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abstract

Measurements of the trilinear gauge boson vertex coupling (TGC) pa-
rameters and the W polarisation of WTW~ boson pairs produced in e*e™
collisions are presented. The data were recorded by the OPAL experiment
at LEP during 1998, where a total integrated luminosity of 183 pb~! was
obtained at a centre-of-mass energy of 189 GeV. Only events where one W
boson decays into a quark and an anti-quark, and the other W decays into a
lepton and a neutrino are used. The selected data sample comprises of 1075
events.

All the measurements are performed through a spin density matrix anal-
ysis of the W boson decay products. In addition to this, an analysis of the
W production angle is performed to further constrain the measured trilinear
gauge boson coupling parameters.

The sets of TGC parameters measured are Ax,-A\-Ag? and #,-),-g7. The
first set are all CP-conserving, where as the second set are all CP-violating.

Both sets of parameters may have anomalous values without violating the

SU(2), x U(1)y gauge symmetry of the electroweak Lagrangian. The mea-



sured values of the CP-conserving parameters are:

Ak, = —0.2357028
A = —0.082131%2
Agi = 0038533

and for the CP-violating parameters the following are obtained:

F, = —0.18470:001
A, = —0.1361018

g = +0.07010:26

All errors include both statistical and systematic uncertainties.

In addition to the measurement of the TGC parameters, the SDM anal-
ysis is used to directly measure the W bosons polarisation states. The W
boson may have either longitudinal or transverse polarisation. The frac-
tion of W bosons produced with longitudinal polarisation is found to be
o1,/ Ototal = (21.9 £ 3.4 + 1.6)%, where the first error is statistical and the
second systematic.

The joint W-pair production fractions were found to be; opr/ototar =
(76.8 £9.0 £ 3.2)%, oL /0total = (20.6 7.2+ 1.8)% and orp,/0total = (2.6 =
14.7 + 3.8)%.

All results are consistent with Standard Model expectations.
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Chapter 1

The Standard Model

The most widely accepted theory that describes interactions at their most
fundamental level is the Standard Model. This theory has so far stood up to
to all the tests that have been applied to it at the highest possible energies
reachable today. It is, however, a far from complete theory and is only a low
energy approximation.

A scientists goal should always be to question the theories and test them
to see how accurately they represent the true data. One of the main aims of
particle physics has been exactly this, to test the Standard Model. In this
thesis some previously unexplored areas of the Standard Model are investi-
gated, along with some areas that are not well constrained and the results
are compared directly to those predicted by the Standard Model.

Firstly, in this chapter a few of the basic ideas of the Standard Model are

described to give an overview of the theory that is being tested.

18



1.1. THE FUNDAMENTAL PARTICLES 19

1.1 The Fundamental Particles

The Standard Model can be described in terms of the interactions of a few
fundamental particles. These particles are separated into two distinct groups,
the “matter” particles called fermions, and the “force-carrying” particles
called bosons. The two groups of particles differ in their intrinsic angular
momentum. The fermions have half-integer spin and the bosons have integer

spin'. A description of the two types of particles is given below.

1.1.1 The Fermions

The fermions can be subdivided into two groups, those that can interact
via the strong force, and those that cannot. The first group are called the
quarks and the second the leptons. Both groups contain six particles and six

anti-particles which are separated into three generations.

The Leptons

The six leptons are, generation one; electron (e~) and electron-neutrino
(ve). Generation two; muon (¢~ ) and muon-neutrino (v,). Generation three;
tau (77) and tau-neutrino (). The corresponding anti-particles, positron,
anti-muon and anti-tau, have the same mass as the particles and the opposite
quantum numbers.

The fermions have half-integral spin so they may exist in two helicity
states. However, the neutrinos only exist in left-handed states and anti-
neutrinos in right-handed. For this to be possible, the neutrinos must be

massless? and this is how they are described within the Standard Model.

!The spins are taken in units of f.
2There is now strong evidence from the Super-Kamiokande experiment that the neu-

trinos may not be massless[1, 2, 3, 4]. Thus they must exist in both helicity states.
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The mass of the leptons increases with generation, the electron is the
lightest (~ 0.51 MeV) and tau the heaviest (~ 1.78 GeV).

The massive leptons have charge —1.9 x

10~ Coulombs, but this is often denoted

Vu in terms of the positron charge, e, thus they

are said to have charge -1 and the massive

anti-leptons to have charge +1. The neu-

trinos have zero charge. The massive lep-

tons in higher generations may decay into
those from lower generations, for example,
Figure 1.1: The muon decay the dominant muon decay channel is =~ —
process. e Uev,, as shown in figure 1.1. The main
tau decay channels are shown below. (1.3)
is known as the one prong hadronic decay and (1.4) is known as the three

prong hadronic decay.

T = W Dy (1.1)
T = e el (1.2)
T = 1 arly, (1.3)
T = Tty (1.4)

The Quarks

All quarks have mass and this increases with generation. Each generation
contains two quarks with fractional charge, one with %e and the other —%e.
The quarks are called; up, down, strange, charm, bottom and top. All these

quarks also have an anti-particle of the same mass, but opposite quantum
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numbers. The up quark is the lightest quark with a mass of 1.5 - 5 MeV,
whereas the top quark is the heaviest, with a mass up to 100,000 times greater
than the up quark at about 170 GeV. For a full description of the quark, as
well as the lepton properties see [5].

Quarks are never observed in isolation. They are always found in bound
states with other quarks. The composites of quarks are called hadrons.
Quarks have the quantum number of colour and may take one of three colour
charges, red, blue or green (or the corresponding anti-red, anti-blue and anti-
green for the anti-particles). The bound states of quarks must be colourless
objects, and so hadrons can come in two types, fermionic baryons comprised
of three quarks or three anti-quarks, one of each colour, and bosonic mesons
comprised of a quark and an anti-quark, one with colour and the other with
the anti of this colour. Both baryons and mesons will always have integer
charge. The most well known baryons are the proton, which is a uud bound
state, and the neutron, which is a udd bound state.

A summary of the properties and basic quantum numbers of all the

fermions is shown in table 1.1.

1.1.2 Bosons: The Force-carrying Particles

Within the Standard Model all interactions of fermions are mediated by
the exchange of a gauge boson. So all the forces may be described by the
interaction of fermions and bosons. Each force has it’s own gauge bosons

associated with it.

e The electromagnetic force is mediated by a single boson called the

photon (7). This boson is massless and chargeless. It couples to the
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Mass Charge Colour
Fermion | Gen. | Flavour (ts)L
(MeV) (Q) Charge
, e 0.51 ~1 —1 0
Ve 0 0 +3 0
105.7 ~1 -1 0
Leptons 2 s .
Yy 0 0 +3 0
5 T 1777 —1 -1 0
vy 0 0 +3 0
, u 1.5-5 +2 +: | RGB
d 17-27 -1 -5 | RGB
s 60-170 +2 +3 | RGB
Quarks 2
¢ 1100-1400 ~1 -1 | RGB
; b 4100-4400 +2 +3 R,G,B
t 173800 — -1 | RGB

Table 1.1: The properties and basic quantum numbers of the fermions. t3
is the weak isospin of the particle, which is the quantum number for the
weak force. The quantum numbers for the corresponding anti-particles are

obtained by taking the negative of the numbers given in the table.

charge of other particles, so only charged particles feel the effect of the

electromagnetic force.

e The weak force has three mediating bosons. There is the chargeless Z°
which has a mass of 91.2 GeV and a width of 2.5 GeV [5, 6]. Then
there are the two charged bosons W* which each have a mass of 80.45

GeV [7, 8] and a width of 2.0 GeV [8].

The W bosons couple to the weak isospin of particles (t3). Only left
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handed fermions and right handed anti-fermions have non-zero weak
isospin. W bosons themselves also have non-zero weak isospin so can

couple to each other.

The Z° boson couples to a combination of both weak isospin and charge,

as shown in equation 1.5. It has zero weak isospin itself.

Cpo = (t; — sin 6,Q) (1.5)

sin #,, cos @,

In equation 1.5, 6, is known as the Weinberg or weak mixing angle and

is related to the masses of the Z° and W= as follows:

My,
0p = —— ~ 0.87679 1.6
cos M, (1.6)

The weak force is the only force that couples to all the fermions. When
a W boson interacts with a fermion it will always change the flavour of

the fermion. There are no flavour changing neutral weak interactions.

A property of the weak force is that its bosons can couple to each other
in certain combinations and also the photon. The coupling of a W+
and a W~ boson to a photon or Z° boson is known as a Trilinear or
Triple Gauge Coupling (TGC) and this process is the basis for this

thesis.

The Strong Force has eight mediating bosons called gluons. These are
massless and chargeless and couple to the colour charge of particles. Of
the fermions only quarks have non-zero colour charge. Gluons are the
only bosons that have non-zero colour charge and can couple to other

gluons.
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The strong force is unlike the other two forces in that its strength
actually increases with distance. This is the reason that no unbound
quarks are seen. All quarks are bound as colourless baryons or mesons

as discussed earlier.

A consequence of this property is that if two bound quarks are sep-
arated the potential energy between them increases until it reaches a
level where two new quarks will form. Although each of these is a
colour singlet, they effectively combine with the original object to form
colourless objects. Continued separation will cause further quark pairs
to form. Figure 1.2 shows a simple schematic of this process. If this sep-
aration occurs at high energy, the newly formed quark anti-quark pairs
are seen as jets of particles. As the quarks in each jet form hadrons,

this process is known as hadronisation.

666 @
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Figure 1.2: Production of quark anti-quark pairs when a single pair are

separated.

1.2 Spin, Helicity and Polarisation

The intrinsic angular momentum of a particle is known as its spin. The

fermions all have spin half, whereas the bosons have spin one. The component
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of the spin in the direction of motion of a particle is called helicity. This
means that the fermions can have helicity i%.

Massless particles may exist in just one helicity state. Neutrinos only exist
in negative helicity states, known as left handed states, and anti-neutrinos
in positive helicity, right handed states.

The W* and Z° bosons have spin 1 so may have helicity 1 or zero. As
the photon and gluon are massless, they cannot exist in a helicity zero state.
However, virtual photons and gluons do have mass, so they may have the
zero helicity states

Particles with helicity +1 are said to be transversely polarised and those

with zero helicity are longitudinally polarised.

1.3 The Electroweak Theory

All the forces described above are formulated in the Standard Model as
gauge symmetric quantum field theories. The strong force is described by
quantum chromodynamics (QCD), whereas the electromagnetic and weak
forces are both described by the electroweak theory.

Any system can be described by its Lagrangian. The Lagrangian contains
creation and annihilation operators that act at a particular position in space,
and thus they are field operators, hence the name “quantum field theory.”

The theory contains fermionic fields representing the fermions and when
local symmetry is imposed, gauge fields arise that form the interaction terms
with the fermionic fields. These gauge fields are then identified as the gauge
bosons discussed earlier.

The Electroweak theory is an SU(2), x U(1)y gauge symmetric field the-

ory. It has four gauge fields, three associated with weak isospin, these being
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the W* fields. The subscript on the SU(2), indicates that these fields only
couple to left-handed fermions. There is then the B* field that couples to
the weak hypercharge (Y) of particles. All fermions have non-zero weak
hypercharge.

The four fields cannot be directly associated with the four gauge bosons
discussed earlier, for a start they represent massless particles. These fields
may be connected to the massive gauge bosons via the Higgs mechanism [9].
This causes the gauge fields to mix. The W*# and W * fields gain mass
from the vacuum expectation value. These two fields can then be directly
related with the W and W~ bosons. The W% and B* fields mix to form
two new fields, the Z* and A* fields, that can be identified as the Z° and ~

bosons respectively. The form of the mixed fields is shown below.

7 = cos B, W™ — sin 6, B* (1.7)

AF = sin 0, W + cos 6, B" (1.8)



Chapter 2

The LEP Accelerator and
OPAL Detector

This thesis uses data collected by the OPAL detector, which is one of the
four detectors situated on the LEP accelerator ring. This chapter will give a

brief description of both the LEP accelerator and the OPAL detector.

2.1 The LEP Accelerator

The Large Electron-Positron storage ring (LEP) collider [10] is based
at CERN (La Centre Européene pour la Recherche Nucléaire) beneath the
border between Switzerland and France, near Geneva. It is the largest syn-
chrotron accelerator in the world, with the main ring tunnel having a circum-
ference of 26.67 km. Although studies and plans for LEP machines started
as early as 1976, the first fill wasn’t until 13th July 1989, with actual physics
runs starting a month later, on the 13th August.

As the name suggests, LEP was designed to bring extremely high energy

electrons and positrons into collision with one another. Initially, the energies

27
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of the positron and electron beams were such that the centre of mass energy
(\/s) at the point of collision was 91 GeV, the rest mass of the Z° boson,
thereby opening a whole new world of investigation into the neutral current
interactions in the electroweak force. LEP was a huge success, with over
900,000 Z° bosons being produced in the first year alone. LEP ran at this
energy until 1995. Then the machine was upgraded [11, 12], so that it could
run at above the W pair threshold, allowing the investigation of the charged
current sector of the electroweak force [13]. However, unlike for the Z° boson,
where it is most profitable to have collisions close to the Z° boson mass, the
higher the energy, the better for W* bosons as its production cross-section
increases with energy, up to a centre-of-mass energy of approximately 200
GeV. So each year the centre-of-mass energy was increased.

The complete LEP collider does not consist of just the very large LEP
ring, although this is easily the greatest engineering feat of the project. There
are a number of other, smaller, older, CERN accelerators around which the
particles are accelerated, before injection into the main ring. Figure 2.1 shows
the lay out of the complete system. The electrons are produced by thermionic
emission, these are then accelerated along an electron linear collider, the Lep
Injector Linac (LIL). Some of the electrons are collided with a tungsten target
to produce the positrons, the remaining electrons, along with the positrons,
are then passed into the Electron Positron Accumulator ring (EPA), where
they are stored and accumulated before injection. The particles are then
passed into the Proton Synchrotron (PS) where they are initially accelerated
to a few GeV. They are then transfered to the Super Proton Synchrotron
(SPS) where further acceleration takes place and finally they are injected
into the LEP ring.

The LEP ring is 26.67 km in circumference and lies between 40 and 150
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m below the surface. The plane of the ring is inclined by 1.4%. This is purely
due to engineering reasons, ensuring that no shaft had to be deeper than 150
m, but also that the underground caverns and tunnel would be located in solid
rock. The LEP ring consists of eight arcs and four straight sections. The arcs
contain magnetic cells to guide the beams around the ring. Each magnetic
cell is comprised of a defocusing quadrupole, a vertical orbit corrector, a
group of six bending dipoles, a focusing sextuplet, a focusing quadrupole, a
horizontal orbit corrector, a second group of six bending dipoles, and finally
a defocusing sextuple. The total length of a cell being 79.11 m and each arc
contains 31 of these cells. Acceleration of the beams occurs in the straight
sections. Also on these straight sections are the four experiments, OPAL,
ALEPH, DELPHI and L3, where the beams are brought into collision.

The energy and number of particles in a bunch is limited by the syn-
chrotron radiation, causing an upper limit on both current and energy. The
ring is designed with the maximum radius of curvature to minimise the en-
ergy loss through synchrotron radiation. The main loss of particles is through
beam-gas interactions, so a high vacuum has to be maintained in the tunnel.
Without beams the pressure in the tunnel is 10~ *? Torr, and with beams cir-
culating this is degraded to 10~ Torr. The main problem with maintaining
this vacuum is out-gassing caused by synchrotron radiation interacting with
the beam pipe walls. Synchrotron radiation can also cause heating of the
vacuum chambers, and so the chamber walls are made of aluminium which

is cooled by surrounding water channels.
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Figure 2.1: Diagram representing all the accelerators at CERN and how they

are used in unison to produce a final high energy circulating ring around LEP.
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2.2 The OPAL Detector

Like the other three LEP detectors the OPAL (Omni Purpose Apparatus
for Lep) detector is a symmetric barrel detector. It was designed to give
good measurement of both particle momenta and energy and in some cases
even particle species. It roughly consists of a long central cylinder, called
the barrel, and two flat endcaps at either end of the barrel to give the widest
possible coverage of the solid angle.

A diagram of the OPAL detector is shown in figure 2.2. Indicated on
the diagram is the OPAL co-ordinate system. The electrons and positrons
travel along the beam pipe and are bought into collision within the detector.
The zaxis is parallel to the beam pipe and positive in the direction of the
electrons’ momentum. The z-axis indicated in figure 2.2 is taken as positive
in the direction pointing towards the centre of the LEP ring.

The main features of the OPAL detector are shown in figure 2.2, and they
can concisely be described as follows:

e A central detector, consisting of vertex and tracking subdetectors and
surrounded by a solenoid. The central detector provides measurements of
the particle’s direction and momentum and their identification by dE/dx as
well as reconstruction of primary and secondary vertices at and near the
interaction region. The solenoid causes bending of the charged particles in
the tracking chamber.

e An electromagnetic calorimeter to provide identification of photons and
electrons and to measure their energy.

e A hadronic calorimeter to measure hadronic energy. This is imple-
mented by measuring the total absorption using instrumentation which in-
corporates the magnetic yoke.

e A Muon detector to identify muons by measurement of their position
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and direction within and behind the hadron calorimeter.

e A forward detector, situated in the very forward direction, and used
to measure the received LEP luminosity at OPAL using Bhabha scattering
events.

A representation of the cross-section of the OPAL detector can be seen
in figure 2.3. A detailed description of each OPAL subdetector is beyond the
bounds of this thesis, however, a brief overview of each subdetector is given
for completeness. A complete and detailed description of the OPAL detector

and all its constituent parts can be found in [14].

2.2.1 Central Tracking Detector

Within the central detectors of OPAL tracking of charged particles is
performed. Listed in order of increasing radius, this job is undertaken by,
the silicon microvertex detector (SI), the central vertex detector (CV), the
central jet chamber (CJ) and the central Z chambers (CZ). The configuration

of these subdetectors is shown on figure 2.3.

Silicon Microvertex Subdetector (SI)

The SI detector [15] is designed to give accurate measurement and detailed
information on the primary vertices of interaction between the electron and
positron particles in the beam. It is designed so that it can also measure the
positions of any secondary vertices resulting from the decays of particles that
could have been produced in the primary interaction, such as 7-leptons and
heavy flavour hadrons. The SI consists of two cylinders of silicon ladders.
The inner cylinder has a radius of 61 mm, consisting of 11 ladders and the
outer a radius of 75 mm, consisting of 14 ladders. Each ladder has two back-

to-back single sided sets of silicon wafers, one giving co-ordinates in the r-¢
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Figure 2.2: A schematic representation of the OPAL detector.



2.2. THE OPAL DETECTOR

34

(" Muon detector = .

Hadron calorimeter and return yoke ———>

Barrel
A

a) Electromagnetic calorimeter

|

Presampler

\_ Time of flight detector _——

Z chambers

Jet chamber
Vertex detector

\

Microvertex detector

Interaction region

Microvertex detector
Vertex detector

Jet chamber

Z chambers

Silicon-tungsten forward detector

/

Original forward detector
b) =

Presampler

|

|

Electromagnetic calorimeter

\
|

Pole tip hadron calorimeter

Endcap

Hadron calorimeter !

Muon detector

%

6m

-

Figure 2.3: A detailed schematic of the OPAL cross-section.




2.2. THE OPAL DETECTOR 35

plane and the other along the z-axis.

To measure the path of charged particles the strips have a voltage bias
across them. When a charged particle passes through them charge from
ionisation in the silicon is collected on the read-out strips. By combining in-
formation from all the strips on both layers, the path of the particle travelling

through the silicon can be reconstructed.

Central Vertex Chamber (CV)

The central vertex tracking drift chamber [16] is situated inside the central
jet chamber and is 1 m long. Its main job is to measure the vertex positions of
decay particles and improve the momentum resolution for charged particles.
It consists of two layers of drift chambers. The inner layer containing 36
cells of axial wires and the outer layer 36 stereo cells. The outer cells contain
read-out wires that are inclined at an angle of approximately 4° to the inner,
axial wires. The inner layer lies between radii 103 mm to 162 mm, and the
outer layer between radii 188 mm and 213 mm.

The CV chamber, like all the central tracking drift chambers, is filled
with 88.2% argon, 9.8% methane and 2.0% isobutane at a pressure of 4 bar.
When a charged particle passes through this chamber it ionises the gas, this
is detected in the sense wires. The inner axial cells provide measurements in
the r — ¢ plane with resolution of 50 ym. Combining information from the
inner and outer cells gives a resolution of about 700 um on the position in

the z-plane.

Central Jet Chamber (CJ)

The job of the Central Jet chamber [17, 18] is to improve the measurement

of the trajectory of the charged particles. It also has an important role in
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helping in particle identification by measuring the specific energy loss, dE/dx.
The curvature of the track of the charged particle in the magnetic field as it
passes through CJ can be measured, thus making it possible to calculate the
momentum of the tracked particle.

The chamber is 4 m long, with an inner radius of 0.245 m and an outer
radius of 1.85 m. The chamber is divided around the ¢ direction into 24
segments of equal size. Each segment contains 159 anode sense wires running
parallel with the beam direction along the z-axis. The wires are arranged in
radial planes.

Between a polar angle of 43° < 6 < 137°, 159 points on the track are
measured. For 98% of the 47 solid angle at least 20 points are measured on
every track. The r — ¢ position of the hits is given by the radial position
of the relevant wire and the drift time. A resolution of 135 pm is achieved.
The z-position is given by the time difference between signals at either end

of the wire, a resolution of 6 cm is possible in the z-direction.

Central Z Chamber (CZ)

The Central Z subdetector [19] surrounds CJ and makes precise measure-
ments of the Z position of a particle’s track as it exits CJ. CZ is made up
of 24 chambers each of which is 4 m long, 500 mm wide and 59 mm thick.
Each chamber is divided into 8 cells along the z-direction, each cell contains
6 sense wires lying perpendicular to the z-direction.

CZ covers a polar angle range of 44° < # < 136°. Its resolution is 300 pm

in z and 1.5 cm in r — ¢.
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2.2.2 The OPAL Magnet

The OPAL magnet consists of a water cooled solenoid and an iron yoke
to provide flux return. The solenoid and pressure vessel surround the cen-
tral tracking chambers and the iron yoke is incorporated into the hadron
calorimeter.

The purpose of the magnet is to cause charged particles to move in a
helical path, therefore aiding measurement of particle momentum within CJ.
The solenoid provides a field of 0.435 T within the central tracking region

and is uniform to within 0.5%.

2.2.3 The Time-Of-Flight Detector

The time-of-flight system measures the transit time of particles travelling
from the interaction region, which helps in charged particle identification.
Its main job is, however, to aid in the rejection of cosmic ray events and
generate trigger signals. It is divided into two parts, the time-of-flight barrel

(TB) and the tile endcaps (TE)

Time-Of-Flight Barrel (TB)

TB is situated at a radius of 2.36 m, surrounding the solenoid. It is made
up of 160 scintillation counters, which are trapezoidal in shape. Each one is
6.84 m in length, 45 mm in depth and ranges between 89 mm and 91 mm in
width. The tiles form a layer that covers a solid angle range of | cos 8] < 0.82.
The time resolution of TB is approximately 300 ps and the difference in time
between the signal arriving at each end of the counter is used to make a

z-position measurement.
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Tile Endcaps (TE)

The tile endcaps [20] were installed into OPAL in 1996, and perform the
same function in the endcap region as TB does in the barrel region. TE
consists of 10 mm thick scintillating plastic tiles. Embedded in the tiles are
wavelength shifting optical fibres. It has a timing precision of about 3 ns
and covers the region close to the beam pipe. It is an essential detector in
both exotic particle searches and two photon studies. An extension of TE,
the Minimal lonising Particle (MIP) plug was installed in 1997, and gives

coverage of the polar angular region down to 43 mrad from the beam pipe.

2.2.4 Electromagnetic Calorimeter (ECAL)

The electromagnetic calorimeter is designed to give the most precise and
important measurement of particles’ energies. It can measure energies be-
tween a few tens of MeV up to 100 GeV. It measures the energies and posi-
tions of electrons, positrons and photons, and helps to discriminate between
electrons and hadrons. ECAL is divided into a barrel region and two endcap
regions and gives a coverage of 98% of the solid angle. Each region consists

of a presampler in front of a lead-glass calorimeter.

Electromagnetic Presamplers (PB & PE)

Most electromagnetic showers are initiated before reaching ECAL as there
are approximately two radiation lengths between the interaction region and
the calorimeter, because of this there is a presampler [21] incorporated into
the ECAL. The presamplers help in energy resolution of the shower and
discrimination between particles.

The barrel presampler is a 6.623 m long cylinder of radius 2.388 m situated
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between the time-of-flight barrel and the barrel electromagnetic calorimeter.
It consists of 16 chambers containing two layers of streamer mode drift tubes
with sense wires parallel to the beam axis. The barrel presampler covers a
polar angle range of | cosf| < 0.81. The two endcap presamplers (PE) are sit-
uated between the time-of-flight endcap (TE) and the endcap electromagnetic
calorimeters. Each PE is divided into 16 overlapping wedges and gives full

azimuthal angle coverage and a polar angle coverage of 0.86 < | cos ] < 0.95.

Electromagnetic Calorimeters (EB & EE)

The electromagnetic calorimeter is separated into three sections, a barrel
section and two endcap regions. The barrel section is a cylindrical array
of 9440 lead-glass blocks. These blocks are pointed towards the interaction
region, but slightly tilted away from the exact interaction point. This ori-
entation serves to prevent neutral particles being lost in the gaps between
blocks whilst also trying to prevent most particles traversing more than one
block. Each block is 37 cm deep, which is 24.6 radiation lengths, and has an
approximate surface area of 10 x 10 cm. The blocks have a density of 5.54
gem ™3 and are situated at a radius of 2.455 m from the interaction point.

The subdetector works on the principle that relativistic particles travel-
ling through the blocks will emit Cerenkov radiation which can be collected
by photomultiplyer tubes at the end of the blocks. EB covers a polar angle
range of |cosf| < 0.82 and has a spatial resolution for a particle of, say 6
GeV, of approximately 11 mm. The energy resolution of EB in units of GeV

is:

6.3
98 .99 4 834

(2.1)
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The endcap electromagnetic calorimeters [22] cover a polar angle range
of 0.83 < |cosf| < 0.95. Each of the two EEs consists of 1132 lead-glass
scintillator blocks. These blocks differ slightly from those in EB in that they
have a smaller density, 4.06 gcm 3. The blocks vary in length from 380 to
520 mm, so that they will fit around the dome shape of the pressure bell at
either end of the detector. Particles traversing the blocks are presented with
a minimum of 20.5 radiation lengths. The energy resolution is approximately

1% in the energy region 3-50 GeV.

2.2.5 Hadronic Calorimeter (HCAL)

The hadronic calorimeter [23, 24, 25], like the electromagnetic calorimeter,
has a barrel region and two endcap regions covering roughly the same regions
as the ECAL, however, HCAL also has a hadron poletip calorimeter which
covers regions were the momentum resolution of the central detectors is poor.
HCAL uses the iron return yoke of the OPAL magnet as passive absorbing
material. Layers of the iron are sandwiched by planes of detectors.

Due to the large amount of material between HCAL and the interaction
point, most hadronic showers are likely to have initiated long before reaching
HCAL, this means that the hadronic energy measurement is made by adding
the energy deposited in HCAL with that deposited in ECAL. The energy
resolution for all parts of HCAL are similar, although there is more variation
with energy for the poletip calorimeter. The resolutions, depending on the

energy measured are;

%E ~ W% for; < 15GeV (2.2)
OR A
% = L forE < 50GeV (2.3)
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Barrel Hadronic Calorimeter (HB)

The barrel hadronic calorimeter has an inner radius of 3.39 m and outer
radius 4.39 m, and is cylindrical in shape. There are eight layers of 100 mm
thick iron and these are separated by nine layers of detector. The detectors
consist of limited streamer mode tubes with wires parallel to the beam axis.
The tubes are filled with 75% isobutane and 25% argon. The iron layers are
separated by 25 mm.

Endcap Hadronic Calorimeter (HE)

The endcap hadronic calorimeters are situated at either end of the OPAL
detector. They work on very similar principles to the HB. There are seven
layers of 100 mm thick iron and eight layers of detector. These detector
layers are of the same design as for HB. The iron layers are separated by 35

mim.

Poletip Hadronic Calorimeter (HP)

The poletip hadronic calorimeters are of slightly different design to HB
and HE. They lie behind the endcap electromagnetic calorimeters and give
coverage of the polar region 0.91 < |cosf| < 0.99. They are made of ten
layers of detector separated by nine layers of 80 mm thick iron. The gaps
between the iron are just 10 mm. Unlike the other parts of HCAL, the
detectors in HP are multi-wire chambers operating in high gain mode. They

contain 55% CO, and 45% n-pentane.
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2.2.6 Muon Chambers

The muon chambers, like many of the other detectors, are split into a bar-
rel region and an endcap region. They give coverage of 93% of the solid angle,
and are designed to detect muons. Muons are highly penetrating and will pass
through the ECAL and HCAL. Hadrons also usually pass through ECAL, but
almost never through HCAL to reach the muon chambers. The probability
of a pion reaching the muon chambers is less than 0.1%, so misidentification

within the muon chambers is highly unlikely.

Muon Barrel (MB)

The muon barrel [26] consists of 110 drift chambers arranged so that there
are 44 chambers on either side of the OPAL detector, twelve chambers below
and ten above. The side chambers are 10 m long, the top 6 m long and the
bottom chambers 8.4 m long. All the chambers are 1.2 m wide and 900 mm
deep. Four layers of chambers give polar angle coverage of | cos | < 0.68, but
due to structural support, only one layer gives coverage up to |cos | < 0.72.
The cells consist of two chambers containing 90% argon and 10% ethane.
They have a z-position resolution of 2 mm and a ¢-position resolution of 1.5

mI.

Muon Endcaps (ME)

The muon endcaps [27] cover a polar range of about 0.67 < | cosf| < 0.985
either side of the detector. Each consists of eight quadrant chambers, which
are 6 m X 6 m in size, and four patch chambers, 3 m X 2.5 m in size.
The chambers are filled with 75% argon and 25% isobutane and consist of
two layers of limited streamer tubes. All the streamer tubes are aligned

perpendicular to the beam axis. One layer has the wires in the tubes aligned
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vertically and the other horizontally. The spatial resolution is ~ 2 mm.

2.2.7 Forward Detector (FD)

The forward detectors [28, 29| are situated at either end of the detector
to measure very low angle particles. The FDs are in fact made up of four
separate subdetectors; the main calorimeter (FK), the forward tube chambers
(FB), the y-catcher (FE) and the far forward luminosity monitor (FF). Their
principle purpose ss to measure the luminosity OPAL received by identifying
Bhabha events, for which the cross-section is well known.

The main calorimeter is made up of 16 azimuthal segments of lead-
scintillator sandwich. Each segment has a presampler of 4 radiation lengths
thickness and a main calorimeter of 20 radiation lengths. The azimuthal

angular resolution is 2° and the energy resolution of FK in units of GeV is:

O'EN18%
E VE

The polar angle resolution ranges from 4° at the inner edge, to 10° at the

(2.4)

outer edge. The tube chambers (FB) consist of three planes of proportional
tubes, two of which are mutually perpendicular and the third at 45° to these.
Information from FB is combined with that from FK to provide a more
precise position measurement. Resolutions of 2 mrad can be achieved in the
polar angle and a spatial resolution of 3 mm is possible.

Filling the gaps between the electromagnetic endcap and the forward
calorimeter are the gamma catchers (FE). They are small annular 7 radiation
length lead-scintillator calorimeters. They have an electromagnetic energy
resolution of about 20%.

The far forward monitors (FF) are used to measure positions and energies
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of showers from electrons and positrons in the 5-10 mrad region, close to the
horizontal plane. They are also used to measure OPAL trigger rates during
data taking. They consist of 20 radiation length lead-scintillator calorimeters

and are stationed £7.85 m from the interaction point.

2.2.8 The Silicon-Tungsten Calorimeter (SW)

The silicon-tungsten calorimeters [30] are situated either side of OPAL,
2.389 m in the z direction from the interaction point. They were installed
in 1993 to give an improvement on the luminosity measurement. They are
sampling calorimeters and consist of 19 layers of sampling silicon separated
by 18 layers of tungsten. Each calorimeter is divided azimuthally into 16
wedges and can achieve a spatial resolution in r of ~10 ym and an energy

resolution in units of GeV of:

28%
VE

OFE
— ~ 2.5
e (2.5)

2.2.9 The OPAL Trigger

As the electrons and positrons circulate around the LEP ring the OPAL
detectors must be ready to detect events when they occur. The electrons and
positrons circulate in several bunches which cross at a frequency of about 45
kHz. The OPAL detector is synchronised to become active when the bunches
cross at its central point.

A large number of different events occur when the bunches cross, however
many of them are of no interest for physics. The OPAL trigger system [31, 32]
decides whether the detector should read out the event or if the subdetectors

should be reset and the event ignored. The trigger has two types of signal
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to decide whether the event is interesting. The 6 — ¢ signals are made by
dividing the 47 solid angle into 144 overlapping bins, 6 in 6 and 24 in ¢. The
trigger signals sent by detectors are matched to this spatial binning and then
a decision can be made on the event. The second signals are stand alone
signals, each subdetector has an energy and/or track count threshold, and if
this threshold is breached then the event is read out.

The trigger system consists of a pre-trigger and trigger. Both combine
stand alone and 6 — ¢ signals, however, since 1994, when LEP changed from
8 4+ 8 bunch mode to 4 + 4 bunch mode, the pre-trigger was no longer used,
although it was still kept in place to minimise change. The time taken for a
negative decision by the trigger is about 14.5 us and it takes about 4.5 us to
reset the subdetectors. The trigger system reduces the 45 kHz frequency of

bunch crossing to an event rate of about 10 - 15 Hz.

2.2.10 Data Acquisition

Once an event has been selected as interesting by the trigger, information
about the event is read out by all the subdetectors individually. This isn’t,
however, the end of the story. Once the event is read out, the information
from each subdetector is combined and passed into the filter [33], at which
point, typically 15-35% of the selected events are rejected. Selected events
are then passed to ROPE (Reconstruction of OPal Events) [34], which re-
constructs the individual events using calibration constants from individual
subdetectors. Information about reconstructed events is written to an opti-
cal disk as a Data Summary Table (DST). This DST is then stored on tape

and disk so that it can be used in analysis.



Chapter 3

Trilinear Gauge Boson
Couplings and W-Pair

Production.

Within the Standard Model, the vector bosons not only couple with
fermions, but they can also couple to each other in certain combinations.
The coupling of three gauge bosons is known as a trilinear gauge boson in-
teraction [35, 36]. These occur when two oppositely charged W bosons couple
to a photon or Z° boson, as shown in figure 3.1. These are the only two pos-
sible TGC interactions in the electroweak sector. Gluons may couple with
each other in many combinations.

The coupling of four gauge bosons in the electroweak sector is also pos-
sible [37, 38, 39]. There are four possible combinations within the Standard
Model. The coupling of Four W bosons (WHW~W*W~), the coupling of two
W bosons and two Z° bosons (WTW~Z"Z°%), the coupling of two W bosons
and two photons (WTW~v~), and the coupling of two W bosons a Z° bo-

son and a photon (WTW~Z%). Measurements of the quartic couplings have

46
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been made at OPAL [40].

Figure 3.1: The self coupling of three gauge bosons, known as the Trilinear

Gauge Vertex.

This thesis is only concerned with the trilinear gauge coupling of the Z°
and v bosons to W* bosons. In this chapter the theoretical description of
the trilinear gauge coupling will be discussed. It will then be shown that
the main processes at LEP containing this coupling are W-pair production
processes. Accordingly all possible W-pair production processes are then dis-
cussed. This will include the identification of the role that the spin of the W
bosons take in this process and the Spin Density Matrix (SDM) will be intro-
duced. Throughout, some theoretical predictions on what observations could
be made through Standard Model and non-Standard Model interactions are

given.

3.1 The TGC Lagrangian

Any system is described fully by its Lagrangian. The general couplings
of two charged vector bosons with a neutral vector boson can be described
by the effective Lagrangian given in equation 3.1 [35, 36, 41, 42]. Where e is
the positron charge and 6, is the weak mixing angle of the Standard Model.

The Lagrangian contains 14 separate terms and each term has a coupling
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parameter, indicated in red. The coupling parameters are known as the Tri-
linear Gauge Couplings, or TGCs. Many of the terms in the Lagrangian (3.1)
would give cross sections which diverge with the energy scale, /s. This would
lead to unitarity violation. As this is not possible, there then would have to
be new physics interactions occurring to counter the effect. Thus, within
the Standard Model, the values of the coupling parameters which violate

unitarity are zero.

Lrge = ieg] (A (0, W_, — ,W_ )W, — A, ("W —"W)W,")

+ ek (0,4, — Oy A )W HIW Y
+ decot Bugl (Z,(0,W_), — O,W_)W,F — Z, ("W — 8" WHW,))
+ decot Oykz (0,2, — 0,2, )W HIW
A,
+ e Mév (0,4, = 0,A,) (PW ™" = 0,W*°)(0,W # —9,W "))
+ decot 9wA—Z((aMZp — 8,Z,)(0PW Y — 3, WP (9, W+ — §,W ™))

Mg,
— g WiW, (9P AY + 8 AP

— ecot ngijW;(ﬁ“Z” + 0" Z") (3.1)
+ €9 €upe (OPW YWY — (OPW )W H) A”

+ €0t 04y g7 €pppo (YW HYW T — (OPW YW =) Z°

+ ieRA/WjW”%eW”"(apAU —9,4,)

A 1
ie~—L ("W, — "W, ,)(0,W_, — 0, W) =7 (9, Ap — D Ay)
M2, 9

1
+iccot Ok W W, 5e7(9,2, — 0,7,)

A 1
+ decot owM—ZQ((a“m,, — W) (0,W_, — aMW—p)ieW(a(,Zg — 0,7,)
w

The Standard Model values of the TGC parameters k., k., g{ and ¢}

are one, all other parameters are set to zero. This leaves the Lagrangian
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shown in equation 3.2, which describes the trilinear gauge boson interaction
within the Standard Model. Table 3.1 shows the properties of all the 14 TGC

parameters.

Lroe = ie(Au(0,Woy — O,W_ )W, = A, ("W — 0"W ) W,7)
+ ie(9,A, — O, A )W WY
+ iecot 0y (Z,(0,W_y — ,W_ )W — Z,("WH — W) W,)
+ iecot 0,(0,7, — 0,7, )W W= (3.2)

The first six couplings of the Lagrangian, equation 3.1, respect the dis-
crete parity (P) and charge (C) symmetries. The first term of the Lagrangian
is for a photon coupling to two W bosons. It is called the minimal coupling
term. The value of the g/ determines the charge of the positive W boson,
Cw, in units of the positron charge, e, and therefore has a value of one,

equation 3.3.

The second photon TGC, &, is called the anomalous magnetic moment
of the W [43, 44]. k., and A, are related to the magnetic dipole moment of
the W+, uy [45, 46], as in equation 3.4.

€

Both these two photon TGCs, k., and A,, are also related to the electric

quadrupole moment of the W, Qy, as in equation 3.5.
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Qu = == = A) (35)

Of the remaining eight couplings, g7 and gZ, violate both C and P symme-
try, but respect combined CP-invariance. The other six couplings all violate
CP. g; and ¢} violate charge conjugation symmetry. However, if g; or gJ are
non-vanishing at ¢?> = 0, the photon part of the Lagrangian, equation 3.1,
will not be electromagnetically gauge invariant [41].

The remaining four couplings k., &, 5\7 and ), all violate parity. The
photon P and CP-violating couplings, £, and 5\7, are related to the electric

dipole moment of the W™, dy, as in equation 3.6.

e B -
dy = m( v+ ) (3.6)

K, and 5\7 are also related to the magnetic quadrupole moment, Qyy, of

the Wtas follows:

Qw = —37= (= Xy) (37)
The Lagrangian given in equation 3.1 only contains the lowest dimension
operators, up to dimension six. As the strength of the coupling is gener-
ally suppressed by factors like (v/s/Ayp)?=* [12], where Ayp is the scale of
new physics and d is the dimension of the operator, neglecting operators of
dimension higher than six is a valid assumption at LEP energies’.
A further consequence of higher dimensional operators would be to render
the photon part of the effective Lagrangian gauge invariant, even in the

presence of non-vanishing, C-violating photon couplings, g; and gJ [35].

Tt should be noted that if the scale of new physics is less than 1 TeV, or if there is no
light Higgs, then terms with higher dimensions cannot be neglected [47].
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Coupling | Dim. | SM Value | C-Conserving | P-Conserving | CP-Conserving
91, 9% 4 1 v vV v
Ky, Ky 4 1 Vv V Vv
Ay, Ag 6 0 Vv V Vv
91 95 6 0 X V X
gs, gi 6 0 X X Vi
R, Foy 4 0 Vv X X
Ay A 4 0 Vv X X

Table 3.1: Properties of the 14 TGC parameters. Dim. is the dimension of

the operator needed to induce each coupling.

Constraining the Number of Parameters

Considering terms with operators up to dimension six gives the 14 TGCs
in equation 3.1. However, further constraints can be made to the theory, by
taking into consideration physical effects seen in other experimental data.
Precise measurements made at LEP-1 on the Z° resonance [48, 49, 50, 51]
support embedding any anomalous terms in an SU(2), x U(1)y gauge invari-
ant structure [36)].

By enforcing SU(2), x U(1)y gauge invariance and considering only op-
erators up to dimension six [52], the TGC New Physics (NP) Lagrangian can
be expressed in terms of the unmixed fields, the W?3B base [36, 42], as in

equation 3.8.

By awe aw
Lrae = §—508¢+ 9575 Owe + 9—5Ow
Mg, Mg, Mg,
99 pw aw
=0 —0 3.8

Where e = gsinf,, = ¢’ cosf,,. The O are the operators capable of induc-
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ing the TGC NP couplings. The explicit form of the CP-conserving operators
are given by equation 3.9 and the CP-violating are given by equation 3.10

Opy = iB"(D,®)'(D,®)

Owy = i(D,®)'r-WH(D,d) (3.9)
1 14

Ow = (W, xW’,)- W,

T ~
Opw = <I>T§ -WH®B,,

- 1 <
Ow = (W', x W2,)- W, (3.10)
where
DUy 1 nvpo X7 LY 1 uvpo
B =SB, W = S TW,, (3.11)

the 7 are the Pauli matrices, which represent the generators of the SU(2)
group and @ is the Higgs doublet. B, is the U(1)y gauge field strength, W,
is the SU(2),, gauge field strength and D, is the SU(2);, x U(1)y covariant
derivative. All of these are given below, (3.12), (3.13) and (3.14).

B, = 0,B,-0,B, (3.12)
W, = ,W,—0,W,—gW,xW, (3.13)
D, = 9,+ igg ‘W, +ig'V B, (3.14)

In the covariant derivative, Y is the hypercharge of the field upon which
D, is acting. The a; parameters in equation 3.8 can then be written in terms

of the TGC parameters given in equation 3.1:
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awe = cos? 0w Agy

apy = Ak, —Ag{ cos? 0,

ay = A (3.15)
apw = R

aw = A,

with the constraints:

Ak, = Ag? — tan’ 0w Ak,

A= A =
F, = —tan®0,k, (3.16)
o= A\,

Where the A indicates the deviation from their Standard Model value,
so Agi= ¢;—1 and Ax,= k,—1.

Not all 14 TGC parameters from equation 3.1 were included in this
SU(2), xU(1)y gauge invariant constraint. The couplings that violate charge
conjugation symmetry, g/, g1 and the analogous Z couplings, have been ig-
nored. This is because, as mentioned earlier, without the intervention of
higher order operators, if the photon couplings were non-vanishing at ¢ = 0
they would violate electromagnetic gauge invariance. However, similar con-
straints through SU(2);, x U(1)y gauge symmetry can be put on the charge
conjugation violating parameters [53, 54], for example, the constraint on g,

and g is shown in equation 3.17.

9i =91 (3.17)
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We have considered both CP-conserving and CP-violating anomalous cou-
plings within the Lagrangian, and embedded them in a SU(2), x U(1)y gauge
invariant structure. However, there is very good experimental evidence from
the measurement of the neutron electric dipole moment [55, 56|, against the
existence of a CP-violating electromagnetic interaction. Also, bounds on the
W Boson electric dipole moment [57], which is related to the CP-violating
photon TGCs, equation 3.6, would suggest that the existence of an anomalous
CP-violating photon TGC is unlikely. However, these measurements do not
constrain the C-violating coupling, ¢/, as highly as they do the P-violating
couplings [58]. LEP1 data also suggests that SU(2);, x U(1)y symmetry holds
to very high precision.

All this would then suggest that the possibility of a CP-violating TGC as
highly unlikely and thus the 14 TGC parameter set can be reduced to just
three parameters; Ax,, Ag; and A\. However, few direct limits have been
placed on the CP-violating couplings. Values for all the CP-violating TGCs
have been reported by the ALEPH collaboration [59, 60], and for %, and A
by the DELPHI collaboration [63]. Values of &, and 5\7 have been reported
by DO collaboration from the process pp — fvy+X [61, 62]. All these sets of
results do not constrain the couplings to SU(2), x U(1)y gauge invariance.

The set of couplings measured in this thesis will all require the SU(2),, x
U(1)y gauge symmetry constraints, but will not be constrained to CP-

invariance, and so are as follows; Ax,, Agf, A, k., A\, and gj.

3.2 TGCs and W Pair Production at LEP

LEP is an electron-positron collider which has run above the W-pair

production threshold since 1996. The coupling of three gauge bosons, as
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shown in figure 3.1, is possible at LEP through the annihilation of the leptons
into a photon or Z° which then decays into two W bosons (figure 3.2). There
is also a third possible process with the triple gauge vertex, the t-channel
process shown in figure 3.3. The first two TGC processes produce pairs of
W bosons, however, the t-channel produces only one and so is, accordingly,

known as the single W channel or process.

e J/ W e s W

Figure 3.2: The two W-pair production processes which contain the trilinear

gauge vertex.

Figure 3.3: The t-channel single W production process which contains the

trilinear gauge vertex.

There is a third channel that produces an identical final state of a pair of

W bosons as the TGC W-pair production channel, but does not include the
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TGC vertex. This is known as the neutrino exchange, or t-channel W-pair
production channel and is shown in figure 3.4. Although the single W pro-
duction has fairly different characteristics to the TGC W-pair production,
and so can be separated from W-pair events, the t-channel W-pair produc-
tion has very similar characteristics, therefore all three W-pair production

processes have to be considered together.

Figure 3.4: The t-channel W-pair production process. This is the only W-
pair production process at LEP that does not contain the trilinear gauge

vertex.

3.2.1 Polarisation of the W-Pair System

W bosons can have helicity £1 or 0. A W boson with helicity +1 is
said to be transversely polarised and one with zero helicity is longitudinally
polarised. This means that there are four possible final polarised states
of the W boson pair; transverse-transverse (TT), longitudinal-longitudinal
(LL), transverse-longitudinal (TL) and longitudinal-transverse (TL).

Of the final helicity combinations, all may be produced by both the s-
channel and t-channel processes, except the final state where the W bosons
have opposite helicity +1 and F1. These two final helicity states have angu-

lar momentum J=2 and are only accessible through the t-channel neutrino
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exchange process.

It is possible to write the helicity amplitude for ete™ — WTW~ in terms
of the t-channel neutrino exchange process and the s-channel TGC processes,
including all 14 couplings parameters. For a final helicity state 77/, where
7 is the helicity of the W~ and 7’ that of the W, and with initial helicity

of the electron A\ = j:%, (In the limit of massless leptons, the helicity of the

positron is A’ = —\), the helicity amplitude is given as:
e’ v) (v)
Fyxrrr = — 75[0 (A, t) M, (s, cosby) (3.18)
7

3 (q.(”(A, s)+CP0, s)) Mz (5, c08 By)]

s is the square of the centre-of-mass energy and 6y is the angle between
the electron direction and the W~ direction in the centre of mass frame,
known as the W production angle. ¢ is the four-momentum transfer and is

given by,

1
t= M}, — 53(1 — Bcos By) (3.19)

where,

N

B=(1—4My/s) (3.20)

Equation 3.18 for the helicity amplitude consists of three parts. The
first, denoted by superscript v is for W-pair production through neutrino
exchange. The second and third are for W-pair production through photon
and Z° decays, and are denoted by superscript v and Z respectively. The

TGC parts are each summed over the seven possible couplings given in the
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Lagrangian, equation 3.1. The C's are the terms which carry the dependence
on the coupling value and hence there are seven each for the photon and Z°
TGCs. The Ms give the helicity composition and W production angle for
each of the different coupling terms, note that these are the same for the
photon and Z° TGC for each respective i.

The explicit expressions for each of the C's and Ms can be calculated
from the Feynman diagrams and written in terms of the couplings given
in equation 3.1 [36, 41, 65]. They are shown in table 3.2, where in the Z°

propagator, Dz is approximated at s > 4M3; to be:

and
—1+ 4sin?6, -1
- v oy 3.22
4sin B, cos B, 4sin 6, cos 6, ( )

The first column of table 3.2 gives the Cs given in equation 3.182. The
first row is for the neutrino exchange process. Due to the standard V—A
constraint, the first term in this row will be zero when the electron spin
A=+

To calculate the total amplitude for a certain helicity combination you
must multiply each term in the first column with the corresponding term
in the column denoted with the required helicity. Each product must be

summed together, then the final sum multiplied with the term at the top

2Tt should be noted that each term in column one does not directly relate to a single
coupling in equation 3.1. This is because the terms in table 3.2 were derived in [41], who

use a slightly different parameter set.
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of the corresponding column. For helicity combinations with 7 = 0 and
7 = +1, the last column can be used with 7 — 7/, 7/ — 7 and € — —e.

So, for example, the Standard Model amplitude, F?,, for a pair of W

77!

bosons with spin 7 = 7/ = +1, with the initial electron spin A = —5, would
be:
Fi = Gintn (=2 (cos b — ) (3.23)
T 2 4t sin’ 0,
-2 2cotb,
b 2 )

The equivalent term for an initial electron spin of \ = +% is as in equa-

tion 3.24. Notice how the terms due to the neutrino exchange are now absent

due to the fact that right handed neutrinos cannot be produced.

—e?s | -2  2cotéb,
Filn= 9 sin By (? D,

(a—0))(=5) (3.24)

Another important thing to note from table 3.2 is the column for W boson
helicities 7 = —7' = =£1, this shows explicitly that these combinations can
only be produced via the neutrino exchange process.

The W-pair production differential cross-section due to both the neutrino
exchange and the TGC channels can be written in terms of the helicity

amplitudes:

do(ete” = WrW~) |P| Z‘
d cos By 167rs\/_

(3.25)

where the W# centre-of-mass momentum |P| = \/s/4 — M2,.
As well as the total cross-section, predictions about the polarised cross-

sections can also be made, for example, the production of pairs of transverse
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T=7=%x1| 71=—-7" =41 T=7=0 T=0,7"==+l,e=+1
—e?sA sin 0 —e2s) o 0 —e2s\ o I} \mwmv,A ! Oy — M\/v
p) W B Sin Uy p) sin Uy 272 T COS Uwy
221 . _ . _ s [ _ 2M3, V3leosOw (1462) 28] 2Mw 1’ sin? fw
4t sin? 0, cosbw — cos By — 27\ 2ME, TOm Ow \WAH + s z 2Mw V/3(7' cos Oy —2))
—2(14+Ag]) | 2cot Ou(1+Ag%) s NG
s + Dy (a—2b)) -8 0 —B(1+ ﬁ:wev \%Es\
—Ak cot 0, (Akz —Ag?)(a—2b)) NG NG
e 1 — S VA
K] + D 0 0 QES\ Q?w:\
—Ay cot 0y ANz (a—2bX) R  p/s
s + D »\WNESV 0 0 \w?bav
7 Z
9 cot O gg (a—2b)) 210 /5 \3
R R 0 0 0 B°7' (3y)
ia7 ; z
ig] _ icot fwgf (a—2bN) _p2. /s
s D 0 0 0 B S
—ifiy—Ay | icot Ou(fz—Az)(a—2b)) v
p + ) 2T 0 0 7€t
iy icot Oz (a—2b)) 2 s
% 2D, 27p M, 0 0 0

Table 3.2: The elements needed to construct the helicity amplitudes for the

W-pair production process.
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W bosons opp. Figure 3.5 shows how the total cross-section and the total
polarised cross-sections behave as a function of centre-of-mass energy, /s.
The range is from the threshold of W-pair production, through the energy
range of LEP-2 (162-202 GeV), and beyond.

o
3
al =
T T

Cross-Section ¢ (arbitary units)

o
3

0.25
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Figure 3.5: The Standard Model total production cross-section for W pairs
as a function of centre-of-mass energy. Also shown is the total cross-section
for the production of W-pairs with different polarisation states. Transverse-
transverse (TT), longitudinal-longitudinal (LL) and transverse-longitudinal

(TL+LT).

It can be seen that the total cross-section and each for the different po-

larisation states rise rapidly from the threshold value, however, they all peak
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at different values of /s, with the total cross-section for W-pair produc-
tion peaking at about 200 GeV. From table 3.2, it can be shown that the
cross-section for transverse-longitudinal (TL) W-pairs is always equal to that
of longitudinal-transverse (LT) W-pairs, even in the presence of anomalous

couplings.

N
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N
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Figure 3.6: The total production cross-section for W pair production as
a function of centre-of-mass energy in the presence of the anomalous TGC
Ak,=+1. Also shown is the total cross-section for the production of W-pairs

with different polarisation states.

Figure 3.6 shows the total cross-sections as a function of centre-of-mass

energy in the presence of an anomalous coupling of Ax,=+1. The cross-
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section blows-up with energy, which would violate unitarity unless some non-
Standard Model process occurs at some higher energy value, Ayp. With a
non-zero value of Ax,, as the centre-of-mass energy increases the W-pairs
produced become almost entirely longitudinally polarised, so the dominant
polarisation state becomes LL. With the presence of any of the anomalous
couplings, as /s is increased, the polarisation of the W-pairs becomes dom-
inated by just one of the polarisation states. Some of the polarisation states
are completely insensitive to certain anomalous couplings. Table 3.3 shows
which polarisation states are sensitive to which anomalous couplings and

which state dominates when /s becomes large.

g | R | A
TT v X | vp| X x | vV | Vb
LL Vo | Vb | X X X X X
TL VIV |V I|Vo|Vp|Vp]| X

Table 3.3: Table showing which final helicity states are sensitive to each

Coupling | Ag{ | Ak, | A | g2

anomalous coupling. A tick indicates that the final state is sensitive to the
corresponding coupling. The subscript D indicates which helicity state be-
comes dominant at very high energy in the presence of the corresponding

anomalous coupling.

Plots of the differential cross-section of W-pair production as a function
of the W production angle have been made at centre-of-mass energy 189
GeV, as this corresponds to the data sample considered in this thesis. Fig-
ure 3.7 shows the total differential cross-sections and polarised differential
cross-sections for the Standard Model and anomalous C and P-conserving

couplings. The anomalous couplings have been set at values +1.
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Figure 3.7: The differential cross-section of W-pair production as a function
of the W~ production angle, cos O, at 189 GeV. Shown is the case for the
Standard Model and also with various CP-conserving anomalous couplings

implemented.

Figure 3.8 shows the total differential cross-sections and polarised dif-
ferential cross-sections for the Standard Model and anomalous CP-violating
couplings. The anomalous couplings have been set at values +1.

Figures 3.7 and 3.8 show explicitly the observations made in table 3.3,
which were derived by looking at table 3.2. It immediately can be seen that
the LL differential cross-section is insensitive to A and all the CP-violating

couplings. TT is insensitive to Ak, and gj. For the CP-violating couplings
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the negative coupling has an identical effect as the positive coupling.
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Figure 3.8: The differential cross-section of W-pair production as a function
of the W~ production angle, cosfy, at 189 GeV. Shown is the case for
the Standard Model and also with various CP-violating anomalous couplings

implemented.

By integrating over cos flyy, the fraction of TT, LL and TL+4+LT W-pairs
can be calculated. This has been done for figures 3.7 and 3.8 and the results
are displayed in table 3.4. Also shown in this table is the proportion of each
helicity state at a much higher energy than LEP-2 has run at. This is to

indicate once again which helicity state dominates the total cross-section.



3.3. W BOSON DECAYS 66

Coupling 189 GeV 1 TeV
TT LL | LT4+TL || TT LL | LT4+TL
SM 0.593 | 0.094 | 0.313 0.975 | 0.007 | 0.019

Agi=+1 || 0.448 | 0.165 | 0.385 0.008 | 0.901 | 0.091
Agj= —1 | 0.426 | 0.181 | 0.393 0.008 | 0.901 | 0.091
Ak,= +11 0.589 | 0.103 | 0.308 0.010 | 0.966 | 0.024
Ak,= —11 0.516 | 0.152 | 0.332 0.010 | 0.965 | 0.026
A= +1 0.653 | 0.071 | 0.276 0.988 | 0.000 | 0.012
A=—-1 0.609 | 0.067 | 0.334 0.987 | 0.000 | 0.013
gi= %1 0.542 | 0.085 | 0.372 0.149 | 0.003 | 0.848
k,= *£1 0.383 | 0.033 | 0.584 0.045 | 0.001 | 0.954
A= +1 0.567 | 0.054 | 0.379 0.987 | 0.000 | 0.013

Table 3.4: The fraction of W-pairs with each polarisation state for the Stan-
dard Model, and with various anomalous couplings implemented. The first

column is at \/s = 189 GeV and the second is at \/s =1 TeV.

3.3 W Boson Decays

As W bosons are massive vector bosons they only have a very short
lifetime. This means that within the OPAL detector the W-bosons are never
directly observed, only their decay products are measured. W bosons decay
into two fermions. A W~ can decay into a lepton and anti-neutrino or a quark
anti-quark pair. The branching ratios for each of these decays have been
measured at OPAL from the W-pair production process [66], and is found to
agree well with theoretical predictions [12] for the Standard Model and the
world average [5]. The branching ratios calculated from all data collected

at OPAL, assuming lepton universality to calculate the qq branching ratio,
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is given below. In each case the first error is statistical and the second

systematic.

= 0.1046 £ 0.0042 £ 0.0014,
= 0.1050 £ 0.0041 £ 0.0012,
= 0.1075 £ 0.0052 £ 0.0021,

= 0.6832 £ 0.0061 £ 0.0028.

With each W boson being able to decay into a lepton and neutrino or
two quarks, this means that there are effectively three possible final states;
Two leptons and two neutrinos, (7,0v,;, known as the leptonic channel. Two
quarks and two anti-quarks, qqqq, known as the hadronic channel. Finally
there is a final state of a lepton, a neutrino, a quark and an anti-quark,
(Dyqq, known as the semi-leptonic channel. The branching ratios for these
three channels given in [12] are, 45.6%, 10.5% and 43.9% respectively.

As the decay of W bosons into fermions has been well studied and un-
derstood and is believed to proceed via the standard V—A coupling, it is
possible to predict the angular distribution of the decay fermions if the helic-
ity of the W boson is known. The dependence of the angular distribution of
the fermions, in the W boson rest frame, on the helicity of the W boson are
given by the so called D-functions [36]. The explicit form of these D-functions
is given in equation 3.26, where D, (6%, ¢*) = D (0%, ¢*).
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D,, = %(1 + cos? 0*) — cos 0"
D__ = %(1 + cos® 0%) + cos

Dy = sin®6* (3.26)
D, = % sin® §*e 21

]. > X
D,y = +§\/§ sin 0" (cos 0% — 1)e™™®
1 "
D, = 3 2sin 0*(cos 0* — 1)e ™
In the above equations * is the polar angle of the decay fermion in the

W rest frame and ¢* is the azimuthal angle of the decay fermion in the W

rest frame, as illustrated in figure 3.9.

Figure 3.9: Production and decay angles of W bosons.

Knowing how the decay fermions couple to the W bosons of different
helicity and also how the W bosons are produced in the W-pair through
the helicity amplitudes, (3.18), an analytical expression for the differential

cross-section of the process efe™ — WHW~ — £, fof3fs may be written,
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(3.27). Where 6, and ¢y, are the W~ decay angles analogous to #* and ¢*
respectively. 0f, and ¢, are the W+ decay angles analogous to #* and ¢*

respectively. Br(X — ab) denotes the branching ratio for that process.

do(ete” = WYW= = fifofsfs)
d cos byyd cos Oy, dpy d cos O, doy, B

s e AL (3
Br(W™ — fif2)Br(W™ — f3fy) 16754/ (8_7T>

X Z [F) (5,008 Ow)] [FD, 1, (5, cosbw)] (3.27)

ATI T ToT!s

X DTlT'l (9f17 ¢f1)DTzT'2(7T - 9f47 ¢f4 + 7T)

This equation is the differential cross-section in terms of the W~ produc-
tion angle, cos fy, the production angles of the particle from the W~ decay
in the W rest frame, 0y,, ¢, and the production angles of the anti-particle
from the W+ decay in the W™ rest frame, 0,, ¢7,. Thus it is known as the
5-fold differential cross-section.

With a final state of four fermions all the possible final helicity states
interfere with one another, so it is no longer meaningful to speak of TT,
LL or TL final helicity states. The subscripts on the D-functions, shown in
equation 3.26, do not indicate the spins of the two separate W bosons, but
rather are both for a single W boson. In the 5-fold differential cross-section
the helicity amplitude is multiplied by the complex conjugate of another
helicity amplitude which has different subscripts. The 7 and 7] both refer
to the W~ and so it can be seen that the first D-function relates to the W,
and intuitively the second D-function must relate to the W*. As the sum
runs over all four 7s this immediately implies there must now be 81 terms
for each A helicity in the sum, rather than the nine seen in equation 3.25.

Upon integration of the D-functions over the W decay angles the following
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is obtained:

—+1 2T 4
/ DTT/(9f¢f)dCOS 9fd¢f = 277'5(57_7_/ (328)
-1 0

Integrating the 5-fold differential cross-section over both the W~ and W+
decay angles will thus retrieve the W-pair production cross-section as given

in equation 3.25.

3.4 Polarisation Properties

3.4.1 The Two-Particle Joint Spin Density Matrix

The polarisation properties of the W* bosons in the W-pair are com-
pletely described by the two-particle joint spin density matrix (SDM) [36, 41],

whose elements are given by:

Sy (F2 L (s, cosOw)) (F2,, (s, cosOy))”

2
Z)\Tl‘l'z ‘F%TQ (87 cos GW)‘

The diagonal elements of the two-particle joint spin density matrix, which

Prirrarty (S, CO8 Oy ) = (3.29)

have 7 = 7{ and 7, = 7 sum up to unity, i.e. the matrix has normalisation:

Z Pririrars (8, €08 ) = 1 (3.30)

T2

This normalisation occurs because the diagonal elements are effectively
the probability of producing a pair of W bosons with helicity state 7.
The off-diagonal elements are complex, but the diagonal elements are always
purely real. The matrix elements are functions of both the centre-of-mass

energy squared, s, and the W production angle, cosfy. Examples of the
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analytical predictions for the diagonal elements as a function of cosfw can

be seen in figure 3.10.

0.4

0.2

0.25

0.05

0025 |-

Figure 3.10: Examples of the diagonal elements of the two-particle joint W
Spin Density Matrix. The black line is the Standard Model case and the red

(green) line is for an anomalous coupling of Agi=+1 (—1).

The two-particle joint density matrix is Hermitian and contains 81 ele-
ments. This means that, due to the normalisation given in equation 3.30, 80
of the elements are independent. However, if the W-pair production inter-
action is said to be CP-invariant, the helicity amplitudes fulfill the following

relation:
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F2_(s,cosfy) = F (s, cos Byw) (3.31)

TLT2 —T2—T1

A consequence of enforcing CP-invariance upon the reaction is to reduce
the number of independent elements in the density matrix from 80 to 35. This
is demonstrated in table 3.5, where the combinations of helicity amplitudes,
and thus the SDM elements, that are equivalent due to CP-invariance are
grouped into 36 sets.

As the two-particle joint density matrix contains all the information about
the polarisation of the W bosons, the 5-fold differential cross-section given
in equation 3.27 can now be written in terms of the joint density matrix,

equation 3.32.

do(e*e” = WW™ — fifofsfa)
d cos byyd cos Oy, dpy dcos O, doy,

do(ete” - WHW-) 7 3\° (3:32)
d cos Oy 8 ’
X Z pTlT’szT’z(SacOS HW)D‘FlT’l (9f17¢f1)DT2T’2(7T - 9f47¢f4 —|—7T)

AT T T2 T

The density matrix contains the probability of producing W-pairs of cer-
tain helicity states so the differential polarised cross-sections for producing
final states of two transversely polarised W bosons (TT), two longitudinally
polarised W bosons (LL), a transversely polarised W~ boson with a longi-
tudinally polarised polarised W boson (TL) and a transversely polarised
W~ boson with a longitudinally polarised polarised W+ boson (LT) can be
written in terms of the elements in the joint density matrix [41], as shown in

equation 3.33.
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SET | AMPLITUDE COMBINATIONS SDM ELEMENTS NO.
1 FoiFi  Fo_Fy  FL_F*  Fo FY | pigigy Py Py Pi—y— | 4
2 FLuiFly, Fo_Flo, F__FG  Fyy By | pissos P—i—0s P—0——) Pros— | 4
3 Fi Fi  F__F}_ Pt+4+—5 P—+—— 2
4 Foikgy, F__Fg,, F__FZy, Foi FZy | pyoss P0—ts P———0s Po—s0 | 4
5 Fyy oo, B Eyy P+040> P—0-0 2
6 Fo Fr  F__F*, Pt—t+) P———+ 2
7 FooFfy, Fo_FY,, Fo F*_, FioF"_ P++0+> Po+—+5 PO———> P+—0— 4
8 FoFy, Fo_Fry, Fo_Fy , FioFy P+4005 P0+-0, L00——5 P+00— 4
9 FooFf , Fo Fi_ P++0—> Pot—— 2
10 | Frofyy, Fo Fy,, Fo F*y, FioF?y P+00+5 Po0—+, PO——05 P+—00 4
11 FioFgy, Fo-Fyy £+0005 P00—0 2
12 FooF*, , Fy_F~*, Pi—04s Po——+ 2
13 FL FL  F,_F*_ Ptt—+t) P+——— 2
14 | FFLy, FyL kg Pt+-05 P+0—— 2
5 | F, F_ P 1
16 | K kg, FyOFT Pro—+5 P+——0 2
L I P10-0 1
18 | F, F", P 1
19 | Fo By, FLoFy,, FLoF" Fou B | possss P—t0ts P——0—) Po—1— | 4
20 Fo Py, FooF7y, FoFy , Fo Fy- PO++05 P—+005 P—00—> P00+ 4
91 | Fo B, P b7 Poits Pro_ )
22 | Fo Fyy, FooFgy, FooF?y, Foi FX £00++5 P=00+5 P——005 Po—-+0 4
23 Fo Fyy, F_oFy, P00+05 P—000 2
24 Fo F* , F_ F~, Po—++> P——0+ 2
25 | FooFy,, FooF”_ Po+0+5 Po—0— 2
26 FooF7y, FooFy P0+005 P000— 2
27 FooF7_ Po+0— 1
28 FooF(;ly FooF* P000+> L0—00 2
29 | FooFgo Poo0o 1
30 FooF* Po—o+ 1
31 F L Fi F F_ P—t++4) P——+— 2
32 | FF, FL G P—t405 P—04— 2
33 | F, F'_ P 1
34 | FL Fg,, F_L FZ, P=0++, P——+0 2
35 | F L Fg P—0+0 1
36 | FF", PR 1
TOTAL 81

Table 3.5: The helicity amplitudes and thus the Spin Density Matrix elements
that are related under CP-invariance. The helicity amplitude combinations
in each set are equivalent to each other under CP-invariance. The SDM
elements are those that correspond to each helicity amplitude combination.

CP-invariance thus means that there are only 35 independent SDM elements.
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(3.33)

dorr  do(ete” = WiW5)  do
dcosfyw d cos Oy = dcos Oy (Pgtgt F Py F ey +p—__)
dO'LL da(e*e* — WEWE_) do
- - (P0000)
d cos Oy d cos by d cos Oy
dory, o da(e+e_ — W;Wﬁ) B do
dcosby d cos Oy = dcos Oy (P4+00 + P——00)
doyr do(efem = W Wi)  do
dcosfy d cos Oy " dcosby (Poo++ + poo—-)

From figure 3.10 it can be seen that py o0 + p——_00 = poo+r+ + Poo——, even
in the presence of anomalous couplings®, so it intuitively follows that, as was

stated earlier,

dO’ TL dO’ LT

= 3.34
dcosbw  dcosbyw ( )

3.4.2 The Single W Spin Density Matrix

If only one of the W bosons in the W-pair is considered then the differen-
tial cross-section can then be written in terms of the single W Spin Density

Matrix (SDM) [36, 41]. For example, if only the W~ boson is considered,

do(ete™ = WHW~ — W+ + 1 /)
d cos Bwd cos Oy, doy,

do(ete” — WrW~™) (3 .
— <§> > P (5,¢08 0w) Dry ot (0,61

(3.35)

d cos O -
T1T'1

Equation 3.35 is known as the 3-fold differential cross-section. The single
W SDM completely describes the polarisation properties of one of the W

bosons when the helicity of the other W boson has been effectively summed

3This holds true even if the anomalous coupling is CP-violating.
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over. So the single W SDM is related to the two-particle joint density matrix

as follows,

Py (s, cosfy) = anr’mm(sa cos Oyy) (3.36)
Like the two-particle joint SDM, the single W SDM has purely real di-
agonal elements and complex off-diagonal elements. The single W SDM

contains nine elements, the diagonal elements of which are the probability of

producing a W boson of helicity 71, and so are normalised to unity,

Zprl’;l(s, cosby) =1 (3.37)

71

Examples of some of the real parts of the single W SDM elements can be
seen in figure 3.11. The individual W polarised cross-sections, which are the
differential cross-sections for producing a transversely (T) or longitudinally
(L) W boson in the pair, where the other W boson can take any polarisation,
can be written in terms of the single W SDMs. So for the polarisation of the

W™ we have,

dor do(ete” = WHWr) do W- . W-
- = ()
d cos O d cos O d cos O
doy, do(ete” = WHW,) do -
= L= (P00 ) (3.38)
d cos O d cos O d cos O

Examples of the individual W polarised cross-sections can be seen in
figure 3.12. Shown, are the cross-sections for the Standard Model as well as

those with various anomalous couplings implemented.
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Figure 3.11: The real parts of the single W spin density matrix elements.
The black line is the Standard Model case and the red (green) line is with

an anomalous coupling of Agi= +1 (—1).

CPT and CP-Invariance

At tree level, for the helicity amplitudes, CPT-invariance implies [67]
that,

F). (s,cosfy) = (F2,

TLT2 —T2—T1

(s,cos )" (3.39)

The consequences of this for the single W SDM elements are:
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77777 Ag=+1 a) Transverse

=T
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cosd,,
Figure 3.12: The analytical predictions of the individual W polarised dif-
ferential cross-sections for the production of transverse and longitudinal W

bosons. Examples of the Standard Model as well as some non-Standard

Model cases are shown.

P, (s, cosby) = (p‘f’iT,(s,cos 9w)>* (3.40)

The off-diagonal elements of the single W SDM are complex in nature,

so if equation 3.40 is broken down into the real and imaginary parts, the

following two relations are obtained:

Re (p‘T/VT,_(s,cos Hw)> — Re (pKVTtT,(s,cos Hw)> =0 (3.41)
Im (pZVT,_(s,cos GW)> + Im (p‘f’TiT,(s,cos GW)> =0 (3.42)

The behaviour of the real parts for the single W~ and single W SDM

elements can be seen in figure 3.11 and thus equation 3.41 is confirmed, even
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in the presence of anomalous couplings.
As mentioned earlier, at tree level, for a CP-invariant reaction, the helicity

amplitudes fulfill the following relation:

F2_(s,cosfy) = F (s, cos Byw) (3.43)

TLT2 —T2—T1

Thus the single W SDM elements for the W~ would then be related to
those for the W+ as follows:

PV (s, cosBw) = p (s, cos By) (3.44)

Like equation 3.40, equation 3.44 has some important implications. Split-
ting the single W SDM elements into their real and imaginary parts once
again, for the real parts equation 3.44 reproduces equation 3.41 which was
brought about by CPT-invariance. However, for the imaginary parts the

following is now true,

Im (pZVTf (s, cos HW)) —Im (p‘iv;;,(s, cos HW)) =0 (3.45)

Combining equations 3.40 and 3.44 brings about a simple, but extremely
important conclusion. At tree level in a CP-invariant interaction, the imag-
inary parts of all SDM elements are zero. Any deviation in the imaginary
parts could only occur in the presence of CP-violation. Thus, this means
that equation 3.45 gives a sensitive test of tree level CP-violation within
weak bosonic self interactions. As CP and CPT-invariance give the same
relations for the real parts of the SDM elements, then the real parts do not

provide for sensitive tests of CP-invariance.
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In the presence of CP-violation at tree level, the magnitude by which

equation 3.45 differs from zero is given by:

Im (p‘T/VT,_(s, oS Hw)> —Im (p‘f/TtT(s, oS Hw)>
=2Im (p‘T/VTT(s, Cos GW)> (3.46)

=—2Im (pKV:_T/(S, cos HW))

Figure 3.13 shows the imaginary parts of the off-diagonal elements of
the single W SDM. It can immediately be seen that in the absence of CP-
violation all these elements are zero. The plots with CP-violating couplings
implemented verify the nature of the elements described by equation 3.46.
Figure 3.13 also demonstrates that a matrix element with a positive CP-
violating coupling implemented, is equal to the negative of the same matrix
element with a negative CP-violating coupling implemented. With the real
parts of the SDM elements there is no difference seen between a negative and
positive CP-violating coupling of equal magnitude.

These relationships will break down in the face of effects beyond tree-
level. The presence of loop effects, both CP-conserving and CP-violating
will always cause the imaginary parts of the SDM elements to deviate from
zero [67]. However, these deviations, unlike tree level CP-violation, cause
both the W~ and W elements to deviate from zero in the same way. So
suitable combinations of SDM elements can be formed in which deviations
due to loop effects cancel, these are shown in equation 3.47. Any deviation
from these equations could only be due to tree level CP-violation and so give

a genuine and sensitive test of CP-violation [36, 67].
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Figure 3.13: Examples of the imaginary parts of the off-diagonal single W
SDM elements. The solid black line is the Standard Model case. The red
lines are for CP-violating anomalous coupling k, and the green line is for
CP-violating anomalous coupling \,. The dotted (dashed) line indicates a
coupling of +1 (—1).

Im(p?) = Im(p") =0
Im(pYy ) — Im(p"y) =0 (3.47)
Im(pty ) = Im(plly") =0

Conversely, combinations of matrix elements may be formed to test for
loop effects in which effects due to CP-violation cancel. These are derived
from equation 3.42 and are shown explicitly in equation 3.48. Any deviations
from these could only be an indication of effects beyond tree-level or the

presence of CPT-violation.
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Im(ply) + Im(p™ ) =0 (3.48)



Chapter 4

Application to Data Events

In this chapter the experimental realisation of the theoretical properties
of the W-pair production process are discussed. A method for extracting
the SDM elements from the angular distributions of the W decay products
will be presented. Then the possible final states available through W-pair
production are identified and the characteristics of each discussed. It will
be shown that the WTW~ — qqfp, channel represents the channel with
the clearest access to the SDM elements and polarised cross-sections and so

accordingly is chosen as the signal process.

4.1 Calculating the SDM Elements

The W-pair production process is characterised by a final state of four
fermions. It was shown in equation 3.27 that the cross-section for the process

ete” = WYW~ = f,fofsfi may be written in terms of five angles, the
production angle of the W~ boson, the polar and azimuthal angles of the
W~ decay fermion in the W~ rest frame, cosfy, ¢ and the polar and

azimuthal angles of the W decay anti-fermion in the W rest frame, cos y,,

82
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P,

Monte Carlo generators can be used to generate pseudo-data events for
the process efe™ — WHtW~ — f,f,f3fs. Figure 4.1 shows the Standard
Model prediction of the distributions of the five angles in W-pair produc-
tion and decay calculated from events generated by the EXCALIBUR Monte

Carlo generator.
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Figure 4.1: The angular distributions from Monte Carlo generated W-pair
events. a) the W~ production angle. b) W+ production angle. ¢) & e) the
polar and azimuthal angular distributions of the W~ decay fermion in the
W~ rest frame. d) & f) the polar and azimuthal angular distributions of the

W decay anti-fermion in the W™ rest frame.
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The equation describing the 5-fold differential cross-section in terms of
these angles contains the helicity amplitudes and the D-functions that de-
scribed how the decay fermions couple to the W bosons through the stan-
dard V—A coupling. This coupling, and hence the angular distribution of
the fermions depends on the helicity of the W bosons.

Measuring the angular distribution of the W decay products then gives
an effective way of measuring the W bosons’ helicities. The D-functions,
given in equation 3.26, can be inverted, so that rather than giving the angu-
lar distribution for a certain helicity, it will give the helicities for a certain
angular distribution. A set of so-called projection operators [41] can thus
be formed from the D-functions. When these operators are applied to the
angular distributions of the decay fermions, they effectively project out in-
formation about the helicities of the W bosons. The projection operators
are given the form of AKV:, where the 7 and 7' relate to the interfering spins
of individual W bosons, and the W indicates that there is a different set
of operators for the W* boson and W~ boson. The full set of projection

operators can be seen in equation 4.1, where A, = AZ, .

- 1
AV, = Ag; = 5(5 cos’f; F 2cosf; — 1)
AT = AW = 2—5cos?l;
AV =AY = e (4.1)
- * —8 .
My = (A) = 3 LT Acos Or)e™or

The single W SDM elements that describe the helicity properties of one
of the W bosons can now be calculated using these projection operators.
The unnormalised single W density matrix elements can be extracted from

the 3-fold angular distribution of the W~ decay fermion (or W+ decay anti-
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fermion), by integrating with the appropriate projection operators, for ex-

ample:

do(efe” — WHW™) w

4.2
1 do(ete” — WEff) Wi
_ _ A
Br(W= — f7) / dcos Odcos By 7 (0rr 05)d cos07de;

Each projection operator projects out information about one of the W
bosons in the W-pair. So, by integrating over combinations of the W~ and
W projection operators, all 81 of the unnormalised two-particle joint SDMs

can be calculated, equation 4.3.

do(ete” — WHW™)

T TIT27J 4-3
d cos O Pririrars (4.3)
_ 1 / do(ete” = WYW~ = fifofsf1)
~ Br(W- = fifo)Br(Wt — f3fi) ) dcosbwdcos by, dps dcosbf,dpr,

XAZi/T_’l (9f17 d)fl) T2T2(9f47 ¢f4)dCOS gfldd)fldcos 0f4d¢)f4

If the full angular distributions of the decay fermion from the W~ and
the decay anti-fermion from the W+ are known, all the SDM elements can
be calculated. If the set of data are binned into bins of cosfy, then exper-
imentally equation 4.2 can be realised as a discrete summation over events,
as in equation 4.4, where k is the bin of cosfw, and Nj is the number of

events in that bin.

pTT ZA , (cosby, r); (4.4)

The summations needed for each of the single W= SDM elements are

shown appendix A.1. Performing these summations on the Monte Carlo
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data whose angular distributions are shown in figure 4.1 will give the single
W~ SDM elements for this set of data. These SDM elements are shown in
figure 4.2. Overlaid are the analytical predictions for the Standard Model

calculated from equation 3.29.
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Figure 4.2: The single W~ SDM elements calculated from a Standard Model
EXCALIBUR Monte Carlo sample by application of the projection opera-
tors given in appendix A.1. Overlaid are the analytical predictions for the

Standard Model.

When calculating these SDM elements CPT-invariance can be assumed,

so that information from the W~ and W decay can be combined. CPT-

w+

. . w- _ * ]
invariance means p; . = (p”, _.)*. Therefore, the summation to calculate
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each single W~ SDM element may now be written as a summation over the
W~ — fif decays, plus a summation over the W — f5fs decays with the
appropriate CPT transform applied to the projection operator.

The equation needed to calculate the single W~ SDM elements when both
the W~ decay fermion and the W' decay anti-fermion are measured in every

event is shown in equation 4.5.

o, (k 2Nk ZA » (cosby,, o) +Z( i 0059f47¢f4))*]
=1

(4.5)

If only one of the W bosons is measured in each event, the measurements
from the W+ and W~ can still be combined to form just the single W~ SDM
elements as shown in equation 4.6. In this equation N}V " are the number of
events with the W — ff decay measured in bin k of cos fy, and N}V are

the number of events with the W—— ff decay measured in bin k of cos fy.

Thus NYV* + NV~ = N,.

Nt

N «
pr:.: (k) — Nik Z AZVT’ COS 9f17 ¢f1 + Z ( —7—7' COS 9f4’ ¢f4) )
=1

(4.6)

For the two-particle joint SDM elements both the decay fermion from
the W~ and the anti-fermion of the W* in the W-pair event need to be
measured. Experimentally, equation 4.3 can also be written in bins of cos O

as a discrete summation over events, as shown in equation 4.7.

Ny
1
Pritirarh (k) = ﬁk Z ATlT{ (COS 9f17 d)fl)iATTFé (COS 9}?4, ¢f4)i (47)
i=1
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The complete set of summations of operators giving all the two-particle
joint SDM elements are given in appendix A.2. Taking, for example, the
operators for the diagonal elements (7, = 74,7 = 7%) of the two-particle
joint SDM and performing the summations on the Monte Carlo data, the
two-particle SDM elements shown in figure 4.3 are obtained. Overlaid are the

analytical predictions for the Standard Model calculated from equation 3.29.

0.2

Py 05 | Pitoo 05-P—

Figure 4.3: The diagonal elements of the two-particle joint W SDM calculated
from a Standard Model EXCALIBUR Monte Carlo sample by application of
the projection operators given in appendix A.2. Overlaid are the analytical

predictions for the Standard Model.
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4.2 Calculating the Polarised Cross-Sections

Having calculated both the single W and the two-particle joint SDM
elements for the Monte Carlo, it is then possible to calculate the po-
larised differential cross-sections using equations 3.33 and 3.38 given ear-
lier. The individual W (doy,/dcosbw, dor/dcosfyw) and the correlated
W-pair (dopr/dcos by, doyy,/deosbyw, dopr,/dcosby) polarised differential
cross-sections for the Monte Carlo data are shown in figure 4.4. Overlaid
are the analytical predictions for the Standard Model calculated from equa-

tion 3.25.

4.3 Considerations for Real Events

When looking at the Monte Carlo data samples, it was assumed that
the angular distributions of all four of the decay fermions are well known
and that each individual fermion is perfectly identified. This is not the case
with real data. There are three possible decay channels of the W-pair. The
leptonic (4.8), the hadronic (4.9) and the semi-leptonic (4.10). Each of these

posses their own distinct signatures.

emet = W W' = 075 0ty (4.8)
eet = W W' = qqqq (4.9)
e et — W W' = liqq (4.10)

Each final fermion type has its own difficulties associated with it when
trying to measure them. A brief description of these are given below. A full

discussion on event selection and reconstruction is given in chapter 5.
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Figure 4.4: The differential cross-sections for different W boson helicity states
calculated from Standard Model Monte Carlo. a) is the total differential
cross-section. b) is for the production of two transversely polarised W bosons.
c) is for the production of two longitudinally polarised W bosons. d) is for
the production of a longitudinal and a transverse W boson. e) and f) are
for the production of at least one transverse and one longitudinal W boson

in the pair respectively. Overlaid on all the plots is the analytical prediction

for the Standard Model.

e The massless neutrino cannot be detected and passes straight through

without leaving any signal.
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e The hadrons produce jets of hadronic particles, making identification of
charge, and therefore differentiating between fermion and anti-fermion

very difficult indeed.

e If the lepton is a 7 it will decay before it is detected. It can decay into
a lighter lepton and neutrinos or into hadronic particles. In all cases

reconstruction of direction will be made difficult.

These differences in the way each fermion behaves then mean that each
decay channel has its own set of difficulties associated with it when trying to

reconstruct the W production and decay angles.

e The fully leptonic decay is measured as two leptons. So, although the
lepton and anti-lepton are identified, the fact that not all the momen-
tum is measured immediately complicates things. There will always
be a two fold ambiguity within the calculation of the W production
angle. All the missing momentum is assumed to be that of the two
neutrinos. If there is any Initial State Radiation, the assumed four-
momentum of the neutrinos will actually be that of the neutrinos plus
the ISR photon. The production four-momentum of the W boson will
then be calculated incorrectly and so leads to incorrect calculation of
the the decay angles in the W rest frame. The problem will be further

enhanced if one or both of the leptons are taus.

e The fully hadronic decay produces four jets of particles. All the the
momentum components of the four jets will be measured, but there is
still a three-fold problem. Firstly, each hadron has to be assigned to the
correct jet. This can be done by, for example, using the Durham £, al-
gorithm [68, 69, 70, 71] to force each selected event into four jets. Once

this has been done the correct di-jet combination has to be identified,
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i.e. the two jets from each W boson have to be paired together. This
is possible by using a likelihood algorithm [72]. Both these processes
are not 100% efficient. The charge of each jet is unknown, making it
very difficult to distinguish between the particle and anti-particle from
each W boson and even the W and W~. The charge can be inferred
by a jet charge technique [73]. This technique only has limited success
for calculating the charge of the di-jet pairs to identify the W' and
W™, but is almost useless when it comes to differentiating between the

fractionally charged jets from the particle and anti-particle.

e The semi-leptonic decay is signified by two jets of particles and a lepton.
Calculation of the W production angle can be performed as all the
momentum from the hadronically decaying W boson can be measured.
The problem of jet pairing only arises if there is a 7 lepton present
and even in this case it is far reduced from the problem seen in the
fully hadronic channel. ISR can still cause problems as once again all
the missing momentum is assigned to the neutrino. Identification of
the W~ and W bosons is given by the lepton charge. There is still
an ambiguity in assigning the correct particles to each of the two jets
from the hadronically decaying W boson. Identification of which jet

represents the fermion and which the anti-fermion is also very difficult.

The semi-leptonic channel presents the fewest ambiguities when calculat-
ing the five decay angles of the event, so is chosen as the signal process. The
polar and azimuthal angle of either the decay fermion or anti-fermion in the
W rest frame can be calculated for each event. Thus the single W SDM ele-
ments can be calculated from the semi-leptonic decay events. For the W—qq
in the W-pair the fermion and anti-fermion cannot be distinguished, thus all

the single W SDM elements cannot be calculated from these.
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Certain projection operators (or combinations thereof) used to calculate
the SDM elements are invariant under the transform 0y — 7 —0¢, ¢y — @5+
m. This transform is equivalent to the interchange of the fermion and anti-
fermion from one of the W bosons. Thus, these projection operators can be
used on the hadronically decaying W boson with the choice of fermion being
arbitrary. The projection operators that are invariant under this interchange

include the following:

AVE LAY = 5cos?fp — 1

A = 2 - 5cos? 0, (4.11)

Therefore pyy and py+p__ can still be extracted from the hadronically
decaying W boson. The combinations of SDM elements needed to calculate
the W-pair polarised cross-sections only require the combinations shown in
equation 4.11, so may also be extracted from the semi-leptonic events, as
shown in equations 4.12-4.15. Both the individual W and W-pair polarised

cross-sections can then be calculated from the semi-leptonic decay events.

orT X Pyt + Pt Py TPy
o AWTAYT 4 AT AT p AW AWT L AWTAYY

oc (AW AV AT A (4.12)

oL X Poo0oo

o AWTANT (4.13)
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orr, X Py400 + P——00
o AWIART A AYTANT

o (AW 4+ AYTHALT (4.14)

oLr X Poo++ T Poo——
o AWTATT L ATAYT

o AT(ATS 4 AT (4.15)

4.4 Events with qgly, Final States

So far, the signal processes e e — W~ W* —qq/r, have been considered.
At OPAL these are not the only processes that produce a final state of qq¢7,.
For example, the TGC process, seen in figure 3.3, which does not have a
intermediate state of two W bosons, can also produce a final state of qqfv,.
There are many more processes which produce the same final state which do
not contain the TGC vertex or an intermediate state of two W bosons [74]. It
is impossible to separate out these events in the data so they are considered
as part of the signal.

The processes producing a final state of qqf, are called the Charged
Current (CC) processes. They can be split into three sub-sets; CC03, which
are the W-pair signal events shown figure 4.5. CC10, which are the processes
capable of producing a final state with the lepton being an electron, a muon
or a tau, this set includes the CC03 diagrams. The extra diagrams needed
to complete this set are shown in figure 4.6. Finally there is the CC20 group
which is all processes which produce a final state of an electron, an anti-

neutrino and a quark anti-quark pair. This set includes the ten diagrams
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from the CC10 set plus ten more diagrams that have a final state which can

have only an electron or a positron as the lepton in the final state, shown in

figure 4.7.
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Figure 4.6: This set of diagrams plus the CCO03 set form the group known as
CC10 diagrams.
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Figure 4.7: This set of diagrams plus the CC10 set form the group known as
CC20 diagrams.



Chapter 5

Selection of Data

In this chapter the event selection procedures are described. The selection
is designed to enhance the signal over background processes. The background
processes fall into two categories, (i) the irreducible background from events
leading to the same final state as the signal. These were described in the last
chapter. (ii) background processes which lead to a similar, but not identical
final state which can be mis-identified as signal events. These processes
are described below. Also described in this chapter are the Monte Carlo

generators used in the analysis.

5.1 Background Events

5.1.1 Neutral Current Four-Fermion Production

In addition to the charged current four-fermion processes already dis-
cussed, there is another class of four-fermion final state events called the
neutral current (NC) processes. Unlike the charged current processes they
do not contain a W boson, so rather than a final state of qq/7,, these events

contain two quarks and two charged leptons, qqf¢™¢~. With a final state such

97
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as this, if one of the charged leptons is not detected by the OPAL detector,
the event will appear to have a final state of qq/o,.
There are 24 neutral current processes which can produce a final state

with either electrons, muons or taus in it. These are called the NC24 dia-

grams. The diagrams for these processes are shown in figure 5.1.

Figure 5.1: NC24 diagrams.

There are a further 24 neutral current processes that can only produce a

final state with the charged leptons being an electron and a positron. The
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diagrams representing these events are shown in figure 5.2. When combined

with the NC24 events, this group is called the NC48 set.

Figure 5.2: Along with the NC24 diagrams, these make up the NC48 dia-

grams.

5.1.2 The Z°/y — qq Background

The Z°/v — qq processes are shown in figure 5.3. The final states pro-

duced by this process are generally unlike the signal process. However, if the
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initial state photon converts into an electron-positron pair and one of the
leptons is lost down the beam pipe, the event could resemble a signal pro-
cess. Furthermore, the photon is often radiated with an energy that means
the Z° is on-shell. This would mean that the jets would be boosted and also
have a similar invariant mass to a W boson. As the Z°/y — qq process has
a cross-section 13 times higher than that of the signal process it is a major

contribution to the accepted background processes.

Figure 5.3: The Z°/v — qq background processes.

5.1.3 The Two-Photon Background

The two-photon process is shown in fig-
ure 5.4. The final state of this process does
not really resemble the signal process, but the
cross-section is extremely high, over a 1000
times greater than the signal processes cross-

section, this means that some events may be

accepted as signal events. There are two pho-
ton events where both beam leptons are lost
Figure 5.4: The two-photon down the beam pipe, these are called untagged
background processes. events and will not contribute to the back-

ground. However, there are events where one
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of the beam leptons is detected, these are called tagged events. These
may contribute to the background as the lepton may resemble that from
a WHW~ — qger, event. Even with these events, the chances of it being
accepted in the selection is extremely low, so the two-photon process is not

as large a contributor to the background as the Z°/y — qq process.

5.2 Monte Carlo Generators

To mimic the actual events seen within the OPAL detector a number
of Monte Carlo generators are employed throughout this analysis. These
generators produce the final state four-vectors of all the particles within the
event. Not only are there generators that produce four-fermions seen from
the W-pair process, but there are also those which produce four-fermion
final states through all the processes discussed in this and the last chapter.
Generators are also used to simulate the other background events, such as
7Z° /v — qq. Many of these generators do not, only produce the final particles
calculated from the leading order Feynman diagrams, but they also include
such effects as Initial State Radiation (ISR), Final State Radiation (FSR)
and Coulomb corrections. In this section the different types of Monte Carlo

generators used are discussed.

5.2.1 Four-Fermion Monte Carlo Generators

The four-fermion generators can produce all four-fermion final states,
qqaq, qdlvy and £tvl'~ by through all possible processes including ete™ —
WHW~ = fifofsfs, as well as the other CC20 and NC48 processes. All
the generators vary in a number of ways, not only in how they model the

basic process, but also in what extra processes are added such as Coulomb
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corrections. A brief description of all the four-fermion generators used in the

analysis is given below.

EXCALIBUR

EXCALIBUR [75] is the most widely used generator. It contains not
only the Standard Model matrix elements, but also the option to switch
on a number of the anomalous couplings seen in the general Lagrangian,
equation 3.1. The couplings that can be varied are; g7, k-, k,, Ay, A,, and
g:. They may be set at any value. It is not possible to implement the
CP-violating couplings.

EXCALIBUR generates four-fermion final states through all possible elec-
troweak four-fermion processes [74]. However, the QED two-photon diagram
is omitted from the OPAL version because this process is not well under-
stood and is better modelled by dedicated two-photon generators. This
means that the interference terms of this process with the other NC48
diagrams are neglected. This is thought to be a small effect, especially
compared to the uncertainty associated with the two-photon process itself.

All fermions are assumed to be massless

when they are generated. The generator

e 9 q also includes the width of the W and
0
Z 6% - 7° bosons. QED initial state corrections

are implemented using a structure func-
V. = tion formalism [76]. Interfering QCD back-
grounds [77] are also possible. An example

of these diagrams are as in figure 5.5. These
Figure 5.5: The interfering

QCD background.

interfering backgrounds are only relevant for

the qqqq channel and in the OPAL version
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of EXCALIBUR they are not implemented.
This is to avoid double-counting because they are also contained in the stan-
dard PYTHIA quark pair production Monte Carlo that is used as the back-
ground generator for the qqqq channel. EXCALIBUR has a Coulomb cor-
rection [78] for the CC03 WW production. This correction accounts for the
fact that if the two W bosons are travelling slowly with respect to each other,
the pure Coulomb attraction between them is not negligible, and it changes
the W boson momentum distribution. This effect is particularly important
at the W-pair production threshold of 161 GeV.

A naive QCD correction is also implemented in EXCALIBUR. This is be-
cause, in addition to the four-fermion production that EXCALIBUR models,
there is also four-fermion plus one-gluon production which enhances the WW
production cross-section. The correction is applied naively to all final-states
with W—qq decays and it boosts the cross-section by (1 + ay(My)/7) for
each W—qq decay. It should be noted that the W—qqg topology is sim-
ulated in the events by the parton-shower part of the event generation, so
multiplying the cross-section by this correction is a reasonable thing to do.

The naive QCD correction in principle should be applied to all diagrams
with a vector boson V—qq decay. However to achieve this a,(Q?) has to
be evaluated at the correct (vector boson mass) scale Q2. This is extremely
involved, so the naive QCD correction is only applied to the WW diagrams,
where Q is well defined (Myy).

ERATO

ERATO [54], like EXCALIBUR, can generate all four-fermion final states
through all possible electroweak four-fermion processes. Once again fermions

are assumed massless. It contains QED initial-state corrections and the
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Coulomb correction. It also has radiative corrections related to the width
of the unstable Z° and W bosons.

The main difference from the EXCALIBUR generator is that any of the
anomalous couplings seen in the general Lagrangian, equation 3.1, may be
varied. These include the CP-violating couplings. All the couplings may be
set to any value. It is possible to produce weighted events using ERATO
aswell. This means that one set of events can be generated along with many
sets of weights, each of which can weight the sample of events to a sample

with any anomalous coupling.

grc4f

gredf [79], like the other four-fermion generators, can generate all four-
fermion final states through all possible electroweak four-fermion processes.
However, it’s structure is slightly different. It is based on the GRACE [80]
system which automatically generates the matrix element in terms of the
helicity amplitude. This means that the fermion masses are treated as non-
zero. It contains the gauge boson widths and Coulomb corrections between
the two intermediate W bosons. It also has initial state corrections, these are
implemented in two ways. One is based on the electron structure function
formalism, as for the other four-fermion generators, but it also uses a parton
shower algorithm. All the C and P-conserving anomalous couplings may be
switched on and set to any value. The CP-violating couplings may not be

implemented.

5.2.2 WW Monte Carlo Generators

The WW generators share many features of the four-fermion generators,

but they only contain the three CC03 diagrams. This means that only four
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fermion final states via the process ete™ — WTW~ — f, fof3fs are calcu-
lated and so the interference between all possible final four-fermion processes
are not included. It should be noted that all the four-fermion generators
already discussed may also be used to generate just the CCO03 events. Below

is a brief description of the WW generators used in the analysis.

KORALW

KORALW [81, 82] generates qqqd, qdf?, and (v~ 0y final states
through the process ete™ — WHW~ — £, fof3f1. The latest version of KO-
RALW can generate four-fermion final states from all possible four-fermion
processes, like the other four-fermion generators. However, that version was
not used in this analysis. KORALW contains initial state QED correc-
tions [83]. It contains gauge boson widths and a Coulomb correction. It
also has a naive QCD correction. Any of the 14 anomalous couplings given

by the standard Lagrangian, equation 3.1, may be switched on.

PYTHIA and HERWIG

PYTHIA [84] and HERWIG [85] are general purpose Monte Carlo genera-
tors for multi-particle production in high energy physics. They can both gen-
erate the four-fermion final states via the efe™ — WTW~ — f, f5 f3 f1 pro-
cess. Being general purpose generators that can produce events for proton-
proton and electron-proton colliders as well as electron-positron colliders,
they do not contain the detailed modelling of all the specific corrections that
are contained in the dedicated four-fermion generators. Both generators only

generate events with Standard Model couplings.
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5.2.3 Background Generators

A number of different Monte Carlo generators are used to produce sim-
ulation of the possible background events. For the Z°/y — qq events both
PYTHIA and HERWIG are used. The two-photon events are much less well
understood than the other processes and there are a number of different gen-
erators available, each of which model the processes slightly differently. Of
the dedicated two-photon generators the PHOJET [86, 87] generator is used
to model some of the processes. In addition to PHOJET, the HERWIG and
PYTHIA generators are also used to simulate some events. A combination

of the three is used to produce the final sample of two-photon events.

5.2.4 Jet Fragmentation

The Monte Carlo generators produce the final four vectors of all the
particles in the main process. However the quarks and 7 leptons fragment
into showers of particles. To model this process and also Final State Ra-
diation (FSR), hadronisation programs are employed. There are two main
fragmentation schemes used at OPAL; JETSET [84] which is the fragmen-
tation scheme from PYTHIA, and the HERWIG fragmentation scheme.
Both these hadronisation programs have been tuned using data measured

at OPAL [88, 89] to give the best representation of true fragmentation.

5.2.5 Monte Carlo Samples Used

Table 5.1 shows all the fully detector simulated Monte Carlo samples
used in this analysis. In addition to these, a number of generator level sam-
ples of EXCALIBUR, ERATO and KORALW were used that had not been

subjected to detector simulation. A key to some of the important points in
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table 5.1 is given below

T contains ete™ — (0¢¢ where ¢ = i, T, ve, v, and v,. Events not included

are eeff (f=e,u,7,q) and 4-v.
T contains final states fvqq, £/qq and vrqq.
* contains all possible four quark final states.
x TGC indicates the sample contains events sensitive to TGCs only.

< non-TGC indicates the sample contains events insensitive to TGCs

only.
@ qqrv, final states only.

o events supplied with weights to make sample Standard Model or with

various anomalous couplings present.
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Run No. Generator type No. events Model Frag. scheme
8027 PYTHIA CCo3 100000 Standard JETSET
8099 HERWIG CCo3 100000 Standard | HERWIG/JETSET
8626 KORALW CCo3 200000 Standard JETSET
9865 GRCAF CCo3 246570 Standard JETSET
9866 GRCAF CCo3 246570 Standard HERWIG
8263 | EXCALIBUR CCo3 200000 Standard JETSET
8264 EXCALIBUR CCo03 100000 Aky = +1 JETSET
8265 | EXCALIBUR CCo3 100000 Ak, =—1 JETSET
8266 | EXCALIBUR CCo3 100000 Agi = +1 JETSET
8267 | EXCALIBUR CCo3 100000 Agéi=—1 JETSET
8268 EXCALIBUR CCo03 100000 A=+1 JETSET
8269 | EXCALIBUR CCo3 100000 A=+1 JETSET
7844 GRC4F 4-fermion (1111)7 15855 Standard JETSET
8055 GRCA4F 4-fermion (llqq)* 43396 Standard JETSET
7846 GRCA4F 4-fermion (qqqq)* 42088 Standard JETSET
8100 | EXCALIBUR | 4-fermion (TGC)* 460000 Standard JETSET
8101 | EXCALIBUR | 4-fermion (non-TGC)® 52300 Standard JETSET
9103 | EXCALIBUR 4-fermion (qqtv)® 61000 Standard JETSET
8251 EXCALIBUR 4-fermion (TGC) 100000 Aky =42 JETSET
8105 EXCALIBUR 4-fermion (TGCQ) 100000 Aky = +1 JETSET
8252 EXCALIBUR 4-fermion (TGC) 100000 Ak, =40.5 JETSET
8253 | EXCALIBUR 4-fermion (TGCQC) 100000 | Ak, =—0.5 JETSET
8106 EXCALIBUR 4-fermion (TGC) 100000 Ak, = —1 JETSET
8254 EXCALIBUR 4-fermion (TGC) 100000 Ak, = =2 JETSET
8255 | EXCALIBUR 4-fermion (TGCQC) 100000 Agé = +2 JETSET
8107 EXCALIBUR 4-fermion (TGC) 100000 Agi = +1 JETSET
8256 EXCALIBUR 4-fermion (TGC) 100000 Ag; = +0.5 JETSET
8257 | EXCALIBUR 4-fermion (TGC) 100000 | Agi=—-0.5 JETSET
8108 | EXCALIBUR 4-fermion (TGC) 100000 Agi = -1 JETSET
8258 | EXCALIBUR 4-fermion (TGCQ) 100000 Agi = -2 JETSET
8259 EXCALIBUR 4-fermion (TGCQ) 100000 A=+42 JETSET
8109 | EXCALIBUR 4-fermion (TGC) 100000 A=+1 JETSET
8260 EXCALIBUR 4-fermion (TGCQ) 100000 A=+40.5 JETSET
8261 EXCALIBUR 4-fermion (TGC) 100000 A=-05 JETSET
8110 | EXCALIBUR 4-fermion (TGCQC) 100000 A=-—1 JETSET
8262 EXCALIBUR 4-fermion (TGC) 100000 A==2 JETSET
9019 ERATO 4-fermion (TGC) 200000 Standard® JETSET
5078 PYTHIA quark-pairs 500000 Standard JETSET
5080 HERWIG quark-pairs 100000 Standard JETSET
1045 PYTHIA 2-photon 200000 Standard JETSET
1049 HERWIG 2-photon 150000 Standard HERWIG
1055 PYTHIA 2-photon 5000 Standard JETSET
1042 PHOJET 2-photon 999999 Standard JETSET

Table 5.1: The fully detector simulated Monte Carlo samples used in this

analysis.
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5.3 Detector Simulation

Detector simulation is accomplished by passing the four-vectors of all the
particles produced by the Monte Carlo generator into a computer simulation
of the OPAL detector.

This is done by the GOPAL [90] Monte Carlo program. This is based on
the CERN GEANT [91] simulation package. The event generator produces
four-vector files for the particles. These are passed to GOPAL which simu-
lates the detector response, all the default constants for each of the OPAL
subdetectors are also passed into GOPAL. The output of GOPAL is a copy of
the constants used and the simulated “raw data.” These can then be passed
into the ROPE program in the same way as the “real data” from the OPAL
detector. DSTs can be produced and analysed in the same way for the Monte
Carlo as is done for the data.

A schematic for this process is shown in figure 5.6.

4-vector file ‘ Default Constants‘

Constants
+Raw Data

Physics Analysis

Figure 5.6: Outline of the organisation of the GOPAL program.
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5.4 Data Selection and Reconstruction

The selection and reconstruction of qqf7, events consists of two basic
phases. Firstly the selection of qqfv, events is made using the WW pack-
age [92], a set of routines developed by OPAL and designed for the study
of W-pair events. This selection is the same as used by OPAL to measure
the total W-pair production cross-section [66] and therefore does not require
completely reconstructed events.

For the measurement of TGCs and the study of W decays, the tracks in
the event need to be more cleanly reconstructed. The second phase of selec-
tion and reconstruction involves taking the events selected by the previous
process and performing kinematic fits on them, this then rejects any poorly
reconstructed events. This process is achieved using the WV package [93],

which is a set of routines designed to complement the WW package.

5.4.1 Selection of qgfv, Events

This selection of events is based on that used by OPAL at the lower centre-
of-mass energies of 172 GeV and 183 GeV, described in detail in [94, 95]. Due
to the higher energy, a number of the cuts have slightly changed, but the basic
structure remains the same.

Firstly, it should be noted that only events that fail the ¢*v,0'~ Dy selec-
tion [66] are considered as possible qG/7, events. Also the full qqro, selection
is only applied to events that have already failed the qqer, and qquv, selec-
tion.

The selection of the qge?, and qqu#, events proceeds in four stages:

e Identification of the candidate lepton.

e Preselection.
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e Relative likelihood selection.

e Event Categorisation.

This selection will select some qqr, events as qqer, or qquiz, events.
These are separated out in the event categorisation section. Below, each of
these stages is described in detail. Any events not selected as qqer, and
qquiz, are then passed through the qqri. selection, which is discussed later
in this section.

For the preselection and likelihood selection a number of variables are
used, before going on to discuss how these processes proceed, these variables

are defined below:
e dy r — ¢ impact parameter.
e 2, z impact parameter.

e P(/), the lepton identification probability for the candidate lepton
track. For example P(e) is the electron identification probability and

P(x) is the muon identification probability.

® Eiepion, the energy of the lepton candidate. For the electron this is
calculated using the electromagnetic calorimeter energy. For the muons

the track momentum is used.

® Diepton, the momentum of the lepton track. For the three prong tau

decay it is the sum of the momenta of the three tracks.

e Iy, the sum of the lepton candidate track momentum and ECAL clus-
ter energy within a 200 mrad cone about the candidate track (excluding

clusters associated with the candidate track).

e E/p, the ratio of the energy of the associated ECAL clusters to the

track momentum.
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e A¢pgpc/cr, difference between the ¢ measurement from the track and

from the associated ECAL cluster.
° g—g, the energy loss of the particle in the tracking chamber.

e Xaconv, the output of the IDGCON conversion finder which checks if
the track is compatible with an electron or positron originating from a

gamma conversion.
e N}V, the number of blocks containing 90% of the ECAL cluster energy.

e Npycg, the number of layers with hits in the first two layers of an asso-

ciated hadron calorimeter cluster.
e Npycar, the number of HCAL layers hit in an associated HCAL cluster.
e N.uon, the number of muon hits associated with track.

® Xhits/layer, the number of hits in the hadron calorimeter divided by the

number of layers with hits.

® oS Oipmis, the cosine of the angle between the lepton track and the

missing momentum vector.
e \/s', the reconstructed invariant mass s'.
e R,is, the visible energy of the event scaled by /s.

e N¢r, the number of tracks in the central tracking chamber which passed

the WW quality cuts.

N¥Y, the minimum number of tracks in a jet when the event (including

the lepton candidate) is forced into three jets.

e Ngc, the number of electromagnetic calorimeter clusters.
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e Ry, the total ECAL energy scaled to /s.

e Eprp, the energy in the calorimeter of the low angle detectors.
e [, the energy of the highest energy isolated photon.

e ||, the scalar momentum of the lepton.

e P(s'), the probability from a kinematic fit which estimates the recon-

structed invariant mass of the event, v/s’.

® cos B, the cosine of the angle the missing momentum vector makes

with the beam axis.

e > Py, the transverse momentum of the event relative to the beam axis,

calculated using tracks, ECAL clusters and HCAL clusters.

° Nlémenfjet, the number of tracks in the jet containing the lepton when

the event (including lepton candidate) is forced into three jets.

e E., the sum of the candidate track momentum and energies of the
ECAL clusters within a 200 mrad cone about the candidate track (not

including clusters associated with the candidate track).

e I5,h, the sum of the track momentum of all the tracks within a 200

mrad isolation cone.

e I50_500, the sum of the track momentum and ECAL energy of all the
tracks and ECAL clusters within a 200-500 mrad isolation annulus

around the candidate track.

e cos by, the cosine of the angle between the track momentum and the

missing momentum vector.
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e M,, the invariant mass calculated from the track momentum and en-
ergies of ECAL clusters within a 200 mrad cone about the candidate

track.
e cosfy, cosine of the polar angle of the lepton candidate.
e Ey, energy of the jet-jet system.
e yo3, the y-cut value for the transition between two and three jets.

® €080y jer), cosine between the lepton and the nearest jet axis.

Identification of Lepton Candidates

For every event two lepton candidates are selected. The track in the
event which is most consistent with being an electron and the track most
consistent with being a muon from the decay of a W boson into a lepton
(W — () are taken as the lepton candidates. Some events will obviously
not contain a lepton, but a track will still be assigned as a lepton however
improbable. This procedure does not require explicit lepton identification
and is designed to maximise efficiency. For each track in an event which
passes the WW112 track quality requirements, a likelihood function is used
to give the probability that the track selected arose from a W — er, P(e),
or from a W — pw, decay, P(p). The WWI112 track quality requirements

are:
e Momentum < 100 GeV.
e Transverse momentum > 150 MeV.
e dy < 2cm.

e 2 < 25 cm.



5.4. DATA SELECTION AND RECONSTRUCTION 115

e 2 per degree of freedom, in both r — ¢ and z, less than 100.

e At least half the maximum possible number of CJ hits for a track at

the measured value of cos @ with an absolute minimum of 20 hits.

e Tracks crossing the anode plane, 7.9° < q.¢c; < 10.5°, are required to
be well measured, o,/p < 0.5. Where ¢ is the measured charge of the
track and ¢cj is the local azimuthal angle of the track within the CJ

sector.

The variables used in the likelihood function can be split into two groups.
Firstly those that represent the probability of the track being due to a lepton,
namely the energy loss of the track through the tracking chamber and the
number of hits in the hadron calorimeter. The second group are variables that
represent the probability that the track came from the decay of a W boson,
such as the energy deposited in the electromagnetic calorimeter. Table 5.2
lists all the variables used in the likelihood calculation.

For each variable a probability is calculated from comparison with a ref-
erence histogram. There is a reference histogram for each flavour of lepton,
these are derived from large samples of Monte Carlo events. To calculate
the overall probability for each track, the probabilities for each variable are
multiplied together. The track with the highest P(e) is taken as the candi-
date electron in the WHW~ — qger, selection and the track with the highest
P(u) is taken as the candidate muon in the WTW~ — qqup, selection. At
this stage no events are rejected, so every event will have one electron and

one muon candidate.

The use of this many variables ensures that the identification of the lepton

candidate is extremely efficient. Studies using Monte Carlo show that for
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Variable | W —ev, | W — pv,
Plepton v
Elepton vi v
La00 v v
E/p v
A¢rc/cr v
dE/dz N
Xaconv Vv
Nl Vv
Nuca v
NucaL v
Nuuon v
Xhits/layer v

Table 5.2: Variables used to calculate the likelihood of the electron and muon

lepton candidate.

events where the lepton track passes the WW track quality cuts, the following
efficiencies are possible. In 98.1% of the WTW~ — qgew,. events the correct
track is identified as the lepton and in 99.1% of the WW~ — qqup, events

the correct track is identified as the lepton.

Preselection

The preselection cuts are applied to remove background events that are
obviously not WHW~ — qqli, events, such as the two-photon events. It also
removes a significant fraction of the Z°/v — qq events.

A number of cuts are applied to both the WrW~ — qqer, and WTW~ —

qquiz, selections, these are:
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® Eigpton > 10 GeV

® oS Oipmis < 0.9

e P(e),P(p) > 107°

e 0.3 <Rys<1.2

e Nor > 5

e Ry > 0.1

e Ngc > 7

e Epp < (/s — Mz — 10GeV)

o B, < (y/5— Mg — 10GeV)

In addition to these, the reconstructed s’ is required to be greater than
60 GeV? for the W — ev, and greater than 90 GeV for the W — puu,.

Further cuts are applied to the WTW~ — qgew, selection designed
to reduce the backgrounds from two-photon events, which can resemble
WHTW~ — qqger, events and also further reduce the backgrounds from ra-
diative Z°/y — qq events where the initial state photon converts into an
electron-positron pair and one of the leptons is lost down the beam pipe.

The cuts designed to reduce these backgrounds are:

o If Ejepion is within 12 GeV of (y/s—Mzo) then the following are applied:

— Event is rejected if the track of the lepton candidate and an oppo-
sitely charged track appear to have originated from the conversion

of a photon.

— 5 < 92 <15 keVem '
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— If 3—5 is not well measured the event is rejected.

— If the electron candidates within 32°of the beam-pipe then |p] > 10
GeV.

e If the lepton candidate appears to have come from the conversion of a

photon and the kinematic fit converged, then P(y/s) < 0.01.

e | cos Omis| < 0.975. This cut is designed to reject events where a lepton
passing down the beam pipe is mistaken as the missing momentum of

a neutrino.

Relative Likelihood Selection

For events that have passed the initial preselection, a likelihood is given
to them that they are a WHW~ — qqer, event (L) ora WTW~ — qqup,
event (L9%"). A number of variables are looked at to calculate this likelihood.

These variables are shown in table 5.3.

A probability is calculated for each variable by comparing the observed
value with expected distributions obtained from Monte Carlo events. The
likelihood L9 is calculated as the product of these probabilities. Using the
same approach a likelihood is also calculated for the event being a background
Z° /v — qq event (L49). A relative likelihood is then calculated for the event.
For example, the relative likelihood that the event is a WTW~ — qqer,

would be:

[ader Laae
~ Ladev 4 f x Lad

(5.1)

Where f is the expected ratio of preselected background to signal cross-

sections calculated from Monte Carlo. Events with £33 > (0.5 are selected as
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Variable | WrW~ — qqeve, | WTW™ — qquu,

Vv

Eiepton
Tz00
P(0)

cOS Opmis
Ruis

> PT
€0S Oipmis

P(s")
ng%tonfjet

V5 v

Table 5.3: Variables used to calculate the relative likelihood selection of the

L <

D R S U N U U

<

W*W~ — qqev, and WHYW™— — qquv,, events.

WHTW~ — qger, events and those with £99%” > (.5 are selected as WTW— —
qquv, events. Events can be selected as both of these. The combination of
preselection and likelihood selection rejects over 99.5% of the Z°/y — qq
background and is approximately 90% efficient for WHW~ — qger, and
WHW~ — qquu, events.

Event Categorisation

The preselection and likelihood selection are optimised to separate the
WHW~ — qged, and WHW~ — qqui, events from the background Z°/y —
qq events. As a result of the relative likelihood selection, events are classified
as WTW~ — qqer, or WTW™— — qquu, events, or as both. For the ambigu-
ous events, a relative likelihood is constructed to discriminate between the

two possible cases, so all events can only be put in just one category.
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However, approximately 30% of the events will actually be WTW~— —
qqr, events. So all events passing the WTW~ — qge#, selection are reclas-
sified as WTW~ — qger, or WTW™ — qqri, events. A similar procedure is
undertaken for the events passing the WTW~ — qquu, selection.

New relative likelihoods are calculated. The predominant WW~— —
qqrv, events that are selected as WHW~ — qde, events are where the
tau lepton decays into an electron, WTW~ — qqri, — qqevev i, Or a
one prong hadronic state, WTW~ — qqro, — qqrinn’v,,. Likelihoods
are calculated for the event being from each of these two processes using the
same variables as before. Relative likelihoods are then formed to discriminate
between the WTW~ — qqer, and WTW~ — qqru, events. An example of
the relative likelihood between WYW ™~ — qgev, and WTW ™ — qqriz, —

qqevsv, vy is shown below:

queDeV‘r Ur

- (5.2)

queﬁe VrUr
[Ladever-vr | T,aqev

If any of these relative likelihoods are greater than 0.5 the event is cat-
egorised as a WTW ™~ — qqr7, event. A similar procedure is applied to the
WHW~ — qqui, events to separate out the WW— — qqri, — qqui,v, v,
0

and WHW~ — qqrv, — qqrninn’y, v, events from them.

Selection of WTW~ — qqri, Events

The only events so far categorised as WTW~ — qqri, events are those
that passed either the WW~ — qged, or WHW~ — qqup, selection. These
amount to only about 30% of the total number of WrW~ — qqri, events.
All events that failed both the WHW~ — qger, and WTW~ — qquw, se-

lection are now subjected to the WTW~ — qqr#, selection. The selection
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is designed to be sensitive to the four main tau decay channels, namely the

electron, the muon, the hadronic one prong and the hadronic three prong,

WHW~— — qqro, — qarintrTu,.o,.

Variable |7 —e|7—=p|7—1h |7 — 3h

Plepton i vi
Elepton v v
E, J
Iz00 vi v
1506 v Vv
1200—500
E/p
Adrcjer
dE/dx

<
<

XGCONV

90
Nblk

NS S U

Nc2
Nycar

NMUON

<<

Xhits/la.yer
cos 05 Vv
lepton—je

NG Vv Vv

M- Vv Vv

Table 5.4: Variables used to calculate the likelihood of the tau lepton candi-

date in the four tau decay channels.

The selection proceeds as for the WrW— — qge, and WTW™ — qqui,
channels. The identification of the lepton candidate is replaced by the identi-
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fication of the track most consistent with being from each of the four possible
tau decay channels. For the three prong tau decay the combination of three
tracks most consistent with being from this process is identified. The vari-
ables used in this process are shown in table 5.4. The efficiency of this
identification is less than that for the electrons and muons, but still a re-
spectable 79.5% of events are expected to have the correct track(s) identified
as the tau.

Now preselection is applied. A list of all the cuts applied in the preselec-
tion for each 7 decay channel is shown in table 5.9.

The likelihood selection applied uses the same variables as for the other
leptons, but with the addition of more information about the tracks. An event
is selected as coming from a certain channel if the relative likelihood is greater
than 0.75. Once again, events passing more than one WTW~ — qqri,
likelihood selection are subjected to a new likelihood selection using a subset
of variables to ensure it enters into the final data set only once. A list of all

the variables used in the likelihood selection can be found in table 5.5.

Performance of Selection

The performance of the selection on CC03 Monte Carlo signal events is
shown in table 5.6. The overall selection efficiency of the signal events is
estimated to be (87.7 £ 1.1)%.

Figure 5.7 shows the cos Oy distributions of all Monte Carlo events com-

pared to that of selected events only from a sample of CC03 Monte Carlo.
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Variable | 7 pw|7—1h | 7— 3h

Vv Vv
Vv
Vv

Elepton

PR(()

< <0 <!
<0<

1—200

CcT
[200

[200—500

Ya3

<
<

cOS Opmis
Ry
Riis

> PT Vv v

€0S Oipmis

P(Vs')
Vs
NEy

lepton—jet
NCT

qu
0 O (jet) Vv Vv Vv

Table 5.5: Variables used to calculate the relative likelihood of the WTW~ —

< <
< <

<
NG A U N NN

<
< <

DU NN N N N

qqrv, events. There is a different subset for each type of T decay.

The number of background events expected to be selected by this method
calculated from Monte Carlo are shown in table 5.10. The expected selected
cross-section is shown, along with the number of events this corresponds to in
the 189 GeV data. Table 5.7 shows a summary of all these results, along with
the actual number of events selected from the OPAL data. Good agreement

is seen between the expected number of events and the selected number of
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3

Number of events

0 0.5
COs,,

1

Figure 5.7: The cos 6y distributions calculated for a sample of CC03 Monte

Carlo. The yellow histogram represents all events and the green histogram

is for selected events only.

events. The 1246 events actually selected consists of 389 qqe#,, 420 qquw,

and 437 qqrv,.

selected as

WHTW™ — qgeve

WHW~ — qqui,

WHW™ — qqro,

qqeve
qquiy,

aqTVr

85.42 + 0.84 %
0.15 £ 0.01 %
4.55 £ 0.50 %

0.12 + 0.01 %
89.16 + 0.80 %
4.41 £ 0.50 %

3.80 £ 0.50 %
4.30 £ 0.50 %
68.44 + 1.44 %

Table 5.6: The performance of the selection of events. Shown is the efficiency

of selection each type of event. The first column indicates what the event

was selected as and then the following columns indicate what percentage of

each type of generated events was selected as the type indicated.
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Selected as WTW™ — qqlv,
Efficiency [%] 87.7+ 1.1
Signal events 1173 £28

4-fermion, TGC-dep. 24 £ 4
4-fermion, TGC-indep. 34+ 3
70y — ff 48 £ 5
Two-photon 3+2
Total Background 111 £ 8
Total expected 1284 + 29
Observed 1246

Table 5.7: The expected number of events selected from each of the different

processes. Also shown is the total number of observed events at 189 GeV.

5.4.2 Event Reconstruction

So far, all the events that are likely to arise from W-pair production
have been selected, however some of these may have very poorly measured
elements and so the angular distribution of the particles cannot be well recon-
structed. For the analysis of the W spins it is vital to have well reconstructed
angles, so events without these need to be removed from the sample.

All events will have a track identified as the lepton. The electron direction
is reconstructed by the tracking detectors and the energy is measured in the
electromagnetic calorimeters. For the muons the momentum is measured
using the tracking detectors. The case of the WTW~ — qqri, event is
slightly different, but this will either have one track or a narrow jet that is
identified as the tau candidate. The energy of the 7 candidate can only be
derived from a kinematic fit.

Now, all the other tracks and calorimeter clusters can be said to have
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come from the hadronically decaying W boson. These are grouped into two
jets using the Durham £k, algorithm [68, 69, 70, 71]. The total energy and
momentum of each of the jets are calculated with the method described
in [96].

To improve the quality of the measurement of the kinematical variables,

a series of kinematically constrained fits are used:

A. Requiring a conservation of energy and momentum, neglecting ISR.

B. Constraining in addition the reconstructed masses of the two W bosons

to be equal.

C. Constraining in addition each reconstructed W mass to the average

value measured at the Tevatron, My=80.40 GeV/c? [97, 98].

For the WrW~ — qqger, and WHW~ — qquu, events kinematic fit A is
performed. This fit uses five constraints, four from conservation of energy
and momentum and one from the masslessness of the neutrino. This then
gives one over-constraint and, hence is called the 1c fit. Events are accepted
if this fit converges with a probability larger than 0.001. This requirement
rejects about 2% of the signal events and 4% of the background.

To give further improvement in the angular observables a second kine-
matic fit can be applied to the events which passed the 1lc fit. This fit,
kinematic fit C, includes an additional contribution from the invariant mass
of the charged lepton-neutrino system and another from the di-jet system.
These two extra constraints, requiring the two W boson masses to be con-
strained by the average W boson mass measured at the Tevatron [97, 98],
then means that there are three over-constraints and this is then accordingly

known as the 3c fit. The correct mass distribution is a Breit-Wigner with the
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central value at the Tevatron value. However, due to the difficulties of in-
cluding the Breit-Wigner, the W mass distribution is treated as a Gaussian.
In order to simulate the expected Briet-Wigner form, the variance of the
Gaussian is updated at each iteration of the kinematic fit in such a way that
the probabilities of observing the current fitted W mass are equal whether
calculated using the Gaussian or the Briet-Wigner. Events are accepted if
the 3c fit converges with a probability greater than 0.001. Around 4% of the
events fail to do this, and for these the results from the 1c fit are reverted to.

For the WrW~ — qqr7, events kinematical fit B is applied. In addition
to the 1c fit constraints, we have the extra constraint of the W bosons having
equal mass. This results in one over constraint in the WrW~ — qqro,
events. This fit is required to converge with a probability greater than 0.025.

About 14% of the signal events are expected to fail this fit and so are
rejected, however, about 41% of the selected background are also expected
to fail this fit. The fit requirements also suppress those events which were
correctly identified as WTW™ — qqri, events, but where the 7 decay prod-
ucts were identified incorrectly. The fraction of such events in the sample is
reduced from 18% to 12%.

Figure 5.8 shows the distribution of kinematical variables of the selected
events after the kinematical fits have been performed compared to the true

distributions. Reasonable agreement is seen between the two.

5.4.3 189 GeV Data Sample

A summary of the composition of the expected data sample after selection
and kinematical fits is shown in table 5.8.

After selection and reconstruction of the OPAL data events at 189 GeV,
there were 1246 WTW~ — qqlr, events selected. After the kinematic fits
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were applied this number reduced to 1075 events. Of these 1075 events,
368 were qqet,, 387 were qqui, and 320 were qqri;. The angular distri-
butions of these events can be seen in figure 5.9. Also shown on the plots
are the expected distributions for the Standard Model as well as for some
non-standard cases. The expected background contribution is indicated by

the hatched histogram.

Selected as WTW™ — qqlv,
Efficiency [%] 787+ 1.1
Signal events 1053 +25

4-fermion, TGC-dep. 11 £ 3
4-fermion, TGC-indep. 16 = 3
70y — ff 27 + 4
Two-photon 1+1
Total Background 55 £ 6
Total expected 1108 £ 27
Observed 1075

Table 5.8: The expected number of selected events from each of the different
processes after the corresponding kinematic fits have been performed. Also

shown is the number of actual events selected at 189 GeV.
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Figure 5.8: The angular distributions for selected events only. The green
histogram represents the true, generated angles. The blue points represent

the reconstructed angles after the kinematic fits have been performed.
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Events/bin

Events/bin

Events/bin

Figure 5.9: Distributions of the kinematic variables cos by, cos 0}, cos O, ¢;
and ¢, as obtained from the qqlv, events. The points represent the data.
The histograms show the expectation of the Standard Model and the cases
Agi = £0.5. The shaded histogram shows the non-qqfv, background. In
the case of the W+ decaying to the lepton, the value of ¢; is shifted by 7 in
order to overlay the W and W~ distributions.
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Chapter 6

Extracting the TGCs

In this chapter the most efficient way of extracting the values of the
TGCs from the data using a SDM analysis will be discussed. It has already
been shown that the semi-leptonically decaying W-pair events give the best
opportunity for comprehensive analysis and so accordingly have been chosen
as the signal process. Only the leptonically decaying W boson in the W-pairs
gives access to all the individual elements of the single W SDM. For the TGC
fits the only information used from the hadronically decaying W boson will
be the W boson production angle. Both the single W SDM elements and the

W boson production angle will be used to calculate the values of the TGCs.

6.1 The y? Fit to the Single W SDM Ele-
ments

The approach used is to perform a x? fit between the SDM elements
measured in the data with the predictions made using fully simulated Monte

Carlo with different TGC values.

133
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The simple form of a x? [99] is given by:

2= i {y(m) - f(xk;a>r 6.1)

ag
k=1 k

Here y(z;) is the measured value of an observable corresponding to a
precise value of zy, oy is the error on that value and f(z; a) is the theoretical
value corresponding to a precise value of x;, and is a function of the parameter
that is being measured, a. The x? is formed by the sum over all the measured
values, k, of the observables.

In this context y(zy) is the measured value of the SDM element in bin &
of cos . The theoretical value of the SDM element in bin £, corresponding
to f(xg;a), is a function of the TGC parameter being measured. The error,
0, is the standard deviation on the mean of the measured SDM element in

bin k. The standard deviation on the mean is given by equation 6.2

7= \| T 2 W = vl (6:2)

Where y(xy); is the measured value from event i and y(zy) is the mean
value of all events. In effect, the projection operator A, applied to a single
event gives the single measurement y(zg);. The form of equation 6.2 to
calculate the statistical error on each SDM element for each bin of cos 6y is

therefore given by equation 6.3.

Ny,
1
k ;) = _ ATT' 9* * — me, k 2 63
UTT Nk(Nk—l) ;( ( z7¢z)k pTT( )) ( )
A (02508 (ie. y(zg);) represents the projection operators given in
equation 4.1 and p”5(k) (i.e. y(zy)) is the calculated SDM element. The

x? given in equation 6.1 is formed by the sum over all observables. Each

SDM element is separated into N bins of cos fyy, so effectively represents N
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observables. As there are nine SDM, it would also seem sensible to sum over

all these, so the x? would have the form shown in equation 6.4.

s NN N [P k) — pt (k)]

Due to the hermitian nature of the spin density matrix, p,,» = pl ., not
all the elements of the matrix are independent observables. In fact, only the
diagonal elements (p;4, p_ and pgy) and three of the off-diagonal elements,
p+— (=p"), pro (=p§.) and p_o (=pj_) need be included in the x? fit.

The diagonal matrix elements are purely real and so represent three ob-
servables. However, as seen earlier, p,_, pio and p_y are complex, so have
both real and imaginary parts. Each of these then effectively represents 2
observables, the coefficient of the real part and that of the imaginary. This

then totals nine observables to which the 2 fit can be performed:

P+, P——5 P00
Re(py-), Re(p1o), Re(p-o) (6.5)

Im(p,-), Im(po), Im(p_o)

The imaginary SDM observables are completely insensitive to the CP-
conserving couplings and are therefore not used when fitting these couplings.
When fitting the CP-violating couplings all nine observables are used.

The x? given in equation 6.4 is a naive simplification that assumes each
measured SDM element is completely uncorrelated from all the other SDM
elements. All SDM elements in a cos fyy bin are derived from the same data
subset and are therefore correlated. The diagonal elements of the SDM are
normalised to unity, so are highly correlated. Correlations between different

bins of cos 6y may be assumed to be negligible as they use different subsets
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of the data sample. The correlation can be included in equation 6.4 by

introducing a covariance matrix, as shown in equation 6.6

=SS (o) = ot (ks a)) (Vi (k) (07 (k) — p(K; )]

k=1 i=1 j=1
(6.6)
In equation 6.6 the p; and p; represent the nine SDM observables indicated

in equation 6.5. The covariance matrix, V;;(k), is given by:
Vij (k) = wij(k)oi(k)o; (k) (6.7)

Where w;;(k) is the correlation between SDM observable ¢ and j in bin
k of cosfyw. A statistical analysis can be applied to the data to directly

calculate the covariance matrix:

Vi = Ty | 2 (025008 — o4 (8,03 60 — 1)

(6.8)

Table 6.1 shows the correlations between all the SDM observables in one
bin of cos fw, calculated from a SM sample of EXCALIBUR Monte Carlo
data. The SDM elements were divided into eight equal bins in cos fy. The
results shown are for the first bin. The correlations for the other seven bins
are of similar magnitude. It was found that the intra-bin correlations were

negligible.

It was found that the correlations for non-Standard Model Monte Carlo
were similar to those in table 6.1, although not identical. An example with
Monte Carlo generated with an anomalous coupling of Agi=—2 is shown in

table 6.2.

! The stability of forming x2s with highly correlated elements is discussed in appendix B.
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p++ | p— | poo_| Re(pi—) | Re(pso) | Re(po) | Im(pi—) | Im(pso) | Im(p_o)
Pit 1.00 | 0.35 | -0.89 | -0.01 -0.10 0.02 0.02 0.00 0.01
p—— 0.35 | 1.00 | -0.74 | -0.02 -0.10 0.16 0.01 0.00 0.00
Poo -0.89 | -0.74 | 1.00 0.02 0.12 -0.09 -0.01 0.00 -0.01
Re(py-) | -0.01 | -0.02 | 0.02 1.00 -0.11 0.17 0.00 0.01 0.00
Re(pio) | -0.10 | -0.10 | 0.12 -0.11 1.00 -0.68 0.02 0.02 0.01
Re(p_o) | 0.02 | 0.16 |-0.09 | 0.17 -0.68 1.00 0.00 -0.01 -0.01
Im(p;—) | 0.02 | 0.01 |-0.01 0.00 0.02 0.00 1.00 0.00 -0.04
Im(pio) | 0.00 | 0.00 | 0.00 0.01 0.02 -0.01 0.00 1.00 0.68
Im(p_o) | 0.01 | 0.00 |-0.01 0.00 0.01 -0.01 -0.04 0.68 1.00

Table 6.1: The correlations between the —1 < cos fyw < —0.875 bin of all the
single W SDM observables used to calculate the TGCs. These values were

calculated from a Standard Model four-fermion Monte Carlo sample.

6.1.1 Overcoming Problems of Detector Effects.

The SDM elements extracted from the data will not represent the true
SDM elements. The less than perfect angular resolution, the finite selection
efficiency and the acceptance of the OPAL detector are just some of the
factors that will have an effect on the SDM elements. The data sample
is expected to contain some background events and these will also cause
deviation from the true SDM elements. The problem is increased further
when you include such effects as ISR and the finite W width. Figure 6.1
indicates the extent of the problem detector effects cause. It shows the SDM
elements extracted from a sample of fully detector simulated Monte Carlo
events containing all possible signal and background processes. They have
been passed through the same selection and reconstruction as is used for the
data. Overlaid is the theoretical prediction for the Standard Model calculated
from the purely analytical expression of the process ete” — WTW~ —
f1fofsfu, equation 3.29.

The deviations due to the experimental effects are obvious in figure 6.1.

The SDM elements extracted from the data cannot be directly compared
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Figure 6.1: The Single W SDM elements extracted from a fully detector sim-
ulated Standard Model Monte Carlo sample. The solid line is the theoretical
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P+t | p— | poo | Re(pi—) | Re(pio) | Re(poo) | Im(ps—) | Im(pso) | Im(p—o)
Pit 1.00 | 0.29 | -0.86 | -0.02 -0.08 -0.01 0.00 -0.03 -0.02
p—— 0.29 | 1.00 | -0.73 | -0.06 -0.04 0.11 0.03 -0.03 -0.04
Poo -0.86 | -0.73 | 1.00 0.05 0.08 -0.05 -0.02 0.04 0.04
Re(py_) | -0.02 | -0.06 | 0.05 1.00 -0.13 0.17 0.07 0.00 0.00
Re(pio) | -0.08 | -0.04 | 0.08 | -0.13 1.00 -0.62 0.00 0.02 0.02
Re(p_o) |-0.01 | 0.11 |-0.05| 0.17 -0.62 1.00 0.01 -0.02 -0.04
Im(p;_) | 0.00 | 0.03 |-0.02| 0.01 0.00 0.01 1.00 -0.03 -0.05
Im(pyo) | -0.03 | -0.03 | 0.04 0.00 0.02 -0.02 -0.03 1.00 0.64
Im(p_q) | -0.02 | -0.04 | 0.04 0.00 0.02 -0.04 -0.05 0.64 1.00

Table 6.2: The correlations between the —1 < cos 6w < —0.875 bin of all the
single W SDM observables used to calculate the TGCs. These values were
calculated from a non-Standard Model four-fermion Monte Carlo sample with

Agi= —2.0.

with the theoretical predictions from the analytical formula, however they
can be compared directly to SDM elements extracted from fully detector
simulated Monte Carlo. The y? curve is formed from the difference between
SDM elements obtained from the data and from fully simulated Monte Carlo
with different values of TGC.

A large number of samples of fully detector simulated Monte Carlo gen-
erated with a wide range of anomalous couplings are not available, so a
different method is required to produce samples that can then be used in
the x? minimisation. A reweighting technique is employed to produce Monte

Carlo samples with an arbitrary coupling. This method is discussed below.

Reweighting Monte Carlo

For any Monte Carlo event a probability for it occurring, i.e. it’s nor-
malised cross-section, can be calculated from the square of the amplitude for
this event. The probability can be calculated of it being a Standard Model

event or an event in the presence of an anomalous coupling. The ratio of these
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two probabilities can be used to reweight a set of Standard Model events into
a sample corresponding to the non-Standard Model anomalous coupling.

The WVCXME [100] program was developed from the EXCALIBUR
four-fermion Monte Carlo generator. It uses the matrix elements from the
generator program to calculate the amplitude squared. All it needs to know
is the four-vectors of the four-fermions in the event and then it can calcu-
late the amplitude squared for the Standard Model or with an anomalous
coupling present. The generator includes all the features discussed in sec-
tion 5.2.1. EXCALIBUR is a four-fermion generator, so WVCXME also
takes into account the non-CC03 events that are sensitive to TGCs, and also
the interference between the four-fermion final states.

An example of the relevant angles for the SDM analysis calculated from a
fully detector simulated Standard Model four-fermion EXCALIBUR, sample
of Monte Carlo events, that have been reweighted to a sample with Ax,=
—2.0, is shown in figure 6.2. Also shown on the same figure are the angles
calculated from a fully detector simulated sample of EXCALIBUR Monte
Carlo events that were generated with a coupling of Ax,= —2.0. The angles
from the reweighted sample agree well with those from the sample generated
with the anomalous coupling.

EXCALIBUR, and thus WVCXME, only contains the CP-conserving cou-
plings, so this technique cannot be employed to produce samples of Monte
Carlo with CP-violating couplings. However a similar reweighting technique
can be used to make samples of Monte Carlo with CP-violating couplings
using a different method to calculate the weights.

The analytical expression of the 5-fold differential cross-section for the
CCO03 events, given by equation 3.27, can be used to calculate weights for

the W-pair events within a Monte Carlo sample. It does not contain any of
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Figure 6.2: Comparison of angular distributions from EXCALIBUR Monte

Carlo generated with anomalous coupling Ax.,= —2.0 (green line) and a Stan-
dard Model sample reweighted to a coupling of Ak,= —2.0 using WVCXME
(red line) and BILGOU (blue points). Also shown is the distribution of an-

gles from Standard Model Monte Carlo. This has been normalised to the

other samples so the event shapes can be compared.
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the add-ons that WVCXME has, such as accounting for the finite W width,
and it can only calculate weights for the CC03 events in the four-fermion
sample. However, within these limitations, as it contains all 14 anomalous
couplings, it can be used to calculate weights for CP-violating couplings.
ISR can be accounted for by using the generated four-vectors of the four-
fermions to boost the input angles, used in calculating the weight, back into
the true centre-of-mass frame. Using equation 3.27, the Standard Model
cross-section for a Standard Model Monte Carlo event (SM) can be calcu-
lated and also the cross-section for an anomalous coupling («) being present.
The ratio of these two is then the equivalent weight, shown in equation 6.9.

In equation 6.9 €2 represents the set of five angles; cos O, cos 0y, , cosby,, ¢y,

and ¢y, .
do\“ do\*M

As this method is based on analytical expressions from papers by Bilenkii
and Gounaris, the reweighting scheme is known as the BILGOU reweight-
ing scheme. The angular distributions for a Standard Model EXCALIBUR
Monte Carlo sample, reweighted to an anomalous coupling of Ax,= —2.0,
using the BILGOU reweighting scheme are shown in figure 6.2. The distri-
butions agree well with both those generated with a coupling of Ax,= —2.0
and those reweighted using WVCXME.

The single W SDM elements extracted from a sample of fully detector
simulated EXCALIBUR Monte Carlo generated with an anomalous coupling
of Ak,= —2.0 are shown in figure 6.3. Also shown are the SDM elements
extracted from a Standard Model sample which has been reweighted using

both methods of reweighting. Good agreement is seen in most cases.
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Figure 6.3: Comparison of the SDM elements extracted from EXCALIBUR
Monte Carlo, generated with anomalous coupling Ak,= —2.0 (black line)

and a Standard Model sample, reweighted to a coupling of Ak,= —2.0,
using WVCXME (red points) and BILGOU (green points).
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6.1.2 Systematic Checks of the SDM Fit Method

Reweighting methods are prone to introduce biases. Therefore, the pos-
sible scale of any biases has been measured by applying the y? fit method
to samples of fully simulated four-fermion Monte Carlo data that have been
generated with non-Standard Model couplings.

For the CP-conserving couplings, fully simulated samples of four-fermion
EXCALIBUR are available with anomalous couplings; Ax,, Ag; and A, with
values of of +2, +1 and 3. All these were generated with the SU(2),xU(1)y
constraints on the couplings, equation 3.16. Fits were performed to all the
samples using both reweighting techniques. Table 6.3 shows all the results
and figures 6.4 and 6.5 show the bias plots. The values in table 6.3 show
no bias towards the Standard Model for any particular coupling value. The
differences between the measured and the generated values are all less than
the statistical accuracy expected on the data sample shown in table 6.9. Both

reweighting techniques give similar results.

For the CP-violating couplings only the BILGOU reweighting technique
can be used. The ERATO generator was used to generate the Monte Carlo
samples with CP-violating anomalous couplings. Standard Model EXCAL-
IBUR is still used as the sample that is reweighted to calculate the coupling
values. Samples of fully detector simulated ERATO with &,, A, and g; val-
ues from -1 to +1 in nine equal increments were available. Table 6.4 shows
a sample of the fit results and figure 6.6 shows the bias plots for the sam-
ples with these couplings. All results are consistent within the generated

coupling.
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Coupling | Generated Value Fitted Value

WVCXME | BILGOU
Ak, —2.0 —2.0079:94 | _1.99+0-04
Ak, ~1.0 —0.9870:04 | _().98+0-04
Ak, —0.5 —0.445500 | —0.45558%
Ak, 0.0 +0.0250.0% | —0.0115:07
Ak, +0.5 +0.197595 | +0.3550:15
At +1.0 +0.8TH80 | +0.880:2
A, 2.0 +1.967981 | +1.87798%
Ag: 9.0 —1.99%002 | —1.9470(3
At 1.0 —0.95%001 | —0.93*5
Ag? 0.5 —0.4979% | —0.5179%
Ag? 0.0 0.0°50 | —0.02*553
Ag? +0.5 +0.45700% | +0.437003
Ag? +1.0 +0.96%005 | +0.967013
Ag 2.0 F1.97H006 | 49 11H007
A\ —2.0 —1.90097 | —1.89+0:07
A —1.0 —0.867005 | —0.91+2:9
A —0.5 —0.4275:95 | —0.44100
A 0.0 +0.0179:03 | 40.0215:03
\ 0.5 +0.481303 | +0.497903
A +1.0 +0.93+991 | 4+1.03+0:02
A +2.0 +1.9270:07 | 11 .93+0-07

Table 6.3: The bias fits to the single W SDM elements extracted from large
Monte Carlo data samples generated with anomalous CP-conserving cou-
plings. Both reweighting techniques were used. The errors shown are the

statistical uncertainty on the fit to the large sample.
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Coupling | Generated Value Fitted Value

WVCXME | BILGOU
F. ~1.00 - —1.041902
o —0.50 - —0.5170:03
F. —0.25 - —0.291003
o 0.0 - —0.01%9:03
R +0.25 - +0.2779%8
R +0.50 - +0.5073%
R +1.00 - +1.0279%
A ~1.00 - —0.931008
A —0.50 - —0.5370:05
A —0.25 - —0.2975-04
A 0.0 - —0.0275:03
A +0.25 - +0.2175-04
A +0.50 - +0.4619:07
A +1.00 - +0.92*0:0¢
g ~1.00 - —0.97% 508
g; —0.50 - —0.56") 05
g; —0.25 - —0.217908
g; 0.0 - —0.02901
g +0.25 - 40.2119-04
9i +0.50 - +0.5370:02
gi +1.00 - +1.02799¢

Table 6.4: The bias fits to the single W SDM elements extracted from large
Monte Carlo data samples generated with anomalous CP-violating couplings.

The errors shown are the statistical uncertainty on fit to the large samples.
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6.2 The \? Fit to the cosfy Distribution

The single W SDM elements are normalised to the total number of events
in each bin of cos fyy. This means that single W SDM elements are effectively
independent of the shape of the cos fw distribution. The W production angle
is sensitive to the TGCs. This means that there is an observable that has
been measured, is completely uncorrelated to the single W SDM elements,
and as yet has not been used in the TGC fit.

The W production angle, cosfyw, can be binned into eight bins like the
single W SDM elements and normalised to the total number of events. Then
a x? fit can be performed in a similar way as for the SDM elements. The
reweighted Monte Carlo method can be used to calculate the theoretical
distributions in the y? minimisation. The form of the y? would be as in
equation 6.10, where Ny, is the total number of events and ONpe is the error
on the number of events measured in bin k£ of cosfy. The error is simply

the square-root of the number of events in the bin.

al 2
N Nth> (Nme >:|
2 k k tot
o e (6.10)
kz:; |:<Ntot N ONme

6.2.1 Systematic Checks of the cosfw Fit Method

To test the cosfyw fit method, fits are performed to the cosfw distribu-
tions calculated from fully detector simulated Monte Carlo that has been
generated with anomalous couplings. The results of these fits for the CP-
conserving couplings can be seen in table 6.5 and the bias plots are shown in
figures 6.4 and 6.5. The results for the CP-violating couplings can be seen
in table 6.6 and the bias plots are shown in figure 6.6.

The fits of the CP-conserving couplings show no obvious bias towards the

Standard Model or any other coupling. All fitted values are consistent with



6.3. THE COMBINED FIT 148

the generated values. The measured value at Ax, = 41 using the BILGOU
reweighting scheme is less consistent with the generated value, but is still
consistent within the expected statistical error on the data sample, given in
table 6.9.

The fits of the CP-violating couplings show a slight bias towards lower
couplings than the generated values. This is expected due to the slight sys-
tematic difference between the cos 6y distribution extracted from the Stan-
dard Model ERATO sample and that calculated from the EXCALIBUR sam-
ple that is reweighted to perform the fit. The ERATO cosfy distribution
is slightly steeper than the EXCALIBUR one for all CP-violating couplings.
This systematic difference is accounted for in the systematic uncertainties
described in chapter 10.

The cosfw distribution is much less sensitive to the CP-violating cou-
plings than the CP-conserving ones. This is to be expected as the CP-
violating couplings have a large effect on the imaginary observables and a
much lesser effect on the real observables, such as cross-sections [41]. The
CP-conserving couplings have a large effect on the real observables, but no

effect on any of the imaginary observables.

6.3 The Combined Fit

The single W SDM elements and the cos 6y distribution are completely
uncorrelated. This means that the y2s for both fits can be added together.
This fit will then include all the observables used in the SDM analysis.

Bias tests performed using this combined fit are shown in table 6.8 and 6.7

and the bias plots are shown in figure 6.4, 6.5 and 6.6. The combined fit
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Coupling | Generated Value Fitted Value

WVCXME | BILGOU
Ak, —2.0 —1.9079:04 | _1.89+0-04
Arc, 1.0 —0.98+003 | _.95+003
Ak, ~0.5 —0.467001 | —0.447001
Am, 0 008 | 00275
Ak, +0.5 +0.55792 | 4-0.4319:08
Ak, +1.0 +1.087033 | +0.491040
Ak, 2.0 +1.96700¢ | +2.107006
N 2.0 —1.841007 | —1.82703
At 1.0 —0.975067 | —0.96* 63
Ag? 0.5 —0.4910:92 | —0.4979!
Ag? 0.0 0.07507 | —0.01753
Ag? +0.5 +0.477008 | +0.417003
Ag? +1.0 +0.955001 | +0.9570:0;
Ag? 2.0 +1.8510:08 | 41 841008
A —2.0 —1.9270:93 1 _1.91+0:03
A —1.0 —0.9715:92 | —0.98+0:02
A —0.5 —0.491002 | _0.49+0:02
\ 0.0 0.05501 | 0.00953
A +0.5 +0.48%503 | +0.42150
A +1.0 +0.96+90% | 4107194
A +2.0 +1.9270:04 1 11 99F0-04

Table 6.5: The bias fits to the cosfw distribution extracted from large
Monte Carlo data samples generated with anomalous CP-conserving cou-
plings. Both reweighting techniques were used. The errors shown are the

statistical uncertainty on fit to the large samples.
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Coupling | Generated Value Fitted Value
WVCXME | BILGOU
o —1.00 - +0.8970:04
o —0.50 - +0.467004
F. —0.25 - +0.2010 03
o 0.0 - 0.05908
R +0.25 - +0.20799
R +0.50 - +0.4679%
R +1.00 - +0.8990%)
A ~1.00 - +0.931593
A —0.50 - +0.447003
A —0.25 - +0.1570:0
A 0.0 - 0.0199
A +0.25 - +0.15199
A +0.50 - +0.44 1993
A +1.00 - +0.931993
g ~1.00 - +0.8970 1
g; —0.50 - +0.417020
g —0.25 - +0.137912
9 +0.00 - 0.010:11
9z +0.25 - +0.13491
gz +0.50 - +0.4175:20
gz +1.00 - +0.8970-11

Table 6.6: The bias fits to the cos 6y distribution extracted from large Monte
Carlo data samples generated with anomalous CP-violating couplings. The

errors shown are the statistical uncertainty on fit to the large samples.
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gives a noticeable improvement on the fitted values compared to the SDM

elements or cos fyw distributions on their own.

6.4 Fit to Many Subsamples

Fitting to subsamples of Monte Carlo with the same statistics as the data
sample will give a test of the reliability of the statistical error calculated for
the fit. For the error to be reliable 67% of the fitted coupling values should

lie within one standard deviation of the generated value. If this is true, then

the distribution of 372, where z is the fitted value of the coupling, x is the
generated value and Az is the statistical error on z, should be a Gaussian
with a width consistent with unity. These distributions are known as the
pull distributions.

These tests were performed for all six couplings being measured, using
both reweighting methods where applicable. Fits were not only made to
Standard Model Monte Carlo but also samples with all the anomalous cou-
plings used in the bias tests. A summary of the results is shown below.

Figure 6.7 shows the distributions of fitted values of the CP-conserving
couplings. The fits were made to 139 Standard Model subsamples using
the BILGOU reweighting scheme, and are for the combined fit result. The
plots on the left just show the distributions and demonstrate that the fit
is Gaussian and the mean is at the Standard Model value of the couplings.
The width of this distribution can be taken as the expected statistical error
on the measured value of the coupling. The plots on the right are the pull
distributions. Figure 6.8 shows the distributions of the combined fit of the

CP-conserving couplings, using the WVCXME reweighting scheme. For both
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Coupling | Generated Value Fitted Value

WVCXME | BILGOU
A, —2.0 ~1.955598 | —1.947353
Arc, 1.0 —0.98+003 | _0.961+003
Ak, 0.5 —0.45500% | —0.442053
Ak, 0.0 0.079:94 0.00:05
A, +0.5 +0.387006 | 4.0.40+0.06
At +1.0 +0.87H588 | +0.8515:52
A, 2.0 +1.997938 | +1.977983
Ag: 9.0 —1.93%003 | —1.89%083
At 1.0 —0.96°0.63 | —0.95 63
Ag? 0.5 —0.491091 | —0.49790!
Ag? 0.0 0.0001 | 0.0%001
Ag? +0.5 +0.4670:05 | +0.42*003
Ag? +1.0 +0.95%005 | +0.9570¢3
Ag? 2.0 +1.8910:03 | 41 89H003
A —2.0 —1.94+003 | 1897002
A —1.0 —0.9715:92 1 —0.97+0:02
A —0.5 —0.491002 | _0.49+0:02
\ 0.0 0.059%1 | +0.002953
A +0.5 +0.4810:03 | 1.0.4615:02
A +1.0 +0.93+991 | 4+1.03+0:02
A +2.0 +1.9670:92 | 41.98+0:02

Table 6.7: The bias fits to large Monte Carlo data samples generated with
anomalous CP-conserving couplings using the combined fit. Both reweighting
techniques were used. The errors shown are the statistical uncertainty on fit

to the large samples.
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Coupling | Generated Value Fitted Value
WVCXME | BILGOU
F. ~1.00 - —1.015903
F. —0.50 - —0.50%0:05
F. —0.25 - —0.257001
o 0.0 - —0.015901
i, +0.25 - +0.241001
R +0.50 - +0.507992
R +1.00 - +1.007392
A ~1.00 - —0.931008
A —0.50 - —0.4610:02
A —0.25 - —0.2415:02
A 0.0 - 0.019%2
A +0.25 - +0.180:02
A +0.50 - +0.4410:08
A +1.00 - +0.9410:08
g ~1.00 - 0941002
gz —0.50 - —0.48"0:04
g —0.25 - —0.25%0 03
g; 0.0 - —0.015907
gi +0.25 - +0.2619-04
gi +0.50 - +0.491904
gi +1.00 - +0.941904

Table 6.8: The bias fits to large Monte Carlo data samples generated with
anomalous CP-violating couplings using the combined fit. The errors shown

are the statistical uncertainty on fit to the large samples.
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Figure 6.4: Bias plots of the CP-conserving TGC fits using the WVCXME

reweighting scheme. The first column is the fit to the SDM elements, the

second column is the fit to the W production angle, and the third column

is the combined fit. The solid line represents the perfect fit. The red points

represent the expected statistical error on the data.
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Figure 6.5: Bias plots of the CP-conserving TGC fits using the BILGOU
reweighting scheme. The first column is the fit to the SDM elements, the
second column is the fit to the W production angle, and the third column
is the combined fit. The solid line represents the perfect fit. The red points

represent the expected statistical error on the data.
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second column is the fit to the W production angle, and the third column

is the combined fit. The solid line represents the perfect fit. The red points

represent the expected statistical error on the data.
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reweighting methods the width of the pull distributions is close to unity for
all couplings.

For both reweighting schemes, the fits for Ax, show a number of results
with a large deviation from the generated value of coupling. These generally
take a value greater than Ax,=+1. This is because the cos fy distribution
for Ak,=+2 is the same as that for the Standard Model. The plots of fits
to just the cosfyy distribution for the CP-conserving couplings, using the
BILGOU reweighting scheme are shown in figure 6.9. For the fits to Ak,
it is obvious that a large proportion of the samples are mistakenly fitted as
Ak,=4+2. A similar effect is seen to a lesser extent in the Agf fits to cos O,
where the cosfy distribution at about Agj=+1 is similar to that of the
Standard Model.

Figure 6.10 shows the distributions of the fitted values of the CP-violating
couplings for the combined fit using the BILGOU reweighting scheme. The
distribution for k, does not appear Gaussian, and there is a bias towards a
coupling of zero. This is because any anomalous CP-violating coupling will
cause a flattening in the cos 6y distribution. Due purely to statistical fluc-
tuations, a number of the subsamples will have cos fyy distributions that are
steeper than the Standard Model distribution. The fits of the CP-violating
couplings to these subsamples will immediately be biased towards zero and
the fits using just the cos Ay distribution will all give a coupling value of zero.
This obvious bias only manifests in the k, fit and not those of the other two
CP-violating couplings. This is because the W production angle is much less
sensitive to A, and g; than &, so for these the SDM element fits completely
dominate in the combined fit results.

Figure 6.11 shows the distributions of the fit of the CP-violating couplings

to just the cos fw distribution. It can be seen that in all coupling fits there
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is a large spike at zero demonstrating the effect discussed.

The pull distributions for the combined fit of ¥, shown in figure 6.10, has
a width much less than unity, as would be expected. This then means that
the width of the distribution of fitted values cannot be taken as the expected
error. For all the CP-violating couplings the expected error has been taken
as the mean value of the statistical error from all the fits to the subsamples.

Table 6.9 shows the expected value of the statistical error that should be
calculated in the fits to the OPAL data.

Coupling | SDM elements | cos 6w distribution | Combined
Ak, (B 0.321 0.335 0.257
ABG) 0.184 0.100 0.096
Ag#BG) 0.205 0.111 0.079
Ak, (WVE) 0.336 0.401 0.266
AWV e) 0.192 0.106 0.091
AgrWVe) 0.186 0.096 0.091
Fs 0.090 0.174 0.084
A 0.122 0.259 0.110
g; 0.184 0.700 0.180

Table 6.9: The expected statistical error of the fit to the TGC parameters.
These were calculated from the fits to many Monte Carlo subsamples. For
the CP-conserving TGCs, the first three are using the BILGOU reweighting
scheme and the next three are using the WVCXME scheme.
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Figure 6.7: Combined fit results to 139 subsamples of Standard Model EX-
CALIBUR Monte Carlo. The BILGOU reweighting scheme was used in the
fits. The widths of the distributions of the plots on the left side represent the

expected error for the analysis for the corresponding coupling parameters.

The width of the pull distributions, the plots on the right side, should be

compatible with unity if the statistical error is reliable.
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Figure 6.8: Combined fit results to 139 subsamples of Standard Model EX-
CALIBUR Monte Carlo. The WVCXME reweighting scheme was used in the
fits. The widths of the distributions of the plots on the left side represent the
expected error for the analysis for the corresponding coupling parameters.
The width of the pull distributions, the plots on the right side, should be

compatible with unity if the statistical error is reliable.
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compatible with unity if the statistical error is reliable.
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Figure 6.10: Combined fit results for the CP-violating couplings to 139 sub-
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pull distributions.
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Chapter 7

TGCs from 189 GeV Data

In this chapter the results of the TGC fits to the data set described in
chapter 5 will be presented. Measurements of the SU(2);, x U(1)y gauge
invariant set of CP-conserving couplings Ak, Agi and A, were made along
with the SU(2);, x U(1)y gauge invariant set of CP-violating couplings &,
)\, and gi. In all cases the constraints given in chapter 3, equation 3.16 were
implemented.

Fits were performed to both the single W SDM elements extracted from
the W — (1, decay angles and the W boson production angle as described
in chapter 6. These two fits were combined to give an overall value for each

TGC.

7.1 Fit to Single W SDM Elements

The nine single W SDM elements extracted from the 189 GeV data are
shown in figure 7.1. These elements were extracted from the leptonically
decaying W bosons in the W-pair only, and CPT-invariance was assumed

in all cases so that the results from the leptons and anti-leptons could be

164
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combined, as described in chapter 4 by equation 4.6. The errors shown on
the plots are purely statistical. A x? fit was performed to these elements.
Overlaid on these plots are the predicted SDM elements extracted from fully
simulated Monte Carlo.

The correlations between all the first bins of the nine observables are
given in table 7.1. For the calculation of the CP-conserving couplings a fit
was made only to the six real single W SDM elements, as these are the only

ones sensitive to the CP-conserving couplings.

pii | p—— | poo | Re(ps-) | Re(pio) | Re(po) | Im(py—) | Im(pyo) | Im(p_o)
piv | 100 | 028 [-0.82| -0.09 | -0.26 0.02 0.11 018 | -0.13
p__ | 028 [1.00 -0.78| -0.15 | -0.10 0.14 0.02 | -009 | -0.20
oo | -0.82-0.78] 1.00 | 0.15 023 | -0.10 | -0.06 0.17 0.21
Re(ps_) | -0.09 [-0.15 | 0.15 | 1.00 -0.26 0.34 0.13 0.16 0.05
Re(pio) |-0.26 [ -0.10 | 0.23 | -0.26 1.00 | -062 | -0.01 0.04 0.01
Re(p_o) | 0.02 | 0.14 [-0.10 | 0.34 -0.62 1.00 0.13 0.02 0.08
Im(p,_) | 0.11 | -0.02 | -0.06| 0.13 -0.01 0.13 1.00 20.06 | -0.18
Im(p,o) | -0.18 | -0.09 | 0.17 | 0.16 0.04 0.02 -0.06 1.00 0.68
Im(p_o) | -0.13 | -020 | 021 | 0.0 0.01 0.08 -0.18 0.68 1.00

Table 7.1: The correlations between the —1 < cos fyw < —0.875 bin of all the
single W SDM observables extracted from the 189 GeV data.

The fitted values using the WVCXME reweighting scheme are:

Ak, = —0.17075:3
Agy = +0.047501]
A = +0.007+32%
The x? plots for these fits can be seen in figure 7.3, where the dashed line

represents the fit to the SDM elements. A similar fit of the couplings was
made using the BILGOU reweighting scheme. The fitted values are:
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Figure 7.1: Single W SDM elements extracted from the 189 GeV data
(points). The solid line is the Standard Model prediction the dotted is the
predictions for Ag;i = +0.5 and the dashed line is the prediction for gj
= +1.5.
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Ak, = —0.229754%6
Agl = +0.04070 158
A = 400511512
The x? plots for these fits can be seen in figure 7.4, where the dashed
line represents the fit the the SDM elements. The results for Ag; and A
agree well with those calculated using the WVCXME reweighting scheme.
The difference in the fitted values for Ak, is slightly greater, but still much
less than the statistical error. It will be seen later that this difference has
little effect on the overall combined result once information about the W
production angle is included in the fit.
The CP-violating couplings were calculated by performing fits to all nine
single W SDM elements. The BILGOU reweighting scheme was used for
these fits. The fitted values are:

Fy = —0.191790%8
Az = —0.089791%
97 = +0.0291931!

The 2 plots for these fits can be seen in figure 7.5. The plot for the fit
of K, to the SDM elements displays a second minimum. This is because the
real SDM elements are sensitive only to the magnitude of the coupling and
not the sign, and the relative contribution from the real SDM elements in
the fit is similar to that from the imaginary parts. A second minimum is not
shown for the other CP-violating couplings because the relative contribution
from the real parts of the SDM is much less than that of the imaginary for

these couplings.
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7.2 Fit to the Normalised cos 0y Distribution

Figure 7.2 shows the normalised cos 6y distribution extracted from the

189 GeV data.

o
~

(Events/bin)/N

o

-1 -0.5 0 0.5 1
coseW

Figure 7.2: Normalised cos Oy disribution extracted from the 189 GeV data
(points). The solid line is the Standard Model prediction, the dotted is
the predictions for Agi = +0.5 and the dashed line is the prediction for g
= +1.5.

The fitted values using the WVCXME reweighting scheme are:

Ak, = —0.26770%7
Agl = —0.07513%
A= —0.09079:991

And for the BILGOU reweighting scheme the fitted values are:
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Ak, = —0.265702%
Ag?l = —0.07013%8
A= —0.090"00%

The agreement between the two methods is once again very good, with
agreement between each measured coupling using the two methods being
better than 5% of the statistical error.

The x? plots for the WVCXME and BILGOU fits are represented by the
dotted lines shown in figures 7.3 and 7.4 respectively.

The fitted values for the CP-violating couplings are:

fy = —0.189%044
Ay = —0.289%9959

gz = 40.672+9371

The x? plots are the dotted lines shown in figure 7.5. All plots show
a double minimum for the fit of CP-violating couplings. The sign of the
coupling has no effect on the cos 6y distribution, only the magnitude, so this

double minimum is expected.

7.3 The Combined Fit

The fits to the SDM elements and cos fyw distributions are completely
uncorrelated and are combined to form a final fit result.
Using the WVCXME reweighting scheme the final fitted values for the

CP-conserving couplings are:
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Ak, = —0.23570232
Ag? = —0.0491008!
A= —0.07579:9%

Using the BILGOU reweighting scheme the final fitted values for the CP-

conserving couplings are:

Ak, = —0.2487022
Agt = —0.050%9%0
A = —0.070%03%

Using the BILGOU reweighting scheme the final fitted values for the CP-

violating couplings are:

Fy = —0.19110062
Az = —0.19110182

g7 = +0.009102%

The x? plots for all these fits can be seen in figures 7.3, 7.4 and 7.5.

As mentioned earlier, the cosfy is much more sensitive to the CP-
conserving couplings than the SDM elements are. This means that the fit to
cos By dominates the overall result. However, for the CP-violating couplings
the converse is true, the cosfw distribution is much less sensitive to these
couplings and therefore the fit to the SDM elements dominates the overall

results.
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Figure 7.3: x? plots of the fit of the CP-conserving couplings using the
WVCXME reweighting scheme. The dashed line is the fit to single W SDM

elements. the dotted line is the fit to the cosf distribution, and the solid

line is the combined fit.
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Figure 7.4: x? plots of the fit of the CP-conserving couplings using the

BILGOU reweighting scheme. The dashed line is the fit to single W SDM

elements, the dotted line is the fit to the cosfy distribution, and the solid

line is the combined fit.
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Figure 7.5: x? plots of the fit of the CP-violating couplings using the BILGOU
reweighting scheme. The dashed line is the fit to single W SDM elements,
the dotted line is the fit to the cos Oy distribution, and the solid line is the

combined fit.
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The goodness of the fit is given by the absolute value of the x?. The
calculated values of the x? for the combined fit for each coupling is given in
table 7.2. For a good fit there should be a x? of one per degree of freedom.
The values calculated with the WVCXME give a lower y? than BILGOU
thus suggesting a slightly better fit.

Coupling | WVCXME | BILGOU
Ak, 53.6 57.8
Ag? 54.2 58.6
A 53.8 58.6
i, - 74.7
A, - 77.9
gz - 78.7

Table 7.2: Absolute values of the x> minimum for each measured coupling

using the combined fit.

7.4 Including Systematics

The areas of systematic uncertainties investigated and their individual
contributions are described in Chapter 10. The inclusion of these system-
atic uncertainties occurs before the fit is performed. In this way, not only
changes in the overall error, but also a shift in the minimum value due to
this uncertainty can be calculated.

A systematic error is calculated on each observable that is measured. This
means that all eight bins of each of the nine SDM elements and the eight

bins of the cos fw distribution will be assigned an error.
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These systematics are then included in the y? fit given by equation 6.6

by including them directly in the covariance matrix as follows:

Vij(k) = wii(k) (o (k)05 (k) + 07 (k)oY (k) (7.1)

3 J 3 J

Where o5 (k) is the statistical error and o;""(k) is the systematic error.
The correlation matrix w;;(k) is only for statistical correlations, it does not
include any extra correlations which may be introduced by the systematic
uncertainty. This may not be an exact treatment of the correlations, but
will give a reasonable estimate. Calculation of exact correlations for each
systematic error would be an extremely difficult and involved task.

All the final fit results for both the CP-conserving and CP-violating cou-
plings, using the BILGOU reweighting scheme, including the systematic un-
certainties can be seen in table 7.3. The results for the combined fit are listed
below.

Using the WVCXME reweighting scheme the final fitted values for the

CP-conserving couplings including systematic uncertainties are:

Ak, = —0.23570282
Ag? = —0.038%30%
A = —0.08210.1%2

Using the BILGOU reweighting scheme the final fitted values for the CP-

conserving couplings including systematic uncertainties are:
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Ak, = —0.263702%
Ag?l = —0.029139%2
A= —0.045709%

Using the BILGOU reweighting scheme the final fitted values for the CP-

violating couplings including systematic uncertainties are:

ky = —0.18410091
Az = —0.1367015;
gf = +0.070935
The x? plots for the fits of the CP-conserving couplings using the WVCXME
and BILGOU reweighting schemes can be seen in figures 7.6 and 7.7 respec-

tively. The 2 plots for the fits of the CP-violating couplings are shown in
figure 7.8.
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Figure 7.6: x? plots of the fit of the CP-conserving couplings, including sys-
tematic uncertainties, using the WVCXME reweighting scheme. The dashed
line is the fit to single W SDM elements, the dotted line is the fit to the

cos By distribution, and the solid line is the combined fit.
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Figure 7.7: x? plots of the fit of the CP-conserving couplings, including sys-
tematic uncertainties, using the BILGOU reweighting scheme. The dashed
line is the fit to single W SDM elements, the dotted line is the fit to the

cos By distribution, and the solid line is the combined fit.
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Figure 7.8: x? plots of the fit of the CP-violating couplings, including sys-
tematic uncertainties, using the BILGOU reweighting scheme. The dashed
line is the fit to single W SDM elements, the dotted line is the fit to the

cos By distribution, and the solid line is the combined fit.
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Chapter 8

Method to Measure Polarised

Cross-sections

The spin density matrix gives full information about the helicities of the
W bosons and as seen in equations 3.33 and 3.38, certain elements can be
used to calculate the polarised cross-section.

It has already been shown in chapter 6 that the SDM elements extracted
directly from the data do not represent the true SDM elements, figure 6.1.
This did not pose a problem when calculating the TGC values from the
data because the data could be compared directly to fully simulated Monte
Carlo. However, this does cause a problem when trying to calculate the
polarised cross-sections. For these, the SDM elements corrected for detector,

acceptance and background effects are required.

8.1 Correcting for Detector Effects

The correction of angular resolution, finite selection efficiency and detec-

tor acceptance effects can be made by introducing a correction factor into the

181
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calculation of the SDM elements. This correction factor is calculated from
the ratio of the number of fully detector simulated, selected Monte Carlo
events, to the number of generated Monte Carlo events.

This is done in a bin-wise manner, so a correction factor is calculated for
a certain volume of phase space as the ratio of the number of events in that
phase space, before simulation and selection, to the number of events after
full simulation and selection.

The relevant SDM elements for calculating the W-pair polarised cross-
sections and the individual W polarised cross-sections are only functions of
the W production angle cos fy, and the polar angle of the W decay product,
cos 0%, so the correction factor only has to be calculated as a function of these
variables.

The correction factor will then be calculated as:

f B dO’ rec dO' true (8 1)
~ \dcosbywd cos 07, d cos 6 d cos fwd cos b, d cos 07 '

Where rec denotes the selected, reconstructed cross-section and true de-
notes the generated cross-section. 67 is the folded polar angle of the decay
hadron. The hadronic jet with 6 > 0 is the angle used. 6 is the polar angle
of the decay lepton. If the cos 6w distribution is separated into k& bins, then
there will be a set of correction factors for each bin of cos fyy, each of which
will only be a function of the polar angles of the W decay products. This
correction factor can be applied to the calculation of the appropriate SDM

element as follows:

Ny,

1 1

k * *

Prrrirt = oo E ———N\--(cos )i\ (cosb); (8.2)
Nk) i=1 {fk(9€7 9] )Z} ‘ !
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where N{°" is the corrected number of events in bin £ given by equation (8.3).

o 1
Neor = ; SEON SN (8.3)
The single W SDM elements are only a function of the polar decay angle of
one of the W bosons. For these the correction factor is only calculated as a
function of the one relevant angle. The value of N " therefore also changes.
The full set of equations needed to calculate SDM element combinations
for all the W-pair and individual W cross-sections, including the correction

factor would then be:

TT = pijis + P44+ Pt + - (8.4)
L 1
= 5cos?0; — 1);(5cos? 0F — 1),
ngor ; {f]g(ez, 9;)2}( 4 ) ( j )
LL = poooo (8'5)
L 1
= 2 — 5cos20:);(2 — 5 cos? 0F);
Ngor;{fk(ez,ef)z}( l) ( J)
TL = piyo0 + p——00 + Poot+ + Poo—— (8.6)

Ny
1 Z 1
Nem = ™07, 6):}

(5cos? 7 —1)i(2 — 5cos” 0] );

N,

1 1

T eor (2 —5co8?0})i(5cos? 07 — 1);
N ;{f’“(@ﬂj)i} ‘ !

T = py+p—- (8.7)

1 &
Cor —(5cos” 0 — 1)
Ni ;{f’“(@)}
L = £00 (88)

— 5cos” 0)

L
N 2 ()

The correction factors are calculated from Monte Carlo data. The width

of the bins used has to be small enough to give reasonable results, but its
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width is limited by the resolution of the angular variables. Although the
correction is designed to account for events migrating between bins, if the
bin width is much less than the resolution, then the correction will be less
reliable due to the very large numbers of events migrating between bins. The
angular resolutions of the W production and polar decay angles are shown
in figure 8.1.

The resolution of cos By is 0.04, the resolution of cosf; is 0.06 and the
resolution of of cos #; is 0.08, so the bin widths have to be larger than these.
If the cos By distribution is once again divided into 8 equal bins, the width
of each will be 0.25, which is much larger than the resolution. For the polar
angles it is important to have more bins as it is these that are most sensi-
tive to the W polarisation. For the lepton the bin width is chosen as 0.1,
which means that the cos @ distribution is split into 20 equal bins in the
range [—1,4+1]. For cosf; a bin width of 0.1 is used in the folded range of
[0,4+1], thus it is divided into 10 equal bins when calculating the correction
factor. Examples of some of the correction factor distributions are shown in
figures 8.2 and 8.3. For the cosfw range [—0.25,0.0] it is obvious that the
correction is limited by Monte Carlo statistics.

The correction can be tested by applying it to fully simulated Monte Carlo
samples. It will obviously correct the EXCALIBUR sample used to calculate
the correction factors to extremely good accuracy, but as figure 8.4 demon-
strates, it also gives a good approximation of the true SDM elements when
applied to a sample of fully simulated PYTHIA Monte Carlo. Figure 8.4
shows the combinations of SDM elements needed to calculate the polarised
cross-sections.

Using these corrected SDM elements to calculate the individual W and W-

pair polarised differential cross-sections for the PYTHIA sample, as described
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Figure 8.1: The resolution of the angular variables cos v, cos 8] and cos Hj*
used in calculating the polarised cross-sections. These were calculated from

Monte Carlo data as xmeasured — Tirue-
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IBUR Monte Carlo. The first four are a function of cos 8, for one bin of cos 0;
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Figure 8.4: Comparison of the SDM elements extracted from a fully detector
simulated sample of Standard Model PYTHIA Monte Carlo. The solid circles
are the measured and the open circles are the corrected. The histogram
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by equations 3.38 and 3.33, the plots in figure 8.5 are obtained. Once again,
the correction produces a good approximation of the true cross-sections.

Integrating over cosfyw on the polarised differential cross-sections gives
the total polarised cross-section. The total polarised cross-section divided by
the total cross-section gives the fraction of each polarisation state. Calculat-
ing these numbers from generator level Monte Carlo and from the corrected
polarised cross-sections will give a quantitative check of the detector correc-
tion. Figure 8.6 shows the calculated fractions from generator level Monte
Carlo and also fully simulated Monte Carlo, both before and after the detec-
tor correction. Shown, are the results for a number of Standard Model Monte
Carlo samples and also some non-Standard Model samples. It is obvious that
the detector simulation has a large effect on the measured polarised fraction.
In all cases, for both Standard and non-Standard Model Monte Carlo the de-
tector correction gives results that are within one standard deviation of the
true polarised fractions. It is interesting to note that for all Monte Carlo sam-
ples the detector simulation has a similar effect. The fraction of T'T pairs is
decreased and thus the fraction of other polarised W-pairs is enhanced. This
is due to the detector simulation having the largest effect in the high cos O
region and this is where most of the TT W-pairs are found, as can be seen
for example in figure 8.5.

The correction has also been tested on the polarised cross-sections ex-
tracted from Monte Carlo subsamples with the same statistics to the data
sample. Figure 8.7 shows an example of one of these tests. The correction
appears to give a good approximation of the true cross-sections.

The fractional polarised cross-sections have also been extracted from the
subsamples. They were calculated for both the generator level Monte Carlo

and the fully simulated Monte Carlo. Figure 8.8 shows the difference between



8.1.

CORRECTING FOR DETECTOR EFFECTS

190

do/dcosd,,

w

dc/d%ose

do/dcosd,,

" total

-1 -0.5 0 0.5 1
coso,,

[ LL

: —o0—

010 I | I '_pTI 1 I 111

-1 -0.5 0 0.5 1
coso,,

- T

-1 -0.5

0

0.5 1
coso,,

=
ﬁ FTT
80'2_ —o—
o L
~
© L
go]
0 IIIIIIIIIIIIIIII
-1 -05 0 0.5 1
cosH,,
TL+LT
0.1

do/d CosO,,

O el | I 111 I 111
-1 -0.5 0 0.5 1
cosd,,
= L
F L
So1r ——
'O -
S~
b -
© L
O -I | - I | I 111 I 111
-1 -0.5 0 0.5 1
cosH,,
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the red for fully detector simulated and the green is the result after the fully
simulated has been corrected for detector effects. Descriptions of each Monte

Carlo sample can be found in table 5.1.
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Figure 8.7: The polarised differential cross-sections extracted from a small

Standard Model Monte Carlo sample.

cross-sections extracted from the generator level Monte Carlo.

The histogram represents the true

The solid

circles are those extracted from the fully detector simulated Monte Carlo

and the open circles are as for the solid circles except the detector correction

has been implemented. The errors represented are purely statistical and only

for the corrected results.
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the true (generator level) and measured (fully simulated, corrected) values
of the fraction of W bosons with longitudinal polarisation. Results for both
the leptonically and hadronically decaying W boson as well as the combined
result are shown. Good agreement is seen between the measured and true
values. Also shown on figure 8.8 are the pull distributions for these results.
The widths are all close to unity, although the width for the hadronically
decaying W boson is slightly low, suggesting that the statistical error may
be slightly overestimated.

Similar plots for the W-pair polarised cross-sections can be seen in fig-
ure 8.9. Good agreement between the true and measured values is once again
seen. The pull distributions all have widths close to unity except that for
orr, which is slightly low, again suggesting a slight overestimation in the
statistical error.

The distributions of the measured values of both the fraction of longitu-
dinal W bosons and the W-pair polarised cross-section fractions can be seen
in figure 8.10. The width of these distributions can be taken as the expected

statistical error on the measured values.

8.2 Correction for Background

The expected contribution from background events needs to be subtracted
from the data sample before the polarised cross-sections are measured, so that
the true fraction of each polarisation state can be calculated. The expected
accepted cross-section of each background type was given in chapter 5.

Figure 8.11 shows the contribution of background events to the polarised
differential cross-sections. The background can have both a positive and

negative contribution. This is indicated clearly in figure 8.12, which shows
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Figure 8.9: Distribution of the comparison of the true to the measured frac-

tions of each polarisation state calculated from Monte Carlo subsamples. The

true values were calculated from generator level Monte Carlo. The measured

values were calculated from fully detector simulated Monte Carlo and have

been corrected for detector effects. The three plots on the left show the dif-

ference between the measured and true results. The three plots on the right

are the pull distributions.
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Figure 8.10: Distribution of the measured values of the fraction of each po-
larisation state from fully simulated Monte Carlo. All measured values have
been corrected for detector effects. The three plots on the left are the frac-
tion of longitudinally polarised W bosons from the leptonically, hadronically
decaying W bosons and all W bosons respectively. The three plots on the

right are for the W-pair polarised cross-sections.
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the normalised polarised differential cross-sections calculated from Monte
Carlo with and without the expected background events.

Table 8.1 shows the values for the helicity fractions calculated from a
large CC03 Monte Carlo sample and also a Monte Carlo sample containing
the expected background events as well as the signal events. From this, it
is clear that, although not as large a contributer as the detector effects, the
background is an important consideration and must be corrected for.

The correction is achieved by adding the expected selected background
Monte Carlo events to the data sample before the SDM analysis is under-
taken. These Monte Carlo events are assigned a negative weight so that their

contribution is effectively subtracted from the data sample.

Without Background | With Background
07T/ Ctotal 57.24 + 0.98 60.07 + 0.99
OLL/ Tiotal 8.57 + 0.81 5.97 + 0.81
OTL/ Ctotal 34.18 + 1.62 33.96 + 1.64
otV [oiotal 25.43 £+ 0.51 20.42 + 0.51
01/ iotal 25.91 + 0.51 25.45 + 0.50
0L/ Tiotal 25.67 + 0.36 22.07 + 0.36

Table 8.1: The fractional polarised cross-sections calculated from just sig-
nal Monte Carlo and from signal Monte Carlo plus the expected accepted
background.
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Figure 8.11: The contributions to the polarised cross-sections from back-

ground events.

The yellow histogram shows the signal events, the green

histogram indicates an overall positive contribution from background events

and the red histogram indicates an overall negative contribution from back-

ground events.
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Figure 8.12: The normalised polarised differential cross-sections with and
without background contributions. The black histogram is CC03 signal
events only. The red histogram is for CC03 events plus the expected back-

ground contribution.



Chapter 9

Measurements of Polarised

Cross-sections from Data

9.1 Individual W Polarised Cross-Sections

Figure 9.1 shows the differential cross-sections for the production of trans-
versely and longitudinally polarised W bosons obtained from the 189 GeV
data by the procedure described in the previous chapter. Represented are
the differential cross-sections for leptonically decaying W bosons and hadron-
ically decaying W bosons, along with the sum of all W bosons.

Integrating over cos Ay and dividing by the total cross-section gives the
fraction of each polarisation. Table 9.1 gives the results for the 189 GeV
data along with the predicted fractions calculated from generator level EX-
CALIBUR Monte Carlo. The results from the data have both a statistical
error and a systematic error. The sources of possible systematic uncertainty
investigated to calculate the second of these errors are described in detail in
chapter 10.

The polarisation of the leptonically and hadronically decaying W bosons

200
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Figure 9.1: The differential cross-sections for producing transversely (T) and

longitudinally (L) polarised W bosons calculated from the 189 GeV data

(points). The first two plots are for the leptonically decaying W boson in

the pair. The next two are for the hadronically decaying W boson in the

pair. The last two are for all W bosons. Overlaid are the predictions for the

Standard Model (solid line), k,= +1.0 (dotted line) and \,= -1.0 (dashed

line). The dotted-dashed line shows the zero.
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in a W-pair were obtained independently of each other. However these are
not independent measurements, the correlation between them was found to
be! 0.071 4 0.030. The total fraction of longitudinal W bosons was calculated
by taking the average of the leptonic and hadronic fractions. The correlation

was included when calculating the statistical error on this value.

oL/ Ototal o1, (pb)
Data
W— (v 0.158 + 0.046 £+ 0.023 | 1.11 4+ 0.32 + 0.16
W— qq 0.279 + 0.045 £+ 0.025 | 1.96 + 0.32 + 0.18
All 0.219 £ 0.034 £ 0.016 | 3.08 = 0.50 £ 0.23
Standard Model Expectation
W— v 0.254 4+ 0.005 1.86 £+ 0.04
W— qq 0.259 + 0.005 1.90 + 0.04
All 0.257 4+ 0.004 3.76 + 0.06

Table 9.1: The fractions longitudinally polarised W bosons. The expected
values are from generator level EXCALIBUR Monte Carlo. The first error
on the measured values is statistical and the second is the systematic uncer-

tainty. Also shown is the total cross-section these fractions relate to at 189

GeV.

Taking the total integrated luminosity as 183.05+0.16(stat.) £0.37(syst.)
pb~! [101], the total cross-section for the process WTW~ — qqlv, was
measured at 189 GeV in [66] as 7.04 £ 0.22(sys.) & 0.10(stat.) pb. This

means the total cross-section for production of longitudinal W bosons in

!The correlations were calculated from the data on an event by event basis using a

statistical analysis.
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WHTW~ — qqly, events is o, = 3.08 £ 0.50(stat.)+0.23(syst.) pb. The
expected cross-section at 189 GeV is 3.76 pb.

9.2 W-Pair Polarised Cross-Sections

Figure 9.2 shows the total differential cross-section for the production of
W-pairs and the differential cross-section for the production of two trans-
versely polarised W bosons, two longitudinally polarised W bosons and the
production of W bosons of opposite polarisation. All these were obtained
from the 189 GeV data by the procedure described in the previous chapter.

Integrating over cosfy and dividing by the total cross-section will once
again give the fraction of each helicity state. The results for this are shown in
table 9.2. The areas of systematic uncertainty are described in chapter 10 and
the overall systematic uncertainty is added in quadrature with the statistical
error. The fractions are highly correlated and the correlations are obtained
directly from the data by a statistical analysis on an event by event basis.

The following correlations are obtained for the 189 GeV data:

TT:LL = +40.648£0.018
TT:TL = —0.890 4 0.006

LL:TL = —-0.867=£0.008

Using the results in table 9.2 and taking into consideration the above cor-
relations, the y? value of the three measurements compared to the Standard
Model expectations, including systematic uncertainties, is 4.7. This corre-
sponds to a x? probability of 10%. Also shown in table 9.2 are the total

cross-sections for the production of the different W-pair polarisation states.
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These were calculated using the total cross-section for W-pair production at

189 GeV measured at OPAL.

Fraction

Cross-section (pb)

Data
TT
LL
TL

0.768 = 0.090 £ 0.032
0.206 £ 0.072 £ 0.018
0.026 &= 0.147 £ 0.038

0.41 £ 0.65 £ 0.24
1.45 + 0.35 £ 0.09
0.18 &+ 1.02 £ 0.26

Standard Model Expectation

TT
LL
TL

0.570 £+ 0.010
0.090 £ 0.008
0.340 £ 0.016

4.17 £ 0.07
0.66 £ 0.06
249 £ 0.12

Table 9.2: The fraction of two transversely polarised W bosons (TT), two

longitudinal W bosons (LL) and one of each polarisation (TL) calculated

from the 189 GeV data. The first error is statistical and the second error

is systematic. Also shown are the total cross-sections for the production of

each polarisation state. In all cases the Standard Model expectations are

calculated from EXCALIBUR Monte Carlo.
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Figure 9.2: The differential cross-sections for producing W-pairs (all), trans-
versely polarised W-pairs (TT), longitudinally polarised W-pairs (LL) and
pairs of W bosons with opposite polarisation (TL+LT) calculated from the
189 GeV data (points). Overlaid are the prediction for the Standard Model
(solid line), i,= +1.0 (dotted line) and \,= —1.0 (dashed line). The dotted-

dashed line shows the zero.



Chapter 10

Evaluation of Systematic

Uncertainties

In this chapter all areas of possible systematic uncertainty are investi-
gated. In each case the uncertainty is quantified so that it can be included in
the final results. For the TGC fit a systematic error is calculated for each bin
of the SDM elements and cos fyy distribution, and these are then included
in the y? fit as detailed in chapter 7. These uncertainties are calculated by
comparing the SDM elements and cos fyy observables. For each area of sys-
tematic uncertainty detailed in this chapter the absolute difference between
the observables is taken as the systematic error.

An error on the polarised cross-section fractions is calculated for each area
of uncertainty. These are combined with the statistical error in quadrature
to give the overall uncertainty on each of the measured values from the 189

GeV data.

206
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10.1 Uncertainties in Electroweak Modelling

All Monte Carlo generators do not model the events in exactly the same
manner. There may be some uncertainty introduced by the way that the
generators model the fundamental interactions occurring. Samples of fully
detector simulated four-fermion Monte Carlo generated by EXCALIBUR are
compared to samples generated by grcdf and ERATO.

Figure 10.1 shows the comparison of the SDM elements extracted from a
large EXCALIBUR sample to those extracted from a large grc4f sample. Ta-
ble 10.1 quantifies the systematic uncertainties as a fraction of the statistical
uncertainties measured on the data sample.

The systematic uncertainties due to the generator modelling of the events
on the helicity fractions were calculated by comparing the measured helicity
fractions from the EXCALIBUR to the those from the grc4f and ERATO.
The overall difference was taken as the uncertainty. These are shown in

table 10.9.

10.2 Jet Fragmentation

The modelling of the quark fragmentation into jets is another possible
source of uncertainty. This process is not well understood, so it is an impor-
tant area to investigate. The fragmentation simulation program most com-
monly used is JETSET. This program was used as the fragmentation scheme
in the EXCALIBUR Monte Carlo employed for both the TGC fit and the
helicity studies. To evaluate the uncertainty, large samples of grc4f Monte
Carlo which use different fragmentation schemes are compared. Both sam-

ples have identical initial four-vectors, but one has then used the JETSET
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Figure 10.1: Single W SDM elements extracted from fully detector simulated
four-fermion EXCALIBUR Monte Carlo (closed circles) and grc4f Monte

Carlo (open circles).
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1 2 3 4 5 6 7 8
cos By 0.07 {045 |0.31|0.07 | 0.27 | 0.01 | 0.12 | 0.17

Pt 0.43 | 0.16 | 0.20 | 0.05 | 0.24 | 0.20 | 0.24 | 0.15
o 0.55 | 0.26 | 0.17 | 0.07 | 0.02 | 0.28 | 0.04 | 0.39
P00 0.61 | 0.04 | 0.24 | 0.08 | 0.15 | 0.30 | 0.10 | 0.21

Re(py—) | 0.52 | 0.21 { 0.25 | 0.36 | 0.17 | 0.23 | 0.42 | 0.28
Re(pyo) | 0.350.31 | 0.17 | 0.18 | 0.53 | 0.17 | 0.17 | 0.10
p—o) | 0.47 | 0.12 | 0.39 | 0.16 | 0.76 | 0.10 | 0.09 | 0.14
p+—) | 0.3310.53 | 0.43 | 0.04 | 0.19 | 0.16 | 0.14 | 0.05
Im(pio) | 0.13 | 0.15 | 0.50 | 0.30 | 0.10 | 0.37 | 0.20 | 0.04
po) | 0.10 | 0.40 | 0.71 | 0.52 | 0.53 | 0.27 | 0.20 | 0.39

Im

(
(
(
(
(
(

Im

Table 10.1: The systematic uncertainty due to generator modelling. The
numbers represent the size of the error as a fraction of the statistical error

from the data sample on each bin of each variable used in the TGC fits.

fragmentation scheme, and the other utilises the HERWIG fragmentation
scheme. As before, the extracted SDM elements and cos fy are compared
and the difference in each bin is assigned as the uncertainty on that bin.
The plots of the single W SDM elements can be seen in figure 10.2. The
magnitude of the systematic uncertainty on each bin is given in table 10.2.

The helicity fractions are calculated for both these samples and the differ-

ences are taken as the systematic uncertainty. These are shown in table 10.9.

10.3 Jet Reconstruction

Extensive studies of back-to-back jets at LEP Z° energies have been car-

ried out. By comparing the data with the Monte Carlo events, the accuracy
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Figure 10.2: Single W SDM elements extracted from two samples of fully

detector simulated grc4f Monte Carlo. Both samples were initially the same,

however, for jet fragmentation, one uses the JETSET fragmentation scheme

(closed circles) and the other the HERWIG fragmentation scheme (open cir-

cles).
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1 2 3 4 5 6 7 8
cos By 0.01 { 0.38 | 0.25 | 0.14 | 0.04 | 0.27 | 0.29 | 0.17

P 0.10 | 0.14 | 0.47 | 0.06 | 0.18 | 0.07 | 0.05 | 0.18
p__ 0.23 | 0.19 | 0.11 | 0.04 | 0.06 | 0.11 | 0.21 | 0.02
P00 0.20 | 0.21 | 0.39 | 0.01 | 0.08 | 0.04 | 0.18 | 0.06

Re(py—) | 0.28 | 0.12 | 0.12 | 0.08 | 0.02 | 0.01 | 0.11 | 0.04
Re(pyo) | 0.25]0.35 | 0.27 | 0.13 | 0.08 | 0.10 | 0.01 | 0.07
p—o) | 0.08 | 0.12 | 0.40 | 0.22 | 0.14 | 0.06 | 0.04 | 0.01
p+—) | 0.07 | 0.04 | 0.01 | 0.15| 0.08 | 0.07 | 0.29 | 0.21
Im(pio) | 0.34 | 0.46 | 0.13 | 0.01 | 0.29 | 0.05 | 0.51 | 0.28
po) | 0.32|0.48 | 0.35 | 0.09 | 0.04 | 0.05 | 0.08 | 0.19

Im

(
(
(
(
(
(

Im

Table 10.2: The systematic uncertainty due to jet hadronisation modelling.
The numbers represent the size of the error as a fraction of the statistical

error from the data sample on each bin of each variable used in the TGC fits.

of the jet reconstruction can be measured. It was found that the uncertainties
in the resolutions of the three parameters, energy, cos fyw and ¢y, were about
10%. A possible systematic shift of 0.5% was found in the absolute jet en-
ergy. For calculating the systematic uncertainty in the SDM elements due to
the uncertainty in jet reconstruction a large sample of EXCALIBUR Monte
Carlo was generated and then modified to form new samples by smearing the
resolution of the jet parameters by 10% and shifting the jet energy by 0.5%.
This was done to both the hadronic and the 7 jets, although studies into the
7 jet uncertainties have not been carried out, so it is only an assumption that
the uncertainty will be the same.

The SDM elements and cos Oy distribution were calculated for each sam-

ple and compared to the original Monte Carlo sample. The differences were
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taken as the systematic uncertainty. The systematics for each bin were added
in quadrature to give an overall systematic due to jet reconstruction, these

can be seen in table 10.3.

1 2 3 4 5 6 7 8
cos B 0.25]0.10 | 0.11 | 0.27 | 0.34 | 0.31 | 0.17 | 0.59

Pyt 0.10 { 0.19 | 0.17 | 0.14 | 0.09 | 0.85 | 1.42 | 1.09
p—— 0.07 { 0.18 | 0.11 | 0.05 | 0.08 | 0.13 | 0.15 | 0.13
Poo 0.09 {0.19 | 0.16 | 0.11 | 0.08 | 0.12 | 0.11 | 0.14
Re(py_) | 0.09 | 0.16 | 0.11 | 0.47 | 0.11 | 0.12 | 0.09 | 0.12
Re(pyo) | 0.12 | 0.11 | 0.09 | 0.06 | 0.10 | 0.12 | 0.06 | 0.06
Re(p_o) | 0.09 | 0.17 | 0.07 | 0.08 | 0.09 | 0.15 | 0.09 | 0.13
Im(py ) | 0.11 | 0.13 | 0.14 | 0.09 | 0.14 | 0.16 | 0.05 | 0.05
Im(pyo) | 0.08 | 0.07 | 0.06 | 0.06 | 0.16 | 0.15 | 0.07 | 0.06
Im(p_o) | 0.06 | 0.13 | 0.81 | 0.18 | 0.21 | 0.15 | 0.08 | 0.06

Table 10.3: The systematic uncertainty due to jet reconstruction. The num-
bers represent the size of the error as a fraction of the statistical error from

the data sample on each bin of each variable used in the TGC fits.

For the helicity studies, the helicity fractions were calculated for each
sample and compared to the original sample. The differences were added
in quadrature and the total result was taken as the systematic uncertainty
shown in table 10.9.

Further studies in estimating the possible systematic shift in the recon-
structed direction of the boson have been carried out by looking at radiative
Z°/~v — qq events. The possible shift in |cos | was found to be less than
0.01 [102].
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10.4 Background

Determining the contribution of background events within the data sam-
ple is important throughout the analysis. For fitting the TGCs, the expected
contribution is added to the Monte Carlo sample that is compared to data,
and for the helicity studies the expected contribution is removed from the
data sample.

Calculating any possible systematic uncertainties in this area is then vi-
tal. The shape of the Z°/y — qq background is varied by using a sample
of HERWIG Monte Carlo instead of the PYTHIA to simulate these events.
The SDM elements and cos 6y distribution extracted from the standard fit
sample of Monte Carlo are compared to those calculated for the same sample,
except the Z°/y — qq background contribution is replaced with a HERWIG
sample.

The modelling of the two-photon background is much less understood.
To calculate any possible systematic shift due to this, the two-photon back-
ground is removed from the standard fit sample and then the SDM elements
and cos 6y distribution are compared to those from the standard fit sample.
This procedure is repeated, except this time the two-photon background is
doubled. The total uncertainty due to background contributions formed by
adding the uncertainties from each source in quadrature can be seen in ta-
ble 10.4.

For the helicity studies, the background contribution subtracted from the
data sample is varied in a similar way as described above, and then the
differences in the calculated helicity proportions are taken as the systematic
uncertainty. The total systematic uncertainties due to background studies

are shown in table 10.9.
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1 2 3 4 5 6 7 8
cos By 0.06 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.03

P 0.01 | 0.01 [ 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
o 0.01 | 0.03 | 0.04 | 0.05 | 0.01 | 0.03 | 0.01 | 0.01
Poo 0.01 | 0.01 [ 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01

Re(p;—) | 0.18 | 0.06 | 0.04 | 0.06 | 0.02 | 0.03 | 0.01 | 0.01
Re(pyo) | 0.17 | 0.01 | 0.02 | 0.04 | 0.01 | 0.03 | 0.01 | 0.01
p—o) | 0.06 | 0.05 | 0.06 | 0.08 | 0.02 | 0.04 | 0.01 | 0.01
p+—) | 0.01 | 0.01|0.01|0.01]0.01]0.01|0.01]0.01
Im(pyo) | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
p-o) | 0.02|0.01|0.01|0.01]0.01]0.01|0.01]0.01

Im

(
(
(
(
(
(

Im

Table 10.4: The systematic uncertainty due to background modelling. The
numbers represent the size of the error as a fraction of the statistical error

from the data sample on each bin of each variable used in the TGC fits.
10.5 Detector Simulation and Lepton Response

The way that GOPAL [90] simulates the detector so that the Monte Carlo
can be compared directly to the data is an integral part of the analysis. It is
very difficult to measure this as any differences between the data and Monte
Carlo could be due to physical effects, such as anomalous TGCs, rather than
poor modelling of the detector.

The most important part of detecting a qqfv, event is identification of the
lepton. Parameters of the lepton which are less sensitive to the TGC value
must be compared. For the lepton, the polar angle in the lab frame, cos 6,
and the lepton energy are chosen. A comparison using these two variables
between the data and fully simulated Monte Carlo are made, and then lines

are fitted to the distributions. These lines are used to weight the Monte Carlo.
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Then a comparison between the SDM elements and cos 6y distributions, for
the TGC fit, and the helicity proportions for the helicity studies, before and
after the weighting is made. As this test is limited by statistics and also TGC
dependent, no correction is made to the overall result. However, a systematic
uncertainty is assigned due to each of the tests. For the SDM elements and

cos Oy these can be seen in tables 10.5 and 10.6.

1 2 3 4 5 6 7 8
cos Oy 0.01 { 0.05 | 0.15 | 0.06 | 0.06 | 0.05 | 0.15 | 0.03

Pyt 0.01 { 0.01 | 0.01 | 0.09 | 0.10 | 0.05 | 0.01 | 0.13
p—— 0.02 | 0.01 | 0.10 | 0.11 | 0.03 | 0.01 | 0.02 | 0.02
£00 0.01 { 0.01 | 0.05 | 0.13 | 0.09 | 0.02 | 0.01 | 0.07
Re(p;—) | 0.01 | 0.05 | 0.05 | 0.07 | 0.01 | 0.01 | 0.08 | 0.01
Re(pyo) | 0.13 ] 0.33 | 0.02 | 0.01 | 0.01 | 0.04 | 0.19 | 0.13
Re(p_o) | 0.01 | 0.29 | 0.01 | 0.02 | 0.03 | 0.01 | 0.20 | 0.20
Im(p,_) | 0.06 | 0.11 | 0.06 | 0.11 | 0.04 | 0.14 | 0.06 | 0.11
Im(pio) | 0.16 | 0.15 | 0.04 | 0.06 | 0.05 | 0.01 | 0.09 | 0.02
Im(p_o) | 0.21 | 0.07 | 0.02 | 0.09 | 0.01 | 0.01 | 0.01 | 0.08

Table 10.5: The systematic uncertainty due to lepton identification as a
function of the lepton polar angle in the lab frame. The numbers represent
the size of the error as a fraction of the statistical error from the data sample

on each bin of each variable used in the TGC fits.

The overall uncertainty due to the lepton identification on the helicity
proportions is shown in table 10.9. However, for the calculation of the helicity
fractions, a further systematic uncertainty is assigned due to the detector

simulation. In correcting for detector effects Standard Model Monte Carlo
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1 2 3 4 5 6 7 8
cos By 0.13 { 0.15 | 0.11 | 0.09 | 0.02 | 0.04 | 0.11 | 0.13

Pyt 0.190.250.21 | 0.23 | 0.19 | 0.21 | 0.20 | 0.17
p—— 0.05{0.10 | 0.16 | 0.21 | 0.28 | 0.32 | 0.44 | 0.44
Poo 0.09 | 0.11 | 0.05 | 0.02 | 0.03 | 0.10 | 0.20 | 0.24
Re(py—) | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | 0.03 | 0.01 | 0.01
Re(pyo) | 0.01 | 0.02 | 0.05 | 0.07 | 0.09 | 0.14 | 0.13 | 0.02
Re(p—o) | 0.02 | 0.08 | 0.11 | 0.10 | 0.11 | 0.11 | 0.05 | 0.10
Im(p,_) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
Im(p4o) | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02
Im(p_o) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01

Table 10.6: The systematic uncertainty due to lepton identification as a
function of the lepton energy. The numbers represent the size of the error as
a fraction of the statistical error from the data sample on each bin of each

variable used in the TGC fits.

is used, however this could cause a bias towards the Standard Model. This
is tested by comparing the calculated helicity fractions for non-Standard
Model samples of Monte Carlo at generator level, to those from the same
sample after full detector simulation and detector correction. Samples with
anomalous couplings, Ax,, Agf, and A set at £1 are used. The largest
variation from the six tests is taken as the systematic uncertainty. These are
shown in table 10.9.

Uncertainties on the measured lepton energy are estimated to be less than
0.3%. Any effects this would have are tested by shifting the lepton energy
by this amount. In all cases this is found to have a negligible effect.

Differences in the charge misassignment between the Monte Carlo and
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data could have a significant effect on all the results, especially as the wrong
value of cos fyy is assigned when the charge is incorrectly identified. Misiden-
tification most commonly occurs in the higher momentum leptons where
there is little bending of the lepton track in the magnetic field. A test of the
effect was performed by randomly doubling the amount of expected misas-
signed charges in a large Monte Carlo sample from 0.8% to 1.5%. The effect
this had was found to be small.

Any charge misassignment can also cause a problem in the measured
lepton momentum. This was accounted for by varying the resolution in Q/p;
by 10% in the Monte Carlo. Where Q is the lepton charge and p; is the
transverse momentum of the lepton. Differences before and after the change
are taken as the systematic uncertainty. The uncertainties for the TGC fit
can be seen in table 10.7 and the uncertainties on the measured helicity

fractions are shown in table 10.9.

10.6 Overall Systematic Uncertainty

For the TGC fit the overall systematic uncertainty on each observable is
calculated by adding in quadrature all the calculated uncertainties discussed
above. These are then included into the fit as described by equation 7.1 in
chapter 7. The overall systematic uncertainty on each data observable as a
fraction of the statistical error on the data can be seen in table 10.8.

The overall systematic uncertainty on the helicity fractions are calcu-
lated by adding in quadrature all the uncertainties calculated from each area
described above. These are shown in table 10.9. The overall systematic
uncertainties are added in quadrature with the statistical error to give the

overall uncertainty on each polarised cross-section measured from the data.
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1 2 3 4 5 6 7 8
cos Oy 0.05 | 0.11 | 0.01 | 0.00 | 0.02 | 0.03 | 0.07 | 0.23

Pyt 0.07 ] 0.11 | 0.09 | 0.08 | 0.05 | 0.10 | 0.09 | 0.16
p—— 0.08 | 0.12 | 0.08 | 0.06 | 0.01 | 0.01 | 0.00 | 0.02
P00 0.09 { 0.15 | 0.11 | 0.09 | 0.04 | 0.06 | 0.05 | 0.08

Re(p;—) | 0.16 | 0.16 | 0.09 | 0.08 | 0.09 | 0.08 | 0.08 | 0.15
Re(p4o) | 0.00 | 0.03 | 0.06 | 0.04 | 0.02 | 0.02 | 0.03 | 0.04
Re(p_o) | 0.08 | 0.01 | 0.06 | 0.04 | 0.01 | 0.00 | 0.02 | 0.03
Im(py—) | 0.02 | 0.05 | 0.00 | 0.03 | 0.01 | 0.02 | 0.01 | 0.02
Im(pyo) | 0.03 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.05 | 0.04

p-o) | 0.03|0.03|0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 0.02

(
(
(
(
(
(

Im

Table 10.7: The systematic uncertainty due to lepton charge/momentum
uncertainty. The numbers represent the size of the error as a fraction of the

statistical error from the data sample on each bin of each variable used in

the TGC fits.
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1 2 3 4 5 6 7 8
cos By 0.31 { 0.63 | 0.47 | 0.34 | 0.45 | 0.42 | 0.41 | 0.66

Pt 0.50 | 0.41 | 0.60 | 0.31 | 0.40 | 0.91 | 1.47 | 1.15
p__ 0.61 | 0.41 | 0.32 | 0.28 | 0.31 | 0.47 | 0.52 | 0.61
P00 0.67 | 0.34 | 0.51 | 0.22 | 0.22 | 0.36 | 0.32 | 0.38

Re(py_) | 0.65]0.35 | 0.32 | 0.62 | 0.23 | 0.28 | 0.47 | 0.34
Re(pyo) | 0.51 | 0.59 | 0.35 | 0.26 | 0.56 | 0.29 | 0.30 | 0.20
Re(p_g) | 0.50 | 0.40 | 0.59 | 0.32 | 0.79 | 0.23 | 0.25 | 0.30
pi+—) | 0.37 | 0.56 | 0.47 | 0.22 | 0.25 | 0.29 | 0.34 | 0.26
Im(pio) | 0.42 | 0.52 | 0.53 | 0.31 | 0.36 | 0.41 | 0.57 | 0.30

Im(p_g) | 0.42 | 0.65 | 1.14 | 0.58 | 0.58 | 0.32 | 0.24 | 0.45

(
(
(
(
(
(

Table 10.8: The total systematic uncertainty on the SDM observables and
cos B distribution. These were calculated by adding in quadrature the values
of the all systematic uncertainties discussed in this chapter. The numbers
represent the size of the error as a fraction of the statistical error from the

data sample on each bin of each variable used in the TGC fits.
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Systematic TT LL TL T,L
MC Generator WW— qqfv | 0.015 | 0.013 | 0.028 | 0.001
W— (v - - - 0.004
W— qq - - - 0.006
Jet Reconstruction WW— qqfv | 0.013 | 0.004 | 0.008 | 0.007
W— lv - - - 0.005
W— qq - - - 0.011
Hadronisatation WW— qqfv | 0.016 | 0.002 | 0.014 | 0.009
W— (v - - - 0.003
W— qq - - - 0.021
Background WW— qqfv | 0.004 | 0.001 | 0.004 | 0.002
W— lv - - - 0.003
W— qq - - - 0.004
Lepton id WW— qqfv | 0.017 | 0.005 | 0.014 | 0.010
W— (v - - - 0.017
W— qq - - - 0.003
Detector Effect Correction | WW— qqlv | 0.004 | 0.008 | 0.012 | 0.002
W— lv - - - 0.009
W— qq - - - 0.005
Lepton Charge/Momentum | WW— qqfv | 0.007 | 0.001 | 0.008 | 0.005
W— (v - - - 0.011
W— qq - - - 0.001
Total WW— qqfv | 0.032 | 0.017 | 0.038 | 0.016
W— lv - - - 0.023
W— qq - - - 0.025

Table 10.9: The contribution to the systematic uncertainty on the polarised
cross-section fractions from the sources discussed in this chapter. The total

uncertainty is calculated by adding each of the uncertainties in quadrature.



Chapter 11

Conclusions

In this thesis the CP-violating triple gauge coupling parameters have been
measured from the LEP2 data with the SU(2), x U(1)y gauge invariance
constraints in place. Along with these couplings, the CP-conserving couplings
Ak, Agj, and A have been measured. All couplings were measured using a
spin density matrix analysis.

The W-pair polarised cross-sections have been measured for the first time
ever. These results along with the individual W polarised cross-sections and
the measured values of the CP-violating TGCs have been published by the
OPAL collaboration in [103].

In this chapter the evidence (or lack there of) for CP-violation is dis-
cussed. Then the measured values of all the TGCs are reviewed and a com-
parison to other measured values from both OPAL and other experiments is

given. Finally conclusions on the measured W polarised fractions are drawn.

221
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11.1 Tests of CP-Invariance

Measurement of the CP-violating TGCs was performed by combing infor-
mation from the SDM elements and from the W production angle. Constrain-
ing the interaction to SU(2), x U(1)y gauge invariance, the values obtained

are as follows:

fy = —0.18475021
Az = —0.1367%16

gi = +0.070%03%%

The errors on these results are due to both statistical and systematic
uncertainties.

Within the Standard Model at tree level there is no CP-violation at the
WWZ° and WW+ vertex, therefore the CP-violating TGCs are zero. The
measured values of the couplings are all consistent with the Standard Model
expectations.

A further test of CP-invariance in the W-pair production process is given
by the imaginary parts of the single W SDM elements. At tree level CP-

invariance requires the following:

Im (pZVT,_(s, Cos GW)> —Im (pKVTJLT(S, cos 9w)> =0 (11.1)

This equation gives a completely Model independent test of CP-violation
in the W-pair production process. Plots of the combinations of imaginary
SDM observables needed to test CP-invariance calculated from the 189 GeV
data can be seen in figure 11.1. No obvious deviations from zero are observed.

Calculating the y? for each plot, the following are obtained:
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2 Im (p?f: (s, k)) —Im (pKVJ:(s, k)) = 6.48
X2 :Im (p%_ (s, k)) —Im (p%+(s, k)) = 8.90
Im (pK;(s, k)) = 6.77

The x? includes both statistical and systematic uncertaintes. As each
histogram contains eight degrees of freedom, these results are consistent with
Standard Model expectations.

Also included in figure 11.1 are the plots that test for effects beyond tree
level, as discussed in chapter 3, equation 3.48. Any deviations in these plots
could only be due to effects beyond tree level or CPT-violation. No obvious
deviations from zero are seen. Calculating the x? for each plot, the following

results are obtained:

X2 Im (piv:(s, k)) +1Im <p_:(s, k)) = 4.12
2 Im (p% (s, k)) +1Im (pf[;r(s, k)) = 5.63
x> :Im (p‘ivo_(s, k)) +1Im (p%Jr(s, k)) = 7.56

These results do not give an indication of effects beyond tree level.

11.2 Measurement of TGCs

The CP-conserving couplings were measured using a SDM analysis with
the inclusion of information about the W production angle.
Measurements of the CP-conserving TGCs were undertaken using two

different Monte Carlo reweighting methods, the WVCXME and BILGOU

programs. The results using the two methods were found to be consistent.



11.2. MEASUREMENT OF TGCS

224

1
[ Im(p,. ) - Im(p'y ) + :+|m(p3”.')+ Impy )
0 _i..-in-- "L4—+ i | | N |
T + f ! ] + 1T + Tt 7
_1 -I 1 11 I 1 11 1 I 1 11 1 I 11 11 - -I 1 11 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
-1 -05 0 05 1 -1 -05 0 05 1
cosd,, cosd,,
1
[ Im(pLg) - Im(plg ) [ Im(pyg) + Im(plg )
oy — o + ..... s 4 + i Ll -+
I8 IRAARE .
_1 -I 1 11 I 1 11 1 I 1 11 1 I 11 11 - -I 1 11 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
-1 -0.5 0 05 1 -1 -05 0 05 1
. cosew cosew
[ Im(py) - Im(pry) [ Imipy) + Im(pLy)
0__|____J__+ B I---=+»‘ ol —l— | _+_ |
(S | ....... T +—T— ........ -T + | _T_ + _T_ _?_
_1 -I 1 11 I 1 11 1 I 1 11 1 I 11 11 -I 1 11 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1

-1 -0.5 0 0.5 1

cosBW

"1 05 0 05 1

cosew

Figure 11.1: The three plots on the left give a test of CP-violation at tree
level. Any deviation from zero could only be caused by CP-violation. Over-
laid on these plots are the analytical predictions for CP-violating couplings
\. = —0.5 (dotted line) and &, = +0.5 (dashed line). The three plots on
the right give a test of CPT-invariance and effects beyond tree level. Any
deviation from zero could only be caused by effects beyond tree level or

CPT-violation.
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Measurement of the CP-violating couplings could only be done using the
BILGOU program. For consistency, the final quoted results for the CP-
conserving couplings will be those measured using the BILGOU program.
The measured values of the CP-conserving TGCs, with the SU(2), x
U(1)y gauge invariance constraints, including systematic uncertainties were

found to be,

Ak, = —0.263702%
Agi = —0.029%555
A= —0.045759%

These results are consistent with the Standard Model expectations and
the published OPAL results for the 189 GeV data, where an optimal observ-
able method was used to measure them [104].

The CP-violating couplings have been measured for the first time at
OPAL. Measurements of the WW~ CP-violating couplings have been made at
ALEPH [59, 60], the DELPHI collaboration [63] and at the Tevatron [61, 62].
ALEPH also measured the CP-violating WWZ° coupling. All these couplings
were measured without the SU(2);, x U(1)y gauge invariant constraints, so
all other couplings were set to zero. All results are consistent with Standard
Model expectations.

Figure 11.2 shows the x? plots for all the TGCs measured in this thesis.
It was seen that the CP-conserving couplings have a greater effect on the
shape of the cos Ay distribution than on the SDM elements and the converse

was true for the CP-violating couplings.
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11.3 Measurement of W Polarisation

The polarisation of the W bosons in W-pair production was measured
through the spin density matrix. It was found that (21.9 + 3.44 + 1.6)% of
the W bosons were longitudinally polarised. This result is consistent with
the Standard Model expectation and also the result measured by L3 at the
same centre-of-mass energy [105], with the results presented in this thesis
being more precise.

The polarisation state of the W-pairs has been measured for the first
time. Of the three possible polarisation states, transverse-transverse (TT),
longitudinal-longitudinal (LL), and transverse-longitudinal (TL), it was found

that all were present and the fraction of each in the sample was:

TT = 0.768 £ 0.090 £ 0.032
LL = 0.206 + 0.072 £ 0.018

TL = 0.026 £0.147 £ 0.038

These measured values are highly correlated, the correlations were found

to be:

TT:LL = +0.648£0.018
TT:TL = —0.890 4 0.006

LL:TL = —-0.867=+0.008

These x? probablity of these results compared to the Standard Model
expectations is 10%. Thus all results are consistent with the Standard Model

expectations.
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Figure 11.2: The x? plots for the fits to the CP-conserving and CP-violating
anomalous couplings. For the CP-conserving couplings the dashed line is the
fit to just the six real SDM elements, for the CP-violating couplings it is the
fit to all nine SDM elements. The dotted line is the fit to just the cosOw
distribution. The solid line is the combined fit. All fits include systematic

uncertainties.



Appendix A

Summations to Calculate SDM

Elements

A.1 Summation to Calculate Single W SDM
Elements

In this appendix the summations of operators needed to calculate the
elements of the single W Spin Density Matrix are listed. In each equation
0y, is the polar angle and ¢y, is the azimuthal angle of the decay fermion from
the W~ in the W~ rest frame. The elements are extracted in bins of cos Oy,
the W~ production angle. k is the bin of cosfw and Nj is the number of

events in that bin.

N

- 1 1
(k) = N 2 5(5 cos® @y, — 2cos by, — 1)
1
(k) = A 2 5(5 cos® Oy, +2cosfy, — 1)

228
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1 M
4% 2

k) = — g 2 —5cos” by,
pOO ( ) Nk; — f

Ny,

_ 1
i=1
1
Im (IOKVi (k)) = N Z —25sin2¢y,
i=1
Ny
- 1 -8
w — R —
Re <p+0 (k)) = N ; 37r\/§(1 4 cosby,) cos oy,
1 o 8
%% _ _ - .
Im (p+0 (ls:)) = N Zz:; 37r\/§(1 4 cosby,)sin gy,
N
- 1 -8
Re (,070 (k)) - N ; 37r\/§(1 +4cosfy, ) cos oy,
Ny
- 1 -8
I k = — 1+ 4cosfy,)si
m (o (1) = 5 2 g p(L+ deostn)singy

A.2 Summation to Calculate Two-Particle Joint

W SDM Elements

In this appendix the summations of operators needed to calculate all 81
elements of the two-particle joint Spin Density Matrix are listed. In each
equation 0y is the polar angle and ¢, is the azimuthal angle of the decay
fermion from the W~ in the W™ rest frame. 0, is the polar angle and ¢
is the azimuthal angle of the decay anti-fermion from the W+ in the W+
rest frame. The elements are extracted in bins of cos fy, the W~ production

angle. k is the bin of cos fw and N is the number of events in that bin.
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Ny
1 1
Re (pyi4+(k)) . 1(5 cos? @y, — 2cosby, — 1)(5cos* 0, + 2cosby, — 1)
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Im (py1++(k)) 0
Ny
1 —4
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1
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Re (pyo0- (F))

I'm (p+o0-(k))

Re (pyo-+(k))

Im (pro—+(K))

Re (p+0-0(k))

Im (pro-o(k))

Re (pro- (k)

Im (pro-—(k))

Re (p4—1+(k))

Im (py—++(k))

1 Ok 39
N, W((l —4costy, ) cos gy, (1 — 4cosby,) cos by,
=1

(1 —4cosfy)sinpy (1 —4cosfy,)sinor,)

1 oA 32 _

A ﬁ((l —4cosfy ) cos g (1 —4cosby,)sin gy,
i=1

(1 —4cosby,)singy (1 —4cosby,)cosdy,)

N
1 —8v/2
— 1—4 0 207
N, 2 - (( cos By, ) cos ¢y, cos b7,
(1 —4cosfy,)sin ¢y, sin2¢y,)

N
1 —8V2
— 1—-14 0 in 207
N, 2 A (( cosfy,) cos ¢y, sin b7,
(1 —4cosfy,)sinpy cos2¢y,)
1 O 39

N 2 1 W((l —4cosfy,) cos gy, (1 — 4cosfy,) cos p,

(1 —4cosfy)sinpy (1 —4cosfy,)sinor,)

1 oA —32 _

A W((l —4cosfy)cos g (1 —4cosfy,)singp,
i=1

(1 —4cosby,)siny (1 —4cosfy,)cosdy,)

1 Yy 2
N, — 37r\/§(1 —4cosfy,)cosgp (5cos™ 0, —2cosby, —1)
1 Yoy | 2

Ni — 37T\/§(1 —4cosfy,)sin gy, (5cos” O, —2cosby, — 1)

N
1
A Zz:;cos 2y, (5cos® b5, + 2cosff, — 1)

L

— Y —sin2¢y, (5cos” b5, +2cosfy, — 1)
Ne =
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Re (pi—+o(k))

Im (py—10(k))

Re (p1—+—(k))

Im (ps——(k))

Re (p1—o+(k))

Im (py—o4(K))

Re (p+-00(k))

Im (p1-o0(k))

Re (py—o-(k))

Im (py—o-(k))

Re (py——1(k))

Im (pr——(k))

Ny,

1 82
Nk i1 3

sin 2¢, (1 + 4 cosff,) sin ¢y, )

1 O 82

Nk i1 3T

sin 2¢y, (1 + 4 cosfy,) cos ¢y, )
Ny,

(cos2¢y, (1 +4cosby,) cos ¢y,

(cos2¢y, (1 +4cosbpf,)sin ¢y,

A 4(cos 2¢y, cos 2¢f, — sin 2¢y, sin 2¢ 7, )
k izt

Ny,

1
Ne =
Ny,
1 = 8v2

. 2 3—W(cos 2¢5, (1 +4cosbp,)cos ¢f,
sin 2¢y, (1 + 4 cosfy,) sin ¢y, )

Ny,
1 8v?2
N 2 3—\7/T_(COS 205, (1 +4cosby,)sin gy,

sin 2¢y, (1 + 4 cosfy,) cos ¢y, )

N,
1
. Z 2c082¢y, (2 — 5cos”0y,)
i=1

Ny,
1 :
. E —2sin2¢y, (2 — 5cos 0f,)
=1

1 oA 8v2
Nk i1 3
sin 2¢, (1 — 4 cos 07, ) sin ¢ 7, )

1 O 82
Nk i1 3
sin2¢y, (1 — 4 cos 9f4) cos gbﬁ)

Ny,

1
N Zz:; 4(cos 2¢y, cos 2¢ 7, + sin 2¢y, sin 2¢7, )

(cos2¢y, (1 — 4cosfy,) cos ¢y,

(cos2¢y, (1 — 4 cosf,) sin p,

N,
1
N, Zz; 4(cos 2¢y, sin 2¢ 7, — sin 2¢y, cos 2¢ 7, )

—4(cos 2¢y, sin 2¢, + sin 2¢y, cos 2¢y, )
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Re (py—o(k))

Im (p1——o(k))

Re (py———(k))

Im (py—— (k)

Re (po+++(k))

Im (pos++(k))

Re (pot+0(k))

I'm (po++o(k))

Re (po++-(k))

Im (pos+—(k))

N,
Nk : k 8:;7/r_((3052¢f1(1 —4cosfly,)cos ¢y,
sin 2Z¢f1(1 —4cosfy,)singy,)
N,
Nk 2 83\{;(0052%1( — 4 cosff,) sin ¢y,
sin 2¢, (1 — 4 cos0f,) cos ¢7,)
Ni
N, Zz_l:cos 26y, (5cos” 5, — 2cos by, — 1)
1 o
N, 2 —sin 2¢y, (5 cos® B, — 2cosby, — 1)
1 Sk _y
Ny - 37r\/§(1 — 4 cosby,) cos ¢y, (5cos” Of, + 2cos b, —
1 Oy ‘ )
Ni — 37r\/§(1 —4cosfy)singy, (5cos™ Of, +2cosfy, —
1 ok —32
N, p On2 —5 ((1 —4cosfy,) cos pp, (1 + 4cosby,) cos py,
(1 —4cosfy,)sindy (14 4cosfy,)singyr,)
1 32
Nk < 972 —((1 —4cosfy,)cos gy, (14 4cosbp,) singg,

(1-— 4cos 05, )sin ¢y, (1 +4cosby,) cosdy,)
fEY
Nk i1 3T
(1 — 4 cos by, ) sin ¢y, sin 267, )
Nk i 3
(1-— 4cos Of,)sin ¢y, cos 2¢7,)

((1 —4cosby,)cos ¢y, cos 26y,

((1 —4cosfy,) cos gy, sin 26y,

1)

1)
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1 —32
Re (poso+(k)) ﬁk 0,2 —((1 —4cosfy,) cos dy, (1 4+ 4cosfy,) cos gy,
=1
(1 —4cosfy,)sinpy (14 4cosby,)sinz,)
1 = —32
Im (poros(k)) ﬁk 72 ——((1 —4cosfy,)cos gp, (1 +4cosfz,) sin ¢,
(1-— 4cos 0f,)sin ¢y, (1 +4cosby,) cos dy,)
Re ( (k)) Lgh 8 (1 —4cosby,)cospp, (2 — 5cos® z,)
€ (Po+00 N - fi al&— f:
kS 372 ¢
1 o5 -8
Im (potoo(k)) Z 37r\/_(1 — 4 cosby,)sin gy, (2 — 5cos®0f,)
1 = —32
Re (poro—(k)) . 0,2 —((1 —4cosfy, ) cos ¢y, (1 — 4cosby,) cos ¢,
i=1
(1 —4cosby,)siny (1 —4cosby,)singyg,)
1 32 .
Im (poro_(k)) N; 2 972((1 —4cosfy)cospp (1 —4cosfy,)sin gy,

Re (po+—+(k))

Im (po—+(k))

Re (po+—o(k))

Im (pos—o(k))

(1-— 4cos 07,)sin ¢y, (1 — 4cosby,) cos ¢y, )

((1 —4cosfy,)cos ¢y, cos2¢y,

(1 —4cosfy,)sin ¢y, sin2¢y,)
Ni
—8v2 .
A - (1 —4cosfy,)cos ¢y, sin 267,
i=1
(1 —4cosfy,)sin ¢y, cos2¢y,)
1 —32

Nlc 97T2 oz (1 —4cosfy,) cos dp, (1 —40089f4) cos ¢,

(1-— 4cos 07,)sin ¢y, (1 —4cosby,)sindy,)

1 = —32
ﬁk 97r2 —((1 —4cosfy,)cospp, (1

(1-— 4cos 0, ) sin gy, (1

—4cosfy,)sin ¢y,

—4cosff,)cosoy,)
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Relpri(b) =

Ny

—4
3 11— oty oy (o, — sty <1
i=1

N,
1 —4
Im (k) = — 1 —4cosfy,)sin 5cos’ 07 — 2cosfz — 1
(Po+-—(k)) Ny 2 37T\/§( f) sin g, ( i fi— 1)
1 o1 ) )
Re (poo++(k)) = A 5(2 —5cos” 0p,)(5cos™ By, +2cosby, — 1)
=1
I'm (poo++(k)) = 0
1 & 8 )
R k)) = — 2-5 Or)(1+4cosbz 7
e (pooso(k)) Ny 2 37r\/§( cos™ Oy, )(1 4+ 4cosby,) cos py,
1 = — 2-5 Or,)(1+4cosby,)singy
m (poo+o(k)) Nk;?m\/i( cos” 0y, )(1 4+ 4cosfy,)sin ¢,
Ny

Re (poo+- (k) = FZ

Im (pooy— (k) = ﬁz

2(2 = 5cos” 0y, ) cos 26,
i=1

Ny

—2(2 — 5cos’ By, sin 2¢y,
i=1
Ny,

1 8

Re (pooos (k) = — (2 = 5cos”6y,)(1 + 4 cosby,) cos by,
Ne 2= 312 oS e
1 o5 8

Im (pooor (k) = — (2 —5cos”0y,)(1 +4cosby,)sin gy
Ni 23032 e,
1 &

Re (poooo (k) = EZ(Q_5C0529f1)(2—500529f4)

i=1

Im (poooo(k)) = 0

1 &

Re (pooo- (k) =

Im (pooo— (k) = —

8
E 37T\/§(2—5(30$29f1)(1 —4cosfly,)cos oy,
i=1

Ny,

~8 _
Z 37r\/§(2 —5cos”0y,)(1 — 4cosby,)sin ¢y,
i=1
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Re (poo-—+(k))

I'm (poo—+(k))

Re (poo—o(k))

Im (poo—o(k))

Re (poo—-(k))
I'm (poo——(k))

Re (po—++(k))

Im (po—s+(K))

Re (po—+o(k))

Im (po—+o(k))

Re (po—1— (k)

I'm (po—s—(K))

1
— ) 2(2—5cos’by,) cos 2¢y,
Nk 1=1

1
— Y 2(2—5cos*fy,) sin2¢y,
Nk i=1

1 o 8

2(2 —5cos”0y,)(1 — 4cosby,) cos g,

1 8
. 377_\/5(2—5C0829f1)(1 —4cosfy,)sin ¢y,
i=1
1 oa1
A 5(2 — 5cos* 0y, ) (5 cos” 05, — 2cos O, — 1)
=1
0
1 x4
A 37r\/§(1 + 4 cosby,) cos ¢, (5cos* O, + 2cos by, — 1)
i=1
1 o5 4
N 37r\/§(1 + 4 cosby,) sin ¢y, (5cos® O, + 2cosby, — 1)
i=1
1 oA —32

, - 1 W((1+4cosﬁfl)cos¢fl(1 + 4 cosfy,) cos o,

(144 cosfy,)sin g (1 +4cosfy,)sin gy, )
1 & 32
A 2 W((l +4cosfy,) cos gp (1 +4cosbf,)sin ¢y,
(144 cosfy,)sin gy (1 +4cosby,)cos ¢y, )
1 o4 —8v/2
Nk i1 3
(144 cosfy,)sin ¢y, sin2¢7,)
1 oX 8v/2
Nk i1 3
(144 cosfy,)sin ¢y cos2¢y,)

((1 +4costy,)cos ¢y, cos 26y,

((1+4cosfy,)cos ¢y, sin2¢p,
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Re (po-o+(k))

I'm (po—o+(k))

Re (po—oo(k))

Im (po—oo(k))

Re (po—o-(k))

Im (po—o-(k))

Re (po——(k))

I'm (po——+(k))

Re (po——o(k))

Im (po——o(k))

1 O 39
iR W((l +4cosfy,) cos dy, (1 4 4cosfy,) cos py,
i—1

(14 4cosfy,)singy (1 +4cosff,)singy,)

1 —32
——((1+4cosfy,)cos ¢y (1 + 4cosff,) sin ¢,

Fk - 97r2
(1+ 4cos 07, )sin gy, (1 +4cosby,) cos dy,)
1A -8
37r\/_(1 + 4 cosby,) cos ¢y, (2 — 5 cos® 07,
1 o 8
Z 37r\/_(1 + 4 cosby,) sin ¢y, (2 — 5 cos® 0f,)
1 —32
A = —((1 +4cosby, ) cos ¢y, (1 — 4cosby,) cos p,
i=1
(1 44cosfy,)singg (1 —4cosfy,)sin gy, )
1 32
N, 2 97T2((1—|—4cosﬁfl)cosq§fl(1—4(:059f4)smq§f4

(1+ 4cos 07,)sin gy, (1 —4cosby,) cos ¢y, )
Nk i1 3
(14 4cosfy,)sin ¢y, sin2¢y,)

Nk i1 3

(144 cosfy,)sin ¢y, cos2¢y,)

1 —32
Nk 97r2
(1 —|— 4cos 07, )sin gy, (1 —4cosby,)sin gy, )

1 ok —32
(1 +4cosfy)singy (1

(1 +4cosby,)cos ¢y, cos2¢y,

(L +4cosby,)cos ¢y, sin 267,

—5((1+4cosby, ) cos ¢y, (1 — 4cosby,) cos p,

(1 +4costy,)cos gy (1 —4cosby,)sin gy,

—4cosfy,) cos pr,)
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Ny
1 _
Re (po—— (k) — Z ——— (1 4+ 4cosby,) cos ¢y, (5cos® 07, — 2cos b, — 1)
Nk, = 3my/2
Ny
1 4
Im (po—__(k)) — (14 4cosby,)singy, (5cos® 07, —2cos by, — 1)
Nk — 371_\/_ 4 4
N

Re (p-+1+(k))

Im (p—1++(k))

Re (p-++o(k))

Im (p—110(k))

Re (p-+1-(k))

Im (p—14-(k))

Re (p—1o+(k))

Im (p—1o+(k))

Re (p—100(k))

Im (p—100(k))

—20052¢f1(5cos 0, +2cost, —1)

Nk

Zsm 2¢y, (5 cos® 0, +2cos b, — 1)

Nki 3T

sin 2¢y, (1 + 4 cosfy,) sin ¢y, )
Nk i1 3

sin 2¢, (1 + 4 cos ff,) cos g7, )
Ni

24 cos 27, cos 2¢ 7, + sin 2¢y, sin 2¢y,)

Nk

(cos 2¢5, (1 +4cosby,) cos ¢y,

(cos2¢y, (1 +4cosby,)sin gy,

1
Nk,

Nk i 3
sin 2¢)f1(1 + 4 cosf,) sin ¢,

Nki 3

sin 2¢, (1 + 4 cos 0, ) cos ¢y, )

—4(cos 2¢y, sin2¢f, — sin 2¢y, cos 2¢7, )

(Cos 20y, (1 +4cosby,) cos ¢y,

(cos 205, (1 4+ 4cosOf,) sin ¢,

N
1
N, ZQCOS 2¢,(2 — 5cos”by,)
i=1

N
1 :
A E 2sin2¢y, (2 — 5cos” 0;,)
i=1
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Ny
1 = 8v2
Re (p_1o-(k)) = N, ?(COS 205, (1 — 4cosbly,) cos ¢y,
i=1
+ sin2¢y, (1 — 4cosfy,)sin¢y,)
Ny
1 —8v/2 :
Im(p_io_(k)) = i - (cos 26y, (1 — 4 cos Of,) sin p,
i=1
— sin2¢y, (1 — 4cosfy,) cos ¢y, )
1
Re (p—i—4(k)) = N, 24(005 20, 08 27, — sin 2¢y, sin 2¢7, )
i=1
L
Im(p_+ (k) = N, Z4(cos 20y, sin 267, + sin 2¢y, cos 2¢y,)
i=1
N
1 =82
Re (p—1—o(k)) = N, 3—W(cos 2¢5,(1 — 4cosbf,) cos ¢y,
i=1
— sin2¢y, (1 —4cosfy,)sin gy, )
N
1 = 8V2 .
Im(p_y o(k)) = N 3—7T(cos 205, (1 —4cosby,)sin gy,
i=1
+ sin2¢y, (1 — 4cosfy,) cos ¢y, )
]
Re(p_. (k) = N.2-3 cos 2¢y, (5 cos” B, — 2cos by, — 1)
i=1
1 oAl
Im(p___(k)) = N 223 sin 27, (5 cos” O, — 2 cos b, — 1)
i=1
1 on —4
Re(p or1(k)) = — (14 4cosby,) cos ¢y, (5cos* O, + 2cosby, — 1)
Ni = 312 ! !
1 ok —4
Im(p_orv(k)) = (1+4cosby,)sin gy, (5cos” b5, +2cosbf, — 1)

N — 372
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Re (p-o40(k))

I'm (p-o+0(k))

Re (p—o4—(k))

Im (p-o4—(k))

Re (p-o0+(k))

I'm (p—go+(k))

Re (p—ooo(k))

Im (p_ooo(k))

Re (p—oo-(k))

I'm (p—oo-(k))

1 O 39
iR W((l +4cosfy,) cos dy, (1 4 4cosfy,) cos py,
i—1

(14 4cosfy,)singy (1 +4cosff,)singy,)

1 32
Nk i 97'('2
(1+ 4cos 07, )sin gy, (1 +4cosby,) cos dy,)

—((1 44 cos by, ) cos ¢y, (1 + 4cosby,)sin ¢y,

(L +4cosby,)cos ¢y, cos 207,

(1 + 4 cosfy,) sin ¢y, sin 29y, )

N,
Nk ’“1 83\7/T_(( 1+ 4cosfy,) cos ¢y, sin 2¢y,
(14 4cosfy,)sin ¢y, cos2¢y,)
i _32((1+4cosﬁf1)cos¢)fl(1+4cosﬁf ) cos ¢
N; &~ On? ' '
(14 4cosfy)singy (1 +4cosbf,)singy,)

! _32((1+4cosﬁf1)cos¢)fl(1+4cosﬁf ) sin ¢
Nk 97r2 :
(1 —|— 4cos 07, )sin gy, (1 +4cosby,) cos dy,)

1 o -8 )

. > 37T\/§(1+4cos€fl)cos¢fl(2— 5cos” 0y,)

1K -8

37r\/_(1 + 4 cosfy,)sin gy, (2 — 5 cos” 0f,)

! 32((1+40089f1)cos¢)f1(1—40059f )cos P
Nk 97r2 * :
(1 —|— 4cos 07, )sin gy, (1 —4cosby,)sin gy, )

! 52 —((1 +4costy,)cos ¢y, (1 — 4cosby,) sin ¢y,
Nk 97r2

(1 —i— 4cos 07,)sin ¢y, (1 — 4cosff,) cos ¢y, )
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Re (p—o—+(k))

Im (p-o—+(k))

Re (p-o-o(k))

Im (p—o-o(k))

Re (p—o——(k))

I'm (p-o——(k))

Re (p——1+(k))
Im (p——++(k))

Re (p——1o(k))

Im (p——+o(k))

Re(p (k)

Im(p 4 (k)

1 ok 82
Nk i1 3
(14 4cosfy,)sin ¢y, sin2¢y,)

1 oX 82
Nk i1 3
(144 cosfy,)sin g, cos2¢y,)

1 & —32
A 2 W((l +4cosfy,) cos py (1 —4cosfy,) cos d,
(14 4cosfy,)singp (1 —4cosfy,)singy,)

1 ok —32
. 2 W((l +4cosby, ) cospy, (1 —4cosfy,)sin gy,
(14 4cosfy)singg (1 —4cosff,)cosop,)

((1 +4costy,)cos ¢y, cos2¢y,

((1+4cosfy,)cos ¢y, sin2¢7,

Ny
1 —4
A 3 \/5(1 + 4 cosfy,) cos ¢y, (5cos” 07, — 2 cos by, — 1)
k= 37
1 on —4
A s \/5(1 + 4 cosby,) sin gy, (5cos* O, — 2cosbf, — 1)
k= 3w
L
A 1(5 cos? Oy, + 2cos by, — 1)(5cos* O, + 2cosby, — 1)
klimt
0
Ny

1 4
N, Z 37r\/§(5 cos? By, + 2cosfy, — 1)(1 + 4cosby,) cos oy,
i=1

Ny,
1 —4
— 5cos20;, +2cos@y —1)(1+4cosfr7)sindr
Nk; — 37_‘_\/5( fl fl )( f4) d)f4
1
— ) (5cos® 0y, + 2cosby, — 1) cos 2¢y,
Nk =1
1
— Y —(5cos8” 0y, +2cosby, — 1)sin2¢;,
N,
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Re (p——o+(k))

Im (p——o4(k))

Re (p-—oo(k))
Im (p——o0(k))

Re (p——o—(k))

I'm (p——o—(k))

Re (p———+(k))

Im (p———(k))

Re (p———o(k))

Im(po(k))

Re (p-—— (k)

Im (p————(k))

Ny,

1 4
A Z 3#\/5(5 cos? B, + 2cosy, — 1)(1+4cosby,) cos by,
i=1

Ny,

1 4
— 5c0s° 0, +2cosfp, —1)(1+4cosfz)sindr
Nk; — 37T\/§( fl fl )( f4) d)f4
1 &
— Y =(5c08”0y, +2cosby, — 1)(2—5cos’by,)
Ni =
0

1 os 4
— 5cos? 0, +2cosfy — 1)(1 —4cosfr,)cos
Ni Py 37r\/§( ! ! I ) cos oy,
1O —4 ,
— 5cos“ B +2cosbly, —1)(1 —4cosfz)sinoy
N, - 37_‘_\/5( f f )( f4) ¢f4
1 &
— Y (5cos* Oy, 4+ 2cosby, — 1) cos2¢y,
Nk =1

1 &
N (5cos® 0y, +2cos By, — 1)sin 26y,

k i=1

1
— 5c082 0, +2cosf, —1)(1 —4cosfz)cosor
Nk — 37T\/§( i 1 )( f4) d)f4
1 os 4
— 5cos’ 0, +2cosfp —1)(1 —4cosf)singy
Ni Py 37r\/§( ! ! I ) sin o,
1
— Y —(5c08” 0y, +2cosby, — 1)(5cos*f, — 2cosby, — 1)
Ny = 4
0



Appendix B

Stability of the y? fit

In this appendix the stability of the x? fit method is discussed and tested.
When a y? is formed containing a number of highly correlated observables it
can become unstable. As the correlation tends to unity the x? can fail and
thus not give a meaningful result.

In chapter 6 the x? fit used in the TGC calculations was tested extensively
and found to be reliable. A further test can be performed where one of the
diagonal SDM elements is omitted from the fit, this will then remove the
problem of highly correlated elements. As the diagonal elements are highly
correlated, this omission of one of them from the fit should produce little
change in the fit results. In this appendix all fits are performed without the
inclusion of p, . This was an arbitary choice of SDM element to remove. It
was found that the same result was yielded independent of which diagonal
element was omitted from the fit.

All tests in this appendix were performed using only the BILGOU
reweighting scheme, although similar tests were performed with the WVCXME
reweighting scheme and the results were found to be compatible to those given

here.
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Figures B.1 and B.2 show the bias fits performed to Monte Carlo samples
with various anomalous couplings and figures B.3 and B.4 show the fits to
many Monte Carlo subsamples along with the pull distributions. All these
results are consistent with those given in chapter 6

The expected statistical errors calculated using the fit method excluding
P+, are shown in table B.1. They are equivalent to the values calculated in
chapter 6.

Finally the actual values of the TGCs calculated from the data are shown
table B.1. These are consistent with those calculated in chapter 7. Once sys-
tematic uncertainties are included a number of the results differ very slightly
from those quoted in chapter 7, this is expected due to the less than exact
way the systematic uncertainties are included in the x? fit. The differences
are still much less than the statistical precision of the results. The x? plots
for these fits can be seen in figures B.5 and B.6.

This appendix thus verifies the correctness of the x? fit method used in
the thesis and indicates that the high correlations between the SDM elements
does not introduce instabilities in the x? at the precision achievable with the

LEP2 data.
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SDM Elements Cosb,, Combined

AKX AKY AKX

+2

o
— 1 T T | T T 7 T

|
N

—eo— —eo—
I 1 1 1 1 1 1 I 1 1 1 1 1 1 I 1 1 1 1 1 1

Z Z Z

Agy Ay Agy

o e
T LN B I B B T

|
N

o ol L]

A A A

Measured Couplings

+
N

o
LI L B B L
LU L R B LI
LU N B LI

o+ ol o

I 1 1 1 I 1 1 1 I I 1 1 1 I 1 1 1 I I 1 1 1 I 1 1 1 I
-2 0 +2 -2 0 +2 -2 0 +2
Generated Couplings

Figure B.1: Bias plots of the CP-conserving TGC fits using the BILGOU
reweighting scheme. The first column is the fit to the SDM elements exclud-
ing pi., the second column is the fit to the W production angle, and the
third column is the combined fit. The solid line represents the perfect fit.

The red points represent the expected statistical error on the data.
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Figure B.2: Bias plots of the CP-violating TGC' fits using the BILGOU
reweighting scheme. The first column is the fit to the SDM elements exclud-
ing pi., the second column is the fit to the W production angle, and the
third column is the combined fit. The solid line represents the perfect fit.

The red points represent the expected statistical error on the data.
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Figure B.3: Combined fit results to 139 subsamples of Standard Model EX-
CALIBUR Monte Carlo. The BILGOU reweighting scheme was used in the
fits. The widths of the distributions of the plots on the left side represent the
expected error for the analysis for the corresponding coupling parameters.
The width of the pull distributions, the plots on the right side, should be

compatible with unity if the statistical error is reliable. All fits excluded p,
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Figure B.5: The x? plots for the fits to the CP-conserving and CP-violating
anomalous couplings. For the CP-conserving couplings the dashed line is the
fit to just five real SDM elements, for the CP-violating couplings it is the fit
to eight SDM elements. The p,, observable has been omitted. The dotted
line is the fit to just the cos 6w distribution. The solid line is the combined

fit.
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Figure B.6: The x? plots for the fits to the CP-conserving and CP-violating
anomalous couplings. For the CP-conserving couplings the dashed line is the
fit to just five real SDM elements, for the CP-violating couplings it is the fit
to eight SDM elements. The p,, observable has been omitted. The dotted
line is the fit to just the cos 6w distribution. The solid line is the combined

fit. All fits include systematic uncertainties.
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