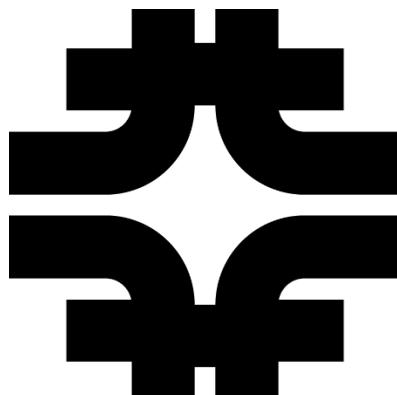


Evolution of Generation and Simulation Techniques in the AI/ML Era

Kevin Pedro

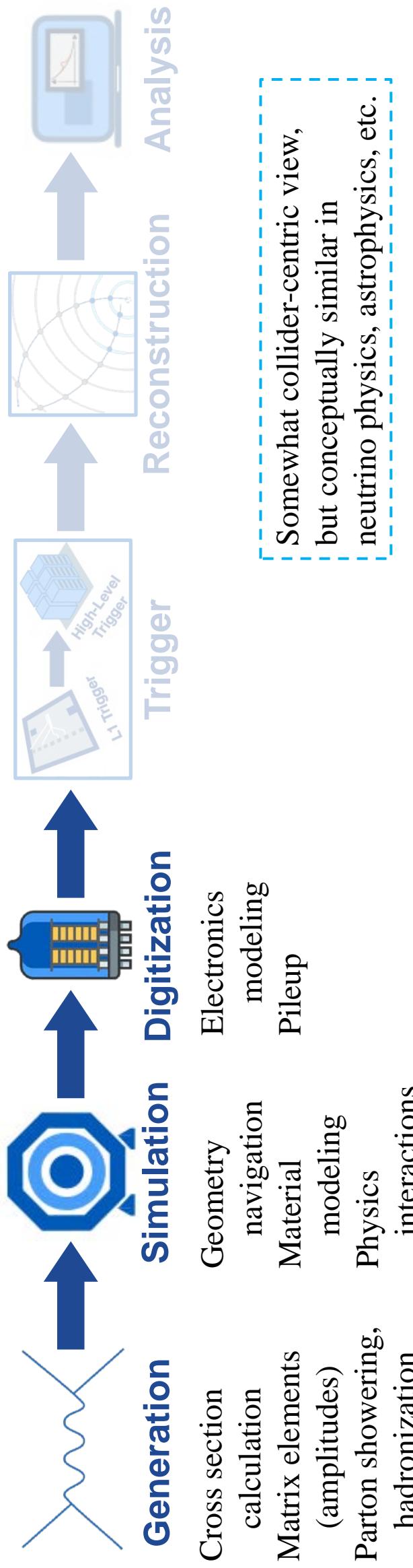
(Fermilab)

April 3, 2024



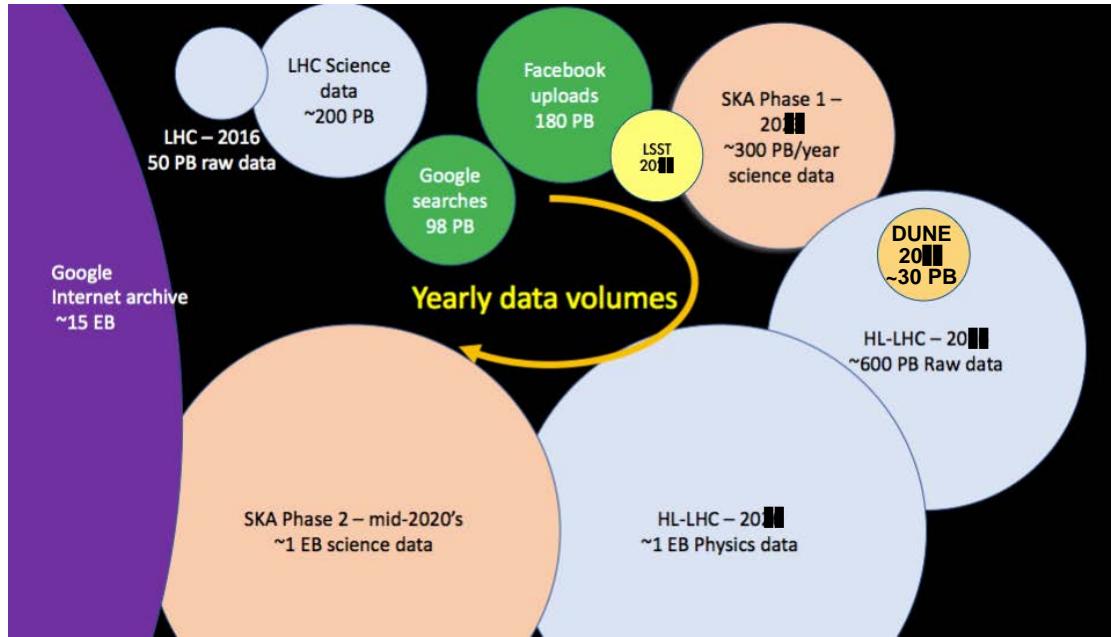
This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

HEP Data Processing & Analysis

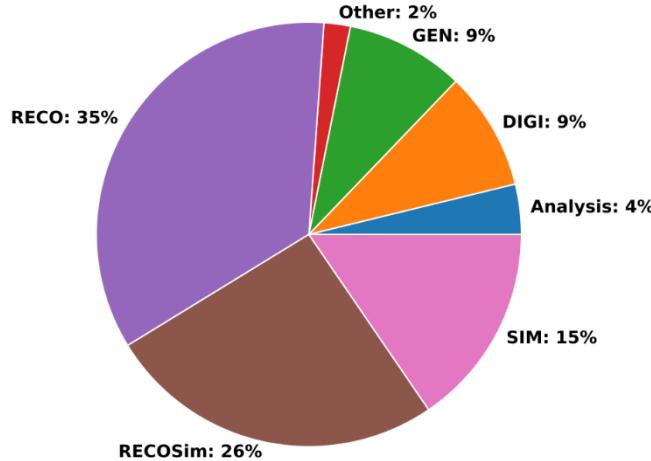


- Nearly all HEP results are built on simulations:
 - Detector design, analysis optimization, background estimation, etc.
- As we probe rarer processes, explore more complicated models, and make more precise measurements:
 - Accuracy and computational speed increase in importance!

Computing

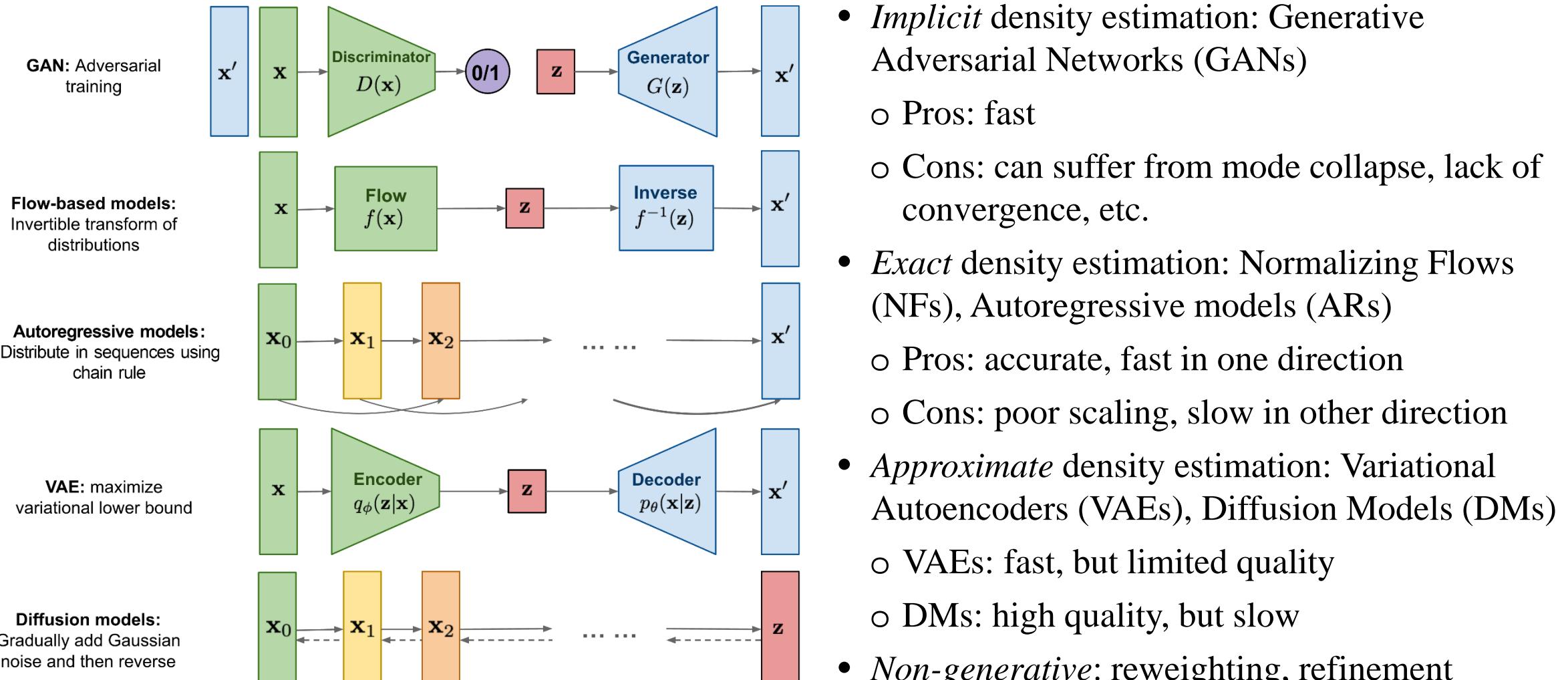


CMS Public
Total CPU HL-LHC (2031/No R&D Improvements) fractions
2022 Estimates



- A new precision era is imminent: HL-LHC, DUNE, LSST, SKA
 - 10× or more data compared to existing experiments
- **Generation** will need increased fraction of computing for *higher-order calculations*
- **Simulation** needs to deliver more events with more complexity and more accuracy
 - Match growing data volumes and improved detectors... while using *smaller fraction* of computing!
 - To allow for increasing fraction of **reconstruction** (scales *superlinearly* with pileup)

Generative Models

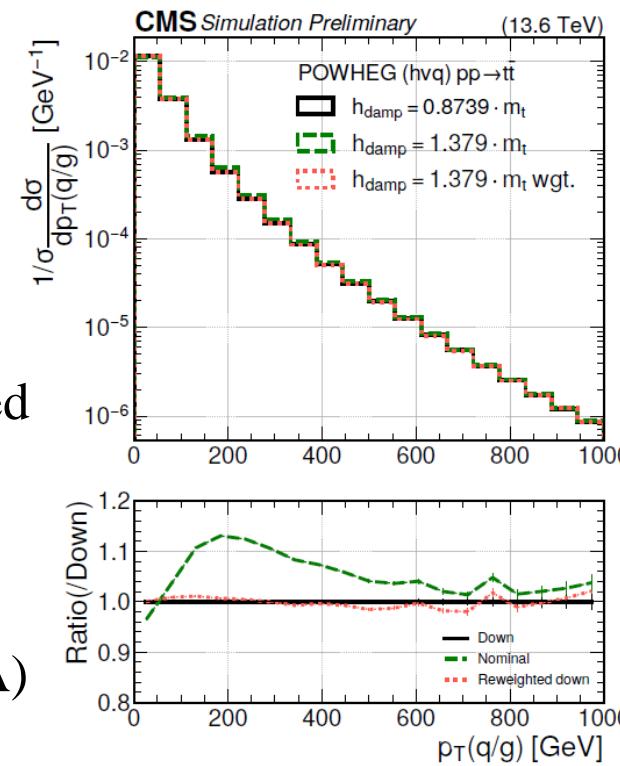
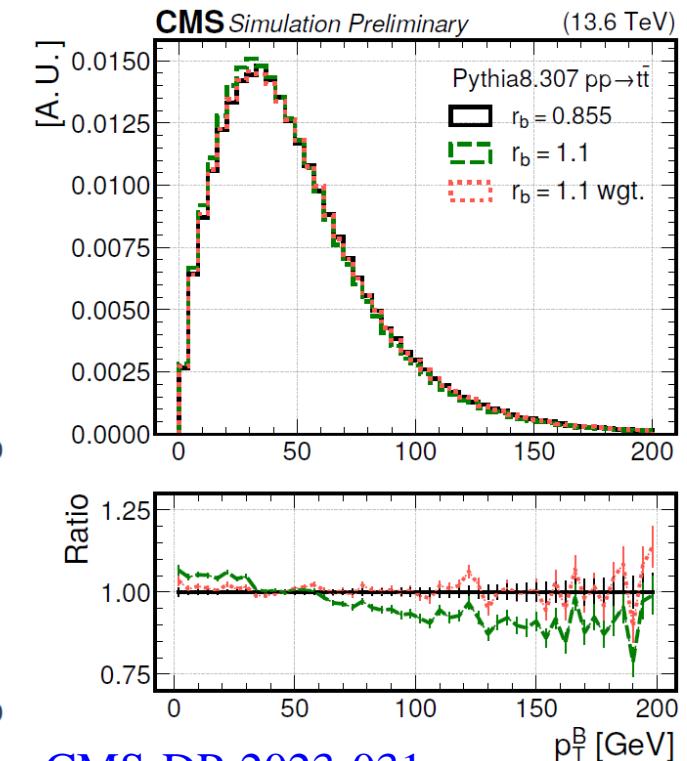


[L. Weng](#)

Reweighting for Uncertainties

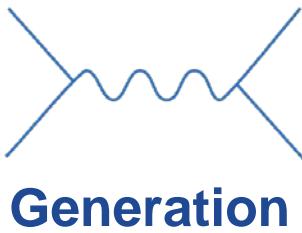
Generation

- Event generators come with many *theoretical uncertainties* in internal parameters
 - Some can be represented as alternate weights for a single event
 - Others cannot; producing multiple samples is extremely computationally demanding (need enough events to minimize redundant statistical uncertainties)
- DCTR method: [arXiv:1907.08209](https://arxiv.org/abs/1907.08209)
 - Train a classifier C to distinguish between two datasets A & B
 - Then dataset B can be reweighted to the distribution of dataset A using NN output:
$$w = C(x)/(1 - C(x)) \approx p_A(x)/p_B(x)$$
- Train on generator-level information: only need to repeat first step
 - Effectively transforms all theory uncertainties into event weights!
 - Shown for h_{damp} (POWHEG) & r_b (PYTHIA)
 - Expect rapid adoption!

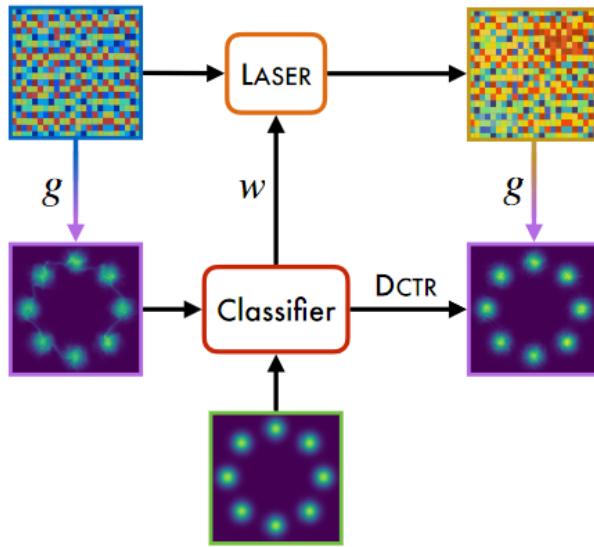
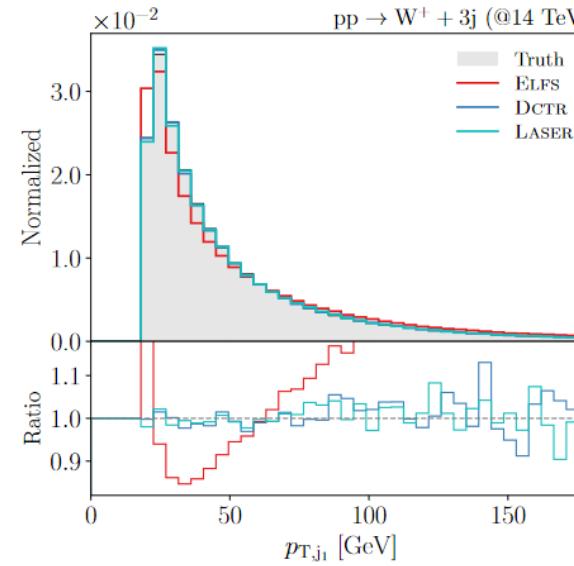
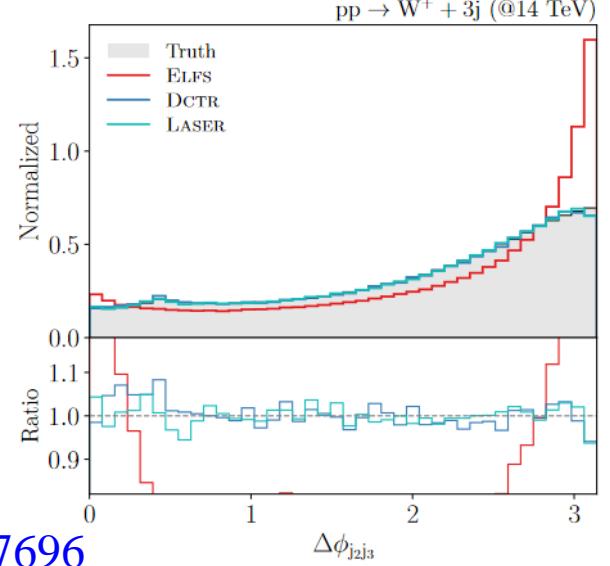


[CMS-DP-2023-031](https://cds.cern.ch/record/2853023)

Latent Space Refinement



- DCTR gives accurate output, but reduces statistical precision (events have weights)
- Alternative: apply weights to *latent space* of generative model (NF) \rightarrow LASER
 - Requires sampling from latent space using Hamiltonian Monte Carlo
- Result: unweighted events with comparable precision to DCTR
 - Promising for important and computing-intensive processes like W+jets
 - Performance also depends on preprocessing of features (particle 4-vectors)

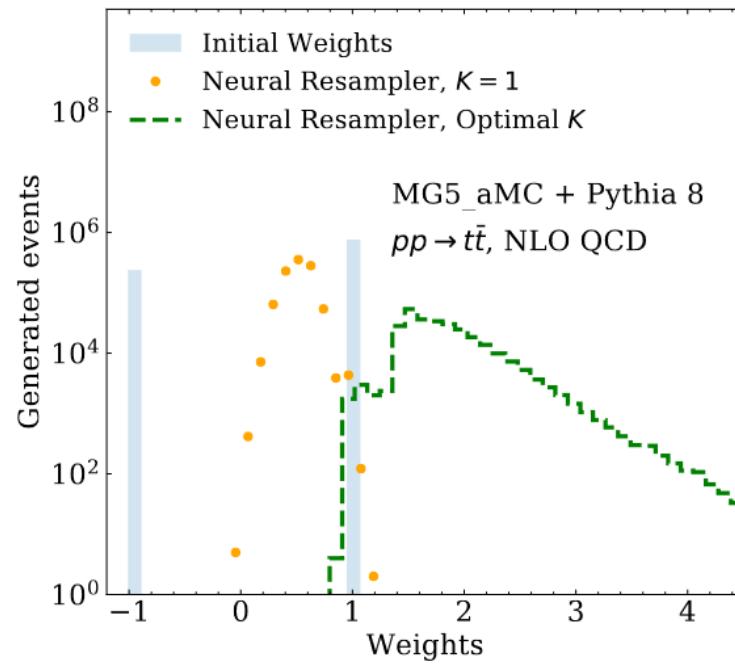
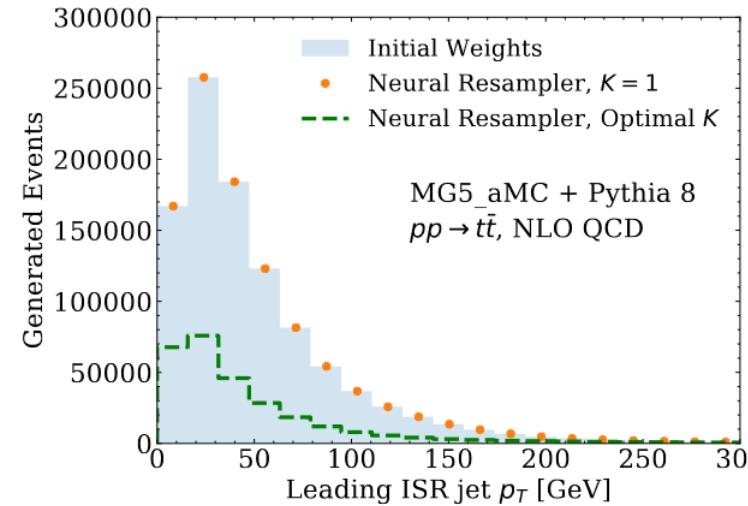


[arXiv:2305.07696](https://arxiv.org/abs/2305.07696)

Resampling to Reduce Negative Weights

Generation

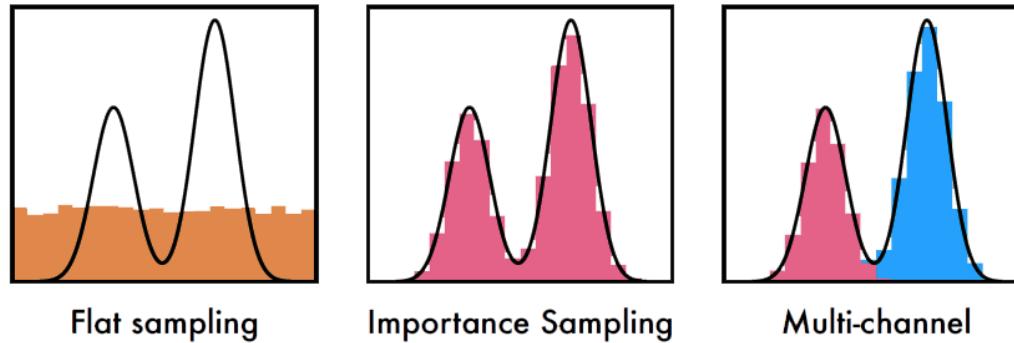
- Use Particle Flow Network (DeepSet architecture) to learn weight W and variance W^2
 - Employing DCTR approach
- Define $K = W^2/(W)^2$
- Keep an event with probability $1/K$
- Set weights of kept events to be WK
- Substantially reduce number of generated events
 - *Eliminate* all negative weights
 - Preserve both mean and variance
 - Reduce downstream computational burden:
fewer events to simulate, digitize, reconstruct, analyze



MADNIS

Generation

- Expanded use of *neural importance sampling* for multi-channel processes
- Combines generative and non-generative ML
- Implemented in MADGRAPH
- Substantial improvement especially for processes w/ interference (e.g. vector boson scattering)



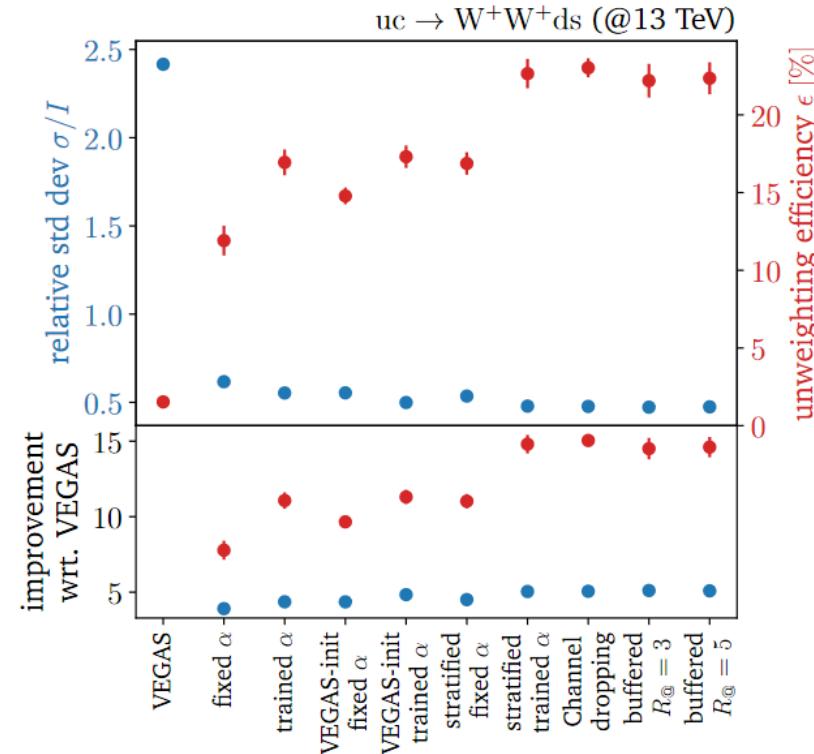
Weights: Parametrize with **NN**

Mappings: Parametrize with **NF**

$$I = \sum_i \left\langle a_i(x) \frac{f(x)}{g_i(x)} \right\rangle_{x \sim g_i(x)}$$

R. Winterhalder

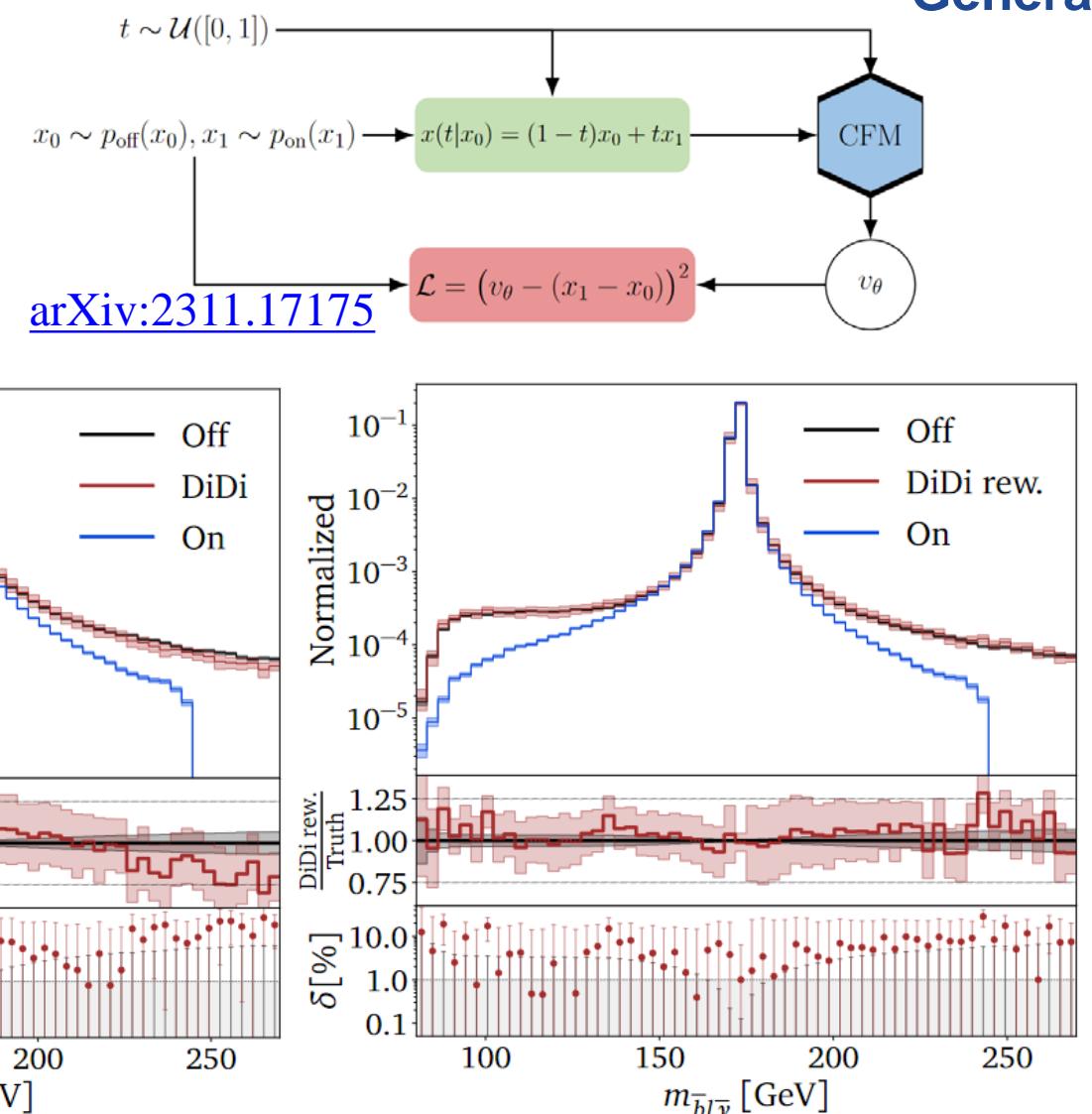
- New methods:
 - Stratified training: more samples for higher-variance channels
 - Channel dropping: remove channels with insignificant weights



[arXiv:2311.01548](https://arxiv.org/abs/2311.01548); see also [T. Heimel](#)

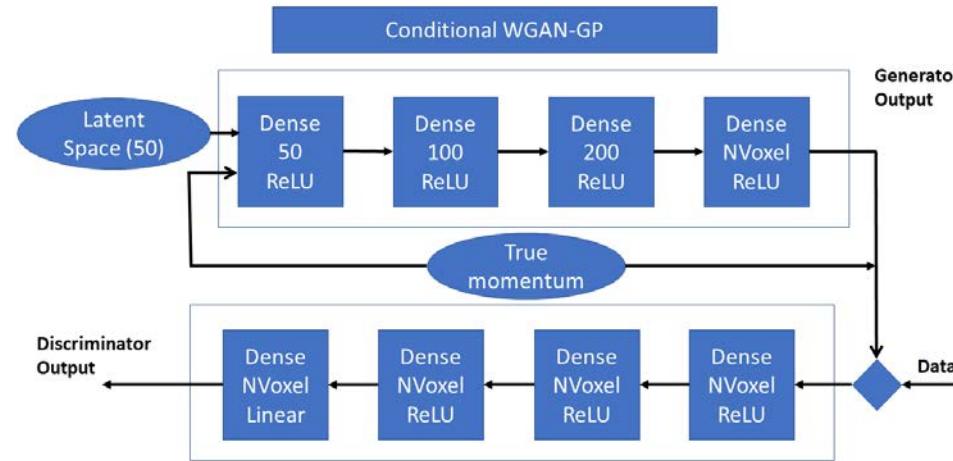
Off-Shell Effects

- Precision measurements require eliminating on-shell approximations
- Direct diffusion (DiDi) model that learns a mapping from on-shell (x_1) to off-shell (x_0) distributions
 - Using conditional flow matching
- Good results for off-shell $t\bar{t}$ production (proof of concept)
- Results can be further improved with DCTR-style reweighting



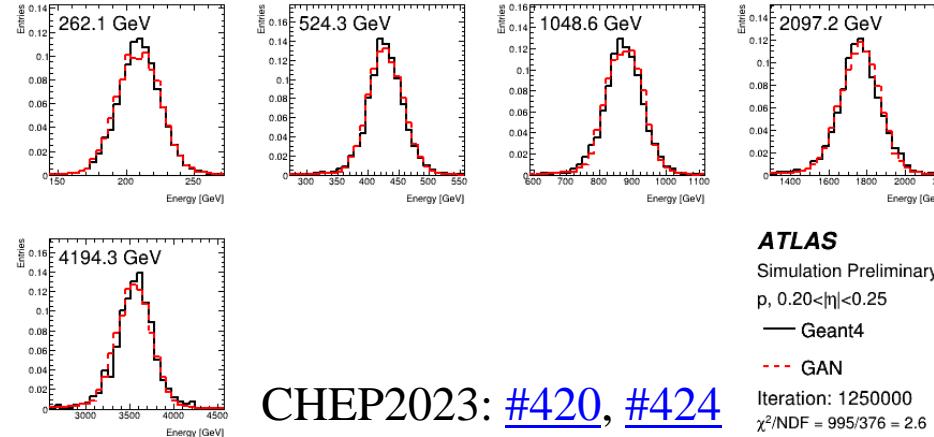
Generative Models for ATLAS Simulation

Simulation



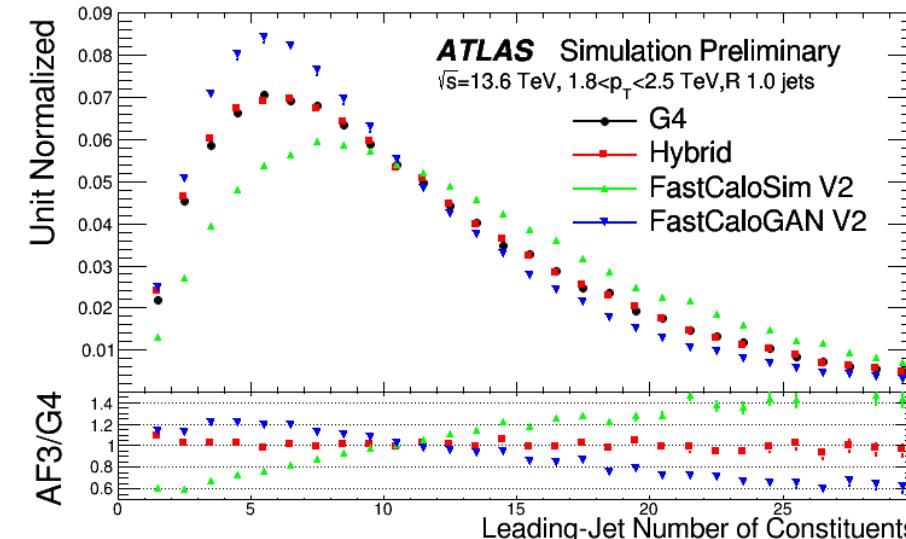
- FastCaloGAN architecture: Wasserstein loss prevents mode collapse
- Separate GANs trained for 100 η slices and for each particle type: γ , e, π^\pm , p \rightarrow 600 total
 - Hyperparameters optimized for each particle
 - ~ 100 V100 GPU-days for final training
- Irregular geometry voxelized for training
- Incorporated in AtlFast3 along with FullSim and FastSim modules (depending on particle type, etc.)

- Good agreement for protons (new!)



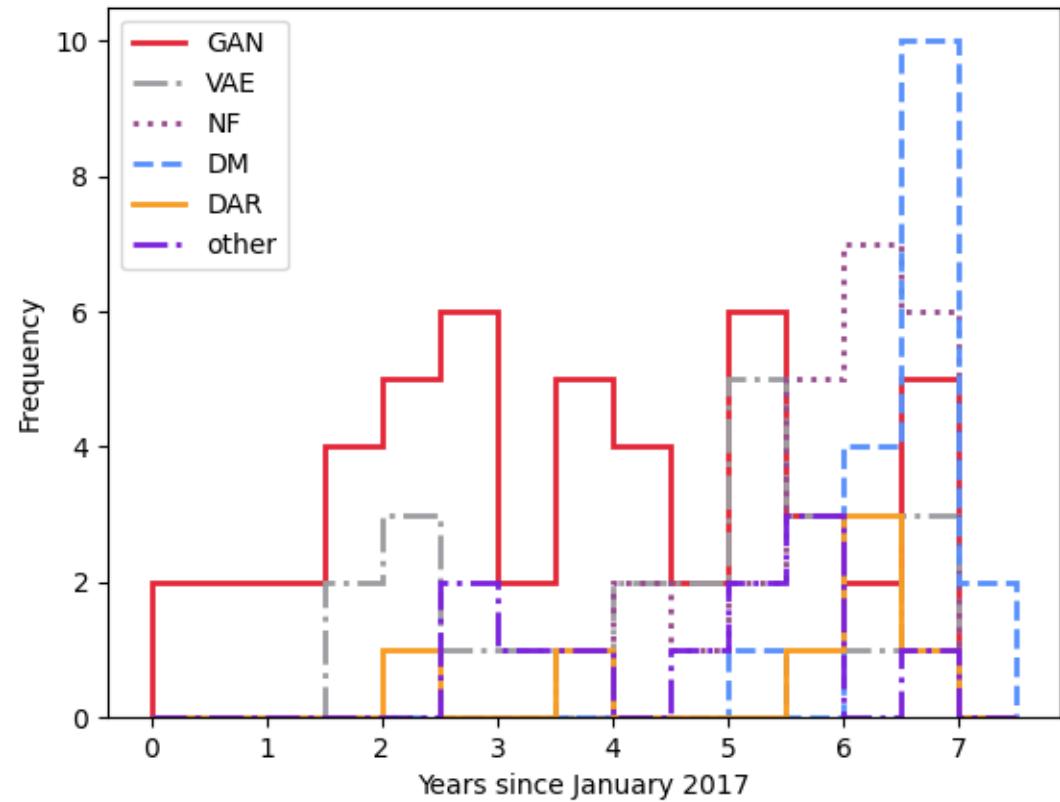
CHEP2023: [#420](#), [#424](#)

- Hybrid approach improves modeling of high-level quantities



7 Years of ML4Sim

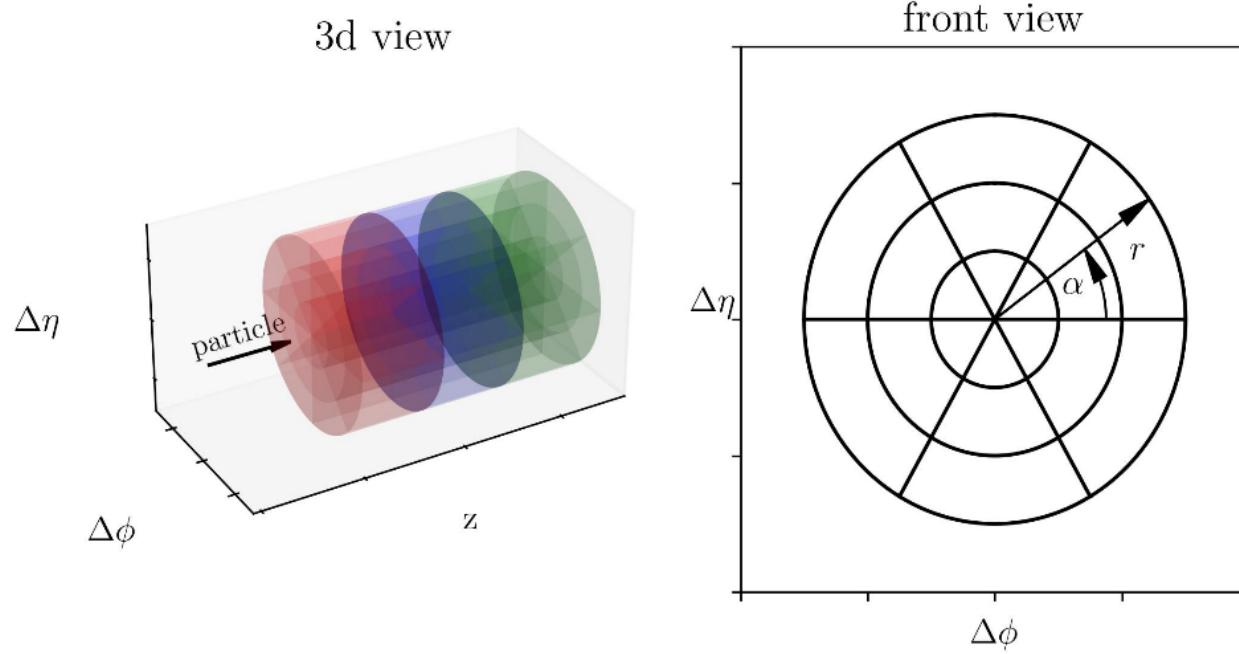
- From my database of 100+ ML4Sim-related papers
- Normalizing flows and diffusion models supplanting traditional GANs and VAEs
- Almost exponential takeoff for diffusion models
 - Following industry dominance in image generation Stable Diffusion, DALL·E, Midjourney, etc.
- Some growing interest in autoregressive models
 - Perhaps motivated by success in industry (GPT)
- Common datasets and metrics: big step forward to compare different approaches



“Other” = non-generative models (FCNs, CNNs, GNNs), typically regression-based approaches

CaloChallenge

Simulation



- [CaloChallenge](#): first competition for generative ML for detector simulation
- Three public datasets provided:
 1. Low granularity, irregular geometry (based on ATLAS calorimeter), photon & pion showers
 2. Medium granularity, silicon-tungsten sampling calorimeter, electron showers
 3. High granularity, otherwise same as #2

- Common datasets are crucial to compare different generative methods
 - Using metrics discussed on next slide
- Many new methods developed for the challenge
 - Preliminary comparisons will be shown

Metrics

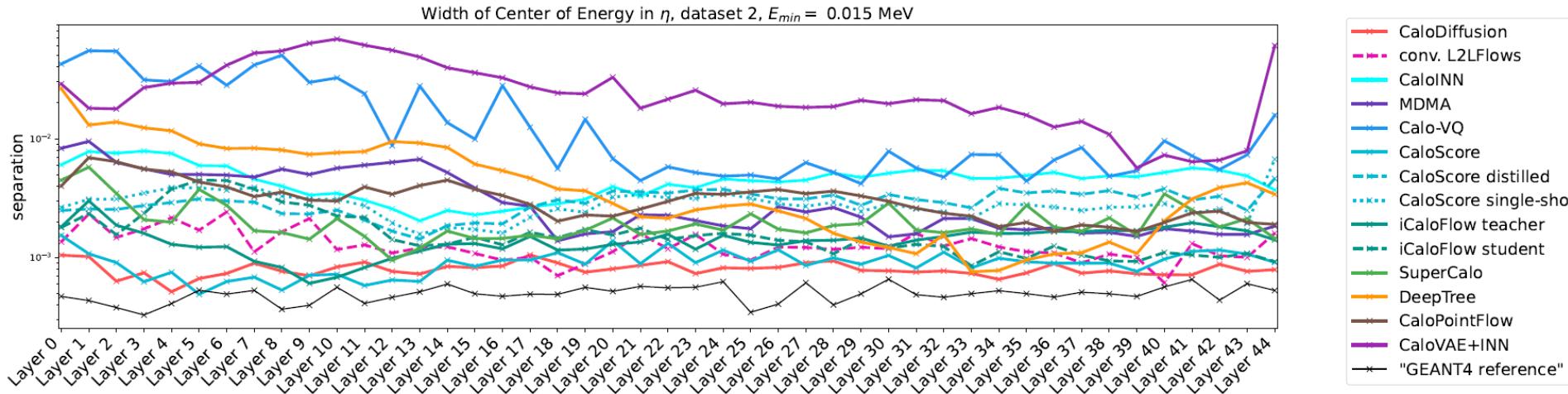
Simulation

- Speed only matters if needed accuracy is achieved
 - Wrong answers can be obtained infinitely fast
- 1D histograms:
 - e.g. separation power $S(g,h) = \frac{1}{2} \sum_{(g+h)} (g-h)^2 / (g+h)$
 - Can miss high-dimensional correlations
- Best category: **integral probability metrics**
$$D_{\mathcal{F}}(p_{\text{real}}, p_{\text{gen}}) = \sup_{f \in \mathcal{F}} |\mathbb{E}_{\mathbf{x} \sim p_{\text{real}}} f(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p_{\text{gen}}} f(\mathbf{y})|$$
 - *Wasserstein distance* W_1 : \mathcal{F} is set of all K-Lipschitz functions
 - Only works well in 1D, biased in high-D
 - *Maximum mean discrepancy* (MMD): \mathcal{F} is unit ball in reproducing kernel Hilbert space
 - Depends on choice of kernel
- *Fréchet distance*: W_2 distance between Gaussian fits to (high-D) feature space
 - Features can be hand-engineered or obtained from NN activations
- Another interesting category: *classifier scores*
 - Train NN to distinguish real vs. generated
 - AUC score: ranges from 0.5 to 1.0
 - Log-posterior probability in multiclass case
- *Fréchet Particle Distance* most clearly distinguishes between two similar approaches

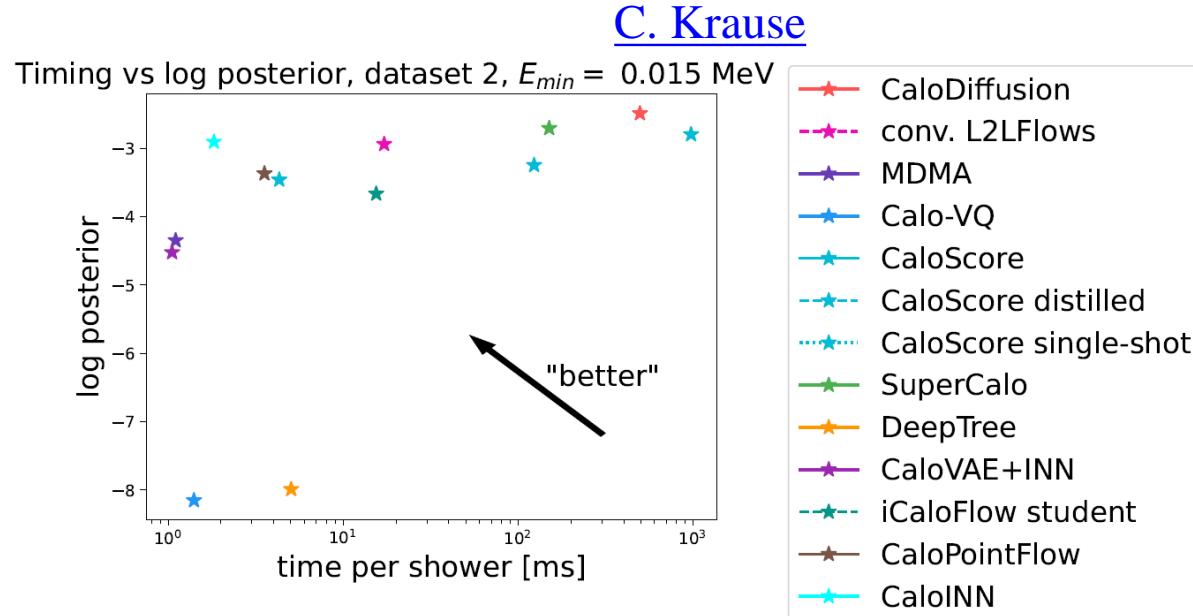
	FPD $\times 10^3$	KPD $\times 10^3$	$W_1^M \times 10^3$
Truth	0.08 ± 0.03	-0.006 ± 0.005	0.28 ± 0.05
MPGAN	0.30 ± 0.06	-0.001 ± 0.004	0.54 ± 0.06
GAPT	0.66 ± 0.09	0.001 ± 0.005	0.56 ± 0.08

CaloChallenge Results

Simulation



- Diffusion models and normalizing flows tend to have best performance
- However, diffusion models especially tend to be slower in inference
 - Iterative process – multiple steps required to get highest accuracy



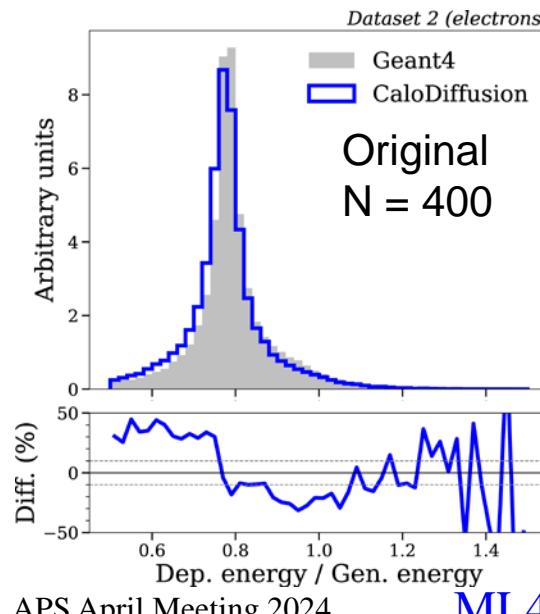
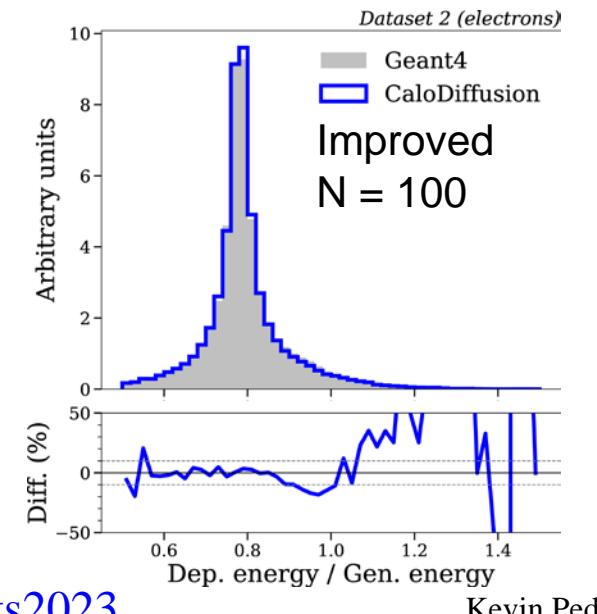
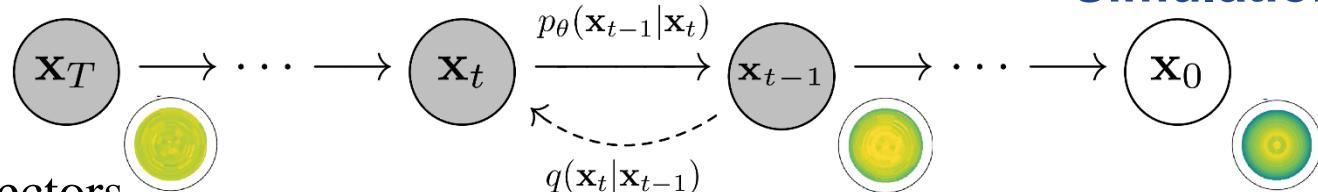
CaloDiffusion

- Current state-of-the-art model: denoising w/ convolutional U-net architecture

- Various geometric adaptations:

- Conditional cylindrical convolutions
- Geometry latent mapping for irregular detectors
- Attention layers for long-range correlations in z

- Improvement from original: LayerDiffusion to predict total energy per layer $\rightarrow 4\times$ speedup & better quality
- More speedups in [arXiv:2401.13162](https://arxiv.org/abs/2401.13162)



- Comparison to other SOTA models:
 - Best classifier AUC scores
 - Low distance values compared to Geant4

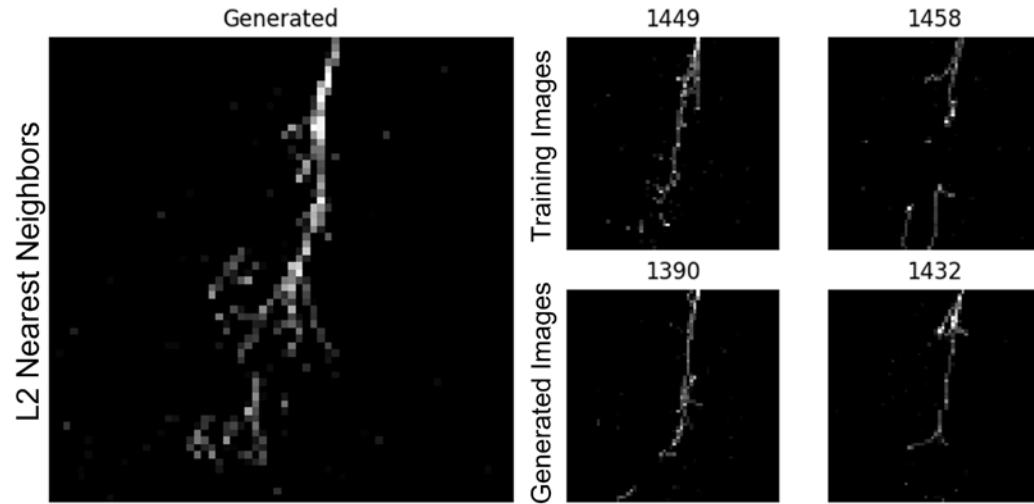
Dataset	Classifier AUC (low / high)		
	CaloDiffusion	CaloFlow	CaloScore v2
1 (photons)	0.62 / 0.62	0.70 / 0.55	0.76 / 0.59
1 (pions)	0.65 / 0.65	0.78 / 0.70	- / -
2 (electrons)	0.56 / 0.56	0.80 / 0.80	0.60 / 0.62
3 (electrons)	0.56 / 0.57	0.91 / 0.95	0.67 / 0.85

Dataset	FPD [†]	KPD
1 (photons)	0.014(1)	0.004(1)
1 (pions)	0.029(1)	0.004(1)
2 (electrons)	0.043(2)	0.0001(2)
3 (electrons)	0.031(2)	0.0001(1)

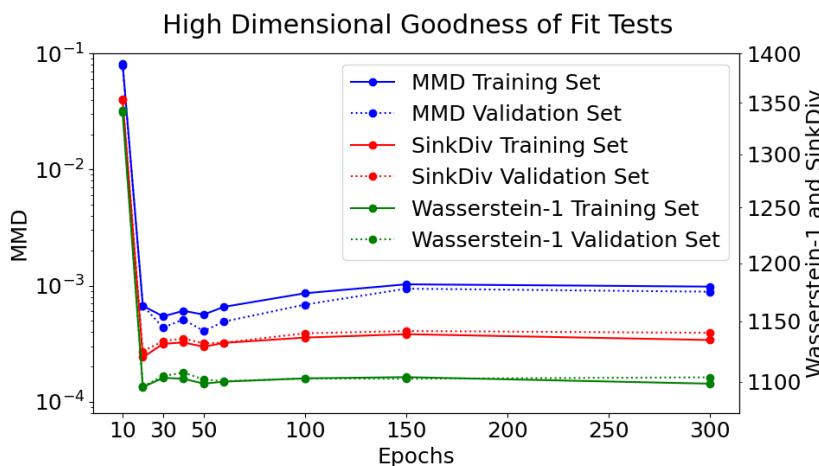
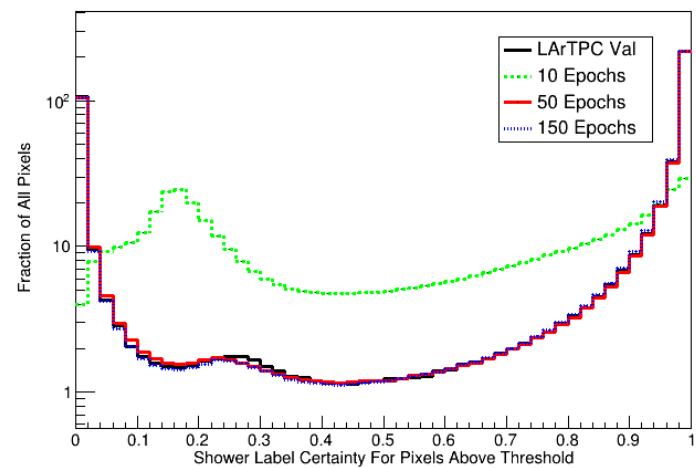
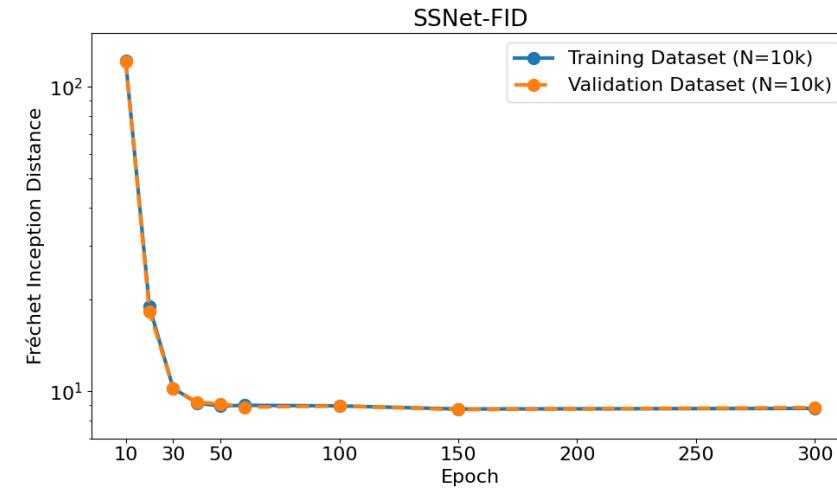
Diffusion for Liquid Argon TPCs

Simulation

- Diffusion models can also simulate ionization deposits from charged tracks in LAr TPC detectors
 - Here, score-based rather than denoising model is used
- Both visual and quantitative comparisons
 - Various distance metrics, [SSNet](#) scores, Fréchet inception distance (from SSNet activations)
- Superior to previous attempts (VAE)



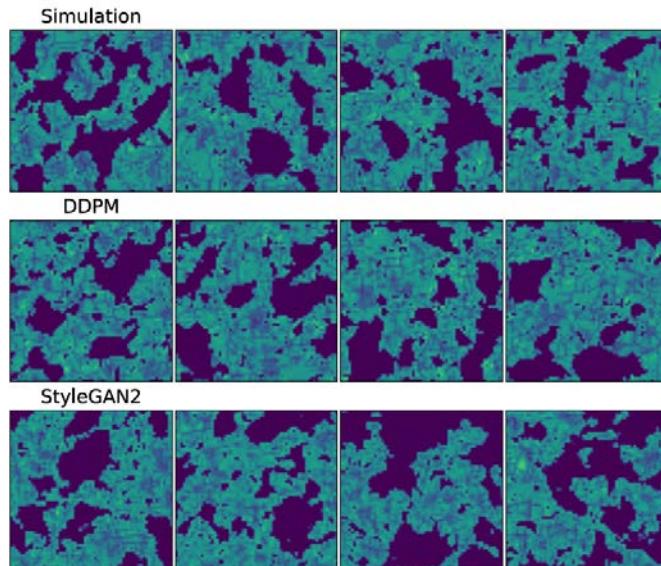
[arXiv:2307.13687](#)



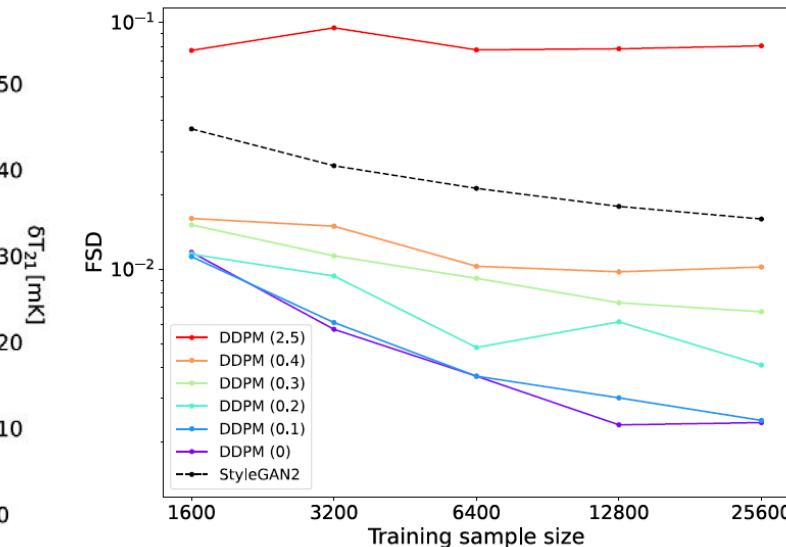
Diffusion for Astrophysical Images

Simulation

- Diffusion models can simulate various astrophysical phenomena
 - Denoising DM for CMB maps (21 cm brightness temperature)
- Quantified using Fréchet scattering distance (from coefficients)
 - Substantial improvement over GANs
 - $\sim 100\times$ slower than GANs, but GPU inference still $\sim 5\times$ faster than traditional CPU-based simulation



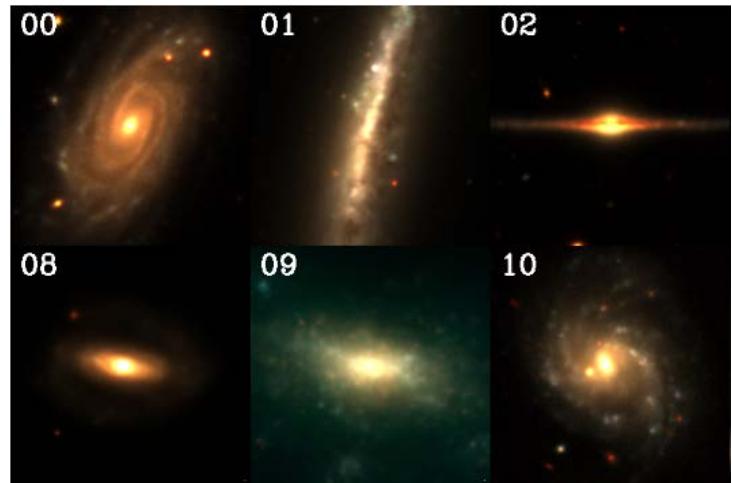
[arXiv:2307.09568](https://arxiv.org/abs/2307.09568)



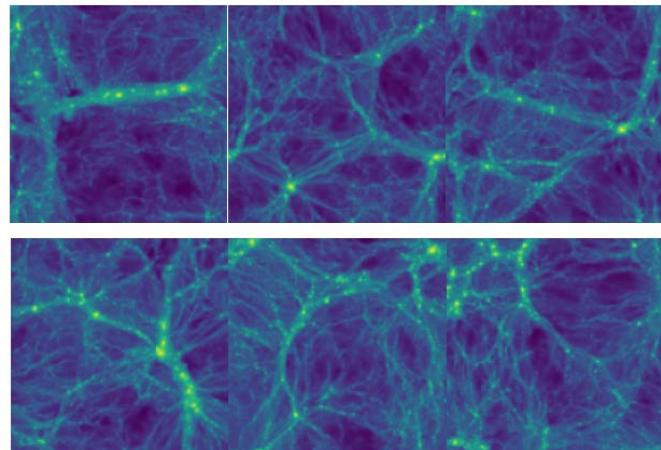
Kevin Pedro

- Also applied to:

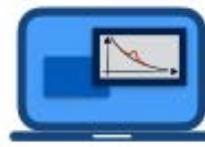
- Galaxy images ([arXiv:2111.01713](https://arxiv.org/abs/2111.01713))



- Dark matter maps ([arXiv:2211.12444](https://arxiv.org/abs/2211.12444))

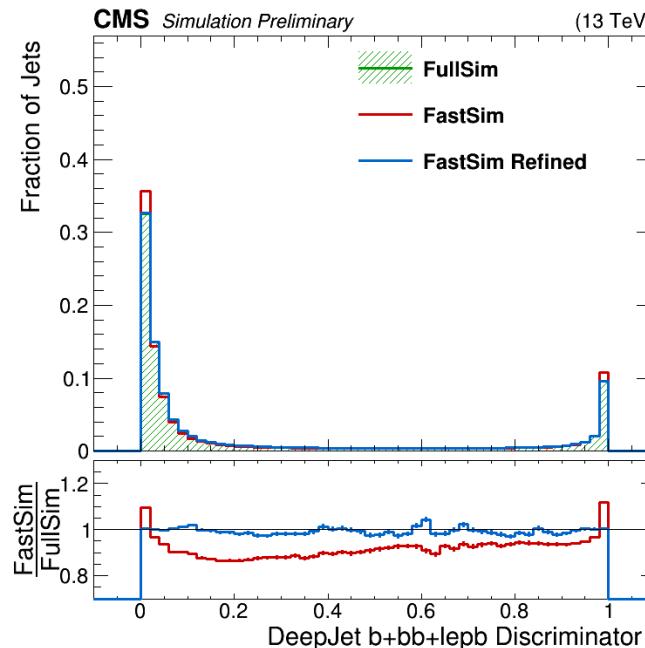
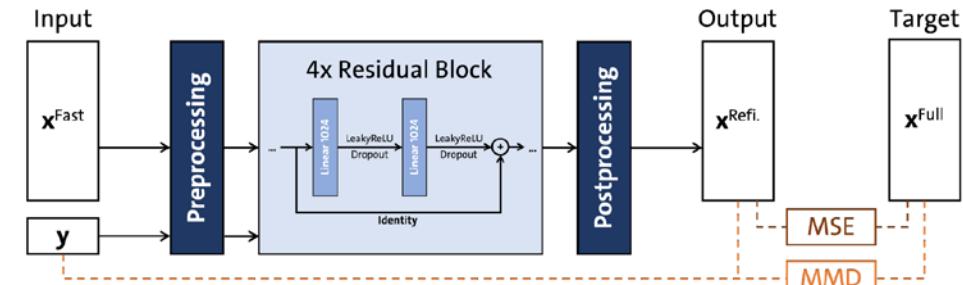


High-Level Refinement

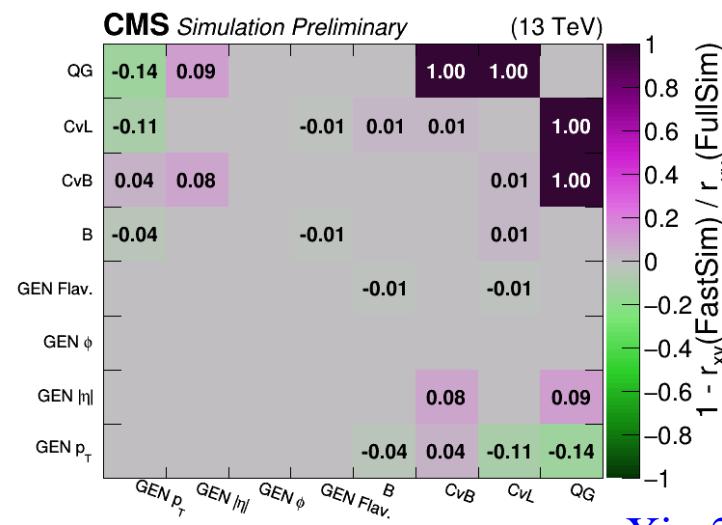
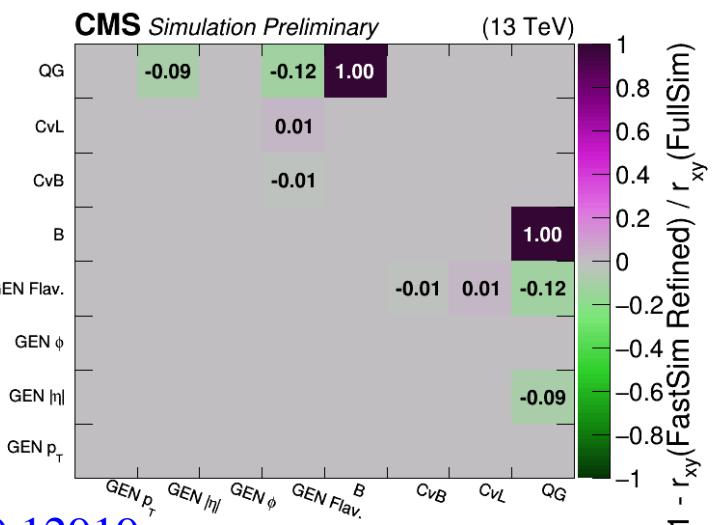


Analysis

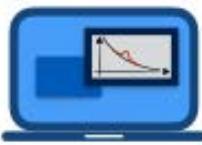
- Alternate approach: ML adjusts high-level quantities from existing CMS FastSim to match FullSim
 - Replaces coarse, manual correction factors
- Loss functions: ensemble & object-by-object comparisons
- Improves metrics, 1D distributions, correlations
- Generalizes to other processes; now being extended to more variables for Run 3 deployment



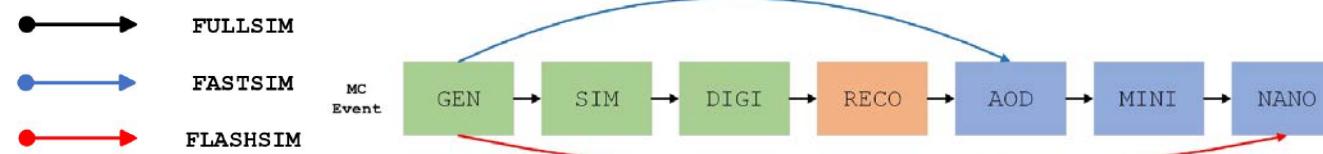
FullSim vs.	FPD $\times 10^3$	KPD $\times 10^3$
FastSim	0.801 ± 0.046	1.07 ± 0.58
FastSim Refined	0.071 ± 0.025	0.083 ± 0.418
FullSim	0.061 ± 0.029	-0.024 ± 0.250



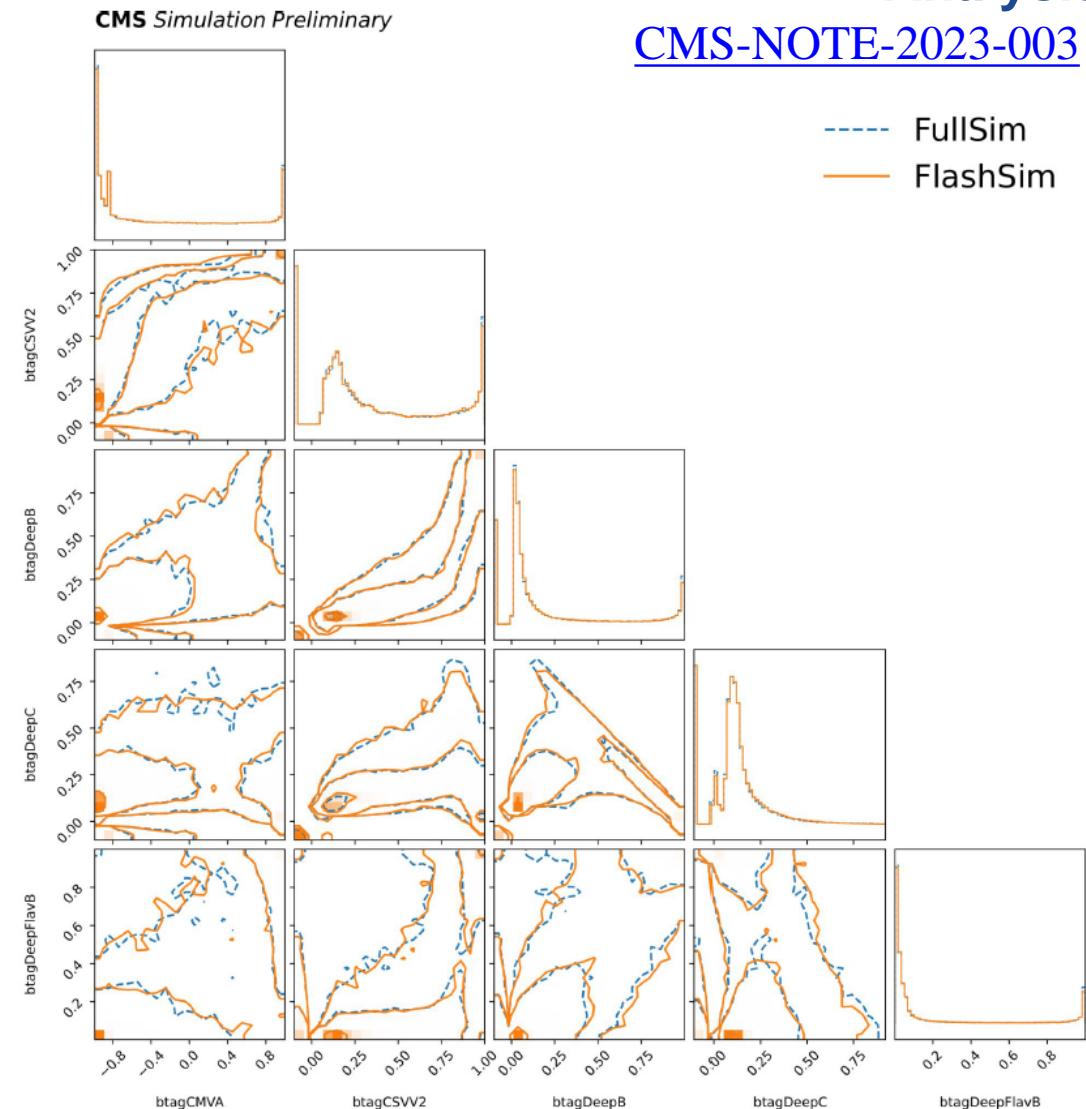
arXiv:2309.12919



End-to-end: FlashSim

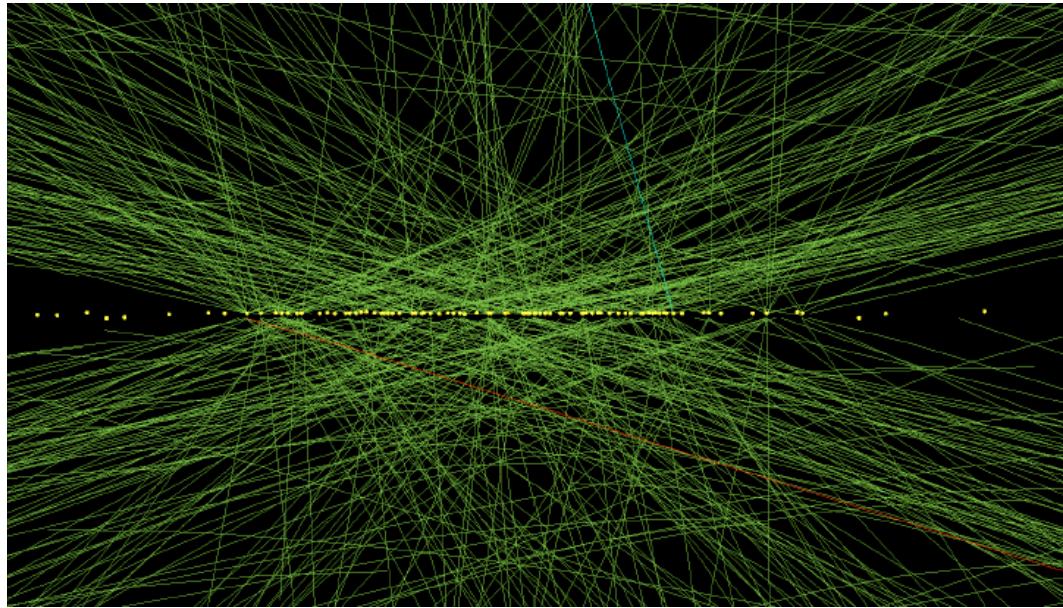


- Normalizing flow to predict high-level analysis quantities from generator-level information
- Reproduces correlations even in ML b-tagging algorithm scores
- Currently covers: jets (real & fake), muons, electrons
- Very promising solution for end-stage analyses
 - Effectively infinite event sample
→ minimize statistical fluctuations
- Complementary w/ simulation step solutions
 - Need to develop calibrations, algorithms, etc. to produce training data for FlashSim
 - These tend to vary more rapidly than geometry



Pileup: An Overlooked Case

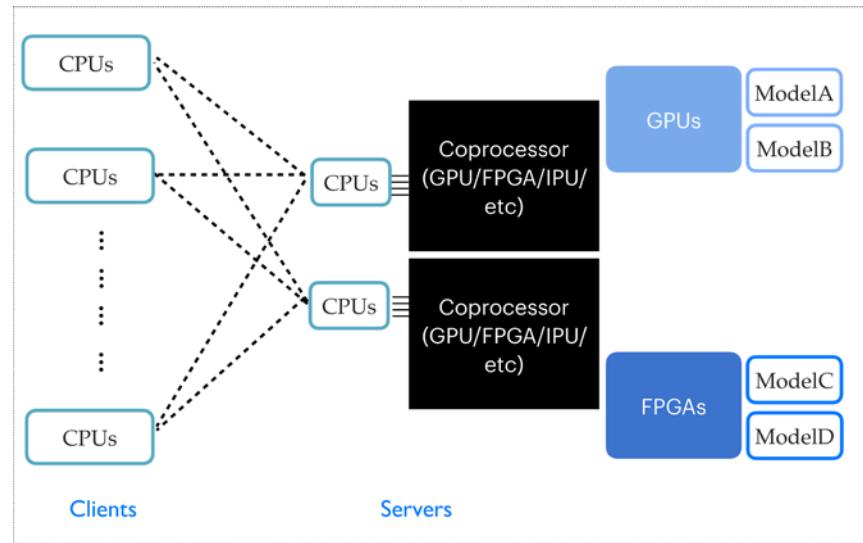
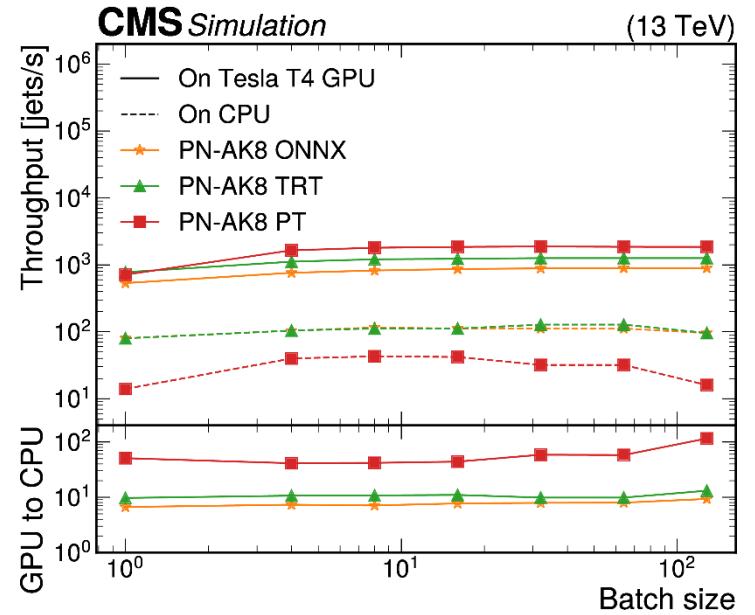
Digitization



- “Classical” mixing: overlay n_{PU} *distinct* simulated minimum bias events *per bunch crossing* on top of signal event → massively I/O intensive
- “Premixing”: perform overlay in advance, save hits after aggregation (digitized format)
 - Leads to $O(PB)$ samples that have to be served throughout the grid with very high availability
 - Better than classical mixing, but still disk- and network-intensive
- Viewed as a solved problem... but substantial room for improvement
 - Generative ML could compress $O(PB)$ samples into $O(MB)$ model + random number generator & conditioning info → *completely eliminate* premixing resource usage (in exchange for training)
- Straightforward to repurpose detector simulation surrogates, but also possible improvements here
 - Train on data and realize long-awaited data mixing?
- Similar principles apply to e.g. beam-induced backgrounds, dust overlays, etc.

Computing for ML

- ML algorithms use a restricted set of operations (mostly matrix multiplications)
 - Natural and easy to accelerate on specialized coprocessors
- *Most flexible* approach: inference as a service
 - Abstract away specific computing elements: client makes request, server delivers
 - Example: ParticleNet 10–100× faster on GPU vs. CPU
 - Algorithm latency becomes essentially *invisible* with asynchronous calls in offline processing
 - Can batch *across events* for optimal GPU utilization → maximize throughput
- Demonstrated for [CMS](#), [protoDUNE](#), [LIGO](#), [analysis facilities](#)
 - Use CPUs, GPUs, FPGAs, TPUs, IPUs... with zero code changes!
 - Optimally exploit new GPU-based High Performance Computing (HPC) facilities



Conclusion

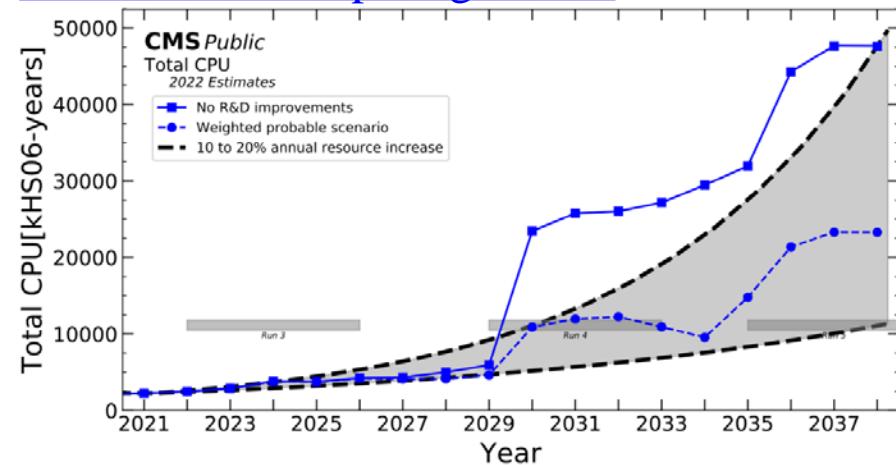
- Growing usage of AI/ML methods for event generation and simulation
 - Both generative models and non-generative classification/regression techniques are useful
- Increasing focus on resolving *practical problems*: improve both *accuracy* and *computing time*
 - Implementing in common or experiment software frameworks
 - Using ML at production scale – beyond proof of concept
- Applications throughout HEP
 - Primarily investigated for collider physics so far
 - Neutrino and astrophysics starting to see more adoption
- Diffusion models particularly powerful
 - Techniques like flow matching poised to unify normalizing flows and diffusion models
- Many more novel applications than could be discussed here
 - SIM reviews: [arXiv:2203.08806](https://arxiv.org/abs/2203.08806), [arXiv:2312.09597](https://arxiv.org/abs/2312.09597)
 - GEN reviews: [arXiv:2202.05991](https://arxiv.org/abs/2202.05991), [arXiv:2203.07460](https://arxiv.org/abs/2203.07460)
 - Overall: [HEPML-LivingReview](https://hepml-livingreview.readthedocs.io)

Background generated by SDXL 1.0 w/
prompt: “A GEANT4 simulation of a pion
shower with energy 100 GeV in the
Compact Muon Solenoid High Granularity
Calorimeter at the CERN Large Hadron
Collider, a particle physics experiment”

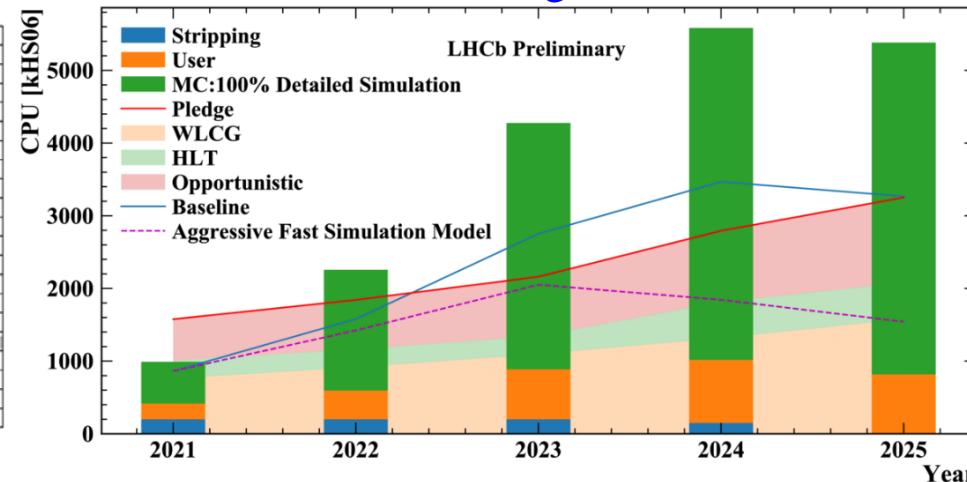
Backup

Projections

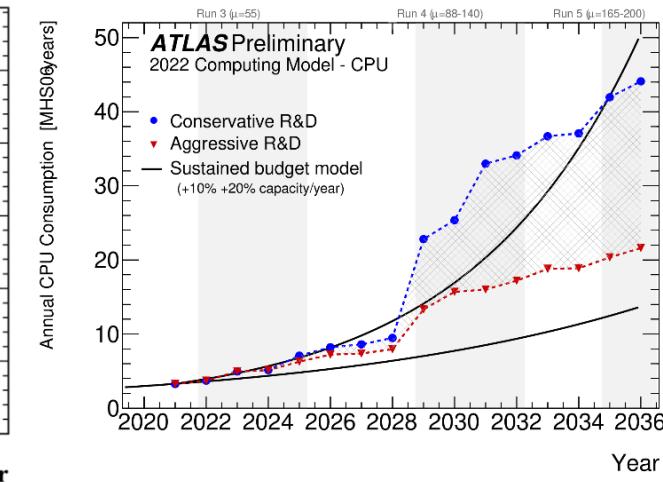
CMS Offline Computing Results



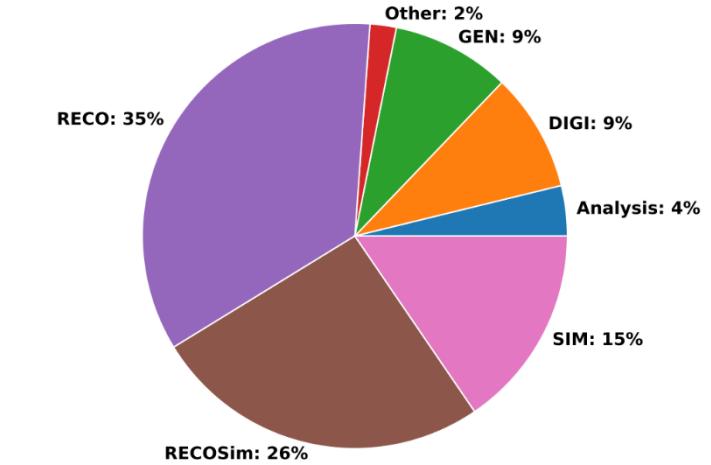
LHCb CPU Usage Forecast



CERN-LHCC-2022-005



CMS Public Total CPU HL-LHC (2031/No R&D Improvements) fractions

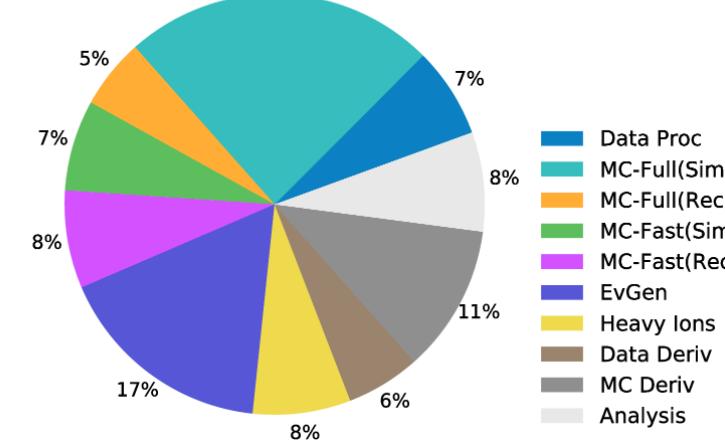


- Run 2: (full) simulation used ~40% (plurality) of grid computing resources for CMS & ATLAS [[arXiv:1803.04165](https://arxiv.org/abs/1803.04165)]
 - 70% for LHCb! [[LHCb-PUB-2022-010](#)]
- Run 4+: limit to ~10–20%, while simulating:
 - Complex detector upgrades
 - e.g. CMS High Granularity Calorimeter
 - More precise physics models
 - More events to reduce statistical uncertainty

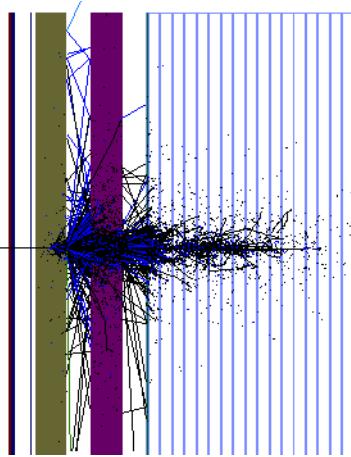
ATLAS Preliminary

2022 Computing Model - CPU: 2031, Conservative R&D

Tot: 33.8 MHS06*y



Simulation Landscape

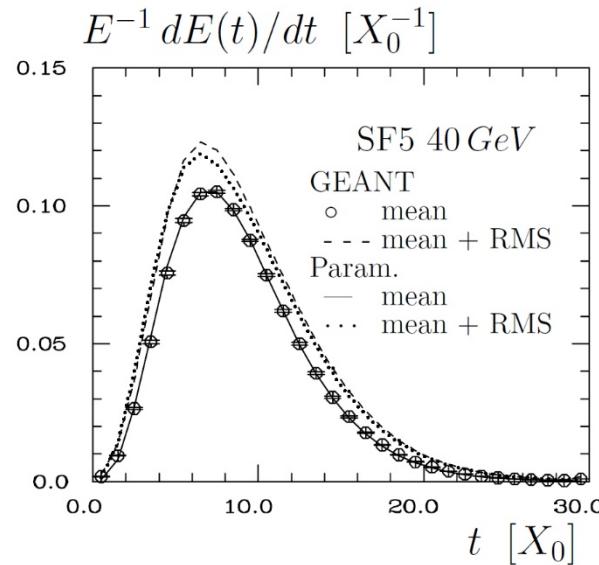


“FullSim”

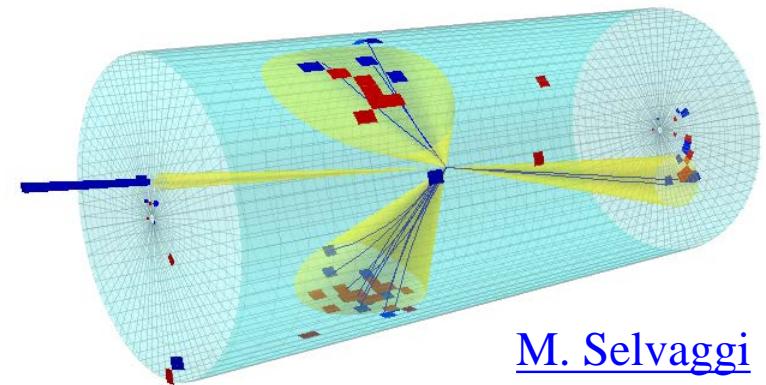
- Common software framework (i.e. Geant4)
 - Experiments can provide additional code via user actions
- Explicit modeling of detector geometry, materials, interactions w/ particles

“FastSim”

- Usually experiment-specific framework
- Implement approximations: analytical shower shapes (e.g. GFLASH), truth-assisted track reconstruction, etc.



[arXiv:hep-ex/0001020](https://arxiv.org/abs/hep-ex/0001020)



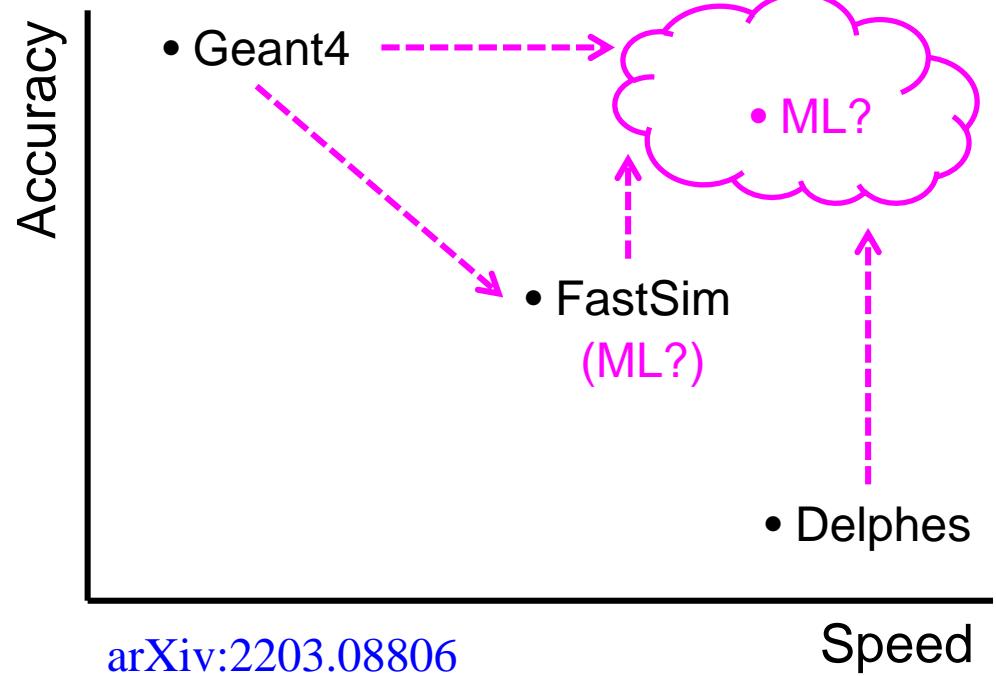
[M. Selvaggi](#)

Delphes

- Ultra-fast parametric simulation
- Used for phenomenological studies, future projections, etc.

ML4Sim Landscape

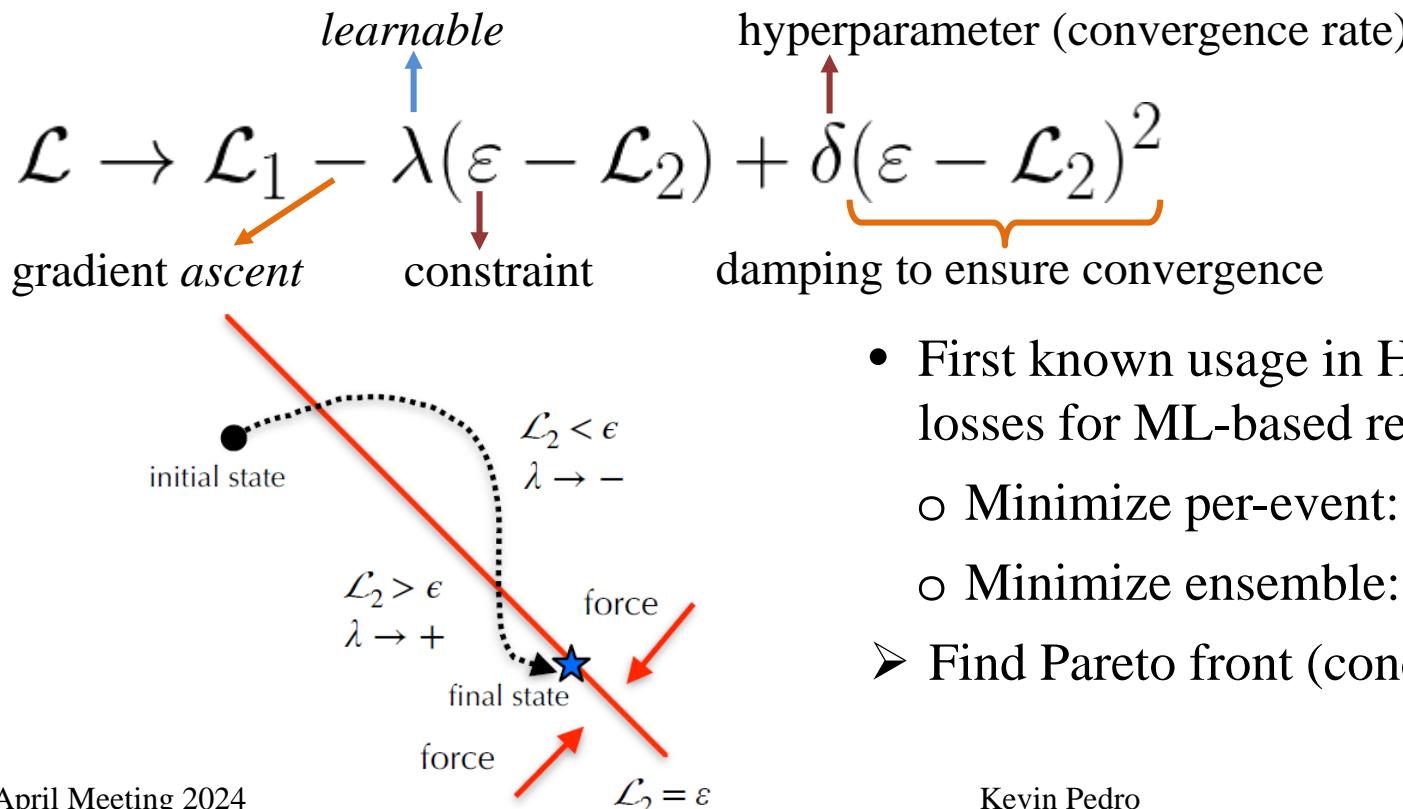
- Options to use ML for sim:
 1. Replace or augment (part or all of) Geant4
 2. Replace or augment (part or all of) FastSim
- Goals:
 1. Increase speed while preserving accuracy
 2. Preserve speed while increasing accuracy
- ML can also create faster, but less accurate simulation
 - à la existing classical FastSim
 - then augment w/ more ML to improve accuracy
 - Another option: replace entire chain (“end-to-end”)
 - Complements other cases



Constrained Optimization

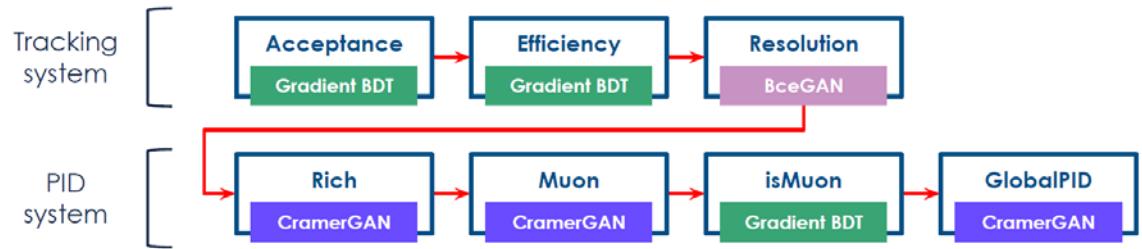
arXiv:2309.12919

- *General principle*: you can't optimize for two things at once
 - Instead, optimize for one thing with *constraints* on others (Lagrange)
- Multiple loss terms are one approach to encode domain knowledge
 - ☠ $\mathcal{L} \rightarrow \mathcal{L}_1 + \lambda \mathcal{L}_2 + \dots$; set λ by trial and error \rightarrow *objectively suboptimal*
- modified differential method of multipliers (mdmm): [\[paper\]](#), [\[blog\]](#), [\[code\]](#)

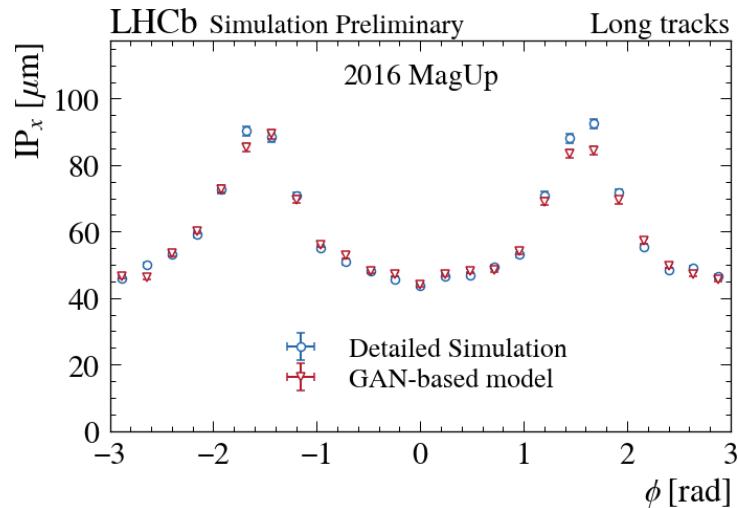
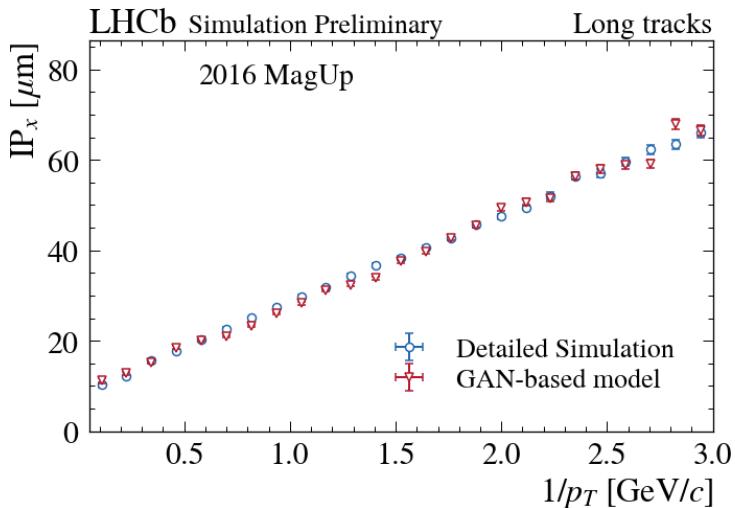


- First known usage in HEP: balance per-event and ensemble losses for ML-based refinement of classical FastSim
 - Minimize per-event: bad ensemble value
 - Minimize ensemble: per-event still good!
- Find Pareto front (concave or convex) and pick tradeoff

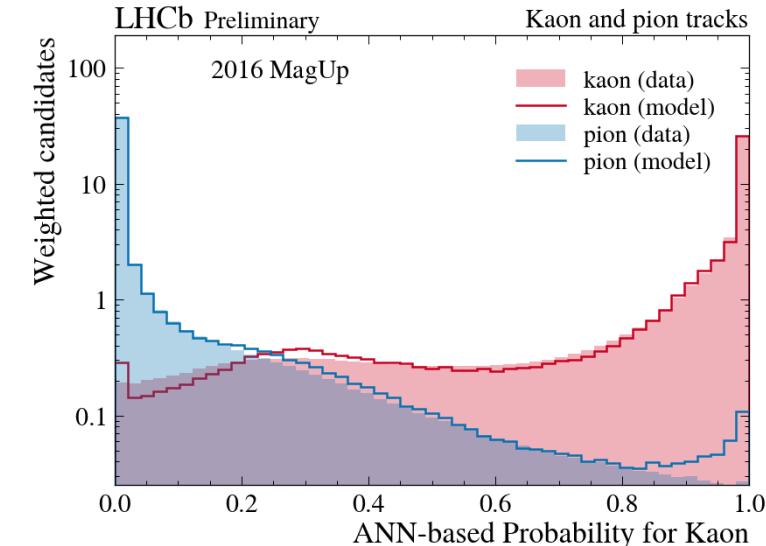
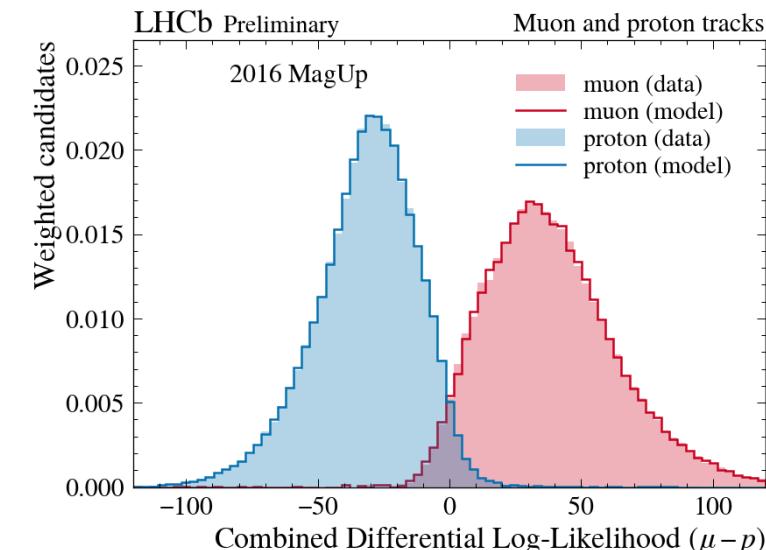
Generative Models at Colliders: LHCb



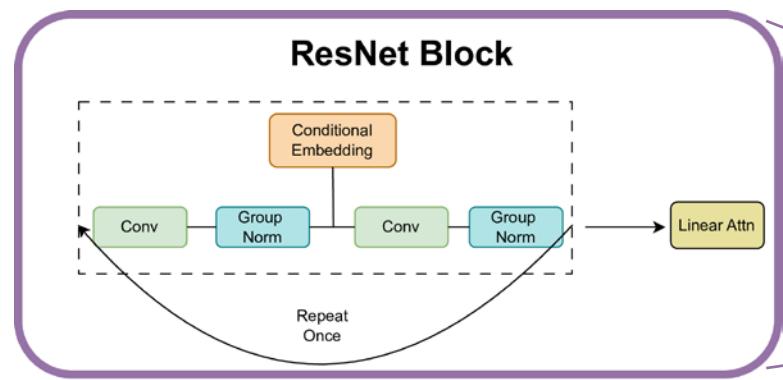
- “Stacked GAN” approach to parameterize different detector aspects
 - Cramér distance related to W_1
- Tracking resolution: well reproduced in p_T & ϕ



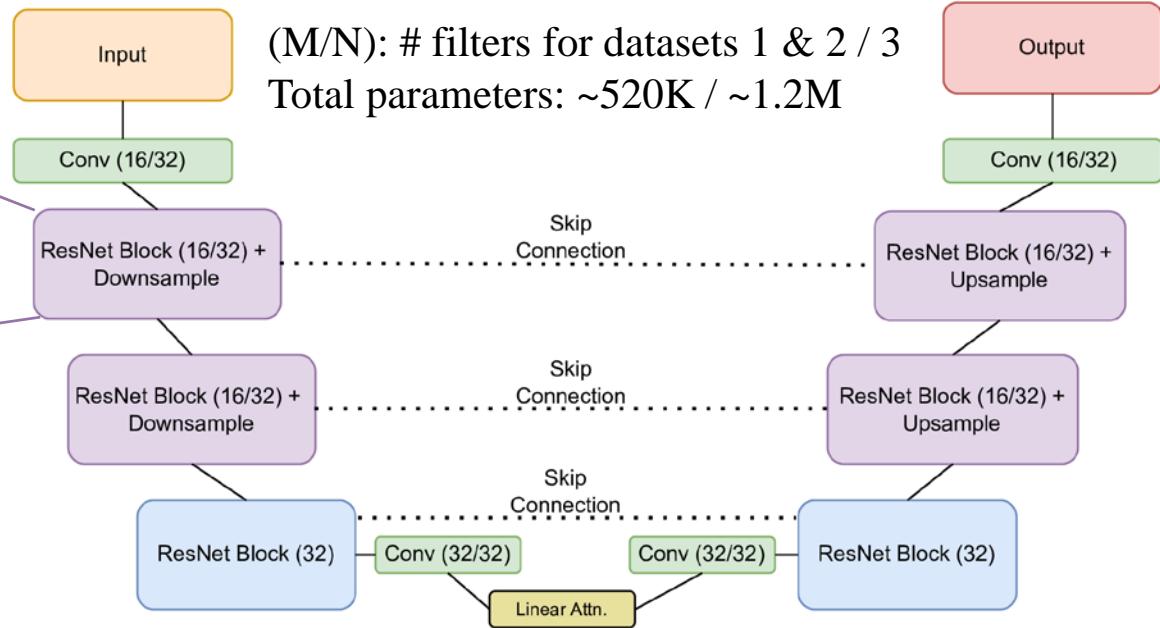
- Global PID variables also well reproduced:
 - Top: K^\pm vs. π^\pm
 - Bottom: μ vs. p



CaloDiffusion



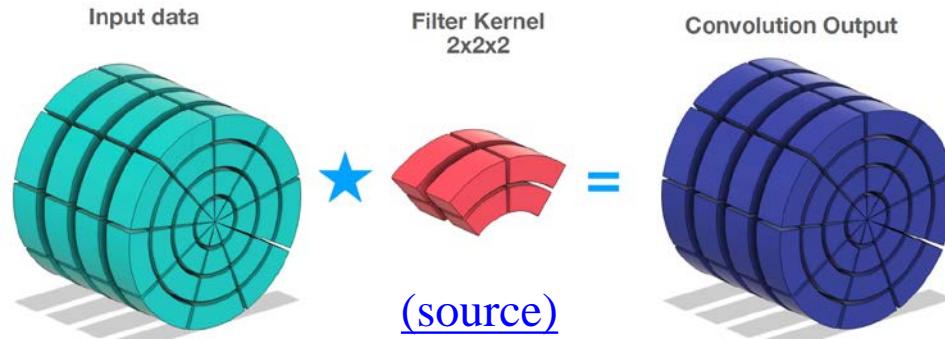
- Base architecture: U-net
 - Skip connections ensure no loss of information
- Linear self-attention layers applied to each convolutional ResNet block
 - Allows dimensionality reduction in z to handle longitudinal correlations in showers
- + numerous geometric innovations (next slide)
- Cosine noise schedule for training
- Stochastic sampling algorithm for generation



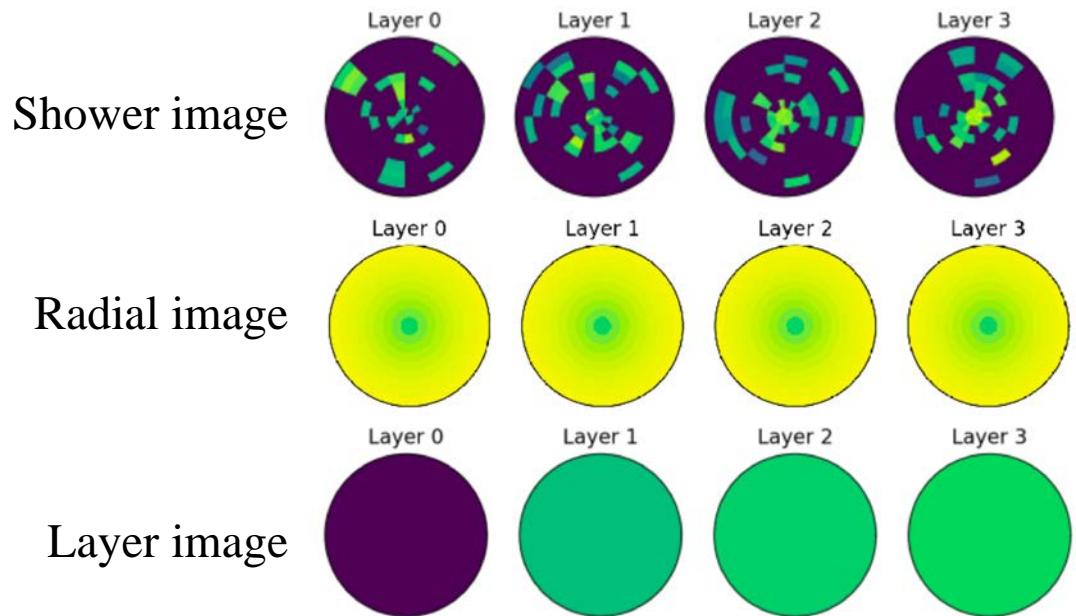
- Objectives:
 - Datasets 1 & 2: predict (normalized) noise
 - Dataset 3: predict weighted average of noise and denoised image
- Aim for highest achievable quality first
 - Then focus on improving speed
 - Wrong answers can be obtained infinitely fast

Geometric Innovations

- Particle showers are invariant & periodic in ϕ
 - Pad in ϕ so convolutions “wrap around”

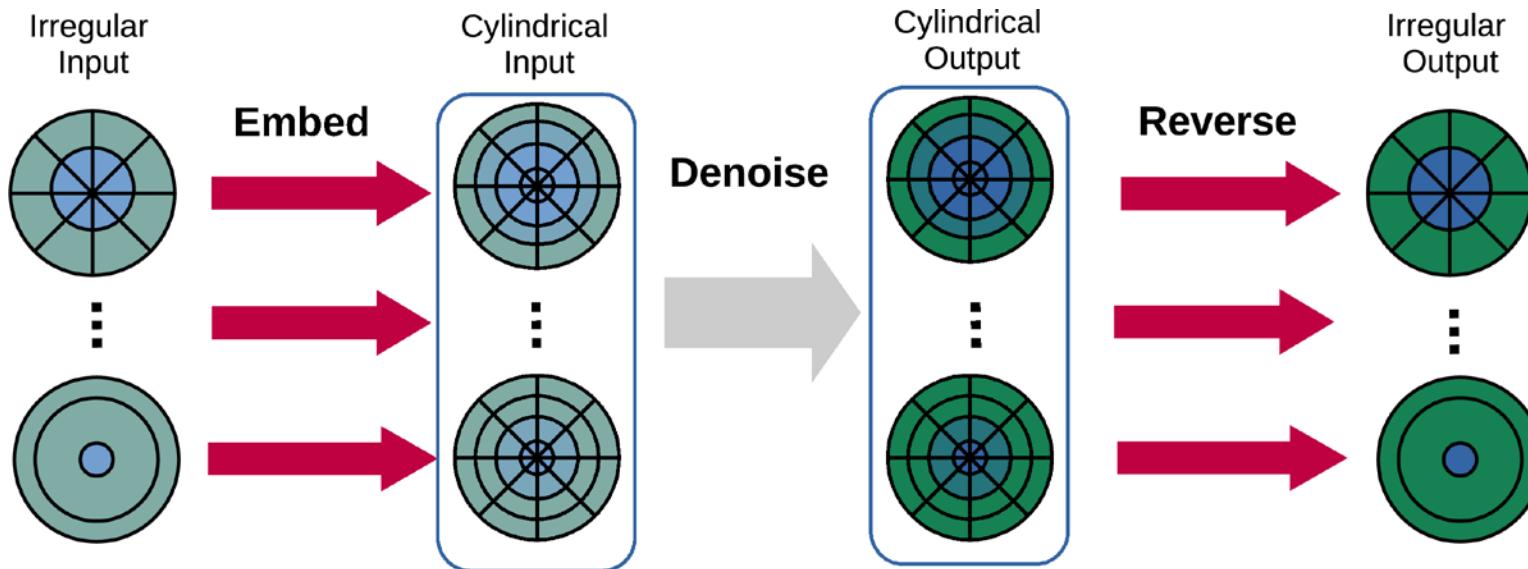


- Particle showers are *not* invariant in r or z
 - Provide r and z (layer) as extra per-pixel channels (input features)
 - Convolutions become *conditional*



- *Conditional cylindrical convolutions*
 - Handle inherent features of particle detector geometry, distinct from rectangular images

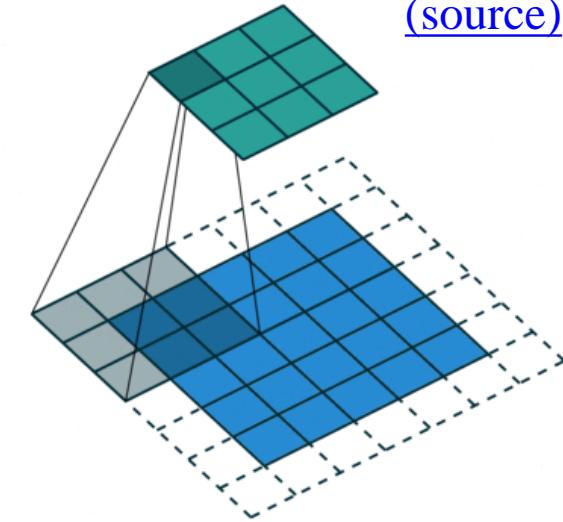
Geometry Latent Mapping: GLaM



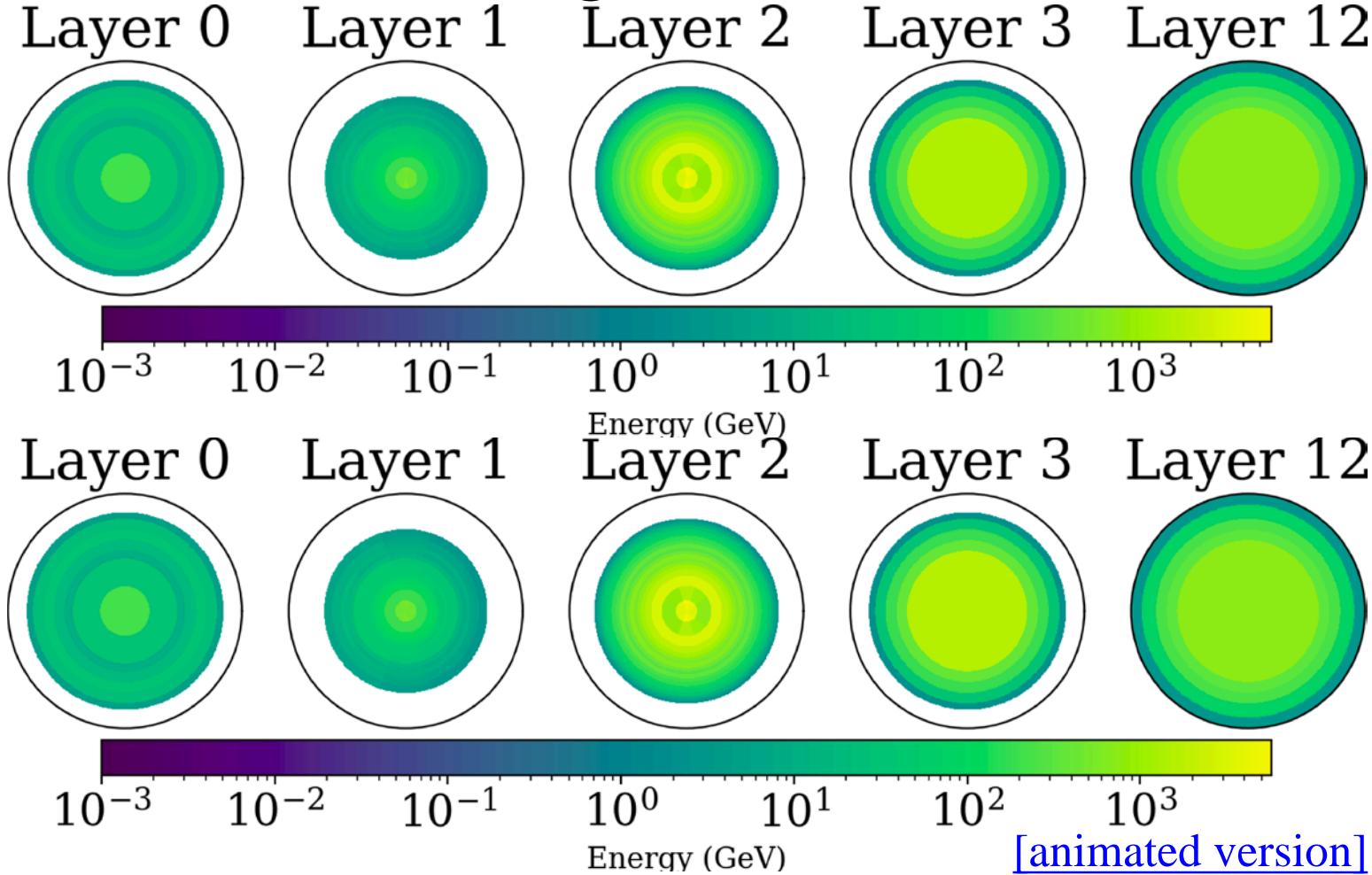
- Dataset 1 has different radial/angular bins in each layer
 - Can't directly apply convolutions, which require regular neighbor structure
- Learn forward and reverse embeddings to and from a regular geometry
 - Simple matrices C ($N \times M$) and D ($M \times N$)
 - C initialized to split or merge cells based on overlap between original and embedded geometries
 - D initialized as Moore-Penrose pseudoinverse of C
- Inspired by “latent diffusion” approach
 - But not necessarily lower-dimensional representation; actually higher-dimensional here

Why Convolutions?

- Convolutions started the modern machine learning revolution (AlexNet, 2012)
 - *Spatial locality* and translational invariance
 - Shared weights → fewer parameters, *better scaling*
 - Highly *efficient* on GPUs: spatial locality implies memory locality
- Ideally suited for computer vision with rectangular images
 - Application to irregular geometries requires innovations
- Graph neural networks?
 - **Pro:** natural representation for irregular geometries
 - **Cons:** adjacency matrices consume substantial memory; operations less local/efficient; hard to generate arbitrary output (masking technique exists, but difficult to scale)
- Point clouds or transformers?
 - **Pro:** no adjacency matrix consuming memory
 - **Con:** discards useful geometric information, which then must be learned from (often sparse) inputs
- For generative applications, convolutions still have a lot to offer!
 - And they can keep up with transformers when trained properly... [arXiv:2310.16764](https://arxiv.org/abs/2310.16764)

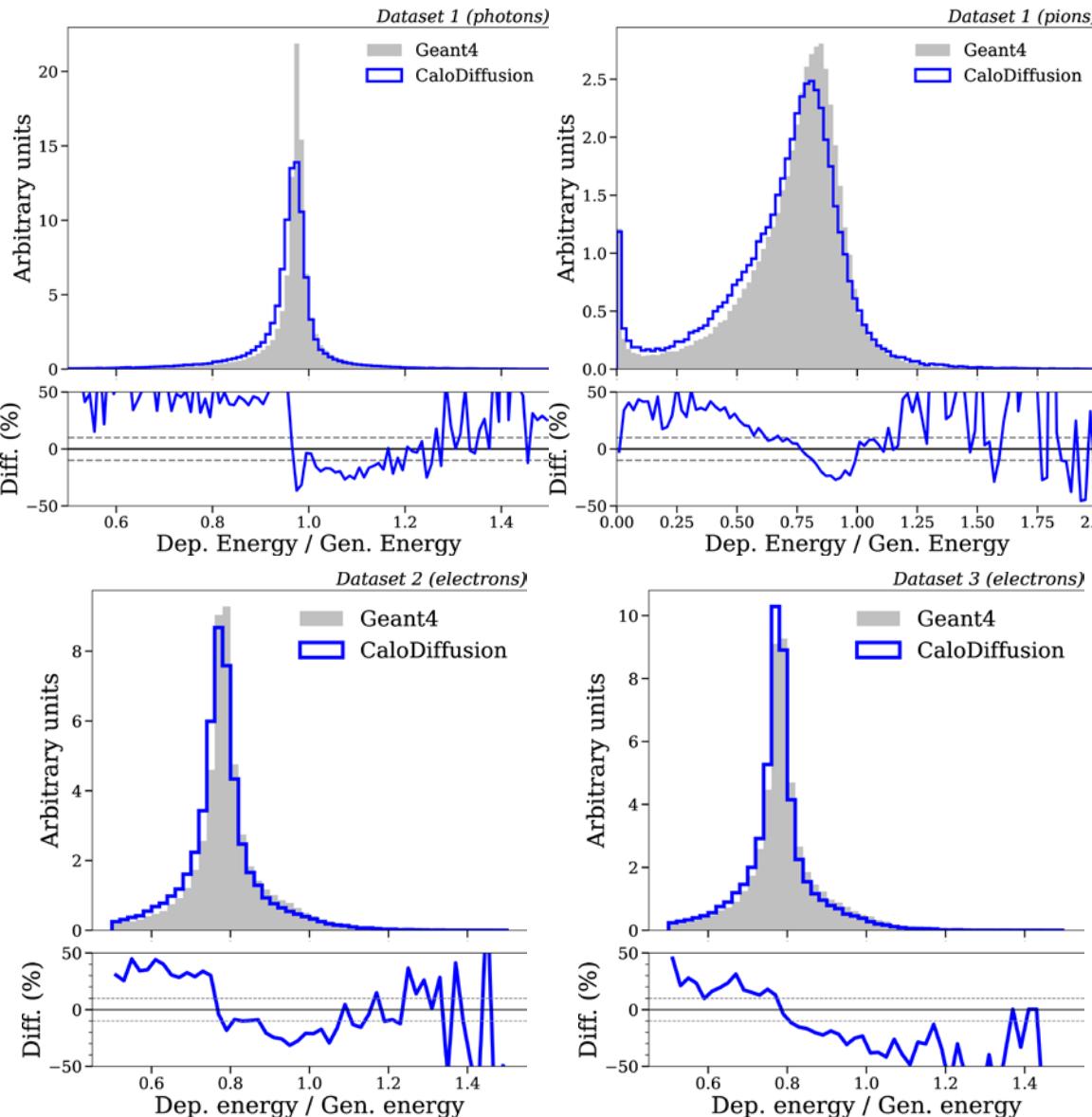


Average Showers



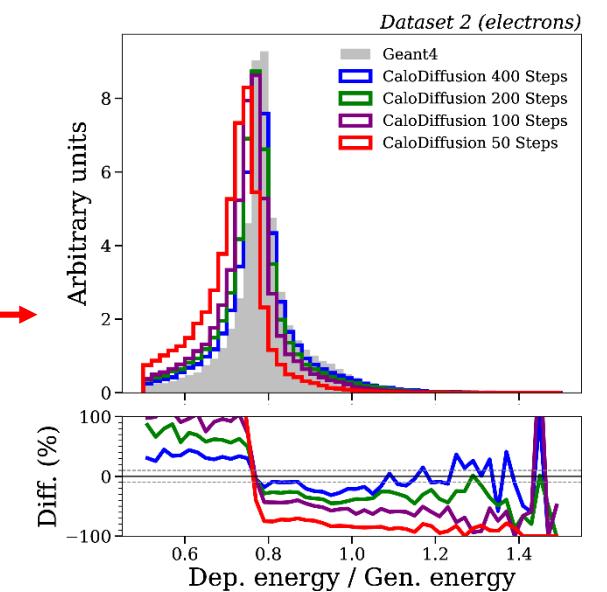
- Top: Geant4; bottom: CaloDiffusion (dataset 1, photons)
 - ... or is it the other way around? Can you tell?

Original CaloDiffusion: Areas for Improvement



- Deficit in total energy modeling
- Need 400 diffusion steps to get acceptable quality
 - Still faster than Geant4 (~100s) w/ batching on GPU
- Fewer steps:
 - Linear speed improvement
 - But even less accurate in this quantity

Dataset	Batch Size	Time/Shower [s]	
		CPU	GPU
1 (photons) (368 voxels)	1	9.4	6.3
	10	2.0	0.6
	100	1.0	0.1
1 (pions) (533 voxels)	1	9.8	6.4
	10	2.0	0.6
	100	1.0	0.1
2 (electrons) (6.5K voxels)	1	14.8	6.2
	10	4.6	0.6
	100	4.0	0.2
3 (electrons) (40.5K voxels)	1	52.7	7.1
	10	44.1	2.6
	100	-	2.0



Num. Steps	Classifier AUC (low / high)	FPD	E Ratio Sep. Power
400	0.56 / 0.55	0.043(1)	0.011
200	0.61 / 0.56	0.046(1)	0.036
100	0.69 / 0.59	0.065(3)	0.079
50	0.83 / 0.67	0.110(4)	0.251