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Abstract: We investigate the problem of population transfer in a two-states system driven by an

external electromagnetic field featuring a few cycles, until the extreme limit of two or one cycle.

Taking the physical constraint of zero-area total field into account, we determine strategies leading

to ultrahigh-fidelity population transfer despite the failure of the rotating wave approximation. We

specifically implement adiabatic passage based on adiabatic Floquet theory for a number of cycles

as low as 2.5 cycles, finding and making the dynamics follow an adiabatic trajectory connecting the

initial and targeted states. Nonadiabatic strategies with shaped or chirped pulses, extending the

π-pulse regime to two- or single-cycle pulses, are also derived.

Keywords: quantum control; quantum system driven by an external field; adiabatic passage;

adiabatic Floquet theory

1. Introduction

Quantum (or coherent) control aims at developing methods for manipulating quantum
dynamical processes at the atomic or molecular scale by shaped external electromagnetic
fields [1,2]. It can be conceptually formulated as the design of the field constituents (phase,
amplitude, and polarization) driving the quantum system, such as atom, molecule [3],
photonic field [4], nanostructures (quantum dot) and plasmonic field [5], Bose–Einstein
condensate [6,7], superconducting circuit [8,9], ..., from an initial state to a target state
featuring the desired outcome. The latter can be a single bare state of the system, a coherent
superposition of bare states, or the full propagator (i.e., for any initial state) as it is the
case in quantum computation for which quantum gates are devised [10–13]. For instance,
applications to quantum information target the superposition of a few states (qubit and its
generalization) while the control of chemistry deals with wave packets made up of many
states, such as, e.g., an aligned or oriented molecule corresponding to a superposition of
many rotational states [14,15]. Various techniques have been proposed and implemented:
Adiabatic passage [16,17] and adiabatic Floquet theory [18], composite pulses [19–21],
optimal control [22–24], robust single-shot [25] and optimal [26] shaped pulses as a variant
of shortcut to adiabaticity [27,28], and reinforcement learning [29,30].

Ultrashort laser pulses that last only a few optical cycles have been transformative tools
for studying and manipulating light–matter interactions [31]. They allow in particular high
nonlinear effects for strong-field processes in the subfemtosecond extreme ultraviolet/X-ray
regime [32]. A different single-cycle THz regime has been used to experimentally demonstrate
enhanced orientation of molecules [33]. Such single-cycle THz pulses have been investigated
for the control of the rotational wavepackets, resulting in long-lasting orientation [34] and
orientational quantum revivals [35].

The goal in this paper is twofold: We implement adiabatic Floquet theory [18] and
explore its limit for few cycles. We show that it remarkably applies for a number of cycles
as low as 2.5 cycles. In particular, one succeeds to realize an ultrahigh-fidelity population
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transfer (defined by a deviation from the perfect transfer below or of the order 10−4) by an
appropriate design based on parallel adiabatic passage. Its obstruction for a lower number
of cycles is due to the presence of nonadiabatic terms emerging from the counter-rotating
term beyond the rotating wave approximation (RWA) [36]. We also investigate how one
can control complete population transfer when a two-level system is driven by a shaped
and chirped few-cycles pulse, typically N < 3, taking the constraint of a zero field area into
account. One generalizes the two standard techniques in this context, adiabatic passage
and π-pulse method [36]. The latter is of importance as it is known to achieve the so-called
quantum speed limit in RWA [24]. The former is known to induce robust transitions [17].
We achieve complete transfer for a single cycle N = 1 pulsed laser featuring an appropriate
chirped (time-dependent) frequency around the resonance.

After having defined the model in Section 2, we apply adiabatic Floquet theory in
Section 3. In Section 4, we introduce the notion of generalized π-pulse in the context of
few cycles. A generalized π-pulse consists in expanding the Rabi frequency as a Fourier
series and selecting the appropriate modes leading to resonance and allowing complete
transfer. This gives rise to specific strategies depending on the modes chosen in the Fourier
expansion and on the chirping of the frequency. Results from numerical optimization
are presented and connected to the preceding strategies in Section 6. We finally conclude
in Section 7.

2. The Model with a Few-Cycle Pulse

We consider the two-level system {|−〉, |+〉} driven by a few-cycle pulse (in units
such that h̄ = 1)

H =

[
−ω0/2 Ω(t) cos φ(t)

Ω(t) cos φ(t) ω0/2

]
, (1)

where Ω(t) is the Rabi frequency defined as Ω(t) = −µ01E(t)/h̄ (considered positive
without loss of generality) with the dipole moment µ01 coupling the two states; ω0 > 0,
and φ(t) are the Bohr frequency and the instantaneous phase, respectively. The effective
(instantaneous) frequency ω(t) := φ̇(t) can be modified at will through the phase φ(t).

One can exhibit an instantaneous relative phase φ0(t) with respect to the Bohr frequency:

φ(t) = ω0(t − ti)− φ0(t). (2)

and the corresponding detuning ∆:

∆(t) := ω0 − ω(t) = φ̇0(t), φ0(t) =
∫ t

ti

∆(s)ds + φ0,i (3)

with ti = −T/2 the initial time, t f = −ti the final time with full duration T = t f − ti,
and the initial phase φ0,i. We will restrict our study to the near-resonant case φ̇ ≪ ω0 for
the ease of implementation. The number N of oscillations in the pulse (with respect to the
resonant frequency ω0 in this near-resonant case) is such that

N = T
ω0

2π
. (4)

The physical implementation of the few-cycle field imposes its zero time-integrated area [37]:

∫ t f

ti

Ω(t) cos(φ(t))dt = 0, (5)
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which will be imposed for all the derived fields in this work. After application of the
resonant (or rotating wave) transformation:

R =

[
1 0

0 e−iφ(t)

]
, (6)

we obtain (where we have for convenience shifted the origin of energy such that a traceless
matrix is derived)

H̃ = R† HR − iR† ∂R

∂t
=

1

2

[
−∆(t) Ω(t)
Ω(t) ∆(t)

]
+

Ω(t)

2

[
0 e−2iφ(t)

e2iφ(t) 0

]
. (7)

We notice that the rotating wave transformation changes not the amplitude of the solution
but its phase. The first matrix corresponds to the standard (resonant) RWA. The second
matrix defines the counter-rotating term. The full Hamiltonian (7) does not feature any ap-
proximation in the two-state model. It is well known that the counter-rotating Hamiltonian
can be neglected in the limit Ω ≪ ω0, since, in this case, this term features fast oscillations
that have a weak effect compared to the resonant, non-oscillatory, RWA Hamiltonian.

In the frame of the Floquet theory (see Appendix A and the next section), the RWA
Hamiltonian characterizes the interaction between the states |−, 0〉 and |+,−1〉, correspond-
ing to the bare states of the system dressed with 0 photon and −1 photon, respectively,
which are near degenerate (exactly degenerate on exact resonance). This means that the
system can emit a photon when its state is transferred from state |+〉 to state |−〉 (or
reciprocally can absorb a photon from state |−〉 to state |+〉).

Taking the simple example of a resonant (∆ = 0) and flat (constant) pulse of amplitude
Ω0 and duration T, the well-known π−pulse condition TΩ0 = π in (4) gives Ω0/ω0 =
1/(2N ). Thus, the constraint of a few oscillations in the field, typically N < 3, implies that
Ω0, while still smaller than ω0, becomes of the same order. This condition clearly prevents
to apply the resonant approximation. This can be reformulated as follows: a small number of
cycles in the pulse corresponds to a broadening of the spectrum of the field instantaneously
available and thus a non-negligible influence of the counter-rotating term.

3. Few-Cycle-Pulse Adiabatic Floquet Theory

We consider the model (1) written with the time-dependent phase θ + φ(t), where the
initial phase θ ≡ −φ0,i serves for the Floquet representation, and the explicit dependence
of the Rabi frequency Ω(t):

HΩ(t)(θ + φ(t), t) =
h̄ω0

2

[
−1 0
0 1

]
+ h̄Ω(t) cos(θ + φ(t))

[
0 1
1 0

]
. (8)

The quasienergy operator (A19)

K ≡ KΩ,ω = −ih̄ω
∂

∂θ
+ HΩ(θ) (9)

features the two parameters Ω ≡ Ω(t) and ω ≡ ω(t) that can be designed independently
as functions of time. They will both normalized with ω0. The resonant transformation (6)
is represented in the Floquet picture by the transformation (which dresses the upper state
with minus one photon):

R =

[
1 0

0 e−iθ

]
, (10)

which leads to

R†KR = −ih̄ω
∂

∂θ
+

h̄

2

[
−∆(t) Ω(t)
Ω(t) ∆(t)

]
+

h̄Ω(t)

2

[
0 e−2iθ

e2iθ 0

]
. (11)
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Note that we have omitted as before a diagonal term equal to −ω/2 times identity in
order to work with traceless matrices (without loss of generality for population transfer
consideration).

Adiabatic passage through the (one-photon) resonance, using a pulsed (symmetric)
Rabi frequency Ω(t) = Ω0Λ(t) with Ω0 the peak value and the shape 0 ≤ Λ(t) ≤ 1,
with Λ(±∞) → 0, Λ(0) = 1, and of characteristic width τ, and a chirped frequency ω(t),
of characteristic width around the resonance ∆0, requires in general Ω0 ∼ ∆0 ≫ 1/τ. The
chirped frequency induces for the full coupling Ω(t) cos φ(t) in Equation (1) the phase

φ(t) =
∫ t

ti
ω(s)ds, which can be rewritten as a function of the detuning; see Equation (2):

φ(t) = ω0(t − ti)−
∫ t

ti
∆(s)ds − φ0,i . We consider smooth Gaussian pulses Λ(t) = e−(t/τ)2

,

which allows in principle a transfer exponentially accurate as a function of the pulse dura-
tion [38] (see Appendix A.2). Defining τΩ0 ∼ TΩ0 = 2κπ (with a larger κ ensuring a better
adiabatic passage) leads to Ω0/ω0 = κ/N . This shows that adiabatic passage, for a given
κ, breaks more strongly the rotating wave approximation for a smaller number N of cycles,
since Ω0 gets closer to ω. This requires to take into account the full quasienergy operator.

The quasienergies λ±,k can be obtained from the numerical diagonalization of the
quasienergy operator (9) [or equivalently (11), apart a change of energy reference], as shown
in Figure 1. We emphasize that the quasienergies do not depend on the number of cy-
cles considered N . The complete spectral information is contained in one Floquet zone
composed of two surfaces λ±,0 within a given band of energy of width h̄ω. The other
surfaces can be constructed using the periodicity of the spectrum: λ±,k ≡ λ±,0 + kh̄ω,
for any (positive or negative) integer k. In Figure 1 we display a few surfaces. Figure 2
shows cross-sections, one for a constant ω (left frame) and for constant Ω (right frame).
Around the one-photon resonance ω ≈ ω0 (for Ω ≪ ω0), one can recognize the surfaces of
Figure 1 of Ref. [17]: For Ω = 0, the horizontal line of energy −0.5h̄ω0 corresponds to the
lower state of the system |−, 0〉, with the notation |±, k〉 for the bare state |±〉 dressed with
k photon, i.e., the state |±〉 ⊗ |k〉 with |k〉 ≡ eikθ . The crossing line (at ω = ω0) corresponds
to the upper state dressed with minus one photon |+,−1〉. One can distinguish in the plane
Ω = 0 resonances appearing as crossings at ω = ω0/(2k + 1) with k = 0, 1, 2 · · · For Ω 6= 0,
they become avoided crossings. For ω = ω0/(2k), we have exact crossings for any Ω, due to
the particular symmetry of this model (one can see an example for k = 1). This means that
only odd numbers of photons can be absorbed (or emitted) in such a system. The maxima of
the upper surface correspond to crossings (for any Ω), and the valleys to avoided crossings
(i.e., to resonances). One can observe that for increasing Ω, the position of the resonances
are shifted in the direction of larger ω. This can be interpreted as a Stark shift of the states.
This implies that moving along a straight line with ω ≈ ω0 for growing Ω allows one to
cross dynamically the three-photon resonance, next the five-photon resonance, and so on,
as shown in Figure 2. The three-photon resonance avoided crossing represents thus the first
dynamical obstruction that can prevent the control of population transfer by a standard
chirped pulse for a large enough Rabi frequency.

It is important to emphasize that the labeling of the surfaces can be only local due
to the multiple crossings. This is this property which, when the resonance is dynamically
crossed (i.e with a change of sign of the detuning during the dynamics), will allow a
population transfer by adiabatic passage of a single Floquet eigenstate that will connect
state |−, 0〉 at early time with state |+,−1〉 at late time [17]. We denote around the one-
photon resonance (ω ≈ ω0) the upper (lower) surface as λ+ (λ−), respectively. Near the
one-photon resonance, the surface λ+ (λ−) is connected to the state |+,−1〉 (|−, 0〉) for
ω < ω0, i.e., ∆ > 0, and to the state |−, 0〉 (|+,−1〉) for ω > ω0, i.e., ∆ < 0, respectively.
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Figure 1. Quasienergy surfaces (in units of h̄ω0) as functions of ω/ω0 and Ω/ω0.

Figure 2. Cross section (full lines) of the quasienergy surfaces (in units of h̄ω0) of Figure 1 as

functions of (i) Ω/ω0 for a constant ω = 0.8ω0, i.e., ∆ = 0.2ω0, where the dashed lines are the

quasienergies in the resonant approximation (left frame); (ii) ∆/ω0 for a constant Ω = 0.4ω0 (full

line) and Ω = 0 (dashed lines) (right frame). One can distinguish the three-photon resonance as an

avoided crossing located around Ω = 1.4ω0 (left frame) and identified by a circle (right frame). The

five-photon-resonance avoided crossing can be seen around Ω = 2.7ω0 (left frame).

To achieve population transfer, we apply the strategy of parallel adiabatic passage,
where the adiabatic dynamics follows a level line λ+ − λ− = const. around the resonance,
which is known to be efficient in the context of RWA for a smooth Rabi frequency [39–41].
In the RWA, the detuning crosses the resonance according to

∆(t) = ±
√

Ω2
0 − Ω2(t), ∆0 = Ω0 > 0, (12)

with the sign + (−) for t < 0 (t > 0), i.e., ∆(−∞) = ∆0 [∆(+∞) = −∆0] the initial (final)
detuning, respectively. We remark that, in the RWA, the symmetric situation: the sign
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− (+) for t < 0 (t > 0), i.e., ∆(−∞) = −∆0 [∆(+∞) = ∆0] the initial (final) detuning,
respectively, leads to the same population transfer. As mentioned above, the quality of
adiabatic passage can be evaluated by the value of τ∆0. It has been shown in [39,41] that
Gaussian-pulse parallel adiabatic passage mainly features (i) high fidelity (corresponding
to population transfer with a deviation from the perfect transfer of the order 10−3) for
the product τ∆0 as low as τ∆0 ≈ 2.4, (ii) a narrow perfect transfer for τ∆0 ≈ 2.58, and
(iii) ultrahigh fidelity for τ∆0 & 4.5.

In the situation of small number of cycles N , one has additionally to keep a sufficient
distance from the neighbouring three-photon resonance. The level lines around the one-
photon resonance correspond thus to the constant distances |λ+ − λ−| which are compared
to the three-photon resonance, as represented in Figure 3. The driving phase corresponding
to a given trajectory of Figure 3, where the pulse amplitude is chosen as a Gaussian pulse of
amplitude Ω0 = ∆(−∞), is given by (2). The initial phase φ0,i, which does not modify the
dynamics in the adiabatic limit, will be chosen to satisfy the zero time-integrated area (5).

Figure 3. Contour plot of |λ+ − λ−| around the one-photon resonance. The dashed line shows the

position of the three-photon resonance, which occurs for a smaller Ω/ω0 when one considers a larger

detuning ∆/ω0. The level line trajectory (full line) slightly avoids the three-photon-resonance curve

(for positive detunings).

Considering N oscillations in the pulse, i.e., Tω0/2π = N , and Gaussian pulses with
the estimate T ∼ 4πτ/3 for the pulse duration gives τω0 ≈ 3N/2, i.e.,

τ∆0 ≈
3

2
N

∆0

ω0
. (13)

This shows that smaller values N require larger ∆0/ω0 to keep the same τ∆0.
We have obtained the most extreme situation with a low number of cycles N ≈ 2.5

allowing ultrahigh-fidelity adiabatic passage with the following parameters. We consider
the trajectory shown in Figure 3 around the one-photon resonance ∆0/ω0 = 0.625, which
slightly avoids the three-photon-resonance curve, and the smallest quantity τ∆0 = 2.35
satisfying adiabatic passage (see the discussion above). We have determined numerically
the value φ0,i ≈ −0.3032π satisfying the zero time-integrated area (5). Despite the close
presence of the three-photon resonance, we have obtained a remarkable ultrahigh fidelity,
as shown in Figure 4. Note that we have chosen a dynamics such that ∆(−∞) = ∆0;
we have checked that we have the same final result if we start with ∆(−∞) = −∆0 (but
with a different initial phase φ0,i). We notice that, in practice, since the dynamics does not
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strictly satisfy the adiabatic conditions, the population dynamics slightly depends on this
initial phase.

Decreasing the number of cycles degrades the fidelity because one cannot satisfy a
sufficiently large τ∆0 from (13).

Figure 4. Dynamics along the level line (a) of Figure 3 with ∆(−∞) = 0.625ω0 and τω0 = 3.75 for a

Gaussian pulse Ω(t) = Ω0e−(t/τ)2
, giving N ≈ 2.5. Upper frame: Populations Pj := |〈j|ϕ(t)〉|2. We

obtain an ultrahigh fidelity P+ ≈ 0.9999. Middle frame: the normalized Rabi frequency (full line) with

its envelope (dotted line) and the instantaneous normalized detuning (dashed line). Lower frame:

the instantaneous quasienergies (in units of h̄ω0). The dynamics follows λ− [connected to |−, 0〉

(|+,−1〉) at early (late) times], close to the three-photon resonance quasienergy λ+,3 at early times.

4. Few-Cycle Generalized π-Pulse and Non-Adiabatic Regimes

4.1. Definition

In this section and the next ones, one studies few-cycle pulses driving the dynam-
ics in nonadiabatic regimes and analyzes how one can control the population transfer,
in particular with ultrahigh fidelity.

We introduce the notion of few-cycle generalized π-pulse by expanding the Rabi
frequency as a Fourier series:

Ω(t) = ∑
n≥1

Ωn(t), with Ωn(t) = ΩnΛn(t) and Ωn ≥ 0, (14)

with the envelope of each pulsed mode defined as

Λn(t) =
1

2

[
1 − (−1)n cos

(nω0

N
t
)]

, (15)

which satisfies 0 ≤ Λn(t) ≤ 1. This particular Fourier expansion (14) implies that Ω(t) ≥ 0
and Ω(ti) = Ω(t f ) = 0. Moreover, one can prove that, for φ(t) = ω0(t− ti)−φ0,i (i.e., exact
resonance, ∆ = 0, and for any initial phase), imposing ΩN = 0 guarantees that the zero
area condition (5) is satisfied.
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If one considers a single field Ω(t) ≡ Ω1(t), the high-frequency effective Hamiltonian
from the counter-rotating term (11) reads [see Equation (A52)], where we have neglected
the terms of Equation (A55) induced by the time-dependence of Ω1(t):

H̃ ≈
1

2


 −

(
Ω2

1(t)
4ω0

+ ∆(t)
)

Ω1(t)

Ω1(t)
Ω2

1(t)
4ω0

+ ∆(t)


. (16)

The diagonal term can be neglected with respect to the coupling when (considering the

condition for the peak Rabi frequencies) Ω1 ≫ 1
2

Ω2
1

ω0
. In the π-pulse regime, the pulse area

of the pulse envelope is then Ω1T/2 = π, and the above condition becomes

N ≫ 1/2 (17)

to neglect the diagonal term. This consists precisely to one of the RWA conditions, i.e., a
large number of resonant cycles.

4.2. Few-Cycle Resonant Rabi Oscillations

In the resonant situation, ∆ = 0, we consider the number of cycles N = 2 and
Ω2 = 0 such that the zero area condition (5) is satisfied. Figure 5 shows the few-cycle Rabi
oscillations produced for the phase of the field φ(t) = ω0(t − ti)± π/2 (i.e., φ0,i = ∓π/2)
leading to the maximum population transfer (see Figure 6 and the discussion below).
They globally significantly deviate from the standard RWA Rabi oscillations; however,
they feature a rather good maximum final transfer, P+ ≈ 0.99 for a peak amplitude
Ω1 ≈ 2π/T = ω0/N close to the standard π-pulse condition (with a relative deviation
of order 2 × 10−3). It also shows an ultrahigh-fidelity population transfer but for a high
and quite unrealistic pulse area TΩ1/2 ≈ 6.38π. Figure 6 shows the weak dependance of
the population transfer over the initial phase φ0,i near the π-pulse regime. The maximum
is obtained for the initial phase φ0,i = ±π/2. We have determined that the population
transfer depends on φ0,i much more strongly for higher pulse area regimes (not shown).

Figure 5. Two-cycle resonant Rabi oscillations: Final population transfer probability to the upper

state as a function of the pulse area (×π) for a single pulse Ω1(t) and the number of cycles N = 2

using the full model (1). The transfer reaches a local maximum (P+ ≈ 0.99) close to the standard

π-pulse condition but does not reach ultrahigh fidelity (except for an undesirable large pulse area

TΩ1/2 ≈ 6.38π).
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Figure 6. Contour plot of log10(1 − P+) with P+ the final population transfer probability around the

π-pulse regime in the condition of Figure 5, but with varying initial phases φ0,i.

Figure 7 shows the single-cycle Rabi oscillations, N = 1, for the phase of the field
φ(t) = ω0(t − ti)± π/2, which satisfies the zero time-integrated area condition (5). Sur-
prisingly, the maximum transfer (which occurs close to the standard π-pulse condition)
is even better in this case compared to N = 2 (for the same pulse area), while the system
deviates more from the RWA according to condition (17). This can be attributed to the
effect of significant population transfer by off-resonant zero-area pulse described in [42],
which counterbalances the deviation from RWA. We notice that this effect does not apply
efficiently when the field amplitude increase due to the form of the interaction, which is
not fully compatible with the hypothesis of [42] in the limit of strong field (as it does not
tend to a Dirac δ distribution type interaction).

Figure 7. Single-cycle resonant Rabi oscillations: Same as Figure 5 but for a single cycle

N = 1. The transfer reaches a good fidelity P+ ≈ 0.996 close to the standard π-pulse con-

dition: Ω1T/2 ≈ 1.018π.

However, in both situations, N = 1, 2, the transfer is not perfect, and cannot reach
ultrahigh fidelity near the π-pulse regime.
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Our goal in the following consists in determining strategies of pulse shaping inducing
ultrahigh fidelity in a π-pulse regime. We will show that this will be achieved by adding
higher-order terms Ωn, that will allow us to alleviate condition (17), or by considering
a chirped frequency (next Section). A more systematic optimization procedure will be
conducted in Section 6.

4.3. 2 N -Resonance Strategy

We consider here the situation N ≥ 2 and φ(t) = ω0t, i.e., an exactly resonant
problem ∆ = 0, with φ0,i = −ω0ti. We add a single 2N -mode to the main mode: Ω(t) =
Ω1(t) + Ω2N (t). The zero area condition (5) is automatically satisfied since ΩN = 0. In this
case, the fast oscillating n = 2N -mode term features a resonance with the counter-rotating
coupling:

H̃ =
1

2

(
Ω1(t) +

1

4
Ω2N

)[ 0 1
1 0

]

+
1

2

(
Ω1(t)

[
0 e−2iω0t

e2iω0t 0

]
+

1

4
Ω2N

[
0 e−2iω0t

e2iω0t 0

]
−

1

4
Ω2N

[
0 e2iω0t

e−2iω0t 0

])

−
1

8
Ω2N

[
0 e−4iω0t

e4iω0t 0

]
. (18)

If we neglect the oscillating terms [second and third lines of (18)], the area of the resulting
coupling is

∫ T/2

−T/2

(
Ω1(t) +

1

4
Ω2N

)
dt =

T

2

(
Ω1 +

1

2
Ω2N

)
, (19)

which should be π at the lowest order:

Ω1 +
1

2
Ω2N =

ω0

N
. (20)

According to (A52) and neglecting the faster oscillating term, one concludes that the
dominant correction is given by the Ω1(t) counter-rotating term [first term of the second
line of (18)]. Considering the peak terms, one can evaluate the (diagonal) correction:

H̃max =
1

2

(
Ω1 +

1

4
Ω2N

)[
0 1
1 0

]
+

Ω2
1

8ω0

[
−1 0
0 1

]
. (21)

Its difference should be much smaller than the coupling term, giving the condition of
the ratio

R =
Ω2

1

2ω0

(
Ω1 +

1
4 Ω2N

) =
Ω2

1

ω0

(
Ω1 +

ω0
N

) ≪ 1. (22)

We implemented a systematic search over the parameter Ω1 for N = 2 and found an
ultrahigh-fidelity transfer P+ ≈ 0.9999 for Ω1 ≈ 0.276ω0 [leading to Ω4 ≈ 0.448ω0 ac-
cording to (20)], corresponding to an equal distribution of both contributions in (20):
Ω1 ∼ 1

2 Ω2N ∼ ω0/(2N ). This gives in this situation for the above condition

N ≫ 1/6, (23)

which significantly alleviates condition (17) (by a factor of 3).
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4.4. Two-Modes-Resonance Strategy

In this strategy, still with N ≥ 2, we consider alternatively two additional nonresonant
fields Ω2N−1 and Ω2N+1 (and φ(t) = ω0t, i.e., ∆(t) = 0) with the simplifying condition
Ω2N−1 = Ω2N+1 ≡ Ω0, giving the total field

Ω(t) =
Ω1

2

[
1 + cos

(ω0

N
t
)]

+ Ω0

[
1 + cos

(ω0

N
t
)

cos(2ω0t)
]
. (24)

This field satisfies the zero-area condition (5) as before since ΩN = 0. The Hamiltonian
shows that the two fields generate a resonance:

H̃ =
1

2

[
Ω1(t) + Ω0 +

1

2
Ω0 cos

(ω0

N
t
)][ 0 1

1 0

]

+
1

4
Ω0 cos

(ω0

N
t
)([

0 e2iω0t

e2iω0t 0

]
+

[
0 e−2iω0t

e−2iω0t 0

])

+
1

2
[Ω1(t) + Ω0]

[
0 e−2iω0t

e2iω0t 0

]
+

1

4
Ω0 cos

(ω0

N
t
)[ 0 e−4iω0t

e4iω0t 0

]
. (25)

The area of the resulting coupling, which should be π, is

∫ T/2

−T/2
Ω(t)dt = T

(Ω1

2
+ Ω0

)
= π. (26)

Neglecting the fastest oscillating term, we obtain for the effective Hamiltonian

H̃ ≈
1

2

[
Ω1(t) + Ω0 +

1

2
Ω0 cos

(ω0

N
t
)][ 0 1

1 0

]
+

1

8ω0
[Ω1(t) + Ω0]

2
[

−1 0
0 1

]
, (27)

i.e., for the peak values:

H̃max ≈
1

2

(
Ω1 +

3

2
Ω0

)[ 0 1
1 0

]
+

(Ω1 + Ω0)
2

8ω0

[
−1 0
0 1

]
. (28)

The ratio of the (peak) diagonal correction with respect to the (peak) coupling is given by

R =
(Ω1 + Ω0)

2

2ω0

(
Ω1 +

3
2 Ω0

) ≪ 1. (29)

This ratio is minimum when Ω1 = 0: R = Ω0/(3ω0) = π/(3Tω0). On the contrary, when
Ω0 = 0, the ratio is maximum. This solution minimizing the correction for the complete
transfer is thus for Ω1 = 0 and TΩ0 = π, i.e.,

Ω0 =
ω0

2N
. (30)

The diagonal terms can be neglected, from the above condition, when

N ≫ 1/6. (31)

This shows that the introduction of the two fields in the limit of weak Ω1 allows one to
alleviate again condition (17) by a factor of 3, similarly to the preceding strategy.

5. Chirped Few-Cycle Pulses: Stark-Shift Compensation Strategy

The effective Hamiltonian (16) with a single-mode field Ω(t) = Ω1(t) indicates that
the lowest order perturbative correction induces a dynamical (diagonal) Stark shift. It
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can be compensated by a detuning properly shaped [according to (A55) if one considers
additionally the time dependence of Ω1(t)]:

∆(t) = −
Ω2

1(t)

4ω0
+

Ω2
1

64N 2ω0
sin2

(ω0

N
t
)
≈ −

ω0

32N 2

[
3 + 4 cos

(ω0

N
t
)
+ cos

(
2ω0

N
t

)]
, (32)

still with a π-pulse: Ω1T/2 = π, where we have neglected the second term which is much
smaller than the first one. The phase (2) can be then written

φ(t) =

(
1 +

3

32N 2

)
ω0(t − ti) +

1

8N

[
sin

(ω0

N
t
)
− sin

(ω0

N
ti

)]

+
1

64N

[
sin

(
2ω0

N
t

)
− sin

(
2ω0

N
ti

)]
− φ0,i, (33)

where the initial phase φ0,i has to be chosen to satisfy the zero-area condition (5). We have
checked that the dynamics weakly depends on its precise value (with a final population
transfer oscillating between 0.9996 and 0.9998 as a function of the initial phase). One can
prove that the constant part of the phase has to be ±π/2 in order to satisfy (5) in this case
of a single-mode field. The phase takes then the form (where the constant part of the phase
+π/2 has been chosen)

φ(t) =
π

2
+ ω̃0t − φ̃0(t) (34)

with, respectively, ω̃0 the mean frequency, which is the frequency that has to be tuned in
practice, and φ̃0(t) the modulated phase which is the part of the phase that has to be shaped:

ω̃0 =

(
1 +

3

32N 2

)
ω0, φ̃0(t) = −

1

8N
sin

(ω0

N
t
)[

1 +
1

4
cos

(ω0

N
t
)]

. (35)

Equation (35) shows a small shift of the mean frequency compared to the resonance ω0 and
a small phase modulation amplitude (of approximately 1/8N ). For instance, we obtain
a mean frequency ω̃0 = 1.0234ω0 and an approximate phase modulation amplitude of
0.0625 for N = 2. Figure 8 shows the phase shaping and the dynamics in this case resulting
into the transfer P+ ≈ 0.9997, close to an ultrahigh-fidelity transfer (and more than 30 times
more accurate than the optimal nonchirped pulse shown in Figure 5).

More generally, we can show that the phase can take the following form

φ(t) =
π

2
+ ω̃0t − ∑

n≥1

φ̃0,n sin
(nω0

N
t
)

, (36)

i.e., π/2 added to an odd function featuring modulating modes, with ω̃0 the mean fre-
quency, in order to satisfy condition (5) with an even single-mode field Ω(t) = Ω1(t),
for any integer number of cycles N . This will be used for a more systematic optimization
in the next section.
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Figure 8. High-fidelity population transfer for N = 2 with a single π-pulse mode Ω(t) = Ω1(t)

and the phase (34) featuring a chirped frequency. From top to bottom frames: population dynamics,

modulated phase φ̃0(t), detuning ∆(t), and full coupling Ω1(t) cos φ(t).

6. Numerical Optimization

We provide the numerical results of a more systematic optimization procedure for the
population transfer problem as described in Appendix B (see the flowchart of Figure A1).
Since the parameter landscape is a priori large, we orient the search around the three
strategies investigated in Sections 4 and 5 and check the convergence of our algorithm
in each situation. We consider the number of cycles N = 2 for the strategies where the
detuning is zero, which necessitates the cancellation of the n = N mode. On the other
hand, we investigate the single-cycle limit N = 1 for the more flexible situation with a
time-dependent detuning (i.e., a chirped frequency).

6.1. 2 N -Resonance Strategy

In order to target and validate this strategy, we impose the resonance, φ(t) = ω0t,
and we implement an optimization using an expansion of Ω(t) limited to the first 4 = 2N
modes for N = 2. The mode n = 2 is set to zero in order to satisfy Equation (5). Note
that, without imposing it, the optimization procedure leads to the vanishing of the third
mode n = 3, as predicted in Section 4.3. With this strategy, one obtains a complete transfer
for Ω1 ≈ 0.277ω0 and Ω4 ≈ 0.452ω0, see Figure 9. These parameters are close to the
ones determined in Section 4.3. The area of the full envelope Ω(t) gives 1.5π. The area
Ω1(t) +

1
4 Ω2N is, as predicted, close to π: T(Ω1 +

1
2 Ω4) ≈ 1.006π.
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Figure 9. Complete population transfer for N = 2 and a four-mode Fourier decomposition with the

nonzero modes Ω1 = 0.277ω0, Ω4 = 0.452ω0 (2N -resonance strategy) resulting from the optimization

procedure. Upper frame: population dynamics. Middle frame: pulse envelope Ω(t). Lower frame:

Full coupling Ω(t) cos ω0t.

Adding more modes, as proposed in the next subsection, will allow one to explore a
different strategy to achieve the same complete transfer result.

6.2. Two-Modes-Resonance Strategy

We now consider the resonant case φ(t) = ω0t with an expansion of Ω over the first
5 = 2N + 1 modes still for N = 2. Adding the fifth mode opens a path to the two-modes-
resonance strategy described in Section 4.4. The mode 2 is still set to zero in order to satisfy
Equation (5) and, without imposing it, the optimization procedure leads to the vanishing
of the fourth mode n = 4. One also obtains in this case a complete population transfer
resulting from the combination of the 2N − 1 = 3 and 2N + 1 = 5 modes. We notice that,
as predicted in Section 4.4, the optimized amplitudes Ω3 and Ω5 are close to each other
(see Figure 10), with a value consistent with Equation (30).
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Figure 10. Same as Figure 9 but for a five modes decomposition with the obtained non-zero modes

Ω1 = 0.043ω0, Ω3 = 0.2314ω0, Ω5 = 0.227ω0 (two-modes-resonance strategy).

6.3. Stark-Shift Compensation Strategy

One finally considers the situation with a nonzero detuning and a low number of
cycles, N = 2 or N = 1. In both cases, it is sufficient to restrict Ω to the first Fourier
mode, Ω(t) = Ω1(t), and to decompose the phase φ(t) according to Equation (36) with a
single mode:

φ(t) =
π

2
+ ω̃0t − φ̃0,1 sin

(ω0

N
t
)

. (37)

We obtain in both cases a complete transfer with smooth and simple phase and detuning.
For N = 2, the optimized parameters are Ω1 = 0.504ω0, ω̃0 = 1.038ω0, and

φ̃0,1 = −9.74 × 10−3, giving a pulse area 1.0087π. The phase can be compared to (34)
and (35): It features a larger shift of the mean frequency (though small compared to ω0)
and a smaller modulation amplitude (given by the absolute value of φ̃0,1, which is small
compared to the angle π), of frequency ω0/2. The resulting dynamics (not shown) is similar
to the one obtained in Figure 8.

Optimization for the case N = 1 is displayed in Figure 11. It gives a pulse area 1.067π.
One can notice a stronger (and negative, i.e., φ̇ < ω0) shift of the mean frequency (still
much smaller than ω0) and a larger modulation amplitude compared to the above case
N = 2 (but still smaller than the compensation shown in Figure 8), which is still small
(compared to the angle π). The modulation frequency of the phase is here ω0.
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In both cases, N = 1, 2, the resulting phase is smooth, it features small deviations and
small modulation amplitude at the frequency close to the resonant frequency ω0 and leads
to an instantaneous frequency which is also close to ω0. All these ingredients indicate a
realistic experimental implementation in principle.

Figure 11. Complete population transfer for N = 1, a single-mode for the amplitude: Ω(t) = Ω1(t)

and the phase: φ(t) = π/2 + ω̃0t − φ̃0,1 sin(ω0t) with the non-zero coefficients Ω1 = 1.067ω0,

ω̃0 = 0.889ω0, φ̃0,1 = 3.56 × 10−2. From top to bottom frames: population dynamics, modulated

phase φ̃0(t), detuning ∆(t), full coupling Ω1(t) cos φ(t).

7. Conclusions

In this paper, we have explored quantum control with a few-cycle pulse implementing
and generalizing two standard strategies, adiabatic Floquet theory and π-pulse. We have
shown that adiabatic Floquet is obstructed by the presence of avoided crossing in the quasi-
energy spectrum induced by the counter-rotating term for the number of cycles N < 2.5.
This shows the relevance of using the tool of adiabatic Floquet theory for analyzing and
controlling the dynamics even for few cycles.

We have implemented a generalization of π-pulse transfer by expanding the pulse
shape in a Fourier expansion. We have shown two particular strategies on resonance with a
few modes involved, named 2N -resonance and two-modes-resonance strategies. Complete
transfer can be achieved in these cases for a number of cycles as low as N = 2. We have
also explored a chirped frequency associated to a simple pulsed-shape field. We have
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shown that an appropriate chirping allows an ultrahigh-fidelity transfer for a number of
cycles as low as N = 1 (single-cycle pulse).

In a future work, we will explore the control in a multilevel system since the broad-
ening of the spectrum induced by the small number of cycles is expected to impact sig-
nificantly excited states. The present study will serve as an important exploratory work
that will guide the strategies with the clear advantage of limiting the parameters land-
scape compared to blind optimal control strategies. More specifically, we will use the
few-cycle-pulse adiabatic Floquet theory, including multistate effects, such as rotational
and vibrational states in molecules (similarly to Ref. [43]), but beyond the RWA (similarly
to Figure 1),which will allow one to find adiabatic trajectories as functions of the phase and
pulse amplitudes (when they exist), connecting the initial and targeted states. In addition,
we have constructed specific parametrizations in amplitude (14) and (15) and in phase (36)
that satisfy the physical constraint of zero time-integrated field area (5) with few parameters
to be optimized. Nonadiabatic few-cycle regimes with shaped and chirped pulses in multi-
level systems will be then explored on this basis. This will find for instance applications in
the fine control of angular wavepackets towards the control of the orientation and more
generally of the rotation of molecules [15] by single-cycle THz pulses.
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Appendix A. Adiabatic Floquet theory

Appendix A.1. Floquet Theory for Periodic Systems

The Floquet theory allows the treatment of a periodic time dependent system by
transforming it into a time-independent problem via the use of an enlarged space as
follows [18]. A periodic system of Hamiltonian H(θ + φ(t) + 2π) = H(θ + φ(t)) features
a 2π periodic phase, φ(t) = ω(t − ti) with θ the initial phase at time ti, ω the angular
frequency. A typical example is

H(x; θ + ω(t − ti)) = H0(x)− µ(x)E cos(θ + ω(t − ti)) (A1)

for a quantum system of Hamiltonian H0(x) driven by a periodic field of amplitude E via
the dipole moment µ(x). The Schrödinger equation

ih̄
∂

∂t
ϕ = H(x; θ + ω(t − ti))ϕ, ϕ ∈ H (A2)

is defined on a Hilbert space H, which can be of infinite dimension (e.g., the space of square-
integrable functions H = L2(R

n, dnx), where n is the number of the degrees of freedom
of the molecule) or of finite dimension (e.g., in N-level models H = CN). The initial
phase θ appears as a parameter. One can think of Equation (A2) as a family of equations
parameterized by the angle θ. We define the solution ψ(t) of a time independent problem:

ih̄
∂

∂t
ψ = Kψ, ψ ∈ K (A3)

with the time-independent Floquet Hamiltonian (or quasienergy operator)

K = −ih̄ω
∂

∂θ
+ H(θ), (A4)
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defined in an enlarged Hilbert space

K := H⊗L, (A5)

where L := L2(S
1, dθ/2π) denotes the space of square integrable functions on the circle S1

of length 2π, with the scalar product

〈ξ1|ξ2〉L :=
∫

S1

dθ

2π
ξ∗1(θ)ξ2(θ). (A6)

The solution ϕ(t) is related to the time independent problem as

ϕ(x; t; θ) = ψ(x, θ + ω(t − ti); t) (A7)

with the initial condition in K constructed as the initial condition ϕ(ti) of the original
problem lifted in the enlarged space as:

ψ(x, θ; ti) = ϕ(x; ti; θ)⊗ 1lL (A8)

with 1lL ≡ ei(k=0)θ . In the expression ϕ(x; t; θ), on the left-hand side of (A7), θ is a parameter
corresponding to the initial phase of the Hamiltonian, while, in ψ(x, θ; ti), on the right-
hand side, θ is a dynamical variable on the same footing as x. The procedure dictated by
Equation (A7) to obtain the dynamics in the original space H is as follows:

(i) first, by the use of Equation (A8), lift the initial condition in the enlarged space K
keeping θ undetermined;

(ii) next determine ψ(x, θ; t) in K solution of Equation (A3);
(iii) finally replace the angle θ by θ + ω(t − ti) in ψ and fix the angle θ to the initial

phase of the Hamiltonian.
Since K is time-independent, the convenient way to compute the solution is to use an

eigenfunction expansion

ϕ(x; t; θ) = ∑
ν

cνe−iλν(t−ti)/h̄ψν(x, θ + ω(t − ti)) (A9)

in terms of the eigenelements of K (assuming a discrete spectrum)

Kψν(x, θ) = λνψν(x, θ), (A10)

with the eigenvalues named quasienergies, with

cν = 〈ψν|ϕ(ti)⊗ 1〉K = 〈ψ̃ν|ϕ(ti)⊗ 1〉H, (A11)

where ψ̃ν(x) :=
∫
S1 dθ/2π ψν(x, θ) is the average of ψν(x, θ) over the phase, or equivalently,

its constant Fourier component.
The Floquet spectrum contains an infinite number of elements, but its eigenelements

feature a periodic structure with the index ν being associated to two indices, ν ≡ n, k:

ψn,k(x, θ) = ψn,0(x, θ)eikθ , λn,k = λn,0 + kh̄ω, (A12)

where the index n refers to the molecule’s Hilbert space H (i.e., n = 1, · · · , N if H = CN),
and k are all positive or negative integers. This allows one to classify the Floquet eigenstates
in families labeled by n. The individual members within one family are distinguished by
the index k. The eigenfunction expansion can be simplified using only one representative
of each family (e.g., the one with k = 0):

ϕ(x; t; θ) = ∑
n

c̃n(θ)e
−iλn,0(t−ti)/h̄ψn,0(x, θ + ω(t − ti)) (A13)



Entropy 2023, 25, 212 19 of 26

with
c̃n(θ) := 〈ψn,0(θ)|ϕ(ti)〉H. (A14)

The interpretation of this expansion is as follows: the initial condition is expanded into
the set of representatives of each family of eigenvectors ψn,0(x, θ) through the coefficient
c̃n(θ) (which depends parametrically on θ); during the evolution, the expansion acquires
dynamical phases through the eigenvalues λn,0 and features a dynamical evolution of θ in
the eigenvectors.

Appendix A.2. Adiabatic Floquet Theory

The adiabatic Floquet theory extends the preceding formulation when the Hamiltonian
features an additional non-periodic timescale, which is typically slow with respect to the
periodic one. These parameters are gathered under the function r(t) (for instance the
time-dependent amplitude of the coupling for the case of a pulse-shaped field and its
time-dependent polarization if an interacting polarized laser field is considered), while
the non-periodic time-dependence of the phase itself (referred to as chirped pulse) is
considered specifically:

Hr(t)(θ + φ(t) + 2π) = Hr(t)(θ + φ(t)). (A15)

The 2π-periodic phase θ + φ(t) features an instantaneous (or effective) frequency ω(t) =

φ̇(t), such that φ(t) =
∫ t

ti
ω(s)ds, allows one to recover the phase dependence of the

previous periodic system when the time of the frequency is frozen.
The state ϕ(x; t; θ) solution of the Schrödinger equation

ih̄
∂

∂t
ϕ = Hr(t)(θ + φ(t))ϕ (A16)

is connected to ψ(x, θ; t) the solution of

ih̄
∂

∂t
ψ = Kr(t),ω(t)ψ, (A17)

with

ω(t) = φ̇(t), φ(t) =
∫ t

ti

ω(s)ds (A18)

and

Kr(t),ω(t) = Hr(t)(θ)− ih̄ω(t)
∂

∂θ
(A19)

through
ϕ(x; t; θ) = ψ(x, θ + φ(t); t), (A20)

with the initial condition
ψ(x, θ; ti) = ϕ(x; ti; θ)⊗ 1lL. (A21)

We remark that, at this stage, this correspondence between the original and Floquet dynam-
ics with additional non-periodic time dependent parameters is exact. It does not require
a specific number of oscillations of the field in the pulse, nor specific (slow) variation of
these parameters.

The physical interpretation of the operator −i ∂
∂θ is the relative photon number operator

in the limit of large number of photons present in the interacting field. One can thus assign
two labels to the eigenstates |ψn,k〉, with the label n coming from the matter and the label k
interpreted as the relative photon number which dresses the state. A transfer from the initial
eigenstate |ψ0

n,k〉 ≡ |n〉 ⊗ |k〉 with |n〉 a bare state of the quantum system and |k〉 ≡ eikθ

a (relative) state of k photons before the field is on, i.e., before interaction between the
matter and the field, to the eigenstate |ψ0

n′ ,k′〉 ≡ |n′〉 ⊗ |k′〉 after the field is off, i.e., after the

interaction, corresponds to the transfer from |n〉 to |n′〉 with the absorption (emission) of
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k′ − k photons for negative (positive) k′ − k. When the field is on, the Floquet eigenstates
cannot be simply decomposed as a tensor product of a bare matter state and a field state,
but are rather an entangled state, as a superposition of such tensored states.

In the limit of slow variations, t ≡ ǫs with ǫ ≪ 1, one can apply the above formulation
with the use the eigenelements of K, which depends now on the parameters:

Kr(t),ω(t)ψ
r(t),ω(t)
ν (x, θ) = λ

r(t),ω(t)
ν ψ

r(t),ω(t)
ν (x, θ), (A22)

on which we derive an adiabatic approximation

ϕ(x; t; θ) ≈ ∑
n

c̃n(θ)e
−i

∫ t
ti

dsλ
r(s),ω(s)
n,k(n)

/h̄
ψ

r(t),ω(t)
n,k(n)

(x, θ + φ(t)) (A23)

with
c̃n(θ) := 〈ψ

r(ti),ω(ti)
n,k(n)

(θ)|ϕ(ti)〉H. (A24)

Similarly as before, this expansion means that the initial condition is expanded into the

set composed of one representative of all the families of eigenvectors ψ
r(ti),ω(ti)
n,k(n)

(x, θ) at

the initial values of the parameters r(ti), ω(ti) through the coefficient c̃n(θ) (which de-
pends parametrically on θ); during the evolution, the expansion acquires dynamical phases

through the integration of the eigenvalues λ
r(t),ω(t)
n,0 via the time-dependence of the pa-

rameters r(t), ω(t) and features a dynamical evolution of θ and of the parameters in the
eigenvectors. The choice of the representatives labelled by k(n) is such that their corre-
sponding eigenvalues are localized in a band of energy of width h̄ω defining a Floquet zone;
the coefficients k(n) depends thus in general on n.

A remarkable property is when a single eigenstate is followed by the dynamics,
since, then, the resulting single dynamical phase is an irrelevant global phase. Moreover,
the control of the dynamics reduces to an analysis of the trajectories of the eigenvalues and,
more precisely, to the connection of a trajectory between an initial and a final state [17].
This means that if a state is targeted at a specific time, for instance at the end of the
interaction, one just has to drive the dynamics along an adiabatic trajectory, which connects
the initial and the desired targeted states; the exact form of the trajectory being unimportant.
The dynamics can be thus selective and robust with respect to the precise instantaneous
values of the parameters.

The (local) correction of the eigenfunction expansion (A23) is in general O(ǫ). However
it can be made in principle exponentially small, O(e−C/ǫ) with C a positive constant,
with the use of smooth controls and a global analysis of the dynamics [38]. Obstruction of
adiabatic passage occurs when the eigenvalues get closer, which can induce non-adiabatic
transitions between the eigenstates, as typically given by Landau-Zener avoided crossing.
Adiabatic passage can be made more efficient when the eigenvalues are parallel to each
other during the dynamics [39–41].

Appendix B. Algorithms

Our numerical simulations were implemented under Matlab using the built-in function
fmincon. This command is dedicated to finding the minimum of a constrained non-linear
multivariable function.

Our script is based on three loops as shown in the workflow in Figure A1. The first
loop is dedicated to the initialization of the Fourier coefficients of Ω(t) under the constraints
given by the RWA π-pulse conditions. The second loop explores a larger space of solutions
by removing the RWA π-pulse constraint. Finally the last loop realizes the optimization by
adding the detuning.

Note that the condition (5) is imposed in the first two loops by choosing ΩN = 0 in
the Fourier expansion of Ω(t). In the third loop, this condition (5) is satisfied by the specific
form of the phase (36).



Entropy 2023, 25, 212 21 of 26

Figure A1. Flowchart of the optimization algorithm. The modified Crank-Nicolson scheme can be

found in Ref. [44].

Appendix C. Perturbation Theory Formulated with KAM Techniques

We decompose the Hamiltonian with an unperturbed Hamiltonian H0 and a perturba-
tion εV1:

H = H0 + εV1. (A25)
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We construct a unitary transformation (so-called KAM or contact transformation) T1 = eεW1 ,
with W†

1 = −W1 such that

e−εW1 HeεW1 = H0 + εD1 + ε2V2, (A26)

where D1 is a diagonal operator, i.e., satisfying [H0, D1] = 0. Thus the perturbation is
reduced from order ε to order ε2.

In order to determine D1 and W1, one expands Equation (A26) in powers of ε and
require that the terms of order ε cancel out:

e−εW1 HeεW1 =
(

1l − εW1 +
1

2
ε2W2

1 + · · ·
)
(H0 + εV1)

(
1l + εW1 +

1

2
ε2W2

1 + · · ·
)

= H0 + ε([H0, W1] + V1) +
1

2
ε2[[H0, W1], W1] + ε2[V1, W1] + · · ·

= H0 + εD1 +
1

2
ε2[V1, W1] +

1

2
ε2[D1, W1] + · · · (A27)

This leads to the two equations

[H0, W1] + V1 − D1 = 0, (A28a)

[H0, D1] = 0, (A28b)

and the first terms of the resulting second order perturbation read:

ε2V2 =
ε2

2
[V1, W1] +

ε2

2!
[D1, W1] + . . . (A29)

The solution of Equation (A28) can be given using the eigenvalues and eigenvectors of
H0 which we will denote by λ0

ν and |ν, j〉 (we use an index ν that labels the different
eigenvalues, and j distinguishes different basis vectors corresponding to a degenerate
eigenvalue). We define a projection operator ΠH0

that extracts from the perturbation V1 the
diagonal component with respect to the eigenbasis of H0:

ΠH0
V1 ≡ V1 = ∑

ν,j,j′
|ν, j〉〈ν, j|V1|ν, j′〉〈ν, j′|. (A30)

With this notation a solution of (A28) can be written as

D1 = V1 = diagonal part of V1, (A31a)

W1 = − ∑
ν,j,j′ ,ν′ 6=ν

|ν, j〉〈ν, j|V1|ν
′, j′〉〈ν′, j′|

λ0
ν − λ0

ν′
. (A31b)

D1 is interpreted as the averaging of V1 with respect to H0. The perturbation theory does
not apply when a resonance appears, which is detected by a degeneracy λ0

ν = λ0
ν′ , leading

to a zero denominator of W1.
The KAM transformations can be iterated. One usually applies another KAM trans-

formation consisting in extracting the averaging of V2, and the effective Hamiltonian of
second order reads

Heff = H0 + εV1 + ε2V2. (A32)
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Appendix D. High-Frequency Perturbation Theory

High frequency perturbation theory applies to situations in which the frequency ω of
the perturbation is high with respect to the internal frequencies of the considered system.
We formulate with a Floquet Hamiltonian of the form

K = −ih̄ω
∂

∂θ
+ H0 + V1(θ). (A33)

Since we are interested in the limit h̄ω → ∞, we define a small parameter ǫ := 1/(h̄ω) and
we rewrite

K = h̄ωK̂ (A34)

with

K̂ = −i
∂

∂θ
+ ǫ(H0 + V1). (A35)

The difference with the preceding section is that here H0 and V are both of order ǫ. Thus
we take as the unperturbed Floquet Hamiltonian just

K̂0 := −i
∂

∂θ
. (A36)

If the frequency is large compared with the frequencies of the system, there will not be
any resonances. We can thus proceed with the perturbative KAM transformation: eǫW1(θ),
with W†

1 = −W1 such that

e−ǫW1 K̂eǫW1 = K̂0 + ǫD1 + ǫ2V2, (A37)

where D1 is a θ-independent operator such that [K̂0, D1] = 0. The generator W1 of the
contact transformation is determined by the equations

[K0, W1] + H0 + V1 − D1 = 0, (A38a)

[K0, D1] = 0. (A38b)

Equation (A38a) can be written as

−i
∂W1

∂θ
+ H0 + V1 − D1 = 0, (A39)

whose general solution is given by

W1 = −i
∫ θ

dθ (H0 + V1 − D1), (A40)

where we have removed an arbitrary constant. Since W1(θ) is a multiplication operator
acting on functions of the angle θ, it must be necessarily 2π-periodic. This condition
determines D1 uniquely in terms of averaging

V1 :=
∫ 2π

0

dθ

2π
V1(x, θ) (A41)

as
D1 = H0 + V1. (A42)

Thus we obtain

W1(θ) = −i
∫ θ

dθ (V1(θ)− V1). (A43)
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The remaining perturbation of order ǫ2 can be written as

ǫ2V2 =
ǫ2

2!
[V1 + V1 + 2H0, W1] + ǫ3 . . . , (A44)

We can apply a second contact transformation eǫ2W2 (with respect to K̂0), W2 = −i
∫ θ

dθ (V2 −
V2), which averages this rest (A44) with respect to θ and leads to correction of order ǫ3. We
thus obtain the effective high frequency Hamiltonian HHF (independent of θ) of second order

HHF = H0 + V1 + ǫV2. (A45)

As an example, one considers an Hamiltonian of the form:

H =
1

2
Ω0

[
0 1
1 0

]
+

1

2
Ω−2

[
0 e−2iωt

e2iωt 0

]
+

1

2
Ω2

[
0 e2iωt

e−2iωt 0

]
, (A46)

i.e.,

K̂ =
K

ω
= −i

∂

∂θ
+

1

2

Ω0

ω

[
0 1
1 0

]
+

1

2

Ω−2

ω

[
0 e−2iθ

e2iθ 0

]
+

1

2

Ω2

ω

[
0 e2iθ

e−2iθ 0

]
, (A47)

where

ǫH0 ≡
1

2

Ω0

ω

[
0 1
1 0

]
, ǫV1 ≡

1

2

Ω−2

ω

[
0 e−2iθ

e2iθ 0

]
+

1

2

Ω2

ω

[
0 e2iθ

e−2iθ 0

]
, (A48)

in the high frequency limit, rewritten with the dimensionless coefficients Ω−2/2ω → 0,
Ω2/2ω → 0, Ω0/2ω → 0. We obtain V1 = 0,

W1(θ) =
1

4
Ω−2

[
0 e−2iθ

−e2iθ 0

]
+

1

4
Ω2

[
0 −e2iθ

e−2iθ 0

]
, (A49)

and V2 = 1
2 [V1, W1] + [H0, W1] + . . . , where

[H0, W1] = 0, [V1, W1] =
1

4
(Ω2

−2 − Ω2
2)

[
−1 0
0 1

]
, (A50)

i.e., at the second order

V2 =
1

8
(Ω2

−2 − Ω2
2)

[
−1 0
0 1

]
. (A51)

The high-frequency effective Hamiltonian reads then

HHF =
1

2


 −

Ω2
−2−Ω2

2
4ω Ω0

Ω0
Ω2

−2−Ω2
2

4ω


. (A52)

The diagonal term can be neglected when

Ω0 ≫
1

2

|Ω2
−2 − Ω2

2|

ω
. (A53)

If we consider a time-dependent Ω(t), the transformation T1 = eǫW1 introduces in the
Schrödinger equation an additional term of the form:

−iǫT†Ṫ = −iǫ2Ẇ1 = −i
Ω̇

4ω2

[
0 e−2iθ

−e2iθ 0

]
, (A54)
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which should be treated perturbatively like ǫV1. It introduces an additional term in the
diagonal of (A52):

HHF =
1

2


 −

Ω2
−2−Ω2

2
4ω +

Ω̇2
−2−Ω̇2

2

16ω3 Ω0

Ω0
Ω2

−2−Ω2
2

4ω −
Ω̇2

−2−Ω̇2
2

16ω3


. (A55)

References

1. Shapiro, M.; Brumer, P. Quantum Control of Molecular Processes; Wiley-VCH: Weinheim, Germany, 2012.

2. Shore, B.W. Manipulating Quantum Structure Using Laser Pulses; Cambridge University Press: Cambridge, UK, 2011.

3. Bergmann, K.; Theuer, H.; Shore, B.W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod.

Phys. 1998, 70, 1003. [CrossRef]

4. Nisbet-Jones, P.B.R.; Dilley, J.; Ljunggren, D.; Kuhn, A. Highly efficient source for indistinguishable single photons of controlled

shape. New J. Phys. 2011, 13, 103036. [CrossRef]

5. Rousseaux, B.; Dzsotjan, D.; Francs, G.C.d.; Jauslin, H.R.; Couteau, C.; Guérin, S. Adiabatic passage mediated by plasmons: A

route towards a decoherence-free quantum plasmonic platform. Phys. Rev. B 2016, 93, 045422; Erratum in: Phys. Rev. B 2016,

94, 199902. [CrossRef]

6. Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H.R.; Guérin, S. Non-linear stimulated Raman exact passage by

resonance-locked inverse engineering. Phys. Rev. Lett. 2017, 119, 243902. [CrossRef]

7. Dupont, N.; Chatelain, G.; Gabardos, L.; Arnal, M.; Billy, J.; Peaudecerf, B.; Sugny, D.; Guéry- Odelin, D. Quantum State Control

of a Bose-Einstein Condensate in Optical Lattice. PRX Quantum 2021, 2, 040303. [CrossRef]

8. Motzoi, F.; Gambetta, J.; Rebentrost, P.; Wilhelm, F.K. Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys.

Rev. Lett. 2009, 103, 110501. [CrossRef] [PubMed]

9. Vepsäläinen, A.; Danilin, S.; Paraoanu, G.S. Superadiabatic population transfer in a three-level superconducting circuit. Sci. Adv.

2019, 5, eaau5999. [CrossRef]

10. Nielson, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000.

11. Sangouard, N.; Lacour, X.; Guérin, S.; Jauslin, H.R. Fast SWAP gate by adiabatic passage. Phys. Rev. A 2005, 72, 062309. [CrossRef]

12. Jones, J.A. Designing short robust NOT gates for quantum computation. Phys. Rev. A 2013, 87, 052317. [CrossRef]

13. Rousseaux, B.; Guérin, S.; Vitanov, N.V. Arbitrary qudit gates by adiabatic passage. Phys. Rev. A 2013, 87, 032328. [CrossRef]

14. Koch, C.P.; Lemeshko, M.; Sugny, D. Quantum control of molecular rotation. Rev. Mod. Phys. 2019, 91, 035005. [CrossRef]

15. Lapert, M.; Guérin, S.; Sugny, D. Field-free quantum cogwheel by shaping of rotational wave packets. Phys. Rev. A 2011,

83, 013403. [CrossRef]

16. Vitanov, N.V.; Rangelov, A.A.; Shore, B.W.; Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond.

Rev. Mod. Phys. 2017, 89, 015006. [CrossRef]

17. Yatsenko, L.P.; Guérin, S.; Jauslin, H.R. Topology of adiabatic passage. Phys. Rev. A 2002, 65, 043407. [CrossRef]

18. Guérin, S.; Jauslin, H.R. Control of Quantum Dynamics by Laser Pulses: Adiabatic Floquet Theory. Adv. Chem. Phys. 2003,

125, 147.

19. Levitt, M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance; John Wiley and Sons: New York, NY, USA, 2008.

20. Torosov, B.T.; Guérin, S.; Vitanov, N.V. High-fidelity adiabatic passage by composite sequences of chirped pulses. Phys. Rev. Lett.

2011, 106, 233001. [CrossRef]

21. Genov, G.T.; Schraft, D.; Halfmann, T.; Vitanov, N.V. Correction of Arbitrary Field Errors in Population Inversion of Quantum

Systems by Universal Composite Pulses. Phys. Rev. Lett. 2014, 113, 043001. [CrossRef]

22. Koch, C.P.; Boscain, U.; Calarco, T.; Dirr, G.; Filipp, S.; Glaser, S.J.; Kosloff, R.; Montangero, S.; Schulte-Herbrüggen, T.;

Sugny, D.; et al. Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for

research in Europe. EPJ Quantum Technol. 2022, 9, 19. [CrossRef]

23. Boscain, U.; Sigalotti, M.; Sugny, D. Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control. PRX

Quantum 2021, 2, 030203. [CrossRef]

24. Boscain, U.; Charlot, G.; Gauthier, J.-P.; Guérin, S.; Jauslin, H.R. Optimal control in laser-induced population transfer for two- and

three-level quantum systems. J. Math. Phys. 2002, 43, 2107. [CrossRef]

25. Daems, D.; Ruschhaupt, A.; Sugny, D.; Guérin, S. Robust Quantum Control by a Single-Shot Shaped Pulse. Phys. Rev. Lett. 2013,

111, 050404. [CrossRef] [PubMed]

26. Dridi, G.; Liu, K.; Guérin, S. Optimal robust quantum control by inverse geometric optimization. Phys. Rev. Lett. 2020, 125, 250403.

[CrossRef] [PubMed]

27. Chen, X.; Lizuain, I.; Ruschhaupt, A.; Guéry-Odelin, D.; Muga, J.G. Shortcut to Adiabatic Passage in Two- and Three-Level Atoms.

Phys. Rev. Lett. 2010, 105, 123003. [CrossRef]

28. Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts,

methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [CrossRef]

http://doi.org/10.1103/RevModPhys.70.1003
http://dx.doi.org/10.1088/1367-2630/13/10/103036
http://dx.doi.org/10.1103/PhysRevB.93.045422
http://dx.doi.org/10.1103/PhysRevLett.119.243902
http://dx.doi.org/10.1103/PRXQuantum.2.040303
http://dx.doi.org/10.1103/PhysRevLett.103.110501
http://www.ncbi.nlm.nih.gov/pubmed/19792356
http://dx.doi.org/10.1126/sciadv.aau5999
http://dx.doi.org/10.1103/PhysRevA.72.062309
http://dx.doi.org/10.1103/PhysRevA.87.052317
http://dx.doi.org/10.1103/PhysRevA.87.032328
http://dx.doi.org/10.1103/RevModPhys.91.035005
http://dx.doi.org/10.1103/PhysRevA.83.013403
http://dx.doi.org/10.1103/RevModPhys.89.015006
http://dx.doi.org/10.1103/PhysRevA.65.043407
http://dx.doi.org/10.1103/PhysRevLett.106.233001
http://dx.doi.org/10.1103/PhysRevLett.113.043001
http://dx.doi.org/10.1140/epjqt/s40507-022-00138-x
http://dx.doi.org/10.1103/PRXQuantum.2.030203
http://dx.doi.org/10.1063/1.1465516
http://dx.doi.org/10.1103/PhysRevLett.111.050404
http://www.ncbi.nlm.nih.gov/pubmed/23952372
http://dx.doi.org/10.1103/PhysRevLett.125.250403
http://www.ncbi.nlm.nih.gov/pubmed/33416376
http://dx.doi.org/10.1103/PhysRevLett.105.123003
http://dx.doi.org/10.1103/RevModPhys.91.045001


Entropy 2023, 25, 212 26 of 26

29. Ding, Y.-C.; Ban, Y.; Martín-Guerrero, J.D.; Solano, E.; Casanova, J.; Chen, X. Breaking adiabatic quantum control with deep

learning. Phys. Rev. A 2021, 103, L040401. [CrossRef]

30. Giannelli, L.; Sgroi, P.; Brown, J.; Paraoanu, G.S.; Paternostro, M.; Paladino, E.; Falci, G. A tutorial on optimal control and

reinforcement learning methods for quantum technologies. Phys. Lett. A 2022, 434, 128054. [CrossRef]

31. Kärtner, F.X. Few-Cycle Laser Pulse Generation and Its Applications; Springer: Berlin/Heidelberg, Germany, 2004.

32. Brabec, T.; Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 2000, 72, 545. [CrossRef]

33. Egodapitiya, K.N.; Li, S.; Jones, R.R. Terahertz-Induced Field-Free Orientation of Rotationally Excited Molecules. Phys. Rev. Lett.

2014, 112, 103002. [CrossRef]

34. Xu, L.; Tutunnikov, I.; Gershnabel, E.; Prior, Y.; Averbukh, I.S. Long-Lasting Molecular Orientation Induced by a Single Terahertz

Pulse. Phys. Rev. Lett. 2020, 125, 013201. [CrossRef]

35. Shu, C.-C.; Hong, Q.-Q.; Guo, Y.; Henriksen, N.E. Orientational quantum revivals induced by a single-cycle terahertz pulse. Phys.

Rev. A 2020, 102, 063124. [CrossRef]

36. Shore, B.W. The Theory of Coherent Atomic Excitation; Wiley: New York, NY, USA, 1990.

37. Pollock, C.R. Ultrafast optical pulses. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 211–249.

38. Berry, M.V. Quantum phase corrections from adiabatic iteration. Proc. R. Soc. Lond. A 1987, 414, 31.

39. Guérin, S.; Thomas, S.; Jauslin, H.R. Optimization of population transfer by adiabatic passage. Phys. Rev. A 2002, 65, 023409.

[CrossRef]

40. Dridi, G.; Guérin, S.; Hakobyan, V.; Jauslin, H.R.; Eleuch, H. Ultrafast stimulated Raman parallel adiabatic passage by shaped

pulses. Phys. Rev. A 2009, 80, 043408. [CrossRef]

41. Guérin, S.; Hakobyan, V.; Jauslin, H.R. Optimal adiabatic passage by shaped pulses: Efficiency and robustness. Phys. Rev. A 2011,

84, 01343. [CrossRef]

42. Vasilev, G.S.; Vitanov, N.V. Complete population transfer by a zero-area pulse. Phys. Rev. A 2006, 73, 023416. [CrossRef]

43. Thomas, S.; Guérin, S.; Jauslin, H.R. State-selective chirped adiabatic passage on dynamically laser-aligned molecules. Phys. Rev.

A 2005, 71, 013402. [CrossRef]

44. Hong, J.; Liu, Y.; Munthe-Kaas, H.; Zanna, A. Globally conservative properties and error estimation of a multi-symplectic scheme

for Schrödinger equations with variable coefficients. Appl. Numer. Math. 2006, 56, 814–843. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevA.103.L040401
http://dx.doi.org/10.1016/j.physleta.2022.128054
http://dx.doi.org/10.1103/RevModPhys.72.545
http://dx.doi.org/10.1103/PhysRevLett.112.103002
http://dx.doi.org/10.1103/PhysRevLett.125.013201
http://dx.doi.org/10.1103/PhysRevA.102.063124
http://dx.doi.org/10.1103/PhysRevA.65.023409
http://dx.doi.org/10.1103/PhysRevA.80.043408
http://dx.doi.org/10.1103/PhysRevA.84.013423
http://dx.doi.org/10.1103/PhysRevA.73.023416
http://dx.doi.org/10.1103/PhysRevA.71.013402
http://dx.doi.org/10.1016/j.apnum.2005.06.006

	Introduction
	The Model with a Few-Cycle Pulse
	Few-Cycle-Pulse Adiabatic Floquet Theory
	Few-Cycle Generalized -Pulse and Non-Adiabatic Regimes
	Definition
	Few-Cycle Resonant Rabi Oscillations
	2 N-Resonance Strategy
	Two-Modes-Resonance Strategy

	Chirped Few-Cycle Pulses: Stark-Shift Compensation Strategy
	Numerical Optimization
	2 N-Resonance Strategy
	Two-Modes-Resonance Strategy
	Stark-Shift Compensation Strategy

	Conclusions
	A
	Floquet Theory for Periodic Systems
	Adiabatic Floquet Theory

	B
	Perturbation Theory Formulated with KAM Techniques
	High-Frequency Perturbation Theory
	References

