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Computing

|\ LHC Science

data CMSPublic
~200 PB - SKA Phase 1~ Total CPU HL-LHC (2031/No R&D Improvements) fractions
1 _ 20H 2022 Estimates
~300 PB/year Other: 2%
1 science data GEN: 9%
L
~ /DUNE
20 RECO: 35% DIGI: 9%
Google ~30 PB
Internet archive
~15EB i
. HL-LHc-200 ‘ Analysis: 4%
~~~600 PB Raw data
N\

SIM: 15%

\
SKA Phase 2 — mid-2020s HL-LHC - 20
~1 EB science data | ~1 EB Physics data

RECOSim: 26%

/
* Anew precision era is imminent: HL-LHC, DUNE, LSST, SKA
0 10x or more data compared to existing experiments
» Generation will need increased fraction of computing for higher-order calculations
« Simulation needs to deliver more events with more complexity and more accuracy
o Match growing data volumes and improved detectors... while using smaller fraction of computing!

= To allow for increasing fraction of reconstruction (scales superlinearly with pileup)

APS April Meeting 2024 Kevin Pedro



GAN: Adversarial ! >
X X Z >
training D(x) G(2)
Flow-based models: % Flow L oz N |"1“1’-'r59 R
Invertible transform of f(x) 7 (2)
distributions
Autoregressive models: X0 X1 Xo
Distribute in sequencesusing | | | | | *f vttt ™
chain rule
5—4__—/ \\__‘_'____/
VAE: maximize X Encoder - Decoder

variational lower bound

Diffusion models:
Gradually add Gaussian
noise and then reverse

L. Weng

Discriminator

Generative Models

Generator

99 (2[x)

X0

APS April Meeting 2024

po(x|z)

Implicit density estimation: Generative
Adversarial Networks (GANS)

O Pros: fast

0 Cons: can suffer from mode collapse, lack of
convergence, etc.

Exact density estimation: Normalizing Flows
(NFs), Autoregressive models (ARs)

o Pros: accurate, fast in one direction
o Cons: poor scaling, slow in other direction

Approximate density estimation: Variational
Autoencoders (VAESs), Diffusion Models (DMs)

o VAEs: fast, but limited quality

o DMs: high quality, but slow
Non-generative: reweighting, refinement
o Classification- or regression-based

Kevin Pedro


https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Reweighting for Uncertainties

» Event generators come with many theoretical uncertainties in internal parameters
0 Some can be represented as alternate weights for a single event

o Others cannot; producing multiple samples is extremely computationally demanding
(need enough events to minimize redundant statistical uncertainties)

e DCTR method: arXiv:1907.08209

o Train a classifier C to distinguish between

two datasets A & B

o0 Then dataset B can be reweighted to the
distribution of dataset A using NN output:
w = C(X)/(1 - C(x)) = pa(X)/pg(X) :
* Train on generator-level information: only need  o<|

0 200 400
12—
— L

to repeat first step

» Effectively transforms all theory uncertainties

Into event weights!

o Shown for hy,,, POWHEG) & r, (PYTHIA) =0
0 Expect rapid adoption!
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https://arxiv.org/abs/1907.08209
https://cds.cern.ch/record/2860873

Latent Space Refinement

 DCTR gives accurate output, but reduces statistical precision (events have weights)

 Alternative: apply weights to latent space of generative model (NF) — LASER

o0 Requires sampling from latent space using Hamiltonian Monte Carlo

 Result: unweighted events with comparable precision to DCTR

o Promising for important and computing-intensive processes like W+jets

o Performance also depends on preprocessing of features (particle 4-vectors)

APS April Meeting 2024

Normalized

3.0

Generation
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https://arxiv.org/abs/2305.07696

Resampling to Reduce Negative Weights <

Use Particle Flow Network (DeepSet architecture) to learn
weight W and variance \W?2

o Employing DCTR approach
Define K = W?/(W)?

Keep an event with probability 1/K

Set weights of kept events to be WK

» Substantially reduce number of generated events
o Eliminate all negative weights

o Preserve both mean and variance

o0 Reduce downstream computational burden:
fewer events to simulate, digitize, reconstruct, analyze

APS April Meeting 2024 Kevin Pedro

Initial Weights
Neural Resampler, K=1
108 . Neural Resampler, Optimal K
g MG5 aMC + Pythia 8
% 10} pp = tt, NLO QCD
ae]
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arXiv:2007.11586
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https://arxiv.org/abs/2007.11586

MADNIS

» Expanded use of neural importance sampling for ¢ New methods: Generation
multi-channel processes o Stratified training: more samples for higher-
« Combines generative and non-generative ML variance channels
e Implemented in MADGRAPH o Channel dropping: remove channels with
« Substantial improvement especially for processes insignificant weights
w/ interference (e.g. vector boson scattering) we—» WHWHs @13 TeV)
s | P + ¢ + + :.i
] F20 5,
E 2.01 " RN %
- 155
E 1.5 ¢ ’ %
v 10 ¢
F 1.0 5
Flat sampling Importance Sampling Multi-channel ) 05{e ° ® o o e o . | %
24 15 o o 4 o
O <
58 ° °
z > 10 ®
Jx) 5 £ '
I= ( ) E 2 5 o ° e ¢ © ©® o o
2 < 1( ) v & : = ,J:IHEI.__-\:IC 3lg‘3'g}lm 8..0
'/ gi) 33 g ici LB TN
Weights: Mappings: > @ 3 %ggg S&EEE5 8 BT AR
Parametrize with NN Parametrize with INF arXiv:2311. 01548: see also T. Heimel

APS April Meeting 2024 R. Winterhalder Kevin Pedro 8



https://indico.cern.ch/event/1253794/contributions/5640861/
https://arxiv.org/abs/2311.01548
https://indico.cern.ch/event/1253794/contributions/5588549/

Off-Shell Effects

D

Generation

* Precision measurements require eliminating on-shell .
approximations |
- Direct diffusion (DiDi) model that learns a mapping /)" ) T g @
from on-shell (x,) to off-shell (x,) distributions ‘
arXiv:231L.17175 " fo e ) 0

o Using conditional flow matching

Good results for off-shell tt

° 10-1 Off 107! — Off
production (proof of concept) __ -, — DiDi | 192 —— DiDi rew.
—— On S On
* Results can be further 5107
improved with DCTR-style S 104

reweighting

f—
o
&
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E 00/ ggloo
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510,04 1Tl ] e et ST —=10.0;
B T e il
0.11 { th 0.11 “ h ‘ "
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https://arxiv.org/abs/2311.17175

Generative Models

Generator
Output
Latent Dense

Space (50) | 50
Bl RelU

Dense
NVoxel
RelU

Dense
200
RelU

Dense
100
RelU

Discriminator
Output Dense Dense Dense Dense
— NVoxel NVoxel NVoxel NVoxel

RelU

Linear RelU RelU

» FastCaloGAN architecture: Wasserstein loss
prevents mode collapse

e Separate GANSs trained for 100 n slices and for
each particle type: v, e, m*, p — 600 total

o0 Hyperparameters optimized for each particle
0 ~100 V100 GPU-days for final training

* Irregular geometry voxelized for training

* Incorporated in AtlFast3 along with FullSim and
FastSim modules (depending on particle type, etc.)

APS April Meeting 2024

for ATLAS Simulation () .

. Good agreement for protons (new')
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Simulation Preliminary
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https://indico.jlab.org/event/459/contributions/11426/
https://indico.jlab.org/event/459/contributions/11762/

[ Years of ML4S1m

* From my database of 100+ ML4Sim-related papers

* Normalizing flows and diffusion models supplanting ol L ]
traditional GANs and VAEs e NF i |
g{ —— DM | :

« Almost exponential takeoff for diffusion models . i I
H |

o

|

o Following industry dominance in image generation

Stable Diffusion, DALL-E, Midjourney, etc.

. 1
e Some growing interest in autoregressive models ‘ —‘ : ~;
2 . P - | I I__

Frequency
[=4]

. . [ [T ’
o Perhaps motivated by success in industry (GPT) | I__i . : r-I i
| A . I .
« Common datasets and metrics: big step forward to "o 1 2 3 4 5 6 7

Years since January 2017

compare different approaches
“Other” = non-generative models (FCNs, CNNs,

GNNSs), typically regression-based approaches

APS April Meeting 2024 Kevin Pedro 11



3d view

Ao

CaloChallenge

front view

An|

Ag

. T T
Simulation

« CaloChallenge: first competition for
generative ML for detector simulation

* Three public datasets provided:

1. Low granularity, irregular geometry
(based on ATLAS calorimeter), photon
& pion showers

2. Medium granularity, silicon-tungsten
sampling calorimeter, electron showers

3. High granularity, otherwise same as #2

« Common datasets are crucial to compare different generative methods

o Using metrics discussed on next slide
* Many new methods developed for the challenge

o Preliminary comparisons will be shown

APS April Meeting 2024
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https://calochallenge.github.io/homepage/

Metrics

» Speed only matters if needed accuracy is achieved o Fréchet distance: W, distance between SirTT ulation
Gaussian fits to (high-D) feature space

o Wrong answers can be obtained infinitely fast
= Features can be hand-engineered or obtained

» 1D histograms: el
_ ) from NN activations
0 e.g. separation power S(g,h) = %23 0 .y _ _ .
o _ _ _ » Another interesting category: classifier scores
o Can miss high-dimensional correlations _ o
_ . _ o Train NN to distinguish real vs. generated
» Best category: integral probability metrics

o AUC score: ranges from 0.5to0 1.0
D]—“(prealapgen) — Sup ‘Ex’“prealf(x) o Eympgon f(y)|

feF o0 Log-posterior probability in multiclass case

Lipschitz functions distinguishes between two similar approaches
= Only works well in 1D, biased in high-D ] _3 o
: : : : FPD x10 KPD x10° WM x10°

o Maximum mean discrepancy (MMD): F is unit g g v
ball in reproducing kernel Hilbert space Truth 0.08 + 0.03 —0.006 + 0.005 0.28 + 0.05
d h ] f k | MPGAN 0.30 = 0.06 —0.001 +=0.004 0.54 +£0.06

|

Depen S On choice ot kerne GAPT 0.66 + 0.09 0.001 4 0.005 0.56 + 0.08

arxXiv:2211.10295

APS April Meeting 2024 Kevin Pedro 13



https://arxiv.org/abs/2211.10295

CaloChallenge Results

Width of Center of Energy in n, dataset 2, Ej, = 0.015 MeV

=
i

separation

"
=
)
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CaloDiffusion

= conv. L2LFlows

CalolNN
MDMA
CalovQ
CaloScore

= CaloScore distilled

CaloScore single-shot
iCaloFlow teacher

= iCaloFlow student

SuperCalo

DeepTree
CaloPointFlow
CaloVAE+INN
"GEANT4 reference"

 Diffusion models and normalizing flows tend C. Krause

tO have beSt performance Timing vs log posterior, dataset 2, E,,;; = 0.015 MeV

sl * * * ===

» However, diffusion models especially tend to o : *

be slower in inference 57 4

o lIterative process — multiple steps required to g

get highest accuracy 8" wter"
* timelzolper showe;OEms] 103

APS April Meeting 2024 Kevin Pedro
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CaloDiffusion
conv. L2LFlows
MDMA

Calo-vQ
CaloScore
CaloScore distilled
CaloScore single-shot
SuperCalo
DeepTree
CaloVAE+INN
iCaloFlow student
CaloPointFlow
CaloINN

14


https://indico.cern.ch/event/1253794/contributions/5588599/

CaloDiffusion

« Current state-of-the-art model: denoising w/ convolutional U-net architecture

po(Xi—1]%¢)
@ — @ @ — (%)
/‘\ /\

O Various geometric adaptations:
= Conditional cylindrical convolutions
= Geometry latent mapping for irregular detectors
= Attention layers for long-range correlations in z

* Improvement from original: LayerDiffusion to predict
total energy per layer — 4x speedup & better quality

o0 More speedups in arXiv:2401.13162

Dataset 2 (electrons)

Dataset 2 (electrons)

Geantd

10+
Geant4

8- [ CaloDiffusion 8 [ CaloDiffusion
z | Original E Improved
56 3 64 _
& N = 400 B N =100
£ a4 2 4
8 a
& <
24 24
0 ' . . . ; o . :
50
< 1 ) ' h
S S
2, J\J\M\W;\J\'\A &\ ?5_ —\A"“M""\\;' \
A ] Q
0 0.6 0.8 1.0 12 14 0.6 0.8 1.0 12 14
Dep. energy / Gen. energy Dep. energy / Gen. energy
APS April Meeting 2024 ML4Jets2023 Kevin Pedro
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Xt|xt 1

» Comparison to other SOTA models:
O Best classifier AUC scores
o Low distance values compared to Geant4

Classifier AUC (low / high)

Dataset  CaloDiffusion CaloFlow CaloScore v2
T (photons) _ 0.62 / 0.62 0.70 / 0.55 0.76 / 0.59
1 (pions) 0.65 / 0.65 0.78 / 0.70 _ /-
2 (electrons) 0.56 / 0.56 0.80 / 0.80 0.60 / 0.62
3 (electrons) 0.56 / 0.57 0.91 /0.95 0.67 / 0.85
Dataset FPDT KPD
1 (photons) 0.014(1) 0.004(1)
1 (pions) 0.029(1) 0.004(1)
2 (electrons) 0.043(2) 0.0001(2)
3 (electrons) 0.031(2) 0.0001(1)
arXiv:2308.03876 15



https://arxiv.org/abs/2401.13162
https://arxiv.org/abs/2308.03876
https://indico.cern.ch/event/1253794/contributions/5588571/

MMD

1071

1072,

1073,

10—4,

Diffusion for Liquid Argon TPCs

 Diffusion models can also simulate ionization deposits from

charged tracks in LAr TPC detectors
O Here, score-based rather than denoising model is used
 Both visual and quantitative comparisons

o Various distance metrics, SSNet scores,
Fréchet inception distance (from SSNet activations)

 Superior to previous attempts (VAE)

High Dimensional Goodness of Fit Tests

T —e— MMD Training Set
1 -~ MMD Validation Set
—e— SinkDiv Training Set
e SinkDiv Validation Set
—e— Wasserstein-1 Training Set
e \Wasserstein-1 Validation Set
10 30 50 100 150 200 250 300

Epochs

APS April Meeting 2024

Fraction of All Pixels

L2 Nearest Neighbors

— LArTPC Val

10 Epochs
— 50 Epochs
w150 Epochs

Fréchet Inception Distance

o Lo b b b 1 ol Lo Lo b1y
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Shower’ Label Ce'nainty Fbr Pixels' Above 'I"hresho\é!
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Generated 1449 1458

1021 |

101,

Training Images

Generated Images

arXiv:2307.13687

SSNet-FID

S —&— Training Dataset (N=10k)
Validation Dataset (N=10k)

PRy
__/)'
-

-~
e e —
T=g= - S ——

10 30 50 100 150 200 250 300
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https://arxiv.org/abs/1808.07269
https://arxiv.org/abs/2307.13687

Diffusion for Astrophysical Images

« Diffusion models can simulate various astrophysical phenomena « Also applied to: Simulation
0 Denoising DM for CMB maps (21 cm brightness temperature) o0 Galaxy images (arXiv:2111.01713)

 Quantified using Fréchet scattering distance (from coefficients) '
o Substantial improvement over GANSs

0 ~100x slower than GANSs, but GPU inference
still ~5x faster than traditional CPU-based simulation

Simulation

o - B :
S o Dark matter maps (arXiv:2211.12444)

_________
el T
______

B
(=]

FSD

W

=]
=
o

b

Mw]telg

—— DDPM (2.5)
DDPM (0.4)

n
o

DDPM (0,3)

DDPM (0.2)
—s— DDPM (0.1)
—— DDPM (0)
-~ StyleGAN2

=
o

1600 3200 6400 12800 25600

Training sample size
arXiv:2307.09568
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https://arxiv.org/abs/2111.01713
https://arxiv.org/abs/2211.12444
https://arxiv.org/abs/2307.09568

High-Level Refinement

 Alternate approach: ML adjusts high-level
quantities from existing CMS FastSim to match FullSim

0 Replaces coarse, manual correction factors
 Loss functions: ensemble & object-by-object comparisons
» Improves metrics, 1D distributions, correlations
» Generalizes to other processes; now being extended to more

variables for Run 3 deployment

CMS simulation Preliminary (13 TeV)
@ —_————— 11—
5 L ““~ FuliSim 3
g - FastSim .
5 04— FastSim Refined -
© L i
(C r ]
03 =
0.2 -
C - ]
0.1 -
0- p——
E|lger
_.(2(5 1_ — A, ol
I e a———te
© L ]
Wwitg gt =
0 0.2 0.4 0.6 0.8 1

DeepdJet b+bb+lepb Discriminator
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=

Analysis
Input Output Target
o 4x Residual Block 0
£ =
- a xRefi. yFull
g g
o =
E 3 T
& a ~-{ MSE |-
FullSim vs. FPD x10° KPD x10°
FastSim 0.801+0.046  1.07 +0.58
FastSim Refined 0.071 +£0.025 0.083+0.418
FullSim 0.061 £0.029 -0.024 +0.250
CMS simuiation Preliminary (13 TeV) CMS simulation Preliminary (13TeV)
I I I I _ I I I I I _
014 0. 00 1. E . . m E
QG 7014 0.09 1.00 1.00 08 QG, 0.09 0.12 Moz 5
o |01 -0.01 0.01 0.01 0.6 g o |8 0.01 Bos ;
ciB | 0.04 0.08 4 7 B -0.01 04 %
B | -0.04 -0.01 0.2 € B 1.00 (A -’8‘
L En: — 0 c
GEN Flav. i -0.01 -0.01 028 GEN Flav. i -0.01 0.01 -0.12_ 02 c?:’
L
GENo _0_4‘*-5, GEN ¢ -04 E
GEN [n| 0.08 0.09 -0.6 GEN | -0.09 —0.6%
[ — | _ o
GENp, 004 004 -0.41 -0.1a | 08 GENp, _0'8':':;
| | | | | | | | | | | | 1 1 x
Gy, Gay Iy Gen, Gy %;B Cig Cy Qg -1 Gey,, Gey y Ge, GENF,af Gy Gy Qg -1 n
_ arXiv:2309.12919 T~
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https://arxiv.org/abs/2309.12919

End-to-end: FlashSim

&—  FULLSIM //_—\

FASTSIM = GEN —» SIM — DIGI — RECO — AOD —+ MINI —» NANO

Event

* Normalizing flow to predict high-level analysis
quantities from generator-level information

*—> FLASHSIM

» Reproduces correlations even in ML b-tagging
algorithm scores

o Currently covers: jets (real & fake), muons, electrons
» Very promising solution for end-stage analyses

o Effectively infinite event sample
— minimize statistical fluctuations

» Complementary w/ simulation step solutions

O Need to develop calibrations, algorithms, etc. to
produce training data for FlashSim

» These tend to vary more rapidly than geometry

APS April Meeting 2024 Kevin Pedro
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https://cds.cern.ch/record/2858890

Pileup: An Overlooked Case

 “Classical” mixing: overlay np, distinct
simulated minimum bias events per bunch crossing
on top of signal event — massively I/O intensive

K “Premixing”: perform overlay in advance, save hits
after aggregation (digitized format)

o Leads to O(PB) samples that have to be served
throughout the grid with very high availability

o Better than classical mixing, but still disk- and
network-intensive

Digitization

* Viewed as a solved problem... but substantial room for improvement

0 Generative ML could compress O(PB) samples into O(MB) model + random number generator &
conditioning info — completely eliminate premixing resource usage (in exchange for training)

« Straightforward to repurpose detector simulation surrogates, but also possible improvements here
o Train on data and realize long-awaited data mixing?
« Similar principles apply to e.g. beam-induced backgrounds, dust overlays, etc.

APS April Meeting 2024 Kevin Pedro 20



Computing for ML

» ML algorithms use a restricted set of operations cPUs
(mostly matrix multiplications) ) o
. ..\- — :_.?prO(‘gSEiorl ModelB
o Natural and easy to accelerate on specialized coprocessors =%/ S uuiy
» Most flexible approach: inference as a service ":i‘::; o .
o Abstract away specific computing elements: e e
client makes request, server delivers =
o Example: ParticleNet 10-100x faster on GPU vs. CPU Clents Servers
= Algorithm latency becomes essentially invisible _ CMSsimuaton __ (13Tev)
with asynchronous calls in offline processing @' [ — OnTesaTscru ;
: e = ygsl " OnCPU |
= Can batch across events for optimal GPU utilization B[ enakerar ;
— maximize throughput gmaz:::ﬁf_;_j . n ]
. ey, ~ g
e Demonstrated for CMS, protoDUNE, LIGO, analysis facilities o by ]
0 Use CPUs, GPUs, FPGAs, TPUs, IPUs... with zero code changes!  «wf[=—" = "=
o Optimally exploit new GPU-based High Performance Computing & |* I
(HPC) facilities S b ‘ .
% 100 10 107
Batch size
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https://arxiv.org/abs/2402.15366
https://arxiv.org/abs/2301.04633
https://arxiv.org/abs/2108.12430
https://arxiv.org/abs/2312.06838

Conclusion

Growing usage of Al/ML methods for event generation and simulation

o Both generative models and non-generative classification/regression techniques are useful
Increasing focus on resolving practical problems: improve both accuracy and computing time

o Implementing in common or experiment software frameworks

o Using ML at production scale — beyond proof of concept Background generated by SDXL 1.0 w/

T prompt: “A GEANT4 simulation of a pion
Applications thmughOUt HEP shower with energy 100 GeV in the

o Primarily investigated for collider physics so far Compact Muon Solenoid High Granularity
i d Fei i dobd Calorimeter at the CERN Large Hadron
o Neutrino and astrophysics starting to see more adoption Solliter Albaifle physics experiment”

Diffusion models particularly powerful

o Techniques like flow matching poised to unify normalizing flows and diffusion models
Many more novel applications than could be discussed here

0 SIM reviews: arXiv:2203.08806, arXiv:2312.09597

0 GEN reviews: arXiv:2202.05991, arXiv:2203.07460

o Overall: HEPML-LivingReview
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https://arxiv.org/abs/2203.08806
https://arxiv.org/abs/2312.09597
https://arxiv.org/abs/2202.05991
https://arxiv.org/abs/2203.07460
https://iml-wg.github.io/HEPML-LivingReview/
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CMSOfflineComputingResults

Projections

LHCh CPU Usage Forecast
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I Total CPU

2022 Estimates
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[ == 10 to 20% annual resource increase

R
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5000 - ser
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RECO: 35%

Other: 2%
GEN: 9%

RECOSim: 26%
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DIGI: 9%

‘ Analysis: 4%

SIM: 15%

Annual CPU Consumption [MHS08years]

CERN-LHCC-2022-005

5

o

401
30
20F

10F

07

Run 3 (i=55)
L B it e e e
r ATLAS Pre||m|nary
2022 Computing Model - CPU

I ¢ Conservative R&D

r v Aggressive R&D

[ — Sustained budget model
(+10% +20% capacity/year)

1 1 | [ X . . . . N . N N N N A A - n .
2035 2037 0 2021 2022 2023 2024 2025
Year
ATLAS Preliminary

I U SRR N EURN SR SRR R i
2020 2022 2024 2026 2028 2030 2032 2034 2036

Year

Run 2: (fU“) simulation used ~40% (plurality) 2022 Computing Model - CPU: 2031, Conservative R&D

24%

of grid computing resources for CMS &
ATLAS [arXiv:1803.04165]

0 70% for LHCb! [LHCb-PUB-2022-010]
Run 4+: limit to ~10-20%, while simulating:
o0 Complex detector upgrades

= e.g. CMS High Granularity Calorimeter
o0 More precise physics models
o0 More events to reduce statistical uncertainty

Kevin Pedro

7%

8%

8%

Tot: 33.8 MHS06*y

8%

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy lons
Data Deriv
MC Deriv
Analysis
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https://arxiv.org/abs/1803.04165
https://cds.cern.ch/record/2802074
https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2019-018.html
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

“FullSim”

(i.e. Geant4)

0 Experiments can provide

Simulation Landscape

“FastSim”

reconstruction, etc.

additional code via user actions

« Explicit modeling of detector
geometry, materials, interactions

w/ particles

APS April Meeting 2024

» Usually experiment-specific
framework
 Implement approximations:

analytical shower shapes (e.g.
GFLASH), truth-assisted track

GEANT

o mean

L)
o Paran.
Y
mean

0.0 10.0 20.0

-1 —1
e Common software framework E. .d].‘?(.t)/ (.it. [.XP ,] i

SE5 40 GeV
- - -mean + RMS

% ... mean + RMS

30.0

t [Xo

arXiv:hep-ex/0001020

Kevin Pedro

M. Selvaqaqi

Delphes

 Ultra-fast parametric simulation

 Used for phenomenological
studies, future projections, etc.
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https://arxiv.org/abs/hep-ex/0001020
https://indico.cern.ch/event/397113/contributions/1837819/

ML4Sim Landscape

Options to use ML for sim:
1. Replace or augment (part or all of) Geant4
2. Replace or augment (part or all of) FastSim
Goals:
1. Increase speed while preserving accuracy
2. Preserve speed while increasing accuracy
ML can also create faster, but less accurate simulation
0 a la existing classical FastSim
» then augment w/ more ML to improve accuracy
Another option: replace entire chain (“end-to-end”)

o Complements other cases

APS April Meeting 2024 Kevin Pedro

Accuracy

* Geant4 ---=-=-== >
\\\\ N
\\ |
\\\ : N
4 ¢ FastSim i
(ML?) !
]
|
|
 Delphes
arXiv:2203.08806 Speed
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https://arxiv.org/abs/2203.08806

Constrained Optimization

» General principle: you can’t optimize for two things at once
o Instead, optimize for one thing with constraints on others (Lagrange)
» Multiple loss terms are one approach to encode domain knowledge
2 L — L+ ALy + ---;set)by trial and error — objectively suboptimal

» modified differential method of multipliers (mdmm): [paper, blog, code]
learnable hyperparameter (convergence rate)

t
L — L1 —MNe—Lo)+06(e — L)
L (f 2) +0(e — Lo)°

gradient ascent

) \ §
damping to ensure convergence

constraint
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CMS Simulation

arXiv:2309.12919

0.094+

0.0924

0.0904

0.088+

0.086

== No MDMM, only MMD loss

No MDMM, only Huber loss

No MDMM, MMD + Huber
MDMM, MMD + Huber, £ =0.086
MDMM, MMD + Huber, £ =0.085
MDMM, MMD + Huber, £ =0.084
MDMM, MMD + Huber, £ =0.083
MDMM, MMD + Huber, £ =0.082
MDMM, MMD + Huber, £ =0.081

Huber(Refined, FullSim)

0.082

0.084 1

0.0804

0.0784

0.50

0.75 1.00 1.25 1.50 1.75 2.00 225
MMD(Refined, FullSim) / MMD(FastSim, FullSim)

 First known usage in HEP: balance per-event and ensemble
losses for ML-based refinement of classical FastSim

o Minimize per-event: bad ensemble value
o0 Minimize ensemble: per-event still good!
» Find Pareto front (concave or convex) and pick tradeoff
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https://papers.nips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/
https://github.com/crowsonkb/mdmm
https://arxiv.org/abs/2309.12919

Generative Models at Colliders: LHCDb

Tracking Efficiency

system

Acceptance

Gradient BDT

Gradient BDT i |

Resolution

PID L Rich |

Muoen

CramerGAN

isMuon

Gradient BDT

GlobalPID
CramerGAN

» “Stacked GAN” approach to parameterize

different detector aspects

o Cramer distance related to W,
 Tracking resolution: well reproduced in p; & ¢

e Globhal PID
variables also well
reproduced:

o Top: K* vs. mt*
O Bottom: p vs. p

LHCb Simulation Preliminary Long tracks LHCb Simulation Preliminary Long tracks
— e L L — L L IR
g ook 2016 MagUp ) Es0r 2016 MagUp 1
Qj 3 o g o o Q:: g E:
— 80t ) v 1 =60t 508
E @ g 2 g g8 o
OF o° ® g ¢ 8 ] 40 0° ]
8 ¥ “59959 88 g 097
40 r . g g 2
:_ '-{H Detailed Simulation 1 20 0 ® ° ¢ Detailed Simulation 7
20 i - GAN-based model 1 g 8 GAN-based model
0 N R T ! ! ! ] 0 L [ ! e ]
-3 -2 -1 0 1 2 3 0.5 1.0 2.0 2.5 3.0
¢ [rad] I/pr [GeV/c]
Kevin Pedro
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LHCb Il’relinqna{y .

Kaon and pion tracks
——

w
4
= r — kaon (model)
g pion (data)
_g pion (model)
2
=
on
R
=
0.0 0.2 04 0.6 0.8 1.0
ANN-based Probability for Kaon
LHCb Preliminary Muon and proton tracks
122 e Y
O L ]
,.‘g 0025 i 2016 MagUp muon (data)
:g —— muon (model)
=) [ proton (data)
S 0.020 proton (model)
=
]
=
.en0.015 - ]
5}
= [
0.010 F y
0.005 [ 1
O’OOO L — P P L | h 1 e | i
-100 =50 0 50 100

Combined Differential Log-Likelihood (xz—p)

LHCB-FIGURE-2022-004
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https://cds.cern.ch/record/2806749

CaloDiffusion

( ResNet Block \

Base architecture: U-net

o Skip connections ensure no loss of information

Linear self-attention layers applied to each
convolutional ResNet block

o Allows dimensionality reduction in z to handle
longitudinal correlations in showers

+ numerous geometric innovations (next slide)
Cosine noise schedule for training
Stochastic sampling algorithm for generation
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Input (M/N): # filters for datasets 1 & 2/ 3 ‘ Output ]
| Total parameters: ~520K / ~1.2M |

Conv (16/32) Conv (16/32)

AN . ~

g } Sklp '8 Y

ResNet Block (16/32)+ | . .. .. .. ... ../ Connection . ResNet Block (16/32) +
Downsample Upsample

Connection

ResNet Block (16/32) +
Downsample

ResNet Block (16/32) +
Upsample

)= } [ - J

h

Skip
s \ N s e errennns Connection ... ... e /
ResNet Block (32) — Conv (32/32) Conv (32/32) — ResNet Block (32)
\

» Objectives:
o Datasets 1 & 2: predict (normalized) noise

o Dataset 3: predict weighted average of noise
and denoised image

« Aim for highest achievable quality first
o Then focus on improving speed
o Wrong answers can be obtained infinitely fast

Kevin Pedro 29



Geometric Innovations

 Particle showers are invariant & periodic in ¢

0 Pad in ¢ so convolutions “wrap around”

Input data Filter Kernel Convolution Output
2x2x2

(source)

» Conditional cylindrical convolutions

e Particle showers are not invariantin r or z

o Provide r and z (layer) as extra per-pixel
channels (input features)

o Convolutions become conditional

Layer 0 Layer 1 Layer 2 Layer 3

Shower image 0 ° . o

/La}(er 0 Layer 1 /Laye& Layer 3
Radial image O Q k/) / \
Layer O Layer 1 Layer 2 Layer 3

o Handle inherent features of particle detector geometry, distinct from rectangular images

APS April Meeting 2024
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https://indico.cern.ch/event/1159913/contributions/5062708/

Geometry Latent Mapping: GLaWV

Irregular Cylindrical Cylindrical Irregular
Input Input Output Output

Reverse

I

Embed

>

. —
() =

— ©
» Dataset 1 has different radial/angular bins in each layer

o Can’t directly apply convolutions, which require regular neighbor structure
» Learn forward and reverse embeddings to and from a regular geometry
o Simple matrices C (NxM) and D (MxN)
= Cinitialized to split or merge cells based on overlap between original and embedded geometries
* D initialized as Moore-Penrose pseudoinverse of C

* Inspired by “latent diffusion” approach

o But not necessarily lower-dimensional representation; actually higher-dimensional here
APS April Meeting 2024 Kevin Pedro

Denoise

o6
® o
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Why Convolutions?

Convolutions started the modern machine learning revolution (AlexNet, 2012)
o Spatial locality and translational invariance

0 Shared weights — fewer parameters, better scaling

o Highly efficient on GPUs: spatial locality implies memory locality

Ideally suited for computer vision with rectangular images

o Application to irregular geometries requires innovations

Graph neural networks? -
o Pro: natural representation for irregular geometries ~

o Cons: adjacency matrices consume substantial memory; operations less local/efficient; hard to
generate arbitrary output (masking technique exists, but difficult to scale)

Point clouds or transformers?

0 Pro: no adjacency matrix consuming memory

o Con: discards useful geometric information, which then must be learned from (often sparse) inputs
> For generative applications, convolutions still have a lot to offer!

o0 And they can keep up with transformers when trained properly... arXiv:2310.16764

(source)
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https://arxiv.org/abs/2310.16764
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Average Showers
Layer 0 Layer1 Layer2 Layer 3 Layer 12

00000

0-2 1071 100 101
Enerqgy (Ge\%

Layer 0 Layer 1 Layer

00000

Layer 3 Layer 12

03 102 1071 100 101 02 103
Eneraqy (GeV) [animated version]
» Top: Geant4; bottom: CaloDiffusion (dataset 1, photons)

O ... or is it the other way around? Can you tell?

APS April Meeting 2024 Kevin Pedro

33


https://www.dropbox.com/scl/fi/96j6yr4d4qedfv2au2ney/shower_evolution_final_v2.gif?rlkey=18v7j2fyfd57cqayd46ktjfmd&raw=1

Original CaloDiffusion: Areas for Improvement

Dataset 1 (photons)

Dataset 1 (pions)

Geant4 Geant4
204 [ CaloDiffusion 254 [ CaloDiffusion
3 3
E 154 E 2.0+
= =]
E‘ E‘l,S"
© ©
5101 5
Q 210
= =l
< <
5~
0.5
0 1 T T 0,0 T T T T T T 1 T
50 50
E'm.:.' [ M = [ \J V l
-50- T T T T T -50+ T T T T T T T
0.6 0.8 1.0 1.2 1.4 0.00 025 050 075 100 125 150 1.75 2.00
Dep. Energy / Gen. Energy Dep. Energy / Gen. Energy
Dataset 2 (electrons) Dataset 3 (electrons)
Geant4 10+ Geant4
8- [ CaloDiffusion [ CaloDiffusion
2 2 %
=] =
= 64 =]
B 2 ©
© o]
j o
= 4+ = 4
g £
b <
24 24
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-50 -50 . . .A AL

0.6 0.8 1.0 12 14
Dep. energy / Gen. energy
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0.6 0.8 1.0 1.2 14
Dep. energy / Gen. energy

 Deficit in total energy modeling

* Need 400 diffusion steps to get acceptable quality
o Still faster than Geant4 (~100s) w/ batching on GPU

* Fewer steps:

O Linear speed improvement

0 But even less accurate In

this quantity

Time/Shower [s]

Dataset 2 (electrons)

Dataset Batch Size CPU GPU

1 (photons) 1 9.4 6.3
(368 voxels) 10 2.0 0.6
100 1.0 0.1

1 (pions) 1 9.8 6.4
(533 voxels) 10 2.0 0.6
100 1.0 0.1

2 (electrons) 1 148 6.2
(6.5K voxels) 10 4.6 0.6
100 4.0 0.2

3 (electrons) 1 527 7.1
(40.5K voxels) 10 44.1 2.6
100 - 2.0

Kevin Pedro

Geant4
[ CaloDiffusion 400 Steps
8+ =1 CaloDiffusion 200 Steps
I [ CaloDiffusion 100 Steps
= [ CaloDiffusion 50 Steps
g 6
oy
£ 4
=
E:
> 2
0 T 1
. 100
X
; [ eme————— e — i ™ s ¥ @ g —
Aa
-100 T T T T
0.6 0.8 1.0 1.2 1.4
Dep. energy / Gen. energy
Num. Classifier AUC FPD E Ratio
Steps  (low / high) ' Sep. Power
100 056 /0.55 0.043(1) _ 0.011
200  0.61 / 0.56  0.046(1) 0.036
100 0.69 / 0.59  0.065(3) 0.079
50  0.83 /0.67 0.110(4) 0.251
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