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Abstract. Particle-In-Cell (PIC) simulation are fundamental to address a detailed study of
a Laser Wake Field Acceleration process. Given the ongoing development of cm−scale plasma
accelerators, reduced physical models are necessary to face otherwise unfeasible predictive start-
to-end simulations. In this context, the equation of a plasma in the cold fluid approximation can
be a powerful numerical tool because the system dynamics relies on the inversion of the Euler
equation on a grid, much cheaper than the usual field coupling with macroparticle motion that
characterizes the standard PIC loop. We show here the implementation of a hybrid PIC-fluid
framework in ALaDyn code that allows the bulk plasma dynamics to be quickly solved while
retaining the kinetic properties by placing macroparticles on top of the fluid background.

1. Introduction
In the last decades, PIC simulations have established themselves as a powerful tool in solving
the Vlasov equation, i.e. the plasma dynamics coupled with a self-consistent electromagnetic
field. However, in most of the cases, the computational time needed to evolve the detailed
system dynamics greatly exceeds the availability of resources, even when running massively
parallelized codes on modern supercomputers. In fact, a strict requirement of the PIC scheme
is the resolution of the smallest spatiotemporal scale present in the system even though such
detail may be of no interest regarding the simulation outcomes. In Laser Wake Field Acceleration
(LWFA) for example, usually the smallest scale is given by the laser wavelength (λ ∼ µm) while
the accelerated bunch has to be transported along a cm−scale plasma which translates in tens of
millions CPU hours per run. Reduced computational models become therefore crucial to allow
fast and efficient start-to-end simulations. In particular, both the envelope approximation [1–4]
and a plasma fluid description can greatly reduce the needed computational time yet relying on
a solid physical modelling.

In Sec.2, we review the newly implemented explicit solver for the laser evolution in the
envelope approximation. We show that laser dynamics can be evolved in an averaged (coarse
resolution) framework with a one step procedure bound by the same CFL condition of a standard
Yee scheme. Such evolution can be coupled to the particle motion in the same averaged
framework. In Sec.3 a solver for the plasma equation in the cold fluid approximation based
on a second order Adams-Bashfort temporal evolution and a second order Weighted Essentially
Non-Oscillatory spatial derivative is presented. Finally, in Sec.4, it is shown that the two
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schemes can be merged, defining an hybrid framework that can boost by orders of magnitude
the speed of computation.

2. Envelope approximation
In LWFA, when laser envelope scale length is well separated from its characteristic wavelength,
it is convenient to describe the laser-plasma interaction in an averaged framework, where only
the longest (slowest) spatial (temporal) scales are retained, in what has been called envelope
approximation [1–4]. In fact, to assure the highest accelerating gradients, in a typical laser-
plasma accelerator the ponderomotive force induced by the laser envelope must be resonant
with the background plasma oscillation. By converse, the short laser wavelength does not couple
efficiently with the collective plasma modes and so particle quiver motion is quickly damped after
the laser passage. Plasma response to the electromagnetic forcing can be so decomposed in fast
oscillations, on the laser frequency scale ω0, about a slow secular motion on the plasma wave
and laser envelope time scale ω which usually satisfies ω/ω0 = O(ε), where ε � 1 is a small
parameter.

For the sake of brevity, we do not report the derivation of the model equations, which has
been treated either in a Lagrangian [1, 4] or in a Eulerian [3, 5, 6] framework. As a result,
the evolution of the slow laser envelope interacting with an electron plasma is governed by the
hyperbolic equation[

∂t,t − 2iω0(∂t + c∂z)− c2∇2
]
â(x, t) = −ω2

pχ(x, t, |â|)â(x, t), (1)

where â is the envelope of the vector potential normalized to A0 = mc2/e and χ(x, t, |â|) = n/γ,
where the density n and the ponderomotive Lorentz factor γ depend only on slow coordinates,
i.e. the f operator represents an average of f over the fast oscillations. Here, the density n is
normalized to the unperturbed plasma density n0 and ωp represents the background plasma
frequency. In the cycle-averaged framework, equations of motion for an electron take the
Lagrangian form
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in which momenta are normalized to mc and particles are connected to the electromagnetic field
via the standard b-spline formalism. The evolution of E(x, t) and B(x, t) (here expressed in
units of a wavenumber) is governed by Maxwell’s equations.

The laser-plasma coupled dynamics evolution in the envelope approximation have been
implemented in several works so far [2, 4, 7–12], but the usual quoted envelope evolution operator
is expressed in the reference frame comoving with the laser pulse (CRF), ξ = z − ct, τ = t and
its inversion is performed either recurring to implicit techniques or neglecting the second order
derivative ∂τ,τ â. We found that there is no general advantage in formulating the problem in
the CRF since (i) a semi-implicit solver is usually less efficient and more difficult to implement
than an explicit one, (ii) a new advection term is introduced in Maxwell’s equations since
they are not invariant under galilean transformations, (iii) numerical dispersion can be strongly
mitigated by resorting to FDTD optimized derivatives [13–16]. Following such considerations,
a new fast and efficient one-step explicit solver for the laser envelope equation in the laboratory
reference frame coupled with the plasma dynamics and the self-consistent electromagnetic fields
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Figure 1: Comparison between full PIC and envelope simulation (ENV/PIC) performed with
ALaDyn code. On the left, plasma densities are compared and it is clear that the injection process
is correctly represented. On the right, longitudinal electric fields are shown.

has been presented and validated in [17], then also adopted in [18]. In Fig.1, we report an
example of a laser propagation inside a plasma computed using both the full PIC and the PIC
in envelope approximation (ENV/PIC). The laser pulse propagates for 500µm in an initially
uniform plasma. Its wavelength is λ0 = 0.8µm, a0 = 5, duration τfwhm = 12fs and waist
w0 = 10µm. The unperturbed plasma density is n0 = 4.3 × 1018cm−3 and the cell size in both
cases is ∆z = λ0/24, ∆x = ∆y = 4∆z. Both the envelope and the electromagnetic solvers
are equipped with optimized longitudinal derivatives, in order to strongly reduce the numerical
dispersion effects as described in [17].

To the best of our knowledge, no reflecting or absorbing boundary condition has ever been
introduced for the envelope equation. In ALaDyn, after an empirical validation, we found a
stable boundary condition via a second order interpolation of the laser envelope on the ghost
points outside the box. Anyway, we do not consider such choice as definitive and we envisage
investigating this aspect in the future.

3. Plasma evolution in fluid approximation
When specific plasma kinetic effects, like self-injection and bunch acceleration are not considered,
the plasma wave system away from particle crossing (wave-breaking) pathology, can be
adequately described by Euler equations in collisionless cold approximation. In this framework,
the Lagrangian system of equations (2) averaged over the particle distribution function in
velocity space allows a reformulation of the dynamics in term of a fluid density n(x, t) and
momentum density p(x, t), given by

∂tn+∇(nv) = 0, ∂tp + (v · ∇) p = Ftot,

Ftot = −
[
E(x, t) +

v

c
×B(x, t)

]
+ FP (x, t),

(3)

still retaining the separation between the Lorentz force induced by the slow electromagnetic
field (wakefield) and the ponderomotive force associated to the laser pulse. A simplified Euler-
Maxwell description is a powerful tool both from a theoretical and a numerical point of view,
in particular when performing long term integration of plasma dynamics, e.g. in start-to-end
simulations of a LWFA, when even the envelope approximation does not sufficiently reduce the
total computational time.

Implementation of a Euler-Maxwell solver presents several nontrivial problems related to
numerical instabilities that can be triggered even by a moderately steep solution [19, 20]. For
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nonlinear systems of fluid equations, several techniques have been proposed to capture and
propagate discontinuous solutions, but they most of all refer to hyperbolic equations expressed
in conservative form. A scheme based on the combination of a second order Adams-Bashfort
(AB) temporal integrator coupled with a second order Weighted Essentially Non-Oscillatory
(WENO) upwind derivative has been proposed to obtain a stable and robust numerical scheme
that takes into account the non-conservative structure of Eq.(3) [17].

One step AB integrator for the system of equations (3), allows a consistent coupling with
the FDTD scheme for the evolution of the wakefield electromagnetic field. In this framework,
given the evolution equation (3) in the form ∂tu(x, t) = S[u,x, t], for u = [p, n]T and

S =
[
− (v · ∇) p + Ftot,−∇(nv)

]T
, the discrete temporal advancement of u in the time interval

[tn, tn+1] can be written as

un+1 = un +
∆t

2

[
3Sn − Sn−1

]
, (4)

where only source terms at the current and previous integer times are involved.
The fluid density and momentum are spatially discretized on the integer nodes of the Yee

grid having a cell size ∆xg = (∆x,∆y,∆z), i.e. any point xg = (xi, yj , zk) is identified by
the triple (i, j, k) ∈ Z3. The WENO reconstruction technique presents several advantages with
respect to a standard fixed-stencil upwind (or central) derivative in computing the source term
on the grid points, that is S

[
u(xg),xg, t

]
. In fact, (i) it assures an high order (it depends on

the order of the chosen scheme) accuracy on the reconstructed derivative for smooth solutions,
(ii) for steep gradients, it reduces to a second order upwind scheme, preventing the numerical
instability growth [21, 22], (iii) it can be conveniently extended to the case of a non-conservative
system. For the detailed definition of the interpolating functions and smoothness coefficients
in a finite difference WENO implemetation, we refer to [21, 23]. Choosing the second order
accuracy scheme, the pointwise source term can be approximated as

S
[
u(xg),xg, t

]
' S[u,x, t] +O

(
∆x3

g

)
. (5)

At last, outflow boundary conditions are implemented using second order upwind scheme on a
fixed stencil.

An intensive numerical benchmark of the Euler-Maxwell solver here presented has been
carried out in [17]; in particular Figs.8 and 10 of [17] present a comparison of an ENV/PIC and a
fluid simulation (here and from now on denoted with ENV/Fluid). We point out that a grid based
code does not suffer in principle for the load unbalance that characterizes a macroparticle based
code. For this reason, the execution speed does not decrease during evolution despite ALaDyn

not having a load balancing procedure implemented. Moreover we estimate a computational
cost of the order of a same resolution PIC code using second order shape functions with a single
macroparticle per cell.

4. Hybrid particle-fluid dynamics
The numerical framework described in Sec.3 to construct the solution of the cold collisionless
Euler equation, is suitable to be combined with a standard PIC representation, allowing the
dynamical description of an electromagnetic field coupled with both a plasma bulk expressed in
the cold fluid approximation and Lagrangian particles moving on top of that. At the present
time, many LWFA injection and acceleration schemes are in fact intensively investigated to work
in nonlinear regimes far from the wavebreaking and the self-injection threshold. It has been seen
that despite the highest accelerating gradients achievable, bunches produced in these regimes
may retain poor quality and may be difficult to control due to the high energy spread and slice
energy spread induced by the accelerating field [24, 25]. To evolve a particle bunch injected
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Figure 2: Comparison between longitudinal accelerating fields produced by the ENV/PIC and
the ENV/Fluid schemes. A laser pulse having a0 = 2.4, w0 = 28µm, τfwhm = 30fs is travelling
in a uniform plasma of density n0 = 4× 1018cm−3. On the left, the fluid approximation alone is
not suitable to evolve plasmas that have crossed the wavebreaking limit. On the right, placing
one macroparticle per cell allows to recover the expected behaviour.

in a plasma whose behaviour is well described by Eq.(3), kinetic effects (i.e. macroparticles)
are only needed for the bunch itself, and one could strongly decrease the total computational
time by substituting the background plasma macroparticles with the AB-WENO solver. Also,
an hybrid (Eulerian and Lagrangian) numerical scheme is able to grasp the feature of a system
close to the wavebreaking regime as it can be seen in Fig.2. As a matter of fact, fluid equations
cannot describe the trajectory crossing of plasma particles and they tend to regularize the
solution of the equations of motion, which therefore diverge from the expected one after the
discontinuity (z − ct ' 10µm). On the other hand, the correct behaviour is recovered inserting
one macroparticle per cell. We want to stress that such a poor number of macroparticles would
not have been enough to perform a reliable simulation without introducing a dominant numerical
noise [26]. Instead, the fluid background compensates for this lack, reinstating a dynamics that
does not present statistical fluctuations, with whom the macroparticles interact.

Figure 3: Production of ionized and trapped particles in the ReMPI scheme, simulated using
the ENV/Fluid scheme in ALaDyn. On the left, the accelerating field (black), the train of pulse
(grey), the ionizing pulse (yellow) and the longitudinal particle phase space (red) are represented.
Quantities have been represented in arbitrary units in order to be overlapped and compared on
the same plot. On the right, the resulting density map is shown, where every black dot represent
a numerical particle. As it can be seen, they are only forming the accelerating bunch, whereas
the background plasma density is fluid.
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When computing the total current in an hybrid scheme, one has to weight the contribution
of the fluid and macroparticle density respectively. The choice is not unique, and can influence
both the outcome of the simulation and the numerical performance. If α & 0, where
α = wMP /(wMP + wF ) is the relative weight of the macroparticles in the total (i.e. fluid
plus macroparticles) density, we can expect an overall behaviour very close to a purely fluid
dynamics. In addition to this, we can employ only few macroparticles since the statistical noise
will not be dominant. On the other hand, when α . 1, the fluid contribution is weak and more
macroparticles are needed in order to achieve reliable results. Becomes clear that optimization
of the α parameter strongly depends on the physics involved and, at the present time, we cannot
recommend any specific recipe to do so.

The composite AB-WENO plus envelope solver has been implemented in the code ALaDyn

[17, 27, 28] and has been used in the numerical validation of the Resonant Multi-Pulse Ionization
injection scheme (ReMPI) proposed within the EuPRAXIA project as an ultra high quality
injection and acceleration scheme [29–31]. A train of four laser pulses travels in a mixture
of Helium and Nitrogen exciting a wakefield via a resonant process while staying below both
the wavebreaking and the ionization injection threshold. A subsequent frequency tripled pulse
ionizes the 5th atomic level of Nitrogen and the produced particles are injected and accelerated
in the wakefield, resulting in an electron beam of outstanding quality. Such complex setup would
not have been feasible with a reasonable computational cost with a standard PIC. Instead, the
ENV/Fluid scheme allowed for fast simulations since the plasma bulk was evolved according
to the fluid equations and the macroparticles only represented the few ionized and trapped
particles forming the electron bunch. Background Nitrogen atoms are kept in the simulation
as immobile particles, i.e. they do not participate as a computational load during particle
motion, therefore they can be ionized employing the well-established ADK model. Extracted
macroparticles interact with the electromagnetic field and may be trapped in the wakefield.

5. Conclusions
We have reviewed an explicit solver for the laser envelope dynamics first presented in [17] and
we have introduced a new implementation of an hybrid framework, in which macroparticles’
dynamics is coupled with a plasma bulk considered in a cold fluid approximation. The fast fluid
solver (having a speed about the same resolution PIC code with 1 macroparticle per cell), which
correctly describes plasma dynamics below the wavebreaking threshold, interacts with a few
macroparticles that take into account any kinetic property of the system without considerably
loading the computation. We made use of the implemented schemes to validate numerically
a novel and promising injection scheme that required predictive simulation that could not be
addressed with a standard PIC code. As a matter of fact, the envelope description, which does
not resolve the laser wavelength, and the hybrid framework, enabled us to perform an intensive
parametric scan of the system.

We point out that the fluid and hybrid ALaDyn features are still under an intensive
investigation since the stability of the employed schemes presents some issues when the dynamics
is close to the wavebreaking regime. More work to improve this aspect is expected in the near
future. We acknowledge the S. Sinigardi grant IsB18 ALaRe at CINECA under the ISCRA
initiative for the HPC resources.
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