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Quantum Machine Learning—Quo Vadis?

Andreas Wichert

Department of Computer Science and Engineering, INESC-ID & Instituto Superior Técnico, University of Lisbon,

2744-016 Porto Salvo, Portugal; andreas.wichert@tecnico.ulisboa.pt

Abstract: The book Quantum Machine Learning: What Quantum Computing Means to Data Mining, by

Peter Wittek, made quantum machine learning popular to a wider audience. The promise of quantum

machine learning for big data is that it will lead to new applications due to the exponential speed-up

and the possibility of compressed data representation. However, can we really apply quantum

machine learning for real-world applications? What are the advantages of quantum machine learning

algorithms in addition to some proposed artificial problems? Is the promised exponential or quadratic

speed-up realistic, assuming that real quantum computers exist? Quantum machine learning is based

on statistical machine learning. We cannot port the classical algorithms directly into quantum

algorithms due to quantum physical constraints, like the input–output problem or the normalized

representation of vectors. Theoretical speed-ups of quantum machine learning are usually analyzed

in the literature by ignoring the input destruction problem, which is the main bottleneck for data

encoding. The dilemma results from the following question: should we ignore or marginalize those

constraints or not?

Keywords: quantum machine learning; basis encoding; amplitude encoding; input destruction

problem; HHL; quantum kernels; variational algorithm

1. Introduction

Deep learning has achieved tremendous successes; it is based on error minimizing
algorithms that approximate a distribution of a population. The approximation is based
on the error minimization of the prediction of a very large training sample, with the
assumption that the large sample describes the population sufficiently well. The error
minimization is based on a loss function and the back-propagation algorithm. The back-
propagation algorithm applied to deep learning architectures requires huge computational
resources in hardware, energy, and time. The promise of quantum machine learning
is that it will overcome these problems due to quadratic or even exponential speed-up
in time and the possibility of compressed data representation. However, can we really
apply quantum machine learning for real-world applications? What are the algorithmic
constraints of quantum machine learning? Currently there is a huge body of literature on
quantum machine learning, which we are unable to review. Instead we will deal with four
fundamental categories of quantum machine learning including quantum encoding.

• The process of transferring classical data into quantum states is an essential step in
quantum algorithms. This process is called quantum encoding or quantum state
preparation. Binary patterns representation of a training sample using quantum
encoding and the application of the Grover’s algorithm is presented. It leads to
quadratic speed-up of popular machine learning algorithms, like k-nearest neighbor,
clustering, and associative memory.

• We describe the representation of a training sample by amplitude encoding. It is used
in the quantum algorithm for linear systems of equations (HHL) based on Kitaev’s
phase estimation algorithm leading to an exponential speed-up. Since almost all
machine learning algorithms use some form of a linear system of equations, it is
assumed that the HHL algorithm is going to be one of the most useful subroutines.
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• Quantum kernels that are not based on the kernel trick but map the vectors directly
into high-dimensional space and may lead to new kernel functions.

• Variational approaches are characterized using a classical optimization algorithm to
iteratively update a parameterized quantum trial solution that can open new insights
in real-world problems, like the study of the behavior of complex physical systems
that cannot be tackled with classical machine learning algorithms.

2. Binary Patterns and the Grover’s Algorithm

Basis encoding encodes a n dimensional binary vector to a n-qubit quantum basis state.
Ventura and Martinez [1,2] proposed a method to encode m binary linear independent
vectors with dimension n (with n > m) into a superposition of a n-qubit quantum state.
We describe the simplified method by [3]. The procedure successively divides a present
superposition into processing and memory branches. The input patterns are loaded into
new generated memory branches step by step. The cost of the method is linear in the
number of stored patterns and their dimension [4]. At the initial step, the system is in the
basis state with load qubits, memory qubits and the control qubits c1, c2

|memory; c2, c1; load⟩

(using little endian notation). The basis states are split step by step using the control qubits
c1, c2 until the required superposition is present

1√
m

m

∑
j=1

|memory; c2, c1; load⟩j

and with the memory register in the required superposition

1√
m

m

∑
j=1

|memory; 0, 0; 0 · · · 0⟩j =

(

1√
m

m

∑
j=1

|memory⟩j

)

⊗ |0, 0; 0 · · · 0⟩.

The processing branch is indicated by the control qubit c2 with the value one (c2 = 1) and
the memory branch representing the current superposition with the control qubit c2 with
the value zero (c2 = 0). The the qubit c2 is split by the operator CSp represented by the

parametrized U gate U(θ, φ, λ) = with φ = π, λ = π, and θ = arcsin
(

1√
p

)

· 2

CSp = CU(arcsin

(

1√
p

)

· 2, π, π) =













1 0 0 0
0 1 0 0

0 0
√

p−1
p

1√
p

0 0 −1√
p

√

p−1
p













with CSp|c2, c1⟩

CSp|01⟩ = |01⟩, CSp|11⟩ = 1√
p
· |10⟩+

√

p − 1

p
· |11⟩.

The control qubit c1 indicates the split of the qubit c2. Since the control qubit c1 = 1
is entangled with the memory register we create the memory branch (c2 = 0) with 1√

p ·

|memory; 01⟩ and processing branch (c2 = 1)
√

p−1
p · |memory; 11⟩ by the split operation on

the preceding processing branch. A new pattern is stored in the generated memory register of
the new generated memory branch. We repeat the procedure until we arrive in the final state

|ψ⟩ = 1√
m

m

∑
j=1

|memory; 0, 0; 0 · · · 0⟩j
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representing the binary patterns in superposition of m basis states. In Figure 1 we indicate
a circuit for the preparation of the three states |01⟩, |10⟩, |11⟩.

Figure 1. In this example, we store three binary patterns, |01⟩, |10⟩, |11⟩. After applying the circuit

the resulting state is 1√
3
|0, 0; 1, 0; 0, 0⟩+ 1√

3
|0, 1; 0, 0; 0, 0⟩+ 1√

3
|1, 0; 0, 0; 0, 0⟩. For more details see [5].

The dashed lines are visual indicators of the grouping of a circuit sections.

We can apply Grover’s algorithm with a quadratic speed-up of
√

m, since the repre-
sented m basis states are known to us. The constructed Grover operator amplifies only the
m basis states and the n − m states with the amplitudes zero are unchanged.

Alternatively, we could entangle the index qubits that are in the superposition with
the binary patterns.

|patternm⟩, |patternm−1⟩, · · · |pattern1⟩.
To store m binary patterns we entangle the index qubits using multi-controlled NOT gates
by generating v = log2(m) index qubits using v Hadamard gates

H⊗v |0⟩⊗v
=

1√
m

m

∑
j=1

|indexj⟩.

and entangle m binary pattern with the index qubits with a resulting superposition

1√
m

(

m

∑
j=1

|indexj⟩|patternj⟩
)

. (1)
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Using an oracle o() we can mark the corresponding index state and un-compute the
entangled patterns resulting in a state

|ψ⟩ = 1√
m

(

m

∑
j=1

(−1)o(indexj) · |indexj⟩|0 · · · 0⟩
)

. (2)

We can now apply Grover’s algorithm with a quadratic speed-up of
√

m to the index states
that point to our binary patterns.

2.1. Input Destruction Problem

The naïve assumption that the speed-up is quadratic is not realistic due to the input
destruction problem (ID problem) [6–9]:

• The input (reading) problem: The quantum state is initialized by state preparation
of m binary patterns. Although the existing quantum algorithm requires only

√
m

steps and is faster than the classical algorithms, m data points must be read—prepared.
Hence, the complexity of the algorithm does not decrease.

• The destruction problem: We are required to read m data points and are allowed to
query only once because of the collapse during the measurement (destruction).

Additionally, the output quantum state in many quantum machine learning algorithms
must be fully read, but measuring the state collapses it to a single value, requiring many
measurements to interpret the full state.

2.2. Quantum Random Access Memory

To avoid input destruction problem [10] quantum random access memory (qRAM) [11]
was proposed. A qRAM access basis states by copy operation [11]. A register |i⟩ is queried
and the ith binary patter is loaded into the second register

|i⟩|0⟩ → |i⟩|xi⟩, (3)

with |xi⟩ being a basis state representing a binary vector. The query operation can be
executed in parallel with

1√
m

m

∑
i=1

|i⟩|0⟩ → 1√
m

m

∑
i=1

|i⟩|xi⟩, (4)

with the time complexity ignoring the preparation cost of (due to the input problem) is
O(log(m)). The qRAM suffers from the input destruction problem. Its usage leads to a
circular argument.

3. Amplitude Encoding and the HHL Algorithm

Amplitude encoding encodes data into the amplitudes ωi of a quantum state

|ψ⟩ =
N

∑
i=1

ωi · |x⟩. (5)
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For example, a complex normalized vector x

x =



























√
0.03√
0.07√
0.15√
0.05√
0.1√
0.3√
0.2√
0.1



























.

is represented as

|ψ⟩ =
√

0.03 · |000⟩+
√

0.07 · |001⟩+
√

0.15 · |010⟩+
√

0.05 · |011⟩+

+
√

0.1 · |100⟩+
√

0.3 · |101⟩+
√

0.2 · |110⟩+
√

0.1 · |111⟩
by a top-down divide strategy using parametrized rotation gates with a linear complexity.
Amplitude coding can only represent normalized vectors and also suffers from the input
destruction problem.

3.1. Quantum Random Access Memory for Amplitude Coding

An operation that would produce a copy of an arbitrary quantum state such as |ψ⟩ is
not possible; we cannot copy non-basis states because of the linearity of quantum mechanics.
However, we can, to some extent, simulate the copy of non-basis states using quantum
random access memories (qRAM) as proposed by [9]. The resulting complexity would be
O(n log(m)) where n is the dimension of the resulting superposition vector [9]. We divide
the binary vector of the dimension 2m into v substrings; each substring codei represents a
real number by fractional representation (binary representation of a real number)

|code1code2 · · · coden⟩
1√
n

n

∑
i=1

|i⟩. (6)

with n = 2m/v and a fractional real number αi that is smaller than one

codei = αi < 1.

We add an auxiliary state |0⊗n⟩

|code1 · · · coden⟩
1√
n

n

∑
i=1

|i⟩ → |code1 · · · coden⟩
1√
n

n

∑
i=1

|i⟩|0⊗n⟩ (7)

For each αi we preform a controlled rotation R(αi)

(

C · αi|1⟩+
√

1 − C2 · α2
i |0⟩

)

and measure. By measuring the corresponding auxiliary register with the result |1⟩ we
know that the resulting state is correct. However, if we measure in auxiliary register |0⟩,
we have to repeat the whole procedure. The success rate of measuring n |1⟩ is very low
(0.5n) and converges to zero for large n. For large n it is simply not feasible. If we succeed,
the resulting state would be

n

∑
i=1

αi|i⟩. (8)
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The described routine is non reversible since it is based on measurement. If the probability
of success was not very low, the complexity reading m vectors of dimension n would be
O(n log(m)) ignoring the preparation costs, compared to O(n · m) on a classical RAM.
However, the qRAM for amplitude coding is not feasible and does not solve the input
destruction problem.

3.2. Quantum Algorithm for Linear Systems of Equations

Systems of linear equations can be solved by Gauss elimination with O(n3). The
approximate solution for a sparse matrix via conjugate gradient descent requires much
lower costs, Õ(n) [12].

By ignoring certain constraints, the quantum algorithm for linear systems of equations
on a quantum computer is exponentially faster for sparse matrices than any algorithm that
solves linear systems on the classical computer [10]. It is based on amplitude coding and is
called the HHL algorithm according to its inventors Aram Harrow, Avinatan Hassidim,
and Seth Lloyd. For an invertible complex matrix n × n A and a complex vector b

A · x = b (9)

we want to find x. The following constraints are present.

• The vectors |b⟩ and |x⟩ represented by log2 n qubits have a length of one in the l2
norm with

|b⟩ = ∑
n
i=1 bi|i⟩

∥∑
n
i=1 bi|i⟩∥

(10)

and

|x⟩ = ∑
n
i=1 xi|i⟩

∥∑
n
i=1 xi|i⟩∥

. (11)

• |b⟩ has to be prepared efficiently with the cost no bigger than log(n).
• The matrix A is sparse.
• For the output we are interested in the global properties of |x⟩ rather than the coeffi-

cients xi.

If A is Hermitian A∗ = A (for real matrix AT = A) then A can be represented by the
spectral decomposition as

A = λ1 · |u1⟩⟨u1|+ λ2 · |u2⟩⟨u2|+ · · ·+ λn · |un⟩⟨un|. (12)

and

A−1 =
1

λ1
· |u1⟩⟨u1|+

1

λ2
· |u2⟩⟨u2|+ · · ·+ 1

λn
· |un⟩⟨un|. (13)

It follows

A−1 · |uj⟩ =
1

λj
|uj⟩ (14)

and writing |b⟩ as a linear combination of the eigenvectors of A

|b⟩ = ∑
j

|uj⟩⟨uj|b⟩ (15)

leads to
A · |b⟩ = ∑

j

λj|uj⟩⟨uj|b⟩ (16)

and
|x⟩ = A−1 · |b⟩ = ∑

j

λ−1
j |uj⟩⟨uj|b⟩. (17)
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We estimate the eigenvalues using Kitaev’s phase estimation algorithm. We then estimate

the unknown eigenvalue e2·π·i·θj . If we apply U to |uj⟩ we obtain

U · |u⟩ = e2·π·i·θj · |uj⟩ = ei·λj · |uj⟩. (18)

This representation is similar to the evolutionary operator Ut = e−i·t·H for t = 1 and
H := A is the Hamiltonian operator. The process of implementing a given Hamiltonian
evolution on a quantum computer is called Hamiltonian simulation [13]. The challenge
in Hamiltonian simulation is due to the fact that the application of matrix exponentials is
computationally expensive [4]. The dimension of the Hilbert space grows exponentially
with the number of qubits, and thus any operator will be of exponential dimension. The
computation of the matrix exponential is difficult, and this is still a topic of considerable
current research. Only for a sparse hermitian matrix H, the Hamiltonian simulation can
be implemented efficiently. We do not need to know the eigenvector |uj⟩ of U. Since a
quantum state |b⟩ can be decomposed into an orthogonal basis

|b⟩ = ∑
j

|uj⟩⟨uj|b⟩ = ∑
j

β j|uj⟩. (19)

After applying Kitaev’s phase estimation algorithm to U that we estimated by the Hamilto-
nian simulation for each value j the values λ̃k|j approximate the true value λj. For simplicity,
we assume

n

∑
j=1

β j

T−1

∑
k=0

αk|j · |λ̃k|j|uj⟩ ≈
n

∑
j=1

β j · |λ̃j⟩|uj⟩. (20)

We have to measure the corresponding eigenvalues, so that we would be able to define a
circuit that performs the conditioned rotation. To conduct the conditional rotation we add
an auxiliary state |0⟩

n

∑
j=1

β j · |λ̃j⟩|uj⟩|0⟩ (21)

and perform the conditioned rotation on the auxiliary state |0⟩ by the operator R

R =

(

cos α − sin α

sin α cos α

)

. (22)

with the relation

α = arccos

(

C

λ̃

)

(23)

with C being a constant of normalization. Each eigenvalue indicates a special rotation

n

∑
j=1

(

β j · |λ̃j⟩|uj⟩
(

R
(

λ̃−1
j

)

|0⟩)
))

=

n

∑
j=1



β j · |λ̃j⟩|uj⟩





C

λ̃j

|1⟩+
√

√

√

√1 − C2

λ̃2
j

|0⟩







. (24)

We un-compute the phase estimation procedure, resulting in the state

|0⟩
n

∑
j=1



β j · |uj⟩





C

λ̃j

|1⟩+
√

√

√

√1 − C2

λ̃2
j

|0⟩







 =

|0⟩
n

∑
j=1



C ·
β j

λ̃j

|uj⟩|1⟩+
√

√

√

√1 − C2

λ̃2
j

· β j|uj⟩|0⟩



. (25)
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By measuring the auxiliary qubit with the result 0 we obtain

|0⟩
n

∑
j=1





√

√

√

√1 − C2

λ̃2
j

· β j|uj⟩



 (26)

and with the result 1

C · |0⟩
n

∑
j=1

(

β j

λ̃j

|uj⟩
)

= C · |0⟩A−1|b⟩ ≈ C · |0⟩|x⟩. (27)

We have to select the outcome of the measurement 1

|x⟩ = A−1|b⟩ =
n

∑
j=1

β j

λ̃j

|uj⟩ (28)

which requires several measurements. After the preceding measurements we cannot obtain
the solution |x⟩ efficiently. Obtaining the required coefficient xi from |x⟩ would require at
least n measurements, so the complexity of the algorithm would be O(n) which is the same
cost for an approximate solution for a sparse matrix via conjugate gradient descent on a
classical computer.

For example,
the solution to the problem

A =

(

1 − 1
3

− 1
3 1

)

, b =

(

1
0

)

.

is represented by

A−1 =

(

9
8

3
8

3
8

9
8

)

, x =

(

9
8
3
8

)

.

with the normalized vector being

xn =
x

∥x∥ =

(

0.948683
0.316228

)

.

We represent

|b⟩ = |0⟩ = b =

(

1
0

)

with

|u1⟩ =
|0⟩ − |1⟩√

2
, |u2⟩ =

|0⟩+ |1⟩√
2

and with

|b⟩ = ∑
j

β j|uj⟩ = |0⟩ = 1√
2
· |u1⟩+

1√
2
· |u2⟩

|b⟩ = 1√
2
· |0⟩ − |1⟩√

2
+

1√
2
· |0⟩+ |1⟩√

2
= |0⟩.

We perform conditioned rotation on the auxiliary state |0⟩ by

RY(α) =

(

cos
(

α
2

)

− sin
(

α
2

)

sin
(

α
2

)

cos
(

α
2

)

)
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with measured two control qubits being |10⟩ representing λ̃1 = 2 and |01⟩ representing
λ̃2 = 1,

α1 = 2 · arccos

(

1

λ̃1

)

= 2 · arccos

(

1

2

)

=
π

3
(29)

α2 = 2 · arccos

(

1

λ̃2

)

) = 2 · arccos

(

1

1

)

= π (30)

The measured estimated probability value (requiring several measurements) of the HHL
simulation are 0.562 and 0.0622 resulting in

x2
m =

( 0.56
0.562+0.0622

0.0622
0.562+0.062

)

with

xm =

(

0.948869
0.31567

)

≈ xn =

(

0.948683
0.316228

)

.

4. Quantum Kernels

To avoid the input destruction problem quantum kernels were proposed. A quantum
computer can estimate a quantum kernel and the estimate can be used by a kernel method
on a classical computer, [4]. Using a quantum computer results in an exponential advantage
in evaluating inner products, allowing us to estimate the quantum kernel directly in the
higher dimensional space by a function φ(x) with

k(x, y) = |⟨φ(x)|φ(y)⟩|2. (31)

For large high-dimensional space, such a procedure is not tractable on a classic com-
puter [14]. However, classically, we do not compute the function φ(x); instead we compute
inner products specified by the kernel k(x, y)

k(x, y) = ΦT(x)Φ(y) = ⟨Φ(x)|Φ(y)⟩. (32)

and the feature space could be of infinite dimensionality

k(x, y) = ⟨Φ(x)|Φ(y)⟩ =
∞

∑
j=1

φ(xi) · φ(x). (33)

For quantum kernels the dimension of the feature space is finite, since we map the vectors
directly with the aid of a quantum computer and do not specify the kernel function. The
classical data are encoded into quantum data by quantum feature maps via a parametrized
quantum circuit [15]. The feature vector defines by m parameters of the parametrized
quantum circuit Uφ(x)

|φ(x)⟩ = Uφ(x)|0⟩⊗m (34)

with the dimension of φ(x) being 2m. If we map for an input state |0⟩⊗m with a parametrized
quantum circuit Uφ(x) with parameters that are defined by x and un-compute it by U†

φ(x),

the inverse of the parametrized quantum circuit Uφ(x), then the probability of measuring

the state |0⟩⊗m is one. If we parametrize the quantum circuit U by x ( Uφ(x)) and the inverse

of the parametrized quantum U† by y (U†
φ(y) ) and if x and y are similar, the probability of

measuring |0⟩⊗m for the input |0⟩⊗m

U†
φ(y)Uφ(x)|0⊗m⟩ (35)
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should be near 1. If x and y differ a lot, this probability is smaller. The quantum kernel is
represented after measurement as

k(x, y) = |⟨φ(x)|φ(y)⟩|2 = |⟨0⊗m|U†
φ(y)|Uφ(x)|0⊗m⟩|2 (36)

We have to measure the final state several times and record the number of |0⊗m⟩ and
estimate the value k(x, y). The parametrized quantum circuit is based on superposition and
entanglement and rotation gates that map the feature vectors in a periodic feature space
resulting in periodic receptive fields with a fixed center. Quantum kernels can achieve
lower training error on real data. However, this improvement leads to poor generalization
on the test set and classical models can outperform quantum models [16] due to the periodic
receptive fields with a fixed center, see Figure 2.

(a) (b)

(c) (d)

Figure 2. (a) RBF kernel with the center y = (2 · π, 2 · π)T . (b) RBF kernel with the center y = (π, π)T .

(c) Quantum kernel with the center y = (2 ·π, 2 ·π)T . (d) Quantum kernel with the center y = (π, π)T .

For the RBF kernel the position in the space defined its center; this is not the case with the quantum

kernel, the center of which remains fixed; instead its wave distribution changes. In the contour plot

the third dimension is indicated by the color, high values are indicated by white to yellow color, low

values by blue color.

Because of this it is doubtful if quantum kennels offer any advantage over classical
kernels of real-world applications.

5. Variational Approaches

Variational approaches are seen as one of the most promising direction in quantum
machine learning [16]. They do not suffer from the input destruction problem, and have no
limitations from the HHL algorithm or the failure of generalization of the quantum kernels.

Variational approaches iteratively update a parameterized quantum trial solution also
called ansatz (from German ansatz = approach) using a classical optimization algorithm.
The parameterized quantum trial solution is represented by a parametrized quantum circuit
in the same way as a quantum kernel.

The variational approach can be used for binary classifier with two classes represented
by the target values 0 and 1. With the input data vectors xk of dimension m and the binary
output labels tk with a training set

D = {(x1, t1), (x2, t2), · · · ,(xN , tN)}, tk ∈ {0, 1}.

A parametrized quantum circuit Uφ(xk)
with m parameters encodes each input data vector

xk of the dimension m [4]
Uφ(x)k

|0⟩⊗m. (37)
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Additionally, a variational quantum circuit represents the free parameter w

UW(w) (38)

that will adapt during training by using an optimizer on a classical computer, leading to
the state

|ψ(xk, w)⟩ = UW(w) · Uφ(x)k
|0⟩⊗m. (39)

The measured state |ψ(xk, w)⟩ by a basis state |qm · · · q1q0⟩ representing a binary string, see
Figure 3. The measured binary string represents a parity function. A Boolean function
whose value is one if and only if the input vector has an odd number of ones represents a
parity function. For each input data vector xk we determine the output function ok ∈ {0, 1}
and perform an adaptation of the parameters w of the variational quantum circuit UW(w)

using an optimizer on a classical computer that minimizes the loss function between the
predicted values represented by the parity function of the measured basis state and the tar-
get values. The optimizer approximates a stochastic gradient descent by the Simultaneous
Perturbation Stochastic Approximation (SPSA). SPSA requires only two measurements of
the loss function, regardless of the dimension of the optimization problem [17] to estimate
the stochastic gradient.

Figure 3. We use the parameterized circuit Uφ(x) = ZZFeatureMap with repetition for the input of

dimension two mapping it into 22 dimensional space. For UW(w) we use the TwoLocal circuit. It is a

parameterized circuit consisting of alternating rotation layers and entanglement layers. An input

vector xk defines the circuit Uφ(xk). We determine the output function ok ∈ {0, 1}. We minimize the

loss function by the SPSA optimizer on a classical computer resulting in new parameter w that defines

the adopted variational quantum circuit UW(w). We repeat the process using the adapted variational

circuit for the next raining pattern until the error represented by the loss function is minimal. (The

dashed lines are visual indicators of the grouping of a circuit sections).

The advantages of classical deep learning models cannot be met by variational algo-
rithms, like the principle of hierarchical organization or the representation of big training
sets or regularization. The idea of hierarchical structures is based on the decomposition of
a hierarchy into simpler parts leading to a more efficient way of representing information.
This principle appears in nature; for example, the structure of the matter itself is hierarchi-
cally organized by elementary particles, atomic nuclei, atoms, and molecules [18]. The deep
learning approach learns the hierarchical structure from the training data, leading to a high-
level abstractions in data by architectures composed of multiple nonlinear transformations
using gradient descent through error back-propagation. The back-propagation algorithm
leads to a hierarchy from low-level structures to high-level structures, as demonstrated
by natural complexity [19–22]. Variational quantum circuits cannot propagate the error
backward, since this operation would require the determination of the activity of each
layer for the classical optimizer; this operation can only be performed by measurement,
which would lead to collapse. By increasing the number of layers in deep learning, we
can increase the number of parameters. By doing so, we can add enough degrees of free-
dom to model large training sets. This is extremely helpful since nowadays, for specific



Entropy 2024, 26, 905 12 of 13

tasks, a really large amount is collected. Ideally, to overcome overfitting, one has to use a
model that has the right capacity. However, this task is difficult and costly since it involves
searching through many different architectures. Many experiments with different number
of neurons and hidden layers have to be conducted. Using an over-parameterized deep
learning network, one can constrain it to the right complexity through regularization. The
search for the correct model complexity can be conducted efficiently through empirical
experiments. These advantages leading to the success of deep learning cannot be meet by
variational algorithms.

6. Conclusions

The input destruction problem has not yet been solved, and theoretical speed-ups
are usually analyzed by ignoring the input destruction problem. Other constraints are the
normalized representation of vectors by amplitudes and quantum kernels with periodic
receptive fields. We arrive at a dilemma: should we ignore or marginalize those constraints
or not? Until now, no theoretical advantage over classical algorithms on real data was
shown. It is questionable if the input destruction problem will be ever solved and if a
qRAM is possible. Usually the constraints are ignored or marginalized.

Instead, we should determine if quantum machine learning (without the discussed
constraints) can solve any problems more efficiently than a classical computer. Until now,
such problems do not exist and we are far away from showing how to use quantum machine
learning algorithms for real-world data. Are there any problems for which a quantum
computer is more useful than a classical computer? If we do not answer these questions
and overestimate the power of quantum machine, a quantum machine learning winter will
follow in analogy to the AI winter.

What could be a possible answer? We can only speculate that in the future real
quantum data will be generated through quantum physical experiments or that some
new physical breakthroughs will lead to new efficient methods for the state preparation.
Putting the speculation aside, quantum symbolic AI algorithms offer a better alternative for
successful applications. This is because they avoid the input problem, they do not represent
large training data by quantum states. Real-world applications, like the simulation of
chemical reactions and optimization problems, should be investigated. The simulation of
chemical reactions is based on Hamiltonian simulation together with variational quantum
Eigensolvers [23]. Variational quantum Eigensolvers are based on a variational algorithm
that estimates the ground state of a system [4,23]. Additionally, a promising direction is
indicated by the Boltzmann machine [24–26] and deep belief networks [27,28] rather than
the back-propagation algorithm.
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