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The (3 + 1)-dimensional Einstein-Gauss-Bonnet theory of gravity which breaks the Lorentz invariance in
a theoretically consistent and observationally viable way has been recently suggested by Aoki, Gorji and
Mukohyama [5]. Here we calculate grey-body factor for Dirac, electromagnetic and gravitational fields
and estimate the intensity of Hawking radiation and lifetime for asymptotically flat black holes in this

theory. Positive coupling constant leads to much smaller evaporation rate and longer life-time of a black
hole, while the negative one enhances Hawking radiation. The grey-body factors for electromagnetic and
Dirac fields are smaller for larger values of the coupling constant.
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1. Introduction

Higher curvature corrections added to the Einstein theory of
gravity represent a broad area of alternative theories of grav-
ity generalizing General Relativity. Among various types of higher
curvature corrections, one of the most perspective approaches is
consideration of quadratic corrections in the form of the Gauss-
Bonnet term. In 3+ 1 dimensions the Gauss-Bonnet term produces
the pure divergence and does not add anything to the equations
of motions, so that the Einstein theory is the only metric the-
ory of gravity which keeps diffeomorphism invariance and, at the
same time, has second order equations of motion. However, a non-
Lagrangian approach can be developed [1,2], which is based on,
first, re-scaling of the coupling constant in the higher dimensional
field equations and, then, taking the limit D — 4. It was claimed
that this way the Lovelock’s theorem is bypassed [3,4] and the Os-
trogradsky instability is avoided. However, later it was shown that
the above regularization scheme works only for a class of metrics
for which

1
CMMU Cv,oxa - ZS{JLCT'O)LU Crpka =0, (l)

where Cyps is the Weyl tensor [5]. Therefore, the regulariza-
tion scheme [1,2] does not produce the four-dimensional theory
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of gravity [8,11]. Nevertheless, this regularization scheme inspired
further discussion of applicability of such approaches [9,10]. The
well-defined theory, which, however, breaks the Lorenz-invariance
and affects the dispersion relation for propagation of gravitons at
high frequencies, was suggested in [5,6]. Fortunately, the black hole
solution obtained via the naive regularization [1,2] proved out to
be an exact solution also in the full theory [5,6] as well as in the
scalar-tensor theories with the Gauss-Bonnet term [12-14,49,52].
Therefore, one can safely consider test fields in the background of
these black holes as well as gravitational perturbations using the
same regularization scheme, but keeping in mind that the gravi-
tational sector may be modified in the full theory in the regime
of high frequencies [6]. It is well-known that in four-dimensional
spacetimes, gravitons contribute only about one-two percent into
the total amount of radiation around black holes. Therefore, we
can neglect radiation of gravitons when estimating the intensity of
Hawking radiation and black-hole’s lifetime.

Black holes in either higher- [7,15,16] or four-dimensional
[1,17] Einstein-Gauss-Bonnet theories and their Lovelock general-
izations are limited by strong constrains on their parameters due
to the gravitational instability of black-hole spacetimes [18-26].
The black holes are stable only provided the coupling constants as-
sociated with the higher curvature terms are small enough. There-
fore, the allowed deviations from the Tangherlini (or Meyrs-Perry)
geometry for higher curvature corrected D > 4 black holes are
relatively small, what results in a relatively small deviations of ob-
servable quantities, such as quasinormal modes [27,28] or iron-line
radiation spectra [29]. The same may be true for black holes in the
novel D =4 Einstein-Gauss-Bonnet theory with the exception that
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the stability region for negative values of the Gauss-Bonnet cou-
pling constant « is much larger than that for positive «, as has
been recently shown in [17,30,31]. Still, the final solution of the
black-hole stability problem in the well-defined theory [5,6] has
not been studied.

While the classical (that is, quasinormal) spectrum of higher
curvature corrected black holes differs from its Einsteinian limit
relatively softly [32-34] the Hawking radiation is known to be
much more sensitive characteristic when the Gauss-Bonnet cou-
pling is turned on [33]. Moreover, it is known that even slight
deformations of the Tangherlini geometry due to the Gauss-Bonnet
term lead to considerable suppression of Hawking radiation by
a few orders [35,36]. Therefore, it would be interesting to learn
whether similar effects occur for Hawking radiation in the 4D-
Einstein-Gauss-Bonnet theory. Even though some thermodynamical
properties in this 4D theory have been recently investigated in a
few works [37-40], the study of Hawking radiation has been by
now limited by consideration of grey-body factors and associated
power spectra for a test scalar field only [41]. Thus, no estimations
for Hawking radiation of real Standard Model particles in the 4D
-Einstein-Gauss-Bonnet theory exist so far.

Here we will compute grey-body factors and energy emis-
sion rates for electromagnetic, Dirac and gravitational fields in
the vicinity of an asymptotically flat black holes in the (3 + 1)-
dimensional Einstein-Gauss-Bonnet theory. This includes calcula-
tions of radiation flows for neutrinos, photons and gravitons as
well as for ultra-relativistic electrons and protons. The calculations
for gravitons are made here via the regularization scheme [1,2]
which is valid in scalar-tensor theories [12,13,49,52], because the
additional (scalar) degree of freedom is not dynamical [49], but
may get further corrections in the high frequency regime when
considering the full theory [5,6]. As the contribution of gravitons is
less than only two percents, this allows us to estimate the lifetime
of the black hole for various values of the Gauss-Bonnet coupling
constant.

The paper is organized as follows. In sec. 2 we give the basic
information on the D = 4 Einstein-Gauss-Bonnet gravity and the
black-hole solution. Sec. 3 is devoted to deduction of the wave
equations for the electromagnetic, Dirac and gravitational fields.
Sec. 4 discusses the boundary conditions for the scattering prob-
lem used the grey-body factors calculated with the help of the
WKB method. In Sec. 5 we calculate the energy emission rates for
Hawking radiation and estimate lifetime of the black hole under
consideration. Finally, in the Conclusion, we summarize the ob-
tained results and mention a few open questions related to the
Hawking radiation in this theory.

2. 4D Einstein-Gauss-Bonnet theory and black-hole metric

A crucial aspect for our consideration of Hawking radiation is
that the black-hole solution obtained as a result of the dimensional
regularization suggested in [1], is also an exact solution of the
well-defined truly four-dimensional Aoki-Gorji-Mukohyama theory
[5] or theories with extra scalar degrees of freedom [12,13,49,52].
Thus, in addition to the dimensional regularization, there are three
approaches where the same black-hole solution appears:

1. a subclass of the Horndeski theory obtained via the Kaluza-
Klein reduction of a D-dimensional theory with a scalar field
(0)* [49,52].

2. a similar approach, but without any assumption on the struc-
ture of the Kaluza-Klein sector proposed in [12,13]. In [5] it
was shown that there is an infinite coupling problem when
trying to construct the consistent quantum description of
these two approaches. Nevertheless, one should be able to
consider these scalar-tensor theories at least in the classical
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limit, for example for effective description of large astrophysi-
cal black holes.

3. A consistent and full 4D Aoki-Gorji-Mukohyama theory [5]
allowing for Hamiltonian description, which uses the ADM
decomposition [5]. This theory breaks the Lorenz invariance
via modification of the dispersion relations in the UV regime,
making the whole approach consistent with the current obser-
vations in the IR regime.

In the all of the above approaches the exact solution, describing an
asymptotically flat four-dimensional black hole with Gauss-Bonnet
corrections has the form

ds* = —f(de* + f~ (ndr? +1dQs, (2)

where

r? aaM\'?
f(r):1+a 1:|:(1+r—3> ,

and « is the Gauss-Bonnet coupling constant. There are two
branches of solutions if « >0, but, if & <0, there is no real so-
lution for r3 < —4aM. Here we will study “the minus” case of the
above metric, as it leads to an asymptotically flat solution, unlike
“the plus” case, which is asymptotically de Sitter one.

The event horizon is the larger root of the following ones:

rﬂ:MPi/l—%}. 3)

Various properties of the 4D Einstein-Gauss-Bonnet black holes
and, broader, the theory itself, have been recently studied in a
number of works [42-58]. Notice also that the above introduced
black-hole metric was considered earlier in a different context con-
nected with corrections to the entropy formula [60,61].

3. Wave equation for Dirac, Maxwell and gravitational fields
3.1. Test fields

The general covariant equations for electromagnetic and Dirac
fields have the following form

\/%_gau (Fpog”’g’"/—g) =0, (Maxwell) (4)
y* (% - I‘a> W =0, (Dirac) (5)

where Fyy =dpAs — s Ap and A, is a vector potential; y“ are
noncommutative gamma matrices and ', are spin connections in
the tetrad formalism [62]. After some algebra one can separate the
angular variables in equations (4), (5) and rewrite the wave equa-
tion in the following general master form [62,70]:

d>w 5

— + (" =V(@)¥=0, (6)
dr?

where r, is the “tortoise coordinate” dr, = dr/f(r). The effective
potentials are

L+ 1
i =5 (7)

I k
Ve =" (; 0 (¢f(r>>/> , (8)

where £ =1,2,3... and k=1, 2,3, ... are multipole numbers. The
effective potentials for electromagnetic and “plus” sign Dirac fields
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have the form of a positive definite potential barrier with a single
maximum. The effective potential for the “minus” sign Dirac field
has a negative gap near the event horizon and it is iso-spectral
to the “plus” potential, what was shown for a generic spherically
symmetric black holes in [32]. Consequently, the corresponding
quasinormal spectrum of the Dirac field has no growing modes
indicating any kind of instability [34].

3.2. Gravitational field

In [23] it was shown that after the decoupling of angular vari-
ables and some algebra, the gravitational perturbation equations
can be reduced to the second-order master differential equations.
The explicit forms of the effective potentials V(r), V, (r) for scalar
and vector types of gravitational perturbations respectively are
given by

=D +nfOT () a2 [ 1
v = (n—DrT(r) * RU)E(W)’

2 +n—DfP'()  Pr)d* [ r
Vs = nrP(r) + TE (m) ’

where n=D — 2, £ =2,3,4,... is the multipole number, T(r) is
given in [23], and

T(r)=rP'[y ()] 9)
R(r) =ry/|T' (1), (10)
_ — 3./
P(r) = 20 =1 +n) —nr’y (r)T(r). (11)
[T(r)]
The new function ¥ (r) is defined as follows:
1—
=110 (12)

One can see that the vector and scalar types of gravitational per-
turbations (also called axial and polar ones respectively) are not
iso-spectral as it takes place for the Einstein relativity. There, the
corresponding effective potentials for axial and polar perturbations
are related via the Darboux transformations and it is sufficient to
analyze only one of the two potentials and multiply the final en-
ergy emissions by two. In our case every channel of gravitational
perturbations contributes different grey-body factors.

4. The scattering problem: boundary conditions, grey-body
factors and the WKB approach

We will study wave equation (6) with the boundary conditions
allowing for incoming waves from infinity. Owing to the symme-
try of the scattering properties this is identical to the scattering
of a wave coming from the horizon, what is natural if one wants
to know the fraction of particles reflected back from the poten-
tial barrier to the horizon. The scattering boundary conditions for
eq. (6) have the following form

W = el 4 Rel®, 1, — +00,

W = Te ior (13)

Iy = —0Q,

where R and T are the reflection and transmission coefficients, and
we have

IT>+ |R>=1. (14)

Once the reflection coefficient is calculated, we can find the trans-
mission coefficient for each multipole number ¢ by the using the
WKB approach:
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|Ael2=1—|Re|*> = IT,|?. (15)
R = (l + e—2i7'rK)—%’ (16)

where K can be determined from the following equation:

2 i=6
1<—iM—ZAi(1<)=o. (17)
N A

Here Vo is the maximum of the effective potential, V] is the
second derivative of the effective potential in its maximum with
respect to the tortoise coordinate r,, and A; are higher order WKB
corrections which depend on up to 2ith order derivatives of the
effective potential at its maximum [63-67] and K. This approach
at the 6th WKB order was used for finding transmission/reflection
coefficients of various black holes and wormbholes in [33,59] and
the comparison of the WKB results for the energy emission rate of
Schwarzschild black hole done in [59] are in excellent concordance
with the numerical calculations of the well-known work by Don
Page [69]. Here we will mostly use the 6th order WKB formula
of [65] and, sometimes, apply lower orders when small frequen-
cies and lower multipoles are under consideration. Fortunately, the
WKB method works badly for small frequencies only, that is, in
the region where the reflection is almost total and the grey-body
factors are close to zero. Therefore, this inaccuracy of the WKB ap-
proach at small frequencies does not affect our estimations of the
energy emission rates. As the WKB method is very well known
(see, for example reviews [68,70] and references therein), we will
not describe it here in more detail.

From Figs. 1-4 one can see that grey-body factors of test and
gravitational fields behave qualitatively differently. For electromag-
netic and Dirac fields, the transmission coefficient (given by the
grey-body factor) is higher when the Gauss-Bonnet coupling o
constant is decreasing from positive values through zero to neg-
ative values. For the axial and polar gravitational perturbations the
situation is opposite: when « is decreased from negative to pos-
itive values, the grey-body factors are decreasing as well, leading
to suppression of a fraction of gravitons penetrating the potential
barrier. This effect can be easily explained from the form of the ef-
fective potentials given on Fig. 7 (continuous line): the smaller «
is, the lower is the potential barrier for electromagnetic and Dirac
fields, which allows for more particles to penetrate the potential
barrier and achieve the observer detecting the incoming flow of
Hawking radiation. On the contrary, the effective potential of grav-
itational field (dashed line on Fig. 7) becomes higher when « is
decreased, what works on behave of lower grey-body factors for
gravitons.

5. Hawking radiation

We will assume that the black hole is in the state of ther-
mal equilibrium with its environment in the following sense: the
temperature of the black hole does not change between emissions
of two consequent particles. This implies that the system can be
described by the canonical ensemble (see, for example, a review
[72]). Then, the energy emission rate for Hawking radiation is de-
scribed by the well-known formula [71]:

dE w dw
— = Ne| AP ———— —, 18
dr Xe: el Al exp (@/Tn) — 127 (18)
were Ty is the Hawking temperature, A; are the grey-body fac-
tors, and N; are the multiplicities, which depend on the space-
time dimension, the number of species of particles and I. The
Hawking temperature is given by the Hawking formula [71] T =
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Fig. 1. Grey-body factors of the electromagnetic field computed with the sixth order WKB method: M = 1/2, £ =1 (left) and ¢ =2 (right), « = 0.15 (red), @ = 0 (blue),
o = —0.3 (green), « = —0.5 (dark blue).
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Fig. 2. Grey-body factors of the Dirac field computed with the fifth order WKB method: M =1/2, k =1 (left) and k = 2 (right), & = 0.15 (red), « = 0 (blue), @ = —0.3 (green),
o = —0.5 (dark blue).
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Fig. 3. Grey-body factors of the vector type of gravitational perturbation computed with the fourth order WKB method: M = 1/2, ¢ =2 (left) and ¢ = 3 (right), o =0.15
(red), @ =0 (blue), « = —0.3 (green), o = —0.5 (dark blue).
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Fig. 4. Grey-body factors of the scalar type of gravitational perturbation computed with the fourth (for ¢ =2) and fifth (for £ = 3) order WKB method: M =1/2, ¢ =2 (left)

and ¢ =3 (right), @ =0.15 (red), @ =0 (blue), « = —0.3 (green), « = —0.5 (dark blue).
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Fig. 5. Hawking temperature Ty as a function of o, M =1/2.

fr(r)/(4m)|r=r,, which, in our case, has the following form in the
limit of small o

1 o a?

T: —_ —
8tM  32(7M3) 512(nM>

) +0 (oﬁ). (19)

From Fig. 5 we can see that the linear term describes the Hawking
temperature quite well in the whole region of stability for posi-
tive a.

The multiplicity factors for the four dimensional spherically
symmetrical black holes case consists from the number of degen-
erated m-modes (which are m=—¢,—¢+1,.... — 1,0, 1, ...¢, that
is 2¢ + 1 modes) multiplied by the number of species of particles
which depends also on the number of polarizations and helicities
of particles. Therefore, we have

Ne=22¢+1) (Maxwell), (20)
N, =8k (Dirac), (21)
Ne=2(12¢+1) (gravitational). (22)

The multiplicity factor for the Dirac field is fixed taking into ac-
count both the “plus” and “minus” potentials which are related by
the Darboux transformations, what leads to the iso-spectral prob-
lem [32] and the same grey-body factors for both chiralities. We
will use here the “minus” potential, because the WKB results are
more accurate for that case in the Schwarzschild limit.

It is well-known [69] that there are two qualitatively different
regimes of particles emission. The first regime happens when the

black hole mass is large enough and radiation of massive parti-
cles is negligibly small. In this regime the radiation occurs mainly
due to massless electron and muon neutrinos, photons, and gravi-
tons. When the black-hole mass M is sufficiently small, emission
of electrons and positrons will occur ultra-relativistically, as the
wave equation for a massive field with mass © depends on the
term pM. In this ultra-relativistic regime, the law of radiation for
positrons and electrons can be approximated by that for a mass-
less Dirac field and the emission rate of all the Dirac particles must
be simply doubled.

Let us assume that the peak in the Dirac particles’ spectrum
92E/dtdw occurs at some w ~ £M~!, then the range of ultra-
relativistic radiation of massive particles is determined as follows:

Me =4.19 x 1072mp, « EM™' < my, =8.65 x 107'm,,.

This inequality can be rewritten as follows:

e71.10Mkg. « M < €712 x 10" %kg. (23)

As can be seen from Fig. 6, for the example of an electromag-
netic field, the maximum of the spectrum shifts towards larger oM
when « is increased very slightly, so that it will not influence any
our further estimations.

The energy emitted causes the black-hole mass to decrease at
the following rate [69]

4
am __het ey ”
dt G2 M2

where we have restored the dimensional constants. Here o =
dE/dt is taken for a given initial mass My. Since most of its time
the black hole spends near its original state My and integrating of
the above equation gives us the life-time of a black hole:

G* M3
T=——2.
hc? 3ag

Here o is the energy emission rate that can be calculated as
a sum over all the fields in Table 1 for non-ultrarelativistic
regime and with the double weight of Dirac particles in the
ultra-relativistic regime. The utlra-relativistic lifetimes are given
in parentheses in Table 1.

From Table 1 we can see that the Hawking radiation is en-
hanced for all fields when the coupling constant « is decreasing,
so that negative values of o correspond to much more intensive
Hawking radiation than positive ones. There two factors for this

(25)
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Fig. 6. Energy emission rate as a function of w for the electromagnetic field for £ =1 (top), 2 and 3 (bottom), o = —0.3 (left), @ = 0.15 (right) M = 1/2. The contribution of
the lowest multipole is dominant, ¢ =2 only slightly corrects the total emission, while £ =3 is almost negligible.

Table 1

Energy emission rates for Maxwell and Dirac particles (in the units 2M = 1), lifetimes of the black hole in the regime of negligible radiation of massive particles 7; and in

the ultra-relativistic regime 7.

o dE /dt (Dirac) dE/dt (Maxwell) Vector grav. Scalar grav. 71 (Mo/kg)? 73(Mg/kg)?
-0.3 0.002436 0.000580 0.0000485 0.0000629 2.22-10718 1.25-10718
-015 0.001425 0.000373 0.0000260 0.0000249 3.76-10718 21210718
0 0.000646 0.000137 7.7-1076 7.7-1076 8.7-10718 4.8-10718
0.05 0.000471 0.000091 4.929.1076 6.911-1076 1.21-107" 6.65-10718
015 0.000222 0.000034 1.55-1076 5.327-1076 2.64-10717 1.43.10717
\% . . . . .
0.8 energy emission rate via the polar channel is three times bigger
i\ than that for the axial one.
I . . . . . .
! N The total emission of gravitons is increasing when the value of
\ . . . ape
! N the coupling constant is decreased from its positive values to neg-
0.6r (/“\1\\ ative ones. At the same time we have noticed here earlier that
/( the effective potentials for negative o are higher what should sup-
/l .. press the fraction of gravitons penetrating the potential barrier
04F /1 N and achieving the observer. However, the exponential factor of the
L N temperature is apparently the dominant here over the linear con-
| N p pPp y
D \\\ tribution of grey-body factors, so that the total energy emission
02,/ | Tl rate is anyway higher for smaller «.
il T~a __
Il \‘ T .
. 6. Conclusions
[/
2 3 4 5 6 Here with the help of the higher order WKB approach we cal-

Fig. 7. Effective potentials for £ =1 electromagnetic (continuous curve) and ¢ =2
axial gravitational (dashed curve) perturbations; o =0 (blue) and o = —0.7 (red).

behavior. The first, and the dominant one, is the increasing of
Hawking temperature when the coupling « is decreased: hotter
black holes naturally emit particles more intensively. The effective
potential of electromagnetic and Dirac fields also works for this
tendency as it becomes lower for smaller ¢, so that less particles
are reflected back to the horizon for smaller .

There is one distinction from the Schwarzschild case is in the
emission of gravitons via axial and polar channels: when o =0
both channels are iso-spectral, because the corresponding effective
potentials are related by the Darboux transformations. This is not
so when the Gauss-Bonnet coupling is turned on. From Table 1
we can see that the difference in the energy emission rates along
axial and polar channels is quite different and the polar channel
always radiates more gravitons than the axial one. For example,
for o« = 0.15, which is near the threshold of instability [31], the

culated grey-body factors and the corresponding energy emission
rates for Dirac, electromagnetic and gravitational fields in the 4D
Einstein-Gauss-Bonnet theory. We also estimated lifetime of the
black hole for various values of the coupling constant. We have
shown that the positive coupling constant leads to considerable
suppression of Hawking evaporation, while the negative one en-
hances it. Emission rates via the two channels of gravitational per-
turbations are not the same anymore: Gravitons emission via the
polar channel is much higher than that through the axial one. The
grey-body factors of test fields decrease when the positive coupling
constant is turned on, what, together with the decreasing temper-
ature, works for suppression of intensity of the emission.

In order to find energy emission rate of Hawking radiation at
large negative o the WKB method does not provide sufficient ac-
curacy in that regime. However, our main purpose here was the
case of positive coupling constant for which the solution exists in
the whole space and is not terminated at some finite value of the
radial coordinate r. Numerical integration of the wave equations
allows one to find grey-body factors for any large negative val-
ues of the coupling constant, which, we hope, could be the subject
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of future investigations. Adding such a factor as an electric charge
could also be interesting to complete the picture of the black hole
evaporation.

While consideration of test fields is valid in all of the above
approaches (because for this one uses only the form of the back-
ground metric) the gravitational perturbations, which we treat
here via the dimensional regularization scheme, must be valid
only in the scalar-tensor theory, because there the scalar field is
not dynamical [49]. Therefore, implying the correct quantum de-
scription of black holes, we certainly should interpret carefully the
data on gravitons’ emission, as in the ultra-violet regime, that is
exactly when the black hole is small and intensively evaporat-
ing, the gravitons’ spectrum will be corrected in the Aoki-Gorji-
Mukohyama theory [5]. As the contribution of gravitons is almost
negligibly small for four-dimensional black holes, even the esti-
mated emission of test fields only gives a clear picture of black-
hole evaporation. Nevertheless, it is necessary also to fulfill the
reduction of perturbation equations to the master wave-like form
in the full well defined theory [5] and, in a similar fashion, to esti-
mate the intensity of emission of gravitons, which may be different
due to the modification of the dispersion relation.
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