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1 Introduction

The world volume theory of multiple M2-branes has been an open question over the last two-

three decades ago. The low energy limit of multiple M2-branes theory is expected to be an

interacting 2+1 dimensional superconformal field theory with eight transverse scalar fields

as its bosonic content [1]. Moreover the multiple M2-branes theory should be maximally

supersummetric, which in three dimensions means that it is ”N = 8 supersymmetric

theory” and therefore superconformal symmetry group is OSp(8|4). From AdS/CFT point

of view these theories are dual to AdS4 × S7 solution of M-theory. The bosonic part of

superalgebra is SO(8) × SO(3, 2) as the global symmetry of both theories.

Very interesting theory with appropriate symmetries of 3d N = 8 was proposed by

Bagger and Lambert [2–4] and also Gustavsson [5]. Therefore this model has potential to

describe world volume of multiple M2-branes. In this construction the field content is a

collection of eight scalars, fermions and non-propagating gauge fields which are transform-

ing under 3-algebra and a 4-index structure constant. 3-algebra and structure constants

can be considered as a generalization of a Lie algebra with triple bracket and 3-index struc-

ture constant. The structure constants satisfy a fundamental identity replacing the Jacobi

identity of a Lie algebra. There should also be a symmetric invertible metric hab that

can be used to raise and lower indices. Different aspects of this theory are studied in the

literature [22]. Matrix realization of this theory is also presented in [6–9].

According to AdS/CFT and holographic principle this model lives on the boundary

of AdS4 × S7. It is well known that this boundary is R × S2. In this paper we study
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N = 8 BLG model on the R × S2 background. we construct suitable supersymmetry

transformations and Lagrangian and then investigate BPS configurations.

This paper is organized as follows. In section 2 we review BLG model and then in

section 3 theory on R×S2 is considered. In section 4 we study BPS configurations. Section

5 is devoted to discussions. The explicit representations for gamma matrices have been

presented in appendix A.

2 Review of BLG theory

To begin, we briefly review Bagger-Lambert construction as a three dimensional super-

conformal field theory with OSp(8|4) superalgebra. spin(8) R-symmetry and spin(4) ≡
spin(3, 2) conformal symmetry are the bosonic part of superalgebra. Bosonic fields are

XI
a and non-propagating Aab

µ (µ = 0, 1, 2 is world volume index) and fermionic fields are

Ψa. The index I labels components of the fundamental 8v representation of spin(8) as

scalar fields corresponding to the eight directions transverse to M2-branes and a indices

take the values 1, . . . , dimA with dimA being the dimension of 3-algebra A which is yet

to be specified. Representation of the fermionic fields are 8s and they have two different

indices related to spin(8) × spin(3, 2) which are suppressed here.

In order to write Lagrangian 4-index structure constants fabcd is defined associated

with a formal, totally antisymmetric three bracket over 3-algebra generators

[T a, T b, T c] = fabc
dT

d, (2.1)

and inner product is defined by a generalization of the trace over the 3-algebra indices

hab = Tr(T aT b). (2.2)

The 4-index structure constants satisfy the ”fundamental identity”

f efg
df

abc
g = f efa

gf
bcg

d + f efb
gf

cag
d + f efc

gf
abg

d. (2.3)

The above bracket and trace satisfy the

Tr
(

[T a, T b, T c]T d
)

= −Tr
(

[T d, T a, T b]T c
)

, (2.4)

implying

fabcd = f [abcd], (2.5)

where fabcd = fabc
e hed. The BLG Lagrangian

L = −1

2
(DµX

aI)(DµXI
a) +

i

2
Ψ̄aγµDµΨa +

i

4
Ψ̄bΓ

IJXI
cX

J
d Ψaf

abcd

−V +
1

2
εµνλ

(

fabcdAµab∂νAλcd +
2

3
f cda

gf
efgbAµabAνcdAλef

)

, (2.6)

where

V =
1

12
fabcdf efg

dX
I
aX

J
b X

K
c X

I
eX

J
f X

K
g

(DµX)a = ∂µXa − f cdb
aAµ cdXb ≡ ∂µXa − Ãµ

b
aXb, (2.7)
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is invariant under the gauge transformations

δXa = Λcdf
cdb

aXb ≡ Λ̃b
aXb

δΨa = Λcdf
cdb

aΨb

δ(f cdb
aAµcd) ≡ δÃµ

b
a = f cdb

aDµΛcd, (2.8)

and the supersymmetry variations

δXI
a = iǭΓIΨa (2.9a)

δΨa = DµX
I
aγ

µΓIǫ− 1

6
XI

bX
J
c X

K
d f

bcd
aΓ

IJKǫ (2.9b)

δÃ b
µ a = iǭγµΓIXI

c Ψdf
cdb

a. (2.9c)

In the above Ψ and ǫ should have different 3d chirality i.e. γ012Ψ = −Ψ and γ012ǫ = ǫ.

It was shown in [3, 4] that the above supersymmetry transformations are closed up to a

gauge transformation

[δ1, δ2]X
I
a = vµ∂µX

I
a + (Λ̃b

a − vνÃ b
ν a)X

I
b (2.10a)

[δ1, δ2]Ψa = vµ∂µΨa + (Λ̃b
a − vνÃ b

ν a)Ψb (2.10b)

[δ1, δ2]Ã
b

µ a = vν∂νÃ
b

µ a +Dµ(Λ̃b
a − vνÃ b

ν a), (2.10c)

where

vµ = −2iǭ2γ
µǫ1, Λ̃b

a = −iǭ2ΓJKǫ1X
J
c X

K
d f

cdb
a. (2.11)

It is important to notice that the fundamental identity is essential to ensure the gauge

invariance of the action as well as the closure of supersymmetry transformations (2.10c).

Note also that the supersymmetry transformations (2.10) are written on-shell with the

following equations of motion

γµDµΨa +
1

2
ΓIJXI

cX
J
d Ψbf

cdb
a = 0

D2XI
a − i

2
Ψ̄cΓ

IJXJ
d Ψbf

cdb
a −

∂V

∂XIa
= 0 (2.12)

F̃µν
b
a + εµνλ(XJ

c D
λXJ

d +
i

2
Ψ̄cγ

λΨd)f
cdb

a = 0,

that

F̃µν
b
a = ∂νÃµ

b
a − ∂µÃν

b
a − Ãµ

b
cÃν

c
a + Ãν

b
cÃµ

c
a. (2.13)

3 BLG construction on R × S
2

To construct the BLG theory on R × S2, we follow the same procedure as in [3, 4]. We

propose appropriate supersymmetry transformations and check their closure. As we will see

this fixes all the freedom in the choice of the coefficients in the supersymmetry variations

as well as the equations of motion. For the ”appropriate ” supersymmetry variations we

need to work with spinors on R× S2 which in its own turn is constructed using the AdS4

fermions. As a result we will show that supersymmetry closure again demands fundamental

identity and as expected the equation of motion for the XI
a acquires a mass term.
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3.1 Killing spinor on R× S2

Killing spinor equation on R × S2 is our aim in this subsection. The relation between

Killing spinor on AdS5 and R × S3 has been considered in [11]. Here we follow the same

way to find Killing spinor on R × S2. In the global coordinate the metric of AdS4 with

radius a takes the form

ds2 = a2(− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
2), (3.1)

and Killing spinors defined by

∇̃µ̄ǫ =

(

∇µ̄ − 1

2R
γµ̄

)

ǫ = 0. (3.2)

µ̄(= t, ρ, i) labels components of AdS4 metric where i denotes the direction of S2. Super-

symmetry parameters are chiral 4d fermions i.e. γ0̂1̂2̂3̂ǫ = −ǫ which have four complex.1

Covariant derivative is defined by ∇µ̄ = ∂µ̄ − 1
4R

Ωâb̂
µ̄ γâb̂

that R is radius of 2-sphere and

Ωâb̂ is the connection 1-form defined by dωâ + Ωâ
b̂
∧ ωb̂ = 0 and ωâ is the vierbein defined

in the usual manner

gµ̄ν̄ = η
âb̂
ωâ

µ̄ω
b̂
ν̄, {γµ̄, γν̄} = 2gµ̄ν̄ , {γâ, γ b̂} = 2ηâb̂, (3.3)

and ∇̃ is written as

∇̃t = ∂t +
1

2R
sinh ργtγρ −

1

2R
cosh ργt = e−

1

2R
ργ

(

∂t −
1

2R
γt

)

e
1

2R
ργ

∇̃i = ∇i +
1

2R
cosh ργiγρ −

1

2R
sinh ργi = e−

1

2R
ργ

(

∇i −
1

2R
γiγ

)

e
1

2R
ργ

∇̃ρ = ∂ρ −
1

2R
γρ = ∂ρ +

1

2R
γ.

(3.4)

We have identified γρ = −γ0̂1̂2̂ ≡ −γ, γ is the three dimensional chirality and γ2 = 1. By

above identification, three gamma matrices are independent describing gamma matrices

on R × S2. Note that in this setup SO(8) symmetry of the original BLG theory doesn’t

change. Therefore, the Killing spinor on AdS4 and Killing spinor on R×S2 are related by

ǫAdS4
= e−

1

2R
ργǫR×S2 , (3.5)

where ǫR×S2 satisfies

∇µǫ =
1

2R
ωµǫ, (3.6)

with

ωµ = (γt, γiγ) , i = 1, 2

γν∇ν(γ
µ∇µǫ) = −1

4
d(d− 2)ǫ, d = 3

(3.7)

where γi are matrices on the S2 and d is space-time dimension.

1Note that after using γ
0̂1̂2̂3̂

ǫ = −ǫ, supersymmetry parameters have two complex fermionic degrees of

freedom. By applying γ
0̂1̂2̂

ǫ = ǫ (see after (3.11)), the degrees of freedom are two real.
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3.2 BLG theory on R× S2

Inspired by the BLG and similar analysis for the N = 4 on R × S3 [11], we propose the

following deformed supersymmetry transformations for the N = 8 theory on R× S2

δXI
a = iǭΓIΨa (3.8a)

δΨa = DµX
I
aγ

µΓIǫ− 1

6
XI

bX
J
c X

K
d f

bcd
aΓ

IJKǫ+m ΓIXI
aγ

µ∇µǫ (3.8b)

δÃ b
µ a = iǭγµΓIXI

c Ψdf
cdb

a, (3.8c)

where now Dµ is covariant derivative on the R× S2 including gauge field

(DµX)a = ∇µXa − Ãµ
b
aXb, (3.9)

and m is the dimensionless parameter to be fixed later. Instead of the 3d Majorana fermions

used in the original BLG analysis the fermionic fields Ψ should be appropriately chosen

for the R × S2 case. We choose Ψ to be a chiral fermion on the S2 and hence Ψ is

a one component complex fermion while also in 8s of SO(8). For the supersymmetry

transformation parameter ǫ is similarly taken to be a chiral Killing spinor on R× S2.

Closure of the scalar field XI leads to

[δ1, δ2]X
I
a = vµ∂µX

I
a + (Λ̃b

a − vνÃ b
ν a)X

I
b + iΛIJXJ

a , (3.10)

where

ΛIJ = m
(

ǭ2Γ
IJγµ∇µǫ1 − ǭ1Γ

IJγµ∇µǫ2
)

. (3.11)

In the above γ0̂1̂2̂Ψ = −Ψ and γ0̂1̂2̂ǫ = ǫ. The ΓIJ term shows the SO(8) R-symmetry

rotation.2 Closure of supersymmetry over the fermionic fields leads to

[δ1, δ2]Ψa = vµ∇µΨa + (Λ̃b
a − vνÃ b

ν a)Ψb +
i

4
ΛIJΓIJΨa , (3.12)

provided that the fermionic equations of motion are

γµDµΨa +
1

2
ΓIJXI

cX
J
d Ψbf

cdb
a = 0 , (3.13)

and that m = −1
3 . In other words, the supersymmetry closure condition fixes the only free

parameter in our model.

As the last closure condition we examine [δ1, δ2]Ã
b

µ a. Upon employing the fundamental

identity,

[δ1, δ2]Ã
b

µ a = vν∇νÃ
b

µ a +Dµ(Λ̃b
a − vνÃ b

ν a), (3.14)

provided that Aµ is satisfying the following equation of motion

F̃µν
b
a + εµνλ

(

XJ
c D

λXJ
d +

i

2
Ψ̄cγ

λΨd

)

f cdb
a = 0. (3.15)

2Using antisymmetric property of γ
0,γ1 and ǭ2γ

2
ǫ1 = 0, one can explicitly show that ∇µΛIJ = 0. It

means that the R-symmetry is rigid. Moreover the explicit superalgebra is written in (3.35) and (3.36) in

terms of the fields and their momenta.

– 5 –
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The above closure conditions establish the supersymmetric invariance of the BLG model

on R×S2 with the above modified supersymmetry transformations. Note that in this case

the supersymmetry algebra besides the “translations on R × S2” (the γµ∇µ term) also

involves an SO(8) R-symmetry rotation.

To find bosonic equation of motion, we take the supervariation of the fermion equation

of motion. This gives

D2XI
a − i

2
Ψ̄cΓ

IJXJ
d Ψbf

cdb
a −

1

4R2
XI

a − ∂V

∂XIa
= 0. (3.16)

Finally we present an action for this system. The equations of motion can be obtained

from the action

S =

∫

dtdΩ2
√−g

(

− 1

2
(DµX

aI)(DµXI
a) +

i

2
Ψ̄aγµDµΨa +

i

4
Ψ̄bΓ

IJXI
cX

J
d Ψaf

abcd

− 1

8R2
(XI

a)2 − V +
1

2
εµνλ(fabcdAµab∂νAλcd +

2

3
f cda

gf
efgbAµabAνcdAλef )

)

, (3.17)

that dΩ2 = R2 sin θdθdφ. It is not hard to check that the action is gauge invariant and

supersymmetric under the transformations (3.8).

In original BLG theory, since hab is positive definite, it was proved in [16] that the

theory has unique solution which is

fabcd = ǫabcd, (3.18)

and then the theory has been written as an ordinary gauge theory with gauge group as

SU(2)×SU(2) with bifundamental matter [17]. It is evident that in our case the theory has

the same structure compared to original theory and therefore it can be simply written as an

ordinary gauge theory with the same gauge group. Moreover one expects that the 3d N = 8

theory is invariant under the 3d parity transformations x0, x1 → x0, x1 and x2 → −x2 in

flat space. It was shown [3] that the parity invariance of the twisted Chern-Simon term

implies that under parity

A0, A1 → A0, A1, A2 → −A2, f → −f. (3.19)

Parity invariance of the kinetic terms as well as the interaction terms imply that under

parity scalar fields are invariant and for 3d fermions

Ψa → γ2Ψa. (3.20)

By exchanging (x0, x1, x2) → (t, φ, θ), parity transformations for the theory on R× S2 are

t, φ, θ → t, π − φ, θ. For the gauge and fermionic fields we have

At, Aθ → At, Aθ, Aφ → −Aφ, f → −f
Ψa → γφΨa

XI
a → XI

a .

(3.21)

– 6 –
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The original BLG theory enjoys superconformal symmetry. It was shown that super-

conformal symmetry can be found by replacing ǫ by γ.xη and adding an appropriate term

i.e. −XIΓIη to δΨa [10]. Therefore from (2.9b) supersymmetry transformation is

δξΨa ≡ δsusyΨa = DµX
I
aγ

µΓIξ − 1

6
XI

bX
J
c X

K
d f

bcd
aΓ

IJKξ, (3.22)

and superconformal transformation is

δηΨa ≡ δsu.conf.Ψa = DµX
I
aγ

µΓIγ.xη − 1

6
XI

bX
J
c X

K
d f

bcd
aΓ

IJKγ.xη − ΓIXI
aη, (3.23)

where ξ and η are constant spinors. It is easy to write supersymmetry transformations on

R × S2(3.8b) in terms of (3.22) and (3.23), as a combination of 3d superPoincare and 3d

superconformal transformations

δǫΨa = δξΨa + δηΨa. (3.24)

This leads

ǫ = ξ + γ.xη. (3.25)

In the original BLG theory ξ and η are 3d Majorana fermion in 8c of SO(8) and then they

have 16+16 degrees of freedom. Supersymmetry transformations on R×S2 are generated

by 16 independent ǫ’s. The other combination should be considered as a ”superconformal

symmetry” on R× S2.

In order to understand the theory we would like to study complete spectrum about

XI = 0 vacuum. To do so, we expand the theory about the vacua to second order in small

fluctuations. Then equations of motion for XI
a are

(

∂2
t − 1

R2
∇2

S2 +
1

4R2

)

XI
a = 0, (3.26)

where ∇2
S2 is written on the sphere with radius one. By expanding XI

a in terms of spherical

harmonics on the 2-sphere we have

XI
a =

∑

l

xI
a,lme

iwltYlm(θ, φ), (3.27)

and hence these modes would have mass squared equal to

R2w2
l =

(

l +
1

2

)2

, l = 0, 1, . . . (3.28)

For fermionic fields by using (3.8a) we have
(

∂2
t − 1

R2
∇2

S2 +
1

4R2

)

δXI
a = 0, (3.29)

which leads3
(

∂2
t − 1

R2
∇2

S2 +
1

4R2

)

Ψa = 0. (3.30)

3Note that ∇
2
ǫ = −

ǫ

4R2
.
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Making the expansion [20]

Ψa =
∑

j

ψjm
a eiωlt(sin θ)|m|Yjm(θ, φ), (3.31)

where quantum number j is total angular momentum(j = l ± 1
2) of fermions. Hence mass

squared is

j = l +
1

2
: R2ω2

l = (l + 1)2, l = 0, 1, . . .

j = l − 1

2
: R2ω2

l = l2, l = 1, 2, . . .

(3.32)

As a result of supersymmetry the sum of boson masses and the sum of fermion masses are

both 16(l + 1
2 )2.

Recently, in [18] an infinite class of brane configurations was given whose low energy

effective Lagrangian is a Chern-Simon theory with SO(6) R-symmetry and N = 6 super-

symmetry. These theories are related to N M2-branes in R8/Zk including k = 1. After that

by relaxing the condition on three-bracket so that it is no longer real and antisymmetric

in all three indices i.e.

fabc̄d̄ = −f bac̄d̄, fabc̄d̄ = f∗c̄d̄ab. (3.33)

N = 6 theories based on 3-algebra have been obtained [9, 19]. However the new three-

bracket is still required to satisfy the fundamental identity. The supersymmetry transfor-

mations are [19]

δZA
d = iǭABψBd

δψBd = γµDµZ
A
d ǫAB + fabc̄

dZ
C
a Z

A
b Z̄Cc̄ǫAB + fabc̄

dZ
C
a Z

D
b Z̄Bc̄ǫCD

δÃµ
c
d = −iǭABγµZ

A
a ψ

B
b̄
f cab̄

d + iǭABγµZ̄Ab̄ψBaf
cab̄

d, (3.34)

where ǫAB is in the 6 of SU(4) and a raised A index indicates that the field is in the 4

of SU(4); a lowered index transforms in the 4̄. One can write above theory on R× S2 by

adding an appropriate mass term, i.e. −1
3Z

A
d γ

µ∇µǫAB, in variation of fermionic fields. Since

the antisymmetry condition was not used in our earlier supersymmetry closure analysis the

above supersymmetry transformations plus mass term will still remain closed. In particular,

the closure of the scalar fields will exactly work in the same way as in the N = 8 theory.

For the closure of gauge fields, equation of motion, (3.33) and fundamental identity are

enough. The closure of fermionic fields just requires fermionic equation of motion. The

equation of motion for scalars ZA
a , as before is found by taking the supervariation of the

fermion equation of motion if we apply (3.33). Therefore, one can reproduce the N = 6

supersymmetric theories on R × S2. (Since the computations are essentially the same as

the N = 8 we do not repeat the equations.)

Finally, superalgebra may be written by using (3.10) and (3.12). As we explained

before fermionic fields have two different indices relating to SO(3)×U(1) and SO(8) which

is the bosonic part of OSp(8|2) × U(1) superalgebra. Let’s label them with α̇ = 1, 2 and

Ȧ = 1, . . . , 8 respectively. Then the superalgebra is

{QȦ
α̇ , Q

Ḃ
β̇
} = −2δȦḂ(γµγ0)α̇β̇Pµ +

1

2
δα̇β̇(ΓIJ)ȦḂJIJ , (3.35)

– 8 –
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where

JIJ =

∫

dΩ2
√−g

(

XIP J −XJP I +
1

2
ψ†(iΓIJ )ψ

)

Q =

∫

dΩ2
√−g

(

DµX
I
aΓIγµγ0Ψa − 1

6
XI

bX
J
c X

K
d f

bcd
aΓ

IJKγ0Ψd +
1

4R
ΓIXI

aγ
0Ψa

)

.

(3.36)

We have fixed that JIJ ’s are SO(8) generators. The superalgebera for original BLG theory

has been discussed in [21].

4 BPS solution

By definition a BPS configuration is a state which is invariant under some specific super-

symmetry transformations. For the configurations in which spinor fields are turned off the

non-vanishing supersymmetry variations are only δǫΨa and hence BPS equations read as

δǫΨa = 0, (4.1)

for arbitrary ǫ. From the above equation and (3.8b) it is clear that the XI = 0 vacuum is

a full BPS configuration(with 32 supercharges). Another class of BPS solutions are small

fluctuations about vacuum. In this case the equation (4.1) reads as

(

γµ∇µX
I
aΓI − 1

2R
XI

aΓI
)

ǫ = 0, (4.2)

where gauge and fermionic fields are turned off. Replacing from (3.27) we have

(

γt(iωl) + γi∂i −
1

2R

)

XI
aΓIǫ = 0, i = θ, φ (4.3)

which evidently is right just for l = 0 bosonic fluctuations and then they are 1/4 BPS

configurations. In this case we have a short multiplet including eight bosonic and four

fermionic degrees of freedom. Other possibilities of l are non-BPS solutions with equal

number of bosonic and fermionic degrees of freedom. Hence (l, l+ 1
2 , l+ 1), l > 0 assemble

to a long multiplet. In what follows we discuss other classes of 1/4 BPS configurations.

4.1 1/4 BPS configuration

Let us start with the case in which X5,6,7,8’s are turned off and then BPS equation (4.1)

takes the form
(

γµDµX
îΓî − 1

6
[X î,X ĵ ,X k̂]Γîĵk̂ − 1

2R
X îΓî

)

ǫ = 0, î = 1, 2, 3, 4. (4.4)

In order to solve above equation we introduce

X î = αΓî. (4.5)
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Γî’s are in n× n representation of Spin(4) and obey

[Γî,Γĵ ,Γk̂] = 12ǫîĵk̂l̂Γl̂, (4.6)

and α is a dimensional constant. Therefore, the first term in (4.4) vanishes and it leads to
(

2.3!α2Γ5 − 1

2R
11

)

X îΓîǫ = 0, (4.7)

which has a solution if α2 = 1
24R

( Γ5 is the SO(4) chirality matrix). These solutions

are exactly fuzzy three sphere with SO(4) symmetry explained in the literature e.g. [13].

One expects that the theory which lives on the two membranes can be described by BLG

theory. It means that in our solution membranes blow up to a fuzzy three sphere in

transverse directions. (4.7) shows that ǫ has eight real fermionic degrees of freedom and

our solutions are 1/4 BPS. We reproduce trivial case XI = 0 when R goes to infinity.

The other case happens when α is not a constant and can vary on the 2-sphere in the

θ direction. We then have

γθ∂θX
îΓî − 1

6
[X î,X ĵ ,X k̂]Γîĵk̂ − 1

2R
X îΓî = 0. (4.8)

It is straightforward to check that the above equation is solved with

X î = α(θ)Γî, (4.9)

provided that

α(θ) =
1

√

24s1R(1 − es2(θ−θ0))
, (4.10)

that we have used

Γ5ǫ = s1ǫ

γθǫ = s2ǫ, (4.11)

where s1 and s2 can independently be +1 or −1. Two different cases exist here which

are es2(θ−θ0) > 1, s1 = −1 and es2(θ−θ0) < 1, s1 = +1. Regarding to the sign of s2 in

each case there are eight independent ǫ’s and therefore these configurations are 1/4 BPS.

These solutions correspond to M2-brane along 0θφ ending on M5-brane along 01234φ which

means that M5-brane wraps in φ direction and as a result there is a U(1)φ symmetry.

Unlike the previous 1/4 BPS configurations these family of solutions change to Basu-

Harvey configurations [14] in specific limit as an open membrane ending on M5-brane(see

also [15]). The ”Basu-Harvey limit” is then a limit where R is taken to infinity, keeping x

finite, i.e.

R→ ∞, θ = x/R, x finite, (4.12)

and (4.10) becomes

α(x) =
1

√

−24s1s2(x− x0)
. (4.13)

If x > x0 then we should take s1s2 = −1 indicating s1 = +1, s2 = −1 or s1 = −1, s2 =

+1. Each of them preserves four independent ǫ’s and we have 1/4 BPS Basu-Harvey

configurations. (For the other case, x < x0, there are again eight ǫ’s.)
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5 Conclusion

In this work we have generalized the 3d, N = 8 BLG theory on flat space to R × S2.

As we discussed an additional term adds to supersymmetry transformation of fermion and

also supersymmetry parameters are no longer constant and vary on the 2-sphere. These

two differences have two results. The first one appears in the closure of bosonic and

fermionic fields that we have a SO(8) R-symmetry rotation. This rotation didn’t appear

for gauge fields because they have singlet representation of SO(8). Appearing a new term

in the equation of motion for X’s leaded a mass term in the Lagrangian is the second

one. However the equations of motion for gauge and fermionic fields formally remain

unchange. Our theory like original BLG theory is parity invariance as expected. We have

also considered small fluctuation about vacuum and superalgebra .

It was argued that ABJM model can be written on R×S2. Although fabcd is not real

and fully antisymmetric the supersymmetry transformation including mass term closes up

to a gauge transformation.

In the last section we have studied BPS configurations. One family of 1/4 BPS config-

urations are fuzzy three sphere with SO(4) symmetry and another one can be considered as

M5-M2 configuration which M5 has been wrapped in the φ direction. In the Basu-Harvey

limit this family of solutions reproduce Basu-Harvey configuration as an open membrane

ending on M5-brane.
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A Gamma matrices

In this appendix we briefly consider our notation of Γ-matrices. The eleven dimensional

Γ-matrices are defined by

{ΓM ,ΓN} = 2ηMN , M,N = 0, . . . , 10 (A.1)

where ηMN = diag(−,+10). Under dimension reduction to three dimensions we have

SO(10, 1) ⊃ SO(2, 1) × SO(8) (A.2)

{γµ, γν} = 2ηµν , µ, ν = 0, 1, 2

{ΓI ,ΓJ} = 2δIJ , I, J = 1, . . . , 8

{ΓI , γµ} = 0

γµ = γ̄µ ⊗ γ8

ΓI = 114 ⊗ γI

(A.3)
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where

γ̄µ =

(

0 iτµ

−iτµ 0

)

, τ0 = iσ3, τ1 = σ1, τ2 = σ2

{γI , γ8} = 0, (γ8)2 = 1

(A.4)
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