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ABSTRACT 

We propose the interaction 

-q = (5/21EU”~ Tr A.u [ avAX - (2ig/3)A”A” 1 

as a mass term for gauge fields in three-dimensional spacetime. The Au belong to 

a Lie algebra (represented here in terms of matrices), E uux is the completely 

K antisymmetric symbol, the coupling g has units [mass] , and the parameter 5 has 

units [mass], 2 
5’ 

related to the instanton current of four dimensions, is gauge 

invariant up to a total divergence and a topological density. (There is a supersym- 

metric extension with the same property.) When technical complications can be 

ignored, &?‘< provides gauge particles with mass without breaking local symmetry 

and without introducing auxiliary fields. Perturbative analysis of models involving 

g< (collectively called “5 theories”) is complicated by gauge-noninvariant infrared 

singularities in gauge-field propagators. Nevertheless, quantized abelian S-theories 

(collectively called ” 5 QED”) do define gauge invariant and infrared finite 
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scattering in perturbation theory. The consistency of nonabelian 5 theories is not 

yet established. The physics of nonrelativistic charges in 5 QED is, in its gross 

features, the same as that of the Aharanov-Bohm effect--the static field of a point 

charge is a nontrivial pure gauge at large distances. (We argue that in spite of the 

long range fields, propagation of charges at large times is free; so that in 5 QED 

there should be no unexpected subtleties in the axiomatic definition of scattering 

amplitudes.) Compatibility of gauge invariance and mass in three dimensions is 

related to the existence of massive spinning representations of the Poincare’ 

algebra with only one polarization per momentum. The massive spin-one photon of 

E; QED is such a particle. (There is in fact a massive unitary representation of the 

three-dimensional Poincare’ algebra with only one polarization for spin equal to ~J-IY 

real number, integral multiple of one-half or otherwise. It is possible that particles 

with such an anomalous spin are present in some field theories.) 2’ is invariant 
5 

under the discrete transformations C and P but not under T, nor under any 

reflection P’ in a single spatial axis. In 2 + I dimensions the analogue of the PCT 

theorem refers to P’CT. 
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The notion that model systems in lower-dimensional spacetimes could be 

useful in developing ideas for four-dimensional particle physics has been reinforced 

in the last few years, most recently by studies of the U(1) problem in two- 

dimensional CP”-’ models [ I] and, earlier, by Polyakov’s demonstration [ 2 1 that 

instantons give rise to confinement in the three-dimensional Georgi-Glashow 

model.F’ 

These analyses were essentially nonperturbative. Perturbative studies of 

gauge theories and sigma models in low-dimensional spacetimes are limited by 

infrared problems that are more severe than those encountered in four dimensions. 

With this in mind, we discuss in this paper a vector field self-coupling in three- 

dimensional spacetime that might be useful as a mass term for gauge theories. In 

the case of abelian gauge fields, we are able to show, in perturbation theory, that it 

is free of inconsistency. When such a coupling can be defined without 

inconsistency, it provides gauge particles with mass without (at least in 

perturbation theory] breaking local symmetry, and without introduction of auxiliary 

fields (in contrast with the Higgs [ 41 and Schwinger [ 5 ] mechanisms). 

In Lagrangian form, the coupling is F2 

.P< E (5/2)EuIrh Tr Au [ a “A’ - (2ig/3)Av A’ ] , 

where the components of the gauge field Au are elements of a Lie algebra, repre- 

sented here in terms of matrices. (We take elements of the gauge group to be 

exponentials of i times elements of this algebra.] The symbol E uuh is completely 

antisymmetric, with E o12 Z 1. The parameter 5 has units [ mass I; the gauge 

YZ coupling g has units [mass I . 
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In what follows, we shall only consider total Lagrangians that can be 

expressed in terms of Al, and the field strength FFcv : $A, - a A - ig [A 
91-1 1-I’ 

A”1 

as 

% = - KTr FtiVFpv + dp 
5 + gauge-invariant matter terms . (2) 

minimally coupled to Ap 

We shall refer to any such model as a “5 theory.” A class of supersymmetric 5 

theories is described in detail in appendix A. The quantized 5 theories with gauge 

group U(I) will be referred to generically as “5 QED.” 

At the classical level, 9’[ displays local symmetry in the sense that when the 

vector field undergoes a gauge transformation, the change in (1) consists of a total 

divergence and a field-independent remainder. Specifically, when Au changes 

according to 

A + UAI,U -I 
F: 

-i (a,uxrl , (3) 

then the change in 2 is 
i 

AL?< q a’ (-i</2g) E l,,,XTr (A”U-Ia “U) 
3 

+ (S:6g21euVXTr (u-lallu)(u-‘a”u)(u-‘a”u) . (4) 

The function U of spacetime takes values in the gauge group. The second term in 

A 9L is proportional to the topological charge density [71 of U. The form (1) was 

suggested by the identity [71 
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Tr Fll” Fpv q 23°C ~lvx Tr AI-I [a”AX -(2ig/31AVAXl (5) 

for the gauge-invariant instanton density in four dimensions. In a purely formal 

sense, 5 is a three-dimensional analogue of the four-dimensional vacuum angle 0. 

The parameter C, is to be interpreted as the mass of the gauge-invariant 

excitation of the vector field, to lowest order in g. To show this, we first define 

Bp : cpUAF”‘. This definition is invertible for F: Fp” = y2 cu”‘Bh. To lowest 

order in g, Bu satisfies the identity 

a Bp = 0 
lJ (6) 

Again to lowest order in g, the gauge field equations of motion corresponding to (2) 

can be written in terms of B as 

o = (t/2) cpvhFvX + a,FVu = SBu - sVXU aVBx . (7) 

Equations (6) and (7) imply 

0 = (Sg,, + Eopu a% Bu - EVXIJ a”Bh) 

= cc2 + aVavleo - a,,(a”B,) = Cc2 + q B, (8) 

In other words, to lowest order in g the components of the field strength tensor 

propagate as free fields of mass 5, which is what we wanted to show. 

At the quantum-mechanical level, the interaction PC presents two technical 

problems that we have not solved in complete generality: 



4 FERMILAB-Pub-80/103-THY 

First, there can, because of (41, be boundary and topological terms in the 

gauge transformation of the action. This could invalidate the usual functional 

proof [8 1 of the gauge invariance of physical cross sections. To be safe, one 

should prove gauge invariance in some other way. 

Second, when the total Lagrangian has the form (21, the free gauge field 

propagator has gauge-invariant poles at mass 5, but it also has other noninvariant 

singularities in the infrared. For example, the free photon propagator for < QED is 

DC! i 
PV P2-52 

eg p” + Il~ll‘‘(-P,P” +P11PogVo+P”Pog~“-(P2-52k~og”o) 

in Coulomb gauge, and 

DL =--L- 
PV - P2 - 52 [( 

- Pu”-y ) +( 5) EuU”Ph-J 

(9) 

(10) 

in Landau gauge. To be sure that such models are self-consistent theories of 

massive particles, one should show that these infrared singularities do not lead to 

divergences in perturbative expressions for physical transition amplitudes. 

In response to these problems, we can show that in 5 QED physical cross- 

sections in Landau and Coulomb gauges are identically equal and free of infrared 

divergence in every order of the perturbative expansion in powers of the electric 

charges. The arguments that we use in the abelian case do not apply to the general 

nonabelian theory. 

Here is the proof of gauge invariance in 5 QED: Following arguments well- 

known in the context of four-dimensional QED 19 1, we assume that in Feynman 
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graphs with external lines on shell, the photon propagator in any gauge is emitted 

and absorbed by conserved currents consisting exclusively of charged-particle 

lines.F3 Thus, as usual, all terms in (9) and (IO) proportional to Pn or PV make no 

contribution to a scattering amplitude. The term g ~O%O in (9) is cancelled as 

usual by the instantaneous Coulomb interaction. As for the antisymmetric terms: 

Call the emitting and absorbing currents Jeu and J,p. Because spacetime has only 

three dimensions, we can say that since the exchanged momentum Pu is orthogonal 

to both of these currents, it is parallel to their cross-product. In symbols, 

E J FJ~” = 6Ph 
uvie d 

, (11) 

where B is some gauge-invariant function of the external and internal momenta 

characterizing the process in question. The equivalence of the contributions of the 

antisymmetric terms in (9) and (10) to cross sections follows directly from (11): 

- EuujPjJepJa"/ 11; 112 = - RPjPj/Ili:ij2 

cc 6 

= BP PX/P2 = x 
E pvx Px Jeii Ja “/P2 . (12) 

This completes the proof. 

As for infrared finiteness: The familiar analysis of on-shell infrared 

divergences developed in the context of four-dimensional QED [ II I is applicable 

to 5 QED. In physical amplitudes, infrared divergences (if they exist at alI) show 

up only in Feynman graphs in which the momenta through two internal charged- 

particle line segments go on shell when the momentum through some internal 
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photon line vanishes. Such a graph is actually singular only if at least one of the 

integrals 

s pUqqS’“(k) 

d3k (p-k - inpc)(q.k - inqei (13) 

receives a divergent contribution from the region near k = 0. The momenta p and q 

in (13) refer to any such pair of charged lines and are on the appropriate mass 

shells; the tensor S’“(k) is the infrared singular part of the free photon propagator. 

As usual, the positive number E is to approach zero after one evaluates the 

integral; the signs n 
P 

and n 
q 

are determined by the directions--incoming or 

outgoing--of the external charged lines that feed p and q. Expression (13) is 

adapted from expression (2.10) of reference 1111 . 

In 5 QED, using Landau gauge for convenience, the singular function S’“(k) is 

$VX kX/(<k21. Upon substitution into (13), naive power counting would have the 

integral diverge logarithmically in the infrared as E + 0; but because the numerator 

in Suv changes sign when k does, the divergence is washed out. This establishes 

infrared finiteness. 

It should be emphasized that we have s shown that the infrared singular 

antisymmetric terms in DC and D L 
UV !JV make no contribution to physical processes. 

Indeed, explicit calculation to lowest order in the fine structure constant shows 

that because of these terms the amplitude for elastic scattering of two charges is 

singular in the forward direction--in the center-of-mass frame, as the scattering 

angle @ approaches zero the amplitude approaches a constant times Cl/$). In terms 

of the Lorentz-invariant Mandelstam variable t, this is proportional to I/V’?, the 

sign of the square root changing with the sense--clockwise or counterclockwise--of 

deflection.F4 



7 FERMILAB-Pub-80/103-THY 

We remark in passing that in general the ultraviolet divergences of 5 theories 

cannot be regularized by the dimensional method [ 131 because the three-index 

antisymmetric symbol is specific to three-dimensional space-time. We do not know 

whether there are analogues of 2 
5 

in the form of lattice actions [ 14 I. The Pauli- 

Villars [ 15 1 technique should be sufficient to regularize ultraviolet divergences of 

the abelian c-theories without breaking gauge invariance. 

In any case the general 5 theory with only spinor matter, with no spinor self- 

couplings beyond mass terms, if it can be defined as a gauge-invariant system at 

all, should in fact be ultraviolet finite. According to naive power counting, the 

only primitively divergent graphs are the one-loop contributions to the spinor self- 

energies and the vector field three-point function (logarithmic divergences), and 

the one- and two-loop contributions to the vector self-energy (linear and 

logarithmic divergences). The logarithmic divergences in the spinor self-energies 

and the vector three-point function should be washed out by symmetric integration. 

The linear divergence in the vector self-energy is symmetric in the Lorentz indices 

and should go away when the symmetric transverse polynomial PUP” - P2g is 
UV 

extracted. The symmetric part of the logarithmic divergence should also go away 

upon extraction of Pb P, - P2g 
liv 

; the antisymmetric part should go away upon 

extraction of E 
PVh 

Ph. 

To get a qualitative picture of the kind of physics described by the < theories, 

consider the stationary solution to the free abelian equations of motion in the 

presence of a static point source of electric charge e, 

a”F”l’ + 5~ PVhF vx +eg0u62(x3 = 0 . (14) 

One could use (9) to solve (14) explicitly by evaluating the Fourier transform 
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Au(x) = 5 
4n s 

(d’P]G(P%;o(P) , 

but we can proceed to the main points more efficiently by looking directly at the 

p = 0 component of (14), integrated over all of two-dimensional space, 

L d*x(-$.!?+<B+e6*(jt)) = 0 
J 

(16) 

In (16), E. is Fol and B is Ff*. 
I 

To simplify equation (161, observe that because of equation (8), the 

components of E’decrease with distance r from the origin as some power of r times 

e- @ (for large r), so that ld*x’?* E’vanishes. This reduces (16) to 

/- 
Bd*x = -e/c (17) 

So 5 QED is a theory of massive photons, and of charged particles whose 

static fields have finite range and contain magnetic as well as electric components. 

The magnetic field surrounding a charged particle has nonzero total flux -e/c; so 

that at large distances, by virtue of Stokes’ theorem, the vector potential in 

Coulomb gauge is given in terms of the polar angle b by 

AN 
( i 2% 6e 

r+m 
(18) 

The right-hand side of (18) falls off like I/r and is locally but not globally a pure 

gauge. Thus, on the largest scale, the physics of heavy nonrelativistic charges in 

5 QED is the same as that of the Aharonov-Bohm effect [ 161 .F5 
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One might wonder whether the presence of both magnetic and electric 

components signals nonzero angular momentum residing in the electromagnetic 

field of a point charge in 5 QED. The electromagnetic contribution to the Noether 

generator [V 1 of rotations in 5 QED, in a rotationally covariant gauge (so that 

rotations do not involve gauge transformations), is 

E 
em s 

d2x”(&-02 _ x2To’) + 2 ($Tuo2 _ x2Tuo1 L u )I ’ (19) 

whereF6 

Tpv = Fp°Fv +tguv’F 
u 

Fpu 
PO 

(20) 

Tuuv s $ ,~uh,t,X-F~u 
i 

The sum of the Tu” terms in (19) reduces to I d2x [-B(;* i) 1, the 2 + l-dimensional 

analogue of the familiar Jrd3x [z x (i x ;)I. This takes the value e2/4nc for the 

exact static solution [ B q -e5/2n Ko([r), ;: -e/2n ?Ko(Cr)} to equation (14), 

cohere K o is ti Bessel function. However, in this case the total divergence term also 

contributes to ML;. Using the asymptotic behavior (IX) we find the value 

6-e2/4ng) for the surface contribution to MI*. 

Thus, in toto, the electromagnetic contribution to Ml* for a point source is 

zero. This is in accord with general requirements of quantum field theory. Had the 

result for MA: been nonzero, we would have concluded that in 5 QED the spin of a 

particle depends continuously on its charge. But this is certainly not possible for 

particles created by applying fundamental matter fields to the vacuum, because in 

a rotationally covariant gauge the rotational behavior of matter fields is not 

affected by the coupling of gauge fields. 
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We stress, however, that outside the restrictions of perturbative quantum 

field theory there is nothing in the geometry of 2 + l-dimensional spacetime that 

constrains the spins of particles to be integral multiples of 5. In appendix C we 

describe an explicit construction of an irreducible unitary representation of the 

Poincarg algebra in 2 + 1 dimensions in which the mass m and the rest-frame 

angular momentum (I/m)e 
!Jvx 

hlp”Ph both take arbitrary values. Perhaps (with or 

without Z’ 
5 

1 some solitons provide examples of anomalous spin, F7 either on 

account of quantum-mechanical effects, or already at the classical level. 

We learn from the construction in appendix C that (among other things) in 

2 + I dimensions there is only one polarization per momentum in a massive spinning 

irreducible representation of the Poincar6 algebra. Since the number of transverse 

polarizations of a massless vector field in 2 + I dimensions is also one, this 
~, 

explains, roughly, why auxiliary degrees of freedom (as in the Higgs mechanism) are 

not necessary in giving mass to three-dimensional gauge mesons. 

Indeed, per momentum there is precisely one real gauge-invariant normal 

mode of the equations of motion (7) of free < QED. For example, the unique real 

gauge-invariant mode with frequency I< 1 and zero wavenumber is 

BP = A(O,cos(lC/t- 6),(5/151)sin(/51t-6)) , (22) 

where t is time, and the amplitude A and phase 6 are time-independent and 

arbitrary. Upon quantization, this mode corresponds to a state of mass 15 1 at 

rest, with angular momentum c/l 5 I . There is also, by the way, precisely one real 

normal mode of the Dirac equation 

i 
iyua -m 

l.J ) 
$I= 0 f (23) 



II FERMILAB-Pub-80/103-THY 

when the Clifford algebra is represented in Majorana form by F8 

‘Yo-u2 , y1 zioI , y2 :io3 (24) 

The unique mode with frequency 1 m I and wavenumber zero corresponds, upon 

quantization of $ as a Majorana field, to a state of mass I m 1 at rest, with angular 

momentum (-m/ I m ])*Yz. 

To see this in perspective, recall that in 3 + I dimensions a massive spinning 

particle must have more than one polarization because the spatial rotation group 

has more than one generator. In 2 + 1 dimensions the spatial group has only one 

generator; so once the rest-frame polarization has been chosen to be an eigenstate 

of this operator, there are no generators left with which to form other 

polarizations. 

A related fact is that 2 
5 

is not invariant under time-reversal, T, nor under 

any reflection, P’, in a single spatial axis. Either T or P’ would change the angular 

momentum of the stationary massive photon in 5 QED from c// 5 I to (- 5/I< I), but 

we have seen that there is no gauge-invariant mode with zero wavenumber 

corresponding to spin (-c/l 5 I ). The same statements, mutatis mutandis, hold for 

the Majorana system (23)-(24). 

We note in passing that both 2 and system (23)-(24) are invariant under C 
5 

and P (parity inversion is equivalent to a proper rotation in two-dimensional space). 

The PCT theorem does not apply to 2 + I dimensions because the geometrical 

transformation PT is not a proper three-dimensional Euclidean rotation (its deter- 

minant is -1) [IS]. The geometrical transformation PIT, by contrast, is proper, so 

there should be a P’CT theorem. F9 Both g;ps and the two-component Dirac system 

are invariant under P’CT. 
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APPENDIX A: SUPERSYMMETRIC 5 THEORIES 

Let the two functions Qa (a = I,21 be objects of the form CjXjCj, where the 

functions Xj of spacetime are real anticommuting numbers and the Gj are 

generators of the matrix Lie algebra to which the Ap belong. (Assume the numbers 

X j commute with the entries of the Gj.) In this appendix we show that the 

Lagrangian density 

zs = - { TrFuyFIJV + JZ~ + i T[I;,Y~,(D~$,) - ~~~~~~~~~~~ 3 
+ STrTa$a (A.11 

possesses a supersymmetry at the classical level. The gamma matrices in (A.11 are 

taken from (24); the notation Ta means QbTuba; the action of the gauge-covariant 

derivative DU is given by 

(A.21 

We begin the proof by cataloguing the basic definitions that we shall need: 

The smallest supersymmetry algebra in 2 + 1 dimensions has two generators 

beyond those of the translation group, and can be represented as simple operators 

on functions (“superfields”) of three real variables x ’ and two real anticommuting 

parameters ea. The explicit form of this representation is 
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+ ‘gcau yvcb yEa , (A.3) 

P :-ia 
u u 3 (A.4) 

and the algebra is 

i Q,, Gb} = 5,yI-I 

[Q&l = [Pv,Ppl = 0 

The general infinitesimal supersymmetry transformation is 

f + f - iccpaUf + (BaQa)f I 

(A.3 

(~.6) 

where the a! and the B a are respectively commuting and anticommuting real 

parameters. 

The supercovariant derivatives, defined by 

(A.7) 

Pa : Y i, 

satisfy 

ba,Qbl = [Pa,Pu I = 0 . 

(A.8) 

(A.9) 

Thus, like f itself, every function of f, the Paf and the Puf transforms under super- 

symmetry according to (A.7). 
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The expansion of any function in powers of the 6, always terminates at the 

quadratic term because in monomials of order three or higher at least one of the 

two Cla will appear more than once, and the anticommutation rules force such a 

combination to vanish. For the same reason there is only one quadratic monomial, 

0 I8 2 = i/268 ). Thus we may write a general function f as 

f(x, 8 ) = a(x) + iBaba(x) + K(BB)c(x) (A.101 

Under an infinitesimal transformation parametrized as in (A.7), the change in 

c is a total divergence: This is obvious in the case of the term -iou 8 ~ f. The c 

component of @Q)f is also a divergence because of the two terms in the definition 

(A.3) of the Qa, only the second (involving the spacetime derivatives) can give a 

term quadratic in the 8a when acting on something truncated as in (A.10). (Simi- 

larly, the last component of Paf is also a total divergence for any a.) 

It follows that the integral jc(x)d3x is a supersymmetric invariant, at least 

for sufficiently localized configurations. In particular, c-components of functions 

(“super Lagrangians”) of superfields and their supercovariant and ordinary deriva- 

tives make supersymmetric Lagrangian densities. 

Now define the three superfields Vu to belong to the Lie algebra under study 

and the two superfields Va each to be of the form ZjXjCj, just like the (I,. Define 

the action of a (super-) local gauge transformation U(x, 8 1 on the Va and the Vu by 

Va + uv,u-1 - ; (P,u)u-’ , (A.111 

V -L uvuu -1 
li - i (a pu)u-’ (A.121 
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From the point of view of local symmetry the vector superfield Vu is to some 

extent redundant. To see this, observe that if a gauge transformation changes 

some multicomponent superfield f to Uf, then by definition of Va it does the same 

thing to (Pa - igVa)f for each a, and therefore also to 

(Pa - ig KJa)yib(Pb - igV,)f : (PypP - g2VypV - igPyli V)f 

= 2i au++ [gV+V 
i 

+ip?Vl)f , (A.13) 

where Py’P, vy’ V, Py’-’ V mean payuabPb, etc., and we have used the identity 

Fyl-lP z 2i a p. It follows that the combination [ -fi;(gvy’V + iPy’Vv) 1 gauge 

transforms exactly as Vu; and in particular that the constraint 

V”+K(g~ylJV+iPyuV) = 0 (A.141 

entails no conflict with local symmetry. 

We are finally in a position to prove that (A.l) possesses a supersymmetry: 

The Lagrange function (A.1) turns out to be the c-component of a superlagrangian 

constructed from such Va and V 
u’ 

constrained by (A.14), and their ordinary and 

supercovariant derivatives. Specifically: 

Define the field strength FUd by 

F 
i.la 5 auva - P,Vp - ig[ VI-, val (A.15) 

A gauge transformation U changes Fua to IJFuaU-‘. The superlagrangian is then 
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1 L=n 
f 

- Tr Fv aF” a + iSTr vaypab Fu b ++ [V,, \rbl (A.I~) 

The precise connection between (A.16) and (A.1) follows from the decomposition 

Va 5 x,(x) + S(x)ea + (A ,,(x, yi,)e b + fi@e ) ~J~,(x, f (A.17) 

and the observation that the coefficients 5 and x, can be made to vanish by an 

appropriate gauge transformation. 

For completeness, we write out the full change in L due to a gauge 

transformation U: 

al!Tr [u“(Pau)~~b~fb] + PaytbTr [ U-‘(PbU)Vu - u-‘(aUu)vb I 
.~ 

+ 4 Tr 
g 

[ u-l(lrau)u~bu-l(pbu) I u-l a pu (A.IX) 

We do not know at present if the 5 term in L is related to some four-dimensional 

supersymmetric construct (consult [221 for examples) in any way that might be 

analogous to the connection (5) between 9 
5 

and the four-dimensional instanton 

density. 
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APPENDIX 8: WAVE PROPAGATION AT LARGE TIME IN THE 
AHARONOV-BOHM SYSTEM 

The result whose derivation is sketched here is introduced for application to 

the question raised in the footnote referred to after equation (18). 

The Aharonov-Bohm [ 16 1 in-wavefunction of momentum c is given almost 

everywhere at large distance, in Coulomb gauge, by 

. (B.l) 

The extra phase in (8.1) reflects the pure gauge behavior of the vector potential at 

large r. The parameter p is the product of the charge of the scattered particle and 

the flux of the source, divided by 2s. The symbol 8 $2) refers to the polar angle of 
,. 

c, normalized by e i;(-k) E 0. Equation (8.1) is valid as long as z and k’ do not point 

in the same direction. (The approach to the asymptotic form (8.1) becomes 

increasingly slow as the angle between x’ and c tends to zero.) 

We shall argue that for all normalizable test functions f, the state 

$(z, t) f /$ #:)f(c) [e-ik2t’2rr],zk , (0.2) 

evolving with time t under the influence of the Aharonov-Bohm vector potential, 

approaches for large negative time the state 

hx: t) z 
Jc 1 

eii;.; f(lJ[e-k2t/2nI d2k , 
1 (8.3) 

propagating according to the laws of free Schrodinger dynamics. “m” is the mass of 

the scattered particle. (A similar argument can be formulated for out states and 

large positive times.) 
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We shall rely on the “scattering into cones” formula 1191 which, when applied 

to the definition (B.3), leads to 

$6, t) w t+-m (i+r) exp (*if (2) 

‘::‘e shall also have to assume that 

I 3 f(?&@ (:)*d’x = (2~)~& 2(i, - ;I) 

(8.4) 

(8.5) 

Equation (0.5) seems reasonable, but was not actually proved in i 16 1. 

To proceed: Let us assume that the test function f(IT) is nonzero only in some 

wedge with opening angle less than TI, so that we need not be concerned in what 

follows with the discontinuity of 0$(G) at ^x = ^k. Any general f can always be 

expressed as a sum of such wedge functions. 

According to (B.l), outside the wedge, at large r (that is, r greater than some 

large reference radius), (8.2) can be replaced by 

vc:, t) 
-/-[ei”*;! 

s 
[eoe@)] ft$) [e-ik2t/2m]d2k 

= [e”” io(“;] I [ eic.;] [ei @so(‘) ] fC;) [e-ik2t/2n]d2k , (B-6 

where z. is some reference vector inside the wedge. Immediate application of the 

scattering-into-cones formula gives 

,$G, t) d 
r large 

( ,+ )exp( $$) f (4) . (B-7) 

x outside wedge 
t-w- co 
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If it were not for the restriction to large r and to zoutside the wedge, this would 

be the same as CR.41 and the proof would be accomplished. 

But notice two things: First, for large negative time the probability in the 

right-hand side of (0.7) is automatically concentrated outside the wedge and far 

from the origin. Thus 

/ 
/ $(x, t)12d2x W 

r large 
t”-m J( T j21f(Q2d2x 

all x 

x’outside wedge 

= 4n2 
/ 

If(;) j2d2!< 

Second, according to CR.21 and (8.5) we have 

/ 
j $(;, t) I 2d2x = 4n2 

/ 
If(z) / 2d2k 

all Z 

(8.8) 

(B.9) 

for all time. Putting (0.8) and (8.9) together we learn that for infinitely large 

negative time, $ (;, t) assigns no probability at all to $ not obeying the restrictions 

indicated in (8.7). Thus the restrictions in (8.7) can actually be deleted and the 

argument is complete. 
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APPENDIX C: LJNITARY REPRESENTATIONS OF THE 2 + I-DIMENSIONAL 
POINCARE ALGEBRA WITH ANY SPIN 

Our representation space will be the set of all square-normalizable complex- 

valued functions on the positive-energy mass hyperboloid po2 -p 2 2 2 
! -p2 -m, 

PO’ 0, in three-dimensional momentum space. We seek three differential 

operators Ju satisfying the algebra 

[ Jp,Jwl = -ic PVX 
Jh f (Cl) 

[ Ju, Pwj q -ic 

UVh 
PA (C.2) 

and the constraint 

P Ji-l = mS 
u , (C.3) 

where the intrinsic spin S is an arbitrary real number. The i oetl.er generators are 

related to the Ju by M 
i-iv 

E c 
uvx 

J ‘. The momentum operator Pu is represented by 

multiplication with the momentum coordinate p 
LJ’ 

Equations (Cl-3) for Ju and P 
!J 

resemble the constraints satisfied by the 

angular momentum and position operators of a nonrelativistic quantum-mechanical 

electron in the field of a fixed magnetic monopole in three-dimensional space 

[ 20 I. Thus, by analogy, we are led to the ansatz 

Ju E ic uvxpw(ax - iah) + i 
t ) 

Pul# (C.4) 

where the a u, functions of momentum, satisfy 
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We can solve equation (C.5) by adapting one of the published solutions for the 

vector potentidl of the monopole I211 . Our result is 

=p = ( 2*) E;.y:;$ > (CA) 

where n is an arbitrary but fixed three-vector with unit Lorentz norm. 

In the case of the monopole, the singularity corresponding to p fl=-penisa 

problem and leads directly to the quantization of electric charge. Here we can 

choose the singular line to miss the positive-energy mass hyperboloid altogether 

(for example, n u 5 (l,O,O)), so that nothing forces quantization of spin. 

By contrast, one should still expect quantization of the spins of fields with 

finitely many components. Fields are defined throughout spacetime so that a 

singularity like that in (C.6) cannot be made inaccessible. 
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FOOTNOTES 

Fl In addition, there is a direct connection between three-dimensional Euclidean 

quantum field theory and the high-temperature limit of four-dimensional real- 

time quantum field theory. See [ 3 I. 

F2 Couplings involving the completely antisymmetric symbols in spacetimes of 

other dimensionalities are known to occur naturally in the context of dual and 

supergravity models. See [61. We note that with the definition of the trace 

extended from matrix operators on finite-dimensional vectors to more general 

linear operators on functions of spacetime coordinates and internal indices, a 

purely formal manipulation gives 

I- d3x g5 = -(c/3g2)Tr c ,&DpDVDXl 

where D 
u 

is au - igA 
u’ the gauge-covariant derivative (R. Pearson, private 

communication). Since DV becomes U-I(x)DuU(x) under gauge transformation, 

the expression on the right-hand side is manifestly gauge invariant, while the 

left-hand side is definitely sensitive to topological characteristics of U(x). 

Thus, this formal equality has its limitations. Perhaps, because of manifest 

gauge-invariance the right-hand side represents a better definition of the c- 

interaction. This would permit application of the usual functional methods [ 81 

to prove gauge invariance of nonabelian <-theories, which we are unable to 

show otherwise. Nevertheless, we are hesitant to use this definition as a basis 

for our analysis because of mathematical complications overlooked in the naive 

introduction of the functional trace, and because it is not clear that such a 

structure can be quantized canonically. 
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F3 Actually, this assumption is naive. It breaks down because of Feynman 

diagrams in which a self-energy subgraph is attached to one end of an open 

charged line (Fig. 1). The contribution of such a diagram to the current 

corresponding to this line cannot be defined when the external particles are on 

shell because then the propagator associated with the internal segment that 

connects the self-energy insertion to the rest of the diagram is singular. This 

problem was recognized and resolved for QED in 3 + 1 dimensions by BiaIynicki- 

Birula [IO]. Superficially, it would seem that Bialynicki-Birula’s arguments 

cannot be adapted to 5 QED because they assume that the difference between 

DC 
PV 

and DI’” is of the form pugy(p) + gJp)p, (once the instantaneous Coulomb 

interaction has been cancelled), while the antisymmetric terms in (9) and (IO) 

appear not to conform to this pattern, However, because of (1 I) and (IZ), even 

with the 5 QED antisymmetric terms we still have Jep(Dc uv - D;v)Jap = 0 for 

all Je and Ja orthogonal to p (after cancellation of the instantaneous term), and 

this implies that the difference between DC 
UV and Dkv in 5 QCD is of the form 

p,,h ,(P) + k JP)P”. So actually 5 QED differs from the situation discussed in 

1 101 only in that h,, and k, are not equal (in fact they are complex conjugate). 

It seems to us that the methods in [lo 1 are flexible enough to accommodate 

this slightly more general situation. 

F4 Here is how to interpret this singularity, at least when one of the charges is 

infinitely heavy and the other is nonrelativistic: If the light charge approaches 

the heavy one with momentum-space wavefunction $in($) in the distant past, 

then its state in the far future has wavefunction 

$out(p, @I = $,(p, $I - Znimlim 
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where p and o are the polar coordinates of the two-dimensional momentum 

vector p’, m is the mass of the light charge, and t(p,o) is the nonrelativistic 

scattering amplitude, behaving like I/$ for small $. Thus, when applied to 

wavepackets, the singularity in t does not lead to singular asymptotic time 

evolution. The principal value rule above follows from the general formula, 

<gjSlf>= <g/f>-ilim 
s 

d2pd2q 2E 

4n2 E+o+ E2 + (p2 - q2)2/h2 

adapted from chapter 8 of ref. [ 12 1, for the Born approximation to the ampli- 

tude for a particle of mass m to scatter from state /f > to state ) g> under the 

influence of the perturbation V. In the case at hand, V corresponds to eA, - 

2$r (ajAj) + 2(Aj aj)i with A,$) given by (IS). (“e” here means the charge of 
-. 

the light particle, “e” in (15) is the charge of the heavy one.) When the Fourier 

transform ~6 IV I;> is nonsingular, one can take e to zero before doing the 

P2 2 integral by replacing the function in square brackets by 2nS(2--m- -2$. In the 

present case the matrix element <; 1 V I& is singular at 3 = 4’ and one must 

proceed more cautiously. Can the idea of the Mandelstam representation be 

generalized so that, in models such as 5 QED, it can accommodate both this 

kind of singularity and the absence of massless particles? 

F5 The presence of a pure gauge at infinity raises a question of principle: At large 

times before and after the interaction of two charges, do their wavefunctions 

evolve freely, or must some kind of compensating gauge transformation be 

applied before propagation can be regarded as free? There is a mathematical 

literature on nonrelativistic Schrcdinger scattering past a fixed and localized 

source of magnetic field (see [ 171 and references therein); but as far as we 
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know the only vector potentials for which this question has been analyzed 

rigorously fall off too rapidly at large distances to support (according to Stokes’ 

theorem) nonzero total flux in two spatial dimensions. Aharonov and Bohm 

[ 161 produced exact expressions for the stationary scattering states corres- 

ponding to an impenetrable zero-width source of nonzero flux; in appendix B we 

show (up to a technical assumption) how their expressions imply that 

propagation at large times is free in their system. This is our piausibility 

argument for the parallel statement in 5 QED. If this fails, our results on 

scattering amplitudes would be called into question because they were obtained 

without taking this complication into account. One might wonder whether a 

non-null Aharonov-Bohm effect could spell some kind of inconsistency for 

5 QED. Following (IS), this would lead to the quantization rule 

(ele2/<) = 2nnL2 (plus possible quantum corrections) for all charges e, and e2, 

where the n,2 are integers. We have so far encountered no evidence for such a 

phenomenon. 

F6 The Noether energy-momentum current is given in terms of TuV and Touu by 

gpv z TV” + Zj T’““. 
u 

F7 This possibility is being considered by E. Witten (private communication). 

F8 These matrices satisfy tr yuy,yx = 2i E ~vh (in four dimensions, zero would be 

the only possibility). Because of this, when there are charged two-component 

spinor fields, the lowest-order vacuum polarization can have an antisymmetric 

piece even for 5 = 0. 

F9 This was suggested to us by E. Witten. 
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Fig. I: 

FIGURE- CAPTION 

Example of a Feynman diagram in F, QED with self-energy 

insertion at an end of an open charged-particle line. 
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