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ABSTRACT
The upcoming Square Kilometre Array (SKA-Low) will map the distribution of neutral hydrogen during reionization and produce
a tremendous amount of three-dimensional tomographic data. These image cubes will be subject to instrumental limitations, such
as noise and limited resolution. Here, we present SegU-Net, a stable and reliable method for identifying neutral and ionized
regions in these images. SegU-Net is a U-Net architecture-based convolutional neural network for image segmentation. It is
capable of segmenting our image data into meaningful features (ionized and neutral regions) with greater accuracy compared
to previous methods. We can estimate the ionization history from our mock observation of SKA with an observation time of
1000 h with more than 87 per cent accuracy. We also show that SegU-Net can be used to recover the size distributions and
Betti numbers, with a relative difference of only a few per cent from the values derived from the original smoothed and then
binarized neutral fraction field. These summary statistics characterize the non-Gaussian nature of the reionization process.
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1 IN T RO D U C T I O N

The epoch of reionization (EoR) is a period of great importance in the
study of structure formation and evolution in the Universe. During
this period, the predominately cold and neutral intergalactic medium
(IGM) transitioned to a hot and ionized state due to the appearance
of the first luminous cosmic sources. These sources, which may have
been star-forming galaxies and quasi-stellar objects, produced the
ionizing photons, which over a period of approximately 500 million
years completed the reionization of the Universe (Furlanetto, Oh &
Briggs 2006; Zaroubi 2012; Ferrara & Pandolfi 2014).

This period is one of the least understood epochs in the history
of the Universe, due to the lack of direct observations. Indirect
constraints have been put on the reionization process based on
observations of the Lyman α forest (e.g. Fan et al. 2006; McGreer,
Mesinger & Fan 2011; McGreer, Mesinger & D’Odorico 2014), the
number density of Lyman α emitters (e.g. Ota et al. 2008; Ouchi et al.
2010; Robertson et al. 2015), high-z quasar spectra (e.g. Schroeder,
Mesinger & Haiman 2013; Totani et al. 2016; Davies et al. 2018;
Greig, Mesinger & Bañados 2019), and the measurement of the
Thomson scattering optical depth towards the cosmic microwave
background (CMB; e.g. Komatsu et al. 2011; Aghanim et al. 2020).

The ground state of neutral hydrogen atom can produce a signal
through a spin-flip transition, which is known as the 21-cm signal.
This signal will be a unique signature of EoR (e.g. Madau, Meiksin &
Rees 1997; Furlanetto et al. 2006). When observed, this 21-cm signal
would have redshifted to radio band of the electromagnetic spectrum.

� E-mail: m.bianco@sussex.ac.uk

Various radio experiments, such as Low Frequency Array1 (e.g. van
Haarlem et al. 2013), Murchison Widefield Array2 (e.g. Tingay et al.
2013), and the Hydrogen Epoch of Reionization Array3 (HERA; e.g.
DeBoer et al. 2017), have been trying to detect this signal. Recently,
these facilities have provided useful upper limits on the 21-cm power
spectrum (e.g. Mertens et al. 2020; Trott et al. 2020) that have been
used to derive constraints on the properties of reionization (e.g. Ghara
et al. 2020, 2021; Greig et al. 2020a, b; Mondal et al. 2020).

The 21-cm signal during the EoR will be highly non-Gaussian
and therefore the power spectrum will not give a full statistical
characterization of it (e.g. Mellema et al. 2006; Ichikawa et al.
2010; Watkinson & Pritchard 2015; Majumdar et al. 2018; Giri et al.
2019c). In the coming years, the Square Kilometre Array4 (SKA)
will be built. The low-frequency component of the SKA will be
sensitive enough to detect the 21-cm signal produced during EoR
and create images of its distribution on the sky (Mellema et al. 2013;
Koopmans et al. 2015; Wyithe, Geil & Kim 2015). These images
contain more information about our Universe as the detection of the
signal at different observed frequencies depicts the distribution of
neutral hydrogen at a given time during the EoR.

SKA-Low will observe a sequence of such 21-cm images from
different redshifts that will constitute a three-dimensional (3D) set
of data known as a tomographic data set. The evolution of the 21-
cm signal can be seen along the redshift axis. See for example Giri
(2019) for more description about tomographic 21-cm images. The

1https://www.astron.nl/telescopes/lofar/
2https://www.mwatelescope.org/
3http://reionization.org/
4https://skatelescope.org
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reionization process is driven by growing H II regions, often referred
to as bubbles (e.g. Furlanetto, Zaldarriaga & Hernquist 2004). As
the sources of ionizing photons reside inside them, observing these
bubbles and their evolution will be interesting. Numerous studies
have provided various methods to detect and study properties of
H II bubbles (e.g. Datta, Bharadwaj & Choudhury 2007; Mason &
Gronke 2020; Zackrisson et al. 2020). We can also study the
properties of reionization with 21-cm images (Giri et al. 2018,
2019a). However, tomographic images from SKA-Low will be prone
to instrumental limitations, such as noise, limited resolution, and
foreground contamination (e.g. Koopmans et al. 2015; Ghara et al.
2016). In the field of image processing, methods that can classify
objects or features in images into meaningful segments are known
as ‘image segmentation’ methods. Giri et al. (2018) implemented an
image segmentation method to classify neutral and ionized regions
in 21-cm images in the presence of instrumental limitations and
demonstrated that key properties of reionization can be derived from
such observations.

Artificial intelligence (AI) and deep learning methods are capable
of learning patterns in image data and identifying interesting regions.
Image segmentation based on AI is quite popular in the field of data
analysis and has been applied to study objects with complex visual
form contained in big data (Long, Shelhamer & Darrell 2014). In
recent years, several papers made use of machine learning techniques
for a range of problems in astrophysics (e.g. Giri et al. 2019b; Lee
2019; Chen et al. 2020; Yoshiura et al. 2020) and cosmology (e.g.
Jeffrey et al. 2020; Sadr & Farsian 2020; Guzman & Meyers 2021).
In the case of reionization, several of these methods are aimed
to remove foreground emission (Li et al. 2019; Makinen et al.
2021; Villanueva-Domingo & Villaescusa-Navarro 2021), emulate
reionization simulations (e.g. Kern et al. 2017; Jennings et al. 2018;
Schmit & Pritchard 2018; Cohen et al. 2020; Ghara et al. 2020), or
constrain reionization history (e.g. Shimabukuro & Semelin 2017;
Chardin et al. 2019; Mangena, Hassan & Santos 2020; Shimabukuro,
Mao & Tan 2020) and its astrophysical inputs (e.g. Sullivan, Iliev &
Dixon 2017; Gillet et al. 2019; Hassan, Andrianomena & Doughty
2020).

In this work, we present a new approach for the identification of the
distribution of H II regions in 21-cm images using a deep learning
method named U-shaped convolutional neural network (CNN; U-
Net), which is specially designed for image segmentation and feature
extraction (Ronneberger, Fischer & Brox 2015). In our case, we
adapt this network for processing our image data, which are mock
observations of the 21-cm signal during the EoR. The method will
segment the images into ionized and neutral regions. We call this
framework SegU-Net.

This paper is organized as follows: In Section 2, we present how
we generate the simulated data sets used for this work. In Section 3,
we describe the design of our neural network, including the error
estimation. In Section 4, we discuss its application to our simulated
SKA-Low data sets, considering a range of summary statistics such
as the mean ionization fraction, power spectra, and topological
quantities such as size distributions and Betti numbers. In Section 5,
we test our framework on various instrumental noise levels, and in
Section 6 we test it on a data set produced from a fully numerical
reionization simulation. We discuss and summarize our conclusions
in Section 7.

2 2 1 - C M S I G NA L

For any deep learning-based method, we need a data set containing
a sample of all the possible scenarios, known as the training

set. In Section 2.1, we describe the reionization simulation code
that we use to create the training set. The observable for radio
telescopes observing the 21-cm signal is defined in Section 2.2.
Finally, in Section 2.3 we give the methodology we use to mimic the
observations expected with SKA-Low.

2.1 Reionization simulation

To train our network, we require a large set of simulations that
represent the 21-cm radio signal for a wide range of redshifts
during reionization and different assumptions about the astrophysical
sources of ionizing radiation. To do so, we employ py21cmFAST,
the python wrapped version of the seminumerical cosmological
simulation code 21cmFAST (Mesinger, Furlanetto & Cen 2011;
Murray et al. 2020). The code computes the evolution of the
matter density field using the Zel’dovich approximation (Zel’Dovich
1970). The ionization field and the corresponding 21-cm differential
brightness temperature are then calculated from the matter density
distribution based on the excursion set formalism (Furlanetto et al.
2004; Mesinger & Furlanetto 2007), which considers a region to be
ionized when the fraction of collapsed matter fluctuation exceeds a
mass threshold. The ionization fraction xH II(rrr) at a position rrr is given
as

xH II(rrr) =
{

1 if fcoll ≥ 1/ζ

0 otherwise,
(1)

where ζ is the ionizing efficiency of high-redshift galaxies and
fcoll(Rs, Mmin) is the fraction of collapsed matter within radius Rs

that can form haloes with mass greater than Mmin. fcoll is calculated at
every pixel varying Rs within 0 and Rmfp. The maximum value of fcoll

is used in equation (1). Rmfp implements the effect of a finite mean
free path for ionizing photons in the ionized IGM.

The cosmological parameters considered in this work are based on
WMAP 5 yr data observation (Komatsu et al. 2009) and consistent
with Aghanim et al. (2020) results. We assume a flat �CDM
cosmology with the following parameters: �� = 0.73, �m = 0.27,
�b = 0.046, H0 = 70 km s−1 Mpc−1, σ 8 = 0.82, and ns = 0.96.

2.2 Differential brightness temperature

Radio interferometry-based telescopes record the differential bright-
ness temperature δTb while observing the redshifted 21-cm signal.
δTb depends on position on the sky rrr and redshift z and can be given
as (e.g. Mellema et al. 2013)

δTb(rrr, z) ≈ 27xH I(xxx, z)
(
1 + δb(rrr, z)

)(
1 + z

10

) 1
2
(

1 − TCMB(z)

Ts(rrr, z)

)

(
�b

0.044

h

0.7

)(
�m

0.27

)− 1
2

mK, (2)

where xH I, δb, TCMB, and Ts are neutral fraction, baryon density
contrast, CMB temperature, and spin temperature, respectively.

Previous studies have shown that our Universe will be heated
before reionization begins (e.g. Pritchard & Furlanetto 2007; Ross
et al. 2017, 2019). Therefore, we assume Ts � TCMB throughout
this work, which is known as the spin saturated approximation and
is relevant at lower redshift z � 12 (e.g. Furlanetto et al. 2004;
Furlanetto 2006). In the spin saturated approximation scenario, the
differential brightness signal is always in emission (δTb ≥ 0 mK) and
locations with δTb = 0 mK correspond to H II regions.
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Figure 1. Top left: the neutral hydrogen fraction at simulation resolution. Green contours indicate the boundary between neutral and ionized regions after
reducing the resolution to an observation with a maximum baseline of B = 2 km and matching frequency resolution. Bottom left: the 21-cm signal at simulation
resolution. Top right: the 21-cm signal plus noise realization at simulation resolution for an observing time of 1000 h. To mimic the effect of the lack of a zero
baseline, the mean signal has been subtracted. Bottom right: the noisy 21-cm image after smoothing to the resolution to an observation with a maximum baseline
of B = 2 km and matching frequency resolution. This is an example of a smoothed box slice used during the network training. The solid black line shows the
same contour as in the top left panel.

Table 1. The parameters used in this study to model the telescope properties.

Parameters Values

System temperature 60( ν
300 MHz )−2.55 K

Effective collecting area 962 m2

Declination −30◦
Observation hours per day 6 h
Signal integration time 10 s

2.3 Mock 21-cm observation

In order to train SegU-Net for application to actual observations,
we need a training set of mock observations. We create these
mock observations by simulating δTb using the methods described
in previous sections and adding instrumental effects, such as the
absence of zero baselines, limited resolution, and noise. We follow
the methods in Ghara et al. (2016) and Giri et al. (2018) for mimicking
the expected effects of SKA1-Low.

We consider a simulation volume of (256 Mpc)3 and an intrinsic
resolution of 
x = 2 Mpc for simulating the signal. This intrinsic
resolution corresponds to an angular aperture of 
θ = 0.777 arcmin
and a frequency depth of 
ν = 0.124 MHz along the line of sight at
z = 7. As an example, in Fig. 1, we show a coeval cube slice of the
neutral fraction field and δTb field in the top left and bottom left pan-
els, respectively. These slices are taken from the epoch when the uni-

verse was about 50 per cent ionized. For each δTb coeval cube, we as-
sume one axis as the line of sight or frequency direction and subtract
the mean signal from each frequency channel, such that this could be
considered as a sub-volume from the 3D tomographic data set. We
consider this simulation as our reference throughout the result anal-
ysis in Section 4; its astrophysical parameters are given in Table 2.

We simulate the instrumental noise using the method given in Giri
et al. (2018) and implemented in Tools21cm5 (Giri, Mellema &
Jensen 2020). We change the noise seed for each new member of
the training set so that the network is trained on different noise
realizations and we list our assumed parameters for the telescope
set-up in Table 1. In the top right panel of Fig. 1, we show a slice from
the simulated noise cube produced from 1000 h of observation with
SKA1-Low at simulation resolution. When we add this noise to our
simulated signal at the simulation resolution, we cannot discern any
feature of the signal as the noise is several orders of magnitude higher
than the signal. Therefore, we reduce the resolution of the noisy signal
in the field-of-view direction by smoothing with a Gaussian kernel
with a full width at half-maximum (FWHM) of λ0(1 + z)/B, where
B is the maximum baseline. For example, B = 2 km corresponds to
a resolution of 2.905 arcmin at redshift z ≈ 7 and 3.631 arcmin at
redshift z ≈ 9, respectively. In the frequency direction, we reduce

5A PYTHON package for EoR simulations analysis. https://github.com/sambi
t-giri/tools21cm
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Table 2. Astrophysical parameters used for our fiducial simulation.

Parameters Values

ζ 39.204
Rmfp 12.861 Mpc
T min

vir 3.46 × 104 K

the resolution by convolving with a top-hat bandwidth filter of a
width matching the FWHM of the angular smoothing in comoving
units. This width corresponds to 0.462 MHz at redshift z ≈ 7 and
0.551 MHz at redshift z ≈ 9, respectively. In the bottom right panel
of Fig. 1, we show a slice from our noisy signal at this reduced
resolution. At this resolution, the smallest H II regions seen in the top
left panel of Fig. 1 can no longer be discerned. However, we can
still identify the larger H II regions.

To illustrate what we can achieve with these images, we apply the
same smoothing to the neutral fraction field and apply a threshold of
xth = 0.5 to label neutral/ionized regions. We refer to the smoothed
and then binarized neutral fraction field as the ground truth. We
use this field to compare the accuracy of the recovered binary field
throughout our paper. We want to point out that this is different
from the ground truth of the original reionization simulation as the
limited resolution of the radio telescope will limit the observation
of small-scale features. Then, we overplot the boundaries of these
ionized regions, the neutral fraction slice and signal slice in top left
and bottom right panels of Fig. 1, respectively.

2.3.1 Training and testing set

For our training set, we randomly sample the astrophysical simulation
parameters by a normal distribution, such that the ionizing efficiency
of high-redshift galaxies ζ is sampled withN ∼ (52.5, 20), the mean
free path of ionizing photons Rmfp with N ∼ (12.5 Mpc, 5 Mpc), and
the (logarithmically spaced) minimum virial temperature for haloes
to host star-forming galaxies T min

vir with N ∼ (4.65, 0.5). The choice
of these values is such that for a majority of the samples most of
the reionization history (xV

H I from 0.9 to 0.1) falls within the redshift
interval of 9–7. The redshift is randomly sampled with a uniform
distribution U ∼ [7, 9]. The initial conditions of the cosmological
density field are changed for each simulation. This helps us avoid the
impact of cosmic variance on our trained model. With the list of all
the parameter values, we produce 10 000 mock observations of the
21-cm signal. Out of these mock observations, we use 15 per cent
as the so-called network validation set. This validation set is used
during the training method to provide an unbiased evaluation of the
network model fit.

Eventually, we will use SegU-Net on actual 21-cm image
observations. Here, we rely on an additional 300 mock observations
as the testing or prediction set. Just as for the training set, the
parameter values are randomly chosen. We call this the ‘random’
testing set. The training process is blind to the prediction set. Apart
from the above testing set, we create an additional simulation with
fixed values of astrophysical parameters (given in Table 2). We have
chosen these values such that between z = 9 and 7 reionization
proceeds from xV

H I ≈ 0.9 to 0.1. We call this set the ‘fiducial’
testing set. Since the signal evolves as reionization progresses in
this testing set, it better mimics the upcoming 21-cm observations.
With this testing set, we will test SegU-Net’s capability to capture
the evolution of structures and recover the binary field from untrained
data in Section 4.

2.3.2 Fully numerical simulations testing set

To train SegU-Net, we relied on 21cmFAST for creating the
training set. However, our Universe may not exactly be described
by this seminumerical code. If our neural network has learnt to find
structures in 21cmFAST simulations only, then we cannot use it for
SKA observations. To ensure that the neural network is not overfitted,
we consider a different reionization simulation code to build the mock
observations.

We first simulate the matter density field and track the evolution
of cosmic structures by using the CUBEP3M N-body code (Harnois-
Déraps et al. 2013). The simulation is carried out in a volume of
(349Mpc)3 with 64 billion particles. Dark matter haloes down to a
mass of 109 M� are found at various redshifts using the spherical
average halo finder (Watson et al. 2013); meanwhile, haloes with
masses between 108 and 109 M� are implemented with a sub-grid
method (Ahn et al. 2015). We use the same cosmology that is given
in Section 2.1.

We then employ theC2RAY radiative transfer (RT) code to simulate
the cosmic reionization. C2RAY requires the matter density field in a
3D grid. Therefore, the distribution N-body particles are put in 3D
grids with a smoothed particle hydrodynamic method (e.g. Shapiro
et al. 1996; Mao et al. 2019). This grid has a spatial resolution of 
x =
2.1 Mpc and a 1663 mesh grid. Source ionizing photon production
rate per unit time is proportional to the mass of the hosting halo Mhalo

such that

Ṅγ = fγ

Mhalo �b


ts mp �m
, (3)

where mp is the proton mas and 
ts = 11.53 Myr is the star lifetime.
The efficiency factor of sources is defined as fγ = f� fesc Ni , where
f� is the star formation efficiency, fesc is the photons escape fraction,
and Ni is the star ionizing photon production efficiency per stellar
atom. The efficiency factor for haloes with masses Mhalo < 109 M�
is set to fγ = 2. For the lower mass haloes, it is initially set to fγ =
8.2. When their environment becomes ionized (above 10 per cent),
their efficiency is reduced to fγ = 2 to account for radiative feedback.
C2RAY outputs the hydrogen ionization field at a time interval of 11.5
million years. For more details on the RT and N-body simulations
methods, see Iliev et al. (2012) and Bianco et al. (2021).

We derive the differential brightness temperature
δTb from the ionization field and the density using
equation (2). We select four outputs, which are at
redshifts z = 7.96, 8.06, 8.17, 8.28, 8.40, 8.52, and 8.64,
corresponding to a volume-averaged neutral fraction of
xV

H I = 0.17, 0.29, 0.42, 0.57, 0.70, 0.81, and 0.90, respectively.
The simulated δTb from these epochs are converted into mock
observations using the procedure outlined in Section 2.3. We use
these mock observations as a testing set.

The right-hand panel of Fig. 2 shows a slice of the calculated δTb

for redshift z = 8.06 (xV
H I = 0.38 at simulation resolution). Similar

to the bottom right panel of Fig. 1, we add the instrumental noise
corresponding to a 1000 h observation and smooth the signal to a
resolution corresponding to a maximum baseline B = 2 km. The
black contours correspond to the boundary between neutral and
ionized regions. These boundaries are derived from the simulated
neutral fraction field at the same resolution as the δTb data set.

3 U - N E T F O R 2 1 - C M I M AG E SE G M E N TAT I O N

Here, we describe our machine learning method for identifying
ionized and neutral regions in noisy 21-cm images and our approach
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Figure 2. Right-hand panel: An example of a smoothed cube slice from the
C2RAY simulation on the right employed to test the stability and reliability
of the network. This slice is for z = 8.06 and corresponds to a volume-
averaged neutral fraction of xV

H I = 0.38. As for the training set, at simulation
resolution, we subtracted the mean signal in the frequency direction from the
differential brightness temperature. We then added simulated instrumental
noise for the observed time of 1000 h and smoothed the signal with the same
baseline as SKA1-Low. Left-hand panel: The binary field recovered with our
neural network. In red/blue, the prediction performed with our network and
the green contour shows the boundary between neutral and ionized regions.
The same contour is shown with a solid black line on the right-hand panel for
comparison.

to estimate the uncertainty of its results in Sections 3.1 and 3.2
respectively.

3.1 Our network, SegU-Net

Our segmentation network6 is based on the U-Net framework first
introduced by Ronneberger et al. (2015). U-Net consists of two
likewise symmetric paths, an encoder operator that contracts the
image and a decoder operator that expands the extracted features. The
encoder corresponds to a classical CNN. This CNN aims to reduce the
size of the input image in such a way that only information of the most
interesting features remains. A series of concatenated convolution
operations (layers) returns a low-dimensional latent space (or latent
vector) that contains information about these extracted features.
In Appendix A, we provide a visual representation of the low-
dimensional latent space for the example case of a sphere. We show
a schematic representation of the U-Net in Fig. 3. The left part of the
U-shape in the diagram and the bottom layer represent the encoder
and the low-dimensional latent space, respectively. For a detailed
discussion of CNNs, we refer the reader to Mehta et al. (2019),
and for examples of employing CNNs to infer cosmological and
astrophysical parameters in the context of reionization to Gillet et al.
(2019) and Hassan et al. (2020). In our case, the information in the
latent space (or latent vector) of U-Net (bottom layer) is expanded
by a decoder into a binary map of the same size as the input image.
The right part of the U-shape of the diagram in Fig. 3 represents the
decoder. The decoder gradually increases the spatial resolution of the
latent vector with an up-sampling operation (transposed convolution)
until we obtain the same dimension of the input image. After each
up-sampling step, the output is combined with the corresponding
encoder layer with the same dimension. We illustrate this further in
Appendix B with an example.

Even though each of our image data sets is 3D, SegU-Net is
trained on two-dimensional (2D) slices. We identify structures in
3D image data by running on every slice along the third axis. Tests
show that the method is not sensitive to the choice of the third axis.

6https://github.com/micbia/SegU-Net

When compared to a neural network trained on 3D data, we found
that our approach is computationally less expensive without loss of
accuracy. Therefore, the U-Net architecture described in this work is
only applied to 2D image data.

The structure of the encoder layers consists of two convolu-
tional blocks followed by a 2D max-pooling layer (MaxPool)
of size 2 × 2 and a 5 per cent rate dropout layer (Drop). This
regularization technique randomly shuts down a portion of the
layer neurons to avoid overfitting (Hinton et al. 2012; Srivastava
et al. 2014). The convolutional block (ConvBlock) consists of
a 2D convolution layer (Conv2D) with 3 × 3 kernel size. We
add a layer that normalizes the previous input layer over the
batch sample to avoid overfitting (BN; Ioffe & Szegedy 2015)
and as an activation function we employ a Rectified Linear Unit
(ReLU) activator (Jarrett et al. 2009; Glorot, Bordes & Ben-
gio 2011), ConvBlock = Conv2D+BN + ReLU. This layer
structure is repeated for a total of four levels (Encoder-
Level). At each step, the dimension of the input image is
halved by the max-pooling operation. The number of feature
channels is doubled by the convolutional layer, Encoder-
Level = 2∗ConvBlock+MaxPool + Drop. The decoder
structure is somewhat similar to the encoder. We replace the pooling
operation with a transposed 2D convolution (TConv2D; Zeiler &
Fergus 2013; Dumoulin & Visin 2016), which has an opposite scaling
effect on the resolution and channel size. This layer output is then
concatenated (CC) with the corresponding encoder level to preserve
the features extracted in the contracting path. This step is followed
by a dropout layer and two convolutional blocks, Decoder-
Level = TConv2D+CC+Drop + 2∗ConvBlock. The final
output consists of a 2D convolutional layer followed by a sig-
moid activation. Our network has a total of 23 2D convolutional
layers distributed on four down- and up-sampling scaling levels
and a bottom layer, for a total of approximately 2.5 million
trainable parameters. In Fig. 3, we show our best-performing
network and label the shape of the output from each intermedi-
ate hidden layer of this network. More details are provided in
Appendices A and B.

During our training process, the hyperparameters of the network
are learnt by minimizing a loss function. We employ the balanced
cross-entropy (BCE; Salehi, Erdogmus & Gholipour 2017):

L(y, ŷ) = − 1

N

N∑
i=0

(β yi log10(ŷi) + (1 − β)(1 − yi)log10(1 − ŷi)) ,

(4)

where yi ∈ {0; 1} is the pixel-wise ground truth, ŷi is the predicted
value, N is the batch size, which is our case is of size 32, and
the parameter β = ∑N

i=0 yi is the average volume neutral fraction
of the batch. In our context, at early/late stage of reionization the
statistical weight of the ionized/neutral pixels is underrepresented.
This situation is known in data science as a problem affected by
‘class unbalanced’ data. To deal with this, we use the above loss
function that has been shown to be well suited for segmentation
problems that are affected by class unbalanced data (Cui et al. 2019).
We further used the Adaptive Moment Estimator Adam (Kingma &
Ba 2014), an optimized stochastic gradient descent algorithm for
error minimization. The initial learning rate, the step size of the rate
of convergence that minimizes the loss function, is set to 10−3. We
trained the network using two GPUs, and it took approximately 1500
wall clock hours.
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21-cm segmentation U-Net 3987

Figure 3. Schematic representation of SegU-Net network architecture. The orange arrow indicates a 2D convolutional layer, followed by batch normalization
and ReLU activation. Pooling operations followed by dropout layer are indicated with green arrows. The blue arrow indicates an up-sampling layer by
transposed 2D convolutional layer and with a red arrow the closing layer, a 2D convolution followed by a sigmoid activation function. The descending path on
the left-hand side divides the resolution of the image after each pooling operation and doubles the channel dimension after each convolution. On the other hand,
the expansion path doubles the spatial dimension at each up-sampling operation and decreases the channel dimension after concatenation with its counterpart
layer in the descending path.

3.2 Uncertainty estimation on SegU-Net

One of the main drawbacks of machine learning is that it is unable
to quantify uncertainties and confidence intervals for its predictions,
and only recently attempts have been made (Charnock, Perreault-
Levasseur & Lanusse 2020; Hortńa, Volpi & Malagò 2020) to
include error estimation. However, this has not yet been generally
implemented for U-Nets. Additionally, if not well optimized, neural
networks are prone to overfitting and tend to be biased. Therefore,
we have developed an error estimation procedure to be used during
the prediction process. This procedure gives our network additional
power by providing a pixel-by-pixel error map.

Image manipulations, such as zooming, shifting along an axis,
flipping axes, and rotation along an axis, are commonly performed
on 2D or 3D image training data to increase the number of samples
(Simonyan & Zisserman 2015; Szegedy et al. 2015). This technique is
known as time-test augmentation (TTA) of data (Perez & Wang 2017;
Wang et al. 2020). Here, we use this approach to estimate the error on
the final result. We perform several copies (∼100) of the same sample
during the prediction process through image manipulations. These
manipulated copies are then independently processed by SegU-
Net. Each of the recovered binary fields is transformed back. We
calculate the final result as the average of these fields and the per-pixel
standard deviation to estimate the error for each pixel.

An example of the pixel per pixel error map can be seen in Fig. 4
(rightmost panel). We will discuss this figure further in Section 4.1.
This simple method provides our neural network with an uncertainty
estimation for each labelled pixel.

4 R ESULTS

Once the network is trained, we want to estimate how well it recovers
the binary field from noisy 21-cm images. To do so, we include in
our analysis the state-of-the-art Super-Pixel method presented in Giri
et al. (2018). The Super-Pixel method is based on an advanced image
processing technique called the Simple Linear Iterative Clustering
(SLIC; Achanta et al. 2012). SLIC groups similar pixels in images

into ‘superpixels’. These Super-Pixels are then classified into neutral
and ionized ones to get the final map containing the identified
features. In previous studies, this method has been shown to be
superior compared to other methods, such as putting a simple
threshold to the mean signal (e.g. used in Kakiichi et al. 2017),
the k-means method (e.g. used in Giri et al. 2018), or the maximum
deviation method (e.g. used in Gazagnes, Koopmans & Wilkinson
2021). The Super-Pixel method proves to be quite efficient in
recovering the binary fields from noisy 21-cm images. The summary
statistics extracted from those are accurately reproducing the ones
obtained using the simulation data sets. As shown by Giri et al.
(2018), the choice for the number of superpixels depends on the
simulation box size and resolution. In our case, we tested for a
few values between 500 and 7000. We noticed that above the value
of 5000, the algorithm becomes more computationally expensive
without yielding a substantial increase in the segmentation accuracy.
Hence, we employ 5000 superpixels.

4.1 Visual comparison

To start, we show a visual comparison of slices in Fig. 4. We compare
the predicted binary field recovered by the Super-Pixel method
(leftmost panel) and SegU-Net (central panel) with the ground
truth (green contours in both panels). As explained in Section 2.3,
the ground truth is the boundary of ionized regions extracted from
the simulation neutral fraction field at the same resolution by putting
a threshold of 0.5. The red and blue pixels represent neutral and
ionized pixels, respectively. In the rightmost panel, we show the
pixel error estimated from SegU-Net with a colour bar. The error
is determined by calculating the standard deviation of the same pixel
from the different version of the same mock observation produced
with TTA (see Section 3.2).
SegU-Net shows better precision in recovering shapes of the

ionized regions compared to the Super-Pixel method. As expected,
most of the network uncertainty is located at the boundaries of
neutral regions or between two large ionized bubbles when these
are percolating, and the gap is getting narrower. This uncertainty has
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3988 M. Bianco et al.

Figure 4. Slice comparison of the binary field, in blue ionized regions and in red neutral. Left-hand panel: binary field recovered by the Super-Pixel method.
Central panel: binary field recovered by our neural network. Green lines indicate the true separation between ionized/neutral regions, derived from a smoothed
version of the simulated neutral hydrogen distribution. Right-hand panel: the per-pixel error as calculated by SegU-Net. The colour bar indicates the intensity
of the network uncertainty.

a direct bearing on small neutral islands of a few Mpc scale, residing
in vast ionized regions. Moreover, larger uncertainties, σ std ≥ 0.25 are
located around narrow ionized regions protruding into large neutral
regions (e.g. in Fig. 4 rightmost panel, at coordinates x ∼ 140 Mpc
and y ∼ 125 Mpc). This behaviour suggests that the uncertainty
mainly depends on the contrast between the local neutral and ionized
regions. The network selects regions in the image based on the largest
gradient in the 21-cm signal intensities to recover the binary field.
Therefore, we expect larger uncertainties for reionization scenarios
in which the contrast in the 21-cm intensities is relatively small.

4.2 Correlation coefficient

To compare the predicted ionized fields from the 21-cm images
mathematically, we use the Matthews correlation coefficient (MCC;
also known as rφ coefficient), defined as

rφ = NTP · NTN − NFP · NFN√
(NTP + NFP)(NTP + NFN)(NTN + NFP)(NTN + NFN)

, (5)

where NTP and NTN are the total numbers of neutral and ionized
pixels recovered correctly, respectively. NFP is the total numbers of
pixels incorrectly guessed as neutral and NFN is the total numbers of
pixels incorrectly guessed as ionized. In our case, a positive/negative
result corresponds to the neutral/ionized case since the quantity 1 in
our binary fields indicates the neutral condition and 0 the ionized.
Thus, MCC is a useful metric to correlate binary fields.

In Fig. 5, we show the MCC estimated from the fields segmented
into ionized and neutral regions in our testing sets. In the left-
hand panel, we provide a scatter plot of MCC values against the
reionization history (xv

H I) for the ‘random’ testing set. We indicate
the redshift of the realization by the colour of the points and respective
confidence interval with an error bar. We show the number of samples
in our training set at a different neutral fraction in an inset panel. After
a first attempt, we realized that to overcome the unbalanced class
problem requires a better representation of the early (xv

H I ≈ 1) and
late stages of reionization (xv

H I ≈ 0). For this reason, we increased
the number of training samples for these stages. Therefore, the
distribution of samples against neutral fraction has a bimodal shape
with peaks at approximately xv

H I ≈ 0.1 and 0.9.

As a result, the rφ value for the overall prediction data set (Fig. 5,
left-hand panel) is about 87 per cent for SegU-Net (blue dashed
line) and 62 per cent in the case of the Super-Pixel method (orange
dashed line). The noise level increases with redshift. Therefore,
the score is slightly less accurate for redshift z ≥ 8.25 with an
85 per cent accuracy, meanwhile higher for lower redshift z ≤ 7.75
with 88 per cent. In the future, we consider increasing the proportion
of the training data with high redshift to decrease this performance
dissimilarity. The same trend is present in the case of the Super-Pixel
method, with an accuracy of 60 per cent and 63 per cent, respectively.

In the right-hand panel of Fig. 5, we compare the MCC values
from SegU-Net (blue line with circles) with that from the Super-
Pixel method (orange line with squares) for our ‘fiducial’ simulation.
As we already know from Giri et al. (2018), the Super-Pixel method
performs best for xV

H I ≈ 0.5 and deteriorates towards earlier and
later stages of reionization. The reason for this behaviour is that
during these stages, structures are usually smaller and, therefore,
more difficult to identify. With SegU-Net, we are able to overcome
this problem by employing a specifically designed BCE loss function
(equation 4) during the validation process after each training epoch.
Therefore, the average rφ value for the ‘fiducial’ simulation is about
91 per cent for SegU-Net (blue dashed line) and 70 per cent in the
case of the Super-Pixel method (orange dashed line). In Table 3, we
summarize the rφ score for the two test sets.

4.3 Average neutral fraction

After identifying the ionized regions, we can determine the volume-
averaged neutral fraction xv

H I, which quantifies the reionization
history. In Fig. 6, we show the volume-averaged neutral fraction
xv

H I, predicted as calculated from the recovered binary fields extracted
by the two methods. In the left-hand panel, we show the xv

H I, predicted

from the SegU-Net outputs against the true volume-averaged
neutral fraction xv

H I, true for our ‘random’ testing set. The colour of
the points indicates the redshifts. The black dashed line indicates
xv

H I, predicted = xv
H I, true. Except for a few points, all the points lie on or

near the black dashed line.
In the right-hand panel of Fig. 6, we compare the results of

xV
H I, predicted derived with the Super-Pixel method (orange line with

squares) and SegU-Net (blue line with circles) for our ‘fiducial’
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21-cm segmentation U-Net 3989

Figure 5. Left-hand panel: the MCC rφ of the recovered binary field for the prediction set, against its volume-averaged neutral fraction. Error bar indicates
the network confidence interval, and colours indicate the redshift of the simulated coeval cube. On the inset panel, we show the distribution of the training
set (blue histogram) against the volume-averaged neutral fraction. Right-hand panel: comparison of the same correlation coefficient for recovery performed
on the fiducial simulation with our neural network (blue circle line) and the Super-Pixel method (orange square line). We also include the result from the test
on the C2RAY simulation, from left to right, redshift z = 7.96, 8.06, 8.17, 8.28, 8.40, 8.52, and 8.64 corresponding to a volume-averaged neutral fraction
of xV

H I = 0.17, 0.29, 0.42, 0.57, 0.70, 0.81, and 0.90. The violet dots with relative confidence intervals are predictions performed with SegU-Net for these
cases and the green squares are the corresponding results from the Super-Pixel method. Horizontal dashed lines in both panels indicate the overall average rφ

coefficient for the entire data set and the fiducial simulation, respectively, in blue for SegU-Net and orange for Super-Pixel method.

Table 3. Summary of the MCC score (in per cent) of our two test sets for the
two feature identification methods.

SegU-Net Super-Pixel

Redshift
Random set

(per cent)
Fiducial
(per cent)

Random set
(per cent)

Fiducial
(per cent)

z ≤ 7.75 88.9 91.7 63.7 62.6
z ≥ 8.25 85.3 90.1 60.7 71.8
7 ≤ z ≤ 9 87.1 91.2 62.0 69.5

simulation. Again, the black dashed line represents xV
H I, predicted =

xV
H I, true. In the case of our neural network, all results lie within the

half standard deviation (0.5σ ) of the true value (grey dashed lines).
With the Super-Pixel method, this is true only from xV

H I ≈ 0.5 to 0.85.
The recovered neutral fraction is either underestimated at xV

H I > 0.6
or largely overestimate for xV

H I < 0.4.

4.4 Size distributions

From the 3D tomographic data that will be produced with the
upcoming SKA experiment, we will be able to study the size
distribution of neutral or ionized region during the EoR. Ionized
regions are often called bubbles and neutral regions are referred to as
islands. The Bubble and Island size distributions (BSDs and ISDs)
are useful to derive the properties of reionization and its evolution
(Xu, Yue & Chen 2017; Giri et al. 2019a). Several approaches were
presented to calculate this distribution (Lin et al. 2016; Kakiichi et al.
2017; Giri et al. 2018). In this work, we employ the Mean-Free-Path
method (Mesinger & Furlanetto 2007; Giri et al. 2018) to calculate
the size distribution (R dN

dR
) of recovered neutral (ISD) and ionized

fields (BSD). Previous works have demonstrated that this method

should be preferred since the calculated size distributions are almost
unbiased (Lin et al. 2016; Giri et al. 2018).

In the left and right columns of Fig. 7, we show the ISDs and
BSDs, respectively, of the binary fields recovered with SegU-Net
(blue line) and Super-Pixel method (orange line) compared to the
ground truth (black dashed line). The Super-Pixel method performs
best when the simulation is halfway through the reionization process
xv

H I = 0.5 (central panel). However, it is considerably less accurate
compared to SegU-Net. We show the relative difference with
the ground truth in the plots below the ISDs and BSDs. The blue
shaded region shows the error on each of the size distributions
determined by SegU-Net. In both the ISD and BSD cases, the
main difference between the two recovered distributions occurs at
the earlier xv

H I = 0.8 (top) and later xv
H I = 0.2 (bottom) stages of

reionization.SegU-Net shows a relative difference of a few per cent
while the distributions determined from the Super-Pixel segmen-
tations show relative differences of up to 10 per cent for large
sizes.

4.5 Dimensionless power spectra

The dimensionless power spectrum of the neutral field is defined
as 
2

x x = k3Px x(k)/2π2, where Px x is the autopower spectrum that
quantifies the fluctuations due to the distribution of neutral regions.
These fluctuations contribute to the 21-cm power spectrum that is
observed with radio interferometric telescopes. See, for example,
Furlanetto et al. (2006) and Lidz et al. (2007) for descriptions
of the fluctuations of the 21-cm signal. In this section, we study
the 
2

x x estimated from the neutral fields recovered from various
methods.

In Fig. 8, we consider the ‘fiducial’ simulation at three stages
of reionization, which are xV

H I = 0.8 (top panel), xV
H I = 0.5 (central
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3990 M. Bianco et al.

Figure 6. Left-hand panel: Comparison of the simulated neutral fraction against the recovered one. Error bar and colour bar are the same as Fig. 5. Right-hand
panel: The same comparison for the ‘fiducial’ simulation. We also include the results from the C2RAY simulation. The redshifts of the C2RAY simulation are
z = 7.96, 8.06, 8.17, 8.28, 8.40, 8.52, and 8.64 corresponding to a volume-averaged neutral fraction of xv

H I = 0.17, 0.29, 0.42, 0.57, 0.70, 0.81, and 0.90.
The violet dots with relative confidence interval are predictions performed with SegU-Net and green squares are with the Super-Pixel method.

panel), and xV
H I = 0.2 (bottom panel). At the mid-point of reioniza-

tion (central panel), the Super-Pixel method performs well at large
scales k < 0.2 Mpc−1 with a relative difference within 25 per cent
for lower k-values. The 
2

x x values of the neutral field recovered
by the Super-Pixel method at early and late times have the correct
shape but differ in magnitude. The 
2

x x values of the neutral field
recovered by SegU-Net match the ground truth well at all three
stages of reionization. The network maintains a maximum difference
compared with the ground truth, of a few tens of per cent at all scales.
For k � 0.5 Mpc−1, the network uncertainty interval grows to 25–
50 per cent relative difference.

4.6 Betti numbers

During reionization, ionized bubbles form, grow, and connect
with each other to form a complex topology (Furlanetto & Oh
2016). Various studies have proposed topological descriptors for
this distribution, such as Euler characteristics (e.g. Friedrich et al.
2011) and Betti numbers (Elbers & van de Weygaert 2019; Giri &
Mellema 2020; Kapahtia et al. 2021). Giri & Mellema (2020)
pointed out that Betti numbers contain more information compared
to the Euler characteristics. Therefore, in this section we study the
zeroth β0, first β1, and second β2 Betti number (Betti 1870) of
the binary 3D maps recovered by the two feature identification
methods.

β0, β1, and β2 describe the number of isolated ionizing regions,
tunnels, and isolated neutral regions, respectively. In the top, middle,
and bottom panels of Fig. 9, we show the β0, β1, and β2 values
estimated from the recovered binary fields of our ‘fiducial’ model at
xV

H I between 0.1 and 0.9. The black, blue, and orange curves represent
the Betti numbers calculated from the ground truth, recovered field
with SegU-Net, and Super-Pixel method, respectively. In line with
the results for the other quantities discussed earlier, we find that the
topology recovered with SegU-Net is much closer to the ground
truth than the one recovered by the Super-Pixel method.

5 TESTS ON DI FFERENT I NSTRU MENTA L
NOI SE LEVELS

We have trained and tested SegU-Net for one specific noise level,
corresponding to the theoretically expected noise for tobs = 1000 h
with the current design of SKA-Low. However, in practice, the noise
level may differ from this, either because the observing time or
telescope design is different from our assumptions or simply because
the theoretical noise level is not achieved due to complications with
the calibration. Therefore, it is important to test to which extent the
performance of our network is sensitive to the noise level in the
actual data. To change the noise level, we choose different observing
times, one shorter (tobs = 500 h) and one longer (tobs = 1500 h). The
former case corresponds to a noise level

√
2 higher than that used in

the training set and the latter to a noise level that is
√

2/3 lower.
In the left-hand panel of Fig. 10, we show the rφ coefficient of the

recovered binary field against the volume-averaged neutral fraction
xV

H I. We compare the prediction on the reference simulation for the
higher (tobs = 500 h, green line with squares) and lower noise cases
(tobs = 1500 h, red line with triangles) with the one using the noise
level employed during the training and validation process (tobs =
1000 h, blue line with circles). It is evident from the plot that although
the noise level does impact the accuracy of the results, we still achieve
approximately the same level of precision as in our test case, as
commented in Section 4.2. In fact, the overall average accuracy,
indicated with horizontal dashed lines in Fig. 10, on the simulation
of reference is 89 per cent for the higher noise case (green dashed
line) and slightly better, 92 per cent, for the lower noise case (red
dashed line). In both cases, there is a drop in performance down to
88 per cent accuracy during the early stages of reionization xV

H I > 0.7,
due to the redshift dependence of the simulated noise.

We also want to test how far we can push our SegU-Net trained
on data with tobs = 1000 h instrumental noise to identify structures in
the presence of a higher or lower noise level. In the right-hand panel
of Fig. 10, we plot the rφ coefficient at different observation times tobs;
for three different stages of reionization in our reference simulation,
namely for volume-averaged neutral fractions, xV

H I is 0.2 (blue line
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21-cm segmentation U-Net 3991

Figure 7. Left column: the size distribution of neutral regions (ISD). Right column: the size distribution of ionized region (BSD). Rows from top to bottom
represent early (xv

H I = 0.8), middle (xv
H I = 0.5), and late (xv

H I = 0.2) stages of reionization, respectively. On each panel, we show the size distributions from
the binary fields of the ‘fiducial’ simulation recovered by SegU-Net (blue line) and its respective confidence interval (blue shadow). Black dashed lines and
orange lines give the size distributions of the ground truth and binary field recovered by the Super-Pixel method. At the bottom of each size distribution panel,
we show the relative deviation from the true binary field distribution.

with squares), 0.5 (orange line with circles), and 0.8 (green line with
triangles), corresponding to redshifts z = 7.310, 8.032, and 8.720.
This plot shows that our network performs well for tobs � 500 h,
where rφ � 0.85. The spike in the curve for xV

H I = 0.8 at tobs =
1000 h is due to the fact that this is the noise level for which the
network was trained.

To put our noise level into perspective, the inset plot in the
right-hand panel of Fig. 10 shows the signal-to-noise ratio (SNR)
achieved for different observation times. The SNR is defined as
σ 21/σ noise (e.g. Kakiichi et al. 2017), where σ 21 and σ noise are the
standard deviations of the 21-cm signal and noise, respectively,
at the resolution corresponding to a maximum baseline of 2 km.
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3992 M. Bianco et al.

Figure 8. Dimensionless power spectra of the neutral field from the fiducial
simulation as recovered by our network (blue line) and its respective
confidence interval (blue shadow). Compared at early, middle, and late stages
of reionization (from top to bottom xV

H I = 0.8, 0.5, and 0.2) with the same
quantity derived from the ground truth (black dashed line) and the Super-
Pixel method (orange line). At the bottom of each panel, we show the relative
difference compared to the ground truth for both cases: the network and
Super-Pixel methods.

Figure 9. Comparison of the topology of the identified regions with Betti
numbers estimated from the original neutral field (black dashed line), the
SegU-Net (blue line with circles), and the Super-Pixel method (orange line
with squares), for the case of our ‘fiducial’ simulation. The top, middle, and
bottom panels give β0, β1, and β2, respectively. The Betti numbers recovered
with SegU-Net match the ground truth better than those recovered with the
Super-Pixel method.
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21-cm segmentation U-Net 3993

Figure 10. Left-hand panel: the MCC rφ of the recovered binary field against its volume-averaged neutral fraction. We compare the prediction set for a high
noise level (tobs = 500 h, green line with squares) and low noise level (tobs = 1500 h, red line with triangles) against the noise level employed during the
training (tobs = 1000 h, blue line with squares). Horizontal dashed lines of the respective colour represent the MCC average score of the reference simulation.
Right-hand panel: the evolution of the MCC score for increasing observation time for a set of mock observations with volume-averaged neutral fractions
of xV

H I = 0.2 (z = 7.310), 0.5 (z = 8.032), and 0.8 (z = 8.720), respectively, in blue, orange, and green colours. In the same panel, an inset plot shows the
signal-to-noise ratio (SNR = σ 21/σ noise) of 21-cm images at a resolution corresponding to a maximum baseline of 2 km we achieve for different observation times.

From this, we conclude that a good performance, with the same
accuracy as the ‘random’ testing set (rφ � 0.85), requires an
SNR �3.

6 T E S T S O N A FU L LY N U M E R I C A L
SIMULATION

We applied our network to mock δTb cubes calculated with the
C2RAY code, presented in Section 2.3.2, with a spatial resolution
close to the21cmFAST simulations employed in the training process,
2 Mpc, in order to obtain the same level of noise per pixel. A visual
comparison of the recovered binary field, similar to the results in
Section 4.1, is shown in Fig. 2. In the left-hand panel, the red/blue
colour indicates the network prediction.

We go through the same process presented in Section 4. The
rφ score with SegU-Net is represented by the violet dots with
error bars on the right-hand panel of Fig. 5; from left to right we
have redshifts z = 7.96, 8.06, 8.17, 8.28, 8.40, 8.52, and 8.64 cor-
responding to a universe with volume-averaged neutral fractions of
xV

H I = 0.17, 0.29, 0.42, 0.57, 0.70, 0.81, and 0.90; green squares
represent the score obtained with the Super-Pixel method. As we
can see, our neural network is performing with similar accuracy as
for the prediction set of seminumerical simulations as discussed in
Section 4.1. For xV

H I ≈ 0.55, SegU-Net performs slightly better
than the Super-Pixel method. The Super-Pixel method shows a drop
in accuracy at the late (xV

H I < 0.5) and early (xV
H I > 0.8) stages

of reionization. We do the same comparison with the recovered
volume-averaged neutral fraction xV

H I; in Fig. 6 right-hand panel,
the green error bar points are the same data as mentioned earlier. As
we can see, also for the C2RAY simulation, SegU-Net recovered
quantity resides within the 0.5σ confidence interval (violet dots
with error bars). For the Super-Pixel results, this is true only for
xV

H I = 0.57, 0.70, and 0.81, with approximately the same precision
as SegU-Net in the case of xV

H I = 0.57 and slightly better results
for xV

H I = 0.70.

7 D I SCUSSI ON AND C ONCLUSI ONS

This work has developed a CNN based on the U-Net architecture,
which can be used to segment redshifted 21-cm image observations
into neutral and ionized regions. We have shown that this application
of deep learning provides a fast and stable method that significantly
improves the identification of ionized/neutral regions during the EoR
over previously proposed methods. To train our network, we employ
a large set of simulated mock observations of the 21-cm signal.

Our image segmentation network, SegU-Net, also contains an
uncertainty estimator. This uncertainty estimator is a simple but
efficient application of the test-time augmented (TTA) technique.
With this uncertainty estimator, our network can create a pixel-by-
pixel error map during the prediction process. The pixel-by-pixel
error map can later be used to determine the error in any quantity
derived from the segmentation.

Once the network has been trained, the binary field’s extraction is
swift. In our case for simulations of volume (256 Mpc)3 and mesh
grid of 1283, a run in serial on an Intel R© CoreTMi7-6500U CPU @
2.5 GHz processor and using 16 Gigabytes of RAM takes between
5 to 10 s. Including the pixel-error map calculation increases the
computing time to approximately 10 min. For comparison, the Super-
Pixel method typically requires several minutes to extract the binary
field, where the actual time depends on the image pixel resolution
and the number of Super-Pixels employed. The computational speed
of our network thus makes it particularly useful as a component in a
Bayesian statistical inference framework to perform EoR parameter
estimation using tomographic statistics (e.g. Gazagnes et al. 2021).

We compare the accuracy of our approach with a feature finding
method from the field of image processing, the so-called Super-Pixel
method, which Giri et al. (2018) showed to be superior over simple
thresholding methods. The results show that our neural network can
identify neutral regions in the mock observations at least as well and
often much better than the Super-Pixel method. We show a visual
comparison and the resulting pixel-per-pixel error map tested on
our ‘fiducial’ model. This error map gives valuable insight into the
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parts of the image that are hard to recover and helps us check for
overfitting.

We studied the accuracy of a range of derived quantities from
the recovered binary fields, comparing the performance of SegU-
Net with the Super-Pixel method. These quantities are the volume-
averaged ionization fraction – the evolution of which provides
the reionization history, the size distribution of the ionized (BSD)
and neutral (ISD) regions, the dimensionless power spectra of the
recovered binary fields, and the three Betti numbers, which quantify
the topology of the segmented data sets. For all quantities, we find
that the SegU-Net results are more accurate than the Super-Pixel
results, especially for the early and late stages of reionization, where
the Super-Pixel method often struggles to produce accurate results.

Machine learning methods generally are sensitive to the properties
of the training set. Therefore, we tested SegU-Net on input data
with different properties than the training set. First, we analysed the
performance on data sets with different noise levels than the network
was trained. We found that SegU-Net yields accurate results for
data sets in which the noise level is characterized by an observing time
of tobs > 500 h, which approximately corresponds to an SNR �3.
Secondly, we applied the network to mock observations calculated
from the results of a fully numerical reionization simulation, rather
than the seminumerical simulations used to train the network. We find
that SegU-Net achieves the same level of accuracy when applied
to this data set and therefore is not sensitive to the type of simulation
employed during the training process.

We want to point out that similar efforts are being made by
Gagnon-Hartman et al. (2021). They focus on reconstructing the
segmented maps of ionized and neutral regions in the context of
foreground mitigation using the foreground avoidance method (e.g.
Liu & Tegmark 2011; Pober et al. 2014), and also consider the
possibility of doing so with instruments that are not optimized for
imaging such as HERA. We include the effect of instrumental noise
and study in great detail the summary statistics of the reconstructed
binary maps and the dependence of the results on the noise level.
In the future, we will extend our study to include the impact
of foreground mitigation strategies while recovering the summary
statistics.

Here, we assumed the spin temperature to be saturated (TS �
TCMB). However, it is possible to have such a scenario where this
assumption fails, especially during the time when reionization starts.
In the future, we will evolve our SegU-Net to identify H II regions
in such scenarios. Even though our network is built to identify H II

regions, U-Net architecture can be trained to identify any interesting
feature. Before reionization started, the luminous sources heated the
IGM and left its impact on the 21-cm signal (e.g. Ross et al. 2017,
2019). The U-Net architecture can also be trained to identify these
heated regions.

AC K N OW L E D G E M E N T S

The authors would like to thank Leon Koopmans for useful discus-
sions and comments. We also acknowledge helpful discussion with
Adrian Liu and collaborators. MB is supported by PhD Studentship
from the Science and Technology Facilities Council (STFC) and
appreciates the Oskar Klein Center at Stockholm University for
hospitality during the completion of this work. This work was
possible thanks to the STFC Long Term Attachment (LTA) travel
grant. ITI is supported by the Science and Technology Facilities
Council (grant numbers ST/I000976/1 and ST/T000473/1) and the
Southeast Physics Network (SEPNet). GM is supported in part by
the Swedish Research Council grant 2020-04691. We acknowledge

PRACE for awarding us access to the KAY facility hosted by the
Irish Centre for High-end Computing (ICHEC) and the GALILEO
hosted by the Super Computer Application and Innovation (SCAI)
in collaboration with the Consortium Interuniversitario del Nord
est Italiano per il Calcolo Automatico (CINECA). The authors
gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for partly funding this project by providing
computing time through the John von Neumann Institute for Comput-
ing (NIC) on the GCSSupercomputer Juelich Wizard for European
Leadership Science (JUWELS) at Juelich Supercomputing Centre
(JSC). The deep learning implementation was possible thanks to the
application programming interface of Tensorflow (Abadi et al.
2015) and Keras (Chollet et al. 2017). The algorithms and image
processing tools operated on our data were performed with the help
of NumPy (Harris et al. 2020), SciPy (Virtanen et al. 2020), and
scikit-image packages (van der Walt et al. 2014). All figures
were created with mathplotlib (Hunter 2007).

DATA AVAI LABI LI TY

The data underlying this article are available upon request, and can
also be regenerated from scratch using the publicly available 21cm-
FAST, CUBEP3M, C2RAY, and Tools21cm codes. The SegU-Net
code and its trained network weights are available on the author’s
GitHub page: https://github.com/micbia/SegU-Net.

REFERENCES

Abadi M. et al., 2015, Tensorflow. Available at: http://tensorflow.org/
Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Süsstrunk S., 2012, IEEE
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We testSegU-Net to see if it can recover the binary field for a simple
case, namely a single spherical neutral region. We assume a uniform
density field at z = 8.032 and calculate the differential brightness
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Figure A1. Test SegU-Net on a spherical ionized region. Left-hand
panel: slice through the input image. The colour map shows the differential
brightness temperature, and the black contour shows the boundary between
neutral and ionized regions. Right-hand panel: the recovered binary field
with SegU-Net. The green contour represents the same boundary again.
The identified neutral and ionized regions are indicated in red and blue,
respectively.

temperature with equation (2), adding noise corresponding to tobs =
1000 h and reducing the resolution to correspond to a maximum
baseline of B = 2 km. In Fig. A1, we show the input image of the
sphere (left-hand panel) and the corresponding recovered binary field
by SegU-Net (right-hand panel). The black contour in the left-
hand panel and the green contour in the right-hand panel show the
true boundary of the sphere. For this test, SegU-Net achieves an
accuracy of 98 per cent.

In Fig. A2, we show the output of the bottom hidden layer
of SegU-Net, which is the last layer of the left part of the U-
shape in Fig. 3. The colour coding is such that blue corresponds to
negative, red to positive, and white to zero values. This output gives
a visual representation of the low-dimensional latent space of our
network encoder. In our case, this consists of 256 images, where

Figure A2. Visual representation of SegU-Net’s low-dimensional latent
space (bottom layer), which contains information about the extracted features
of our test input image.

each corresponds to a convolutional kernel and contains information
about the image’s extracted features. The encoder path contracts
the input image from an original mesh size of 1282 down to 82.
The information contained in the latent space is then expanded by
SegU-Net decoder into a binary map of the same size as the input
image (see right-hand panel of Fig. A1).
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Figure A3. Example of skip connection between encoder and decoder levels. The top panel shows the architecture of our network. The bottom panels display
the output of three hidden layers. On the left (green dashed line), a convolutional block (ConvBlock) output is interconnected with the output of the second to
last up-sampling operation (central panel, red dashed line). The rightmost panel shows the result of the merge after a convolution block (black dashed line).

APPEN D IX B: SKIP C ONNECTION BETWEEN
E N C O D E R A N D D E C O D E R L E V E L S

The main advantage of a U-shaped network is that it overcomes
the bottleneck limitation encountered by auto-encoder networks
(a classical encoder/decoder architecture) by adding interconnec-
tions between the descending (encoder) and ascending (decoder)
paths (Long et al. 2014; Ronneberger et al. 2015). These con-
nections allow feature representations to pass through the bot-
tleneck (bottom layer) and avoid loss of information due to
contraction.

In Fig. A3, we show a visual example of interconnections between
the encoder (left part of the U-shape) and the decoder (right part).
The top panel shows a schematic representation of our network
architecture, and the bottom part displays a visual output of three

hidden layers for the test case of a sphere. The leftmost panel

(connected by a green dashed line) shows the output of the second
convolutional block in the encoder’s second level. This block consists
of 32 kernels with a mesh size of 642. At this level, the shape and form
of the input image are still visible. The centre panel (connected by a
red dashed line) shows the result of the second to last up-sampling
operation of the decoder. The number of kernels and mesh size match
with the corresponding encoder layers. The skip connection merges
the encoder- and decoder-level output for a total of 64 images with
mesh 642. The rightmost panel (connected with a black dashed line)
shows the concatenation after a convolutional block. The effect of
the up-sampling operation is still visible.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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