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The (3 + 1)-dimensional Einstein-Gauss-Bonnet theory of gravity which breaks the Lorentz invariance in 
a theoretically consistent and observationally viable way has been recently suggested by Aoki, Gorji and 
Mukohyama [5]. Here we calculate grey-body factor for Dirac, electromagnetic and gravitational fields 
and estimate the intensity of Hawking radiation and lifetime for asymptotically flat black holes in this 
theory. Positive coupling constant leads to much smaller evaporation rate and longer life-time of a black 
hole, while the negative one enhances Hawking radiation. The grey-body factors for electromagnetic and 
Dirac fields are smaller for larger values of the coupling constant.
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1. Introduction

Higher curvature corrections added to the Einstein theory of 
gravity represent a broad area of alternative theories of grav-
ity generalizing General Relativity. Among various types of higher 
curvature corrections, one of the most perspective approaches is 
consideration of quadratic corrections in the form of the Gauss-
Bonnet term. In 3 + 1 dimensions the Gauss-Bonnet term produces 
the pure divergence and does not add anything to the equations 
of motions, so that the Einstein theory is the only metric the-
ory of gravity which keeps diffeomorphism invariance and, at the 
same time, has second order equations of motion. However, a non-
Lagrangian approach can be developed [1,2], which is based on, 
first, re-scaling of the coupling constant in the higher dimensional 
field equations and, then, taking the limit D → 4. It was claimed 
that this way the Lovelock’s theorem is bypassed [3,4] and the Os-
trogradsky instability is avoided. However, later it was shown that 
the above regularization scheme works only for a class of metrics 
for which

Cμρλσ Cνρλσ − 1

4
δ
μ
ν Cτρλσ Cτρλσ = 0, (1)

where Cνρλσ is the Weyl tensor [5]. Therefore, the regulariza-
tion scheme [1,2] does not produce the four-dimensional theory 
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of gravity [8,11]. Nevertheless, this regularization scheme inspired 
further discussion of applicability of such approaches [9,10]. The 
well-defined theory, which, however, breaks the Lorenz-invariance 
and affects the dispersion relation for propagation of gravitons at 
high frequencies, was suggested in [5,6]. Fortunately, the black hole 
solution obtained via the naive regularization [1,2] proved out to 
be an exact solution also in the full theory [5,6] as well as in the 
scalar-tensor theories with the Gauss-Bonnet term [12–14,49,52]. 
Therefore, one can safely consider test fields in the background of 
these black holes as well as gravitational perturbations using the 
same regularization scheme, but keeping in mind that the gravi-
tational sector may be modified in the full theory in the regime 
of high frequencies [6]. It is well-known that in four-dimensional 
spacetimes, gravitons contribute only about one-two percent into 
the total amount of radiation around black holes. Therefore, we 
can neglect radiation of gravitons when estimating the intensity of 
Hawking radiation and black-hole’s lifetime.

Black holes in either higher- [7,15,16] or four-dimensional 
[1,17] Einstein-Gauss-Bonnet theories and their Lovelock general-
izations are limited by strong constrains on their parameters due 
to the gravitational instability of black-hole spacetimes [18–26]. 
The black holes are stable only provided the coupling constants as-
sociated with the higher curvature terms are small enough. There-
fore, the allowed deviations from the Tangherlini (or Meyrs-Perry) 
geometry for higher curvature corrected D > 4 black holes are 
relatively small, what results in a relatively small deviations of ob-
servable quantities, such as quasinormal modes [27,28] or iron-line 
radiation spectra [29]. The same may be true for black holes in the 
novel D = 4 Einstein-Gauss-Bonnet theory with the exception that 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the stability region for negative values of the Gauss-Bonnet cou-
pling constant α is much larger than that for positive α, as has 
been recently shown in [17,30,31]. Still, the final solution of the 
black-hole stability problem in the well-defined theory [5,6] has 
not been studied.

While the classical (that is, quasinormal) spectrum of higher 
curvature corrected black holes differs from its Einsteinian limit 
relatively softly [32–34] the Hawking radiation is known to be 
much more sensitive characteristic when the Gauss-Bonnet cou-
pling is turned on [33]. Moreover, it is known that even slight 
deformations of the Tangherlini geometry due to the Gauss-Bonnet 
term lead to considerable suppression of Hawking radiation by 
a few orders [35,36]. Therefore, it would be interesting to learn 
whether similar effects occur for Hawking radiation in the 4D-
Einstein-Gauss-Bonnet theory. Even though some thermodynamical 
properties in this 4D theory have been recently investigated in a 
few works [37–40], the study of Hawking radiation has been by 
now limited by consideration of grey-body factors and associated 
power spectra for a test scalar field only [41]. Thus, no estimations 
for Hawking radiation of real Standard Model particles in the 4D
-Einstein-Gauss-Bonnet theory exist so far.

Here we will compute grey-body factors and energy emis-
sion rates for electromagnetic, Dirac and gravitational fields in 
the vicinity of an asymptotically flat black holes in the (3 + 1)-
dimensional Einstein-Gauss-Bonnet theory. This includes calcula-
tions of radiation flows for neutrinos, photons and gravitons as 
well as for ultra-relativistic electrons and protons. The calculations 
for gravitons are made here via the regularization scheme [1,2]
which is valid in scalar-tensor theories [12,13,49,52], because the 
additional (scalar) degree of freedom is not dynamical [49], but 
may get further corrections in the high frequency regime when 
considering the full theory [5,6]. As the contribution of gravitons is 
less than only two percents, this allows us to estimate the lifetime 
of the black hole for various values of the Gauss-Bonnet coupling 
constant.

The paper is organized as follows. In sec. 2 we give the basic 
information on the D = 4 Einstein-Gauss-Bonnet gravity and the 
black-hole solution. Sec. 3 is devoted to deduction of the wave 
equations for the electromagnetic, Dirac and gravitational fields. 
Sec. 4 discusses the boundary conditions for the scattering prob-
lem used the grey-body factors calculated with the help of the 
WKB method. In Sec. 5 we calculate the energy emission rates for 
Hawking radiation and estimate lifetime of the black hole under 
consideration. Finally, in the Conclusion, we summarize the ob-
tained results and mention a few open questions related to the 
Hawking radiation in this theory.

2. 4D Einstein-Gauss-Bonnet theory and black-hole metric

A crucial aspect for our consideration of Hawking radiation is 
that the black-hole solution obtained as a result of the dimensional 
regularization suggested in [1], is also an exact solution of the 
well-defined truly four-dimensional Aoki-Gorji-Mukohyama theory 
[5] or theories with extra scalar degrees of freedom [12,13,49,52]. 
Thus, in addition to the dimensional regularization, there are three 
approaches where the same black-hole solution appears:

1. a subclass of the Horndeski theory obtained via the Kaluza-
Klein reduction of a D-dimensional theory with a scalar field 
(∂φ)4 [49,52].

2. a similar approach, but without any assumption on the struc-
ture of the Kaluza-Klein sector proposed in [12,13]. In [5] it 
was shown that there is an infinite coupling problem when 
trying to construct the consistent quantum description of 
these two approaches. Nevertheless, one should be able to 
consider these scalar-tensor theories at least in the classical 
2

limit, for example for effective description of large astrophysi-
cal black holes.

3. A consistent and full 4D Aoki-Gorji-Mukohyama theory [5]
allowing for Hamiltonian description, which uses the ADM 
decomposition [5]. This theory breaks the Lorenz invariance 
via modification of the dispersion relations in the UV regime, 
making the whole approach consistent with the current obser-
vations in the IR regime.

In the all of the above approaches the exact solution, describing an 
asymptotically flat four-dimensional black hole with Gauss-Bonnet 
corrections has the form

ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�2
2, (2)

where

f (r) = 1 + r2

α

[
1±

(
1 + 4αM

r3

)1/2
]
,

and α is the Gauss-Bonnet coupling constant. There are two 
branches of solutions if α >0, but, if α <0, there is no real so-
lution for r3 <−4αM . Here we will study “the minus” case of the 
above metric, as it leads to an asymptotically flat solution, unlike 
“the plus” case, which is asymptotically de Sitter one.

The event horizon is the larger root of the following ones:

rH± = M

[
1 ±

√
1 − α

2

]
. (3)

Various properties of the 4D Einstein-Gauss-Bonnet black holes 
and, broader, the theory itself, have been recently studied in a 
number of works [42–58]. Notice also that the above introduced 
black-hole metric was considered earlier in a different context con-
nected with corrections to the entropy formula [60,61].

3. Wave equation for Dirac, Maxwell and gravitational fields

3.1. Test fields

The general covariant equations for electromagnetic and Dirac 
fields have the following form

1√−g
∂μ

(
Fρσ gρν gσμ√−g

) = 0 , (Maxwell) (4)

γ α

(
∂

∂xα
− 
α

)
� = 0, (Dirac) (5)

where Fρσ = ∂ρAσ − ∂σAρ and Aμ is a vector potential; γ α are 
noncommutative gamma matrices and 
α are spin connections in 
the tetrad formalism [62]. After some algebra one can separate the 
angular variables in equations (4), (5) and rewrite the wave equa-
tion in the following general master form [62,70]:

d2�

dr2∗
+ (ω2 − V (r))� = 0, (6)

where r∗ is the “tortoise coordinate” dr∗ = dr/ f (r). The effective 
potentials are

V 1(r) = f (r)
�(� + 1)

r2
. (7)

V± 1
2
(r) = k

r
f (r)

(
k

r
∓

√
f (r)

r
± (

√
f (r))′

)
, (8)

where � = 1, 2, 3... and k = 1, 2, 3, ... are multipole numbers. The 
effective potentials for electromagnetic and “plus” sign Dirac fields 
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have the form of a positive definite potential barrier with a single 
maximum. The effective potential for the “minus” sign Dirac field 
has a negative gap near the event horizon and it is iso-spectral 
to the “plus” potential, what was shown for a generic spherically 
symmetric black holes in [32]. Consequently, the corresponding 
quasinormal spectrum of the Dirac field has no growing modes 
indicating any kind of instability [34].

3.2. Gravitational field

In [23] it was shown that after the decoupling of angular vari-
ables and some algebra, the gravitational perturbation equations 
can be reduced to the second-order master differential equations. 
The explicit forms of the effective potentials V s(r), V v(r) for scalar 
and vector types of gravitational perturbations respectively are 
given by

V v(r) = (� − 1)(� + n) f (r)T ′(r)
(n − 1)rT (r)

+ R(r)
d2

dr2∗

(
1

R(r)

)
,

V s(r) = 2�(� + n − 1) f (r)P ′(r)
nr P (r)

+ P (r)

r

d2

dr2∗

(
r

P (r)

)
,

where n = D − 2, � = 2, 3, 4, . . . is the multipole number, T (r) is 
given in [23], and

T (r) ≡ r P ′[ψ(r)] (9)

R(r) = r
√|T ′(r)|, (10)

P (r) = 2(� − 1)(� + n) − nr3ψ ′(r)√|T ′(r)| T (r). (11)

The new function ψ(r) is defined as follows:

ψ(r) = 1 − f (r)

r2
. (12)

One can see that the vector and scalar types of gravitational per-
turbations (also called axial and polar ones respectively) are not 
iso-spectral as it takes place for the Einstein relativity. There, the 
corresponding effective potentials for axial and polar perturbations 
are related via the Darboux transformations and it is sufficient to 
analyze only one of the two potentials and multiply the final en-
ergy emissions by two. In our case every channel of gravitational 
perturbations contributes different grey-body factors.

4. The scattering problem: boundary conditions, grey-body 
factors and the WKB approach

We will study wave equation (6) with the boundary conditions 
allowing for incoming waves from infinity. Owing to the symme-
try of the scattering properties this is identical to the scattering 
of a wave coming from the horizon, what is natural if one wants 
to know the fraction of particles reflected back from the poten-
tial barrier to the horizon. The scattering boundary conditions for 
eq. (6) have the following form

� = e−iωr∗ + Reiωr∗ , r∗ → +∞,

� = T e−iωr∗ , r∗ → −∞,
(13)

where R and T are the reflection and transmission coefficients, and 
we have

|T |2 + |R|2 = 1. (14)

Once the reflection coefficient is calculated, we can find the trans-
mission coefficient for each multipole number � by the using the 
WKB approach:
3

|A�|2 = 1 − |R�|2 = |T�|2 . (15)

R = (1 + e−2iπ K )−
1
2 , (16)

where K can be determined from the following equation:

K − i
(ω2 − V 0)√

−2V ′′
0

−
i=6∑
i=2

�i(K ) = 0. (17)

Here V 0 is the maximum of the effective potential, V ′′
0 is the 

second derivative of the effective potential in its maximum with 
respect to the tortoise coordinate r∗ , and �i are higher order WKB 
corrections which depend on up to 2ith order derivatives of the 
effective potential at its maximum [63–67] and K . This approach 
at the 6th WKB order was used for finding transmission/reflection 
coefficients of various black holes and wormholes in [33,59] and 
the comparison of the WKB results for the energy emission rate of 
Schwarzschild black hole done in [59] are in excellent concordance 
with the numerical calculations of the well-known work by Don 
Page [69]. Here we will mostly use the 6th order WKB formula 
of [65] and, sometimes, apply lower orders when small frequen-
cies and lower multipoles are under consideration. Fortunately, the 
WKB method works badly for small frequencies only, that is, in 
the region where the reflection is almost total and the grey-body 
factors are close to zero. Therefore, this inaccuracy of the WKB ap-
proach at small frequencies does not affect our estimations of the 
energy emission rates. As the WKB method is very well known 
(see, for example reviews [68,70] and references therein), we will 
not describe it here in more detail.

From Figs. 1-4 one can see that grey-body factors of test and 
gravitational fields behave qualitatively differently. For electromag-
netic and Dirac fields, the transmission coefficient (given by the 
grey-body factor) is higher when the Gauss-Bonnet coupling α
constant is decreasing from positive values through zero to neg-
ative values. For the axial and polar gravitational perturbations the 
situation is opposite: when α is decreased from negative to pos-
itive values, the grey-body factors are decreasing as well, leading 
to suppression of a fraction of gravitons penetrating the potential 
barrier. This effect can be easily explained from the form of the ef-
fective potentials given on Fig. 7 (continuous line): the smaller α
is, the lower is the potential barrier for electromagnetic and Dirac 
fields, which allows for more particles to penetrate the potential 
barrier and achieve the observer detecting the incoming flow of 
Hawking radiation. On the contrary, the effective potential of grav-
itational field (dashed line on Fig. 7) becomes higher when α is 
decreased, what works on behave of lower grey-body factors for 
gravitons.

5. Hawking radiation

We will assume that the black hole is in the state of ther-
mal equilibrium with its environment in the following sense: the 
temperature of the black hole does not change between emissions 
of two consequent particles. This implies that the system can be 
described by the canonical ensemble (see, for example, a review 
[72]). Then, the energy emission rate for Hawking radiation is de-
scribed by the well-known formula [71]:

dE

dt
=

∑
�

N� |Al|2 ω

exp (ω/TH) − 1

dω

2π
, (18)

were T H is the Hawking temperature, Al are the grey-body fac-
tors, and Nl are the multiplicities, which depend on the space-
time dimension, the number of species of particles and l. The 
Hawking temperature is given by the Hawking formula [71] T =
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Fig. 1. Grey-body factors of the electromagnetic field computed with the sixth order WKB method: M = 1/2, � = 1 (left) and � = 2 (right), α = 0.15 (red), α = 0 (blue), 
α = −0.3 (green), α = −0.5 (dark blue).

Fig. 2. Grey-body factors of the Dirac field computed with the fifth order WKB method: M = 1/2, k = 1 (left) and k = 2 (right), α = 0.15 (red), α = 0 (blue), α = −0.3 (green), 
α = −0.5 (dark blue).

Fig. 3. Grey-body factors of the vector type of gravitational perturbation computed with the fourth order WKB method: M = 1/2, � = 2 (left) and � = 3 (right), α = 0.15
(red), α = 0 (blue), α = −0.3 (green), α = −0.5 (dark blue).
4
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Fig. 4. Grey-body factors of the scalar type of gravitational perturbation computed with the fourth (for � = 2) and fifth (for � = 3) order WKB method: M = 1/2, � = 2 (left) 
and � = 3 (right), α = 0.15 (red), α = 0 (blue), α = −0.3 (green), α = −0.5 (dark blue).
Fig. 5. Hawking temperature T H as a function of α, M = 1/2.

f ′(r)/(4π)|r=rH , which, in our case, has the following form in the 
limit of small α

T = 1

8π M
− α

32
(
π M3

) − α2

512
(
π M5

) + O
(
α3

)
. (19)

From Fig. 5 we can see that the linear term describes the Hawking 
temperature quite well in the whole region of stability for posi-
tive α.

The multiplicity factors for the four dimensional spherically 
symmetrical black holes case consists from the number of degen-
erated m-modes (which are m = −�, −� + 1, .... − 1, 0, 1, ...�, that 
is 2� + 1 modes) multiplied by the number of species of particles 
which depends also on the number of polarizations and helicities 
of particles. Therefore, we have

N� = 2(2� + 1) (Maxwell), (20)

N� = 8k (Dirac), (21)

N� = 2(2� + 1) (gravitational). (22)

The multiplicity factor for the Dirac field is fixed taking into ac-
count both the “plus” and “minus” potentials which are related by 
the Darboux transformations, what leads to the iso-spectral prob-
lem [32] and the same grey-body factors for both chiralities. We 
will use here the “minus” potential, because the WKB results are 
more accurate for that case in the Schwarzschild limit.

It is well-known [69] that there are two qualitatively different 
regimes of particles emission. The first regime happens when the 
5

black hole mass is large enough and radiation of massive parti-
cles is negligibly small. In this regime the radiation occurs mainly 
due to massless electron and muon neutrinos, photons, and gravi-
tons. When the black-hole mass M is sufficiently small, emission 
of electrons and positrons will occur ultra-relativistically, as the 
wave equation for a massive field with mass μ depends on the 
term μM . In this ultra-relativistic regime, the law of radiation for 
positrons and electrons can be approximated by that for a mass-
less Dirac field and the emission rate of all the Dirac particles must 
be simply doubled.

Let us assume that the peak in the Dirac particles’ spectrum 
∂2 E/∂t∂ω occurs at some ω ≈ ξ M−1, then the range of ultra-
relativistic radiation of massive particles is determined as follows:

me = 4.19 × 10−23mp 
 ξ M−1 
 mμ = 8.65 × 10−21mp.

This inequality can be rewritten as follows:

ξ−1 · 1011kg. 
 M 
 ξ−1 · 2 × 1012kg. (23)

As can be seen from Fig. 6, for the example of an electromag-
netic field, the maximum of the spectrum shifts towards larger ωM
when α is increased very slightly, so that it will not influence any 
our further estimations.

The energy emitted causes the black-hole mass to decrease at 
the following rate [69]

dM

dt
= − h̄c4

G2

α0

M2
, (24)

where we have restored the dimensional constants. Here α0 =
dE/dt is taken for a given initial mass M0. Since most of its time 
the black hole spends near its original state M0 and integrating of 
the above equation gives us the life-time of a black hole:

τ = G2

h̄c4

M3
0

3α0
. (25)

Here α0 is the energy emission rate that can be calculated as 
a sum over all the fields in Table 1 for non-ultrarelativistic 
regime and with the double weight of Dirac particles in the 
ultra-relativistic regime. The utlra-relativistic lifetimes are given 
in parentheses in Table 1.

From Table 1 we can see that the Hawking radiation is en-
hanced for all fields when the coupling constant α is decreasing, 
so that negative values of α correspond to much more intensive 
Hawking radiation than positive ones. There two factors for this 
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Fig. 6. Energy emission rate as a function of ω for the electromagnetic field for � = 1 (top), 2 and 3 (bottom), α = −0.3 (left), α = 0.15 (right) M = 1/2. The contribution of 
the lowest multipole is dominant, � = 2 only slightly corrects the total emission, while � = 3 is almost negligible.

Table 1
Energy emission rates for Maxwell and Dirac particles (in the units 2M = 1), lifetimes of the black hole in the regime of negligible radiation of massive particles τ1 and in 
the ultra-relativistic regime τ2.

α dE/dt (Dirac) dE/dt (Maxwell) Vector grav. Scalar grav. τ1(M0/kg)3 τ2(M0/kg)3

-0.3 0.002436 0.000580 0.0000485 0.0000629 2.22 · 10−18 1.25 · 10−18

-0.15 0.001425 0.000373 0.0000260 0.0000249 3.76 · 10−18 2.12 · 10−18

0 0.000646 0.000137 7.7 · 10−6 7.7 · 10−6 8.7 · 10−18 4.8 · 10−18

0.05 0.000471 0.000091 4.929 · 10−6 6.911 · 10−6 1.21 · 10−17 6.65 · 10−18

0.15 0.000222 0.000034 1.55 · 10−6 5.327 · 10−6 2.64 · 10−17 1.43 · 10−17
Fig. 7. Effective potentials for � = 1 electromagnetic (continuous curve) and � = 2
axial gravitational (dashed curve) perturbations; α = 0 (blue) and α = −0.7 (red).

behavior. The first, and the dominant one, is the increasing of 
Hawking temperature when the coupling α is decreased: hotter 
black holes naturally emit particles more intensively. The effective 
potential of electromagnetic and Dirac fields also works for this 
tendency as it becomes lower for smaller α, so that less particles 
are reflected back to the horizon for smaller α.

There is one distinction from the Schwarzschild case is in the 
emission of gravitons via axial and polar channels: when α = 0
both channels are iso-spectral, because the corresponding effective 
potentials are related by the Darboux transformations. This is not 
so when the Gauss-Bonnet coupling is turned on. From Table 1
we can see that the difference in the energy emission rates along 
axial and polar channels is quite different and the polar channel 
always radiates more gravitons than the axial one. For example, 
for α = 0.15, which is near the threshold of instability [31], the 
6

energy emission rate via the polar channel is three times bigger 
than that for the axial one.

The total emission of gravitons is increasing when the value of 
the coupling constant is decreased from its positive values to neg-
ative ones. At the same time we have noticed here earlier that 
the effective potentials for negative α are higher what should sup-
press the fraction of gravitons penetrating the potential barrier 
and achieving the observer. However, the exponential factor of the 
temperature is apparently the dominant here over the linear con-
tribution of grey-body factors, so that the total energy emission 
rate is anyway higher for smaller α.

6. Conclusions

Here with the help of the higher order WKB approach we cal-
culated grey-body factors and the corresponding energy emission 
rates for Dirac, electromagnetic and gravitational fields in the 4D
Einstein-Gauss-Bonnet theory. We also estimated lifetime of the 
black hole for various values of the coupling constant. We have 
shown that the positive coupling constant leads to considerable 
suppression of Hawking evaporation, while the negative one en-
hances it. Emission rates via the two channels of gravitational per-
turbations are not the same anymore: Gravitons emission via the 
polar channel is much higher than that through the axial one. The 
grey-body factors of test fields decrease when the positive coupling 
constant is turned on, what, together with the decreasing temper-
ature, works for suppression of intensity of the emission.

In order to find energy emission rate of Hawking radiation at 
large negative α the WKB method does not provide sufficient ac-
curacy in that regime. However, our main purpose here was the 
case of positive coupling constant for which the solution exists in 
the whole space and is not terminated at some finite value of the 
radial coordinate r. Numerical integration of the wave equations 
allows one to find grey-body factors for any large negative val-
ues of the coupling constant, which, we hope, could be the subject 
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of future investigations. Adding such a factor as an electric charge 
could also be interesting to complete the picture of the black hole 
evaporation.

While consideration of test fields is valid in all of the above 
approaches (because for this one uses only the form of the back-
ground metric) the gravitational perturbations, which we treat 
here via the dimensional regularization scheme, must be valid 
only in the scalar-tensor theory, because there the scalar field is 
not dynamical [49]. Therefore, implying the correct quantum de-
scription of black holes, we certainly should interpret carefully the 
data on gravitons’ emission, as in the ultra-violet regime, that is 
exactly when the black hole is small and intensively evaporat-
ing, the gravitons’ spectrum will be corrected in the Aoki-Gorji-
Mukohyama theory [5]. As the contribution of gravitons is almost 
negligibly small for four-dimensional black holes, even the esti-
mated emission of test fields only gives a clear picture of black-
hole evaporation. Nevertheless, it is necessary also to fulfill the 
reduction of perturbation equations to the master wave-like form 
in the full well defined theory [5] and, in a similar fashion, to esti-
mate the intensity of emission of gravitons, which may be different 
due to the modification of the dispersion relation.
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