b — s¢*¢~ in the high ¢? region at two-loops
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We report on the first analytic NNLL calculation for the matrix elements of the operators
O; and O, for the inlusive process b — X I*1~ in the kinematical region ¢® > 4m?, where
¢? is the invariant mass squared of the lepton-pair.

1 Introduction

In the Standard Model, the flavor-changing neutral current process b — X I71~ only occurs at
the one-loop level and is therefore sensitive to new physics. In the kinematical region where
the lepton invariant mass squared ¢ is far away from the cé-resonances, the dilepton invariant
mass spectrum and the forward-backward asymmetry can be precisely predicted using large
my expansion, where the leading term is given by the partonic matrix element of the effective

Hamiltonian

AGp o 10
Hepy = —T;’Vtsvtb 3" Ci(w0i(u). (1)
1=1

We neglect the CKM combination V%V, and the operator basis is defined as in [1]. In [2] we
published the first analytic NNLL calculation of the high ¢? region of the matrix elements of
the operators

O = (SpyuTcr) (€ Tr), Oz = (5pyucr)(ey™br), (2)

which dominate the NNLL amplitude numerically. Earlier these results were only available
analytically in the region of low ¢ [3, 4].

2 Calculations
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Figure 1: Diagrams that have to be taken into account at order as. The circle-crosses denote
the possible locations where the virtual photon is emitted (see text).

The diagrams contributing at order ay are shown in Figure 1. We set ms = 0 and define
5=q%/ mg and z = m?2/ m%, where ¢ is the momentum of the virtual photon. After reducing
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occurring tensor-like Feynman integrals [5] the remaining scalar integrals can be further reduced
to master integrals using integration by parts (IBP) identities [6]. Considering the region § > 4z,
we expanded the master integrals in z and kept the full analytic dependence in .

For power expanding Feynman integrals we use a combination of method of regions [7] and
differential equation techniques [8, 9]: Consider a set of Feynman integrals I, ..., I,, depending
on the expansion parameter z and related by a system of differential equations obtained by
differentiating I, with respect to z and applying IBP identities:

d
_Ia = ha 1 ay
o %: sls+9g (3)

where g, contains simpler integrals which pose no serious problems. Expanding both sides of
(3)ine¢, z and In 2

=Y eIt hap =D R ga=D glldd )t (@)
0,5,k i,J i,5,k

and inserting (4) into (3) we obtain algebraic equations for the coefficients I C(YJ ;k)

0= (j + DIV 4 (o 4 1)1 1D ZZZhQM 19795 — g0, (5)

This enables us to recursively calculate higher powers of z of I, once the leading powers are
known. In practice this means that we need the I, (0 %) and sometimes also the I, (1:0) 45 initial
condition to (5). These initial conditions can be computed using method of reglons A non
trivial check is provided by the fact that the leading terms containing logarithms of z can be
calculated by both method of regions and the recurrence relation (5).

The summation index j in (4) can take integer or half-integer values, depending on the
specific set of integrals I,. In order to determine the possible powers of z and In(z) we used
the algorithm described in [9].

3 Results

In order to get accurate results we keep terms up to z'°. Our results agree with the previous
numerical calculation [10] within less than 1% difference. The impact of our results on the
perturbative part of the high ¢?-spectrum [3]

1 dT(B — X,0+07)
I'(B— X.e ) ds

R(8) = (6)
is shown in Figure 2 (left), where we used the same parameters as in [2]. The finite bremsstrahlung
corrections calculated in [4] are neglected. From Figure 2 (left) we conclude that for p = m;
the contributions of our results lead to corrections of the order 10% — 15%. Integrating R(S)
over the high § region, we define

Rhpigh = /0 d3 R(3). (7)
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Figure 2: Perturbative part of R(8) (left) and Ryign (right) at NNLL. The solid lines represents
the NNLL result, whereas in the dotted lines the order a corrections to the matrix elements
associated with O 2 are switched off. In the left figure we use p = my,. See text for details.

Figure 2 (right) shows the dependence of the perturbative part of Rhign on the renormalization

scale. We obtain

Rhigh pert = (0.43 £ 0.01(p)) x 1072,

where we determined the error by varying p between 2 GeV and 10 GeV. The corrections due
to our results lead to a decrease of the scale dependence to 2%.
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