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Abstract The Hamilton–Jacobi approach offers a natural
framework for analyzing inflationary dynamics, relying on
the specified Hubble parameter rather than the potential,
particularly in extended gravity theories. In this study, we
apply this method to investigate inflation with non-minimal
coupling, comparing the metric and Palatini formulations.
Using a power-law Hubble parameter in the Jordan frame,
we find that both formalisms satisfy the attractor condition,
with a slight suppression in the Palatini case. Our results
align closely with the latest observational data, demonstrat-
ing the Palatini formalism’s heightened sensitivity to cou-
pling constants and model parameters. Furthermore, we show
that within the model’s viable parameter space, the reheating
process can achieve sufficiently high temperatures to support
successful leptogenesis.

1 Introduction

The standard cosmological model provides several predic-
tions that have been successfully verified experimentally.
However, it encounters three significant issues: the horizon
dilemma, the flatness issue, and the magnetic monopole chal-
lenge. These challenges are addressed by inflation theory,
which suggests a period of rapid exponential expansion in
the early universe [1–4]. This inflationary phase leads to
a nearly scale-invariant spectrum, which is crucial for the
development of large-scale structures in the universe and
aligns well with the cosmic microwave background (CMB)
observations [5–11]. CMB observations place constraints on
two key inflationary parameters: the spectral index of the pri-
mordial curvature perturbations, ns, and the tensor-to-scalar
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ratio, r . According to the latest Planck 2018 data, the spectral
index is constrained to ns = 0.965 ± 0.004 at the 68% con-
fidence level (CL) [12]. Meanwhile, the BICEP/Keck survey
sets an upper limit on r as r < 0.036 at the 95% CL [13].

Observational constraints on ns and r exclude several
inflationary models, including those with simple quadratic
and quartic potentials [12]. However, when considering
extensions to gravity, such as non-minimal coupling of the
inflaton to gravity, these models can align well with the
observational data [14–16]. The discussion of gravitational
degrees of freedom is particularly prominent in non-minimal
coupling theories, especially in the metric and Palatini for-
malisms [17–36]. In the metric formalism, the indepen-
dent variables are the metric and its first-order derivatives,
whereas in the Palatini formalism, the independent variables
are the metric and the connection. Although these two for-
malisms yield identical field equations in general relativity,
they lead to different field equations and distinct physical
outcomes when non-minimal coupling is introduced [17,19].
Higgs inflation with non-minimal coupling encounters uni-
tarity violations in the metric approach, relying on unknown
ultraviolet (UV) physics [37–41], while the Palatini formal-
ism ensures UV safety and avoids these issues [18]. Addi-
tionally, in Palatini formalism, the tensor scale ratio is con-
sistently suppressed compared to metric formalism [42].

Recently, the Hamilton–Jacobi method has been widely
employed for analyzing various inflationary models [43–
66]. Unlike the traditional slow-roll approximation, the
Hamilton–Jacobi formalism allows the scalar field to be
treated as the time variable in cosmological background
equations, provided the field evolves monotonically. This
approach shifts the focus from specifying the inflaton poten-
tial V (φ) to specifying the Hubble parameter H(φ), a geo-
metric quantity that directly characterizes the expansion rate
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of the universe. Furthermore, this method simplifies the anal-
ysis of inflation by bypassing some complex perturbation
problems, especially in extended gravity theories, such as
those involving non-minimal derivative coupling [58]. The
Hamilton–Jacobi formalism enables the reconstruction of
inflationary potentials beyond the slow-roll approximation.
Models such as tachyonic inflation [55], quasi-exponential
inflation [60], anisotropic inflation [66], and k-inflation [65],
among others, consistently produce predictions that align
well with the observational data.

The Hamilton–Jacobi method has been applied in non-
minimal coupling inflation to explore inflationary solutions
by specifying different scalar potentials [67]. However, this
method has not yet been used to investigate inflationary pre-
dictions in the scalar field theories with non-minimal cou-
pling. To address this gap, we analyze inflationary predic-
tions for non-minimal coupling in two formulations: metric
and Palatini, by giving the specific form of the Hubble param-
eter, and compare these predictions with the latest observa-
tions. This paper is structured in the following manner: Sect. 2
presents the cosmological background equations for the non-
minimal coupling theories. Section 3 applies the Hamilton–
Jacobi method to inflationary scenarios. Section 4 examines
the inflationary results using the specific form of the Hub-
ble parameter. Finally, Sect. 6 presents our conclusions. This
paper uses the metric signature (−,+,+,+), adopts natural
units with c = h̄ = 1, and establishes the reduced Planck
mass as Mpl = 1/

√
8πG = 1.

2 Background equations in the scalar field theory
with non-minimal coupling

In this section, we provide a brief review of the cosmological
background equations for the scalar field theory with non-
minimal coupling in both the metric and Palatini formalisms,
considering the Jordan and Einstein frames.

2.1 Solutions in the Jordan frame

The action in the Jordan frame includes an inflaton field,
φ, which is non-minimally coupled to the Ricci scalar R, a
function of the connection �, and is given by the following
expression:

SJ =
∫

d4x
√−g

[
1

2
f (φ)R(�) − 1

2
∂μφ∂μφ − V (φ)

]
,

(1)

where g denotes the determinant of the metric tensor gμν ,
and f (φ) ≡ 1 − ξφ2 is the coupling function [68]. Here,
ξ represents the non-minimal coupling constant, which is

limited to ξ ≤ 10−3 in chaotic models [69], and V (φ) is the
potential of the inflaton field.

In understanding this framework, it is essential to distin-
guish between the metric and Palatini formalisms, as they
treat the connection � differently. In the metric formalism,
the connection is the Levi-Civita connection, expressed as
� = �̃(gμν), which depends on the metric tensor. However,
in the Palatini case, gμν and � are treated as independent
variables, and � is determined by solving the field equations
derived from the variation of the action with respect to the
connection [17]:

�γ
μν =�̃γ

μν + δγ
μ∂ν ln

√
f (φ)

+ δγ
ν ∂μ ln

√
f (φ) − gμν∂

γ ln
√

f (φ). (2)

When f (φ) = 1 (i.e., in the minimal case where ξ = 0),
the scalar field theory with non-minimal coupling reduces
to general relativity, and the metric and Palatini formalisms
yield identical field equations. However, when non-minimal
coupling is introduced, the gravitational theories in two for-
malisms differ, as shown in Eq. (2).

To explore these dynamics, we use the spatially flat
Friedmann-Robertson-Walker (FRW) metric:

ds2 = −dt2 + a2(t)δi j dx
i dx j , (3)

to derive the background equations as follows:

3H2 = 1

(1 − α)

[
1

2
φ̇2 + V (φ) + 6ξHφφ̇ − 3σξαφ̇2

1 − α

]
,

(4)

φ̈ + 3H φ̇ + (1 − α)V,φ(φ)

β

+ ξφ
{
4V (φ) − [1 − (1 − σ)6ξ ] φ̇2

}
β

= 0, (5)

where a(t) is the scale factor, H ≡ ȧ/a is the Hubble param-
eter, α ≡ ξφ2, and β ≡ 1 − α [1 − (1 − σ)6ξ ]. The dot
notation indicates a derivative with respect to cosmic time t ,
while the subscript “, φ” signifies a derivative with respect
to the scalar field φ. The parameter σ distinguishes between
the metric (σ = 0) and Palatini (σ = 1) formulations.

2.2 Solutions in the Einstein frame

For convenience, we apply a conformal transformation to
convert the action (1) in the Jordan frame into the Einstein
frame:

ĝμν = f (φ)gμν. (6)
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Therefore, the action in the Einstein frame is given by

SE =
∫

d4x
√

−ĝ

{
1

2
R̂ − 1

2
∂̂μφ̂∂̂μφ̂ − V̂ (φ̂)

}
, (7)

where a hat denotes quantities in the Einstein frame. The
potential V̂ is connected to the potential V in the Jordan
frame by:

V̂
(
φ̂(φ)

)
= V (φ)

f 2(φ)
, (8)

and the new scalar field φ̂ is defined as:

dφ̂

dφ
=

√
β

1 − α
. (9)

From Eq. (6) we obtain the line element relation between the
Einstein and Jordan frames:

dŝ2 = f (φ)ds2 = −dt̂2 + â2(t)δi j dx
i dx j , (10)

which leads to

â(t̂) = √
f (φ)a(t), t̂ = √

f (φ)t. (11)

Thus, the Friedmann background equation and the scalar field
equation in the Einstein frame can be written as

3Ĥ2 = 1

2
φ̂′2 + V̂ (φ̂) (12)

and

φ̂′′ + 3Ĥ φ̂′ + V̂
,φ̂

(φ̂) = 0, (13)

respectively, the prime indicates differentiation with respect
to the new time t̂ . The quantities φ̂′ and Ĥ can be represented
in terms of the corresponding quantities in the Jordan frame:

φ̂′ = dφ̂

dφ

dφ

dt

dt

dt̂
=

√
β

(1 − α)
3
2

φ̇, (14)

Ĥ ≡ â′

â
= 1√

f

(
H + 1

2

ḟ

f

)
. (15)

3 Hamilton–Jacobi approach to inflationary processes

We will explore the dynamics of inflation with non-minimal
coupling by employing the Hamilton–Jacobi method [43] in
this part. This analysis will be conducted within both the
metric and Palatini formalisms.

3.1 Inflationary dynamics

To achieve approximately exponential expansion, the inflaton
field must satisfy the slow-roll approximation: |φ̇/φ| � H ,
|φ̈/φ̇| � H , and φ̇2 � V (φ). Under these conditions,
Eqs. (4) and (5) can be approximated as follows:

3(1 − α)H2 � V (φ), (16)

3H φ̇ � −4ξφV (φ) + (1 − α)V,φ(φ)

β
. (17)

By differentiating Eq. (16) with respect to φ and combining
it with Eq. (17), we derive:

φ̇ � −2 (1 − α)H(φ)

β
, (18)

where H(φ) ≡ ξφH(φ) + (1 − α) H,φ(φ). Substituting
Eq. (18) into Eq. (4), we obtain the Hamilton–Jacobi equa-
tion:

3 (1 − α) H2(φ) = V (φ) + 2 (1 − α)2 H2(φ)

β2

− 12ξφ(1 − α)H(φ)H(φ)

β
− 12ξσα (1 − α)H2(φ)

β2 .

(19)

From this equation, we can express the potential V (φ) as:

V (φ) = 3 (1 − α) H2(φ) − 2 (1 − α)2 H2(φ)

β2

+ 12ξφ(1 − α)H(φ)H(φ)

β
+ 12ξσα (1 − α)H2(φ)

β2 .

(20)

To effectively characterize the inflationary process, we intro-
duce two slow-roll parameters as: [44]

ε ≡ − Ḣ

H2 = 2(1 − α)H,φ(φ)H(φ)

β2H2(φ)
, (21)

η ≡ −d ln H,φ

d ln a
= −H,φφφ̇

HH,φ

= 2(1 − α)H,φφH(φ)

βHH,φ

(22)

In deriving Eq. (21), we used the relations Ḣ = φ̇H,φ and
Eq. (18). During slow-roll inflation, the slow-roll parameter
ε satisfies the condition ε, η � 1, and inflation ends when
ε(φend) = 1 or η(φend) = 1. By utilizing the relation ȧ =
φ̇a,φ and integrating, we obtain the scale factor:

a(t) = ai exp

{
−

∫
βH(φ)

2(1 − α)H(φ)
dφ

}
, (23)
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where ai is the constant of integration. The e-folding number
during inflation is given by:

N∗ ≡
∫ tend

t∗
Hdt =

∫ φend

φ∗

H(φ)

φ̇
dφ, (24)

where the subscripts “∗” and “end” indicate two specific
moments: the exit of the pivot scale from the Hubble horizon
and the end of inflation.

3.2 Attractor behavior

Inflationary models must exhibit attractor behavior, meaning
that solutions with different initial conditions converge to a
unique solution [43]. This property ensures that these mod-
els possess genuine predictive power. The Hamilton–Jacobi
method is particularly useful for investigating whether an
inflationary model has such an attractor solution. To ana-
lyze this, we decompose the Hubble parameter H(φ) into
a background component H0(φ) and a linear perturbation
component δH(φ). A model is considered to exhibit attrac-
tor behavior if the linear perturbation δH(φ) diminishes over
time [49].

By replacing H(φ) = H0(φ) + δH(φ) into Eq. (19) and
linearizing, we get:

δH(φ) � 2(1 − α) [(β − 6αξ)H0(φ) − 3ξφβH0(φ)]

4ξφH0(φ)(β + 3αξ) + 3βH0(φ)(β + 2αξ)
δH,φ,

(25)

whereH0(φ) = ξφH0(φ)+(1−α)H0,φ(φ). Integrating this
differential equation yields:

δH

δH∗
= exp

{∫ φ

φ∗

4ξφH0(β + 3αξ) + 3βH0(β + 2αξ)

2(1 − α) [(β − 6αξ)H0 − 3ξφβH0]
dφ

}
,

(26)

where δH∗ represents the initial value of the perturbation at
φ = φ∗. If a specific form of H(φ) is given, Eq.(26) can be
used to analyze the behavior of the perturbation δH(φ).

3.3 Cosmological perturbations and observational
quantities

Inflation predicts a power spectrum for curvature perturba-
tions that is approximately scale-invariant. In the case of a
scalar field with non-minimal coupling to gravity, the scalar
and tensor power spectra are invariant under the conformal
transformation from the Jordan frame to the Einstein frame
[70–75]. Therefore, we can express the scalar and tensor

power spectra as:

Ps = P̂s = Ĥ4

4π2φ̂′2 =
[
(1 − α)H − ξφφ̇

]4

4π2φ̇2 (1 − α)3 β
, (27)

and

PT = P̂T = 2Ĥ2

π2 = 2
[
(1 − α)H − ξφφ̇

]2

π2 (1 − α)3 , (28)

respectively. For the last step of the two equations above, we
used Eqs. (14) and (15).

The scalar spectral index is defined as

ns ≡ 1 +
(
d ln Ps

d ln k

)
k=aH

≈ 1 + φ̇Ps,φ(φ)

HPs(φ)
, (29)

where k is the wave number. In deriving Eq. (29), we used
the relations d ln k/(dt) = d ln(aH)/(dt) = (1−ε)H ≈ H
and dPs/(dt) = φ̇Ps,φ(φ).

Combining Eqs. (28) and (27), we obtain the tensor-to-
scalar ratio as

r ≡ PT

Ps
= 8φ̇2β[

(1 − α)H − ξφφ̇
]2 , (30)

4 Concrete applications

In this section, we apply a specific form of H(φ) to derive
concrete results for an inflaton field with non-minimal cou-
pling in both formulations.

4.1 Inflationary dynamics

We begin by examining the Hubble parameter expressed as a
classical power-law function of the scalar field, represented
by:

H(φ) = λφn, (31)

where λ and n are constants. Using the Hubble parame-
ter (31), we can rewrite Eq. (18) as

φ̇ = −2λφn−1(1 − α) (α + n − nα)

β
. (32)

Similarly, using Eq. (20), the potential can be derived as:

V (φ) = λ2(1 − α)

[
3φ2n − 2φ2n−2(1 − α)(α + n − nα)2

β2
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+ 12ξφ2n(α + n − nα)

β
+ 12σξ2φ2n(α + n − nα)2

β2

]
.

(33)

Figure 1 displays the potential variations with the scalar
field during inflation for various values of ξ and n in two
formalisms. The results indicate that the potential steepens
as |ξ | or n increases.

The slow-roll parameters ε and η can be written as

ε = 2n(1 − α) (α + n − nα)

φ2β
(34)

and

η = 2(n − 1)(1 − α) (α + n − nα)

φ2β
, (35)

respectively. From Eqs. (34) and (35), it can be seen that ε

will reach 1 before η. Therefore, the inflation process will
end when ε = 1, at which point the scalar field takes the
following value:

φend = 2

√
n2

1 + 2nξ(2n − 1) + √
1 − 4nξ [1 + nξ(12σ − 13)]

.

(36)

These results are consistent with the minimal coupling case in
Ref. [58] when ξ = 0. Note that if we consider the strong cou-
pling case |α| 
 1, the slow-roll parameter will be approxi-
mated as:

ε ≈ 2nξ (1 − n)

1 − (1 − σ)6ξ
. (37)

In this scenario, the slow-roll parameter becomes constant,
dependent only on ξ and n, preventing inflation from either
occurring or ending the analysis is similar for η. Therefore,
we exclude the strong coupling case from further considera-
tion. The e-folding number, N∗, is given by:

N∗ =
∫ φ∗

φend

φβ

2 (1 − α) (α + n − nα)
dφ. (38)

4.2 Attractor behavior

To investigate the attractor behavior, we substitute the Hub-
ble function (31) into the perturbative expression (26). Tak-
ing ξ = −0.1 and n = 1 as an example, we can get the
representation of perturbation in the metric formulation as:

δH

δH∗
= exp

{[
5

2
ln

(
10 + φ2

)
+ ln

(
125 + 50φ2 + 6φ4

)]∣∣∣∣
φ

φ∗

}

(39)

From Eq. (32), we see that the inflaton field reduces as time
progresses. The value of φ∗, determined from Eq. (38), is
based on the chosen value of N∗. Consequently, the exponen-
tial term of Eq. (39) decreases with time and approaches zero
rapidly. As a result, the perturbed part of the Hubble param-
eter vanishes, indicating attractor behavior of the model.

Figure 2 displays the results of the perturbation for various
parameters in both the metric (Fig. 2a) and Palatini (Fig. 2b)
formalisms. It is evident from the figure that the perturbation
converges to a small value over time, demonstrating attrac-
tor behavior. However, larger values of |ξ | lead to a slower
convergence to zero. Additionally, in the Palatini formalism,
the perturbation decreases more slowly with increasing |ξ |
compared to the metric formalism.

4.3 Inflationary predictions

In this subsection, we will conduct a numerical analysis of
the inflationary predictions related to the inflaton field with
non-minimal coupling. Based on the expressions in Eqs. (31)
and (32), we can eliminate the parameter λ from Eqs. (29)
and (30). Consequently, by providing the values of φ∗ (or
N∗), we can calculate ns and r , given the values of ξ and n.

In Fig. 3, we present the predicted values of r and ns for
different parameter settings in the metric (Fig. 3a) and Pala-
tini (Fig. 3b) formalisms. From Fig. 3a, it is clear that as |ξ |
increases, the corresponding value of r decreases for a fixed
n. The predicted results converge when |ξ | > 1, with this
effect becoming more pronounced as n increases. However,
as n increases, both r and ns increase for a fixed ξ . All cases
with n = 1 or ξ = −0.1 are consistent with the BICEP/Keck
data at the 68% CL. For the case of n = 0.98 with ξ = −1,
which is consistent with the BICEP/Keck data for large val-
ues of N∗, specifically when N∗ approaches 70. Conversely,
the cases of n = 1.02 with ξ = −1 and ξ = −10 are in good
agreement with the BICEP/Keck data when N∗ is closer to
50. In contrast, the minimal coupling case1 (ξ = 0) and the
case of n = 0.98 with ξ = −10 are ruled out by the observa-
tions. These results suggest that the Hamilton–Jacobi method
applied to a non-minimally coupled inflaton field model bet-
ter fits observational data compared to the minimally coupled
case.

However, for the Palatini formalism presented in Fig. 3b,
the predicted values of r and ns exhibit greater sensitivity to
changes in |ξ | and n compared to the metric case. In contrast
to the metric formalism, the value of r tends to decline with
increasing ξ in the Palatini formalism. All the n values we
consider for ξ = −0.01 and ξ = −0.1 are consistent with
the BICEP/Keck data at the 68% CL. While for ξ = −0.5,
the cases of n = 0.99 and n = 1.01 are excluded by the

1 Note that for ξ = 0 we only choose the case of n = 1, due to the fact
that the deviation of 0.02 is negligible in the minimal case.
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Fig. 1 Plot of the variation of V (φ)/λ2 with φ from Eq. (33) for dif-
ferent parameter values. a Metric case: ξ = 0, n = 1: (black, solid);
ξ = −0.1, n = 1: (orange, solid); ξ = −1, n = 0.98: (red, dot-dashed);
ξ = −1, n = 1: (green, solid); ξ = −1, n = 1.02: (purple, dashed);

ξ = −10, n = 1: (blue, solid). b Palatini case: ξ = 0, n = 1: (black,
solid); ξ = −0.05, n = 1: (orange, solid); ξ = −0.1, n = 0.99: (red,
dot-dashed); ξ = −0.1, n = 1: (green, solid); ξ = −0.1, n = 1.01:
(purple, dashed); ξ = −0.5, n = 1: (blue, solid)

Fig. 2 Plot of the variation of δH(φ)/δH(φ∗) with φ in the metric (a) and Palatini (b) cases for different parameter values: ξ = 0, n = 1 (black);
ξ = −0.01, n = 1 (blue); ξ = −0.1, n = 1 (red). The value of φ∗ is fixed by setting N∗ = 60

Fig. 3 The predicted values of r and ns for the non-minimally cou-
pled inflaton field with various N∗ are shown. (a) Metric case: The
dashed, solid, and dotted lines correspond to ξ = −0.1, −1, and −10,
respectively. The blue, orange, and red lines correspond to n = 0.98,
1, and 1.02, respectively. (b) Palatini case: The dashed, solid, and dot-
ted lines correspond to ξ = −0.05, −0.1, and −0.5, respectively. The
blue, orange, and red lines correspond to n = 0.99, 1, and 1.01, respec-

tively. The black dot-dashed line represents n = 1 with ξ = 0, and the
small and large dots indicate N∗ = 50 and 70, respectively. The green
and blue shaded regions depict the constraints on ns and r at the pivot
scale k∗ = 0.002 Mpc−1 from the Planck 2018 CMB observations [12]
and the BICEP/Keck survey [13], respectively. These regions represent
the 68% and 95% CL contours, shown with dark and light shading,
respectively
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observations, with the exception of the case when n = 1.
This indicates that values of n closer to 1 and smaller |ξ |
are required within the Palatini case as opposed to the metric
case for better agreement with observational data.

5 Reheating

At the end of inflation, the universe transitions into the reheat-
ing phase, during which the oscillating inflaton field transfers
its energy to other particles through decay and scattering pro-
cesses [76–78]. During reheating, the decay of the inflaton
and subsequent interactions are the pivotal steps in setting
the stage for scenarios such as leptogenesis. In this section,
we briefly analyze the perturbative decay of the inflaton into
fermion within the non-minimal coupling inflation model.

The Lagrangian of the inflaton field couples to the fermion
one in the Einstein frame is given by [79–81]:

LE
int = − y√

f
φ(φ̂) ˆ̄ψψ̂, (40)

where y is the Yukawa coupling constant in the Jordan frame
and ψ̂ ≡ ψ f −3/4 is the fermion field.

5.1 Ihe metric case

During reheating, we consider that the value of the inflaton
field is much smaller than 1/

√|ξ |. Therefore, the interaction
Lagrangian in the Einstein frame is given by [82]

LE
int ≈ −yeffφ̂

ˆ̄ψψ̂, (41)

where yeff = y

√ √
2√

3|ξ |� and � denotes the amplitude of the

background inflaton field oscillations.
For perturbation theory to remain valid, yeff < 1 must

hold. As |ξ | increases, yeff decreases, ensuring perturbative
validity for y < 1. When |ξ | is small, perturbation theory
remains valid with a smaller y.

The decay width for the process φ̂ → ˆ̄ψψ̂ in the Einstein
frame is then given by:

�
φ̂→ ˆ̄ψψ̂

� y2
eff

8π
m

φ̂
, (42)

where m
φ̂

≡ V̂
,φ̂φ̂

is the inflaton mass. Using the Friedmann

equation and radiation energy density ρ = (π2g∗/30)T 4
reh,

we obtain the reheating temperature:

Treh � 1.41

(
�

φ̂→ ˆ̄ψψ̂

g∗

)1/4

, (43)

where g∗ = 106.5 is the effective number of relativistic
degrees of freedom at reheating. Taking the case of n = 1 as
an example, we adopt y = 10−3 and ξ > −25 (derived from

relation (??)), and substitute these into Eq. (43) to obtain the
range of reheating temperatures, Treh > 3.4 × 1010GeV.2

Similarly, for n = 1.02, the reheating temperature is found
to be Treh > 6.3 × 1010GeV. However, for n = 0.98, obser-
vational consistency (see Fig. 3a) requires ξ > −1 satisfy-
ing the observation (see Fig. 3a), leading to a corresponding
reheating temperature range of Treh > 3.2 × 1011GeV. The
derived reheating temperature satisfies both the Big Bang
Nucleosynthesis (BBN) limit, Treh > 4MeV [83], and the
electroweak scale limit, Treh > 100GeV.

5.2 The Palatini case

Similarly, for the Palatini case, we also consider the region:
φ < 1/

√|ξ |. Consequently, we have φ̂ ≈ φ, as derived from
Eq. (9). The interaction Lagrangian in this case reduces to
the standard form in the general relativity frame, i.e., Lint =
−yφψ̄ψ . For perturbation theory to remain valid, it is suffi-
cient to have y < 1. In our calculations, we choose y = 10−3

for the cases n = 0.99, 1 and 1.01, which gives the corre-
sponding reheating temperatures of Treh = 5.19×1011GeV,
5.17 × 1011GeV and 5.15 × 1011GeV, respectively.

In both the metric and Palatini formalisms, the calculated
reheating temperatures are sufficiently high to support suc-
cessful leptogenesis scenarios. These constraints on ξ are
consistent with the inflationary predictions in our model.

6 Results

In this work, we investigated inflationary scenarios involv-
ing a non-minimally coupled inflaton field, characterized by
a coupling function, f (φ) = 1 − ξφ2, using the Hamilton–
Jacobi approach. We compared the behavior of this non-
minimally coupled field under two different gravitational
formalisms: metric and Palatini. By applying the Hamilton–
Jacobi method, we reformulated the background equations
in terms of the scalar field as a function of time, allowing
for a natural analysis of the inflationary process based on
a given form of the Hubble parameter. Using a power-law
form of the Hubble parameter, H(φ) = λφn , as an example,
we found that strong coupling scenarios are unsuitable for
inflation with non-minimal coupling, as inflation either fails
to occur or ceases prematurely. In terms of attractor behav-
ior, we observed that the linear perturbation of the Hubble
parameter diminishes over time in both formalisms, satisfy-
ing the attractor condition. However, as the coupling constant
|ξ | increases, the perturbation decays more slowly over time.

2 The model parameter λ is determined by the power spectrum ampli-
tude of curvature perturbations, ln(1010As) = 3.044 ± 0.014 [12], and
by taking the e-folding number N∗ = 60, we can approximately obtain
the relation between λ and ξ .
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Using the latest Planck 2018 and BICEP/Keck data, we
compared the inflationary predictions for both the metric and
Palatini cases. Our analysis shows that the inflationary pre-
dictions based on the Hamilton–Jacobi method are incon-
sistent with the observations for the minimal coupling case.
However, when non-minimal coupling is introduced, the pre-
dictions fit well with the observations in both formalisms.
Notably, the tensor to scalar ratio r is suppressed as |ξ |
increases in both formalisms, with convergence occurring
for large |ξ | (|ξ | > 1) in the metric formalism. Additionally,
for fixed ξ , the tensor to scalar ratio r and the spectral index
ns increase as n increase in both formalisms. Furthermore,
the predicted r and ns are more sensitive to variations in ξ

and n, leading to the requirement of values of n closer to
1 and smaller |ξ | in the context of the Palatini formulation
relative to the metric formulation, for better agreement with
observational data.

Finally, we analyzed the decay of inflaton perturbations
into fermion following the end of inflation. Within the param-
eter space allowed by our model, we demonstrated that this
process could yield a sufficiently high reheating temper-
ature to support successful leptogenesis. In summary, the
Hamilton–Jacobi method effectively analyzes inflationary
models involving inflaton fields with non-minimal coupling.
Both the metric and Palatini formulations yield predictions
that are consistent with recent observations, though notable
differences in inflationary behavior exist between the two
formalisms.

Acknowledgements The authors would like to thank the referee for
providing useful suggestions to promote the quality of this work, and
thank Puxun Wu for helpful discussions. This work was supported in
part by the National Natural Science Foundation of China under Grants
no. 11973025.

Data Availability Statement This manuscript has no associated data.
[Authors’ comment: Data sharing not applicable to this article as no
datasets were generated or analysed during the current study].

Code Availability Statement The manuscript has no associated
code/software. [Author’s comment: Code/Software sharing not applica-
ble to this article as no code/software was generated or analysed during
the current study].

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. A. Starobinsky, Phys. Lett. B 91, 99 (1980). https://doi.org/10.
1016/0370-2693(80)90670-X

2. A. Albrecht, P.J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
https://doi.org/10.1103/PhysRevLett.48.1220

3. A.H. Guth, Phys. Rev. D 23, 347 (1981). https://doi.org/10.1103/
PhysRevD.23.347

4. A. Linde, Phys. Lett. B 108, 389 (1982). https://doi.org/10.1016/
0370-2693(82)91219-9

5. V.F. Mukhanov, G. Chibisov, ZhETF Pisma Redaktsiiu 33, 549
(1981). https://ui.adsabs.harvard.edu/abs/1981ZhPmR..33..549M

6. A.H. Guth, S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982). https://doi.
org/10.1103/PhysRevLett.49.1110

7. S. Hawking, Phys. Lett. B 115, 295 (1982). https://doi.org/10.1016/
0370-2693(82)90373-2

8. A. Starobinsky, Phys. Lett. B 117, 175 (1982). https://doi.org/10.
1016/0370-2693(82)90541-X

9. J.M. Bardeen, P.J. Steinhardt, M.S. Turner, Phys. Rev. D 28, 679
(1983). https://doi.org/10.1103/PhysRevD.28.679

10. G.F. Smoot et al., Astrophys. J. Lett. 396, L1 (1992). https://doi.
org/10.1086/186504

11. D.N. Spergel et al., (WMAP Collaboration), Astrophys. J. Suppl.
Ser. 148, 175 (2003). https://doi.org/10.1086/377226

12. Y. Akrami et al., (Planck Collaboration), Astron. Astrophys. 641,
A10 (2020). https://doi.org/10.1051/0004-6361/201833887

13. P.A.R. Ade et al., (BICEP/Keck Collaboration), Phys. Rev.
Lett. 127, 151301 (2021). https://doi.org/10.1103/PhysRevLett.
127.151301

14. P.A.R. Ade et al., (Planck Collaboration), Astron. Astrophys. 571,
A22 (2014). https://doi.org/10.1051/0004-6361/201321569

15. S. Tsujikawa, J. Ohashi, S. Kuroyanagi, A. De Felice, Phys. Rev. D
88, 023529 (2013). https://doi.org/10.1103/PhysRevD.88.023529

16. C. Germani, A. Kehagias, Phys. Rev. Lett. 105, 011302 (2010).
https://doi.org/10.1103/PhysRevLett.105.011302

17. F. Bauer, D.A. Demir, Phys. Lett. B 665, 222 (2008). https://doi.
org/10.1016/j.physletb.2008.06.014

18. F. Bauer, D.A. Demir, Phys. Lett. B 698, 425 (2011). https://doi.
org/10.1016/j.physletb.2011.03.042

19. N. Tamanini, C.R. Contaldi, Phys. Rev. D 83, 044018 (2011).
https://doi.org/10.1103/PhysRevD.83.044018

20. T. Tenkanen, J. Cosmol. Astropart. Phys. 2017, 001 (2017). https://
doi.org/10.1088/1475-7516/2017/12/001

21. L. Järv, A. Racioppi, T. Tenkanen, Phys. Rev. D 97, 083513 (2018).
https://doi.org/10.1103/PhysRevD.97.083513

22. S. Räsänen, Open J. Astrophys. 2 (2019). https://doi.org/10.21105/
astro.1811.09514

23. P. Carrilho, D. Mulryne, J. Ronayne, T. Tenkanen, J. Cos-
mol. Astropart. Phys. 2018, 032 (2018). https://doi.org/10.1088/
1475-7516/2018/06/032

24. J.P.B. Almeida, N. Bernal, J. Rubio, T. Tenkanen, J. Cos-
mol. Astropart. Phys. 2019, 012 (2019). https://doi.org/10.1088/
1475-7516/2019/03/012

25. T. Takahashi, T. Tenkanen, J. Cosmol. Astropart. Phys. 2019, 035
(2019). https://doi.org/10.1088/1475-7516/2019/04/035

26. I. Antoniadis, A. Karam, A. Lykkas, T. Pappas, K. Tamvakis, J. Cos-
mol. Astropart. Phys. 2019, 005 (2019). https://doi.org/10.1088/
1475-7516/2019/03/005

27. T. Tenkanen, Phys. Rev. D 99, 063528 (2019). https://doi.org/10.
1103/PhysRevD.99.063528

28. T. Tenkanen, L. Visinelli, J. Cosmol. Astropart. Phys. 2019, 033
(2019). https://doi.org/10.1088/1475-7516/2019/08/033

29. T. Tenkanen, Phys. Rev. D 101, 063517 (2020). https://doi.org/10.
1103/PhysRevD.101.063517

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://ui.adsabs.harvard.edu/abs/1981ZhPmR..33..549M
https://doi.org/10.1103/PhysRevLett.49.1110
https://doi.org/10.1103/PhysRevLett.49.1110
https://doi.org/10.1016/0370-2693(82)90373-2
https://doi.org/10.1016/0370-2693(82)90373-2
https://doi.org/10.1016/0370-2693(82)90541-X
https://doi.org/10.1016/0370-2693(82)90541-X
https://doi.org/10.1103/PhysRevD.28.679
https://doi.org/10.1086/186504
https://doi.org/10.1086/186504
https://doi.org/10.1086/377226
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1103/PhysRevLett.127.151301
https://doi.org/10.1103/PhysRevLett.127.151301
https://doi.org/10.1051/0004-6361/201321569
https://doi.org/10.1103/PhysRevD.88.023529
https://doi.org/10.1103/PhysRevLett.105.011302
https://doi.org/10.1016/j.physletb.2008.06.014
https://doi.org/10.1016/j.physletb.2008.06.014
https://doi.org/10.1016/j.physletb.2011.03.042
https://doi.org/10.1016/j.physletb.2011.03.042
https://doi.org/10.1103/PhysRevD.83.044018
https://doi.org/10.1088/1475-7516/2017/12/001
https://doi.org/10.1088/1475-7516/2017/12/001
https://doi.org/10.1103/PhysRevD.97.083513
https://doi.org/10.21105/astro.1811.09514
https://doi.org/10.21105/astro.1811.09514
https://doi.org/10.1088/1475-7516/2018/06/032
https://doi.org/10.1088/1475-7516/2018/06/032
https://doi.org/10.1088/1475-7516/2019/03/012
https://doi.org/10.1088/1475-7516/2019/03/012
https://doi.org/10.1088/1475-7516/2019/04/035
https://doi.org/10.1088/1475-7516/2019/03/005
https://doi.org/10.1088/1475-7516/2019/03/005
https://doi.org/10.1103/PhysRevD.99.063528
https://doi.org/10.1103/PhysRevD.99.063528
https://doi.org/10.1088/1475-7516/2019/08/033
https://doi.org/10.1103/PhysRevD.101.063517
https://doi.org/10.1103/PhysRevD.101.063517


Eur. Phys. J. C            (2025) 85:57 Page 9 of 9    57 

30. N. Bostan, Commun. Theor. Phys. 72, 085401 (2020). https://doi.
org/10.1088/1572-9494/ab7ecb

31. I.D. Gialamas, A.B. Lahanas, Phys. Rev. D 101, 084007 (2020).
https://doi.org/10.1103/PhysRevD.101.084007

32. P. Wang, P. Wu, H. Yu, Eur. Phys. J. C 72 (2012). https://doi.org/
10.1140/epjc/s10052-012-2245-1

33. Y. Fan, P. Wu, H. Yu, Phys. Lett. B 746, 230 (2015). https://doi.
org/10.1016/j.physletb.2015.05.005

34. Y. Fan, P. Wu, H. Yu, Phys. Rev. D 92, 083529 (2015). https://doi.
org/10.1103/PhysRevD.92.083529

35. C. Fu, P. Wu, H. Yu, Phys. Rev. D 96, 103542 (2017). https://doi.
org/10.1103/PhysRevD.96.103542

36. F.-Y. Zhang, Phys. Dark Universe 39, 101169 (2023). https://doi.
org/10.1016/j.dark.2023.101169

37. C. Burgess, H.M. Lee, M. Trott, J. High Energy Phys. 2009, 103
(2009). https://doi.org/10.1088/1126-6708/2009/09/103

38. F. Bezrukov, A. Magnin, M. Shaposhnikov, S. Sibiryakov,
J. High Energy Phys. 2011 (2011). https://doi.org/10.1007/
jhep01(2011)016

39. M. Atkins, X. Calmet, Phys. Lett. B 697, 37 (2011). https://doi.
org/10.1016/j.physletb.2011.01.028

40. R.N. Lerner, J. McDonald, J. Cosmol. Astropart. Phys. 2010, 015
(2010). https://doi.org/10.1088/1475-7516/2010/04/015

41. J.L.F. Barbón, J.R. Espinosa, Phys. Rev. D 79, 081302 (2009).
https://doi.org/10.1103/PhysRevD.79.081302

42. S. Räsänen, P. Wahlman, J. Cosmol. Astropart. Phys. 2017, 047–
047 (2017). https://doi.org/10.1088/1475-7516/2017/11/047

43. D.S. Salopek, J.R. Bond, Phys. Rev. D 42, 3936 (1990). https://doi.
org/10.1103/PhysRevD.42.3936

44. A.R, Liddle, D.H. Lyth, “Inflation”, in Cosmological Inflation and
Large-Scale Structure (Cambridge University Press, 2000) p. 36–
57

45. A.G. Muslimov, Class. Quantum Gravity 7, 231 (1990). https://doi.
org/10.1088/0264-9381/7/2/015

46. J.E. Lidsey, Phys. Lett. B 273, 42 (1991). https://doi.org/10.1016/
0370-2693(91)90550-A

47. J.E. Lidsey, Class. Quantum Gravity 8, 923 (1991). https://doi.org/
10.1088/0264-9381/8/5/016

48. R.M. Hawkins, J.E. Lidsey, Phys. Rev. D 63, 041301 (2001).
https://doi.org/10.1103/PhysRevD.63.041301

49. A.R. Liddle, P. Parsons, J.D. Barrow, Phys. Rev. D 50, 7222 (1994).
https://doi.org/10.1103/PhysRevD.50.7222

50. S. Koh, S.P. Kim, D.J. Song, Phys. Rev. D 71, 123511 (2005).
https://doi.org/10.1103/PhysRevD.71.123511

51. W.H. Kinney, Phys. Rev. D 56, 2002 (1997). https://doi.org/10.
1103/PhysRevD.56.2002

52. Z.-K. Guo, Y.-S. Piao, R.-G. Cai, Y.-Z. Zhang, Phys. Rev. D 68,
043508 (2003). https://doi.org/10.1103/PhysRevD.68.043508

53. S. del Campo, J. Cosmol. Astropart. Phys. 2012, 005 (2012). https://
doi.org/10.1088/1475-7516/2012/12/005

54. B.K. Pal, S. Pal, B. Basu, J. Cosmol. Astropart. Phys. 2012, 009
(2012). https://doi.org/10.1088/1475-7516/2012/04/009

55. A. Aghamohammadi, A. Mohammadi, T. Golanbari, K. Saaidi,
Phys. Rev. D 90, 084028 (2014). https://doi.org/10.1103/
PhysRevD.90.084028

56. J. Villanueva, J. Cosmol. Astropart. Phys. 2015, 045 (2015). https://
doi.org/10.1088/1475-7516/2015/07/045

57. J.R. Villanueva, E. Gallo, Eur. Phys. J. C 75 (2015). https://doi.org/
10.1140/epjc/s10052-015-3464-z

58. H. Sheikhahmadi, E.N. Saridakis, A. Aghamohammadi, K. Saaidi,
J. Cosmol. Astropart. Phys. 2016, 021 (2016). https://doi.org/10.
1088/1475-7516/2016/10/021

59. K. Sayar, A. Mohammadi, L. Akhtari, K. Saaidi, Phys. Rev. D 95,
023501 (2017). https://doi.org/10.1103/PhysRevD.95.023501

60. N. Videla, Eur. Phys. J. C 77, 142 (2017). https://doi.org/10.1140/
epjc/s10052-017-4711-2

61. G. Álvarez, L. Martínez Alonso, E. Medina, J.L. Vázquez, J. Math.
Phys. 61, 043501 (2020)

62. A. Achúcarro, S. Céspedes, A.-C. Davis, G.A. Palma, Phys. Rev.
Lett. 122, 191301 (2019). https://doi.org/10.1103/PhysRevLett.
122.191301

63. E. Medina, L.M. Alonso, Phys. Rev. D 102, 103517 (2020). https://
doi.org/10.1103/PhysRevD.102.103517

64. P.A.R. Ade et al., (Planck Collaboration), Astron. Astrophys. 594,
A20 (2016). https://doi.org/10.1051/0004-6361/201525898

65. R.-J. Yang, M. Liu, Phys. Dark Universe 46, 101560 (2024). https://
doi.org/10.1016/j.dark.2024.101560

66. F. Cicciarella, J. Mabillard, M. Pieroni, A. Ricciardone, J. Cos-
mol. Astropart. Phys. 2019, 044 (2019). https://doi.org/10.1088/
1475-7516/2019/09/044

67. S. Koh, S.P. Kim, D.J. Song, Phys. Rev. D 72, 043523 (2005).
https://doi.org/10.1103/PhysRevD.72.043523

68. F. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659, 703 (2008).
https://doi.org/10.1016/j.physletb.2007.11.072

69. T. Futamase, K.-I. Maeda, Phys. Rev. D 39, 399 (1989). https://
doi.org/10.1103/PhysRevD.39.399

70. J.M. Bardeen, Phys. Rev. D 22, 1882 (1980). https://doi.org/10.
1103/PhysRevD.22.1882

71. H. Kodama, M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984).
https://doi.org/10.1143/PTPS.78.1

72. N. Makino, M. Sasaki, Prog. Theor. Phys. 86, 103 (1991). https://
doi.org/10.1143/ptp/86.1.103

73. V. Mukhanov, H. Feldman, R. Brandenberger, Phys. Rep. 215, 203
(1992). https://doi.org/10.1016/0370-1573(92)90044-Z

74. R. Fakir, S. Habib, W. Unruh, Astrophys. J. 394, 396 (1992). https://
doi.org/10.1086/171591

75. E. Komatsu, T. Futamase, Phys. Rev. D 59, 064029 (1999). https://
doi.org/10.1103/PhysRevD.59.064029

76. A. Dolgov, A. Linde, Phys. Lett. B 116, 329 (1982). https://doi.
org/10.1016/0370-2693(82)90292-1

77. L. Abbott, E. Farhi, M.B. Wise, Phys. Lett. B 117, 29 (1982).
https://doi.org/10.1016/0370-2693(82)90867-X

78. L. Kofman, A. Linde, A.A. Starobinsky, Phys. Rev. D 56, 3258
(1997). https://doi.org/10.1103/PhysRevD.56.3258

79. D.G. Figueroa, J.-M. Alimi, A. Fuozfa, in AIP Conference Proceed-
ings (AIP, 2010) p. 578–587. https://doi.org/10.1063/1.3462688

80. J. García-Bellido, D.G. Figueroa, J. Rubio, Phys. Rev. D 79,
(2009).https://doi.org/10.1103/physrevd.79.063531

81. J. Rubio, Front. Astron. Space Sci. 5 (2019). https://doi.org/10.
3389/fspas.2018.00050

82. F. Bezrukov, D. Gorbunov, M. Shaposhnikov, J. Cosmol. Astropart.
Phys. 2009, 029 (2009). https://doi.org/10.1088/1475-7516/2009/
06/029

83. G. Steigman, Ann. Rev. Nucl. Part. Sci. 57, 463 (2007). https://doi.
org/10.1146/annurev.nucl.56.080805.140437

123

https://doi.org/10.1088/1572-9494/ab7ecb
https://doi.org/10.1088/1572-9494/ab7ecb
https://doi.org/10.1103/PhysRevD.101.084007
https://doi.org/10.1140/epjc/s10052-012-2245-1
https://doi.org/10.1140/epjc/s10052-012-2245-1
https://doi.org/10.1016/j.physletb.2015.05.005
https://doi.org/10.1016/j.physletb.2015.05.005
https://doi.org/10.1103/PhysRevD.92.083529
https://doi.org/10.1103/PhysRevD.92.083529
https://doi.org/10.1103/PhysRevD.96.103542
https://doi.org/10.1103/PhysRevD.96.103542
https://doi.org/10.1016/j.dark.2023.101169
https://doi.org/10.1016/j.dark.2023.101169
https://doi.org/10.1088/1126-6708/2009/09/103
https://doi.org/10.1007/jhep01(2011)016
https://doi.org/10.1007/jhep01(2011)016
https://doi.org/10.1016/j.physletb.2011.01.028
https://doi.org/10.1016/j.physletb.2011.01.028
https://doi.org/10.1088/1475-7516/2010/04/015
https://doi.org/10.1103/PhysRevD.79.081302
https://doi.org/10.1088/1475-7516/2017/11/047
https://doi.org/10.1103/PhysRevD.42.3936
https://doi.org/10.1103/PhysRevD.42.3936
https://doi.org/10.1088/0264-9381/7/2/015
https://doi.org/10.1088/0264-9381/7/2/015
https://doi.org/10.1016/0370-2693(91)90550-A
https://doi.org/10.1016/0370-2693(91)90550-A
https://doi.org/10.1088/0264-9381/8/5/016
https://doi.org/10.1088/0264-9381/8/5/016
https://doi.org/10.1103/PhysRevD.63.041301
https://doi.org/10.1103/PhysRevD.50.7222
https://doi.org/10.1103/PhysRevD.71.123511
https://doi.org/10.1103/PhysRevD.56.2002
https://doi.org/10.1103/PhysRevD.56.2002
https://doi.org/10.1103/PhysRevD.68.043508
https://doi.org/10.1088/1475-7516/2012/12/005
https://doi.org/10.1088/1475-7516/2012/12/005
https://doi.org/10.1088/1475-7516/2012/04/009
https://doi.org/10.1103/PhysRevD.90.084028
https://doi.org/10.1103/PhysRevD.90.084028
https://doi.org/10.1088/1475-7516/2015/07/045
https://doi.org/10.1088/1475-7516/2015/07/045
https://doi.org/10.1140/epjc/s10052-015-3464-z
https://doi.org/10.1140/epjc/s10052-015-3464-z
https://doi.org/10.1088/1475-7516/2016/10/021
https://doi.org/10.1088/1475-7516/2016/10/021
https://doi.org/10.1103/PhysRevD.95.023501
https://doi.org/10.1140/epjc/s10052-017-4711-2
https://doi.org/10.1140/epjc/s10052-017-4711-2
https://doi.org/10.1103/PhysRevLett.122.191301
https://doi.org/10.1103/PhysRevLett.122.191301
https://doi.org/10.1103/PhysRevD.102.103517
https://doi.org/10.1103/PhysRevD.102.103517
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1016/j.dark.2024.101560
https://doi.org/10.1016/j.dark.2024.101560
https://doi.org/10.1088/1475-7516/2019/09/044
https://doi.org/10.1088/1475-7516/2019/09/044
https://doi.org/10.1103/PhysRevD.72.043523
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1103/PhysRevD.39.399
https://doi.org/10.1103/PhysRevD.39.399
https://doi.org/10.1103/PhysRevD.22.1882
https://doi.org/10.1103/PhysRevD.22.1882
https://doi.org/10.1143/PTPS.78.1
https://doi.org/10.1143/ptp/86.1.103
https://doi.org/10.1143/ptp/86.1.103
https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1086/171591
https://doi.org/10.1086/171591
https://doi.org/10.1103/PhysRevD.59.064029
https://doi.org/10.1103/PhysRevD.59.064029
https://doi.org/10.1016/0370-2693(82)90292-1
https://doi.org/10.1016/0370-2693(82)90292-1
https://doi.org/10.1016/0370-2693(82)90867-X
https://doi.org/10.1103/PhysRevD.56.3258
https://doi.org/10.1063/1.3462688
https://doi.org/10.1103/physrevd.79.063531
https://doi.org/10.3389/fspas.2018.00050
https://doi.org/10.3389/fspas.2018.00050
https://doi.org/10.1088/1475-7516/2009/06/029
https://doi.org/10.1088/1475-7516/2009/06/029
https://doi.org/10.1146/annurev.nucl.56.080805.140437
https://doi.org/10.1146/annurev.nucl.56.080805.140437

	Hamilton–Jacobi method in non-minimal coupling inflation: metric vs. Palatini
	Abstract 
	1 Introduction
	2 Background equations in the scalar field theory   with non-minimal coupling
	2.1 Solutions in the Jordan frame
	2.2 Solutions in the Einstein frame

	3 Hamilton–Jacobi approach to inflationary processes
	3.1 Inflationary dynamics
	3.2 Attractor behavior
	3.3 Cosmological perturbations and observational quantities

	4 Concrete applications
	4.1 Inflationary dynamics
	4.2 Attractor behavior
	4.3 Inflationary predictions

	5 Reheating
	5.1 Ihe metric case
	5.2 The Palatini case

	6 Results
	Acknowledgements
	References


