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GENERALIZATION OF THE GROSS-PITAEVSKII EQUATION
FOR BOSE GAS IN THE PRESENCE OF QUASI-PARTICLES
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Dnipropetrovsk National University, Dnipropetrovsk, Ukraine

The Gross-Pitaevskii equation has been generalized for the case of presence of the Bogolyubov quasi-particles at
hydrodynamic stage of their evolution. Hydrodynamic equations for quasi-particle subsystem are constructed
by the Chapman-Enskog method. The obtained equations can be considered as a new form of hydrodynamic
equations of superfluid Bose gas. In the Landau-Khalatnikov hydrodynamics the total density of the system is
used instead of amplitude of the condensate wave function.

1 Introduction

The problem of justification and generalization of the Gross-Pitaevskii equation is widely discussed in the
literature (see, for example, [1, 2]). In the present paper it is studied on the basis of the Bogolyubov reduced
description method which allows investigating domain of applicability of the theory and building corrections to
it. Key issue of our consideration is definition of condensate wave function ψ(x, t) as an average value of the
Bose field operator ψ(x) with statistical operator of the system ρ(t)

ψ(x, t) = Spρ(t)ψ(x) = η(x, t)eiϕ(x,t) (η(x, t) ≥ 0, 0 ≤ ϕ(x, t) < 2π). (1)

This definition leaves aside the questions: is the condensate as a subsystem of a Bose gas in a pure state and is
this state stable. However, this definition is a fruitful basis for various generalizations of the Gross-Pitaevskii
equation. Hamilton operator of the system takes into account short range repulsive interaction between particles
Φ(r). Our consideration is based on set of equations obtained in paper [3] in which nonequilibrium states Bose
gas in the presence of condensate are described by amplitude η(x, t) of the condensate wave function, local
velocity of the condensate υn(x, t) = m−1∂ϕ(x, t)/∂xn (m is mass a particle; in this paper h̄ = 1), the Wigner
distribution function for the Bogolyubov quasi-particles fp(x, t) in reference system of the condensate rest.
Gradients of parameters ξµ(x, t): fp(x, t), η(x, t), υn(x, t) are assumed to be small (small parameter g) and
therefore states of the system are weak non-uniform. Interaction between particles Φ(r) is also considered as
small one. For summation of contributions of the perturbation theory, which leads to the Bogolyubov quasi-
particles spectrum in the leading approximation, estimations Φ(r) ∼ λ2, η ∼ λ−1 are used (small parameter λ).
Equations of the mentioned paper one can consider as a generalization of Gross-Pitaevskii equation for case of
presence of quasi-particles at kinetic stage of their evolution. The purpose of the present work is a generalization
of the Gross-Pitaevskii equation for case of presence of quasi-particles at hydrodynamic stage of their evolution.

2 Basic equations of the theory

Set of equations obtained in paper [3] has structure
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Right hand side part of this equations were calculated in [3] with accuracy shown below
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L = L(0,3) + L(1,1) +O(g0λ5, g1λ2, g2λ1); Lp = L(0,2)
p + L(0,4)

p +O(g0λ5, g1λ2, g2λ1), (4)

where L(0,3), L(1,1), h(0,2), L
(0,2)
p , L

(0,4)
p are known functions of parameters ξµ(x), which are given by bulky ex-

pressions and omitted here (A(m,n) is contribution to A of the order gmλn; L
(0,2)
p , L

(0,4)
p are collision integrals

for quasi-particles). The forth equation in (2) is a consequence of the second one. The second equation was
given above because it with the first one are equivalent to the Gross-Pitaevskii equation if we restrict ourselves
by approximation

L = 0, h = h
(0,0)
0 + h

(2,0)
0 (5)

The problem of this paper is to construct hydrodynamic equations for quasi-particle subsystem of the Bose
gas interacting with the condensate subsystem. The hydrodynamic equations are a consequence of energy
and momentum conservation laws for quasi-particles and in the local reference system of the condensate rest
according to the third equation in (2) have the form
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Here εo, πon are densities of energy and momentum, qon, t
o
ln are flux densities of energy and momentum in the

mentioned reference system, a is thermodynamic force which condensate acts on quasi-particle subsystem with.
These values are given by formulas
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In order to close equations (6) we use the Bogolyubov functional hypothesis on which the Chapman-Enskog
method is based [4]. According it distribution function of quasi-particles fp(x, t) at times of their hydrodynamic
evolution (t� τo) is a functional of parameters ζα(x, t) : εo(x, t), πon(x, t), η(x, t), υn(x, t)

fp(x, t)−−−−−→
t�τ0

fp(x, ζ(t)). (8)

In hydrodynamics of quasi-particles instead of densities εo(x, t),πon(x, t) one can use their local temperature
T (x, t) and drift velocity ωn(x, t) in the reference system of the condensate rest which are defined by relations
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is the Planck distribution (in this paper kB = 1); ωn(x, t) ≡ un(x, t)−υn(x, t); un(x, t) is local velocity of quasi-
particle subsystem in the lab reference system; χα(x) denotes parameters: T (x), ωn(x), η(x), υn(x). According
to (2), (8) functional fp(x, ζ) satisfies equation
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(Lα : L0, Ln, Lη, Lυn) with additional conditions (9).

3 Hydrodynamic equations for quasi-particles

Distribution function of quasi-particles fp(x, ζ) at the reduced description is calculated from equation (11) in
perturbation theory in g and λ taking into account relations (9). As a result it has been obtained in the form
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where functions An(p), Bnl(p), C(p) are solution of integral equations

an(p) =

∫
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(an(p), bnl(p), c(p) are known functions) with additional conditions

An(p)pl = 0, Bnl(p)εp = 0, C(p)εp = 0 (14)

where for arbitrary function F (p) notation

F (p) ≡
∫
dτpnp(1 + np)F (p)

is introduced. These conditions are a consequence of definition of the temperature T and drift velocity ωn (9).
Kernel K(p, p′) of integral equations (13) is defined by linearized collision integral
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p

δfp′
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Solution of equations (13) will be discussed in another paper.
Main contribution in gradients to fluxes can be calculated using approach of our paper [5]
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where ω is thermodynamic potential of quasi-particles defined by the formula
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Entropy density of their subsystem s is given by definition
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which leads to thermodynamic relations
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Distribution function (12) gives equations
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which generalize the Gross-Pitaevskii equation, and connected with them hydrodynamic equations for quasi-
particles
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In contrast to standard Chapman-Enskog method we took into account approximate nature of the equation set
(2) (A[m,n] is contribution to A of the order gmλn connected with expansion of distribution function fp(x, ζ)
in series of the perturbation theory; a[0.0] ≡ a0). Equations (21) contain also dissipative values which have the
structure
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Here κnl is heat conductivity and ηnl,ms is viscosity of quasi-particle subsystem. For calculation of these kinetic
coefficients we obtained the following expressions
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These relations allow to investigate dependence of kinetic coefficients of quasi-particle subsystem on temperature.
The result will be presented in another paper. This investigation can be simplified in the small drift velocity
approximation. In this limit non-zero kinetic coefficients are scalar functions.

Additional information about properties of dissipative fluxes and kinetic coefficients can be obtained from
evolution equation for entropy. This equation follows from relations (19) and has the form
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where sn is flux and R is production of the entropy. In the considered approximation these values can be written
as
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According to the Onsager principle this result allows to establish symmetry of kinetic coefficients (23) and to
prove inequality R ≥ 0.

4 Conclusions

The reduced description method allows to justify domain of applicability of the Gross-Pitaevskii equation and to
find various corrections to it. The obtained in the paper equations can be applied to investigation of possibility
of quasi-particles creation at evolution of the condensate and to problem of stability of equilibrium quasi-particle
subsystem.
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