the assumption that p is full rank, and hence that ,/p is invertible. Thus,
Zl(éF(z)]l — A)F;(6F(i)1 — A) = 0. But since this is a sum of positive semi-definite opera-
tors, this implies that, for each 4, (67 (1)1 — A)TF;(6F (i)1 — A) = 0. If 07 (4) is not an eigenvalue of
A, then F; = 0. Otherwise (by prop. 1.1 (i)), F; must only have support on the 8% (i) eigenspace
of A. Since A = 5" F;0% (i), condition (i) follows.

We see that A must minimise the function
C:Herm(H) — R, C(X) = Tr(X?p) — 2 Tr(Xp), (2.104)

over all Hermitian operators X. By differentiating with respect to X and setting the derivative

to zero, we see that there is a unique minimum A and that it satisfies

%{A,ﬁ} _ 7. (2.105)

O]

Proposition 2.8: Suppose p : © — D(H) is some single parameter state with an optimal
measurement M under least-squares loss. Fix 61,6, € © distinct. If p(61), p(f2) both have full

rank, then there exist simultaneously diagonalisable Hermitian maps I', I" satisfying
{T,p(02)} = p(61), AT, p(61)} = p(62). (2.106)

Proof:  For notational convenience, let p; = p(6;) for i = 1,2. For p € (0,1) fix a prior on
© where we are given p; with probability p and ps with probability 1 — p. Note that for any
p € (0,1), p has full rank. By proposition 2.6 we see that M must be Bayesian for any value
of p - let HAI],V[ be a Bayes estimator for a fixed value of p. Then A = )", Mzéﬁj(z) and M must
satisfy condition (i) of proposition 2.7. We say i ~ j if, for all p € (0,1), éé\/[(z) = ézj)\/[(j) If
i =~ j, take p such that ééw(z) # éé\/[(]) Then M; only has support on the ég/f(z) eigenspace of
A, whereas M; only has support on the é{,‘/[ (j) eigenspace, and thus M; and M; have orthogonal
supports. Hence, the subspaces S; = EB]-E[Z-]supp(Mj), are orthogonal. Since ), M; = 1, it follows
that >°;cr;) M; = Ils,. Hence, we may expand A = - yux(p) [k)k| - in an eigenbasis that does

not depend on p (but whose eigenvalues will generically depend on p).

By condition (ii) of Lemma 2.7, for any value of p € (0,1) we know that A satisfies

1
§{A,pm + (1 —p)p2} = pbip1 + (1 — p)Oapo. (2.107)

As well as being invertible, the smallest eigenvalue of p, Apin(p) is bounded below by the minimum
of the eigenvalues of p; and p2. Consider equation (2.107) in the limit of p — 0. Let I" be defined

implicitly as the solution to the equation

{L, p2} = p1. (2.108)

By expanding equation (2.108) in the eigenbasis of py, and using that py is invertible, we see that
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I' is well defined and is furthermore Hermitian. For some “remainder” matrix R, we expand A as
A =051 4 2p(A; — 02)T + R. Substituting this ansatz into equation (2.107), we see that R must

satisfy the equation
1
1.7} = p*(02 = 0){T, p1 = pa} (2.109)

Expanding in an eigenbasis of p and recalling that all the eigenvalues of p are bounded below by
Amin (which is independent of p), we see that R = O(p?). Consider an eigenstate |¢)) of A with
eigenvalue u(p), then note that

|16 - S8 =22 i = o) (2.110)

Taking the limit as p — 0, we see that [¢)) must be an eigenstate of I'. But, by symmetry, in the
limit p — 1, we may define I'” by the equation

{I", p1} = p2, (2.111)

and [¢) must also be an eigenstate of I'. Thus I and I must be simultaneously diagonalisable

in A’s eigenbasis. O

Proposition 2.9: Suppose A, B are positive definite and I, I are simultaneously diagonalisable
Hermitian maps satisfying
{I'A} =B, {I',B}=A. (2.112)

Then A and B commute.

Proof: Let I' and I be simultaneously diagonalisable in the orthonormal basis {|i)}! ;. Let
i) = N |2), TV i) = pi |i), (i] Alj) = Aij and (i| B |j) = Bij, for i,j € [n]. By positive definite-
ness, note that A;;, By; > 0 for any i. Rewriting equations (2.112) in components of this basis, we

reach the set of equations
(Ni +Aj)Aij = Bij, (i + py)Bij = Aij. (2.113)
Setting ¢ = j we deduce that
A = Bii /244, i = Au/2B;. (2.114)

Equation (2.113) shows that A;; = 0 < B;; = 0. Suppose A;; # 0, then multiplying the two
individual equations in (2.113) and dividing by A;;B;; we see that

(Aii/2Bi; + Aj;/2Bj;) (Bii/2Ai + Bjj/2A55) = 1,

AiiBjj | Bidjj
+ =2 2.115
Bi;Aj;  AiBjj ( )

But x + 1/z =2 iff. x =1 and we deduce that

Li _ 5 (2.116)
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Consider a graph G on n nodes, with an edge between ¢ and j iff. A;; # 0. If G is connected,
then for any nodes 4, j in G there is path between them. Assuming connectedness, we apply the
result of equation (2.116) along the path, we deduce that A;;Bj; = B;; A;; for every 4, j € [n]. But
then summing over j, we deduce that A;; = %Bii. Substituting this into equations (2.113) and
(2.114), we see that A and B are proportional and thus commute. If G is not connected, then
we can apply the above procedure to each connected component of G. The result is that A and
B are block diagonal, with the diagonal matrix entries proportional and thus A and B commute.

O]

Proposition 2.10: Suppose p : © — D(H) is some single parameter state (0 C R) with an
optimal measurement M € My (H). Fix 61,02 € © distinct, then p(6;), p(62) commute (regardless
of their rank).

Proof:  Again, for notational convenience, let p; = p(6;) for i = 1,2. Redefine our parameter
space © = {61,602}, but we still allow estimators to take any real value. Note that, by definition,

M must also be optimal for this parameter estimation problem.

Suppose that I = ker(ps)Nker(p;) # {0}. Let U+ be the orthogonal complement of ¢/ and let TT;,.
be the orthogonal projection matrix onto &/-. Then note that replacing M with the measurement
(I M0, 1 —11;40 ) € M41(H) does not change any of the measurement probabilities when
measuring p; or pe. Thus, we may WLOG restrict our Hilbert space to U*, i.e. we take H = U+,
which still has an optimal measurement for this restricted parameter estimation problem (given

above). Furthermore II;p; Iy and II;p1 11y commute iff. p; and py do.

Suppose that po is not full rank, i.e. it has some non-trivial kernel K < H. Take a measurement
E = (g, ) € My(H), along with an estimator 0% (K) = 6;, F (K1) = 05 so that

R(0%,65) = 0, (2.117)
R(F01) = (01 — 05)%[1 — Tr(Ilgpy)]. (2.118)

Since M is optimal, we have that M < E. Then, in particular, there must be an estimator 6M
satisfying 6M < 6F. In particular, 6™ must have zero risk at #5 and thus if Tr(paM;) # 0, then
we must have 0M (i) = 0y. Let I = {i | Tr(paM;) = 0}, then, by the above, 6™ must satisfy

R(OM 6,) > (0; — 6,)* (1 - Tr(lei)> : (2.119)

iel

with equality iff. for every ¢ € I, éM(z) = #1. WLOG, assume that this holds, so that we satu-
rate equation (2.119). If Tr(peM;) = 0, then, as M; > 0, every eigenvector of M; with non-zero
eigenvalue must lie in K and thus ), ; M; < Ig. Thus, R(OM,6,) > R(6F,6,) with equality
iff. p1 (Ilx — > ;e; Mi) = 0. Since p1 does not kill any vector in K (as we restricted to U) we
get equality iff. ) . ; M; = IIx. Thus, as ZiL:1 M; =1, fori ¢ I and |k) € K, M; |k) = 0. Using
proposition 1.1 (ii), we deduce that, if i € I, then M; = I M;I1x and M1 =0, and if i ¢ I,
then M; = Iy Mill1 and MIlx =0
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Now, for p € (0,1) fix a prior on © where we are given p; with probability p and ps with proba-
bility 1 — p. Note that (as we restricted to 4*), p has full rank. By proposition 2.6, there exists a
Bayesian estimator é;)\/[ Taking A =), Mléﬁ/l(z) we find that A decomposes as A = A + Ay,
where A = g Al and Apr = g1t Apei 1. Furthermore, in order for our estimator to be

Bayes, we must always guess 01 in the case of a K outcome i.e. A = 011l.

Taking the inner product of condition (ii) of Lemma 2.7 with |k) € K and |¢) € K, we find that
(€ Agerpr k) = 00 (0] pu [E) (2.120)

Note that as p — 0, we must have A1 — 1602, as our estimates must approach 6y for our
estimator to be Bayes. Thus the only way for equation (2.120) to be satisfied for all p € (0,1)
is for (¢| p1 |k) = 0. Thus p; fixes K and we may decompose it as p1 = Hgp1llx + e pr g L.
Thus equation (2.107) becomes

1
oAk, P prll e + (1 = p)ger poller },

= peanLpanL + (1 — p)HQHKLPQHKL. (2.121)

We observe that p; and py commute iff. [T pi 1l and g1 pollpr do.

Consider the restricted estimation problem 5 : {01,602} — D(K*), p(0) = U1 p(0)I 1. Suppose
that F € My(K1), and we have some estimator OF . we can extend it to a measurement F €
M11(H) by

F, i#J+1,

= (2.122)
HK, 1 =J+1.

Similarly, we extend 6% to an estimator or by éF|[J] = 6 and éF(J + 1) = 6;. By optimal-
ity of M, there is some estimator oM < gF , where WLOG (as this cannot increase the risk),
for i € I, we take 6™ (i) = 6,. Consider the restricted measurement M € M(H) given by
M = (T MiHKL)Z-gg, with corresponding estimator oM = éM][L]\I. A brief calculation shows
that 6M < 6F. Thus, p admits an optimal measurement M. Hence, we may restrict our Hilbert

space to K+, on which py has full rank.

We may then repeat the above procedure, reducing our Hilbert space to one on which both p;
and pp have full rank. The key insight is that if ps = Il pollx + 71 pollg1 has full rank, then

so too does Il 1 pallj i, and thus ps remains full rank after repeating the procedure. We then

apply propositions 2.8 and 2.9, and the result follows. O

Note that the proof of proposition 2.10 may be seen as a generalisation of example 2.5. In light
of propositions 2.1 and 2.10, we see that Lemma 2.17 holds in the single parameter case, for any
parameter space O, without the assumption of convexity. We can use the single parameter case to

prove the full version of the Lemma:

Lemma 2.2: Suppose that p : © — D(H) is some parameterised quantum state, where © C RF

is convex. If p admits an optimal measurement (under least-squares loss), then it is classical.
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Proof: Fix 01,60, € © and let T = [0,]||02 — 61]|]. By convexity, for t € T, vy(t) = 61 + t(62 —
01)/[|02 — 01]] is in ©. Thus p: T — D(H), p(t) = p(y(t)) gives a single parameter parameterised
state. We have constructed this state such that the least-squares loss functions agree - that is for
s,teT,

[ly(8) = ()1 = [t — 5. (2.123)

But then (by projecting any estimators 6M onto the line segment between 0; and 62) M must

also be optimal for g, and thus, by proposition 2.10, p(6;) and p(f2) commute. O

2.2.6 Outlook

Above, we have introduced, and provided several central results, within the theory of admissibility of
measurements in quantum metrology. The theory of admissibility of classical estimators is rich, and
the corresponding theory for measurements should prove more complex. This complexity is already
evident in the disparity between the existence of optimal measurements (see Lemma 2.16) and lack of

existence of optimal estimators (see Lemma 2.1).

With regards to optimal measurements, it would be desirable to generalise theorem 2.1 to other loss
functions, such as other p-norms, or the loss functions used in thresholding. It would also be desirable
to relax the requirements on ©. For example, the parameter space S! of the phase-encoded state
(example 2.4) is naturally embeddable into R?, but it is not convex. It can also be thought of as
St ~ [0,27), but the least squares loss function on [0,27) does not respect the periodicity of the
problem. Indeed, a more sensible choice of loss function, which locally reproduces least-squares, but

respects global periodicity, would be L(61, f2) = 4sin?([0; —605]/2) %, to which our result does not apply.

With regards to approximately optimal measurements, we anticipate it to be harder to construct a
robust converse result (i.e. a robust version of Lemma 2.17), given the more involved nature of the
original proof. Nonetheless, it would be desirable to characterise the existence of approximately op-
timal measurements, and moreover develop fast classical algorithms to find approximately optimal

measurements when they exist.

In the asymptotic limit, we expect (approximately) optimal measurements to exist (as discussed in
Section 2.1.6. A large number of copies of a pure state |¥(6)) = [4(6))®",n > 1 is never classi-
cal, yet we expect approximately optimal measurements to exist that saturate the QFI. Note that
[[P(01)XP(01)], |T(O2)XT(O2)]] ~ | (2(601)]¥(62)) |, and thus we expect exponential decay in the size
of commutators. Thus, the state |¥(6)) looks more classical in the asymptotic limit. We hope that
such intuition could be made more rigorous to show the existence of asymptotically optimal measure-

ments in the sense of <, without reference to a particular estimator.

Finally, we hope that one could make a complete characterisation of the admissible measurements
for a given parameterised state p. To the best of our knowledge, there is no complete classical
characterisation of admissible estimators in full generality, and thus a full quantum solution may

prove challenging.

5This loss function also arises as the restriction of the R? least squares loss function to S*.
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2.3 Performance of Quantum Filters

Section 2.1.7 provided a theoretical background, including motivation, for quantum filtering. In Sec-
tion 2.3, we give a series of novel results in quantum filtering. Firstly, we completely characterise
lossless quantum compression for parameterised pure states. Secondly, we show that the JAL filter
(and indeed other optimal filters) are not optimal in the presence of noise (or more abstractly for
mixed parameterised quantum states). Thirdly, we give an operational justification for why lossless
compression by filtering is a genuine quantum effect. Finally, we give a concrete iterative scheme for
quantum filtering in the ubiquitous model of Gaussian shift estimation (defined below). The results

are mostly drawn from Refs. [2, 3]

2.3.1 Conditions for an Optimal Filter

In order to design quantum filters, it is essential to understand under what conditions a filter is lossless.
In this Section we completely characterise lossless filters for parameterised pure states. We will use

the following useful expression for the QFI, derived in Ref. [47].

Proposition 2.11: Let [¢(-)) : © — S(#H) be a parameterised (pure) quantum state and let K
be a Kraus operator of a filter. Then, for 6 € O, the QFI of the postselected state has the form

m <6zw(9)\F!33¢(9)>

- psl(g)Q (i (0)| F'l4(0)) <w(9)\F!3j¢(9)>>- (2.124)

p, K

< 1
J(9|p§()m' = 4Re( ps

With proposition 2.11, we can give a characterisation of when a filter is lossless:

Theorem 2.2: Let [¢(-)) : © — S(H) be a parameterised (pure) quantum state, where © C R*.
Fix § € ©, and assume that J(0|¢); ; # 0, for every i € [k]. Let U = span{[(9)) , |0;4(8)) |i € [k]}
and II;; be the orthogonal projection onto U. Let K be a Kraus operator of a filter,

(i) The postselected Fisher information J(:|p%) : © — My(R) only depends on F, := Il KT K1l
not K.

(ii) K is lossless at 6 iff. F,, = (p — 1) [(0) X (0)| + Iy, for some p € (0, 1].
Proof: (i) follows immediately from proposition 2.11.

We note that for all € O, (¢(6)[1(0)) = 1. Taking the derivative of this expression, we see that
for all @ € © and j € [k],

Re((9;4:(0)[9u(6))) = 0. (2.125)

Fix 6 € O, in view of equation (2.125), we may expand

9;0(0)) = i; [0(0)) + a5 [61(0)) (2.126)
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where z; € R, a; € C and ‘¢j(9)> € S(H) satisfies <¢(0)‘¢j‘(0)> = 0. We define

(W (O)|Ful(0)) = pp, 1 (0) € [0,1], (2.127)
<¢ji(9) F, wjl(e)> = B; €[0,1], (2.128)
<zp(e) Fy z/;jl> =0 eC. (2.129)

Using proposition 2.11, we find that for j € [k],

4 S . * vk 4 . S
J(01p%);, = @) (m?pE’K(H) + |e)® + ix;la;CF — ajCj]> — = 5 \zxjpl;’K(G) + a;C4%,

p, K pp,K(e)
(2.130)
12B. (.12
4 |fj§| i \sg@l ! (2.131)
pp,K(e) P,),K<9)
By considering the case of K = F = 1, we see that
J(0]p) = 4)a;]*. (2.132)
We deduce pp° . (0)J(0] 0% )5, = J(0lp);,5 iff.
| G5
lo;|2(B; — 1) — = (2.133)
J J pst(e)

Since a; # 0 by assumption, we deduce that this condition holds iff. B; = 1 and C; = 0. Note
that 1 — F > 0, so using proposition 1.1 (i), we see that the diagonal entries of p}” - (6)J(0|p%)
and J(0|p) are equal iff.

Fu= (9, (0) = 1) [(0))Xe(0)| + . (2.134)

To prove point (ii) it remains to show that for such F,, the off diagonal entries of J(|p}’) and

J(0|p) are equal. This is a straightforward calculation. O

The condition that J(6|p);; be non-zero for all j € [k] is a natural requirement - it is equivalent to
saying that there is information on 6 contained in p to begin with, so that it can be compressed.
Indeed, if J(0|p);; = 0 for a single j € [k], then there exists a vector v € R¥ such that v J(0]p)v = 0,
and thus by proposition 1.1 (i), J(6|p) is non-invertible.

It may be that U has dimension u less than d = dimH. For example, this will always happen if
k 4+ 1 < d, where k is the number of parameters: © C R¥. In general, if u < d, then there is not a
unique lossless filter. For a fixed § € O, the subspace U encodes the local changes in the state |i)
that can arise from infinitesimal variations in the parameter, see figure 2.4 for a intuitive discussion.
We note that the JAL filter is always lossless, regardless of ¢. In this sense, it is thus the canonical

choice of lossless filter.
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Figure 2.4: Schematic diagram of a Hilbert space with a single-parameter parameterised quantum
state |1(-)). At the point § € ©, we see that there is one direction in #H arising from infinitesimal
variations in the parameter: the tangent [01(6)). The third direction |n) is (locally) unimportant.

2.3.2 Non-optimality of the JAL Filter with Noise

Filtering of mixed states is more complicated than pure states, see Ref. [2] for a discussion of filtering
pure states that have been acted upon by depolarising noise. One finds that unbounded amplification
of information is no longer possible, and that lossless compression may not exist. In this Section, we
give an explicit example where the JAL filter is not optimal for a parameterised mixed state. Our
parameterised mixed state is a depolarised parameterised pure state in a 3-dimensional Hilbert space:
dimH = 3.

First, we prove a useful result for calculating the QFI of postselected states in the single parameter

case

Proposition 2.12: Suppose that p : © — D(H) is a single parameter (0 C R) parameterised
quantum state, and that p : © — (0,1] is a parameterised probability. Let p' : © — B(H) be
defined by

p
-2 2.135
r=> ( )

Then, for all 6 € ©, ,
_ 1 n (Tr[0p'(0)])
J(0]p) 0 J(0lp") ()

Here, we extend the definition of the QFI to include non-normalised positive semi-definite oper-

(2.136)

ators in the natural way.

Proof: We calculate that
/
op=20_ %, (2.137)
p p

Fix 0 € O, let A = L5P(9). We define a new operator A’ by the equation

A=N -0 (2.138)
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Using the defining property of A, we see that A’ satisfies the reduced equation

SN FO)) =056), (2139)

and thus is a choice of SLD for p’. We expand the QFI of p as

J(0]p) = Tr(p(@)A2), (2.140)
- Tr@{p(e), A}A>, (2.141)
— Te(Op(0)A), (2.142)
(2O o0 N (o0
=1\ S @) (- S| (214
_ L N M / no_ M / [8])(0)]2
5 |/ - g7 T 0m) - S ool + 20

Taking the trace of equation (2.137) (noting that Tr(p) is constant, and therefore Tr(dp)) van-
ishes), we find that
Tr(9p'(8)) = Op(8). (2.145)

Substituting this into equation (2.144) and using that Tr(p'(0)A") = Tr({p'(0), A’'})/2 = Tr[0p'(6)],
the result follows. O

We now consider the effect of depolarising noise on the JAL filter. We consider some parameterised
pure state |¢(-)) : © — S(H), which is affected by depolarising noise. For notational brevity, we

consider a noise rate of 1/2, so that the preselected state has the form
1
p:© = D(H), p(0) = 5 ([L(O)Np(O)] + 1/3), (2.146)
Fix a filter with Kraus operator K, which gives rise to the non-normalised postselected state

PO = B(H), p'(0) = K [v(0))w(0)| KT+ KKT/3. (2.147)

Fix some 6 € ©. As in the proof of Lemma 2.2, we decompose
9(0)) = iw[b(0)) +aut), (2.148)

where z € R, € C, and ‘wl> is normalised and orthogonal to |1(0)). We further assume that o # 0,
i.e. that J(0|v) # 0, so that there is information to compress. Since H is 3-dimensional, we can find
a state [n) € S(H) such that {|1(9)),|¥"),|n)} is an orthonormal basis of . In this basis, consider

a filter with a single off-diagonal term:

(2.149)

I
o o =
o = o
o o <



2. Metrology 41

where t,b € [0,1]. K has POVM operator

2 0 tb
F=K'K=|0 1 0]. (2.150)
th 0 b

The eigenvalues of F are 0,1,t2 +b2. Thus, for b € [0,+/1 — 2], we find that 0 < F' < 1 and therefore

K is a valid filter. One can explicitly calculate

(4/3)t2 0 tb/3 0 a*t 0
dO)=| o 1/3 0o |, and 90)=|at 0 o). (2.151)
/3 0 b2/3 0
We also explicitly find A’:
0 A% 0
N=1|Ay 0o AL, (2.152)
0 Ay 0

We note that dp/(6) is traceless, and thus by proposition 2.12

Ry, k(6) = J(010)): (2.153)
Finally, we calculate
6(1 + b*)ta
=A = 2.154
12720 b2 (44 302)2 (2.154)
2
re— Al 6bta (2.155)

BTERT T4 (443022

We can further calculate

12]af?(1 + b?)t?
R, (0) = JO) = { + b2 + (4 + 3b2)t2’

_ 12|af?t?
_1+ 54 t2,
1+ b2

which is manifestly increasing in b. Surprisingly, we see that the off-diagonal term b is beneficial to

(2.156)

(2.157)

filter performance. Therefore, it is, counter-intuitively, beneficial to mix the noisy subspace spanned
by |n) with U.

We compare K to a diagonal Kraus operator, a generalisation of the JAL filter

=

Il
S O =+
o R o

0
0], (2.158)
.

where 7 € [0, 1] controls the probability of transmitting an |n) state (which can only come from noise).
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When r = 1, K is the JAL filter. Similarly, one can calculate

_12]al??

Ry &0 =17 TR (2.159)

As r is increased, the postselection probability increases, but the information in a transmitted states
decreases. These two effects cancel, so that R, 7#(0) does not depend on r. Comparing equations
(2.157) and (2.159), we see that R, k(0) = R, (), with equality iff. b= 0. Thus, the JAL filter is
only optimal in the degenerate case t = 1 (no filtering), for all ¢ < 1 it is outperformed by K. We
conclude that the JAL filter may not be optimal for mixed states. Finding such optimal filters remains

an open question.

2.3.3 A New Perspective on Classical Filtering

Ref. [46] considers a quasi-probabilitic description of quantum filtering, using the (extended) Kirkwood-
Dirac (KD) distribution [55]. They showed that if the postselected QFI J(8|p};) passes a certain
threshold, then the KD-distribution must contain some negativity. They label such negativity as a
hallmark of quantum effects, given the well-established nature of the KD distribution in quantum
foundations. Note, if the required postselection probability is sufficiently small, then by this definition

of quantumness, any lossless filter implies quantum effects.

In this Section, we consider a more operational approach to proving that lossless compression is a
quantum effect, and consider classical filtering of arbitrary random variables. We show that classical

filtering can lead to an increase in postselected FI, but that this filtering is almost never lossless.

Let X : Q — x be some random variable, with parameter-dependent law FPy. We assume that P
admits a pdf. f(z|f). A classical filter is defined by a (measurable) function t? : x — [0,1], where
t?(x) is the probability that = passes the filter. We call the function * a (classical) filter. A sample

of the "postselected” variable Y can be obtained via the following procedure:
1. Sample X, giving outcome x € X.

2. Generate a number u uniformly in [0, 1], if t?(z) < u, then output x. Otherwise return to step
1.

We calculate the probability that a single sample of X passes the filter, i.e. the probability of trans-
mission:

p(@):/f(:z|9)t2(x)d:z. (2.160)
X

We require that p(f) > 0 for every 6 € ©, so that (almost surely) the procedure to generate a sample

of Y terminates in a finite number of steps.

In analogy with the quantum case, we say that a classical filter is lossless at 0 € © if p(0)I(Y|0) =
I(X|0). We will find that, in contrast to the quantum setting, lossless classical compression of infor-

mation via filtering is almost always impossible.
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Proposition 2.13: Let X : 2 — x be a random variable which admits a parameter dependent
pdf. f(z|@), and let t2 : x — [0,1] be a filter. The postselected variable Y admits a pdf

g(ylo) =

t*(y), (2.161)
where p(#) is the probability of transmission, as defined in equation (2.160).

Proof: Let B C x be a measurable subset. Then,

Po(Y € B) = / F@l0)2(2)dz + (1 — p(0))Py(Y € B). (2.162)
B
Rearranging, we find that
Py(Y € B) —/ MtZ(x)olgc, (2.163)
B p(0)
and the result follows. O

Proposition 2.14: Let X : 2 — x be a random variable which admits a parameter dependent
pdf. f(x|f), and let 2 : x — [0, 1] be a filter. Denote the postselected variable by Y. Fix 6 € O,

then
2 2
p0y10) = [ PIOE g  0OE (2.164)

where p(0) is the probability of transmission.

Proof: First, we calculate the derivative of the pdf. of Y (see proposition 2.13):
_ fylo) t(y)
00a(010) = |00r(016) ~ L0 (o) £ ). (2.165)
We can then directly calculate
[009(y]0)]?
0)I(0Y) = 0)————"-d .
pO16Y) = [ p(0) TR (2.166)
_ (o) ]2 (y)
= [ oorwin) - Lo Rowo)] ftan (267
[0 0)]?
/ o/ yy]’9 2(y)dy (2.168)
X
8 Opp(0)]?
”’ / 00 (410)2(y)dy + | (é))] [ 1oy (2.169)
X
Finally, we note that p(¢) = [, f(y|0)t?(y)dy and 9pp(0 = [, Oof (y|0)t?(y)dy, and the result
follows. m

For a (measureable) subset A C x, we define the information contained in A (with respect to X)
I14(X|0) as its contribution to the total Fisher information:

We can now characterize the set of lossless classical filters.
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Lemma 2.24: Let t2 : y — [0,1] be a filter on a random variable X : Q — . Then ¢? is lossless
at 0 € O iff. {x € X : 9pf(x|0) # 0, t3(z) < 1} has measure 0.

Proof: Fix 6 € ©, using proposition 2.14, we know that
[90.f (y10)]* - [Oep(0)]?
QIGY:/t dy — ———>—. 2.170
P10 = | Ry~ (2170)
Let Z ={z € X : Ogf(x|0) #0, t*(z) < 1}. We find that
[96.f (y16)]? 5
p(O)I(0)Y g/t dy, 2.171
1) < | B (2171)
[00.f (y10)]* / [00.f (y10)]?
= | ———t(y)dy + —————t"(y)dy, 2.172
ey [ St 247
(90 f (y10))? / (90 f (y10))?
< [ LI gy 4 COLITL G 2.173
| T Ih) 247
= I(0]X). (2.174)
We have equality in (2.171) iff. dyp(f) = 0. The inequality (2.173) is saturated iff. Z has measure
0. Note that if Z has meausre 0, then 9gp(0) = [ pf(|0)t*(x)dz = [ dpf(x]0) = 0. We conclude
that Z having zero measure is necessary and sufficient for the filter t> to be lossless. O

Lemma 2.24 shows that classical filtering is lossless if and only if one filters on a subset that has no
local parameter dependence. If, as is often the case, 0y f(x|6) is non-vanishing for all x € y, then only
the trivial filter t> = 1 (almost everywhere) is lossless. This is in stark contrast to the quantum case,
where one can find a lossless filter for any choice of (non-zero) transmission probability p(#). This
demonstrates the truly quantum nature of filtering in an operational fashion, without reference to any

other preconceived notions of classicality.

2.3.4 TIterative Filtering

As noted in Section 2.1.7, existing work on postselected metrology has focused on theoretical calcu-
lations using the quantum Fisher information, rather than concrete protocols. In this Section, we
introduce the first explicit postselected quantum parameter estimation scheme. We give an algorithm
for a specific parameterised quantum state, where one starts with no prior knowledge on the parameter
to be estimated, that repeatedly updates the quantum filter. As the filter is updated, the risk of the
corresponding estimator (the output if the algorihtm was terminated) decreases arbitrarily below its
non-postselection version, demonstrating the advantage that postselection can give. Additionally, we
consider the application of the James-Stein estimator (see example 2.2) to postselection. We see that
the (genuinely quantum) effect of postselection can boost the James-Stein estimator’s advantage over
the MLE.

Unlike other Sections, we take H to be infinite dimensional, and consider an explicit parameterised

pure state. Specifically, for some k£ € N, we take

H = L*(R*,C) := {f RF = C ‘ /dkx |f(@)]? < oo} / ~, (2.175)
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where f ~ g iff. f = g almost everywhere. We consider a parameterised state with parameter space
O = Rk:
[0.) : RE > S(H), 0 o), () () = CH/2e~Ia=0I/5, (2.176)

for some known B > 0 and C' = \/W . In the position basis, |¢y) is a Gaussian, with mean 6 and

variance y/B/2.

Suppose that we use filter with Kraus operator K on [¢)). We denote the postselected state by

(W) 0 = S(H), 6 \¢§>=M (2.177)

1K [0} I

Given its theoretical properties, we will use the JAL filter, with parameters 6y € © and ¢ € [0, 1]. We
will show that the postselected state can be well approximated as a Gaussian state, for 6y close to 6.

We require a brief technical proposition to do so.
Proposition 2.15: Let a € R*, then

sup 6% — (1 4 0 2)] = O(al]?), (2.178)
z€RF

as a — 0.
Proof: From Lagrange’s form of the remainder of a Taylor series [56], we know that
69— (14a-2)| = %(a  2)%E, (2.179)
where £ € R is bounded: [£| < |a - z|. By Cauchy-Schwartz, we deduce that
€% — (1t a-2)] < g ol el (2.180)

Using that ||z|* < el®ll, we find that

el — (14 a-2)] < 3 o] o] Pelelet-1el, (2.181)
1
< 5HCLH26(1+IIGH)IIIH*HIIIQ7 (2.182)
- lHaH26—(HSL‘II—(1+|IaH)/2)2+(1+Ilall)2/4 (2.183)
2 9
1
< §|]a\|2e(1+||“”)2/4. (2.184)
Taking the supremum of both sides, the result follows. O

We now show an approximation for the postselected state. Suppose that the true value of the parameter

is @ € ©, and let § = 6 — 6. We first show following approximation

Proposition 2.16: Suppose K = KA and [1)g) is defined as in equation (2.176). Then, for
r € RF
[0E) (2) = CF/2e a0 B 11 4 o162 /42)], (2.185)
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(almost everywhere). Furthermore, the probability of postselection satisfies
i (0) = * + O([|6]*). (2.186)

Proof: First, we calculate the overlap

(o [t0g) = C* / T kg (a0l +z—00])/B (2.187)
_ ok /°° by o= (2lle=0/2-00/21*+6—60l/2)/B (2.188)
= ¢IIoIP/2B, (2.189)

We deduce that K |1g) = [1bg) — (1 — £)e~101°/2B |y ) Define f € H by f(z) = K |4(0)) (z + 6p).
For z € y, we find that

F(z) = CF/2(e~Ie=8I/B _ (1 _ 4y~ I6I7/2B~Il=I*/By, (2.190)
_ M2 I8/ B el B 1206/ _ (1 _ )01 /28], (2.191)

Using proposition 2.15 twice, we find that

fw) = O WIBRIBlt 49 5/B + O(6]), (2.192)
= tC*2e=IBIP/Be=lleI*/B[1 4 95 §5/tB + O(||5]%/¢2)), (2.193)
= tOF/2e= 10 /B=llel*/B22-6/tB 1 1 O(||5]1% /)], (2.194)
= tok/Qe—Hw—é/tHg/BeHéIIQ(l/ﬁ—1)/B[1 +O(|19]1% /%), ( )
= tC"2e I3 /I/B 1 4 O8] /12). (2.196)

Finally, we note that pb" - (0) = || K [e)||* = [ dx|f(z)]%. O

Proposition 2.16 may be seen as a non-asymptotic version of Lemma 2.15 for the particular example
of a Gaussian state. The amplification of J by a factor of 1/t? is demonstrated by the increased
sensitivity of the postselected state to changes in 6 (by a factor of 1/t). We will show how to use this

approximation to construct an explicit protocol for estimating 6.

Because we require that ¢ > ||0||, one cannot decrease t (increasing the strength of the filter) until
one has a good estimate 0y of §. We start with no knowledge of 0, and hence no suitable guess 6.
We run an iterative algorithm (described below), where one estimates § (using sample variance) and
then decreases ¢ when one is confident that d is sufficiently small. We remark that this algorithm is
heuristic, we do not explicitly prove its convergence properties. We do, however, emperically demon-
strate its performance. . In this way, the Gaussian approximation of proposition 2.16 is expected to

hold at all steps in the algorithm.
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Algorithm 2.1:
Input: An unknown parameter value § € R¥ and N € N, the number of measurements

to be taken
Output:  An estimate of the parameter

1. Set @ =0,t=1,i=1

JAL
2. Measure the position of the postselected state |1, ) denote the outcome X;. We let

Y; = 0y + t(X; — ). By proposition 2.16, if ||0]| < t, we expect that Y; ~ N(0, Bt?/41),

3. Let é@ = é(Yz) be an estimate of § made using Y;. Update a collated estimate given by 6;,

the sample mean of él, . ,éi.

,éi, a collated estimate of . Let 6; be the sample

standard deviation of él, e ,éi. We let 51 = 6i/ﬂ, an estimate of ¢

4. Let 6; be the sample mean of él, .

5. If §; is less than 0.3t, we set ¢ to 3& and 6y to 6;: our current best estimate of .

6. If i = N, then output 6; as our estimate of #. Otherwise, increase i by 1 and return to

step 2.

We reiterate that we are working with the approximation that the limiting factor in estimating 6 is
KJAL

Yy % > As one decreases t, decreasing the chance of successful postselection,

KAt
Yy :

Algorithm 2.1 relies on an estimator g : RF — RF for estimating the mean of an unknown Gaussian
distribution AV (6,X), with known covariance matrix X. We first consider the algorithm with the MLE:
éMLE(m) = z, and denote the corresponding collated estimates 6,, by éEMLE (shorthand for postse-
lected MLE).

measuring the states

one can increase the intensity of probes input to the system to produce states

Suppose that when Xj; is sampled, ¢ has value ¢;. Under the Gaussian approximation of proposition

2.16, we thus expect

. B R kB
GPMLE 0, —#1 R(GPMLE gy — 2= 32 2.197
n N 7477/ n ) ( 9 ) 4n n’ ( )

where 2 = (1/n) Y™, t? is the average value of t2. For comparison OMVE ~ N(0, B/4n 1) and

i=1"

R(OMLE ) — kB /4n. We see that postselection improves the risk by a factor of #2.

We expect t,, — 0 as n — oo and thus, by Cesaro’s Lemma, we expect t2 — 0, and that postselection
gives an unbounded advantage in estimating 6. Of course, in practice, one cannot truly decrease ¢t — 0,
as this would make the postelection probability arbitrarily small. There will be some lower bound

t > tmin corresponding to the maximum intensity at which one can input probes to a system of interest.
2

In this case, £2 — t2 .., and postselection leads to a constant (but potentially very large) improvement.
An explicit demonstration of the advantage from postselection is seen in figure 2.5. After an initial
period (in which an initial estimate 6y is collected), we see that the advantage of postselection appears

to increase linearly (and unboundedly) with the number of samples.
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Figure 2.5: Plot showing the advantage of postselection when using the MLE. Here, k =4, B =1 and
0= (1,-2,3,1.5)/30.

As shown by example 2.2, the MLE is inadmissible for estimating the mean of a normal distribution
when k& > 3. Thus, we consider our protocol using the James-Stein estimator (see example 2.2).
However, we note that 673 only has a non-negligible advantage over OMLE when 6 is close to some
known value’ fy € R*. But in this setting, we can immediately decrease ¢, which will shift 6 to
0o + (o — 0)/t, which is far from 6y and thus destroys the JS advantage. Thus, we consider a
modified version of the James-Stein estimator §™’S that can be applied to our scenario. Instead of
shrinking the vector z towards the origin like 675, ™IS ghrinks z in the direction of the isotropic
vector e = (1,...,1) € R¥. To be precise, for z € R¥, we define z,, = (Zle z;/k)e € R¥ and for
k > 4 we define ™IS a5
(k—3)x-1!

IS () = ¢ — T — Tp). .
0" (x) =z T ﬂfm)HQ( m) (2.198)

The risk of ™5 is given by

1
==L = X) [P

R(0™5,0) = Tr(Z) — (k — 3)%E (2.199)

so that ™75 also dominates AME. In analogy to 9PMLE, we denote the collated estimates 6,, when
using 0 = ™IS by PS5,

In order to consider the effect of postselection on the JS advantage, we consider the “postselected

"By shifting the origin, we can take this value to be non-zero.
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Figure 2.6: Comparison of the effect of postselection on the James-Stein advantage for various 6,
B = 1. The small kink in the blue curve is due to computational shot noise.

advantage” (PAD) given by the ratio

HPMLE HmJS
PAD : N x R¥ — [0, 00), PAD(n,6) = R(HA” JS’Q) : R(?n "9). (2.200)
R(OR™®,0)  R(OYTE, 6)

If PAD > 1, then postselection has increased the James-Stein advantage (compared to the non-
postselected case). In light of equation (2.199), we expect that the behaviour of PAD(n, ) will
depend on how “isotropic” 6 is. We quantify this by

v(0) = (6: —0)?, (2.201)

related to the variance of . In figure 2.6, we plot PAD(n, #) against n for 4 different values of § € R*,
each with a different v(f). the James-Stein estimator allows stronger postselection for smaller n, so
that PAD > 1. However, as n increases, the 1/t factor in sensitivity increases v(6) by a factor of
1/t?, which degrades the James-Stein advantage. Thus, PAD eventually decreases. These effects are

magnified when v(0) is smaller.

Our results demonstrate the subtle interplay between postselection and parameter estimation. Postse-
lection gives a potentially unbounded, uniform amplification in estimation accuracy, as demonstrated
in figure 2.5. However, it can have a much more complex effect on the advantage of one estimator over
another, as demonstrated in figure 2.6. Moreover, this effect depends on the value of the underlying

parameter.



50 Learning in Quantum Mechanics

2.3.5 Outlook

In this Section we have further explored the application of postselection to quantum metrology. We
have provided a range of results, each of which is a valuable contribution within their own right.
Despite recent theoretical advancements [2, 3, 47] in quantum filtering, and even a theoretical demon-

stration [43], there are still many open problems.

Firstly, we need a better understanding of concrete algorithms for filtering. The scheme in Section
2.3.4 could be further optimised, with a systematic study of when it is best to reduce the value of ¢,
and by how much it should be reduced. Additionally, it is important to consider explicit algorithms for
other common parameterised states, such as the phase-encoded state (example 2.4). More generally,
it would be desirable to have an iterative procedure that works for any parameterised state p, with

guarantees on performance of the estimation strategy.

Secondly, filtering of mixed states is very poorly understood. It remains an open problem to maximise
R,, k over choices of filter K when p is mixed. The example in Section 2.3.2 shows that existing
results for pure states do not generalise easily to the mixed case. Some sufficient conditions for lossless
compression have been found in Ref. [57], but they are not known to be necessary. Mixed states are
particularly important for accounting for noise, which is always present in physical systems. Filtering
with depolarising noise and/or photon loss has been explored in Ref. [2], but the case of depolarising
noise is not fully solved. Section 2.3.2 shows that this problem is complex, even in dimension three.

Moreover, other noise models (such as individual qubit noise) have not yet been studied.



Chapter 3

Probably Approximately Correct

Learning

3.1 Background

3.1.1 Classical PAC Learning

In recent years, machine learning has shown remarkable success. Applications have been found in text
generation [58], image processing [59], cybersecurity [60], healthcare [61] and biochemistry [62]; to say
this list is non-exhaustive is undoubtedly an understatement. Most modern machine learning has its
mathematical foundations in probably approximately correct (PAC) learning, as introduced by Valiant
in 1984 [63]. In this Section, we introduce the classical framework of PAC learning, in a self-contained
manner. This is an essential prerequisite to understanding our results, presented in Section 3.2. As in
the previous chapter, we give more exposition than is strictly required for our work, in order to give

sufficiently motivating context.

In this thesis, we will focus on PAC learning with the simplest type of object, called a classifier,
which partitions a set into YES and NO instances. For example, a facial recognition algorithm decides
whether or not an image contains a specific face. In analogy to decision problems in complexity the-
ory, these simple YES/NO objects are among the most studied object in theoretical machine learning;

much of the theory developed for classifiers can be applied to more general cases [64].

Mathematically, a classifier is a function f : X — {0, 1}, where X is the set of valid inputs to f, called
the input space. We will focus on the case where X is finite; often the input to f is a length n bistring,
ie. X = {0,1}". It is certainly possible to work with infinite X', but one has to deal with technical
aspects of measurability [64]. We denote the set of all possible classifiers on X by {0,1}*. Sometimes,
a classifier f is thought of as the subset f~1({1}), or its “truth-table” - a list of f(x) for every z € X.

If there was no known structure in learning problems, machine learning would be extremely difficult -
there are 2%l possible classifiers, so an exponential amount of information is needed to even describe
a generic classifier. Yet, there is anthropological evidence that it is possible to efficiently learn faces
- young children can recognise faces. Our brains filter out most of the irrelevant information in the
input image, extracting important details to recognise a face. More abstractly, the rich structure of

the problem allows it to be solved efficiently. In general, the structure of a machine learning algorithm

o1
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is given by specifying a subset C C {0,1}*, called a concept class. For example, C could be the set of

functions that do not change if their input is reflected.

A key insight in PAC learning is that it is enough to learn a function f approximately, rather than
exactly - if you are correct 99.999% of the time, that is usually good enough in practice. This is mod-
elled by some probability distribution D on X, representing the distribution of inputs to the classifier.
For example, a facial recognition algorithm is much more likely to receive an image corresponding to

a photograph than pixelated noise. The distribution induces a distance on classifiers!

d: {0, 1} x {0,1}* = [0,1], d(f,9) = Px~p[f(X) # 9(X)]. (3.1)

We say that f is an e-approximation to g if d(f,g) < e. In the simplest type of learning, known as
realisable learning, there is some unknown classifier ¢ € C. An algorithm succeeds if its output g

satisfies d(c, g) < e, i.e. the output is a good approximation to the true classifier.

A machine learning algorithm receives data (often called the training phase), and then outputs a clas-
sifier g. If we insist g € C, the learning algorithm is called proper, otherwise (if g may be in {0,1}%*\C)
the algorithm is called improper. In this Section, we only consider one type of access to data, known
as random labelled examples. See Section 3.2.1 for a discussion of various different access models. In

realisable learning, a random labelled example is a tuple (X, ¢(X)) € X x {0,1}

Suppose a learning algorithm A receives a number of random labelled examples in its training phase.
Then, with respect to the randomness of the training data (and any other randomness in the learning
algorithm), the output g of A is itself random. In analogy to allowing a small error in the output
g, we also allow for the learning algorithm to fail with some small probability §. To be precise, A is
said to be an (¢, ) learner if, with probability at least 1 — §, it outputs g satisfying d(g, c) < e, for all

possible inputs (i.e. unknown classifiers ¢ and distributions D).

In practice, it is often difficult to pin down a simple concept class C that the true classifier belongs
to, i.e. the structure of the problem is hard to describe. Instead, we specify some C (e.g. the set of
possible configurations of a neural network), without the promise that an unknown classifier f is in

C. We define the optimal error of C with respect to an unknown classifier f by
OPTc(f) = mind(f. ). (3.2)

In this type of learning, known as functional agnostic learning, instead of outputting an e-approximation
to f, we wish to output a classifier g whose error is not much worse than the best case using C. That
is, an algorithm succeeds if d(f,g) < OPT¢(f)+e. One hopes that by choosing a suitably “expressive”
concept class C, OPT¢(f), and therefore the error of the output of the learning algorithm, will be

small.

In some cases, an ideal classifier f may not even exist. For example, it can be ambiguous whether or

In general, when learning functions of the form f : X — ), we introduce a loss function (as in metrology) L :
Y xY — [0,00] and take d(f,g) = Ex~p[L(f(X), g(X))]. If Y is finite, L is usually taken to be discrete loss (see Section
2.1.1).
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Setting Distribution Unknown learn- | Succeeds if | Random la-
ing object output ¢ has | belled example
d(g,-) < (aka. sample)
Realisable Don X ceC €
(X, e(X)),
X~D
Functional Agnostic | D on X fe{o1}* OPTe¢(f) + € (X, f(X)),
X~D
Distributional Agnostic | D’ on X x {0,1} | D’ | OPT¢(D)+€ | (X, Y)~D |

Table 3.1: Summary of different settings for PAC learning.

not an image contains a face, or data can be noisy. This is modelled by a joint distribution D’ over
X x {0,1}. The conditional probability D'(z,y)/D’(x) represents the likelihood that the input = is

classified as y. We extend our notion of distance to include distributions:

d: {0, 13" x A(X % {0,1}), d(£,D') = Py y)~pr [f(X) # Y. (3.3)
Again, we define the optimal error of C with respect to a distribution D’ as

OPT¢(D') = mind(g,D’). (3.4)

geC
This type of learning is known as distributional agnostic learning. In this paradigm, a random labelled
example is a tuple (X, B), drawn from the distribution D’. A learning algorithm succeeds if its output
g satisfies d(g, D") < OPT¢(D’) + €. Note that functional agnostic learning is a special case of distri-

butional agnostic learning, and that realisable learning is a special case of functional agnostic learning.
The different learning scenarios discussed above are summarised in table 3.1.

The sample [resp. time] complexity of a learning algorithm A is the number of samples T' used by
[resp. runtime of] A. The sample [resp. time] complexity of a learning task is the minimum sample
[resp. time| complexity of any (e, d)-learner. Time complexity is more practically relevant than sample
complexity, but harder to bound; one can give upper bounds for specific concept classes C, but it is
difficult to give generic upper bounds. Moreover, it is hard to give explicit, non-trivial, lower bounds.

Sample complexity certainly lower bounds time complexity, but it can be much smaller:

Lemma 3.1: There exist a family of concept classes C,, for which the sample complexity of
realisable learning grows at most polynomially (in 1/e, 1/ and n), but if the time complexity of

realisable learning were to also grow at most polynomially, then RP = NP.

Proof:  For a proof of the RP = NP claim see Ref. [65], chapter 1 theorem 1.3. The sample

complexity growing polynomially is a consequence of Lemma 3.2 and theorem 3.1 below. 0

Here, RP is the set of languages L for which there exists a polynomial time randomised algorithm A
such that (i) if z ¢ L, then A(x) = 0 with certainty, (ii) if 2 € L then A(x) = 1 with probability at
least 1/2. Note that RP is contained in BPP N NP, where the random bits consumed by A act as a
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witness.

In this thesis, we will focus on sample complexity, which we shall call complexity. The complexity
of PAC learning a concept class C depends on three things: €,d and some measure of structure
within the class C. For sample complexity, the correct measure of complexity of C is known to
be its Valiant-Chapernikis (VC) dimension [66]. For a subset Y C X, and a concept ¢ € C, let
cly + Y — {0,1} y — c(y) denote the restriction of ¢ to the subset Y. Furthermore, we define
Cly := {c]y : ¢ € C} as the restriction of the concept class to Y. We say that C shatters Y if
Cly = {0,1}Y, i.e. if all possible labellings of Y appear in concepts in C. The VC dimension of C,

VC(C), is the maximum size of a shattered subset
VC(C) = max{|Y|: Y C X is shattered by C}. (3.5)

On shattered sets, C has no exploitable structure; even if one learns the value of ¢ on every element of
Y bar one, there is no way to infer the value of ¢ on the remaining element of Y. It is often difficult

to exactly calculate VC(C), but it can be conveniently bounded in terms of |C|:

Lemma 3.2:
ve(e)

vee) <togic) <o Y- (1) ] < vew@ ol (36)
=0

Proof: For Y C X, |{0,1}Y] = 2I¥| and thus if C shatters Y, 2¥l < |C|. The lower bound
follows by taking Y a shattered set of maxmimal size. The upper bound on log |C| is known as

the Sauer-Shelah Lemma [67]. The last inequality follows from a simple counting argument. [

The importance of the VC dimension is shown by the following theorem, sometimes called the “Fun-
damental Theorem of PAC learning” [68].

Theorem 3.1: Suppose C is a concept class with VC(C) = d. Let €,6 > 0. Then the sample
complexity for realisable PAC learning of C, denoted T~ (¢, 6,C), scales as

ro-o ! (are[2])] o)

Moreover, the sample complexity for distributional agnostic PAC learning of C, denoted T, gag,

e oL (e [1])] o

The proof of the lower bound on T is from Ref. [69], which also gave an upper bound that was

scales as

only worse by a factor of loge. The matching upper bound on T was given in Ref. [70]. The
lower bound on Tgag was given in Ref. [71], the upper bound was given in Ref. [72]. Functional
agnostic learning is more complex: some classes require €2(d/e?) samples, whilst others require only
Ol[d/e(log[d/€] +1og[1/0])], see Ref. [73] for a discussion. For the remainder of this thesis, we will only
focus on realisable learning. It is perhaps the least realistic access model, but provides a simple set-

ting from which results can be generalised. Thus, we say “PAC learn” to mean “realisably PAC learn”.
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( One element has almost all the weight
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Figure 3.1: The worst case distribution for PAC learning algorithms

We give a brief sketch on the lower bound of T, which will be useful in motivating our quantum
results. Suppose that VC(C) = d+ 1 > 2. Let Y C X be shattered by C, with |Y| = VC(C). Pick
some element y € Y, let Z =Y \ {y}, and define a “perturbed” delta function distribution on X":

1—-2, z=uy,
Dwe(2) = 2¢/d, z€ Z, (3.9)
0, 0.W.

See figure 3.1 for a pictorial distribution of Dy.. Since Dy, only has support on Y, a shattered set,
there is no structure to exploit. It takes, on average, {2(1/€) samples to learn the value of ¢ on an
element of Z, and we must learn at least half of these values to learn an e-approximation to c¢. Thus,
intuitively, £2(d/€) samples should be required. This can be made rigorous: see [69]. Even if one knows
the distribution is Dy, beforehand, one still requires ©(d/¢) samples. Since this lower bound matches

the known upper bound, Dy, is a worst case distribution for a learning algorithm.

The upper bound on T}~ from from Ref. [69] follows from a very simple algorithm, known as “Occams
razor”2. The learning algorithm A takes T samples S = (x1,y1), ... (27, yr), and outputs any concept
in C that is consistent with the samples. If T is chosen large enough (only a log factor worse than
Tc), then the algorithm is a proper (e,d)-learner. In practice (as shown by Lemma 3.1) it may not
be possible to find such a classifier, so one attempts to find a classifier f in C that agrees with a large

fraction of the samples, or equivalently minimises the empirical risk:
N 1 _
Rs(£) = 7 > Vstwrus () (3.10)

The distance d(f,c) of f from the true concept ¢ is known as its generalisation error. Empirical risk
minimisation, and bounding generalisation error, forms much of the basis of modern machine learning

algorithms.

2This name is inspired by the original, philosophical definition.
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3.1.2 Quantum PAC Learning

In this Section we describe quantum PAC learning, the basis for our machine learning results. Quan-
tum machine learning has received much attention as a potential application of quantum computers,
see Ref. [74] for a review. We will briefly review the fundamental theory of quantum PAC learning,
and provide a brief discussion of known quantum advantages. Then, we describe a recent result that
calls into question generic quantum machine learning advantages. Our main results, presented in the
subsequent Section, show how to circumvent this no-go result, and we give the first generic, rigorous

theory of quantum advantage in PAC learning.

The quantum generalisation of PAC learning was first formalised by Bshouty and Jackson [75] in 1996.

Instead of a sample (X, ¢(X)), one receives a quantum state

[Ye) = Y VD) |z e(x)) (3.11)

reX

chosen so that measuring |¢.) in the computational basis gives a random labelled example. The
state |1).) is called a quantum sample; the sample complexity of a quantum learning algorithm is
the number of quantum samples it uses. Since one can always measure the quantum state, and then

use a classical algorithm, the quantum learning complexity of C cannot be worse than the classical one.

In the special case of quantum PAC learning under the uniform distribution, it has been shown that
one can obtain quantum sample complexity advantages in specific learning tasks [75-77]. These ad-
vantages rely on Fourier sampling, in which one applies the Hadamard transform on every qubit
followed by a measurement of the resulting state in the computational basis. One observes a bit string
s with probability given by its squared Fourier coefficient® |¢;|? and can thus directly infer properties
of the Fourier spectrum of the unknown function. However, such advantages rely on the distribu-
tions D being (approximately) uniform. For other specific concept classes, or closely related machine
learning tasks, there are known time complexity advantages to quantum learning [79-81], which can
be exponential. However, again, these advantages only apply to very specific concept classes, often
pathologically constructed (e.g. based on factorisation). In addition, there are often caveats to when

quantum exponential machine learning speedups apply, see Ref. [82] for a discussion.

In fact, for an arbitrary distribution D, the quantum sample complexity has exactly the same asymp-

totic scaling as the classical learning complexity, ruling out everything but constant factor advantages.

Theorem 3.2: Suppose C is a concept class with VC(C) = d. Let €, > 0. Then the sample
complexity for quantum realisable PAC learning of C, denoted Tg(e, d, d), scales as

ro-o ! (ar(2))]. o1

Note that the upper bounds on T}, follow from the classical case, the lower bounds are proved in Refs.
[83, 84]. The worst case distributions for the quantum learners are exactly the same as those for the

classical learners. The main idea used in the proof of the lower bound is to use coding theory to

3For a function f : {0,1}® — {0,1} and bitstring s € {0,1}", its Fourier coefficient és is given by
1/(2™) Zzezg (=1)f@+=s For further detail, see Ref. [78]
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reduce quantum PAC learning to quantum state discrimination, and utilise existing bounds on state
discrimination. Our main result is a new approach to quantum machine learning that circumvents

this lower bound.
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3.2 Quantum PAC learning with the source code

3.2.1 Access Model

We consider a generalisation of Bshouty and Jackson’s quantum samples, in which ones has access to
a unitary Q. that prepares |1).), as well as the inverse unitary Q}; Precisely, we assume that there is

a concept-independent known state |IN) such that

Qc: [IN) = |¢e) . (3.13)

We are not given any promise on how the oracle (). might act on other states in our Hilbert space.
We define the learning complexity of any algorithm as the total number of queries to Q. or QZ. The

minimum learning complexity of any (e, §)-learner is denoted Tp (e, ,C).

This access model (or strongly related access models) has recently received attention in many different
areas of quantum information. It has been studied in Ref. [85] in the context of quantum state to-
mography, in Ref. [86] in the context of quantum channel tomography and in Ref. [87], in the context

of estimating the mean of a random variable.

Since Valiant introduced PAC learning, a plethora of access models have been proposed, inspired by
different real-world scenarios. We provide a brief discussion of the access model considered in this
Section (access to Q. and Ql), and its relationship to three other popular models. We compare to
random labelled examples (X, ¢(X)), quantum samples |1).), and membership queries - where a learner

can submit an x € X and receives c¢(x) in return.

Random labelled examples are the most commonly considered access model in the machine learning
literature. Even if learning complexity is polynomial, there may be no (time) efficient learner [88].
Some classes have time-efficient learners with random labelled examples and membership queries, but
not with only random labelled examples [89]. Curiously, we are not aware of a work that gives a
learning complexity lower bound on random labelled examples and membership queries. For certain
concept classes (such as concepts which label exactly d elements of X as 1), we believe that the stan-
dard lower bound distribution for random labelled examples should give the same lower bound for
random labelled examples and membership queries. However, for example, when considering the con-
cept class of all possible functions, membership queries give a learning upper bound of |X'|, which may
give a significant improvement over the |X'|/e samples required by random labelled examples alone.
Thus in general, membership queries can be much stronger than either random labelled examples or
our model; given random labelled examples or quantum samples, it takes on average 1/D(x) queries to
find ¢(x). Given our access model, one can perform amplitude amplification such that only 1//D(x)
samples are required, which may also be large. Indeed, if D(z) = 0, then a membership query of =
is impossible using random labelled examples, quantum samples or our model. Thus, membership

queries are incomparable with our model.

Quantum samples were introduced as the natural quantum generalisation of random labelled exam-
ples. However, in practice it is unclear how to prepare |t.), given that it depends on ¢ and D. Whether

or not this is reasonable depends on how the random labelled examples are classically generated - if
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they are completely “black-box”, then it seems unlikely that quantum samples will be an appropri-
ate resource without very strong quantum data loading subroutines, such as QRAM. If ¢ and D are
“white-box”, i.e. there is some circuit producing them, then an appropriate quantisation procedure
will lead to Q.. Given a circuit description of Q., one can theoretically perform Ql. Thus, in most

scenarios where quantum samples are sensible for learning classical data, our model is also reasonable.

A more promising case for quantum samples is when data is inherently quantum. Suppose a quantum
process produces Fb\;> =3 /D)@ |z, c(x), g(x)), where h(z),g(x) are some extraneous func-
tions. In this case, learning ¢ allows us to make physical predictions of the ¢(x) register given the x
register, without knowledge of g(x). This is useful, e.g., in learning far-range behaviour/correlations.
By the Stinespring dilation theorem, the quantum process has some unitary representation ()., which
can be taken as our oracle. Note that our algorithm is insensitive to the addition of the g(x) register

and h(x) phases.

3.2.2 Grover Subroutine

An essential subroutine for our quantum advantage is to use calls to Q. and QZ to run a Grover search
[90, 91]. This leads to a quadratic improvement in learning complexity (up to polylogarithmic factors)

over classical PAC learning. In this Section, we describe our Grover subroutine.

Our Grover subroutine takes as an input a “good” subset G C {(x,b) : x € X,b € {0,1}}, where we
wish to find an x such that (z,c(z)) € G. We define a corresponding “good” subspace by

G = span{|z b) : (z,b) € G}. (3.14)
In order to implement Grover’s search, we need to implement the Grover operator, defined by

D = (1—2po)we])(1 - 21Tg), (3.15)

where Ilg is the orthogonal projection map onto G. We show that implementing D requires a constant

number of queries.

Proposition 3.1: For any choice of G, one can implement the Grover operator D with one call
to Q. and one to Ql.

Proof: Note that (1 —2Ilg) is independent of ¢ and, therefore, may be implemented by a (possibly

exponentially sized circuit) without any queries. To implement (1 — 2 {1, )1.|), note that

1 =2 [¢e)(the] = Qe(1 — 2[INXIN))@QL, (3.16)

Note that (1 — 2|IN)XIN]|) is independent of ¢ and, therefore, may be implemented by a (possibly

exponentially sized circuit) without any queries. O

One can uniquely decompose
[the) = sin(0) |g) + cos(6) |b) , (3.17)
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where |g) , |b) are orthonormal, 6 € [0,7/2], |g) € G and |b) € G*. Tt is well known that [90]
D" |¢) = sin((2n + 1)8) |g) + cos((2n + 1)0) |b) . (3.18)

Thus, if we knew 6 exactly, we could apply D™ such that sin((2n + 1)6) ~ 1. However, since 6 depends
on D, which is unknown, this is impossible. Instead, we use a well-established [92] version of Grover’s

search for an unknown number of items. Our exact subroutine is given below; algorithm 3.1.

Algorithm 3.1:

Input: G C{(z,b):x € X,be {0,1}} a good subspace, € > 0 a tolerance
Output: labelled example (x,c(z)). Succeeds if (z,c(z)) € G

1. Produce |¢.) = Q. |IN)
2. Pick N from 0,1...,[2/y/€] — 1 uniformly at random
3. Apply D, the Grover operator, N times to |¢.)

4. Measure the resulting state in the computational basis

The properties of our algorithm are summarised in the following Lemma

Lemma 3.3: Let G C {(x,b) : x € X,b € {0,1}} be a good subset, € > 0 be a fixed tolerance.
Suppose that we run Algorithm 3.1 with these inputs, then

(i) In the worst case, the algorithm makes O(1//€) oracle (or inverse oracle) calls.

(i) If Pxp [(X,c(X)) € G] > € then the algorithm succeeds, i.e., returns (z,c(z)) € G, with
probability at least p = 0.09.

(iii) Conditional on succeeding, the output of the algorithm (X, ¢(X)) is distributed according

to
Pxp [X]

Px.p [(X,c(X)) € G]

P [(X, ¢(X))|algorithm succeeds] = (3.19)

Proof: Part (i): From the definition of the algorithm and Lemma 3.1, the worst case number of

oracle calls is 1 4 2([2/+y/€] — 1) = O(1//e).

Part (i7): Let M = [2/y/€], let 6 be as in equation (3.17) and let pP® be the probability that
the algorithm succeeds. Note that Px.p [(X,c(X)) € G] > € < sin(f) > /e. We use Lemma 2
(Section 6) from [92], which claims

1 1 sin(4M0)

pS _ -~ _ i Ntiahil’d
2 4M sin(26) °

(3.20)

For sin(6) € [/€,1/v/2):
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2
M > 21
~ sin(6)’ (3.21)
1
> .22
~ sin(26)’ (3.22)
and thus L1 1
PS> - T = = 5 0.00. .
P25 == > 009 (3.23)
Note that for 6 € [7/4,7/2],
2—-0
sin(20) > ”/ﬂ = (3.24)
Thus, for 6 € [7/4,(1/2 — 1/4M)7|, we have that
1 1 4/m
(0)> 2 — — . , 2
p:0) 25~ rA (2= 1/a)r (3:25)
T (3.26)
5~ — > 0.09. :

Finally, for 6 € [(1/2 — 1/4M)7,w/2], note that sin(20) > 0 and sin(4M8) < 0 so that ps(6) >
1/2 > 0.09.

Part (i7i). This follows from the form of D™ |1).); the relative magnitude of the amplitudes in |g)

is unchanged by the Grover operator D. 0

We discuss how to combine the Grover subroutine with the algorithm of Section 3.2.3 to achieve a

quantum learning complexity advantage in Section 3.2.4.

3.2.3 Learning with Imperfect Equivalence Queries

Equivalence queries are an alternative learning model for PAC learning. It was recently shown [93]
that PAC learning with equivalence queries gives an exponential advantage over learning with labelled
examples. In this Section, we show how to use imperfect equivalence queries to PAC learn a concept

class, which is a core component of our quantum algorihtm.

An (ideal) equivalence query consists of submitting a candidate hypothesis h for an underlying true
concept c¢. If h = ¢ then we are told YES. Otherwise, we receive a labelled example (z,c(z)) where
c(x) # h(x) at random, according to the distribution P(y) = D(y)/D({z : ¢(x) # h(x)}). Such a
labelled example where h(x) # ¢(x) is called a counterexample. Equivalence queries are a very strong
learning model, and perhaps unrealistic. Thus, we assume we can only implement them probabilisti-

cally.

An imperfect equivalence query consists of submitting a candidate hypothesis h for the underlying

concept c. In return we receive some labelled example (x, c(x)) with the following promises

e There is some known probability p, independent of the concept ¢, and the values of € and
5. Moreover, If d(h,c) > €, then the probability of receiving a counterexample (i.e. that
c(x) # h(x)) is at least p
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e The distribution of (X, c¢(X)) conditional on being a counterexample is the same as an ideal
equivalence query. More precisely, Plreceive (y,c(y)) | c(y) # h(y)] = D(y)/D({z : c(x) #
h(z)})-

Note that we can tell whether our imperfect equivalence query failed or not - we can look at the result
(x,c(x)) and check whether h(z) = c(z). If they are equal, the equivalence query failed. Otherwise, it
succeeded. Classically, we can implement an imperfect equivalence query using 1/¢ random labelled
examples - we just sample 1/e times and see whether c¢(x) # h(x) for any of our samples. On a
quantum computer we can do this in 1/4/€ time using Grover’s algorithm, as described in Section
3.2.2 in Lemma 3.3.

We need one additional tool from classical learning theory to run our algorithm, the weighted majority
vote. Suppose we have a set of classifiers H C {0,1}? and a distribution p on . Then the weighted
majority vote [94], WMVy, , € {0,1}* is defined such that it maximises

Phy [WMVy (2) = h(z)], (3.27)

for every x (ties can be broken arbitrarily).

Suppose we have a classical algorithm A that uses Tg (e, 0, d) (ideal) equivalence queries to PAC learn
a concept class C. We show how to use O(Tg + log(1/9)) imperfect equivalence queries to PAC learn
the same concept class. The full detail of the algorithm is given below in algorithm 3.2. It works
by running A, replacing every equivalence query with repeated imperfect equivalence queries until
one succeeds. We terminate if the learning algorithm A terminates or if we make a total of R(Tg, 9)

imperfect equivalence queries.

Algorithm 3.2:

Input: d > 0,e > 0 (the usual PAC parameters) and A a classical equivalence query
learning
algorithm with worst case query complexity Tg > 0

Output:  Hypothesis h € {0,1}*

1. Set the maximum imperfect equivalence query budget as R = 6T /p + (3/2p?) log(1/6). If

R total imperfect equivalence queries have ever been made, go to step 3

2. Run A, whenever it requires an equivalence query to a hypothesis h, repeatedly make
imperfect equivalence queries until one succeeds (note, we can check whether the imperfect
equivalence query succeeded, by comparing c(z) and h(z)). If A terminates, output the
output of A

3. Let H = {h1,...,hi} be the set of hypothesis we ran imperfect equivalence queries on (so
that £ < Tg). Suppose we spent n; imperfect equivalence queries on h; (so that > n; = R).
Let p(h;) = ni/R and output h = WMV ,

We give some rough intuition for why the algorithm works before proving so. If A terminates, then

with high probability, it outputs an approximately correct hypothesis. If we pick R large enough,



3. Probably Approximately Correct Learning 63

then with high probability Tx ideal queries to hypotheses h; with d(h;,¢) > € would all succeed in
< R/3 imperfect equivalence queries. Thus, if the algorithm A does not terminate and we make R
total imperfect equivalence queries, with high probability, we spent > 2/3 of our imperfect equiva-
lence queries on hypotheses h; with d(h;,c) < e. Hence, if we take the weighted majority vote of all
of the hypotheses we queried, weighted by the number of imperfect equivalence queries spent on each
hypothesis, most of the vote will be decided by hypotheses that are close to the concept c¢. Thus, the

weighted majority vote will also be close to c.

The full proof of why algorithm 3.2 works is given as two propositions. They require some new ter-
minology. A transcript of a run of algorithm 3.2 is given by the list of hypotheses H = {h;} that
the algorithm queried along with a corresponding collection of natural numbers n; > 0, where n; is
the number of imperfect equivalence queries spent on h;. The corresponding time-spent distribution
p is the probability distribution on H given by p(h;) = n;/ Y, n;. Finally, F = {i : d(hs,c) > €}
is called the “feasible” set, where our imperfect equivalence query succeeds with probability at least
p. Correspondingly I = {i : d(h;,c¢) < €} is the “infeasible” set, where there is no promise on the

probability of success.

Firstly, we show that with high probability that a bounded number of queries is spent on the feasible

set

Proposition 3.2: With probability > 1 — § the total number of imperfect equivalence queries

to feasible hypotheses is at most

2Tg/p + (1/2p) log(1/6). (3.28)

Proof: A imperfect equivalence query of a feasible hypothesis has (by definition) a chance > p of
succeeding, and the individual imperfect equivalence queries are independent. Additionally, there
are at most T feasible hypotheses to query (since the classical algorithm makes at most T total
equivalence queries). Thus, the probability that we succeed on all the feasible hypotheses using
at most m imperfect queries feasible hypotheses is lower bounded by the probability of getting
at least Ty successes from a binomial distribution B(m,p). Thus, the chance of failure is lower

bounded by the chance of fewer than Tg successes from B(m,p).

Let X ~ B(m,p). Applying Hoeffding’s inequality [95], for m > Tr/p we see that

P[X < t] < e 2m@-Tr/m)?, (3.29)
Thus it is sufficient for )
T
2m < — nf) > log(1/9). (3.30)
In turn, it is sufficient that
2mp? — 4pTr > log(1/6), (3.31)

whence we deduce our bound.
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Next we prove that if we make enough imperfect equivalence queries on infeasible hypotheses, the

weighted majority vote of the transcript must be close to the underlying concept ¢

Proposition 3.3: Suppose we make R total imperfect equivalence queries, and spend at least
2R /3 imperfect equivalence queries on infeasible hypotheses. Then the weighted majority vote
M of the transcript with the time-spent distribution has d(M, ¢) < 4e.

Proof:  Fix the transcript hq,...hs. Let p be the time-spent distribution and let p’ be the
time-spent distribution conditioned on the infeasible set. That is, for i € I, p'(h;) = p(hi)/p(I).
Similarly let p the the time-spent distribution conditioned on the feasible set. We first show that
if the infeasible set overwhelmingly votes for a bit y, then the whole transcript must also vote for

that y. To be precise, if P, [h(z) = y] > 3/4, then

Prp [M(2) = y] = Py [M(2) = Y| Phoyp [h € I] + Phoj [R(z) = y| Ppep [h € FT, (3.32)
3 2

> 3 (3.33)

_ % (3.34)

Let M = WMVy, ,. By the above, if P [h(z) = c(z)] > 2, then M(z) = c(z). We deduce
(inspired by [94]) that

1
P [M(X) £ ¢(X)] £ Pxap [Bhuy [H(X) £ e(X)] = ¢, (3.35)
Markov’s inequality, < 4EX~DEh~p’[]l{h(X);éc(X)}]a (336)
— 4By d(h, )], (3.37)
definition of infeasible set, < 4e. (3.38)
O

We can now prove the performance of our algorithm

Lemma 3.4: Let the maximum number of imperfect equivalence queries of algorithm 3.2 be
R(Tg(e,8,d),0) = 6Tr(e,6,d)/p+ (3/2p%) log(1/6), (3.39)

then algorithm 3.2 produces a hypothesis h with d(h, c) < 4e with probability at least 1 — 2.

Proof: By proposition 3.2, with probability > 1 — § we spend at most R/3 imperfect equivalence
queries on feasible hypotheses - suppose this happens. If we succeed in an equivalence query for
every hypothesis required by A then with probability at least 1 — §, A outputs a hypothesis h
with d(h,c) < e. Otherwise, we spend at least 2R/3 imperfect equivalence queries on infeasible
hypotheses (as we assumed the feasible ones took at most R/3 imperfect equivalence queries) and
then by Lemma 3.3 the weighted majority vote WMV, , has d(WMVy ,,c) < 4e. Thus algorithm
3.2 outputs a 4e-approximately correct hypothesis with probability at least (1—0)2 >1-26. O
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3.2.4 Upper bound on Quantum PAC Learning

Here, we combine the results of Sections 3.2.2 and 3.2.3 to give an upper bound on Ty, the learning

complexity of PAC learning with a state preparation oracle (. (and its inverse).

Theorem 3.3: Let C be a concept class with VC dimension d. Then, for every €,d > 0, there

exists a (€, d)-quantum PAC learner for C that makes at most

O (\}E [d—i—log((ls)] log9(1/6)>, (3.40)

calls to an oracle that generates a quantum sample (Q).) or its inverse (Ql)

Proof:  Suppose that it takes F(e) queries to perform an imperfect equivalence query for a
hypothesis h. If we have a classical equivalence learning algorithm A with an equivalence query
complexity of Tg(e,d,d), then we can use algorithm 3.2 of Section 3.2.3 to get a quantum PAC

learning algorithm with learning complexity
E(e/4)R(Tr(e/4,5/2,d),0/2). (3.41)

The current best known T [93] has a worst-case query complexity of

m=of(rem()] ()

If we use the Grover subroutine (Section 3.2.2 algorithm 3.1) with G = {(z,1 — h(x)) : z € X'}
to implement the imperfect equivalence queries, we find F(e) = O(1/4/€). On substituting these
values of T and E into the bound from equation (3.41), the result follows O

We note that theorem 3.3 is a square-root improvement (up to polylogarithmic factors) over the

classical PAC learning sample complexity of theorem 3.1.

3.2.5 Lower bound on Quantum PAC Learning

In this Section, we prove a lower bound on quantum PAC learning with a state preparation oracle
(and its inverse). We show that €2(d/+/€) oracle calls are necessary. Up to polylogarithmic factors,

this shows that our quadratic improvement is optimal.

Suppose we have a concept class C with VC dimension d + 1. Then there is a set Z of size d + 1 in
X which is shattered by C. We pick a marked element xp € Z and let Y = Z \ {zo}. We define our
distribution D as a perturbed delta-function, the standard distribution used to prove lower bounds in
learning;:
0, ifed¢ Z,
D(ZE) =41—4e, if x =z, (3.43)
de/d, fzeY.

We also restrict our concept class to C = {c € C : ¢(zg) = 0}. If our PAC algorithm works on C, it

will certainly work on C. Since our distribution is restricted to Z we need only identify the behaviour
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of our concept on Z. Thus, we can index our concepts by bit-strings v € {0,1}% and index them with

elements of Y. To be precise, we identify a concept ¢ € C with a bit-string u € {0,1}4, where u, = c(y).

For a given bit-string u € {0, 1}d, the state preparation oracle acts as

Qu |IN) = V1 — 4e |z 0) + \/%Z |7 ug) . (3.44)

zeY

Our main approach is to reduce to the following fact from Lemma 51 in [85].

Lemma 3.5: Let u € {0, 1}d be a bit string, and let O,, be a weak phase-kickback oracle, that is

Oy |x) = e*M= | ) (3.45)
Then recovering more than 3/4 of the bits of w with high probability requires at least Q(d/n)
calls to O,, its inverse or controlled versions of these.

Proof:  See [85] O

We will use calls to controlled versions of O,, (denoted ¢-O,,) to implement the PAC state generation
oracle Q,. We fix n € [0,7/2] such that sin(n) = v/4e.

Proposition 3.4: One can implement @), using one call to ¢-O,,, one to ¢-O}, and two qubit-

ancillae.

Proof: First, it is convenient to shift the phase to have a + symmetry. Define a constant phase

gate as
Py |z) = € |x). (3.46)
Then let
O. = P01, (3.47)
so that
Oy |z) = % |z) | (3.48)
where
Uy = (—1)%=. (3.49)

We start by generating a uniform superposition of indices with the two-qubit ancillae in the |+)
state:

> " lz) [j00) +[01) + [10) 4 [11)]. (3.50)
zeY

1
2/d

We next apply 4 controlled gates - either c-F), c-P_, c—éu and 0-571, such that each term in the
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superposition in equation (3.50) picks up a different phase:
1 i —i ini —ini
>3 |a) [e”|00>+e "[01) + e [10) + e~ [11)] | (3.51)
2\/g z€Y

Note that this requires two calls to singly controlled versions of the oracle - we can implement a
double-controlled version by using a CCNOT (Toffoli) gate followed by a controlled oracle. Next,
we apply a Hadamard gate to the second qubit register

—~ fz*d S 1) [0 (cos(n) [0) + isin(n) 1)) + 1) (cos(miiz) [0) + isin(a) 1)) (3.52)
zeY

We then apply ST to the second qubit register (to remove the factors of i). We also use the

even/odd ness of cos/sin to regroup the terms:
1 . A
= == > [2) [cos(n)(|0) +[1)) 0) + sin(n)(|0) + @z [1)) |1)]. (3.53)
\/ﬁ €Y
We then apply a Hadamard gate to the first qubit register:
— cos(n) L Z |z) ] 100) + sin(n) 1 Z |z ug) | |1) (3.54)
! vd z€Y ! vd zeY ' . .

Conditional on the final qubit being in the state |0), we apply a unitary to the first register that

maps the uniform superposition over Y into the state |z¢):

s cos() |0 0 0) + sin(n) (\}g S ux>> . (3.55)

zeY

Finally, conditional on the first register not being in the state |xo), we apply an X gate to the
second qubit register, followed by an H gate on the second qubit register:

l+) . (3.56)

s |cos(n) |20 0) + sin(n) (;& 3 ux>>

zeY

But by the definition of 7, we see that this is exactly equal to the action of the PAC oracle:

(Qu [IN)) |+) - (3.57)

O]

We deduce our bound

I Theorem 3.4: Tp =) (%)

Proof: 'We can replace every call to @Q,, (or its inverse) in our PAC algorithm with the unitary
process described in proposition 3.4, which requires a constant number of calls to (a controlled)
O, (or its inverse). If the PAC algorithm outputs a correct hypothesis, then by construction of
our distribution, it must agree on at least 3/4 of the bits of u. Thus, the algorithm replaced with
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calls to O, (and its inverse) satisfies the conditions of Lemma 3.5, and thus it must use at least

Q(d/n) calls to O,,. Hence, we reach a lower bound of

To =0 <mii\/ze> =Q (\2) . (3.58)
O

Note that our lower bound matches our upper bound (theorem 3.3), up to polylogarithmic factors.

3.2.6 Application to Learning k-juntas

A k-junta is a function f : {0,1}™ — 0, 1 that only depends on a subset of k bits. Letting X = {0,1}",
we can consider the concept class C = {f € {0,1}* : fis a k junta}. k-juntas are a particularly
important concept class in PAC learning - they represent the fact that many systems depend on lots

of parameters, but only a few are important. We bound

c| < (Z) 2(2"), (3.59)

n

since there are (k) ways to choose the k bits determining the junta, and then 2(2")

choices for the

underlying function. Using Lemma 3.2 we deduce that
n k k
d <log [(k)} + 2" < klog(en/k) + 2. (3.60)

Thus, our learning algorithm can PAC learn a k-junta with

0 (\2 [k tog () +2¢+ log<§)] log9(1/6)> , (3.61)

oracle calls. This has a worse scaling in n than algorithms presented in [77], but has a better scaling
in € and works for any underlying distribution, whereas previous work has focused on the uniform

distribution.

3.3 Outlook

Our work leaves several interesting avenues for further research. Firstly, one could attempt to tighten
the upper bound (theorem 3.3) to remove polylogarithmic factors and prove a tight matching lower
bound. The removal of a log(1/¢) factor in the query complexity for classical PAC learning took 27
years [8, 69]; we hope that the quantum case will be simpler. Moreover, in order to achieve 1/,/€ scal-
ing with our method, one would require the optimal classical equivalence query learning complexity

to have no € dependence. Thus, a different approach is likely to be required.

Secondly, it is interesting to consider the power of quantum learning algorithms with access to the
oracle ()., but not its inverse QZ. The inverse oracle seems necessary for Grover’s search, and therefore
it is unclear if a quantum advantage is possible. The lack of such an advantage would have interesting
implications for understanding what makes quantum computing more powerful than classical com-

putation. It is additionally interesting to consider if there is any suitable classical analogue for the
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inverse oracle Q(T;.

Thirdly, one could attempt to find analogous sample complexity improvements in agnostic learning,
in both the functional and distributional cases. There are many existing algorithms for estimating the
mean of a random variable that admit quadratic quantum improvements [87, 96]. These algorithms

could be applied to the distributional case.

Finally, we briefly consider potential applications to boosting. Boosting is a technique in classical
machine learning that combines several “weak” hypotheses into a single “strong” hypothesis (see Ref.
[97] for a review). The weak hypotheses are produced by a weak-learner, which is promised to always
output a hypothesis h that is slightly better than random guessing: d(h,c) < 1/2 —~ for some (small)
parameter v € (0,1/2].

Boosting algorithms run the weak learner many times. Importantly, they change the distribution on
X that they sampling from between calls to the weak learner: more weight is assigned to x’s which
are incorrectly classified by previous hypotheses. This is most commonly achieved by taking an initial
(large) training sample (using D), starting with a uniform distribution on this training sample, an
subsequently altering this distribution. The boosting algorithm outputs a hypothesis with small em-
pirical risk which, for a sufficiently large training sample, has small generalisation error. The precise
way in which the distribution is updated depends on the boosting algorithm in use: common choices
include AdaBoost [98] and SmoothBoost [99].

In quantum boosting, the underlying weak learner is assumed to be a quantum algorithm, which is fed
copies of the example state |¢.). By changing the amplitudes in [¢).), one can run boosting algorithms.
This has already been studied in Refs. [100, 101], where one finds a quadratic improvement in VC-
dimension over classical algorithms, but slightly worse dependence on ~. There is a natural appeal
to use quantum algorithms for boosting, due to the relationship between updating distributions and
changing quantum amplitudes. For example, in Adaboost, the distribution updates in a simple way:
every x for which the previous hypothesis h was wrong has D(z) increase by the same factor, the
remaining z’s have D(z) decrease by a different factor. The factor is chosen in such a way that
the probability of the set {x | h(z) # c¢(x)} (under D) is exactly 1/2. This is closely linked to
amplitude amplification: we define a good subspace as being spanned by states |z b) where h(z) # c(z)
and b € {0,1}. The Adaboost distribution update corresponds to amplifying the magnitude of the
projection of |¢.) onto the good subspace to be exactly 1/2. If one has access to the unitary Q. that
prepares |1).), and its inverse, this can be achieved by e.g. the quantum singular value transformation
[102]. By repeating this procedure, one can run a boosting algorithm. Unfortunately, the recursive
nature of this approach will lead to exponential scaling. Suppose that the amplification subroutine
has a very simple form: QEUQCV for some unitaries U and V' (that depend on the choice of good

subspace). In the first round of boosting, we apply this circuit to produce modified example states

|the). In the second round of boosting, we apply the circuit C' = @;Tﬁ @;‘7, where @,c is a unitary
that prepares @ But then C' = (VTQZUTQC)ﬁ(QlUQCV)XN/ makes 4 calls to Q. or Ql. Similarly,
the next round of boosting will make 8, and so on. We note that although this leads to exponential
scaling in ~y, one can use this approach to construct an algorithm no dependence on VC dimension. If

one can successfully modify this approach, then there is potential for a large quantum advantage.



Chapter 4

Exact Learning Within the Stabiliser

Formalism

4.1 Background

4.1.1 The Stabiliser Formalism

In this Section we will introduce the stabiliser formalism, one of the cornerstones of quantum compu-
tation. We will proceed to introduce several (classical) computational primitives within the stabiliser
formalism, and explain their importance. Our main results, in subsequent Sections, are new, faster

algorithms for these primitives.

The computational importance of the stabiliser formalism was first studied in the context of the
Gottesmann-Knill theorem [103, 104], which roughly states that the stabiliser formalism may be clas-
sically efficiently simulated. Since then, a plethora of related simulation results have been published,
showing where the original simulation result may, and may not, be strengthened, see Ref. [105] for a

review.

The stabiliser formalism has become central in the field of quantum error correction [106], which is
essential for any realisation of a quantum computer. Almost all error correcting codes make use of
the stabiliser formalism: quantum data is encoded in stabiliser “states”. Moreover, in most of these
codes, the only measurements and gates that can be implemented in a noise-tolerant way correspond
to elements of the stabiliser formalism. Indeed, most modern proposals for quantum computers use

elements of the stabiliser formalism supplemented with very specific non-stabiliser resources [107].

The full theory of the stabiliser formalism is far too rich to give a full review here - we will give
a barebones description of what is required for our results, for a review see Refs. [106, 108]. We
will focus on the (most commonly studied) case of a qubit (% = C2), but our results can be easily
generalised to higher dimensions. The fundamental objects in the stabiliser formalism are the Pauli

operators, which have matrices

T R NS N
1 0 1 0 0 -1
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with respect to the computational basis. Note that ¥ = ¢XZ. On n-qubits, Paulis are given by
the tensor product of single-qubit Paulis. With suitable choices of phases, they form a group (under

multiplication), called the (n-qubit) Pauli group, Pp:
Prn={(£)(x)Ai®--- @A, | A; € {1,X,Y, Z}}. (4.2)

Paulis clearly have a classical, efficient representation: there are 4 choices for the phase, and 4 choices
for the operator on each qubit. In order to leverage this representation, we briefly introduce some

notation. Given a collection of operators {U;}!' ;, and a vector Z' € Z3, we let

U = ﬁ Uz, (4.3)
=1

We define X; € P, as X acting on the ¢-th qubit and identity on the rest, and Z; similarly. Using
that Y = iXZ, we may represent any Pauli as a tuple (¢,d, p,q) € Za X Zy x Z§ x Z§ corresponding
to the Pauli

(=1)¢(—i)4xP 27, (4.4)

We often refer to ¢ as the sign-bit of the tuple. Note that X;, Z; are Hermitian, and anticommute.
A Pauli is Hermitian iff. d = p’- ¢, where - is the Z3 dot product, and thus Hermitian Paulis are be
specified by ¢, 7’ and ¢. Two paulis (c1,d1, p1, 1) and (co, da, Pa, o) commute iff. py - G + @1 - po = 0.
Ignoring global phase, the Paulis form an orthonormal basis of B(H):

Proposition 4.1: The operators {X?Z7 | 5, € 73} are an orthonormal basis of B(#) (with
respect to the Hilbert-Schmidt inner product)

Proof: Note that Tr(Z;) = Tr(X;) = Tr(X;Z;) = 0. The result then follows from observing that
XPZIXT 7% oc XPTTZT+5 where + is over Zs. O

Composition of Paulis induces a binary operation on tuples:

(c1,d1,q1,51) o (e, du, i, Pr) == (—1) (—i) P XD ZP1 (—1)°2(—i) 2 X P ZP2, (4.5)
~ (c1 + co+ Pi - @a + dida, di +da, §1 + G2, D1+ P2). (4.6)

o is linear, except on the power of —1, which has a quadratic term (d;dz).

A stabiliser group is a maximal abelian subgroup of P,, that does not contain —1. We show that a

stabiliser subgroup always has size 2":

Proposition 4.2: Let G < P, be a stabiliser subgroup, then |G| = 2™. Moreover, there is a
unique state [1)) € ‘H (up to global phase) that is stabilised by every member of G:

Vg € G, gld) =) (4.7)

!This is precisely the symplectic inner product on the concatenated vectors (pi,qi) and (p3,¢). See Ref. [109] for
more of a discussion
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Proof: The Pauli subgroup (Z1,...Z,) is an abelian subgroup of size 2" that does not contain
—1, and therefore (by maximality) |G| > 2.

Suppose P € G is anti-Hermitian. Then 1 = PP' = —P? so —1 € G, which is forbidden. Thus,
every element of G is Hermitian and unitary, and therefore of order 2. Take a minimal generating
set Pi...P, of G. Since the P; are independent, commute, and are of order 2, |G| = 2¥. Note
that, since every P; is Hermitian and unitary, it has eigenvalues +1. Hence the orthonormal
projector onto the +1 eigenspace of P; is given by (1 + P;)/2. Since the P; commute, the joint

+1 eigenspace has a projector given by

k
1+ P
. 4.
E 5 (4.8)

The dimension of this space can be found by taking the trace of the orthogonal projection:

Tr<H 1 +P> o > Te(P). (4.9)

i=1 sezk

If +£i1 € G, then (£i1)? = —1 € G. Moreover, by minimality of the generating set, no non-trivial
product of the P; can equal the identity. We deduce that all non-trivial products of the P; are
not proportional to the identity, and hence traceless. Therefore, the dimension of the mutual +1
eigenspace of the P; is 2"/2%. We deduce that k < n, and hence k = n. Therefore, |G| = 2", and
there is a unique state (up to a global phase) stabilised by every member of G. O

A state that is stabilised by every member of some stabiliser group is called a stabiliser state. Note that
a stabiliser group (or equivalently stabiliser state) has an efficient representation as a (non-unique)
choice of generating set, i.e. n commuting, independent (no non-trivial product gives the identity)
Paulis. Note that any Pauli in a stabiliser group must be Hermitian (or it would square to —1), and

thus may be represented by a sign bit and two vectors, as noted above.

Our work heavily relies on the following characterisation of stabiliser states, in terms of their ampli-

tudes in the computational basis:

Theorem 4.1: A (normalised) state |1)) € H is a stabiliser state iff. there exists a vector subspace

V <Z%, a vector § € Z5, a linear map ¢ : V — Zj and a quadratic form () : V' — Zy such that

\/IV z; 1)Q@i) 17 4 3 (4.10)

For a proof, see Ref. [dehaene2003Clifford|. As a consequence of this theorem, the support of any
stabiliser state (the indices Z € Z% such that (Z]y)) is non-zero) is an affine space of Z3. Since we
are working over Zs, one cannot represent quadratic forms by symmetric bilinear forms. We will let
R(—, —) denote some choice of bilinear form such that Q(—) = R(—, —).

A unitary that conjugates Pauli operators to Pauli operators is called a Clifford. The collection of
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Clifford operators forms the n-qubit Clifford group:
Cn={C elU?2") |VP e P,, CPC' € P,}. (4.11)

Since CP,CTCP,CT = C P, P,CT, the action of a Clifford by conjugation on the Pauli group is uniquely
specified by its action on the Paulis X;, Z;. In fact this uniquely determines the Clifford up to a phase:

Proposition 4.3: Suppose that U,V € U(2") satisfy VP € P,,, UPUT = VPV, Then U = ¥V
for some 0 € R.

Proof: Let W = VIU, then W conjugates every Pauli to itself: VP € P,, WPWT = P. Since
the Pauli group spans B(H) (by proposition 4.1), its natural representation is irreducible. Thus,
by Schur’s Lemma, W = A1, for some A € C. But W is also a unitary, so |A\| = 1 and the result
follows. O

Thus, Cliffords have a classical efficient representation, given by recording the image of each X, Z;
under conjugation, and noting its global phase. Since global phases are irrelevant in quantum me-

chanics, the global phase of the Clifford is often ignored.

The stabiliser formalism, sometimes called stabiliser subtheory, considers quantum operations built
using stabiliser states, Clifford gates and Pauli measurements (measuring in the eigenbasis of a Pauli
operator). We have seen that each of these elements has an efficient classical representation. In fact,
one can efficiently update these representations to efficiently clasically simulate the stabiliser formalism
(the Gottesmann-Knill theorem), but we will not consider that here. Note that stabiliser states, Paulis
and Cliffords also have inefficient classical representations. A stabiliser state may also be descried by
its amplitudes in the computational basis, i.e. a vector in C?", called a statevector. A Clifford (or
Pauli) may be described as a unitary matrix of size 2" x 2" with respect to the computational basis.
These inefficient representations fit into the framework of general quantum computation. Often, it is
necessary to convert between efficient and inefficient representations at the interface of the stabiliser
formalism with general quantum computation/information. In Sections 4.2 and 4.3 we give several

new, fast algorithms for such conversions. We give a few specific use-cases below.

One can combine (generically exponentially) many efficient simulations of stabiliser operations to sim-
ulate universal quantum computation. When doing so, one aims to minimise the number of stabiliser
simulations that need to be carried out. To achieve this, the input vector needs to be decomposed as a
linear combination of stabiliser states, using as few stabiliser states as possible. This process requires
expressing stabiliser states as vectors, or alternatively the ability to test whether a vector corresponds
to a stabiliser state. Our algorithms have found application in this setting [110] (indeed, this was the

original motivation for their creation).

Secondly, a recently proposed [111] approach to finding proofs of quantum advantage in boson sampling
(using a specific type of photonic quantum computer [112]), involves translating photonics circuits into

unitary matrices, and checking whether those matrices are Cliffords.
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Finally, we note that our algorithms have already found applications in synthesising certain types of
unitaries, known as Clifford isometries [113]. They use our algorithm to rapidly convert a stabiliser

statevector into an efficient representation.

We note that the choice of efficient representation of stabiliser operations is not particuarly impor-
tant; converting between different efficient representations is usually itself efficient. Thus, in most
algorithms, the time limiting step is transforming the inefficient representation into an efficient one,

or vice-versa.

Finally, we note two notational conventions for this chapter. Firstly, we let N = 2" for notational
brevity. Secondly, it will be useful to index elements of Z3 by elements of Z5. To be precise, let
I:75 -7, 1(Z) = Z?;ol 2'z; map the binary representation of an integer to that integer. Then, for

Y, Z € Zy, we write y> to mean yj(z). Note we are zero-indexing our vectors.

4.1.2 Existing Conversion Algorithms

Given the extensive motivation for converting between efficient and inefficient representations of sta-
biliser states and Cliffords, it is unsurprising algorithms for these conversions have already been
developed. We will consider existing implementations from the popular python libraries Qiskit [114]
and stim [115].

Stabiliser state statevector — efficient description of stabiliser state

The Qiskit implementation of this conversion is based off the implementation in stim.

stim converts the amplitudes of a stabiliser state into a circuit of one- and two-qubit Clifford gates,
which produces the stabiliser state when acting on the ]0)®" computational basis state. The method
is currently implemented in the stabiliser_state_vector_to_circuit function in the file circuit_-

vs_amplitudes.cc. On input [¢p) € CV, stim runs the following algorithm:

1. By applying a series of X gates, move the element with the largest amplitude to the first entry

of the statevector.

2. Find a non-zero element in the vector which is not the first entry, suppose it has index ke Zy.

If no such entry exists, terminate the algorithm.

3. Let ¢ € [n] be the smallest index such that k= 1. Apply a series of C'X gates between qubit
1 and qubit j, for every j # i such that k:_; = 1. Finally, depending on the value of the 2-th
amplitude of the statevector, apply one of four different single-qubit Cliffords to qubit i. If the
size of the support of the statevector has not halved, output that the original state was not a

stabiliser state. Otherwise, return to step 2.

Their algorithm relies on the fact that if |¢) is a stabiliser state, then step 3 halves the support of
the statevector on every iteration. Conversely, if their algorithm terminates, they produce a Clifford
circuit C such that C'|0) = |¢) (up to a phase), in which case |¢) is a stabiliser state (whose stabiliser
group is generated by C'Z;C"). Thus, the algorithm can be used to extract an efficient representation,

as well as verify whether |¢)) was a stabiliser state.
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Since the support of the statevector halves after every iteration, in the worst case the algorithm will
run step 3 n times. Each iteration of step 3 involves applying Q(n) C'X gates in the worse case, as
well as a single qubit gate. Each application of a C' X (or single qubit) gate to |1) requires () steps.

Thus, in the worst-case, stim’s algorithm runs in time Q(N log? N) and produces a circuit of size Q(n?).

n commuting, independent Paulis — stabiliser state statevector

As far as we can tell, this is not implemented in Qiskit.

stim currently implements this conversion in the state_vector_from stabilizers method in vec-
tor_simulator.h. Given a list of suitable Paulis P;, the algorithm generates a random intial vector in
CV, and then applies the sequentially orthogonal projection matrix onto the +1 eigenspace of P;, for
i =1,...,n, to the statevector. In their implementation, applying the projector takes time Q(N log N)
and thus the algorithm runs in time Q(N log® N).

Clifford Matrix — efficient representation of Clifford
Qiskit implements the conversion via the from_matrix method of the Clifford class. It is imple-
mented by a brute-force approach - the matrix CPCT is calculated for P every X; and Z;, taking
time Q(N3log V). Note that this approach additionally verifies that C' is a Clifford, by checking that
CPC'" does correspond to a Pauli (which takes time Q(N?)).

In stim, the conversion is implemented in the unitary_to_tableau function in stabilizers vs_-
amplitudes.inl. The function returns a decomposition of the Clifford into one- and two-qubit Clifford

gates. On input matrix C' stim runs the following algorithm:

1. Find a Clifford U (and its circuit representation) such that U ’6> =C ‘6> (i.e. run the stabiliser

state statevector algorithm above on the first column of C).

2. Calculate M = UTC. If C'is a Clifford, then M will be a Clifford that permutes the computational

basis vectors with phases.

3. Find a circuit implementing M. In this step, they verify that M is a Clifford, which in turn
verifies that C' is a Clifford.

4. Concatenate the circuits for U and M to find a circuit representation of C.

In particular, step 2 involves multiplying UT and M. The circuit for U has size Q(n?) in the worst-case
(see above), and multiplying C by a one or two qubit gate takes time Q(NN?). Thus step 2, and hence

stim’s algorithm, runs in time Q(N?log? N) in the worst case.

Efficient description of a Clifford — Clifford matrix

In Qiskit, the conversion is the tomatrix method of the Clifford class. The algorithm first de-
composes the Clifford as a circuit of one- and two-qubit gates, using the method of [116], and then
finds the matrix of that circuit. As noted above, if the circuit is size s, computing the matrix from
the circuit by multiplication takes time Q(sN?). In the worst-case (as with stim’s stabiliser state

algorithm), s = Q(n?) and thus Qiskit’s algorithm has a worst-case runtime of Q(N?log? N).

In stim, the conversion is implemented by tableau_to_unitary method in stabilizers_vs_ampli-

tudes.inl. It relies on the fact that flattening a Clifford matrix (i.e. stacking the columns to produce
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a long vector) produces a stabiliser state. In fact, if C' is a Clifford such that CZ;CT = U; and
CX;CT =Vj, then flattening the columns of C' gives rise to a stabiliser state whose stabiliser group is
generated by Z;@U;, X;®V;. This can be seen by writing the flattened vector as |1)) = ZZeZg |2) C'|2).
stim runs the stabiliser group to stabiliser statevector algorithm above, with stabilisers given by Z;QU;,
X,;®V; and then reshapes the resulting statevector back into a matrix. Thus, the worst-case complexity

is the determined by the stabiliser conversion algorithm, Q(N?log® N).
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4.2 Converting between representations of stabiliser states

In this Section, we give our algorithms for converting between representations of stabiliser states. We

will use 3 representations of a stabiliser state [i):
(S1) A statevector: an element of CV.

(S2) A compact description of the amplitudes of |¢), using theorem 4.1: A basis for a vector space
V < Z%, a constant vector § € Z§ and a linear and quadratic form on V' (described by their

action on the basis).

(S3) A list of n commuting, independent, Hermitian Paulis that generate the stabiliser group of |1},

called a check matrix.

Note that (S2) and (S3) are efficient descriptions of |¢/), whereas (S1) is inefficient.

4.2.1 Converting from (S1) to (S2)

We are given a statevector of a stabiliser state |1)) € CV as input. Our algorithm can be split into

two distinct stages

1. Find a compact description of the support of |¢), i.e. a basis for the vector space V < Z and

the constant “shift” vector 5.
2. Find a compact description of the amplitudes in [¢)), i.e. the linear and quadratic forms on V.

When finding the support of |¢), we use the ordering on Z% induced by I, i.e. we say 2 < § < I(2) <
I(y). This is the same as the lexicographical ordering on Z (read from right to left). We will need

the following two technical Lemmas:

Lemma 4.1: Suppose that V < Z7 is a dimension k£ vector subspace of Z3. Suppose that we

order V = {00,... Ty 1}, i.e. 4 < vj iff. i < j. Then the map o : Z§ — V, (@) = ¥y(g) is a

linear isomorphism. In particular, {#i); | j =0,...,k — 1} is a basis of V.

Proof: Take some basis Wy, ..., wW,_1 of V. Take a matrix W whose rows are given by the w; (as
elements of Z%). Let W’ be the reduced row-echelon form of W; the rows of W still form a basis
of W. Let @; be the n— jth row of W' for j = 0,...,n— 1. Suppose that the leftmost 1 of @ is in
position h;. As W is in reduced row-echelon form, the h;’th element of @; is §;;. Thus, one can tell
whether ; is present in the linear decomposition of ¥ € V' by checking whether the h;’th element
is 0 or 1. Since the ordering < on Z% is decided by the rightmost position at which two vectors
disagree, we deduce that Y7 2 < 31 yith; iff. Z < §. But then (@) = Y1 a;il; = Uy (a) s

a linear isomorphism as claimed. ]

Lemma 4.2: Let A C Z% be an affine space. Let § € A be the minimal element of A (with
respect to <). Let V =5+ A and take ¢, € V. Then ¥ < @ iff. ¥+ §< W + 3.
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Proof:  Suppose ¢ < @, then ¢ = (@, 0, l;), w = (d_: 1, g) for some bitstrings 5,5 and d. Let
5= (f, x, g), where the length of ¢ is the same as b. Then, we see that 7+ § < @ + § iff. x = 0.
If, however, z = 1 then v+ W+ § = (@ + d + g, 0, §) < §is a smaller element of A than §,

contradicting our assumption. Thus, 7+ § < @+ §. The converse direction follows similarly. [

Lemmas 4.1 and 4.2 give a method for extracting an efficient description of the support of |1)). We
find the smallest index of |¢)) which has a non-zero amplitude, and we take § to be (the binary repre-
sentation of) this index. We iterate through the remaining entries of |¢), any time we find a non-zero
entry at index Z, we add Z'+ § to a list. This list will contain all of the vectors in V; it will have size
2% where k is the dimension of V. By Lemma 4.2, the entries of this list will be sorted (in increasing
order) as 5§ was chosen as to be minimal. By Lemma 4.1, we may take the 2/th element of our list,

which we call 4, for j =0,...,k —1, as a basis for V.

It remains to find a suitable linear map ¢ and quadratic form @ on V. First, we divide all amplitudes
of the statevector by (5]¢) so that they take values in {1, 4i}. Second, by looking at (5 + ;|¢) for
each j we deduce the value of (u;) and R(@;, @;). Finally, by considering the values of (§+ w@; + u|v)
for k # j, we deduce the value of R(u;, 1) + R(u;, uy) for each j # k. But these values fully specify

@ and ¢, and the algorithm can be terminated.

We give a brief summary of our algorithm below:

Algorithm 4.1:

Input: An (S1) description of a stabiliser state, i.e. a statevector |1) € CV
Output:  An (S2) description of |¢)), i.e. a basis for a vector space V, a constant vector
§ € Zy, and a linear map ¢ and quadratic form @) on V (specified by their action

on the basis)

1. Find the smallest (binary) index § of a non-zero element of |¢)

2. Add § to all the indices of non-zero elements of |¢)). This preserves their order. Suppose
there are 2¥ such indices (so that V has dimension k). Take the non-zero indicies in positions
2J for j =0,...,k — 1 as a basis of V, which we call {7}

3. Find the action of ¢,Q on V by considering the amplitudes of the form (54 ;[¢)) and
(8 + U + k).
Finally, we analyse the complexity of our algorithm:
1. Finding the smallest nonzero amplitude takes O(N) time.
2. Adding 5 to each non-zero index takes time O(Nn)?.
3. Extracting ¢ takes time O(n). Extracting Q takes time O(n?).

We see that step 2 dominates the algorithm, and thus it runs in time O(Nn). This is a factor of n

faster than the best existing algorithm.

2Since this addition is over Z¥, it corresponds to XORing two integers, which is practically very fast. Depending on
implementation, it could even be done in constant time, reducing the worst-case runtime of our algorithm.
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4.2.2 Converting from (S2) to (S1) and Verifying (S1)

Given an (S2) representation of a stabiliser state, there is an obvious method for producing a statevec-
tor: one can iterate through all possible linear combinations of the basis vectors in order, i.e. iterate
through the vectors @ € Z§, with corresponding expansions Z?;ol a;i;. To find the amplitude for a
particular @, one evaluates £ and ). The remaining entries of the statevector are all zero. Evaluat-
ing Z?;ol a;ii; + § takes time ©(n?), evaluating £ and Q also takes time ©(n?). Thus, this approach

would take time ©(2¥n?), where k is the dimension of V. In the worst-case, this is ©(Nn?) operations.

This algorithm can be improved by iterating through the elements of V' in a more efficient manner.
In particular, if a single a; changes in each step, then one only needs to add ; to the current value

of Z?:_ol a;u; + § to find the new value. Moreover,

n—1
Q¥ + ;) + Q(B) = R(il;, ;) + Y _ vj[R(d;, 1) + R, ;)] (4.12)
j=0
can be evaluated in O(n) time. Similarly, ¢(v+;)+£(V) = ¢(u;) takes constant time to evaluate. Thus,
if we iterate through the elements of V' in such a manner, keeping track of the values of Z?:_Ol vitl; + 8
and i“@ (=1)Q®  we only need O(n) to find each new amplitude.

The problem of iterating through Z’;, flipping a single bit in each step, is well-studied. One of the
simplest such schemes is known as the Gray code [117]. The ith iterate of the Gray code can be
computed in time O(k), which allows for efficient iteration. Thus, using the Gray code, one can find

the statevector of a stabiliser state in time O(Nn). We give a brief overview of our algorithm below:

Algorithm 4.2:

Input: An (S2) description of [¢), i.e. a basis for a vector space V, a constant vector
§ € Zy, and a linear map ¢ and quadratic form @) on V (specified by their action
on the basis).

Output:  An (S1) description of a stabiliser state, i.e. a statevector |y) € CV.

1. Initialise a statevector of length N of all zeros.

2. Initialise @ = (0,...0) € Z, keep track of the values of E[@] = Y1 viil; + & and (@) =
9 (—1)Q@)

3. Tterate @ through the Gray code, so that a single bit changes in every iteration. At each step,

update E and 0 (using equation (4.12)), to set the non-zero amplitudes of the statevector.

One can use algorithms 4.1 and 4.2 in sequence to test whether a statevector is a stabiliser state:

Algorithm 4.3:
Input: A statevector, i.e. [p) € C"
Output:  Yes if |[¢)) is a stabiliser state, No otherwise

1. Run algorithm 4.1, if at any point it fails (e.g. an entry is not in {#1,+i} when it should
be), output No
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2. Run algorithm 4.2 on the output of step 1, giving |¢).
3. If |¢) = |¢) (up to a global phase), ouput Yes, otherwise output No.

The correctness of algorithm 4.3 follows from the iff. in theorem 4.1. Steps 1 and 2 have complexity
O(Nn), step 3 has complexity O(N). Thus, the algorithm runs in time O(Nn). This is a factor of
n faster than the best existing algorithm. We note that in practice, one can slightly improve the
run time of this algorithm by removing duplicate steps. For example, one only needs to check that
the non-zero amplitudes are equal in step 3. However, the complexity will not be reduced by such

optimisations.

4.2.3 Converting between (S2) and (S3)

We begin by establishing some required relations between a stabiliser state expressed in (S2) form
and the Pauli gates that stabilise it. Recall the expression of the amplitudes of a stabiliser state from

Theorem 4.1. An arbitrary stabiliser state |1)) can be expressed in the form:

) oc > (-1t |74 5) (4.13)

zZeVv
where V' < Z7 is a vector subspace of dimension k < n, s € Zy, and Q,¢: V — Zs.
Suppose a Pauli P stabilises |s). Since P has a +1 eigenvalue, it must be Hermitian, and thus takes

the form P = (—1)¢(—i)P7X9ZP. We can see immediately that 7 € V or else P changes the support
of |s). Moreover, by comparing the amplitudes of |¢)) and P |v¢), we find that P stabilises |¢) iff.

Uq)=p-4q, (4.14)
ForallZeV: QZ)=c+QZ+Q+p - Z+q+3)+ {7 )2 (4.15)

We can then express equation (4.15) as
[R(7,2) + R(Z,q) + (P O)U(Z) + - 2]+ [R(G. @) + P (T+ §) + ] =0, (4.16)

where the first term is a linear function of Z € V and the second term is a constant. This holds
iff. both terms are identically zero. Therefore, P stabilises |¢) iff.

where the latter equality is as linear functions from V' to Zy. Equations (4.17)-(4.20) can be read
in two different ways; firstly if £, R,V and § are known and we wish to find suitable p ¢ and ¢, or

vice-versa. This allows us to convert between (S2) and (S3).

Firstly, suppose we are given a list of n commuting Paulis that generate the stabiliser group of the

stabiliser state: (¢;,d;, b;) for i = 1,...n (they are Hermitian, so we do not need to specifiy the power
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of 7). We collect the Paulis into the rows of a matrix:

M=|: : . (4.21)

an bn cn

Swapping two rows of M corresponds to permuting the generators of the stabiliser group. Adding two
rows together, and then adjusting the sign bit according to equation (4.5), corresponds to composing
two generators, which still gives a valid list of generators of the stabiliser group. Thus, we may perform

row reduction on M until the first 2n columns are in reduced row-echelon form:

G n c1
7 D) c
M= | PR (4.22)
0 m 7
_6 ﬁn—k ’Yn—k:_

The rows of M’ still form a generating set of the stabiliser group.

We can take the ¢; as a basis for V. The shift § may be taken as any solution to the system of n — k
equations p; - § = ;. By equation (4.18) and the fact that all the stabilising Pauli gates must have

order 2, we can extract ¢ and define it on the basis for V' via the equations ¢(q;) = p; - G;.

We can extract the diagonal entries of R by rearranging equation (4.20):
R(Gi, @) = i + 7 - (G + Z0)- (4.23)
Finally, we can extract the remaining entries of R by rearranging equation (4.20):
R(Gi, @) + R(Gj, @) = 1 - G5 + 0 - @) (D) - G5)- (4.24)

The resulting (S2) state is stabilised by all the rows of M’ and thus must correspond to the correct

stabiliser state. We summarise our conversion algorithm below:

Algorithm 4.4:

Input: An (S3) description of [¢), i.e. a list of n-commuting, independent, Hermitian
Pauli gates

Output:  An (S2) description of |¢)), i.e. a basis for a vector space V, a constant vector
§ e Z%, and a linear map ¢ and quadratic form @ on V (specified by their action

on the basis)

1. Collect the Paulis into a matrix, as in equation (4.21). Row reduce the first 2n columns
whilst updating the sign bits consistently (to ensure that the resulting check matrix repre-

sents the same stabiliser state), until it is in the form of equation (4.22).
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2. Take the §; as a basis for V and a solution to p; - § = -y; for the shift vector 5.

3. Compute £(q;) = G - p; and store these as a vector representing ¢ (with respect to the basis
{(717 v >(Tk} of V)

4. Compute a matrix representing R relative to the same basis using equations (4.19) and
(4.20).

We give a complexity analysis of algorithm 4.4:
1. Gaussian elimination for row reduction takes time O(n?3).
2. Finding a solution to the row reduced equation takes time O(n).
3. Computing /¢ takes time O(k), where k is the dimension of the affine subspace.
4. Computing Q takes time O(k?).

Thus, algorithm 4.4 runs in time O(n?).

Conversely, suppose we have §, a basis for V and £, R with respect to this basis. We can generate the
@ by row reducing the basis 9;. As we perform the row reduction, we update the matrices of £ and R

such that they are valid with respect to the new basis.

Applying equation (4.20) to (7,q) = (ﬁi,@), we see that the p; can be taken to be a basis of the null

space of matrix whose rows are g;, i.e. a basis of V. We can then extract 7; using equation (4.19):

- o

Vi = pPi- S
Using equations (4.18) and (4.20) we can use our R and ¢ to give linear systems for each pj:
pi - @ = R(Gi, @) + R(Tj, @) + £(3i)4(5)- (4.25)

These determine each p; up to the addition of an element of V+. Finally, we compute the ¢; using
equation (4.19):
¢i = Pi - (Gi + 5) + R(G, G)- (4.26)

We note that these the generated Paulis commute, are Hermitian, and are independent and thus must

generate the correct stabiliser group. We summarise our conversion algorithm below:

Algorithm 4.5:

Input: An (S2) description of [¢), i.e. a basis for a vector space V, a constant vector
§ € Zy, and a linear map ¢ and quadratic form @ on V (specified by their action
on the basis).

Output:  An (S3) description of [¢), i.e. a list of n-commuting, independent, Hermitian

Pauli gates.

1. Row reduce the basis {u1,...,ux} of V to find {q1,...,qr} and a basis {p1,...,pn_x} of
VL. Update the representations of £ and R to this new basis.

2. Using the notation of equation (4.22), compute 7; = p; - §.
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3. Find a solution for each of the p; from the (underdetermined) linear systems of equation
(4.25).

4. Compute ¢; = p; - (G; + 5) + Q(G)-
We give a complexity analysis of algorithm 4.5:

1. Row reduction takes time O(nk?), where k is the dimension of V. Finding a basis for the null
space then takes time O((n — k)k). Computing the new matrices for R and ¢ can be done in
parallel to this step, altering after each row operation. Each update takes constant time (as it
corresponds to swapping a row or adding two rows together) and thus this does not affect the

complexity.
2. This takes time O((n — k)n).
3. This takes time O(kn).

In general, when k = Q(n), Algorithm 4.5 runs in time O(n?). We note that if one wishes to convert
(S1) to (S3), one can run algorithms 4.1, 4.5 sequentially. The basis of V' from algorithm 4.1 is already

row reduced, and thus step 1 can be skipped, and algorithm 4.5 runs in time O(n?).

4.3 Converting between representations of Clifford operators

In this Section, we give our algorithms for converting between representations of Clifford operators.

We will use 2 representations of a Clifford operator C"
(C1) A matrix: an element of My (C).

(C2) A compact description of the image of the basic Pauli gates under conjugation: U; = CZ;CT,
V; = CX,;CT. Each U; and V; will be Hermitian, so admits a more compact description (as noted

above).

4.3.1 Converting from (C1) to (C2)
We are given the matrix representing a Clifford C'. We wish to extract U; = CZ;CT and V; = CX,;CT

for i =1,...,n. We begin by examining the stabiliser group of the first column of C.

Lemma 4.3: For a Clifford gate C, the stabiliser group of C ‘6> (the first column of C) is
generated by U; = CZ;C1.

| Proof: U;C ‘6> =CZ; 6> =C ‘6> The U; are independent since the Z; are. O

We can rapidly extract a set of generators P; of the stabiliser subgroup of C'|0) using algorithms 4.1
and 4.5 in series. Since P; and U; generate the same stabiliser subgroup, we have that P; = U? for
some p; € Zy. Thus,

PC|2) =UPC|Z) = CZP|2) = (-1)P7C|2) . (4.27)

Suppose that P; corresponds to (¢;, ¢, pi). Fix j € [n]. We find a non-zero entry of the €;’th column
of C: C'|€;). Suppose it has index 7. Then, by comparing (' + ¢|C|€;) and (—1)%FP%iPr@ (Z|C|é;)
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we can find (p;);. By repeating this for 4, j = 1,...,n, we can find all of the g;.

As the P; are independent, the g; are also linearly independent. Thus, we may invert the matrix whose

columns are pj; we call the rows of this inverse ;. We deduce that P# = U, and thus we find the U;.

Having found the U;, we must now find the V;. First, we find Pauli gates W; of order 2 such that U; and
W; anticommute if and only if 7 = j. Constructing such W; is straightforward. If U; oc X 7 7P | define
U to be the n x 2n matrix over Zy whose i-th row is (i, ;). As these rows are linearly independent,
U+ = UT(UUT)! is a right inverse: UU+ = 1. We may thus take W; to be (—i)% "% X% 7% where

(&, B;) is the i-th column of U*. We make use of the following Lemma:

Lemma 4.4: Suppose the n Pauli gates U; generate a stabiliser group, the Pauli gates V;, W;
are of order 2, and that V; commutes (or anticommutes) with U; if and only if W; does. Then
V; = (—1)%(—i)%W,;U% for some @; € Z% and ¢;,d; € Zo.

Proof: Define the Pauli gates T; = i%W,;V; where d; is 0 if W; and V; commute and 1 if they
anticommute. They commute with every U;: T;U; = z'diWZ'Vin = idinWiV} = U;T;. Further,
the T; are of order 2. Therefore, for each %, either T; or —T; is a member of the stabiliser group
generated by Us. O

Therefore, in the notation of Lemma 4.4, our final task is to find the V; is to determine the appropriate
U; € Zy and ¢;,d; € Zo. We note that

ClZ+&) =CX;|3), (4.28)
— Vi3, (4.29)
— (—1)A (=) B WU O (4.30)
= (—1)% (=) B WCZT |3), (4.31)
— (~1)FFr (i)W 01, (4.32)

where €; is the i-th unit vector of Z3.

By comparing the relative phases of the columns of C' corresponding to 2" and Z'+ €;, we gain infor-
mation about the required variables ¥, ¢;, d;. Choosing z' = 0, we determine the ¢;,d;. Choosing 7
to be of Hamming weight 1, we determine the components of the ¥;. We can then multiply W; by
(—1)%i%UY% to find V;.

To determine the relative phases of two columns, we need only check two nonzero entries: one from
each column. To avoid potentially having to perform a high number of checks for columns that contain
many zeros, we can compute the support of each column first. We do this using that the fact that the
support of C'|Z) is the same as the support of W?C ’6>, as each U; either stabilises or antistabilises

every column. We give a summary of our algorithm below:
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Algorithm 4.6:

Input: A (C1) description of a Clifford C, i.e. a unitary matrix in My (C).
Output: A (C2) description of C, i.e. a compact description of U; = CZ;Z' and V; =
CX;Ct for every i = 1,...n.

1. Compose algorithms 4.1 and 4.5 to extract generators P; for the stabiliser group of C ’6>

2. For each 7 with Hamming weight 1, find a nonzero entry of C'|Z). For each i, use these

nonzero entries to determine g; satisfying P,C'|2) = (—1)%%|2).

3. Invert the n X n matrix over Zs whose columns are p; to find one with rows ;. Conclude
that U; = PFi.

4. Compute the bitstrings specifying the W; (up to sign) by taking the pseudoinverse of the

matrix whose rows are the bitstrings specifying the U;.

5. Correct the W; to V; by comparing two nonzero entries of the zZ-th and Z + €;-th columns

of C for Z being 0 or having Hamming weight 1.

We give a complexity analysis of algorithm 4.6:
1. The conversion (S1) to (S3) takes O(Nn) time as discussed above.

2. In the worst-case, we search for time O(N) to find a nonzero element of a given column. Once
we have found one for each column of Hamming weight 1, taking time O(Nn), we can extract

all the j; vectors in time O(n?).

3. Tt takes time O(n?) to find the pseudoinverse of the U. In fact, the output of our (S1) to (S3)
conversion gave us the row-reduced version of U; by keeping track of the row operations when
constructing the U; from the P;, we can construct the pseudoinverse simultaneously. We then
require time O(n?) to find each of the W;.

4. Comparing the relative phase of the columns corresponding to Hamming weight 1 and 2 takes
time O(n3) as there are n? such columns and finding a nonzero element takes time O(n). Then,
finding the V; involves multiplying each W; by O(n) Pauli gates, where each Pauli multiplication
takes time O(n). Thus, this step also runs in time O(n?).

The algorithm is dominated by Steps 1 and 2 and thus takes time O(Nn). This is a factor of Nn

faster than the best existing algorithm. Since N = 2", this is an exponential advantage in runtime.

4.3.2 Converting from (C2) to (C1) and Verifying (C1)

We now suppose that we are given the U; = CZZCT, V= CXiC’T, and wish to find the matrix of C' (up
to a global phase). By Lemma 4.3, the first column of C is stabilised by all of the U;. Thus, the first
column can be quickly computed by combining algorithms 4.4 and 4.2. Then, to find the remaining
columns, we iterate through the Gray code (see above). By equation (4.29), columns corresponding
to consecutive iterates of the Gray code will differ by the application of a single V; (corresponding

to the bit at which the iterates differ). Thus, to produce one column from the previous one, we



86 Learning in Quantum Mechanics

need to multiply a vector by a single Pauli. We can perform this multiplication in time O(Nn):
If P~ (c,d,q,p) then P|Z) = (—1)*P%i¢|Z + §) takes time o(n) to evaluate. We summarise our

algorithm below:

Algorithm 4.7:
Input: A (C2) description of C, i.e. a compact description of U; = CZ;ZT and V; =
CX;CT for every i = 1,...n.
Output: A (Cl) description of a Clifford C, i.e. a unitary matrix in My (C).

1. Find the first column of C' by running algorithms 4.4 and 4.2 sequentially, with input
Ui, ..., Up,.

2. Find the remaining columns by iterating through the Gray code, multiplying the current

column by a single V; in every step
We give a complexity analysis of algorithm 4.7:

1. Running algorithms 4.4 and 4.2 takes time O(Nn), as described above.

2. As discussed, finding the column corresponding to the next iterate of the Gray code from the

previous takes time O(Nn). There are N such columns and thus this step takes time O(N?n).

The algorithm is dominated by step 2, giving a total time of O(N?n). Again, this is a factor of n

faster than existing implementations.

As with the stabiliser state case, one can use algorithms 4.6 and 4.7 in sequence to test whether a

matrix is a Clifford:
Algorithm 4.8:
Input: A matrix C € My(C).
Output:  Yes if C is a Clifford, No otherwise.

1. Run algorithm 4.6, if at any point it fails (e.g. an entry is not in {#1, £} when it should
be), output No.

2. Run algorithm 4.7 on the output of step 1, giving a matrix M.

3. If M = C (up to a global phase), ouput Yes, otherwise output No.

If the algorithm outputs yes, then U is a Clifford matrix (as algorithm 4.7 only outputs Cliffords),
and thus the algorithm is correct. Step 1 has complexity O(Nn), step 2 has complexity O(N?n), step
3 has complexity O(N?). Thus, the algorithm runs in time O(N?n). This is a factor of n faster than
the best existing algorithm. As in the stabiliser state case, one can reduce redundancy between steps

1 and two of the algorithm (e.g. one does not need to find the first column again in step 2).

4.4 Benchmarking our Algorithms

Implementations of our algorithms are available at https://github.com/WilfredSalmon/Stabiliser.
In this Section, we benchmark the implementation of our algorithms against the existing implemen-

tations provided by stim and Qiskit. We find that in almost all cases, the asymptotic advantage of
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our algorithm translates into a practical speedup. We also consider theoretically worse-case inputs to

our algorithms. We find that our algorithms still have fast runtimes on these extremal cases.

4.4.1 Stabiliser Algorithms

We begin by benchmarking the conversion (S1) — an efficient representation. Our algorithm converts
(S1) to (S2), stim converts (S1) to a circuit that synthesises the stabiliser state (see Section 4.1.2).
In figure 4.1 we compare (log) the execution time of our algorithm to stim’s, for different numbers of
qubits. We consider the average case input to the algorithm - i.e. a uniformly sampled stabiliser state.
We consider two paradigms for our algorithm, one where we assume the input is a stabiliser state
(labelled as “with assumption”), and one where we do not guarantee the input is a stabiliser state
(labelled as “without assumption”). In the latter case, we must run our (S1) — (S2) conversion, and
additionally verify that the input is a stabiliser state (stim’s algorithm is the same in both cases). We
shade the 33-66th percetile range of execution times (across 1000 different runs of the algorithm on
each input), to observe the variance in runtimes. We see that our algorithm is between a half and two
orders of magnitude faster than stim’s implementation, in average case runtime, and on the majority

of stabiliser states.
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Figure 4.1: Comparison of our (S1) — efficient representation algorithm (i.e. (S1) — (S2)) with stim’s.
The algorithms were run 1000 times for each qubit number, with a uniformly random stabiliser state
as input. For each input, we plot (log base 10) the average execution time (solid line), and shade
the 33-66th percentile range. We test our algorithm in two paradigms: when its input is declared to
be stabiliser state (labelled as “with asssumption”), and when there are no guarantees on its input
(labelled as “without asssumption”).

We also consider the running time of our algorithm in two theoretically extremal cases. Firstly, we
consider the computational basis state |0)®”, which has a single non-zero amplitude. Secondly, we

consider a random full support stabiliser state, i.e. we fix V = Z%, and sample ¢ and @ uniformly
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at random. In both cases, we do not assume that the input to our algorithm is a stabiliser state.
Theoretically, these correspond to the best and worst-case inputs to our algorithm, respectively. The
computational basis state ]0>®" requires checking every entry of the vector exactly once, whereas the
full support state requires the maximal number of steps in our algorithm. We plot the (average)
execution times for these inputs in figure 4.2. Unsurprisingly, we see that our algorithm is much faster
with input ]0)®”, than the average case. Surprisingly, our algorithm also executes much faster than
average on a random full support stabiliser state, showing a disconnect between theory and practical
implementations. This is likely due to overheads in implementation (such as speculative code execu-

tion and memory layout).

(S1) to efficient representation, different inputs

—3.51 —— Random stabiliser state (without assumption)
Random stabiliser state (with assumption)

—— Computational 0 state

—— Random full support stabiliser state

log execution time (s)

Figure 4.2: Comparison of the execution time of our (S1) — (S2) algorithm, for a variety of inputs.
The algorithms were run 1000 times for each qubit number and type of input. For each type of input,
we plot (log base 10) the average execution time (solid line), and if the input is inherently random, we
additionally shade the 33-66th percentile range. We test our algorithm on a random stabiliser state,
both with and without a guarantee on the input, the computational basis state \O>®n, and a uniformly
random stabiliser state with full support. For the latter two inputs, we do not assume that the input
is a valid stabiliser state.

Finally, we benchmark our algorithm for verifying whether a statevector |¢)) € CV is a stabiliser state.
We note that the (S1) — (S2) conversion algorithm, without an assumption on its input, is identical
to the verification algorithm. Thus, we have already tested the worst-case for acceptance. It remains
to benchmark the worst-case for rejecting. This corresponds to a statevector whose amplitudes are
almost identical to those of a full-support stabiliser state, but differ in a single entry. We call such a
state an “almost” stabiliser state. We benchmark our algorithm by uniformly sampling from “almost”
stabiliser states - we sample a full-support stabiliser state uniformly at random, and then modify a
single entry uniformly at random (such that the resulting state is not a stabiliser state). The execution

times for our algorithm, as well as stim’s algorithm are plotted in figure 4.3. As before, we see that
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our algorithm is significantly faster than stim’s on a random stabiliser state input. Our algorithm
is faster on a uniformly random “almost” stabiliser state than a uniformly random stabiliser state,
since the algorithm can terminate as soon as an inconsistent entry is found. Furthermore, it is slightly
faster than stim’s, on average. We remark that “almost” stabiliser states are a “good” case for stim
- they are usually rejected within one iteration (see Section 4.1.2 for a description of their algorithm),
and despite this, our algorithm is still faster than stim’s. We deduce that our algorithm has good

performance across a wide range of inputs.
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Figure 4.3: Comparison of our algorithm for testing whether a statevector is a stabiliser state with
stim’s. The algorithms were run 1000 times for each qubit number and type of input. For each type of
input, we plot (log base 10) the average execution time (solid line), and shade the 33-66th percentile
range. We test the algorithms with a uniformly random stabiliser state, and a uniformly random
“almost” stabiliser state (a statevector that differs from a full rank stabiliser state in a single entry).

4.4.2 Clifford Algorithms

In this Section, we benchmark our algorithms for dealing with Clifford conversions against those in
stim and Qiskit. We begin by benchmarking the conversion (C1) — an efficient representation.
Our algorithm, stim and Qiskit (see Section 4.1.2) convert (C1) to (C2). In figure 4.4 we compare
(log) the execution time of our algorithm to stim’s and Qiskit’s, for different numbers of qubits.
We consider the average case input to the algorithm, i.e. a uniformly sampled Clifford matrix (using
Qiskit’s implementation of the algorithm in Ref. [116]). As in the stabiliser state case, we run our
algorithm twice, once with the assumption that the input is a Clifford matrix, and once without this
assumption, requiring us to additionally verify the input (stim and Qiskit run the same algorihtm
in both cases). The 33-66th percentile range is too small to be visible on the graph; it is on the order
of 0.01 for each algorithm. We see that our algorithm is roughly one and a half orders of magnitudes

faster than stim’s and Qiskits’s, for the considered qubit numbers. Qiskit has a theoertically much
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slower running time that stim, but, surprisingly, has a faster average run time, for large numbers
of qubits. This is due to the high level of optimisation of matrix multiplication in scientific python

packages.
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Figure 4.4: Comparison of our (Cl) — efficient representation algorithm (i.e. (C1) — (C2)) with
stim’s and Qiskits’s. The algorithms were run 1000 times for each qubit number, with a uniformly
random Clifford matrix as input. For each input, we plot (log base 10) the average execution time
(solid line), and shade the 33-66th percentile range (though these are too small to see). We test our
algorithm in two paradigms: when its input is declared to be Clifford (labelled as “with assumption”),
and when there are no guarantees on its input (labelled as “without assumption”).

We also consider the running time of our algorithm in several theoretically extremal cases. Firstly, we
consider two sparse matrices; the identity matrix and a matrix with ones on the leading anti-diagonal,
and zeros elsewhere, which we call the anti-identity matrix. Secondly, we consider the n-fold tensor
product of the Hadamard matrix: H®", which has a non-zero amplitude in every entry. In all cases, we
do not assume the input to our algorithm is a Clifford matrix (so that we must run the conversion, and
additionally verify the input). These inputs correspond to the theoretical extremes of our algorithm:
in the sparse case, the algorithm spends a significant amount of time searching for non-zero entries.
In the Hadamard matrix case, it spends a significant time verifying the matrix is indeed a Clifford.
We plot the (average) execution times in figure 4.2. As expected, for large input numbers, we see that
the extremal inputs are worst-cases for our algorithm. However, the execution time is very similar in

all cases, showing that our algorithm has good performance on all Clifford matrices.

We conclude by benchmarking our algorithm for verifying whether a matrix M € My (C) is a Clifford.
Similarly to the stabiliser state case, we note that the (C1)— (C2) conversion algorithm, without an
assumption on its input, is identical to the verification algorithm. Thus, we have already tested the

worst-case for acceptance. It remains to benchmark the worst-case for rejecting. This corresponds to a
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(C1) to efficient representation, different inputs
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Figure 4.5: Comparison of the execution time of our (C1) — (C2) algorithm, for a variety of inputs.
The algorithms were run 1000 times for each qubit number and type of input. For each type of input,
we plot (log base 10) the average execution time (solid line), and if the input is inherently random,
we additionally shade the 33-66th percentile range (though these are too small to see). We test our
algorithm on a random Clifford matrix, both with and without a guarantee that on the input, the
identity matrix 1, the anti-identity matrix, and the n-fold tensor product of the Hadamard matrix
(which we label “Hadamard”). For the latter three inputs, we do not assume that the input is a valid
stabiliser state.

matrix that differs from a Clifford in a single entry, or has an incorrect relative phase between columns.
we call such a matrix an “almost” Clifford matrix. We benchmark our algorithm by sampling from
“almost” Clifford matrices - we sample a random Clifford matrix uniformly at random, then with
equal probability, we modify a single entry uniformly at random or change the relative phase of a
uniformly random column, such that the resulting matrix is no longer a Clifford. The execution times
for our algorithm, as well as stim’s and Qiskit’s are plotted in figure 4.6. As before, we see that
our algorithm is significantly faster than stim and Qiskit on a random Clifford matrix input, and
Qiskit outperforms stim for large qubit numbers. Our algorithm has similar performance on “almost”
Clifford matrices to actual Clifford matrices, despite the early termination of the algorithm. This is
due to the large initial overhead in finding the U;, which is not usually terminated early by an “almost”
Clifford input. stim shows similar behaviour, albeit significantly slower than our algorithm. Qiskit is
slightly faster on an “almost” Clifford, since this is usually a best-case scenario - with high probability
the “almost” Clifford M will not conjugate Z; to a Pauli, and thus can be rejected after a single
matrix multiplication M Z; MT. We emphasise that this single matrix multiplication is theoretically

asymptotically slower than our entire algorithm, but is highly optimised in practice.
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Testing (C1), comparison with stim and Qiskit
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Figure 4.6: Comparison of our algorithm for testing whether a matrix is a Clifford with stim’s and
Qiskit’s. The algorithms were run 1000 times for each qubit number and type of input. For each type
of input input, we plot (log base 10) the average execution time (solid line), and shade the 33-66th
percentile range. We test the algorithms with a uniformly random Clifford matrix, and a uniformly
random “almost” Clifford matrix (a matrix that differs from a Clifford state in a single entry, or by
the relative phase of two columns).
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