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Abstract: Support vector machine (SVM) is a powerful supervised machine learning model
that is often used in binary classification algorithms. As Moore's Law approaches its theoretical
limits and the demand for machine learning to handle large-scale, high-dimensional data
analysis intensifies, the necessity of adopting non-traditional computational approaches
becomes evident. Quantum computing, in particular, emerges as a vital solution for the
effective training of SVM models, providing capabilities beyond those of classical computing
systems. To solve the above problems, a QUBO (quadratic unconstrained binary optimization)
model is proposed to transform the SVM machine learning model into a quadratic
unconstrained binary optimization problem so that they can be effectively trained on the D-
Wave platform using adiabatic quantum computer. The results show that the QUBO model can
transform the SVM model into a simple quadratic programming problem, which makes it
suitable for adiabatic quantum computer processing. When processing large-scale and high-
dimensional data, this transformation shows a natural advantage and significantly improves
computational efficiency. The application potential of this transformation technology is huge in
the medical field.

1. Introduction

Support Vector Machine is a generalized linear classifier that classifies data using supervised learning.
Its decision boundary is the maximum margin hyperplane obtained from learning samples!'!. High-
dimensional data has brought challenges to traditional SVM, so a method of embedding traditional
mathematical models into quantum computers has become a research hotspot, and the representative
related studies in recent years are described below.

Vapnik et al.”! proposed SVM in 1995. Since then, the research on SVM has improved the
classification effect and accuracy to a certain extent, but the optimization effect in processing large-
scale data is not obvious. In 1982, Richard Feynman" proposed the potential of quantum "parallelism"
to make computations more efficient. In the early 21st century, Farhi et al.') proposed adiabatic
quantum computing and quantum approximate optimization algorithms. Aharonov et al.’”’ showed that
adiabatic quantum computing is equivalent to standard quantum computing. Kadowaki and
Nishimori'® proposed a quantum annealing algorithm based on adiabatic quantum computation to
solve the combinatorial optimization problem. Anthony et al.”) proposed a quadratic unconstrained
binary optimization problem and obtained binary variables to minimize the objective function. Glover
et al.®) proposed Quantum Bridge Analytics I: A Tutorial on Formulating and Using QUBO Models,
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which is currently the most widely used optimization model in the field of quantum computing and
unifies various combinatorial optimization problems.

The traditional SVM training process is reduced to a convex quadratic programming problem. With
the increase of training samples, the training space and time will increase dramatically, so the SVM
training model is difficult to apply to large-scale datasets. In order to further improve the learning
efficiency of the SVM model to meet the needs of various large-scale data processing, this study
introduced the QUBO model to transform the SVM training model into a Hamiltonian operator energy
expression that can run on adiabatic quantum computer and then generate QUBO matrix. Compared
with forming the QUBO matrix in the process of problem transformation, transformation is easier, and
the ground state representation of Hamiltonian is the best solution to the problem. In addition, this
study proposes to construct SVM with kernel function in QUBO framework to process nonlinear
separable large-scale data on adiabatic quantum computers. Finally, the research method in this paper
is applied to the medical field to identify autistic children. In general, medical images and other data in
the medical field usually have a high dimension, while the traditional SVM algorithm uses violent
exhaustion to solve the problem in theory, but it may not be realized due to high computational cost.
This research provides a method for the application of quantum computers to machine learning, so this
topic has research value.

QUBO model is a quadratic programming problem used to describe optimization problems, and the
goal is to minimize a quadratic objective function”. Adiabatic quantum computers can efficiently
solve the QUBO problem!'”. Therefore, converting SVM into QUBO form and solving it with
adiabatic quantum computers can greatly improve the efficiency and performance of the algorithm.
Compared with binary bits in traditional computers, qubits can be in multiple states at the same time,
so using adiabatic quantum computing to train SVM models greatly improves computational
efficiency and speed.

2. Related word

2.1. Support vector machine
The ultimate goal of support vector machines is to find the hyperplane with the maximum distance
from both types of data points, so as to maximize the distance between the two types of data points.
Suppose the training data X consists of n sample points, as follows:

X = {(x, y1), (x2,¥2), -, Gy )} (1)
where x; € R? is the ith row vector in X and y; € {—1,1} is the class label to which x; belongs. The
SVM mathematical model is as follows!'"):

min% | (w| |2 +cXt &

s.t. yi[wTo(x)+b] >1-5%, §>0,Vi=12,..,n ()
where w is the weight vector, b is the bias, &; represents a relaxed variable, ¢ Yie €; denotes a regular
term, c is the regularization parameter, and ¢ () signifies a nonlinear mapping from the input space to
high-dimensional feature space. The Lagrangian optimization method is used to transform the

nonlinear SVM problem into a dual problem, and the Lagrangian function of convex quadratic
programming is defined as follows:

8(w,b,4,¢,B) = %||W||2 +eX G+ X AL -8 —yiwTe(x) —yb]l =X, Bi& (3)
where 1 =[A1,45,...,4,]" and B = [By,S, ..., Bn]" are the vector containing all the Lagrange
multipliers, with 4; =0, §; =0. According to the Karush-Kuhn-Tucker condition for inequality-
constrained optimization problems, the gradient of 6(w, b, 4, &, B) with respect to w, b, is set to 0.
Then, the dual problem is obtained as follows:

max0(A) = Xz 4 —% L1 X1 2yl (e « o(x;)]
s.t. 04, <C
2?21/11':)11' =0 5 Vi = 1,2, e, n (4)
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where C represents a constant. The role of the mapping function ¢(e)in the algorithm is entirely
implemented through the inner product [¢(x;) o (p(xj)] , from which a kernel function can be
introduced as follows:

K(xi,%7) = [9(x) » 0 (x;)] ()
where e is the inner product operation of ¢ (x;) and (p(x]-). Bring Eq. (18) into Eq. (17) as follows:
1
max8(2) = X1 A; — 5 Xty By AidiyiyiK (e, %)) (6)

Common kernel functions are linear, polynomial, Gaussian radial basis kernel functions, as
follows:
K(xl-,xj) = xiij
K(xl-,xj) = (xl-ij + 1)m
l12c =112
K(xi,xj) =e & (7)
The parameters m and g are selected, and appropriate constants are chosen based on the specific
problem at hand.

2.2. The QUBO model
The The QUBO model is a combinatorial optimization model utilized for solving quadratic function
and binary variable optimization problems. It comprises a linear part and a quadratic part, as
follows!'?):
Houpo (%) = Yien aix; + X jen bijxix; = xTQx, x; € {0,1} 3

The constants a; and b;; are arbitrary, and n represents the number of decision variables. The
matrix Q is of type n*n and contains all the data necessary for solving the problem. The matrix Q is
defined as follows: Q;; equals to a; when i equals to j, and Q;; equals to b;; when i is less than j. All
other elements of Q are 0, and b;; equals to bj;. Additionally, xT represents the transpose of the vector
X.

3. Transformation of the SVM model

By transforming the QUBO model, the SVM training model is converted into a binary unconstrained
quadratic function. The corresponding coefficients between binary variables are then calculated, and
the Q matrix conforming to the QUBO form is constructed. This transformation effectively turns the
SVM training model into an optimization problem for quadratic unconstrained binary approximate
solution, which aligns well with D-wave adiabatic quantum computing capabilities.

3.1. QUBO form of SVM model
The QUBO model is typically utilized for solving minimum problems. To transform the dual problem
into solving the minimum problem, rewrite equation (6) to make it applicable to the QUBO model:
min6(A) = > ¥, T AdyiyiK(xi,x) — By Ay
Vi=12,..,n, 4,420 9
The QUBO model can only handle the 0,1 binary decision variable, while A is any constant greater
than zero, hence the introduction of the S-dimensional precision vector p = [p;,pa, ..., ps]" is defined.
Each element in p is an integer power of 2 and is positive. Additionally, S binary decision variables
A;s are introduced for each Lagrange multiplier. These variables indicate whether the ith Lagrange
multiplier chooses the sth element in p. If the ith Lagrange multiplier chooses the sth element in p,
then A;5 equals 1; otherwise, it equals 0. This representation allows for expressing the Lagrange
multiplier A; using both the vector p and the binary decision variables ;¢ as follows:

A= Z§:1 PsAis (10)
The symbol p denotes the sth element in the precision vector p.
/1i/1j = 251:1 252:1 psllislpszljsz (11)



ICAITA-2024 10P Publishing
Journal of Physics: Conference Series 2858 (2024) 012002 doi:10.1088/1742-6596/2858/1/012002

A;s 1s a primary variable, and the QUBO model is utilized for quadratic variables. However, as x; is
a binary variable with values of 0 or 1, s0 A;; = Alsz, then can be expressed as follows:
A= s 1 psALSZ (12)
Each data in the X training dataset is a D-dimensional vector, where d represents the number of
features in the training dataset. By converting the form of the inner product between the sample data
into the form of variable coefficients and incorporating Equations (12) and (13) into Equations (9), the
SVM training model can be transformed into an energy expression known as the Hamiltonian operator
through the QUBO model transformation. When the SVM model introduces linear kernel function,
polynomial kernel function, and Gaussian radial basis kernel function, the energy expression of the
Hamiltonian operator is as follows:
minf(1) =
=12 128 1=1 Z§2:1(Psl/1isl)(Psz Ajs,) Yiilla+11Y [j][d+1] (Zdl 1 X[, 1 X j1[d,]) — (13)
1 Zs=1 Ps/llsz
mine(/l) =
o1 21 25,1 252:1(2951/11'51)(2952 ]sz)y ia1Yias (S -1 X Xag + 1) — (14)
=1 Zs 1 psllsz

Sy =1 il ¥ 011, D

. 1
miné (1) = EZ?:l Z?:l Zglzl Zgzzl(psllisl)(psz ]sz) Yiilld+11Y[j][d+1]€ o* -
125 1psllsz

The Hamiltonian energy expression serves as a bridge between classical computation and adiabatic
quantum computation, with the optimal solution achievable through the quantum annealing algorithm
on the D-Wave platform.

Note: By defining the precision vector p, the constant Lagrange multiplier A is represented by
coefficients and binary variables, which reduces the complexity of conversion. The inner product
operation of(p(xl-),(p(xj)is transformed into the coefficient form of variables 231:1 X[i][d,1X[1[d,]» and
then it is deformed according to the selected kernel function. The relationship between the
characteristic variables is calculated, and the Q matrix in the QUBO model is generated.

(15)

3.2. SVM training model hyperplane solution and prediction
The linear divisibility of data is achieved in a high-dimensional space, and an optimal decision
boundary is obtained by constructing a separation hyperplane. The hyperplane is as follows:
wlp(x) +b=0 (16)
The value of the weight w of the SVM model is obtained from Equation (14), but the high-
dimensional mapping dimension of ¢(x) can be infinite, therefore, wT¢g(x) is directly obtained
according to the hyperplane and then the value of b is obtained as follows:
wlo(x) = Xy 4yie()e(x) = Xiq 4;yK(x;, x) (17)
b= 21_1[YL Z]_ln ¥ iK(Cxq,x5)] (18)

In order to be more robust, b is the average value.
The binary decision variable 4;; value has been computed by the quantum computer on the D-wave
platform, resulting in the following SVM model hyperplane:

Z?:l Z§:1 pslis }’iK(xi'x) + n
The SVM training model predicts a sample. When entering the prediction sample x,, the category
label y, is as follows:

?:1[Yi_2}l:123g=1 pSA]'Sy]'K(xinj)] -0 (19)

Yialyi-Xjoq Y=1PsAjsy K (xix))]
n

Ve = sign(Xiey Xao1 Pshis yiK(xi, x) + ) (20)
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By transforming the QUBO model, the SVM training model is converted into a binary
classification machine training model suitable for quantum computer training. This allows for
obtaining the classification hyperplane and predicting unknown label data, thereby enhancing the
efficiency of training multidimensional binary classification data in machine learning.

4. Experimental analysis

4.1. Data description
The R-fMRI data utilized in this study were obtained from the Open Access Autism Brain Imaging
Data Exchange (ABIDE) database!'’]. Detailed demographic information analysis of R-fMRI data!*! is
presented in Table 1.

Table 1. Demographic information of the participants.

ASD TD p-value

Gender (M/F) 38/7 36/11 0.3428
Age(years) 11.1£2.3 11.042.3 0.7773
FIQ 106.8+17.4 113.3£14.1 0.0510

According to Table 1, as the value of P is greater than 0.05, there are no statistically significant
differences in age, gender, and IQ between the two groups. According to the Automatic Anatomical
Labeling (AAL) atlas!"), the brain space was divided into 116 regions of interest (ROI). After pre-
processing, we obtained the average value of functional magnetic resonance imaging (fMRI) for 116
ROlIs, i.e., the data of [170,116] per image. The cumulative contribution rate of the first 12 principal
components of the image data reaches about 0.8, which contains the vast majority of the information,
and the first 12 principal components of a single image are visualized, as shown in Figures 1 and 2:
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Figure 1. Visualization of the ASD dataset. Figure 2. Visualization of the TD dataset.

4.2. Model performance evaluation

Data from 46 images were randomly selected as the training set X and 10 as the test set (with a
training-to-test ratio of 8:2). In the preparation of experimental data, samples from individuals with
autism spectrum disorder were designated as Positive samples, and samples from individuals with

normal development were designated as Negative samples. The model performance was evaluated
Trp+TTN
Trp+TTn+Trp+TEN

using the evaluation index Agccyracy = for detection accuracy.

4.3. Analysis of experimental results

The autoencoder method is used to further select the features of the R-fMRI data, and the irrelevant
features and the features with low correlation are removed without reducing the classification
accuracy, and the parameter S is selected as 10. Take the linear kernel function as an example, and
create the corresponding model through the Python open-source library PyQUBO. The model
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compiled by PyQUBO can serve as input for D-Wave sampler. The annealing method is then utilized
to train the optimal solution for binary A;, as follows:
Aoo =1, 251 =0,202 = 0,403 = 0,404 = 1,495 = 1,406 = 1,497 = 0,295 = 0, 1p9g = 1 ...
The value of A_i can be obtained from formula (26) as follows:
Ao = 625,14, = 687,14, = 760,13 = 467,41, = 690,15 = 986,15 = 282,14, =514 ...
Due to the substantial volume of variable data, we will not display each individual piece here. The
hyperplane of the SVM is obtained, and the prediction is made by the test set data, Agccyracy = 0.8,

the classification performance is better. This method solves the shortcomings of traditional SVM
brute-force solutions in the face of high-dimensional data. The model presented in this paper only
shows that SVM can be run on a quantum computer, so as to solve the problem that traditional SVM
models cannot be run directly on a quantum computer, and the experiment is only to illustrate this.

5. Conclusion

In order to improve the performance of SVM in processing high-dimensional complex data, this study
employs the QUBO model to enhance the traditional SVM model and adapt it for quantum computer
operation. The QUBO model acts as a bridge between traditional algorithms and quantum algorithms.
This model is utilized in predicting autism in children, incorporating kernel functions into the training
process and reducing space complexity. The optimal solution is attained through quantum annealing
methods, integrating medical field issues into quantum computing.
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