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1 Introduction

The world volume theory of multiple M2-branes has been an open question over the last two-
three decades ago. The low energy limit of multiple M2-branes theory is expected to be an
interacting 2+1 dimensional superconformal field theory with eight transverse scalar fields
as its bosonic content [1]. Moreover the multiple M2-branes theory should be maximally
supersummetric, which in three dimensions means that it is "N = 8 supersymmetric
theory” and therefore superconformal symmetry group is OSp(8]4). From AdS/CFT point
of view these theories are dual to AdS, x S” solution of M-theory. The bosonic part of
superalgebra is SO(8) x SO(3,2) as the global symmetry of both theories.

Very interesting theory with appropriate symmetries of 3d N' = 8 was proposed by
Bagger and Lambert [2-4] and also Gustavsson [5]. Therefore this model has potential to
describe world volume of multiple M2-branes. In this construction the field content is a
collection of eight scalars, fermions and non-propagating gauge fields which are transform-
ing under 3-algebra and a 4-index structure constant. 3-algebra and structure constants
can be considered as a generalization of a Lie algebra with triple bracket and 3-index struc-
ture constant. The structure constants satisfy a fundamental identity replacing the Jacobi
identity of a Lie algebra. There should also be a symmetric invertible metric h% that
can be used to raise and lower indices. Different aspects of this theory are studied in the
literature [22]. Matrix realization of this theory is also presented in [6-9].

According to AdS/CFT and holographic principle this model lives on the boundary
of AdS,; x S7. Tt is well known that this boundary is R x S2. In this paper we study



N = 8 BLG model on the R x S? background. we construct suitable supersymmetry
transformations and Lagrangian and then investigate BPS configurations.

This paper is organized as follows. In section 2 we review BLG model and then in
section 3 theory on R x S? is considered. In section 4 we study BPS configurations. Section
5 is devoted to discussions. The explicit representations for gamma matrices have been
presented in appendix A.

2 Review of BLG theory

To begin, we briefly review Bagger-Lambert construction as a three dimensional super-
conformal field theory with OSp(8|4) superalgebra. spin(8) R-symmetry and spin(4) =
spin(3,2) conformal symmetry are the bosonic part of superalgebra. Bosonic fields are
X! and non-propagating Azb(,u = 0,1,2 is world volume index) and fermionic fields are
U?  The index I labels components of the fundamental 8, representation of spin(8) as
scalar fields corresponding to the eight directions transverse to M2-branes and a indices
take the values 1,...,dimy with dim 4 being the dimension of 3-algebra A which is yet
to be specified. Representation of the fermionic fields are 8, and they have two different
indices related to spin(8) x spin(3,2) which are suppressed here.

In order to write Lagrangian 4-index structure constants fe°? is defined associated
with a formal, totally antisymmetric three bracket over 3-algebra generators

[T, 7%, T = f, 14, (2.1)
and inner product is defined by a generalization of the trace over the 3-algebra indices
h = Tr(TTP). (2.2)
The 4-index structure constants satisfy the ”fundamental identity”
fefgdfabcg _ fefagfbcgd + fefbgfcagd + fefcgfabgd. (2.3)
The above bracket and trace satisfy the
Tr <[T“,Tb,TC]Td> = —Tr ([Td,T“,Tb]TC> , (2.4)

implying
fabcd _ f[abcd]7 (25)

where fobed — fabeped  The BLG Lagrangian
f . grang
1 - -
£ = —5(DuX ) (DIX]) + SU DU + ST XX ] W o
1 2
-V + 56“1/)\ <fadeAuabauA)\cd + ngdagfefgbAuabAuchAef> , (26)

where
1
Vo= S F X Xy XE XXX
(DpX)a = 0, X0 — [“PuAy caXp = 0,X0 — Aulu X, (2.7)



is invariant under the gauge transformations
0Xy = AcddebaXb = AbaXb
oV, = Acddeba\I}b
5(f0dbaAucd) = 5/Iuba = debaD,uAcd, (2'8)

and the supersymmetry variations

6XI = jertw, (2.9a)
1

6, = D, X1l e — éxg XJ XK pbed pITEK (2.9b)

SA) , = iey, I X Wy e (2.9¢)

In the above ¥ and e should have different 3d chirality i.e. 721?¥ = —W¥ and 7°%¢ = e.
It was shown in [3, 4] that the above supersymmetry transformations are closed up to a

gauge transformation

01, 02) X! = w19, XL + (A®, — 0" A ) X[ (2.10a)
[01,02] Wy = 010, ¥, + (A, —v” A0 )W, (2.10b)
[01,02]A0, =v"0,A} , + Dy(A°, —v"A0,), (2.10c)
where
vt = —2iggyre, A, = —ie DK e X XK pedb | (2.11)

It is important to notice that the fundamental identity is essential to ensure the gauge
invariance of the action as well as the closure of supersymmetry transformations (2.10c).
Note also that the supersymmetry transformations (2.10) are written on-shell with the

following equations of motion

1
V' DpWa+ ST XX W [P0 = 0
 _ oV
D2x! — %\IICFI IXGU e — o =0 (2.12)

- i _
F'a + € (X DAXF + S0 W) [0 = 0,

that

Fule =0,A0 —0,A0 — AL A+ ALAS,. (2.13)

3 BLG construction on R x S?

To construct the BLG theory on R x S2%, we follow the same procedure as in [3, 4]. We
propose appropriate supersymmetry transformations and check their closure. As we will see
this fixes all the freedom in the choice of the coefficients in the supersymmetry variations

" supersymmetry variations we

as well as the equations of motion. For the ”appropriate ’
need to work with spinors on R x S? which in its own turn is constructed using the AdSy
fermions. As a result we will show that supersymmetry closure again demands fundamental

identity and as expected the equation of motion for the X! acquires a mass term.



3.1 Killing spinor on R x S?

Killing spinor equation on R x S? is our aim in this subsection. The relation between
Killing spinor on AdSs and R x S% has been considered in [11]. Here we follow the same
way to find Killing spinor on R x S2. In the global coordinate the metric of AdS, with

radius a takes the form
ds? = a®(— cosh? pdt? + dp* + sinh? pd3), (3.1)

and Killing spinors defined by

~ 1
Vﬂﬁ = <VM — ﬁ’)’u>€ =0. (32)

ji(=t,p,i) labels components of AdS; metric where i denotes the direction of S2. Super-
symmetry parameters are chiral 4d fermions i.e. 40123

. . . . o 1 ab
Coyarlant derivative is defined by Vi = 05 — 750
Q% is the connection 1-form defined by dw® + Q&B Aw? =0 and w? is the vierbein defined

in the usual manner

€ = —e which have four complex.!
7,5, that R is radius of 2-sphere and

G = Nypwiwh, {7777} =2¢", {7%,4"} =2, (3.3)

and V is written as

- 1 1 1
Vi=0+ IR sinh pysy, — Y7 cosh py; = e 2R <3t - ﬁfyt>e2lRm

~ 1 1 1
Vi = V; + 7= cosh py;7, — s sinh py; = ¢~ TRPY (Vi — ﬁ%’y>eﬁw (3.4)

2R 2R
~ 1 1
szap—ﬁ’ypzap—i—ﬁfy.

We have identified v* = —wmé = —~, 7 is the three dimensional chirality and 42 = 1. By
above identification, three gamma matrices are independent describing gamma matrices
on R x S2. Note that in this setup SO(8) symmetry of the original BLG theory doesn’t
change. Therefore, the Killing spinor on AdS, and Killing spinor on R x S? are related by

ends, = € T ey, (3.5)
where €p, g2 satisfies
1
V,e= SRHE (3.6)

with
wu = (’YtafnyY) ) Z - 172
1
V'V, (VY ) = _Zd(d —2)e, d=3

where «; are matrices on the S? and d is space-time dimension.

!'Note that after using yéiiée = —e¢, supersymmetry parameters have two complex fermionic degrees of

freedom. By applying finQe = ¢ (see after (3.11)), the degrees of freedom are two real.



3.2 BLG theory on R x S?

Inspired by the BLG and similar analysis for the ' = 4 on R x S3 [11], we propose the
following deformed supersymmetry transformations for the A" = 8 theory on R x S?

oX!I —qertw, (3.8a)
1

6, = D, XIyrTle — éle X XE poed PITK ¢ 4o TI X1V e (3.8b)

SA), = iey I X W f® (3.8¢)

where now D, is covariant derivative on the R X S? including gauge field
(DpX)a = VuXe — A,ubaXba (3.9)

and m is the dimensionless parameter to be fixed later. Instead of the 3d Majorana fermions

used in the original BLG analysis the fermionic fields ¥ should be appropriately chosen

for the R x S? case. We choose ¥ to be a chiral fermion on the S? and hence ¥ is

a one component complex fermion while also in 84 of SO(8). For the supersymmetry

transformation parameter e is similarly taken to be a chiral Killing spinor on R x S2.
Closure of the scalar field X' leads to

01, 02) X2 = w0, XL + (AP, — v AL )X +in" X (3.10)

where
A7 =m (&1 yer — a4V sea) (3.11)

In the above 7612\11 = —WV and ’}/6126 = ¢. The I''Y term shows the SO(8) R-symmetry
rotation.? Closure of supersymmetry over the fermionic fields leads to

~ ~ i
[01,02] Wy = 0"V, ¥, + (AY, — 0" AL )Ty + ZA”F”xya, (3.12)
provided that the fermionic equations of motion are
1
YD, W, + §r1 IXIX]w, e, =0, (3.13)

and that m = —%. In other words, the supersymmetry closure condition fixes the only free
parameter in our model.
As the last closure condition we examine [d7, 52];1;}’ «- Upon employing the fundamental
identity,
[61,00]AL, = 0"V, AL+ Du(AY, —v"A0,), (3.14)

provided that A, is satisfying the following equation of motion

- i -
EFula + e (X;’ D X + §qfcywd> fetb, =o. (3.15)

?Using antisymmetric property of v°,y' and &7%¢; = 0, one can explicitly show that V,A’7 = 0. Tt
means that the R-symmetry is rigid. Moreover the explicit superalgebra is written in (3.35) and (3.36) in
terms of the fields and their momenta.



The above closure conditions establish the supersymmetric invariance of the BLG model
on R x S? with the above modified supersymmetry transformations. Note that in this case
the supersymmetry algebra besides the “translations on R x S?” (the YV, term) also
involves an SO(8) R-symmetry rotation.
To find bosonic equation of motion, we take the supervariation of the fermion equation
of motion. This gives
1 o7 oV

i
DQXé B §\DCF1JXC{\I,bfcdba _ @Xa ~ %% = 0. (3.16)

Finally we present an action for this system. The equations of motion can be obtained
from the action

1 | -
S = /dtdQQ\/_g< - §(DuX‘”)(D“X£) + %\I'“v“Dﬂ\Ifa + i\I,bFIJXCIX&]\I,afabcd

1 1 2
_W(Xé)Q -V+ §€MV>\(fadeAuabal/A)\cd + ngdagfefgbAuabAuch)\ef)) ) (317)

that dQy = R%sinfdfd¢. It is not hard to check that the action is gauge invariant and
supersymmetric under the transformations (3.8).

In original BLG theory, since h® is positive definite, it was proved in [16] that the
theory has unique solution which is

fabcd _ 6abccl7 (3. 18)

and then the theory has been written as an ordinary gauge theory with gauge group as
SU(2) x SU(2) with bifundamental matter [17]. It is evident that in our case the theory has
the same structure compared to original theory and therefore it can be simply written as an
ordinary gauge theory with the same gauge group. Moreover one expects that the 3d N' = 8
theory is invariant under the 3d parity transformations xg,z; — xg,z; and o — —x9 in
flat space. It was shown [3] that the parity invariance of the twisted Chern-Simon term
implies that under parity

Ag, Ay — Ag, Ay, Ay — —As, f — —f. (3.19)

Parity invariance of the kinetic terms as well as the interaction terms imply that under
parity scalar fields are invariant and for 3d fermions

T — 420, (3.20)

By exchanging (zg, 21, 72) — (t, ¢, ), parity transformations for the theory on R x S? are
t,$,0 — t,m — ¢,0. For the gauge and fermionic fields we have

At7A9 - At7A97 A(b - _A(ba f - _f
P — PPl (3.21)
xI Xg.

a



The original BLG theory enjoys superconformal symmetry. It was shown that super-
conformal symmetry can be found by replacing € by v.zn and adding an appropriate term
i.e. —XT'n to 6¥, [10]. Therefore from (2.9b) supersymmetry transformation is

1
0eWa = Oqusy Vo = D X1 ¢ — 6Xl{ X/ XK poed pITK ¢ (3.22)
and superconformal transformation is
1
577\1’(1 = 5su.conf.\pa = DMX(£7MPI’Y'$77 - EXE{XgXCIl(bedaFIJK’Y'xn - PIX({”7 (323)

where € and 7 are constant spinors. It is easy to write supersymmetry transformations on
R x 5?%(3.8b) in terms of (3.22) and (3.23), as a combination of 3d superPoincare and 3d

superconformal transformations
0¥y = 0cV, + 0, V. (3.24)

This leads
€ =&+ y.an. (3.25)

In the original BLG theory ¢ and n are 3d Majorana fermion in 8, of SO(8) and then they
have 16 4+ 16 degrees of freedom. Supersymmetry transformations on R x S? are generated
by 16 independent €’s. The other combination should be considered as a ” superconformal
symmetry” on R x S2.

In order to understand the theory we would like to study complete spectrum about
X! =0 vacuum. To do so, we expand the theory about the vacua to second order in small
fluctuations. Then equations of motion for X! are

(07 — 72 v52 +— )Xf =0, (3.26)

4R?

where V%Q is written on the sphere with radius one. By expanding X/ in terms of spherical
harmonics on the 2-sphere we have

= Z xé,lmeiwltnm(a, ¢), (327)
l
and hence these modes would have mass squared equal to
1\2
R*w} = <l+§> ., 1=0,1,... (3.28)
For fermionic fields by using (3.8a) we have
I
<8t T2 VSQ + 4R2>5X (3.29)
which leads? . .
2 2 _
<8t R2V >+ 4—RQ> v, =0. (3.30)
3Note that VZe = —Iz



Making the expansion [20]

U, =Y ¢dme ! (sin0) ™Yy (60, ), (3.31)
J
where quantum number j is total angular momentum(j =1 + %) of fermions. Hence mass
squared is
1
j=l+y R%Wl=(1+12 1=0,1,...
1 (3.32)
j=l-3 © RAWE =17, 1=1,2,...

As a result of supersymmetry the sum of boson masses and the sum of fermion masses are
both 16(1 + 1)2.

Recently, in [18] an infinite class of brane configurations was given whose low energy
effective Lagrangian is a Chern-Simon theory with SO(6) R-symmetry and N = 6 super-
symmetry. These theories are related to N M2-branes in R®/Z;, including k = 1. After that
by relaxing the condition on three-bracket so that it is no longer real and antisymmetric
in all three indices i.e.

fabaci _ _fbaécz, fabéci _ f*EcZab‘ (3.33)

N = 6 theories based on 3-algebra have been obtained [9, 19]. However the new three-

bracket is still required to satisfy the fundamental identity. The supersymmetry transfor-
mations are [19]

623 = ie*Pypq

Spa = V' DuZieap + f*aZS Zi Zozean + [**°aZS ZP Zpeecp

0Au 0 = —ieapyu Zi0E 1y + i€ Py, Z jybpa f o, (3.34)
where €4p is in the 6 of SU(4) and a raised A index indicates that the field is in the 4
of SU(4); a lowered index transforms in the 4. One can write above theory on R x S? by
adding an appropriate mass term, i.e. —%Z Wv u€AB, in variation of fermionic fields. Since
the antisymmetry condition was not used in our earlier supersymmetry closure analysis the
above supersymmetry transformations plus mass term will still remain closed. In particular,
the closure of the scalar fields will exactly work in the same way as in the AN/ = 8 theory.
For the closure of gauge fields, equation of motion, (3.33) and fundamental identity are
enough. The closure of fermionic fields just requires fermionic equation of motion. The
equation of motion for scalars Z2, as before is found by taking the supervariation of the
fermion equation of motion if we apply (3.33). Therefore, one can reproduce the N’ = 6
supersymmetric theories on R x S2. (Since the computations are essentially the same as
the A/ = 8 we do not repeat the equations.)

Finally, superalgebra may be written by using (3.10) and (3.12). As we explained
before fermionic fields have two different indices relating to SO(3) x U(1) and SO(8) which
is the bosonic part of OSp(8|2) x U(1) superalgebra. Let’s label them with & = 1,2 and
A =1,...,8 respectively. Then the superalgebra is

{Qa, Q5 = —20"P (v"9") 45 Pu + 504,51 AP T, (3.35)



where

J = / dQQ\/—_g<XIPJ - X7P + %W(ﬂ“” )¢>

1 1
Q= / dQy/—g (D“XC{FI O éle X XK poed pLIEOy 4 — ! ngoxw)

4R
(3.36)

We have fixed that J//’s are SO(8) generators. The superalgebera for original BLG theory

has been discussed in [21].

4 BPS solution

By definition a BPS configuration is a state which is invariant under some specific super-
symmetry transformations. For the configurations in which spinor fields are turned off the
non-vanishing supersymmetry variations are only J.¥, and hence BPS equations read as

5.0, =0, (4.1)

for arbitrary e. From the above equation and (3.8b) it is clear that the X! = 0 vacuum is
a full BPS configuration(with 32 supercharges). Another class of BPS solutions are small
fluctuations about vacuum. In this case the equation (4.1) reads as

1
(vv, X! - ﬁX;’rf)e =0, (4.2)

where gauge and fermionic fields are turned off. Replacing from (3.27) we have

: 1
(ﬁ(m) + 70 — ﬁ>XC{1“16 =0, i=0,¢ (4.3)

which evidently is right just for [ = 0 bosonic fluctuations and then they are 1/4 BPS
configurations. In this case we have a short multiplet including eight bosonic and four
fermionic degrees of freedom. Other possibilities of [ are non-BPS solutions with equal
number of bosonic and fermionic degrees of freedom. Hence (1,14 %, [+1), I >0 assemble
to a long multiplet. In what follows we discuss other classes of 1/4 BPS configurations.
4.1 1/4 BPS configuration
Let us start with the case in which X>678’s are turned off and then BPS equation (4.1)
takes the form
upy s _ Liwi xi xhpik _ L s :
D, X'T —E[X,XJ,X]F] _EXP e=0,1=1,2,3,4. (4.4)

In order to solve above equation we introduce

X' = al". (4.5)



I'’s are in n X n representation of Spin(4) and obey
%, 19, TF] = 1269k (4.6)
and « is a dimensional constant. Therefore, the first term in (4.4) vanishes and it leads to

1 el b
(2.3!a2r5 — ﬁn> X'Tle =0, (4.7)

which has a solution if o? = 5iz ( I'® is the SO(4) chirality matrix). These solutions
are exactly fuzzy three sphere with SO(4) symmetry explained in the literature e.g. [13].
One expects that the theory which lives on the two membranes can be described by BLG
theory. It means that in our solution membranes blow up to a fuzzy three sphere in
transverse directions. (4.7) shows that e has eight real fermionic degrees of freedom and
our solutions are 1/4 BPS. We reproduce trivial case X! = 0 when R goes to infinity.
The other case happens when « is not a constant and can vary on the 2-sphere in the
0 direction. We then have
H

i e - “ ) 3o 1 i “
o XTt — 5 X', X9, XMk YT =0. (4.8)

It is straightforward to check that the above equation is solved with
X' = ()T, (4.9)

provided that
1

a(f) = ,
©) /2451 R(1 — e52(0—00))

that we have used

e = S1€
Ve = s, (4.11)

where s; and s9 can independently be +1 or —1. Two different cases exist here which
are €20=0%) > 1 5 = —1 and e2(®=%) < 1 s; = +1. Regarding to the sign of s, in
each case there are eight independent €’s and therefore these configurations are 1/4 BPS.
These solutions correspond to M2-brane along 00¢ ending on M5-brane along 01234¢ which
means that M5-brane wraps in ¢ direction and as a result there is a U(1), symmetry.
Unlike the previous 1/4 BPS configurations these family of solutions change to Basu-
Harvey configurations [14] in specific limit as an open membrane ending on M5-brane(see
also [15]). The "Basu-Harvey limit” is then a limit where R is taken to infinity, keeping x

finite, i.e.
R — o0, 0=uz/R,x finite, (4.12)
and (4.10) becomes
az) = ! . (4.13)
V/—245152(z — x)
If + > zy then we should take s;s9 = —1 indicating s1 = +1,s9 = —1 or 51 = —1,89 =

+1. Each of them preserves four independent €’s and we have 1/4 BPS Basu-Harvey
configurations. (For the other case, x < z¢, there are again eight €’s.)

,10,



5 Conclusion

In this work we have generalized the 3d, N/ = 8 BLG theory on flat space to R x S2.
As we discussed an additional term adds to supersymmetry transformation of fermion and
also supersymmetry parameters are no longer constant and vary on the 2-sphere. These
two differences have two results. The first one appears in the closure of bosonic and
fermionic fields that we have a SO(8) R-symmetry rotation. This rotation didn’t appear
for gauge fields because they have singlet representation of SO(8). Appearing a new term
in the equation of motion for X’s leaded a mass term in the Lagrangian is the second
one. However the equations of motion for gauge and fermionic fields formally remain
unchange. Our theory like original BLG theory is parity invariance as expected. We have
also considered small fluctuation about vacuum and superalgebra .

It was argued that ABJM model can be written on R x S2. Although f*°? is not real
and fully antisymmetric the supersymmetry transformation including mass term closes up
to a gauge transformation.

In the last section we have studied BPS configurations. One family of 1/4 BPS config-
urations are fuzzy three sphere with SO(4) symmetry and another one can be considered as
M5-M2 configuration which M5 has been wrapped in the ¢ direction. In the Basu-Harvey
limit this family of solutions reproduce Basu-Harvey configuration as an open membrane

ending on Mb-brane.
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A  Gamma matrices

In this appendix we briefly consider our notation of I-matrices. The eleven dimensional
I-matrices are defined by

{rM Ny = opMN M N =0,...,10 (A1)
where nMN = diag(—, +'°). Under dimension reduction to three dimensions we have
S0(10,1) D SO(2,1) x SO(8) (A.2)

Ay =20", pr=0,1,2
rf.ry=2" 1,0=1,...,8

{r',4"} =0 (A-3)
=@
M=1,04

— 11 —



where
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