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Resumo 

Neste trabalho propomos alguns métodos com o objetivo de detectar observacionalmente 

topologias não-triviais de modelos cosmológicos euclidianos e hiperbólicos. Em universos 

compactos e euclidianos procuramos sinais da topologia no comportamento de raios de luz 

polarizada e na distribuição de direções dos eixos de galáxias espirais. Além disso, aplicamos 

também o método de cristalografia cósmica para mostrar que as dimensões da seção espacial 

euclidiana não necessitam ser muito pequenas para obtermos sinais da topologia. Esse método 

e uma variação do mesmo foram aplicados a universos compactos e hiperbólicos. 

Palavras Chaves: Cosmologia, Topologia Cósmica, Cristalografia Cósmica 

Áreas do Conhecimento: 1.05.03.00.5 



Abstract 

In this Work we propose some methods to observe nontrivial topology in Euclidean and hy- 

perbolic universe models. We look for a nontrivial topological signature in compact Euclidean 

Universes by analyzing polarized light rays and direction distributions of the spiral galaxies’ 

axes. We also apply the cosmic crystallographic method to show that the size of the Euclidean 

spatial section need not be very small to obtain a topological signature. This method and a 

modified version of it is applied to compact hyperbolic universes. 

Key Words: Cosmology, Cosmic Topology, Cosmic Crystallography 
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Introdução 

Acredita-se atualmente que o universo possa ser descrito de forma geral pela solução ho- 

mogênea e isotrópica das equações de Einstein com seção espacial de curvatura constante. 

A métrica geral normalmente usada para descrever essa solução é a de Friedmann-Lemaítre- 

Robertson-Walker (FLRW), que inclui as três constantes de curvatura possíveis {k = —1,0, -1-1) 

para esta solução. Essas métricas são soluções de equações diferenciais parciais e portanto des- 

crevem somente propriedades locais do espaço-tempo. Assim, elas não fixam sua estrutura 

global (ou sua topologia). 

Em geral a topologia da parte espacial das métricas de FLRW são triviais ou simplesmente 

conexas. Para k = +1, a topologia do espaço normalmente é uma hiperesfera finita S'^; com 

k = 0, temos o espaço euclidiano infinito e para k = —1, o espaço hiperbólico infinito H^. 

No entanto, podemos escolher topologias não-triviais ou multiplamente conexas para essas 

métricas. Tais topologias são variedades tridimensionais, orientáveis e compactas. De forma 

geral podemos representá-las por variedades quocientes M = M/T onde M é um dos espaços 

S^R3 e R3 e r é um grupo discreto de isometrias de ação livre e propriamente descontínua 

em M [1]. Na prática, M é descrita por um poliedro fundamental (PF) em M com faces 

identificadas aos pares. 

A existência de topologias não-triviais no universo implica em imagens repetidas de uma 

mesma fonte. Isso acontece porque elas são vistas através de raios de luz percorrendo geodésicas 
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2 1 Introdução 

nulas no espaço-tempo. Em espaços multiplamente conexos teremos várias geodésicas nulas 

ligando fonte e observador. Alguns desses raios serão observados somente após dar várias 

voltas no universo e assim, a imagem recebida será a da fonte no passado, quando a luz foi 

emitida. 

Dessa forma, a observação de imagens múltiplas dar-nos-ia um bom indicativo de uma 

topologia não-trivial. No entanto, uma das dificuldades dessa abordagem é exatamente o fato 

de que veremos imagens de fontes em diferentes épocas de sua evolução, dificultando sua 

identificação. Além disso, outros efeitos podem dificultar a visualização de uma imagem como, 

por exemplo, outro objeto ou poeira cósmica na linha de seu sinal. 

Qualquer método que pretenda estudar universos multiplamente conexos deve levar esses 

fatos em consideração. Recentemente, modelos cosmológicos com seção espacial multipla- 

mente conexa têm recebido considerável atenção. Alguns métodos vem sendo propostos com o 

objetivo de observar tais topologias. Eles se baseiam principalmente na observação de imagens 

múltiplas na distribuição de imagens no universo [2,24, 9] e nas flutuações da radiação cósmica 

de fundo [21, 23], 

Esta tese está organizada da seguinte forma: 

No Capítulo 2, há uma pequena revisão de cosmologia, topologia e métodos de detecção de 

topologias não-triviais. Essa revisão não tem por objetivo ser completa, mas sim dar uma noção 

do estritamente necessário para o entendimento dos capítulos seguintes. 

No Capítulo 3, há a descrição do primeiro método que desenvolvemos para a observação 

de universos multiplamente conexos. Ele utiliza o fato de que a luz emitida por uma fonte em 

universos desse tipo fica confinada ao PF, podendo sair e reentrar no mesmo de acordo com 

o grupo de isometrias presente. Nesse processo a polarização do raio de luz emitido varia. 

Desenvolvemos nesta tese um modelo simplificado desse estudo para o caso euclidiano, que 

infelizmente não possibilitou a obtenção de resultados. Então, procuramos observar o com- 

portamento da distribuição de direções dos eixos de galáxias espirais (direção perpendicular ao 
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disco galáctico). Isso porque as transformações do grupo de isometria de uma topologia afetaria 

a direção real de uma galáxia com relação a sua imagem. Esse método apresenta uma vantagem 

com relação aos outros por não sofrer muita influência da dimensão do PF. 

No Capítulo 4, estudamos algumas variações e aplicações do método de cristalografia cós- 

mica (desenvolvido por R. Lehoucq, M. Lachièze-Rey e J.-P. Luminet [2]). Esse estudo já deu 

origem a três artigos publicados: i) No primeiro [6], aplicamos o método de cristalografia no 

espaço euclidiano para mostrar que podemos obter sinais da topologia não-trivial mesmo para 

um PF de dimensão da ordem de 1.2Ru, onde Rh é o raio do universo observável. Esse valor 

para a dimensão do PF foi obtido por Oliveira-Costa e Smoot [26], usando dados da radiação 

cósmica de fundo, ii) No segundo [7], aplicamos o método de cristalografia às topologias 

não-triviais em espaços hiperbólicos. O PF usado nesse caso foi um icosaedro regular listado 

como v2293(-i-3,2) no programa SnapPea', [30]. Ui) No terceiro [8], aplicamos uma variação 

do método de cristalografia, agora para dois icosaedros regulares listados como v2293(+3,2) e 

v2051 (-1-3,2) em [30]. Neste trabalho, usamos os geradores do grupo F para, dadas as imagens 

de uma determinada distribuição, achar suas fontes no interior do PF. Se a distribuição for a de 

um universo multiplamente conexo, com PF igual ao que aplicamos nas imagens (ou mesmo 

o PF girado por pequenos ângulos), calculando a distância entre pares de todas as imagens, 

teremos uma indicação da topologia. 

'o programa SnapPea lista variedades tridimensionais hiperbólicas. 



2 

Cosmología e topologia 

2.1 Cosmologia 

Após a publicação da teoria da Relatividade Geral, em 1917 Einstein propôs um modelo de 

universo estático, homogêneo (distribuição de matéria uniforme em todo o espaço) e isotrópico 

(não há direções preferenciais no universo). No entanto, como a Relatividade Geral previa um 

universo em expansão, ele teve, de modo a obter seu modelo de universo estático, que introduzir 

um novo termo A, chamado de constante cosmológica, na equação do campo 

Gfiu + T^i^, (2.1) 

onde c = 3.00 x lO^^cm s~^ é a velocidade da luz e G = 6.67 x é a constante 

gravitacional. Esse termo altera a equação de forma a produzir soluções estáticas. A seção 

espacial desse espaço é esférica, isto é fechada e finita. Também em 1917, de Sitter propôs 

seu modelo de universo sem matéria, com constante cosmológica e seção espacial plana. No 

entanto, ao contrário do universo de Einstein, o universo de de Sitter apresenta expansão con- 

stante. 

Em 1922, Alexander Friedmann publicou “On the curvature of space” e em 1924 publicou 

“On the possibility of a world with constant negative curvature” [44]. Nesses artigos ele apre- 

sentou seu modelo de universo com A = 0 e expansão uniforme. Há três tipos básicos de uni- 

versos de Friedmann, correspondendo aos valores 0, —1, -fl, para a constante de curvatura. Em 
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1927, Lemaítre redescobre as equações originalmente formuladas por Friedmann [44], Hubble, 

em 1929, observou a relação entre distâncias e velocidades de galáxias, estabelecendo a lei de 

expansão do universo. 

A solução homogênea e isotrópica das equações de Einstein, com seção espacial de cur- 

vatura constante, k — —l,0,-l-l,éa forma geralmente usada na descrição do universo. Aqui 

trabalharemos com a hipótese de A = 0. O modelo que descreve essa solução é chamado mo- 

delo de Friedmann-Lemaítre. A forma geral da métrica é chamada de modelo cosmológico de 

Robertson-Walker e é dada por [43] 

^ da'^ = dx^ + {d9‘^ -f sin^ ôdcjP''^ ,se k = 0, 

da'^ = dx^ + siií^ X {d9^ + 9d(f)^^ , se k =+1. 

Essas métricas são obtidas a partir do elemento de linha 

ds^ = g^i,dx^dx'^, 

onde — 0,..., 3. ív = 0 corresponde à parte temporal dessa métrica e = 1,2,3 à 

parte espacial. Assim 

ds^ = c^dt^ — (t) da^, (2.2) 

onde 

k = —1, 

ds^ = dt^ — dl^, 

e 

dl^ = gabdx°'dx^, 

com a,b — 1, 2,3, onde gab descreve a geometria do espaço tridimensional em um dado instante 

de tempo. O espaço, no caso do universo, é suposto homogêneo e isotrópico. Dessa forma, a 

geometria que o representa não deve distinguir entre direções em um ponto. 
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As conseqüências da exigência de homogeneidade e isotropia para a seção espacial do uni- 

verso são notadas no tensor de curvatura tridimensional Rabcd que determina completamente a 

curvaura do espaço. Como consequência da simetria do espaço, o tensor de curvatura tridimen- 

sional fica 

R-abcd R {^ac9bd 9ad9bc) i 

onde K é uma constante. O tensor de Ricci e o escalar de curvatura são respectivamente 

Rab = '^Kçab Q R = 6/v [20]. Assim, a curvatura do espaço depende unicamente de uma 

constante. Essa constante poderá ser menor, maior ou igual a zero. Isso determina os três 

tipos de métrica espacial: curvatura positiva K > 0; sem curvatura 7v' = 0; curvatura negativa 

K < 0. Definimos também k = 0 para K = Oe k = K/ \K\ para K 7^ 0. 

A geometria da parte espacial de nossas métricas são bem definidas de acordo com a simetria 

do espaço. Devemos nos preocupar agora, também com a parte temporal. Escrevemos as 

métricas, equação (2.2), em coordenadas x? 4>, que descrevem a expansão do universo da 

melhor maneira. Essas coordenadas são consideradas comoveis com as galáxias, ou seja, elas 

se movem juntamente com a matéria em movimento no universo. Isso porque a isotropia e 

homogeneidade da expansão necessitam que se dl (t) é a distância entre duas galáxias em um 

tempo t, então essa distância em um tempo t + At deve ser proporcional à distância inicial 

dl (t + At) = f (t) dl (t). (2.3) 

O fator / (í) depende do tempo, mas não da posição no espaço. Dessa forma quando a distância 

entre um par de galáxias cresce por um fator f (t), a distância entre quaisquer outros pares 

deverão crescer pelo mesmo fator [41]. 

Observando as métricas, equação (2.2), vemos que elas satisfazem a condição da equação 

(2.3) sendo que o fator de escala será a{t). A dependência temporal de a é determinada solu- 

cionando as equações de Einstein. 

O lado esquerdo das equações de Einstein (2.1) é determinado pela geometria do espaço- 
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tempo. Já o lado direito é determinado pela matéria contida no espaço-tempo. O tensor de 

energia-momento do universo é quem faz esse papel. como é observado hoje, pode ser 

descrito por um gás de galáxias (partículas) com a pressão desprezível, 

onde péa densidade média de matéria. 

Há também no universo uma distribuição de radiação a uma temperatura associada de ~ 

2.7K. Essa radiação pode ser descrita pelo tensor de energia-momento de um fluido perfeito 

com pressão P = p/3. No entanto, a radiação é predominante no universo primitivo, mas no 

presente momento sua contribuição para pode ser desprezada. Por isso usaremos dado 

pela equação (2.4) ao solucionarmos as equações de Einstein [42]. 

Curvatura positiva, K > 0: Em coordenadas 0 escrevemos a métrica como na 

equação (2.2) [43, 41], 

Para facilitar a solução das equações de Einstein devemos fazer a seguinte transformação: 

(2.4) 

ds^ = c^dt^ — 0? (í) ^dx^ + sin^ x + sin^ . 

cdt = adrj. (2.5) 

Assim, obtemos a métrica 

(2.6) 

É necessário calcularmos os símbolos de Christoffel 

para essa métrica, assim como o tensor de Ricci 
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onde 

/?« 
dx^ 

í*7 I r<^ r« 
^ ps^ 0-r 

Substituímos os valores obtidos a partir da equação (2.6) no lado esquerdo das equações de 

Einstein com constante cosmológica A = 0; 

r,9u^ A -‘u’ 

onde R — g°^R„p é o escalar de curvatura. Considerando que = pu^u'' deve estar em 

coordenadas comoveis, (já que a métrica, equação (2.6), está nessas coordenadas) as galáxias 

devem estar em repouso umas em relação às outras. Dessa forma, a única componente não nula 

de é Tq = p. Já o volume do universo varia no tempo com a^. Assim a densidade de matéria 

é dada por 

p{t) = 
M 

27r^a^ ’ 

onde M é a soma de todas as massas próprias das partículas no universo. As equações de 

Einstein se reduzem a 

3/2 -2^ SnG 

onde à= da/dr]. A solução dessa equação diferencial (2.7) é 

(2.7) 

a = oo (1 — COS p), 

onde a constante oq = 2GM e a relação entre tc pé dada por 

t = — (p — sin p). 
c 

A curvatura do espaço é K {t) = 1/a^ (t). As soluções para a e t acima determinam a forma 

paramétrica da função a {t). Essa função cresce de zero para t = 0 {p = 0) até um valor máximo 

a = 2oo para t = ttoo/c {p = tt) e decresce até zero para t = 27rao/c {p = 27t). Isso representa 

o universo expandindo-se até a = 2ao e contraindo-se a um ponto novamente. 
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Curvatura negativa, K < 0: A métrica para o espaço com curvatura negativa já com a 

troca de variáveis de t para // usando a expressão (2.5). fica 

ds^ = (?/) fÍ7/^ — d\^ — sinh*^ \ (^dO^ + sin'^ Odcf)^^ . 

Procedendo da mesma forma que anteriormente obtemos a equação diferencial 

3 / . 2 2\ SttG 
(2.8) 

onde à= da/drj e p = M/2n'^a^. Aqui, no entanto, o volume é infinito. M não pode ser 

interpretado como a massa total, mas como a soma das massas de repouso contidas no volume 

a solução da equação diferencial (2.8) é 

o = oo (cosh p — 1), 

com t — ao (sinh p — p). A curvatura do espaço é K {t) = — 1/a^ (í). O universo começa com 

um “Big Bang” e expande-se para sempre. 

Sem curvatura, K = 0: Procedemos para o universo com geometria plana da mesma forma 

que anteriormente. A métrica obtida é 

ds^ = o? (p) [^dp^ — ~ + sin^ . 

A equação diferencial obtida a partir das equações de Einstein é 

3 .2 87tG 

& 

onde p — M/2'K'^a^ e d= ada/cdt. Então, 

que tem solução 

a(f) 

'^y _ AGM 

^ dt) 3na 
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Devemos analisar agora como se dá a expansão do universo vista de um observador que se 

encontra sobre um dos corpos em movimento no universo. O observador vê como se os outros 

corpos se movessem distanciando-se radialmente dele. A velocidade desse distanciamento é 

proporcional à distância entre os corpos. Isso deve estar de acordo com o deslocamento para o 

vermelho (redshift) das linhas dos espectros das galáxias. 

Examinemos a propagação de raios de luz no espaço isotrópico ao longo da linha de pro- 

pagação do raio luminoso ds — 0 [40]. A origem das coordenadas e 0, está na fonte do 

raio de luz, por exemplo uma galáxia Gi. Como o raio propaga-se radialmente (9 = const e 

0 = const), temos que {drf- — dy^) = 0, o que implica em dy = ±d?/, da qual tomamos a 

solução negativa. Mas sabemos que dr; = cdt/a (í); então 

= -dx- (2.9) 
a{t) 

Consideremos um raio de luz emitido por G\ em x = Xi ^ ^ sendo recebido em um 

observador, nossa galáxia, em x = 0 e í =: íq- Integramos a equação (2.9) para esses valores 

dt fto dt r , fxi 

/ = / dy. Jt\ o, (í) Jx\ -to 
(2.10) 

Entretanto, se Gi continuar emitindo, por exemplo no intervalo t^ ati + Ati e for recebido por 

nós no intervalo to ato + Ato, a integral acima fica 

i 

to+Ato dt rxi 

a (t) Jo 
(2.11) 

^íi+Aíi G (í) 

Como a (í) varia lentamente, permanece praticamente invariável para pequenos intervalos como 

Ato e Aíi. Subtraindo a equação (2.10) da equação (2.11) obteremos que 

^ (2.12) 
cAti a{ti) 

Mas cAti é o comprimento de onda X\ medido por um observador sobre Gi e cAíq o compri- 

mento de onda Aq medido por nossa galáxia. Usando que 

Aq — Al 

Al ’ 
2 = 
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é o deslocamento para o vermelho, escrevemos a equação (2.12) na forma 

cAíü n {to) 

cAti a{ti) 

A velocidade de afastamento de Gi é 

V 

HR, 

essa é a chamada lei de Hubble, onde definimos Ho =como a constante de Hubble 

nos dias atuais e R = a {to) x é a distância atual da galagia Gi até nós. No entanto, para a luz 

emitida por galáxias próximas temos R ^ c {to — fi),[42]. Neste caso escrevemos 

Essa relação entre distância e desvio para o vermelho foi descoberta por Hubble . O desvio 

para o vermelho em galáxias distantes será obtido a partir dessa lei, dependendo exatamente de 

como a {t) varia com t. 

Além das referências já citadas nessa seção, uma revisão mais profunda desse assunto pode 

ser encontrada em [45, 46] 

a {to) « a{ti) + {to - ti) —, 

e portanto 

2.2 Topologia 

As equações de Einstein, descritas acima, são equações diferenciais parciais e suas soluções 

descrevem somente propriedades locais do espaço-tempo. Assim, elas não fixam a estrutura 
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global (ou a topologia) do espaço-tempo. Para um dado elemento métrico local podemos asso- 

ciar geralmente, um número de modelos topologicamente diferentes. 

Em geral a topologia da parte espacial das métricas na expressão (2.2) é considerada trivial 

ou simplesmente conexa. Para k = -fl, a topologia do espaço é a hiperesfera finita S^; com 

fc = 0, temos o espaço euclidiano infinito e para A: = — 1, o espaço hiperbólico infinito H'^. 

No entanto, podemos escolher topologias não-triviais ou multiplamente conexas para as 

métricas na expressão (2.2). Tais topologias são variedades tridimensionais, orientáveis e com- 

pactas. De forma geral podemos representá-las por variedades quocientes M = M/Y, onde M 

é um dos espaços de recobrimento universal citados acima (S^, R^, H^) e F é um grupo dis- 

creto de isometrias (ou movimentos rígidos) de ação livre e propriamente descontinua em M, 

[12, 1]. A classificação topológica das variedades fechadas é completa somente para os casos 

esférico em qualquer dimensão. Para o caso euclidiano a classificação é completa em duas e 

três dimensões. Já no caso hiperbólico é completa em duas, mas não em três dimensões. 

Na prática M é descrita por um poliedro fundamental (PF) em M. O PF é definido de 

acordo com a ação de F em M de tal forma que, dado um ponto x em M os pontos do PF são 

tais que 

{y e M,d{y,x) < d{y,g{x)) G F} , (2.13) 

onde d {y, x) é a distância entre os pontos x e y. Um exemplo bastante ilustrativo é o caso do 

toro = R^/F, Fig.2.1. O PF é um retângulo de lados associados onde 

T2 gi{x,y) = (x -f Li,y) 

92{x,y) = {x,y + La) 

sendo gi,g^ os geradores do grupo discreto F de isometria e Lj^La os comprimentos dos lados 

do retângulo. 

Nesta tese trabalharemos somente com variedades euclidianas e hiperbólicas, tridimensio- 

nais, compactas e orientáveis. 
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Figura 2.1: Espaço de recobrimento universal do Toro. Baseado em figura de [1]. 

Variedades Euclidianas: Das variedades euclidianas, usaremos aqui somente as seis com- 

pactas e orientáveis. Para quatro delas o PF pode ser um paralelepípedo com ponto base 

no centro do PF que tomamos como origem do sistema de coordenadas. De acordo com a 

nomenclatura de [1] chamaremos estas variedades de E\ — EA, com as seguintes identificações 

seguidas pelos respectivos geradores de F; 

ABC D <—^ A'B'C'D' (x, y, z) = {x + Ly,y, z) 

El) ABB'A' ^ DCCD' g3{x,y,z) = {x,y,z + L^) (2.14) 

ADD'A' <—> BCCB' g2 {x, y, z) = {x,y + L2, z) 

ABC D <—C'D'A'B' gi {x, y, z) = {x + Li, —y, —z) 

E2) ABB'A' ^ DCCD' g^{x,y,z) ^ {x,y,z + L^) (2.15) 

ADD'A' i—> BCCB' g2 {x, y, z) = {x,y + L2, z) 

ABC D <—^ B'C'D'A' g^ (x, y, z) = {x + Li, z, -y) 

E3) ABB'A'<—>DCC'D' g^ {x,y, z) = {x,y, z + L3) (2.16) 

ADD'A' <—> BCCB' g2 [x, y, z) = {x,y + L2, z) 
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B C 

C‘ 

Figura 2.2: Paralelepípedo de faces associadas representando os PF's E1-E4 em variedades euclideanas. Extraído 

de[l]. 

ABC D <—^ C'D'A'B' (x, y, z) = {x + -y, -z) 

E4) ABB'A'<—>D'A'AD g3{x, y, z) = {—x, z + Ls,y) , (2.17) 

BCCB' <—^ C'D'DC t/2 {x, y, z) = (-x, 2, y + L2) 

onde Li,L2 e L3 são o comprimento das arestas do paralelepípedo.Note que os movimentos 

são indicados com uma seta de dupla direção, pois além dos geradores que mostramos temos 

seus inversos, eles são tais que g^^gk {x, y, z) = (x, y, z). Como os geradores de E4 em [1] não 

estão corretos, usamos EA obtido por Gomero em [12]. Nas outras duas variedades o PF pode 

ser representado por um prisma hexagonal (Fig.2.3), com ponto base no centro coincidindo 

com a origem das coordenadas. Chamaremos essas variedades de Eb e E6 com as seguintes 

identificações e movimentos de F: 

ABCDEE i—^ C'D'E'F'A'B' yj (x, y, 2) = (x + L, 

Eh) AA'E'F ^ CC'D'D g2{x,y,z) = [x,y ~ ^,z + ^) , (2-18) 

EE'D'D m AA'B'B gs (x, y, 2) = (x, y + f, 2 + 
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ABC DE F M D'C’D'E'F'A' {x, y, z) = (x + L, 

E6) AA'F'Fi—>CC'D'D g2{x,y, z) = [x,y - z + ^) , (2.19) 

EE'D’D M AA’B’B g^ (.x, y, 2) = (x, y + |, s + 

onde L é o tamanho das arestas verticais e também o raio da circunferência inscrita à base 

hexagonal do poliedro. Lembremos que as setas de dupla direção indicam que além dos gera- 

dores mostrados temos seus inverso. 

B C 

Figura 2.3; Prisma hexagonal de faces associadas representando os PF’s E5 e E6 para variedades euclidianas. 

Extraído de [1]. 

Variedades Hiperbólicas: Essas variedades são obtidas identificando pares de faces do PF 

em H^. pode ser visualizado como uma hipersuperfície imersa no espaço de Minkowski 

quadridimensional {vide Apêndice B). 

Aqui usaremos duas das variedades de Best [35], as quais têm um icosaedro regular como 

PF, vide Fig.2.4. Estas duas variedades são listadas no programa SnapPea [30] como v2293(+3,2) 

e v2091(+3,2). Algumas de suas propriedades são apresentadas x\o Apêndice B. 
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Figura 2.4: Icosaedro de faces associadas representando um PF em variedades hiperbólicas. Extraído de [ 1, 9]. 

2.3 Detectabilidade da topologia do universo 

Considerando: 

• que as equações de Einstein, cujas soluções hoje melhor descrevem a estrutura do espaço- 

tempo, não fixam sua estrutura global (ou sua topologia); 

• que para cada solução das descritas na expressão (2.2) podemos associar diferentes topolo- 

gias além da trivial; 

• e que topologias não-triviais devem deixar sua marca na distribuição de corpos celestes 

(galáxias, quasares,...) e nas flutuações de densidade da radiação cósmica de fundo do 

universo; 

é natural que nos ocupemos em verificar a possibilidade da topologia do universo ser não-trivial, 

criando meios para que, com os avanços nas observações do universo, possamos detectar a 

existência ou não de tais topologias. 

Além disso, se pudéssemos identificar a topologia do universo, teríamos condições diretas 

de dizer qual é o sinal da curvatura espacial. Isso pois as topologias de espaços compactos são 
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diferentes entre si para k = — 1, ü, +1. 

A topologia global do universo pode ser testada, basicamente estudando a distribuição tridi- 

mensional de fontes discretas e flutuações bidimensionais na radiação cósmica de fundo. A 

existência de uma topologia não-trivial provocará imagens repetidas de uma mesma fonte ou 

flutuação de densidade. 

Uma das maiores dificuldades deste tipo de abordagem, mais precisamente no caso tridi- 

mensional, é o fato que veremos imagens de uma mesma fonte em diferentes épocas de sua 

evolução, dificultando sua identificação. As fontes são vistas através de raios de luz percor- 

rendo geodésicas nulas no espaço-tempo. Em espaços mutiplamente conexos teremos várias 

geodésicas nulas ligando fonte e observador. Algumas delas serão observadas somente após 

darem várias voltas no universo. Essas imagens da fonte serão vistas após percorrerem um 

longo caminho. Assim, a imagem recebida será a da fonte no passado, quando a luz foi emitida. 

Os métodos utilizados nesses casos devem levar isso em conta. 

Além disso muitos efeitos podem dificultar a visualização de imagens, como por exemplo, 

outro objeto ou poeira cósmica na linha de seu sinal. Algumas inomogeneidades na densi- 

dade de matéria no universo também podem amplificar e/ou distorcer imagens de alguma fonte, 

tomando-as de difícil identificação. De forma geral o objeto usado como fonte seria ideal [5] 

se: (i) não evoluísse (ou evoluísse pouco) com o decorrer do tempo; (ii) não tivesse velocidade 

local com relação ao fluxo de Hubble; (iii) emitisse isotropicamente; (iv) pudesse ser visto à 

longas distâncias. 

Os objetos mais comumente usados na procura de imagens múltiplas são galáxias (apesar 

de sua evolução), aglomerados e superaglomerados de galáxias, e também quasares. Um bom 

exemplo é a procura de imagens de nossa própria galáxia [11]. 

A detecção de flutuações angulares na radiação cósmica de fundo, já previstas por modelos 

de formação de galáxias, também podem sofrer influência da presença de um universo multi- 

plamente conexo. A flutuação de temperatura associada AT/T da radiação cósmica de fundo 
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é interpretada como efeito da inomogeneidade na época da recombinação. Essas flutuações 

são expressas em termos de harmônicos esféricos. Em universos com topologias não-triviais o 

espectro de potência (média sobre o quadrado dos coeficientes dos harmônicos esféricos para 

cada l) apresenta somente números de onda correspondendo a harmônicos do tamanho do PE 

considerado. O espectro de comprimento de onda neste caso é discreto, o que não acontece para 

universos simplesmente conexos [23, 36, 21]. 

Alguns dos métodos desenvolvidos para detectar topologias não-triviais, usando radiação 

cósmica de fundo, são baseados na procura de manchas quentes e frias na radiação [10]. Outro 

método desenvolvido em [22, 31] se baseia na procura de pares identificados de círculos no céu 

(eles são formados pela intersecção de duas regiões da superfície de último espalhamento em 

um universo multiplamente conexo). 

A referência [1] apresenta uma ampla revisão de topologia cósmica. 



3 

Polarização da Luz e Eixos Galácticos 

A idéia aqui é usar fontes de luz polarizadas como objeto de detecção de universos multipla- 

mente conexos. Nesses universos, a polarização poderia sofrer alterações quando um raio de 

luz alcança uma das faces do poliedro fundamental (PF). Os raios luminosos que deixam as 

fontes cósmicas chegam a nós, observadores na Terra, pelos vários caminhos permitidos pela 

topologia não-trivial. As trajetórias das ondas eletromagnéticas ficam confinadas ao poliedro, 

podendo sair e reentrar no mesmo, segundo as regras de identificação apresentadas no Capítulo 

2. Nesse processo a polarização dos raios pode variar. 

3.1 Polarização da luz 

Para estudarmos a trajetória de um raio de luz polarizada em um universo com topologia não- 

trivial, devemos considerar a polarização da luz como um vetor no plano perpendicular à direção 

de propagação do raio de luz. A evolução desse vetor polarização pode variar de acordo com a 

topologia. 

Analisemos como um vetor se comporta na presença das topologias E\ — EA definidas no 

Capítulo 2, expressões (2.14) - (2.17). Consideremos o vetor campo elétrico E = {E^, Ey, E^), 

que tem sua direção e sentido dados pelo vetor unidade u = E/ |E| ={Ex/ \E\,Ey! |E EJ |E|) 

= (d, e, /). As componentes do vetor unidade u = (d, e, /) são os cossenos diretores da direção 

u e suas componentes em um sistema de coordenadas são formadas pela diferença de dois pon- 

19 
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tos. Nesse caso, se colocarmos nosso sistema de coordenadas na fonte do campo elétrico, o 

vetor unidade é formado pela diferença entre o ponto {d. c, f) e o ponto (0, 0, 0). Usaremos 

esse fato para estudar como a topologia afeta um vetor. 

Devemos primeiramente aplicar os geradores da variedade em questão aos pontos formadores 

das componentes do vetor. Após a aplicação dos geradores aos pontos, recalculamos a diferença, 

obtendo então as correspondentes componentes da imagem do vetor. 

Consideremos dois pontos pt\ = {x\,y\,Z\) q pt.2 = (x2, í/2) •22) formando o vetor v = 

(x2 — xi) i + (y2 — 2/i) j + (-22 — zi)\c = xi + y} + zk. Ao aplicarmos os geradores de El, por 

exemplo gi (expressão (2.14)), aos pontos desse vetor, temos: 

(Jiipti) = [xi + Li,yi,zi), 

9\{ph) = (2-2 + 1,1/2,-22) 

formando o vetor 

f/l (v) = (x2 + I/i - o;i - Li) i+(1/2 - yi)j + (^2 --2i)k 

= xi + yj + zk. 

Para os outros geradores de El, como no caso de yi, o vetor não se altera. 

Já no caso de E2, um de seus geradores altera o vetor. Considere os pontos pti e pÍ2 e a 

aplicação de yi, expressão (2.15), à esses pontos 

9i{pU) = (xi + Li,-yi,-2i), 

9i{Ph) = + L2,-y2,-Z2,). 

Assim, o vetor fica 

yi (v) = xi - yj - zk. 

A aplicação inversa de yi, yf\ age da mesma forma. Os outros geradores de E2 não alteram 

o vetor. Em E3, expressão (2.16),os únicos geradores que alteram o vetor são yi e yf\ pro- 
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duzindo 

fh (v) = .xi + zj- yk, 

(v) = xi-zi + yk. 

Já em EA, expressão (2.17),todos os geradores alteram o vetor. Aplicando gy aos pontos pí] 

e pÍ2, obtemos 

gi (v) = xi-y]- zk, 

a aplicação de pf ^ resulta no mesmo vetor pf ^ (v) = gi (v). A aplicação de p2 e gera 

(J2 (v) = g.2 ‘ (v) = -xi + zj + yk, 

e de p3 e p3 ^ nos dá 

9z (v) = P3 ‘ (v) = -xi + z] + yk. 

Podemos notar que as translações (como se espera) não alteram as componentes do vetor. 

Dessa forma, para fins de cálculo, usamos os geradores (omitindo as translações) para as com- 

ponentes das imagens do campo. Abaixo serão listados os geradores das quatro variedades 

acima para o vetor: 

' 
9\ (v) = (x,y,z) 

í/2 (v) = (x, y, z) , 

. í73(v) = (x,y,z) 
* 

9\ (v) = (x, -y, -z) 

E2{ p2 (v) = (x, y,z) 

P3 (v) =:= (x, y, z) 

yi (v) = {x,z,~y) 

p2 (v) = (x,y, z) , 

ÍÍ3 (v) = (x, y, z) 
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(j\ (v) = {x, -y, -z) 

EAl = {-x.z,y) ■ 

í/3(v) = (-X, 2,y) 

Já sabemos como se comporta um vetor, que associamos à polarização, em um universo com 

topologia não-trivial. Nosso problema é como observar essas variações na polarização, caso e 

quando elas ocorram. Quando observamos o céu não temos, em geral, noção das distâncias dos 

corpos até nós. O que observamos são as projeções dos corpos no céu, a chamada esfera celeste. 

Dessa forma, somente observamos a polarização da luz quando projetada na esfera celeste que 

coincide com o plano perpendicular a qualquer raio de luz que possamos observar. 

Figura 3.1: Exemplo do comportamento de um raio de luz e sua polarização em 

Nesse caso teremos um problema como mostrado na Fig.3.1. Como as fontes de luz emitem 

(luz) radialmente, um observador veria uma mesma fonte em diferentes posições (como seria o 

caso se o universo fosse multiplamente conexo) através de raios de luz de diferentes direções e 

com diferentes polarizações. Como resultado, não podemos identificar a polarização de um raio 

com a de outro, mesmo que vindos de uma mesma fonte. Ou seja, o estudo das polarizações (ao 

menos na forma acima) não ajuda na identificação da topologia. 

3.2 Direções de eixos galácticos 

Outra alternativa seria usar direções de eixos de galáxias espirais (chamaremos eixo galáctico) 

como ferramenta na observação de universos multiplamente conexos. O eixo galáctico é aquele 
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perpendicular ao plano do disco das galáxias espirais. Ressurge, nesse caso. o fato de que 

somente observamos os objetos celestes projetados sobre a esfera celeste. Conseqüentemente, 

se observamos uma galáxia, aparentemente não poderiamos dizer qual a direção de seu eixo. 

No entanto, no caso de galáxias espirais, se conhecermos as dimensões dos eixos maior e menor 

aparentes, poderemos inferir a inclinação de seu plano e portanto a direção de seu eixo. 

Figura 3.2: Galáxia espiral tipo Sb. Extraído de [40]. 

É necessário que isso seja explicado melhor. Considere, por exemplo, a Fig.3.2. Se víssemos 

uma galáxia espiral como essa, estariamos vendo uma galáxia com seu plano totalmente paralelo 

a nossa esfera celeste. Supomos que toda galáxia espiral tenha um disco aproximadamente 

circular. Vamos supor que víssemos essa mesma galáxia, no entanto, não-paralela ao céu, mas 

sim com uma inclinação. A forma da galáxia que veriamos projetada no céu é a de uma elipse 

e a relação entre os eixos maior e menor aparentes dessa elipse nos daria a inclinação dessa 

galáxia com relação à esfera celeste. 

Observe a Fig.3.3: A região em cinza representa o disco circular de uma galáxia inclinada 

com relação à esfera celeste. Essa galáxia projetada na esfera celeste é vista, por um observador 

em O, como uma elipse (essa projeção é mostrada em branco na Fig.3.3). Seu eixo maior 

aparente, a, coincide sempre com o raio do disco, r, que a galáxia teria se ela estivesse paralela 

à esfera celeste, ou seja a = r. Já o raio menor aparente, b, é dado por b = r cos a = a cos a. 

Dessa forma, podemos medir o raio menor e maior aparentes de uma galáxia espiral e, com sua 
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Figura 3.3: Este gráfico representa uma galáxia espiral (em cinza) inclinada com relação à esfera celeste e sua 

projeção nela. Note que a = r e b = r cos q. 

razão b/a = cos a, teremos a direção real n da galáxia no céu, já que n • 1 = cos a, onde 1 é a 

direção perpendicular à esfera celeste (direção de visada). 

De fato, catálogos como o “The Surface Photometry Catalogue of the ESO - Uppsala Galax- 

ies” [29] apresentam a razão a/b. No entanto, para definirmos melhor a direção n (ainda que 

não completamente) teremos que usar outro ângulo, o chamado ângulo de posição, PA (medido 

em graus com relação ao norte celeste, crescendo na direção do leste). 

Assim, sabemos que n faz um ângulo a com a direção de visada. E também que o eixo 

maior aparente da galáxia forma um ângulo PA com relação ao norte celeste. No entanto, pre- 

cisamos escrever n com relação ao nosso sistema de coordenadas na Terra. Para isso usaremos 

os ângulos de Euler como descrito em [39]. Usando-os poderemos executar a transformação de 
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um dado sistema de coordenadas cartesianas para outro por meio de três sucessivas rotações. 

Precisamos definir um sistema de coordenadas no céu - SC, no qual possamos escrever n em 

termos dos dados que possuímos (a e PA). Primeiramente, suponhamos que n coincida com 

o eixo C de um sistema de coordenadas definido sobre a galáxia (chamaremos de sistema de 

coordenadas da galáxia - SG). Definiremos os eixos maior e menor aparentes respectivamente 

sobre ^erj (coordenadas no SG). Escreveremos o SC da mesma forma que mostrado na Fig.3.4 

(b), com z coincidindo com a direção de visada, 1, —y na direção do norte celeste e x paralelo 

ao equador celeste. 

Os ângulos de Euler são definidos como três sucessivos ângulos de rotação transformando 

um sistema de coordenadas cartesianas em outro. Para cada ângulo temos uma matriz de 

rotação, as quais são mostradas abaixo seguindo notação de [39]; 

D 

C 

B 

^ COS (j) sin 0 0 ^ 

— sin 0 COS 0 0 5 

VO 0 1, 

^ 1 0 0 ^ 

0 COS 6 sin 9 , 

0 — sin 9 COS 9 , 

^ COS 0 sin 0 0 

— sin 0 COS 0 0 

VO 0 1, 

D faz uma rotação em tomo do eixo z de um ângulo 0 no sentido anti-horário.A rotação seguinte 

é feita por C em tomo do eixo x intermediário (obtido após a primeira rotação) de um ângulo 9 

no sentido anti-horário. Finalmente, B faz uma rotação em tomo do eixo z final (obtido após a 

segunda rotação) de um ângulo 0 também no sentido anti-horário. 
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Em nosso caso, o ângulo tl! de Euler será nulo deixando a matriz B igual à identidade. 

Faremos uma rotação de (j) em tomo de 2 (que coincide com C) e uma rotação de 0 em tomo de 

a matriz obtida é o produto CD abaixo; 

V 

vcy 

( COS (f) sin 0 0 \ í \ 

SG SC 

COS 6 sin 0 COS 6 cos 0 sin 9 y 

sin 0 sin 0 — sin^cos0 cos 9 ) \ ~ ) 

Entretanto, como queremos escrever n em SC, devemos fazer a transformação inversa (CD)“', 

que é a transposta de CD; 

V 

V ^ y 

í 

\ 

COS0 — cos0sin0 sin 0 sin 0 

sin 0 COS 9 COS 0 — sin 9 cos 0 

0 sin 9 cos 9 

V 

vc y SC '' ' '' ' SG 

Da forma como escrevemos n em SG, ele é um vetor unidade coincidindo com a direção de Q. 

Então, podemos escrevê-lo como 

n.sG — 

/o^ 

0 

viy 

Assim, nsc = (CD) ^ xísg e obtemos que 

( 

nsc = 

Podemos escrever nsc da maneira usual 

sin 9 sin 0 

— sin 9 cos 0 

cos 9 

nsc — 

^ sin 9 cos (0 — 7t/2) 

sin 9 sin (0 — tt/2) 

cos 9 
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onde 9 é o ângulo entre e e n50’ (ou C) e portanto 9 = a. Quanto a 0, devemos lembrar que 

0° < PA < 180° e que ele é o ângulo entre o pólo norte celeste (variando na direção do leste) e 

o eixo maior aparente a. Assim, PA não é o nosso ângulo de Euler 0, mas podemos relacioná- 

los. Como fica fácil observar, podemos escrever 0 -f PA = tt/2 —> 0 = 7r/2 - PA. Em termos 

dos ângulos observáveis temos que 

^ sina COS {—PA) ^ 

^sc = sin a sin {—PA) 

COS a 

Já conseguimos escrever n no sistema de coordenadas do céu (SC) usando os dados ob- 

serváveis. Precisamos ainda escrever n em nosso sistema de coordenadas, ST (sistema de coor- 

denadas na Terra). Usaremos, para isso, os ângulos de Euler da mesma forma que acima. 

A posição de uma galáxia no céu é definida por dois ângulos, ascensão reta, RA, com 

variação O/l < RA < 24/i, e declinação, Dec, com variação—90° < Dec < 4-90°. Definiremos 

ST com Z na direção do pólo norte celeste. A'’ perpendicular ao equador no ponto Oh de RA e 

Y perpendicular a A" e Z, de acordo com a Fig.3.4(a). 

Da forma que definimos SC e ST, podemos relacionar RA e Dec aos ângulos de Euler. 

Novamente faremos a transformação inversa, onde iist = (C'D')’’^ de modo que obtemos 

nsT 

í 

V 

/ 

V 

COS <í> sin Of COS PA -b cos 0 sin <í> sin a sin PA -b sin 0 sin $ cos a 

sin $ sin a cos PA — cos 0 cos $ sin a sin PA — sin 0 cos cos q 

— sin 0 sin o; sin PA -b cos 0 cos a 

X \ 

i; • 

Zn y 

\ 

/ 

Relacionamos os ângulos de Euler, <í> e 0, como <I> = {RA x 15°) — 90° (cada 15° corresponde 

a uma hora), e 0 = Dec — 90. 
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(a) z 
Pólo 
norte 
celeste 

Y 

Figura 3.4: (a) Esta figura procura ajudar na visualização da relação entre o sistema de coordenadas da Terra 

(X,Y,Z) com origem no centro na Terra, e o sistema de coordenadas do céu (x,y,z) com origem no centro de uma 

galáxia, (b) Sistema de coordenadas do céu (x,y,z) e sistema de coordenadas da galáxia (^, t], Q 

Dessa forma, se considerarmos que podemos escrever 0e = cos“^ (Z„)e$e = tan“^ {Yn/Xn), 

teremos 

©e = cos“^ (— sin 0 sin a sin PA + cos © cos a) 

^ _ 1 / sin $ sin Qf cos PA — cos © cos $ sin a sin PA — sin © cos $ cos a 
= tan   

V cos $ sin a cos PA + cos © sin 4> sin a sin PA -f sin © sin $ cos a. 

onde o índice e indica que ©g e $g são equivalentes aos ângulos simulados. Com isso podemos 
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Figura 3.5; Ângulos de Euler entre dois sistemas de coordenadas. 

escrever 

ne=(sin©f, cos$e,sin©e sin<^e,cos©e), (3.1) 

equivalente ao simulado. 

No entanto, com os dados disponíveis nos catálogos atuais não temos condições de dis- 

tinguir se n está na direção de A ou B da Fig.3.6. Nessa figura, o plano {x, z) está sobre o 

plano celeste e o observador na direção de y. As duas galáxias espirais representadas na Fig.3.6 

têm a mesma projeção no plano (x, z) e exemplificam a indefinição em n. Para obtermos essa 

informação seria necessário conhecer a direção real de rotação de cada disco galáctico. 

3.2.1 Simulações 

Sendo possível obter informações sobre a direção real, n, do eixo galáctico, podemos simular 

um catálogo de eixos de imagens de galáxias espirais e analisar sua distribuição no universo. 

Nosso objetivo é desenvolver métodos que,aplicados aos dados observacionais, somam-se a 

outros podendo contribuir para a obtenção de informações sobre a topologia do universo. 

Simulamos catálogos onde distribuímos aleatoriamente (números gerados por computador 
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z 

Figura 3.6: Gráfico mostrando duas posições de galáxias espirais, as quais não podemos diferenciar com os dados 

que possuímos. 

pseudo-randomicamente) pontos referentes às posições de galáxias espirais no interior do PF 

de dimensões Li = L2 = L3 = 5600 Mpc. Para cada galáxia espiral gerada, geramos, também 

aleatoriamente, a direção de seu eixo. Escrevemos, primeiramente, o vetor direção do eixo 

galáctico em termos das coordenadas esféricas, 

ris= (sin 05 COS sin^^sinç?^, cos^^). 

Os ângulos Os e ps dão a direção de e foram gerados aleatoriamente, com 0° < 0^ < 180° e 

0° < < 360°. Esses ângulos que simulamos equivalem àqueles da equação (3.1), obtidos a 

partir de dados observacionais. 

No entanto, ao geramos os ângulos 0 devemos tomar certos cuidados para que sua dis- 

tribuição seja uniforme. Isso porque o elemento de ângulo sólido, dÇí = sin OdOdip, não é 

proporcional a d0 e sim a sin OdO. Dessa forma, um intervalo de A0 em regiões próximas aos 

pólos tem ângulo sólido menor que o mesmo intervalo em regiões próximas ao equador. Por 

outro lado se definirmos a variável ^ = — cos 0, teremos dQ = d^dp e a distribuição será 

constante em e ç?. Assim, podemos gerar números aleatórios no intervalo — 1 < Ç < 1 e 
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depois transformá-los para ângulos 0, garantindo a homogeneidade na sua distribuição. 

Formado nosso catálogo simulado de galáxias espirais e suas respectivas direções devemos 

usar os geradores do grupo F de isometrias de E\ — EA e aplicá-los a esse catálogo. Para apli- 

carmos esses geradores ao catálogo, devemos lembrar que os vetores movem-se, sob a aplicação 

dos geradores, de forma diferente do movimento dos pontos. As posições de nossas galáxias no 

espaço são dadas por pontos. As direções de seus eixos representamos por vetores. Devemos 

aplicar os geradores de El — EA, expressões (2.14) a (2.17), nas posições das galáxias e os 

geradores modificados de El — EA nas direções {vide Seção 3.1). 

Usando os geradores, formamos palavras' de até três letras preenchendo totalmente a vizi- 

nhança próxima ao PF. Essa vizinhança é formada por imagens do PF ligadas a ele por uma face 

(palavras de uma letra), por uma aresta (palavras de duas letras) e por um vértice (palavras de 

três letras), ou seja, formamos poliedros ligados ao PF por no mínimo um vértice. Obtemos 27 

palavras, correspondentes aos 26 poliedros vizinhos do PF mais ele próprio, para cada topologia 

de El — EA. 

Preenchida a vizinhança próxima ao PF, devemos definir o raio de nosso catálogo simulado. 

Usamos para isso o raio do universo observável dado por 

Rf{ = 2c/Hq = 6000 h~^Mpc, (3.2) 

onde Ho — 100 h km s~^Mpc é a constante de Hubble com 0.4 < /i < 1.0; escolhemos 

h = 0.75. 

Como descrevemos acima, cada direção do eixo galáctico é gerada através de suas com- 

ponentes em coordenadas esféricas. No entanto, para aplicarmos as 27 palavras de geradores, 

devemos colocar as componentes do vetor em coordenadas cartesianas. Aplicamos as listas de 

palavras aos pontos e vetores. Excluímos as imagens de galáxias que apresentam a distância ao 

centro do PF maior que R}j. Fazendo isso, obteremos a distribuição de galáxias espirais e sua 

'Termo usado em teoria de grupos para produtos de geradores. Cada gerador é chamado letra. 
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direção no espaço que veriamos no universo se ele tivesse uma das topologias El — EA. 

Além dos catálogos simulados para universos com topologia não-trivial, El — EA, simu- 

lamos também um catálogo para o universo com topologia trivial. Esse catálogo é gerado de 

forma similar aos outros. No entanto, não usamos os geradores de uma topologia para distribuir 

imagens até o raio do universo observável, Ru. O que fizemos foi gerar aleatoriamente (no 

sentido já definido) galáxias e suas respectivas direções espalhadas por todo o espaço até o raio 

observável, Rn. Geramos o mesmo número de galáxias no catálogo com topologia trivial que 

obtivemos no catálogo com as topologias de El — EA. 

Com o catálogo simulado, procuramos obter informações sobre a topologia usando ângulos 

entre as direções dos eixos galácticos. O ângulo entre dois vetores é dado por nj .n2 = cos (5 ou 

em termos de suas componentes 

COS 3 — COS 01 COS 02 + sin 0i sin 02 cos — ip2), (3.3) 

em coordenadas esféricas. Definimos a direção de cada galáxia pelos ângulos 9 e (p. Dessa 

forma, usando a equação (3.3), calculamos o ângulo 3 entre as direções de cada par de imagens. 

Tomamos o cuidado de não repetir o cálculo do ângulo entre duas galáxias já consideradas. Os 

ângulos são arrendondados em múltiplos de 1°. Contamos quantos valores de cada ângulo são 

obtidos, tomamos sua percentagem e plotamos o gráfico da percentagem do número de ângulos 

por cada ângulo conforme mostrado nas Figs.3.7 a 3.11. 

Poderiamos esperar obter uma distribuição que caracterizasse, não somente as translações 

(como no caso do método de cristalografia, apresentado no Capítulo 4), mas também as rotações 

ocorridas em E2 — EA. Os ângulos entre imagens de uma mesma galáxia, as quais não têm sua 

direção alterada pelos geradores modificados (como no caso de El), devem ser zero. Quando 

medimos ângulos entre imagens de galáxias diferentes, obtemos valores aleatórios, os quais 

não devem identificar nossa topologia. Assim, a topologia de El deve apresentar uma grande 

quantidade de ângulos de zero grau. Já em E2, esperar-se-ia observar uma certa quantidade de 
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ângulos iguais e diferentes de zero. correspondentes à inversão das duas componentes do vetor 

mantendo uma inalterada. Esse movimento causa uma rotação no vetor com relação ao inicial. 

Um comportamento similar poderia ser esperado das topologias E3 e EA. Com isso, teríamos 

uma maior indicação da topologia. Veremos adiante que isso não ocorre. 

3.2.2 Resultados 

Os resultados, infelizmente, não são tão animadores. Como imaginávamos, os ângulos entre 

direções de imagens de uma mesma galáxia, as quais não tem sua direção alterada pelos ge- 

radores modificados, são zero grau. No caso de El, como nenhum dos geradores alteram a 

direção do eixo galáctico, obtemos uma grande quantidade de ângulos de zero grau entre as 

direções dos eixos. Quando contamos a quantidade de ângulos em cada grau, obtemos um pico 

bastante pronunciado em zero grau. (vide Fig.3.7, para a distribuição de El). 

Figura 3.7: Distribuição do número de ângulos por grau em um universo com topologia El. Lj = Lo = L3 = 

5600Afpc, raio de simulação= SOOOMpc. 

Em E2 esperávamos encontrar, além do pico em zero grau, um pico em algum ângulo 
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Figura 3.8: Distribuição do número de ângulos por grau em um universo com topologia E2. L\ = Lo = L3 = 

SGOOMpc, raio de simulação= SOOOMpc. 

referente às inversões nas direções y t z. Isso, no entanto, não ocorre. Considere o caso de E2 

onde o gerador g\ inverte as direções y e 2, mas mantém a direção x tomando 6' = 0° na direção 

X, o ângulo 6' não varia com esse movimento (ele só depende, nesse caso, de x, x = — cos 9') 

Já o ângulo 4> é acrescido de 180° (y = sin 9' cos (j)' e z = sin 9' sin 4>'). Se mantivéssemos 9 

constante (sempre o mesmo para todas as direções de eixos galácticos) talvez obtivéssemos o 

resultado esperado. Nesse caso, o ângulo entre o eixo galáctico das galáxias e suas imagens 

(geradas por gi) seriam iguais para quaisquer direções. Como fixar um ângulo 9' para todas as 

direções de eixos galácticos não seria realista, não podemos contar com essa possibilidade. 

Note na Fig.3.8, distribuição para E2, que a quantidade de ângulos (3 = é menor do que 

em El. Isso ocorre porque embora g2 e g^ contribuam, o gerador yi produz menos ângulos 

13 — 0°. Por exemplo, se p — {x, y, z) então p' = g\ (p) = (x, —y, —z) e p" = gf (p) = p. 

Assim, o ângulo entre p ep” é nulo, mas não o ângulo entre p e p' ou p' e p". 

A situação em E2> (Fig.3.9) é similar à de E2. Já em EA (Fig.3.10) o pico em /? = 0° toma- 

se bem menor, pois todos os seus geradores alteram a direção do eixo galáctico. Dessa forma, o 
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Figura 3.9: Distribuição do número de ângulos por grau em um universo com topologia E3. L\ = Lo = L3 = 

5600A/pc, raio de simulação= SOOOMpc. 

ângulo entre a direção do eixo de uma galáxia e o de sua imagem não é zero. No entanto, ainda 

obtemos /3 = 0° quando calculamos os ângulos entre eixos de imagens de uma mesma galáxia 

sendo o par formado, por exemplo, por uma imagem gerada por ^ e outra por g\. Isso ocorre 

também com um par formado por Ç2 e §3 a partir de uma mesma fonte. 

A distribuição para as direções de eixos galácticos em um universo com topologia trivial 

é mostrada na Fig.3.11. Comparando as distribuições de ângulos (3 para El — E4 com a 

distribuição para o universo com topologia trivial, notamos que ainda pode haver sinais da 

topologia nas distribuições de El — EA para /3 ^ 0°. No entanto, ainda não identificamos nada 

que a possa caracterizar. 
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Figura 3.10; Distribuição do número de ângulos por grau em um universo com topologia E4. L\ — L2 = — 

õGOOMpc, raio de simulação= SOOOMpc. 

Figura 3.11; Distribuição do número de ângulos por grau em um universo com topologia trivial. L\ — L2 = 

L3 — 5600Mpc, raio de simulação= SOOOMpc. 
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Cristalografia Cósmica 

o método de cristalografia cósmica desenvolvido por R. Lehoucq, M. Lachièze-Rey e J. R Lu- 

minet (LeLaLu) em 1996 [2], baseia-se em plotar histogramas de separação de pares de imagens 

cósmicas. Na realidade, toma-se o quadrado da distância entre todos os pares de imagens de um 

dado catálogo versus o número de ocorrências daquela distância. A eficiência do método está 

no fato que, em um universo multiplamente conexo, cada imagem de um mesmo objeto é ligada 

a cada outra por um elemento de um subgrupo discreto, F, de isometrias do espaço. Além disso, 

a cristalografia tem a vantagem de poder ser adaptada a qualquer tipo de espaço multiplamente 

conexo, não sendo baseada em propriedades específicas de um modelo cosmológico ou de uma 

população particular de objetos cósmicos. 

4.1 Separação de Pares 

Fundamentalmente, a idéia de universos multiplamente conexos implica na formação de ima- 

gens repetidas de um mesmo objeto cósmico. Essas imagens repetidas estão relacionadas por 

isometrias no espaço de recobrimento universal {vide seção 2.2). Conseqüentemente, qualquer 

par de imagens de um mesmo objeto está relacionado com uma isometria do espaço. 

O método de cristalografia, dessa forma, tem como base verificar a separação de todos os 

pares de imagens de um catálogo tridimensional, dos quais emerge, no caso de o universo ser 

multiplamente conexo, uma significativa quantidade de pares de imagens de uma mesma fonte. 

37 
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Os pares de imagens estão interligados por elementos g, do subgrupo discreto de isometrias 

r. Cada gerador de F é associado a um “deslocamento”, A^-, relacionado ao tamanho do 

poliedro fundamental (PF). 

No artigo em que o método foi desenvolvido [2], LeLaLu expressaram as distâncias (se- 

paração entre pares de imagens), como combinações lineares de A^., envolvendo coeficientes 

inteiros: 

= (4.1) 

Eles afirmam que cada imagem ii (exceto as próximas às arestas) é transformada por um gerador 

gk, resultando em outra imagem Z2, com separação Xk- Assim, espera-se que para os N objetos 

de um catálogo , existam N pares correspondentes de uma mesma fonte com separação A^, as 

quais se sobressaem com relação à contribuição dos pares de imagens não referentes à mesma 

fonte. Esse número seria multiplicado por um fator de 2 ou 3 se Xk = A*;_i e A^ = Afc_i = Xk-2, 

respectivamente. 

Veremos que a expressão (4.1) só vale na sua integra para o caso do tritoro, no qual os 

geradores são “translações puras” [13, 6]. Serão analisadas as consequências deste fato na 

próxima seção, na qual daremos ênfase ao método de cristalografia em modelos localmente 

euclidianos. 

4.2 Modelos Euclidianos 

4.2.1 O método em modelos euclidianos 

O método de cristalografia foi aplicado primeiramente ao caso euclidiano /c = 0 em [2], em- 

bora seja, em princípio, aplicável a espaços-tempos com qualquer curvatura espacial, {k = 

— 1,0,1). Usaremos, como em [2], o modelo cosmológico de Einstein-de Sitter com constante 
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cosmológica nula e com parâmetro de densidade de matéria í7o = 1. A métrica tem a forma: 

ds^ = c^di^ — {tfto)'^^^{dx‘^ + dtp' + dz^), 

e seu espaço de recobrimento universal é R'^. Usaremos as seis variedades euclidianas, ori- 

entáveis, fechadas e tridimensionais, rotuladas por E\ — E6, expressões (2.14) a (2.19). 

Pela equação (4.1), as distâncias entre pares de imagens de uma mesma fonte seriam com- 

binações lineares de A|, comprimentos característicos do PF. Consideremos, então, um sistema 

de coordenadas com origem no PF e um conjunto de geradores {gi,Q2, Qs} do grupo F. Supo- 

nhamos dois pontos p = (x, y, z) e gig2{x, y,z) = {x + L\,y 2L2, 2), este último obtido pela 

ação de uma combinação de geradores de El. O quadrado da distância comóvel entre esses 

dois pontos é 

d^ ^ L\ + 4Ll- (4.2) 

Quando usamos El obtemos distâncias similares a essa para quaisquer combinações de ge- 

radores, satisfazendo a equação (4.1) dada. Já no caso de E2, conseguimos obter distâncias 

que satisfazem a equação (4.1) principalmente através da ação de combinações dos gerado- 

res p2 e <73- Ao usarmos combinações de geradores envolvendo pi, como o ponto obtido por 

92g\[^i z) — {x d- Li,—y L2, —2), a distância a uma ponto p é 

d^ = L\ + L2 — 2yL2 + 42^ -t- 4y^. (4.3) 

Neste caso, a distância dependerá da posição da fonte (marcada pela presença dos termos 

4x^,4y^ e 2yL2) e não satisfaz a equação (4.1). Podemos notar, no entanto, que algumas 

aplicações sucessivas de pi, como gigi{x,y, z) = (x -f 2Li,y,z) e g\g2g\{x,y, z) = (x -b 

2Li,y — L2,2), já satisfazem novamente a equação (4.1). Tanto em E3 como em E4 [6] acon- 

tece o mesmo. 

Os geradores que causam esse efeito incluem rotações e não contribuem para a formação de 

picos nos histogramas de separação de pares. De acordo com A. Bemui, G. 1. Gomero, M. J. 
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Rebouças e A. F. F. Teixeira em [13], os picos apresentados nos histogramas ocorrem graças a 

translações de Clifford {vide Apêndice A) e que E2, E3, E4 admitem espaços de recobrimento 

do tipo El \ dessa forma teriamos picos graças a esses fatos. 

Para plotar o histograma de separação de pares, calcula-se o quadrado das distâncias entre 

todas as imagens de um dado catálogo. Cada distância quadrada é dividida por onde V é 

o volume do PF. Plota-se n{d), número de ocorrências de cada distância, por 

Originalmente o volume para os poliedros, usado por LeLaLu foi V' = Li L2 para 

os casos El — EA e 1' = ^3\/3/2j L\L'2 para £'5 e £6. A forma de plotar os histogramas 

usa o volume como modo de realçar os picos. Veremos como isso ocorre: vamos supor que 

Li = L2 = L3 = L, dessa forma para £1 — £4. Nesse caso a expressão (4.2) fica 

(4.4) 

e assim, no histograma, essa distância contribuirá para o pico em cE = 5. Se ao contrário 

Li 7^ L2 7^ L3, a expressão (4.2), já dividido por toma-se 

d^ _ L\ AL\ 

~ {uuuf^"" {uuufy 

Podemos notar que, ao contrário da expressão (4.4), essa não será um número inteiro. Nesse 

caso, a quantidade de picos aumenta, mas suas amplitudes são bem menores. 

Já a expressão (4.3), mesmo quando fizemos L\ = L2 = Lz = L, fica 

cP 2y 4z^ 4y^ 
V'2/3 L E^' 

e provavelmente essa distância não contribuirá significativamente para a formação de um pico, 

principalmente pela sua dependência da posição da fonte. As outras combinações que propomos 

para £2, g^gi (com = 4, = £^) e g\g2g\ (com S = 2, = l?), 

contribuem significativamente para os picos em {d/Vf = 2 e (d/L)^ = 4 na Fig.4.2(a). 

As simulações feitas por LeLaLu em [2] foram de catálogos de 50 fontes distribuídas aleato- 

riamente no PF e suas imagens distribuídas no espaço de recobrimento universal simulando a 
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aparência do céu até um raio equivalente a um “redshift” ^ = 4. Eles fizeram L\ = L2 = L3, e 

o PF com volume V = (1500 Mpc)^. 

4.2.2 Tamanho do poliedro fundamental 

Usamos o método de cristalografia de maneira similar ao desenvolvido por LeLaLu [2], No 

entanto, usamos a forma de E4. obtido por Gomero [12] que demonstrou estar errada a forma 

dos geradores dessa variedade indicados em [37,1]. Além disso, tomamos dimensões diferentes 

para E5 e E6. Fizemos o diâmetro menor da base hexagonal e o comprimento das arestas 

verticais iguais a L e não cada lado da base hexagonal igual a L como em [2]. Assim, o volume 

do PF nos casos E5 e E6 fica ^\/3/2^ L^. 

Fizemos várias simulações, com vários números de fontes e diferentes tamanhos do PF. 

Escolhemos fontes distribuídas aleatoriamente no PF, as quais incluem nossa galáxia na posição 

de observador no ponto (0,0,0). (Isto só é realista no caso de El, que é homogêneo; nos demais 

espaços provavelmente não estamos no centro , pelo princípio cosmológico) 

Com os geradores de El — E6, expressões (2.14) a (2.19), formamos palavras de até três 

letras com o objetivo de preencher toda a vizinhança do PF. Essa vizinhança é formada por 

todas as imagens ligadas ao PF por no mínimo um vértice. 

O procedimento usado foi o seguinte: após distribuirmos os pontos aleatoriamente (usando 

“pseudo-random numbers "gerados por computador) no interior do PF, aplicamos as listas de 

27 palavras de geradores para cada uma das topologias El — EA ou as 21 palavras de geradores 

para E5 — E6, expressões (2.18) e (2.19), correspondentes às vizinhanças ligadas ao PF como 

descrito acima, aos pontos distribuídos no interior do PF. Obtivemos a distribuição de imagens 

de fontes cósmicas do universo caso ele tenha uma das topologias El — E6. Usamos Rh, 

equação (3.2), como raio de nosso catálogo simulado e descartamos os pontos com distâncias à 

origem maiores que esse raio. Aplicamos a esse catálogo simulado, o método de cristalografia. 

A questão é : Quais as dimensões que o poliedro fundamental deverá ter? E, para essas 
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Figura 4.1: Distribuição de distâncias comoveis entre imagens em simulações em universos com a topologia de 

El: (a) L = 0.7RnMpc, 20 fontes, raio de simulação= SOOOMpc; (b) L = 1.2RnMpc, 100 fontes, raio de 

simulação^ SOOOMpc. 

dimensões, podemos obter informações sobre a topologia? 

Ellis e Schreiber [38] estudaram modelos cosmológicos de seção espacial compacta, euclid- 

iana, e além de fechada também pequena, com dimensões da ordem de 400 Mpc. Com isso eles 

pretendiam explicar, altemativamente ao modelo inflacionário, a uniformidade observável da 

distribuição de matéria em larga escala. Em um PF pequeno, com dimensões dessa ordem, não 

havería necessidade de homogeneidade no espaço real, já que em larga escala observaríamos 

um universo homogêneo graças à repetição de imagens das fontes contidas no PF. 

No entanto, com as medidas da radiação de fundo obtidas pelo satélite COBE, descobriu-se 

uma anisotropia na radiação de fundo. Essas observações demonstram que há uma anisotropia 

com componentes de multipolo em larga escala na radiação de fundo, impondo novos vínculos 

em uma possível topologia não-trívial do universo. De acordo com essas novas observações, 

Sokolov [34], usando o momento de quadrupolo, determinou que as dimesnsões topológicas 

deveríam ser, no mínimo, da ordem de 0.7Rh para El. Outros autores como Stevens, Scott e 

Silk [28], de Oliveira-Costa e Smoot [26], de Oliveira-Costa, Smoot e Starobinsky [27] também 
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Figura 4.2: Distribuição de distâncias comoveis entre imagens em simulações em universos com a topologia de 

E2: (a) L = Q.lRnMpc, 20 fontes, raio de simulação= SOOOMpc; (b) L = \.2RnMpc, 100 fontes, raio de 

simulação= SOOOMpc. 

estudaram os mapas da radiação de fundo e obtiveram diferentes valores para o tamanho mínimo 

do PF de E\. Os tamanhos variam entre 0.7Rh, obtido em [34], e o maior deles, 1.2Rh obtido 

em [26]. 

Levando em conta esses resultados, não haveria sentido considerar as dimensões do PF tão 

pequenas como propuseram Ellis e Schreiber [38]. Aliás, Fagundes e Wichoski [11] haviam 

obtido valores da ordem de 3000Mpc para a aresta de El. Alguns dos autores acima concluem 

daí que não haveria mais interesse em uma topologia cósmica não-trivial. 

Em nosso artigo [6], mostramos que mesmo usando altos valores de L (dimensão do PF), 

podemos, em princípio, observar efeitos originados por imagens múltiplas de fontes cósmicas, 

caracterizando um universo multiplamente conexo. Assim, nossas simulações usando o método 

de cristalografia cósmica [2] foram feitas com poliedros fundamentais de dimensões L = 0.7Rh 

e L = 1.2Rh, que são os valores mínimo e máximo acima mencionados. 

As Figs. 4.1 a 4.6 mostram os resultados obtidos em nossas simulações. A parte (a) das 

Figs.4.1 a 4.6 mostra os resultados para o PF de dimensões L = 0.7Rh com 20 fontes; a parte 
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Figura 4.3: Distribuição de distâncias comoveis entre imagens em simulações em universos com a topologia de 

E3; (a) L = Q.lRnMpc, 20 fontes, raio de simulação^ SOOOMpc; (b) L = 100 fontes, raio de 

simulação^ SOOOMpc. 

(b) apresenta os resultados para L = \.2Rh e 100 fontes no interior do PF. Podemos notar que 

para poliedros menores há picos bastante pronunciados e em números inteiros como previsto 

para L\ = L2 = L^. Já para os PF maiores podemos notar ainda sinais da topologia pela 

presença de um pico em d = L. Em E4., no entanto, o pico em L desaparece porque nenhum 

dos geradores é uma translação de Clifford {vide apêndice A). 

A Fig.4.7 mostra o método aplicado a um universo com seção espacial euclidiana e topologia 

trivial. Podemos notar que não há presença de picos nessa distribuição. As referências [13, 14, 

15,16,17,18] investigam a presença de sinais topologicos com base no modelo de cristalografia 

cósmica. 

4.3 Modelo Hiperbólico 

Originalmente, como já vimos, o método de cristalografia cósmica [2] foi usado em modelos 

de universos com seção espacial euclidiana. No entanto, não há nada que impeça que o método 
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Figura 4.4: Distribuição de distâncias comoveis entre imagens em simulações em universos com a topologia de 

E4: (a) L — Q.lRuMpc, 20 fontes, raio de simulação= SOOOMpc; (b) L = 1.2RnMpc, 100 fontes, raio de 

simulação= SOOOMpc. 

seja aplicado em modelos de universos com seção espacial hiperbólica ou esférica. Nesta seção 

mostraremos os resultados do método de cristalografia aplicado a modelos de universos com 

seção espacial hiperbólica. 

4.3.1 O método de cristalografia 

Usaremos o modelo hiperbólico de Friedmann-Lemaítre-Robertson-Walker, cuja métrica é es- 

crita como 

ds^ = (rj) [drf — , (4.5) 

onde a{rj) é o fator de expansão ou raio de curvatura e 

da^ = dx^ + sinh^ x + sin^ 9d(fj , 

é a métrica padrão do H^. Assumimos os seguintes valores para os parâmetros cosmológicos: 

ÍÍq = 0.3, Hq = 6bkm s~^Mpc~^, e A = 0. O atual valor do raio de curvatura é a {rjo) = 

cHq^ (1 — = 5512.62A//.;c. Essa métrica admite tanto uma topologia trivial, seção 
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Figura 4.5; Distribuição de distâncias comóveis entre imagens em simulações em universos com a topologia de 

E5; (a) L = 0.7Rf[Mpc, 20 fontes, raio de simulação^; SOOOMpc; (b) L = l.2RfiMpc, 100 fontes, raio de 

simulação= SOOOMpc. 

espacial com variedade aberta e infinita, como uma topologia não-trivial com variedade 

hiperbólica e fechada. 

Simulamos catálogos com variedades hiperbólicas fechadas, assim como com a variedade 

aberta e infinita. Usamos, em nossas simulações com topologias não-triviais, como variadade 

AP, a segunda das três variedades de Best [35] que tem um icosaedro como PF (vide Fig.2.4). 

Esse icosaedro é listado com o número v2293(+3,2), nas variedades hiperbólicas, orientáveis 

e fechadas do programa de computador SnapPea [30]. O PF, um icosaedro em H^, tem 20 

faces com a forma de um triângulo equilátero, 30 arestas e 12 vértices. A variedade hiperbólica 

fechada é obtida pela identificação de pares de faces do PF. Essa identificação se obtém pela 

ação de um grupo F de movimentos rígidos em H^. O grupo F, nesse caso, é formado por 20 

geradores (na realidade são 10 geradores e seus inversos). Cada gerador é representado por uma 

matriz 4x4 {vide Apêndice A) que leva uma face a outra do PF. 

O primeiro passo de nossas simulações foi distribuir as fontes de forma homogênea e 

aleatória no interior do PF. Para isso, tomamos a esfera que circunscreve o icosaedro, cujo 
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Figura 4.6: Distribuição de distâncias comóveis entre imagens em simulações em universos com a topologia de 

E6: (a) L = 0.7Rf/Mpc, 20 fontes, raio de simulação= SOOOMpc; (b) L = \.2RyiMpc, 100 fontes, raio de 

simulação^ SOOOMpc. 

raio é Xout — 1-3826. No entanto, não podemos simplesmente distribuir as fontes no interior 

dessa esfera. O caso é similar ao ocorrido no Capítulo 3, na distribuição de eixos galácticos. 

Aqui, para que a distribuição seja homogênea, devemos ter em mente que um elemento de vol- 

ume no espaço hiperbólico é dV = sinh^ x sin 9dxd9d(f)', portanto, proporcional a sinh^ x ^ 

sin 9. Se ao gerarmos aleatoriamente nossas fontes não levarmos isso em conta, teremos uma 

concentração maior de fontes em uma região do PF, do que em outra. Para resolver esse prob- 

lema definiremos novas coordenadas u (x) = (sinh x cosh x ~ x) /2, v {9) = — cos 9 e (j) = (j), 

de tal forma que du = sinh^ x^X ^ dv = sin 9d9\ portanto obtemos dV = dudvdcj). Assim, 

a densidade de probabilidade de pontos no espaço {u, v, 4>) é uniforme. Podemos gerar nossos 

pontos aleatoriamente nessas coordenadas garantindo a homogeneidade. 

Geramos 150 fontes (pontos (u, v, 0)) no interior da esfera que circunscreve o icosaedro. 

No entanto, não são todos os pontos gerados que se encontram no interior do PF. Devemos 

excluir os pontos que estão na esfera, mas não pertencem ao icosaedro. Para isso usaremos uma 

propriedade do PF (vide Capítulo 2, definição de PF, expressão (2.13)): 
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Figura 4.7: Distribuição de distâncias comoveis entre imagens em simulações em universos com a topologia 

trivial em espaços euclidianos com raio de simulação= SOOOMpc. 

Se um ponto pertence ao PF, sua distância ao centro do próprio PF é menor que todas as 

distâncias desse ponto aos centros dos poliedros obtidos por ação dos, neste caso, 20 geradores 

de r. 

Os pontos com distância menor do que o raio da esfera inscrita, Xin = 0.8683, garantida- 

mente estão no interior do PF. Os pontos na região de 0.8683 < x < 1.3826 são analisados 

segundo a sua distância ao centro do PF. Cada distância de um ponto p ao centro é comparada 

à distância de p ao centro dos poliedros gerados pela aplicação dos 20 geradores do grupo F. 

De forma prática, aplicamos os 20 geradores ao ponto central do PF, obtendo uma lista de 20 

centros de poliedros ligados por uma face ao PF. Se a distância de p ao centro do PF for menor 

que sua distância aos outros 20 centros, p está dentro do PF. Excluímos os que não satisfazem 

essa condição. Das 150 fontes geradas inicialmente, apenas aproximadamente 1/3 delas estão 

no interior do PF. 
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Devemos agora preencher inteiramente o espaço até o raio de 12873 Mpc correspondente 

a um desvio para o vermelho c = 1300, que tomamos como a posição da superfície de último 

espalhamento da radiação cósmica de fundo. O raio de 12873 Mpc corresponde a x = Xr — 

2.33520 Para preencher uma região dessa ordem, necessitamos de 92 réplicas do icosaedro, 

além do próprio PF. Essas 92 réplicas {vide Apêndice B) são compostas de 20 geradores (palavras* 

de 1 letra), produzindo réplicas ligadas ao PF por uma face; 60 combinações de geradores 

(palavras de 2 letras), produzindo réplicas ligadas ao PF por um vértice; 12 combinações de ge- 

radores (palavras de 3 letras), produzindo réplicas ligadas ao PF também por um vértice. Esse 

conjunto de icosaedros cobre, sem buracos, o espaço hiperbólico até um raio ,\max = 2.33947, 

ligeiramente maior que xv- 

Aplicamos as 92 palavras de geradores em cada um dos pontos, associados a fontes, no inte- 

rior do PF, excluindo aquelas imagens com distância maiores que Xt- Esse será nosso catálogo 

simulado de imagens (incluindo as fontes) observadas em um universo com constante de cur- 

vatura negativa e topologia não-trivial dada por v2293(-t-3,2). 

Nesse catálogo aplicamos o método de cristalografia, calculando as distâncias normalizadas 

{vide Apêndice B) para cada par de imagens e multiplicando-as pelo raio de curvatura atual 

do universo a (770). Assim obtemos a distância comóvel, em parsecs, que observaríamos entre 

as imagens no presente momento. Com a lista de distâncias, agrupamo-as de acordo com o 

número de ocorrência de cada uma, em intervalos de 100 Mpc . Então plotamos o número de 

ocorrência de cada distância versus a distância própria em Mpc. O resultado é o que vemos na 

Fig.4.8. 

Criamos também, um catálogo para um universo com topologia trivial. A distribuição das 

fontes foi feita de forma similar à descrita acima. No entanto, geramos os pontos aleatórios 

(posição das fontes) {u, v, </>), preenchendo toda a região até o raio correspondente à posição da 

superfície de útimo espalhamento, Xr — 2.33520. A menos desse fato, procedemos exatamente 

' Ver seção 3.2 para definição de palavras. 
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Figura 4.8: Gráfico usando o método de cristalografia para a topologia de v2293. 

da mesma forma que anterioimente, tomando o cuidado de gerar o mesmo número de imagens 

que obtivemos para o universo com topologia não-trivial. O resultado obtido é apresentado na 

Fig.4.9. 

Ao compararmos as Fig.4.8 e Fig.4.9, não vimos nenhuma diferença significante entre elas. 

Assim, subtraímos os valores da lista que gera a Fig.4.9 dos valores da lista que gera a Fig.4.8. 

Pretendíamos com isso observar se alguma característica marcante da topologia não-trivial seria 

vista mais claramente. Observe a Fig.4.10. Em princípio não vimos nada que possa caracterizar 

a topologia. Ainda assim, uma análise estatística mais detalhada podería indicar algo. No 

entanto, não faremos essa análise aqui^. 

Dois trabalhos feitos simultaneamente ao nosso, por diferentes grupos de trabalho [13, 3], 

confirmam os resultados das Fig.4.8 e Fig.4.9. 

-Depois de preparar esta tese, notei o artigo de A. F. F. Teixeira [18] que nos sugeriu a possibilidade de a 

Fig.4.10 conter informação topologica. 
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Figura 4.9: Gráfico usando o método de cristalografia para a topologia trivial no espaço hiperbólico. 

4.3.2 Uma variação do método de cristalografia 

No método de cristalografia os elementos de F levam a posição de cada fonte no interior do 

PF para posições de imagens no interior de réplicas do PF. Em variedades hiperbólicas uma 

ação g E T sobre um ponto p G PF depende de p; portanto não haverá distâncias iguais entre 

diferentes p’s. Conseqüentemente não teremos picos pronunciados como no caso euclidiano, 

[13,3,7], 

Propomos uma variação do método no qual fizemos sucessivas aplicações dos geradores a 

todas as imagens de um catálogo de forma a trazê-las para o interior do PF. Após isso, calcu- 

lamos as distâncias entre todas as imagens. Se a topologia for não-trivial deveremos ter uma 

grande quantidade de posições das imagens superpostas e portanto a distância entre elas é zero 

ou aproximadamente zero. 

Fizemos simulações para dois modelos hiperbólicos compactos, ambos com um icosae- 

dro como PF, mas com diferentes grupos F. As variedades são a primeira e a segunda das 



52 4 Cristalografia Cósmica 

Figura 4.10: Gráfico usando o método de cristalografia para a diferença entre a topologia de v2293 e a trivial no 

espaço hiperbólico. 

variedades de Best [35], listadas no SnapPea [30] como v2051(+3,2) e v2293(+3,2), respec- 

tivamente. Listamos os geradores de ambas, assim como algumas de suas propriedades no 

Apêndice B. Tomamos 92 réplicas do PF, ligadas a ele por no mínimo um vértice, para ambas 

as variedades cobrindo completamente um raio Xmax = 2.33947 em H^. {vide Apêndice B) 

As fontes foram distribuídas no interior do PF exatamente da mesma maneira que fizemos na 

seção anterior quando aplicamos o método de cristalografia. A mesma mudança de coordenadas 

foi feita aqui, (x, 0,4>) —> {u, v, 0), garantindo a homogeneidade na distribuição de fontes. 

Aplicamos as 92 combinações de geradores nas posições das fontes no interior do PF, excluindo 

aquelas a uma distância ao centro do PF maior que Xr = 2.33520. Xr é o raio da esfera, centrada 

no centro do PF, até a superfície de último espalhamento. 

Nosso catálogo cobre o universo até a superfície de último espalhamento considerando que 

nós, observadores, estamos na posição (0,0,0) em coordenadas (x>^>0)- Esse também é o 
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ponto base no cálculo das coordenadas do PF. Provavelmente, no entanto, seria uma coin- 

cidência se estivéssemos no centro do PF. Dessa forma deslocamos o observador para o ponto 

(0.1,0,0), mas mantivemos o ponto base do PF em (0,0,0). Em coordenadas de Klein esse 

ponto corresponde a um deslocamento de 5 = tanh~^ 0.1 = 0.100335 do centro do PF. Nesse 

caso o raio de nosso catálogo será Xn = Xr — ^ = 2.23486. Simulamos catálogos com o 

observador posicionado em ambos os pontos acima, (0, 0,0) e (0.1,0,0), e em ambos os ca- 

sos usamos Xn como raio do catálogo, de modo que possamos comparar os resultados de cada 

simulação. 

Nossas primeiras simulações foram feitas com as variedades na mesma orientação e ponto 

base dadas no SnapPea [30],(o ponto base no centro do PF). Seja i uma imagem em nosso 

catálogo e p sua pré-imagem no interior do PF: se i = g (p), então p = g~^i, c/ € F , ou seja, 

aplicamos no catálogo os inversos dos movimentos. Os geradores são aplicados sucessivamente 

a um ponto do catálogo e a cada aplicação usamos a definição de PF para verificar se o ponto 

resultante está no interior do PF ou não. Se o ponto estiver no PF, ele é registrado, se não 

continuamos aplicando os geradores inversos. Quando conseguimos que todas as imagens do 

catálogo estivessem no interior do PF, calculamos as distâncias entre todas elas. Essas distâncias 

são agrupadas pelo número de ocorrências de cada uma em intervalos de 100 Mpc. Plotamos o 

número de ocorrências de cada distância, n (d), em percentagem, por cada distância. Obtemos, 

como mostrado na Fig.4.1 l(a), um forte pico em zero. Isso ocorre, pois quando as imagens de 

uma mesma fonte são puxadas para o PF e a topologia é não-trivial, as imagens se superpõe na 

posição da fonte. 

Geramos um catálogo de fontes aleatórias para o modelo de universo de FLRW aberto, 

com topologia trivial. Esse catálogo estende-se até Xn- Como aqui não há PF nem geradores, 

usamos os geradores e o PF das variedades v2051(-i-3,2) e v2293(-i-3,2) para puxar as imagens 

para o interior do PF imaginário. Fizemos isso, pois uma vez que tenhamos um catálogo real do 

universo, não saberemos se sua topologia é trivial ou não. Assim, se o catálogo real pertencer 
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a uma das variedades acima, ao aplicarmos o método a todas as suas imagens, obteremos uma 

distribuição similar à da Fig.4.1 l(a), caso contrário obteremos algo como a Fig.4.11(b). 

Similarmente ao que já fizemos em outras ocasiões, subtraimos os dados da Fig.4.1 l(b) dos 

da Fig.4.ll(a). O resultado é mostrado na Fig. 4.1 l(c). 

Ao movermos o observador de (0,0,0) para (0.1,0,0), geramos um novo catálogo com uma 

distância máxima Xn ao novo centro. O procedimento foi o mesmo que descrevemos acima e 

os resultados foram praticamente iguais. Dessa forma, não precisamos nos preocupar com o 

privilégio que damos ao colocarmos o observador no ponto base do PF, (0, 0, 0). 

Agora vamos supor que o PF tem uma orientação diferente daquela dada no SnapPea [30]. 

As fontes foram geradas aleatoriamente para que estejam dentro do PF com a orientação do 

SnapPea, que chamaremos de PFl. Essas fontes são distribuídas de forma a cobrir o universo até 

Xn, segundo os geradores do espaço de recobrimento do PFl (geradores obtidos no SnapPea). 

Supomos então, que nosso universo não seja representado exatamente pelo PFl, mas sim por 

um PF2, que é o PFl após sofrer uma rotação. Nesse caso nosso catálogo não irá mudar, 

mas algumas fontes em PFl serão imagens com relação a PF2 e vice-versa. Iremos puxar as 

imagens do catálogo gerado com PFl para o interior do PF2. Procuramos com isso verificar se 

será possível identificar a topologia mesmo se o PF estiver orientado de forma diferente do que 

usamos. 

Representamos como um hiperbolóide Xq — — A”! — A"| = 1, imerso no espaço de 

Minkowski {vide Apêndice B). Os movimentos rígidos em H^, os elements 5 G F, são matrizes 

de transformações de Lorentz 4x4 no espaço de Minkowski {(A'o, A'i, A"2, A^a)}. A rotação no 

PF é feita usando os ângulos de Euler 6, ip, correspondentes à matriz {p,u = 0,..., 3), 

onde = Rvq = e Rij = Rij {(p, 0,ip) éa matriz rotação 3x3 dada em [39]. Os geradores 

Qk, k = 1,..., 20, de nossas variedades, listados no Apêndice B, serão dados por = RçkR~^ 

para as variedades giradas. 

Aplicamos os geradores girados da mesma forma que fizemos para os geradores não gi- 
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rados até que todas as imagens estejam no interior do PF2. As distâncias entre todas as 

fontes e imagens são calculadas e plotamos n{d), em percentagem, versus distância. Desse 

resultado subtrai-se a lista de n{d), em percentagem, de um universo com topologia trivial 

( gerado da mesma forma que anteriormente). As imagens puxadas para o PF girado, PF2, 

usando os novos geradores, não coincide com as fontes dentro de PF2. Por causa disso, o pico 

próximo a distância zero tende a desaparecer quando aumentamos o ângulo de rotação. Calcu- 

lamos a diferença entre as variedades giradas e o modelo aberto, para os ângulos (ç), 6, tp) = 

(2°, 0, 0), (0,5°, 0), (100°, 100°, 60°); os resultados são mostrados na Fig.4.12. O pico é bas- 

tante visível no primeiro gráfico, bem menor no segundo, e no terceiro fica completamente 

diluído. 
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Figura 4.11: Variação do método de cristalografia aplicado a modelos hiperbólicos (a) corresponde a v2293 com 

observador no centro do PF; (b) distribuição para topologia trivial; (c) diferença entre (a) e (b). 



4.3 Modelo Hiperbólico 57 
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Figura 4.12: Diferença entre v2293 com diferentes orientações do PF e o modelo com topologia trivial; (a) rotação 

de (2°, 0,0); (b) rotação de (0,5°,0); (c) rotação de (150®, 100°, 60®). 
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Conclusão 

Por muito tempo desconsiderou-se a hipótese de nosso universo possuir uma topologia não- 

trivial. No entanto, não há nada (física, matemática ou observacionalmente) que impeça essa 

possibilidade. Assim, é crescente o número de pesquisadores que hoje procuram investigar 

diferentes variedades compatíveis com os modelos de universo que temos, métodos que possi- 

bilitem obter informações topológicas e, finalmente, dados observacionais mais precisos a fim 

de testar esses métodos. 

Nesse trabalho nos dedicamos a investigar métodos que possam auxiliar na obtenção de 

informações sobre a topologia do universo. 

Analisamos, primeiramente, a possibilidade de usar raios de luz polarizada de fontes cósmicas 

como meio de observar sinais da topologia, não foi possível chegarmos a nenhum resultado. Es- 

tou planejando para o futuro uma pesquisa mais aprofundada dessa questão. Então, voltamos 

nossa atenção a direções reais de galáxias espirais, analisando sua distribuição em universos 

com topologias não-triviais. Os resultados nesse caso foram bons, possibilitando identificar tal 

topologia. Ainda não conseguimos, no entanto, esclarecer se os sinais da topologia são vis- 

tos somente na amplitude dos picos em zero grau ou se há alguma informação no restante da 

distribuição. 

Usamos, também, o método de cristalografia cósmica (desenvolvido por R. Lehoucq, M. 

Lachièze-Rey, J.-R Luminet) mostrando que para universos com seção espacial euclidiana com 
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poliedro fundamental de tamanho da ordem do raio do universo observável, ainda obtemos 

sinais da topologia não-trivial. Aplicamos esse método também a universos hiperbólicos sem, 

no entanto, obtermos aparentes sinais da topologia. Assim, desenvolvemos uma variação do 

método com a qual obtivemos melhores resultados. Entretanto essa variação necessita várias 

aplicações do método, usando várias topologias, a um catálogo real. Isso porque ele apresenta 

sinais da topologia somente quando aplicamos o método usando a topologia certa. 

É certo que todos esses métodos merecem uma análise ainda mais profunda, principalmente 

no sentido de verificar se não existem sinais topológicos que tenham passado desapercebidos 

por nós. Devemos salientar que qualquer método destinado a obter informações topológicas 

deve levar em conta sua aplicação a dados observacionais com todas as dificuldades vindas 

desse fato. É provável, também, que um único método não seja capaz de nos dizer qual a exata 

topologia do universo, seja ela trivial ou não. No entanto, a soma de vários métodos aliados aos 

avanços na obtenção de dados observacionais devem ser úteis na busca de uma conclusão para 

o problema. 



Apêndices 



Apêndice A 

E1 recobre E4 

Gomero et al. em [13] afirmam que os picos obtidos pelo método de cristalografia cósmica, 

através dos histogramas de separação de pares, ocorrem somente graças a translações de Clif- 

ford (translações geradas por movimentos que agindo em um ponto p € PF são tais que a 

distância de p a sua imagem independa de p). 

Além disso, sabemos que E\ é recobrimento de qualquer variedade tridimensional, com- 

pacta e euclidiana. Devemos ilustrar o fato e suas consequências para o método de cristalografia. 

Para isto, usaremos E4 e seus geradores (vide [7], por exemplo) 

a{x,y,z) = {x + L,-y,-z), (A.l) 

b{x,y,z) = {-x,z + L,y), 

c{x,y,z) = {-x,z,y + L). 

Combinando esses geradores, obtemos “palavras” (combinações de geradores formam palavras) 

de duas letras iguais aos geradores de El com poliedro fundamental de dimensões L\ = L2 = 

L3 = 2L, 

aa{x,y,z) = {x + 2L,y,z), (A.2) 

bc{x,y,z) = {x,y + 2L,z), 

cb{x,y,z) = {x,y,z + 2L), 
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ou ainda, as palavras , b'^ e c 'ò 

aa{x,y,z) = {x + 2L,y,z), (A.3) 

bb{x,y,z) = {x,y + L,z + L), 

c~^b{x,y,z) = {x, y - L,z + L), 

com PF de dimensões L\ — 2L c L2 — Lj = L\/2. Esse último é o menor tritoro que recobre 

E4. Note que vamos analisar se El é mesmo recobrimento de EA em somente duas dimensões. 

Isso será feito para facilitar a vizualização do problema, pois fica mais fácil inferir sobre três 

dimensões após provar em duas. 

Na Fig.A.l o quadrado E1E2E3E4 representa a base do PF de EA com volume l' — e 

o quadrado ACIG representa a base do PF de El com volume V' = 8L'^. A Fig.A.2 mostra 

novamente a base do poliedro fundamental de EA no quadrado abcd e no losângulo ABCD 

temos a base de El, com volume V' = AL^, assim como alguns pontos, identificados por letras, 

que ajudarão a ilustrar os movimentos. 

Usando os dois conjuntos de palavras que geram os dois poliedros de El (expressões (A.2) 

e (A.3)) a partir de EA (expressão (A.l)) podemos notar que bc{ADG) = CFI, cb{GHI) — 

ABG (expressão (A.2)) na Fig.A.l e bb{AdD) — BbG,c~^b{DcG) = AaB (expressão (A.3)) 

na Fig.A.2, isto é, os lados dos poliedros são associados como em El. 

Já para mostrar que El é recobrimento de EA devemos ter em mente a definição de espaço 

de recobrimento [19]: 

“ M será um espaço (variedade) de recobrimento de M com mapa de recobrimento tt se é 

conexo e se cada p e M tem uma vizinhança conexa U tal que 7r“^ [U) = UUa, uma união 

de componentes abertos de Uq, com a propriedade que tx\^ , a restrição de tt a Üq , é um 

difeomorfismo em U. ” 

Usaremos, para demonstrar que El é recobrimento de EA, o menor El obtido a partir de 

EA. Considere na Fig.A.2 o ponto p' e sua vizinhança U' contidos na região (1). Pela definição. 
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Figura A.l: Esta figura representa El como recobrimento de E4. 

para que El seja recobrimento de E4,7r“^([/') = UÍ/q, ou seja, em nosso caso temos: 

[Üo^U'] C (1), 

[Ü,^b{U')] C 6(1), 

onde U' G [EA. = M] e í/q G \e\ = Afj para cr = 0,1; então 

= 6-1 : —> [/'. 

O mesmo ocorre nas regiões (2), (3) e (4). Agora, se considerarmos p na linha do com vizinhança 

U C [(1) U (2)] e [/ n do 7^ 0 já que p G do, temos que 
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Z 

Figura A.2: As menores dimensões de EI que recobrem E4. 

[Üi^b{{i)nu)uc{{2)nu)] c [c(2)uò(i)]. 

Note que Üi é um disco, pois c (2) U ò (1) ^ aB th cC assim 

7T Vo 

'^\u. 

- I-.Üo^U, 

' c-i (t/l) se Ui e (2) 

ò-i (^i) se Üi e (1) 
:Ui —>U . 

Isto mostra que El é espaço de recobrimento de E4. 

A Fig.A.3 também tenta ilustrar esse fato. Os polígonos são representados como se juntás- 

semos as Fig.A.l e Fig.A.2 e com quatro cores base em E4, que através dos movimentos, são 

espalhadas formando El menor (V^ = 4L^) e El maior {V = 8L^). Podemos ver, pela Fig.A.3, 

que El menor tem seus lados associados juntando cores iguais, por exemplo, as diagonais de 



A El recobre E4 65 

Y 

Figura A.3: Figura representando o recobrimento de E4 por El. 

«2 e «3 são identificadas em El. Em El maior as associações de lados opostos ocorrem com 

diferentes cores, mas que são ligadas por uma aresta em EA, por exemplo, as arestas externas 

de /?3 e 72 correspondem à aresta comum de /? e 7, e portanto são identificadas. Além disto, é 

possível verificar que El recobre EA, assim como que El maior recobre El menor. 

As outras variedades euclidianas fechadas também são recobertas por El. Graças a isso, o 

método de cristalografia apresenta seus picos pronunciados para qualquer das variedades El — 

E6, como observaram Gomero et al. [13], A variedade euclidana EA sendo recoberta por El, 

apresenta picos por causa de El. 

Nas Fig.A.4 e Fig.A.5 mostramos o método de cristalografia aplicado à EA com dimensões 

Li = L2 = L3 = L e a El menor (com dimensões Li = 2L e L2 = L3 = L\/2) e notamos que 

os picos ocorrem nas mesmas posições nos caso de {d/Vf' = 2 e {d/Vf = 4. Em {d/Vf — 6 
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a Fig.A.4 não apresenta picos provavelmente pelo tamanho do PR 

Figura A.4: Gráfico usando o método de cristalografia para a topologia de El. com dimensões: L\ = 11200Mpc, 

Lo = L3 = 7920Mpc, 20 fontes, raio de simulação= SOOOMpc. 
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Figura A.5: Gráfico usando o método de cristalografia para a topologia de E4, com dimensões: Li = L2 = L3 = 

5600Mpc, 20 fontes, raio de simulação= SOOOMpc. 



Apêndice B 

Algumas propriedades do espaço hiperbólico 

Neste apêndice listaremos os geradores de movimentos rígidos F das duas variedades hiperbó- 

licas usadas na tese, v2293(-t-3,2) e v2091 (-1-3,2), de acordo com a notação do SnapPea [30]. O 

poliedro fundamental (PF) em ambos os casos é um icosaedro regular em . Esses movimen- 

tos rígidos em são tais que movem o PF para réplicas de si mesmo através de uma corres- 

pondência um a um entre esta ação e a transformação de Lorentz do espaço de Minkowski. Os 

pontos em são representados por coordenadas de Minkowski, m = 0,3, sujeitos às 

condições -^Xl - Xf - = 1, Xo >1. Os geradores abaixos listados são matrizes 4x4 

dadas nessas coordenadas. 

Geradores de v2293(-i-3,2); 

^01 = 

/ 2.927050983125 

-0.1870224957019 

-2.16577814099 

V -1.685839579534 

1.196110062464 

0.3698429312562 

-0.550041771044 

-1.411151847901 

2.477094116569 

-0.3888091161172 

-2.297695293219 

-1.305916947239 

0.03086930421046 \ 

-0.8643038188753 

0.3296139341984 

-0.3811646324125/ 

^02 = 

/ 2.927050983125 

-1.196110062464 

-2.477094116569 

\-0.03086930421046 

0.1870224957019 

0.3698429312562 

-0.3888091161172 

-0.8643038188753 

2.16577814099 

-0.550041771044 

-2.297695293219 

0.3296139341984 

1.685839579534 \ 

-1.411151847901 

-1.305916947239 

-0.3811646324125/ 
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<703 = 

^04 = 

^05 = 

^06 = 

^07 = 

ff08 = 

/ 2.927050983125 

-2.537381475268 

-1.053602033012 

V 0.1387280173956 

/ 2.927050983125 

1.682558543375 

-1.815850827583 

V-1.199712450339 

/ 2.927050983125 

0.521423376082 

0.7987237219073 

V-2.580268500903 

/ 2.927050983125 

1.828935603484 

-1.910899829885 

V 0.755700903973 

/ 2.927050983125 

1.196110062464 

2.477094116569 

V 0.03086930421053 

/ 2.927050983125 

-0.9046434946217 

-0.5498822032844 

V -2.539070138449 

-1.682558543375 

1.346609490765 

1.415003253723 

-0.1241447671841 

2.537381475268 

1.346609490765 

-1.995245012356 

-1.282164174777 

-1.828935603484 

-1.102258987503 

-0.5307852549926 

1.687690012782 

-0.521423376082 

-1.102258987503 

-0.2177604741311 

0.0974055311563 

0.9046434946217 

1.054574327793 

0.5518504164179 

0.6338090859406 

-1.196110062464 

1.054574327793 

0.7917448789244 

0.8316804166177 

1.815850827583 

-1.995245012350 

-0.3020197982498 

-0.4744424202861 

1.053602033012 

1.415003253723 

-0.3020197982498 

-0.1289460250919 

1.910899829885 

-0.2177604741311 

0.2671715829393 

-2.129022752586 

-0.7987237219073 

-0.5307852549926 

0.2671715829393 

-1.133510450896 

0.5498822032844 

0.7917448789244 

0.2771009283465 

-0.773773584258 

-2.477094116569 

0.5518504164179 

0.2771009283465 

2.598975077939 

1.199712450339 \ 

-1.282104174777 

-0.1289460250919 

0.8824612906096 / 

-0.1387280173956\ 

-0.1241447671841 

-0.4744424202861 

0.8824612906096 

—0.7ÕÕT00903973 \ 

0.0974055311563 

-1.133510450896 

0.5260704101887 / 

2.580268500903 \ 

1.687690012782 

-2.129022752586 

0.5260704101887 / 

2.539070138449 \ 

0.8316804166177 

2.598975077939 

-0.02265826176451/ 

-0.03086930421053 \ 

0.0338090859406 

-0.77377.3584258 

-0.02265826176451/ 



70 B Algumas propriedades do espaço hiperbólico 

509 = 

5l0 = 

5ll = 

512 = 

513 = 

5I4 = 

/ 2.927050983125 

-2.357245229757 

0.1374804329214 

V-1.411425348774 

/ 2.927050983125 

-0.521423376082 

-0.7987237219072 

V 2.580268500903 

/ 2.927050983125 

-1.828935603484 

1.910899829885 

V -0.7557009039729 

/ 2.927050983125 

-1.682558543375 

1.815850827583 

V 1.199712456339 

/ 2.927050983125 

0.9046434946216 

0.5498822032845 

V 2.539070138449 

/ 2.927050983125 

2.120402171327 

0.01631208339973 

V -1.752499930265 

0.521423376082 

-0.9742837210134 

0.1124658787258 

0.5567809212029 

2.357245229757 

-0.9742837210134 

-0.7829697200593 

2.234800823709 

1.682558543375 

-1.569008804673 

0.7067747035312 

-0.9325685718439 

1.828935603484 

-1.569008804673 

1.356316735471 

0.2088581471535 

-2.120402171327 

-0.3446362027779 

-0.947848573793 

-2.116344569549 

-0.9046434946216 

-0.3446362027779 

0.6989802561647 

1.100469146132 

0.7987237219072 

-0.7829697200593 

-0.9128809944435 

-0.4376828062301 

-0.1374804329214 

0.1124658787258 

-0.9128809944435 

-0.4158131618197 

-1.815850827583 

1.350316735471 

-1.556693276459 

-0.1855402493899 

-1.910899829885 

0.7067747035312 

-1.556693276459 

-1.314805583092 

-0.01631208339973 

0.6989802561647 

0.5952167494787 

-0.3967489214816 

-0.5498822032845 

-0.947848573793 

0.5952167494787 

-0.2228688847454 

-2.580268500903 \ 

2.234800823709 

-0.4158131618197 

1.578147721082 / 

1.411425348774 \ 

0.5567809212029 

-0.4376828662301 

1.578147721082 / 

-1.199712456339N 

0.2088581471535 

-1.314805583092 

0.8166850867567 / 

0.7557009039729 \ 

-0.9325685718439 

-0.1855402493899 

0.8166850867567 / 

1.752499930265 \ 

1.100469146132 

-0.2228688847454 

1.676470436424 / 

-2.539070138449 \ 

-2.116344569549 

-0.3967489214816 

1.676470436424 / 



B Algumas propriedades do espaço hiperbólico 71 

í?15 = 

_gl6 = 

gll = 

gl% = 

^19 = 

520 = 

/ 2.92705Ü98312Õ 

0.04982056272834 

-2.319570657311 

V 1.478085699506 

/ 2.927050983125 

0.1870224957019 

2.16577814099 

V 1.685839579534 

/ 2.927050983125 

2.537381475268 

1.053602033012 

V-0.1387280173956 

/ 2.927050983125 

2.357245229757 

-0.1374804329213 

V 1.411425348774 

/ 2.927050983125 

-0.04982056272836 

2.319570657311 

V -1.478085699506 

/ 2.927050983125 

-2.120402171327 

-0.01631208339967 

V 1.752499930265 

-0.1870224957019 

0.2115860299549 

-0.3524449462522 

-0.930586549273 

-0.04982056272834 

0.2115860299549 

-0.6529903951466 

0.7289149362201 

-2.357245229757 

-2.366650084223 

-0.8995445086323 

-0.3826122437245 

-2.537381475268 

-2.366650084223 

0.4968671119867 

-1.261108719701 

2.120402171327 

0.1483332188142 

2.232180037465 

-0.70105271179 

0.04982056272836 

0.1483332188142 

-0.9571194062623 

0.25.37750713187 

-2.16577814099 

-0.6529903951466 

1.890691691163 

-1.299801303585 

2.319570657311 

-0.3524449462522 

1.890691691163 

1.63752115195 

0.1374804329213 

0.4968671119867 

-0.8459360630452 

-0.2375207774106 

-1.053602033012 

-0.8995445086323 

-0.8459360630452 

-0.7650418930992 

0.01631208339967 

-0.9571194062623 

0.1559446338399 

0.2446830549862 

-2.319570657311 

2.232180037465 

0.1559446338399 

-1.171947774339 

-1.685839579534 \ 

0.7289149362201 

1.63752115195 

-0.7932607267434/ 

-1.478085699506 \ 

-0.930586549273 

-1.299801303585 

-0.7932607267434/ 

-1.411425348774 \ 

-1.261108719701 

-0.7650418930992 

0.9035691528936 / 

0.1387280173956 \ 

-0.3826122437245 

-0.2375207774106 

0.9035691528936 / 

-1.752499930265 \ 

0.2537750713187 

-1.171947774339 

1.622773130471 / 

1.478085699506 \ 

-0.70105271179 

0.2446830549862 

1.622773130471 / 
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Geradores de v2091(+3,2): 

/ 2.927050983125 

-1.749954132618 
gOl = 

1.225337G29739 

V 1.733157720662 

/ 2.927050983125 

-2.477717325266 
g02 = 

-1.175712839665 

V-0.2150433271122 

/ 2.927050983125 

-0.1946556456187 
g03 = 

2.670881531187 

\-0.6293873877053 

/ 2.927050983125 

2.477717325266 
^04 = 

1.175712839665 

V 0.2150433271122 

/ 2.927050983125 

-1.937103954345 
gOò = 

1.951582280297 

V-0.0811315666381 

/ 2.927050983125 

-0.1081591269244 
g06 = 

-1.495793002437 

V -2.306194344572 

2.477717325266 

-1.757524433149 

1.480397940837 

1.363309556767 

1.749954132618 

-1.757524433149 

-0.7664746148125 

0.6212600083691 

-2.477717325266 

0.1432850342659 

-2.463459217663 

1.024656637997 

0.1946556456187 

0.1432850342659 

-0.00183237791719 

1.008641096584 

0.1081591269244 

-0.2157179937455 

-0.01105772092309 

0.9823654466233 

1.937103954345 

-0.2157179937455 

-0.5329535194582 

-2.102807176897 

1.175712839665 

-0.7664746148125 

-0.1663812630297 

1..329336158206 

-1.225337629739 

1.480397940837 

-0.1663812630297 

0.5312170167934 

-1.175712839665 

-0.00183237791719 

-1.42713814564 

-0.5878554558763 

-2.670881531187 

-2.463459217663 

-1.42713814564 

-0.1680879228558 

1.495793002437 

-0.5329535194582 

1.717227458099 

0.06698588946252 

-1.951582280297 

-0.01105772092309 

1.717227458099 

1.363701206542 

0.2150433271122 \ 

0.6212600083691 

0.5312170167934 

0.6148887018037/ 

-1.733157720662 \ 

1.363309556767 

1.329336158206 

0.6148887018037 / 

-0.2150433271122 \ 

1.008641096584 

-0.1680879228558 

-0.02516388300055/ 

0.6293873877053 \ 

1.024656637997 

-0.5878554558763 

-0.02516388300055/ 

2.306194344572 \ 

-2.102807176897 

1.363701206542 

-0.1924924699789/ 

0.0811315666381 \ 

0.982.3654466233 

0.06698588946252 

-0.1924924699789/ 
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(/07 = 

^08 = 

^09 = 

^10 = 

^11 = 

gl2 = 

/ 2.9270Õ098312Õ 

1.06938C454541 

2.3891882G5763 

V 0.8460611676457 

/ 2.927050983125 

-0.4324542439964 

-1.631502117525 

V 2.172282584098 

/ 2.927050983125 

1.937103954345 

-1.951582280297 

V0.08113156663811 

/ 2.927050983125 

-2.386886343163 

0.4676514815009 

V-1.285186031081 

/ 2.927050983125 

0.9224188382667 

-0.2698310617833 

V 2.57758843548 

/ 2.927050983125 

0.1081591269244 

1.495793002437 

V 2.306194344572 

0.4324542439964 

0.5274330489294 

-0.04350688323131 

0.9523330316433 

-1.069386454541 

0.5274330489294 

-0.03900052313482 

-1.365240172002 

2.386886343163 

1.4360680134 

-2.152106144172 

0.05808803907369 

-1.937103954345 

1.4360680134 

-0.5185499239943 

1.556016184734 

-0.1081591269244 

-0.9556123944172 

0.2019019191759 

0.2402893326938 

-0.9224188382667 

-0.9556123944172 

-0.3354017069999 

-0.9083871199919 

1.631502117525 

-0.03900052313482 

1.718442964555 

0.8409708058283 

-2.389188265763 

-0.04350688323131 

1.718442964555 

-1.937338766954 

-0.4676514815009 

-0.5185499239943 

0.1466429202899 

-0.9634831282406 

1.951582280297 

-2.152106144172 

0.1466429202899 

-0.3944722992969 

-1.495793002437 

-0.3354017069999 

0.9714821300026 

-1.476863186679 

0.2698310617833 

0.2019019191759 

0.9714821300026 

-0.2970974385986 

-2.172282584098 \ 

-1.365240172002 

-1.937338766954 

-0.3188250303592/ 

-0.8460611676457\ 

0.9523330316433 

0.8409708058283 

-0.3188250303592/ 

1.285186031081 \ 

1.556016184734 

•0.3944722992969 

-0.2736939393144/ 

-0.08113156663811 \ 

0.05808803907369 

-0.9634831282406 

-0.2736939393144 / 

-2.306194344572 \ 

-0.9083871199919 

-0.2970974385986 

-2.32488672996 / 

-2.57758843548 \ 

0.2402893326938 

-1.476863186679 

-2.32488672996 / 
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gU = 

gU = 

glb - 

gl6 = 

gi7 = 

gl8 = 

/ 2.92705098312Õ 

2.08407157062 

0.7074370472493 

V-1.650395701196 

/ 2.927050983125 

-0.9224188382667 

0.2698310617832 

V -2.57758843548 

/ 2.927050983125 

1.749954132618 

-1.225337629739 

V-1.733157720662 

/ 2.927050983125 

-1.069386454541 

-2.389188265763 

V-0.8460611676457 

/ 2.927050983125 

2.386886343163 

-0.4676514815009 

V 1.285186031081 

/ 2.927050983125 

-2.08407157062 

-0.7074370472493 

V 1.650395701196 

0.9224188382667 

1.270906102897 

-0.4341480409886 

-0.217184595074 

-2.08407157062 

1.270906102897 

-0.5318943003356 

1.856135890056 

1.069386454541 

1.434040276345 

-0.1359709087772 

-0.2619690572225 

-1.749954132618 

1.434040276345 

1.345911998254 

0.4408955035387 

2.08407157062 

2.230064430208 

0.0097317147572 

0.6083356329459 

-2.386886343163 

2.230064430208 

0.6652050289992 

-1.132051819348 

-0.2698310017832 

-0.5318943003350 

-0.7304992200747 

-0.5062293399673 

-0.7074370472493 

-0.4341486409886 

-0.7304992200747 

0.8822431766915 

2.389188205763 

1.345911998254 

-1.546795403343 

-1.582455510404 

1.225337629739 

-0.1359709087772 

-1.546795403343 

0.3006463021839 

0.7074370472493 

0.6652050289992 

-1.02857533105 

0.00149451369808 

0.4676514815009 

0.0097317147572 

-1.02857533105 

0.4007941993519 

2.57758843548 \ 

1.856135890056 

0.8822431766915 

-1.849423877197/ 

1.650395701196 \ 

-0.217184595074 

-0.5062293399673 

-1.849423877197 / 

0.8460611676457 \ 

0.4408955035387 

0.3006463021839 

-1.196261867377/ 

1.733157720662 \ 

-0.2619690572225 

-1.582455510404 

-1.196261867377 / 

-1.650395701196N 

-1.132051819348 

0.4007941993519 

-1.510506093534/ 

-1.285186031081 \ 

0.6083356329459 

0.00149451369808 

-1.510506093534 / 
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^19 = 

p20 = 

/ 2.927050983125 

0.1946556456187 

-2.670881531187 

V 0.6293873877053 

/ 2.927050983125 

0.4324542439964 

1.631502117525 

V-2.172282584098 

-0.4324542439964 -1.631502117525 2.172282584098 \ 

0.952035556825 -0.2422611012101 0.2698078894434 

0.5219195895366 1.859812530243 -2.09816716399 

-0.09080150741791 0.3797447441102 1.115202896057 / 

-0.1946556456187 2.670881531187 -0.6293873877053 \ 

0.952035556825 0.5219195895366 -0.09080150741791 

-0.2422611012101 1.859812530243 0.3797447441102 

0.2698078894434 -2.09816716399 1.115202896057 / 

É conveniente usarmos uma representação compacta do espaço hiperbólico, chamado mo- 

delo de Klein (vide [9]), que mapeia hP no interior de uma bola de raio unidade no espaço 

ordinário. As coordenadas cartesianas Xi,i = 1,..., 3, representam os pontos nesse modelo e 

são dadas por 

Xi = tanh X sin 0 COS 0, (B.l) 

X2 = tanhxsin0sin0, 

X3 = tanh X COS 9, 

em termos das coordenadas (x, 9,4>). Nessas coordenadas a distância entre dois pontos é dada 

por[47] 

d (x, y) = cosh ' 
1 - x.y 

L(l_x2)i/'^(l-y2)*/2_ 

Assim, a distância de um ponto à origem é dada por 

d (x, 0) cosh * 

tanh”^ 

1 

(1 -X2)'/^ 

Mas das equações (B.l) obtemos que tanh x = |x|; então 

d (x, 0) = X — tanh“^ |x 
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As relações entre as coordenadas de Minkowski e as coordenadas cartesianas do modelo de 

Klein são Xi — XíXq com i = 1,3 e Xq = cosh x- 

As dimensões do icosaedro devem ser tais que permitam transformar H^, em um espaço 

hiperbólico fechado, pela identificação das faces do icosaedro. O icosaedro tem, então, raio 

da esfera circunscrita Xout = cosh“^ ('^^/2) ~ 1.3826, com r = (\/5 + l) /2, que é a 

distância de um vértice ao centro geométrico do icosaedro. A esfera inscrita tem raio Xin — 

cosh~^ ^\/3r/2) rí 0.8683, que é a distância do centro de uma face até o centro do icosaedro. 

Cada aresta tem o comprimento de 2xin- 

Devemos notar que o primeiro elemento da primeira coluna dos geradores é sempre o 

mesmo. Isso ocorre pois a primeira coluna de nossos geradores dá exatamente o ponto do 

centro do poliedro colado por uma face ao PF, cujo centro é (1,0,0,0) na representação de 

Minkowski. O primeiro elemento dessa coluna é equivalente à distância de um centro a outro 

Xo = cosh (2xin) = 2.9270509 de dois poliedros ligados pelas faces. E todas as faces do PF 

têm a mesma distância ao centro do PF. 

ggg 

Figura B.l; Corte transversal em um vértice do PF na “tessellation”. 

Os 20 geradores de cada variedade acima criam réplicas do PF ligadas a ele pelas faces. Isso 

não significa, entretanto, que eles representam todos os vizinhos do PF, ligados a ele. De fato, na 
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região dos vértices, há espaços vazios não preenchidos pelos vinte geradores. Devemos procurar 

preencher esses espaços usando combinações de dois geradores para criar as réplicas do PF. 

Essas réplicas devem ser ligadas ao PF e seus centros devem estar a uma distância, x» do centro 

ao PF, maior que 2xin e rnenor que 2\oui- Veja na Fig.B. 1 um esquema representando um corte 

transversal em um vértice do PF. Analisamos as combinações de dois geradores e verificamos 

quais os que tinham menor x entre 2xout e 2xm e encontramos o valor de x = 2.485480. A 

partir disso obtivemos 60 geradores de duas letras ligados ao PF pelo vértice. Das combinações 

de três geradores usamos 12 ligadas ao PF pelo vértice, com seus centros a uma distância 

X = 2xout- Obtivemos, assim, 92 palavras de geradores (20 de uma letra, 60 de duas letras e 12 

de três letras) para completar a vizinhança mais próxima ao PF. 

Agora precisamos saber qual o raio, a partir do centro do PF, dentro do qual podemos garan- 

tir que o universo foi recoberto , sem buracos, pela primeira camada de réplicas. Por construção, 

em tomo de uma aresta teremos três réplicas do icosaedro (neste caso o PF e duas réplicas suas) 

e portanto 3 faces (cada uma composta de faces associadas, réplica-PF, réplica-PF, réplica- 

réplica). O raio que queremos será a distância do centro do PF até o ponto médio da aresta do 

PF mais a altura da face comum réplica-réplica [32]. Essa altura é obtida através da lei dos 

cossenos para o espaço hiperbólico 

cosh c = cosh a cosh h — sinh a sinh h cos C, 

onde a, ò, c são os lados do triângulo como na Fig.B.2 e aqui c = 2xini i> = Xin-, C = 90°, assim 

cosh 2xin = cosh a cosh Xm» 

o que implica em a — 1.366812758. A distância do centro do PF até a aresta do icosaedro é 

obtida no programa SnapPea [30] e tem o valor Xa = 0.97265934. Assim, podemos garantir 

que o espaço de recobrimento esta completo até um Xmax = a + Xa = 2.339472098. 
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Figura B.2: Triângulos no espaço hiperbólico. 
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