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Abstract Fragmentation functions are important quantities
in describing the hadronization process in high energy reac-
tions. They can induce various azimuthal modulations which
can be measured to reveal correlations between transverse
momenta and polarizations. Without introducing initial state
uncertainties, electron positron annihilation process is known
as an ideal process to investigate the fragmentation functions.
In this paper, therefore, we calculate the hadron pair produc-
tion in the semi-inclusive electron positron annihilation pro-
cesset +e~ — hy-+hy+g+ X at twist-4 to study dihadron
fragmentation functions. Here ¢ denotes an antiquark that
corresponds to a jet of hadrons in experiments. Together with
single hadron fragmentation functions, dihadron fragmenta-
tion functions can provide additional ways to extract nucleon
parton distribution functions from the semi-inclusive deeply
inelastic scattering experiments with two detected final state
hadrons. We calculate the differential cross section of the
hadron pair production semi-inclusive electron positron anni-
hilation process at twist-4 level. The calculation is carried out
by using the collinear expansion method. We also calculate
azimuthal asymmetries in terms of dihadron fragmentation
functions. Contributions from four-quark correlator are also
taken into account. Both the electromagnetic and weak inter-
actions are considered in this paper.

1 Introduction

Fragmentation functions (FFs) are important quantities in
describing the hadronization process in high energy reac-
tions. The study of FFs or the distribution of hadrons pro-
duced in the fragmentation of a quark/gluon offers a great
opportunity to understand the mechanism of hadronization
and hadronic structures in certain high energy reactions.
From a phenomenological point of view, they induce vari-
ous azimuthal modulations which can be measured to reveal

4 e-mail: yangairhua@sina.cn (corresponding author)

Published online: 24 August 2022

correlations between transverse momenta and polarizations.
The single hadron production FFs have been widely investi-
gated in the past several decades in the deeply inelastic scat-
tering and electron positron annihilation processes. Hadron
pair production FFs or DiFFs, meanwhile, have gained a great
deal of attention in recent years. They were first introduced
to describe the hadron pair production in a fragmenting jet at
leading twist level in Refs. [1,2] and extended to the twist-3
level in Ref. [3]. One of the reasons why one studies DiFFs
is that they are universal and can be factorized in high energy
reactions. By extracting from the two-jet events in the elec-
tron positron annihilation process [4—7], conveniently, they
can be used to study the nucleon structures, especially for
the transversity distribution function which reveals the trans-
versely polarized quarks in a transversely polarized nucleon
[8—11]. Because the intrinsic transverse momentum of the
quark can be integrated away and no transverse momen-
tum dependent (TMD) functions are required. Another rea-
son is that DiFFs are considered to be strongly related to
the jet handedness and can be used to investigate the quark
and/or gluon polarizations [4, 11,12]. For example, DiFF Gf-
is the difference of probabilities for a longitudinally polarized
quark with opposite chiralities to produce a pair of unpolar-
ized hadrons.

In the quantum field theoretical formulation, both FFs and
DiFFs are defined via the corresponding quark—quark corre-
lators or correlation functions which are matrices in the Dirac
space depending on the hadron states. This suggests that they
can be decomposed into different components expressed in
terms of basic Lorentz covariants and scalar functions. These
scalar functions which contain the information of hadron pro-
duction mechanism are known as FFs and/or DiFFs. Previous
discussion of DiFFs are limited to twist-3 or subleading twist
level. In this paper, however, we extend the discussion to the
twist-4 level in the semi-inclusive electron positron annihi-
lation process. Semi-inclusive implies a back-to-back jet is
also measured in addition to the hadron pair. The produced

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10698-y&domain=pdf
http://orcid.org/0000-0002-3668-696X
mailto:yangairhua@sina.cn

741 Page?2of 11

Eur. Phys.J. C (2022) 82:741

hadrons are spinless. Spin-dependent hadron production pro-
cess is not considered in this paper. In the semi-inclusive elec-
tron positron annihilation process, we find that the only dif-
ference between the single hadron production and the hadron
pair production is the nonperturbative correlator. In this case,
it is straightforward to use the collinear expansion [13-16]
which has been used widely in deeply inelastic scattering
and annihilation processes [17-25] to calculate the hadron
pair production in this paper. With the collinear expansion,
we present a systematic calculation of the hadron-pair pro-
duction in the annihilation process, both the electromagnetic
(EM) and weak interactions are considered. We note that
if only higher twist contributions are considered, weak and
interference terms and corresponding results should not be
included in this paper. In other words, only the EM interaction
and/or higher twist contributions (twist-4) make sense at low-
energy limit. As for weak interaction, future electron positron
colliders, e.g., CEPC, FCC-ee, which are high-luminosity
high-energy colliders provide unique precise measurements
of Z, W and H bosons and the top quark, it must be consid-
ered. Of course, for the hadron production annihilation pro-
cess, leading twist contributions dominate, higher twist ones
are suppressed. In a word, we present a systematic calcula-
tion of the hadron-pair production in the annihilation process,
which includes both the higher twist and weak results. Our
calculation, for a new reaction, provide a set of measurable
quantities for a better understanding of hadronization and
quark flavor separation.

This paper is organized as follows. In Sect. 2 we present
a brief introduction to formalism of the semi-inclusive elec-
tron positron annihilation process. In Sect. 3 we calculate
the hadronic tensor at twist-4 level. Contributions from the
four-quark correlator are involved. We present the differential
cross section and azimuthal asymmetries in Sect. 4. Finally,
we present the summary in Sect. 5

2 The formalism

To be explicit, we consider the tree-level semi-inclusive pro-
cesset+e~ — hi+hy+q+X where g denotes an antiquark
that corresponds to a jet of hadrons and /1, i, denote outgo-
ing hadrons in experiments, see Fig. 1. The differential cross
section of this process is given by

0[2

4o = oy gr ArLin (1. W (1. p. K)

d3p1 d3p2 43K
X
2E| 2E, 2m2E}’

ey

where «,,, is the fine structure constant, s = Q2 = q2 with
q = 1 + Iz, 11, [, are momenta of the leptons, p;, p» are
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Fig. 1 Tllustrating diagram for the e™ +e~ — hy+hy+g+ X process

momenta of the outgoing hadrons.The symbol r can be yy,
ZZ and y Z, for EM, weak and interference terms, respec-
tively. A summation over r in Eq. (1) is understood, i.e. the
total cross section is given by

do =do?? +do?? +do"”. 2)

A,’s are defined as

2
A,y = ey
Q4
Azz = - =X
[(0? — M2)% +TZM2]sin* 20y
—2¢,0%(Q* — M2)
: z = Yinr» (3

A =
727 1(Q% = M2)2 + TZMZ]sin> 20w

where ¢, is the charge of a certain quark with flavor g,
[z, M, are width and mass of Z° boson, 8y is the Weinberg
angle.

The leptonic tensors for different cases are given by

LYY, k) = Lyl + livloy — (11 - 1) gy, 4
LI%UZ(I] ) 12) = CT [11;1.12\) + llvlly. - ;- lZ)guv] + icgsuvlllza
(%)
ng(ll ) = C?/ [llllev + IIVIZ/L —(1;- 12)8;;,11] + icﬁ/guulllzs
(6)
where ¢f = (cﬁ,)2 + (ci)2 and ¢§ = 2c}c§. ¢}, and

ch‘ are defined in the weak interaction current J,(x) =
V()L (x) with T'y = yp (e, — ci‘ys). Similar notations
are also used for quarks where the superscript e is replaced
by ¢g. The corresponding hadronic tensor are given by

Wi =% "8(q — p1 — pa — K — px)(0]J%, (0)
X

x |p1, p2, K. X)(p1, p2, k', X1J,,(0)]0), (N
Wy, =2 8 —pi—p2—K = px){0l7;,(0)

X

X |p11 PZ,k/vX)(Pl, szk/, Xl"%Z(O)'O)v (8)

Wiy =3 8(q — pi— p2— K — px)(017/,(0)
X
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Fig. 2 Kinematics for the et + ¢~

x |p1, p2, K. X)(p1, p2, k', X1J,,(0)]0), ©))
where J}, (0) = v (0)y*(0) and J5,(0) = ¥ (0)T*4(0).
Although, we have shown EM, weak and interference terms
for both the leptonic and hadronic tensors, we only present
calculations of the weak interaction in the following context
for simplicity. Other cases can be obtained in the similar
way or by changing ¢y, ¢3 into 1, 0 and cy, c4 for EM and
interference cases, respectively.

To describe the hadron pair production in the electron
positron annihilation process, we define p, = p1 + p2,

= (p1 — p2)/2 and introduce the frame, see Fig. 2, where
momenta can be parameterized as

= 0(1,0,0,0), (10)
0 =%(1,—sin9,0,—cos@), (11
ph - (Eh’ Oa 07 pZ)a (12)
R=(Era|RT|COS¢rv|RT|Sin¢ra Rz), (13)
k' = (E, |ky| cos ¢x, [kz| sin ¢y, k7). (14)

We also introduce the following variables used in this paper,

2ph-q  2p1-q 2p2-q
=~ = + 0 =71 + 22, (15)
=2 (16)
Z Z

In this case, the phase space factor can be rewritten as

d3p1 d3p2 Sk
2E1 2E2 ZEk

zdezdydqbrdM g k dzk/

7

Here we have used d2 = 2dyd¢; = 4ndy, with y =
pn - li/pn - g, @ is the angle of lepton with respect to py,
d’Ry = &(1 — £)d¢,dM}, Mi = pj = (p1 + p2)*. Thus,
the differential cross section can be rewritten as

do 0[2 z v ,
dzdydzRTdédzk’ _16 Q4XL1LV(11712)W (Ph,R,kT).

(18)

Here we have defined the hadronic tensor in terms of pj, R
and integrated over dk’,

/

W (pn, R K). (19)

WHY R, K, :/
(Pn ) 7 2E

3 Hadronic tensor

From the previous section, we see that the cross section
is given by the contraction of the leptonic tensor and the
hadronic tensor. To obtain the cross section, we need the
explicit expression of the hadronic tensor in the parton model.
We calculate the hadronic tensor in the following context.

3.1 Hadronic tensor in the parton model

At the tree level of perturbative quantum chromodynam-
ics (pQCD), in the parton model, we need to consider the
series of diagrams illustrated in Fig. 3 where diagrams with
exchange of j gluon(s) (j =0, 1, 2, ...) are included. After
the collinear expansion, the semi-inclusive hadronic tensor
is obtained as

Wi (pns R ) =Y~ W (pn, R k), (20)
j.c

where ¢ denotes different cuts. The W(] “) is a trace of the
collinear-expanded hard part and gauge invariant quark—j-
gluon—quark correlator. The explicit expression are given by

~ 1 PN
0 0) (0
Wi = 3T E@], @
~ 1
W(I’L) — _ Tr h(l)ﬂr-(l) (22)
" 4(pn-q) [ E57)
~ 1
WM _ Te[h@po G2 73
nv 4(ph .q)Z I'[ uv po ] ( )
~ 1
@.L) _ T[NP ED 4 iPED] (a)

T A(py - q)?

where we have omitted the arguments. The hard parts are
given by

h(O) — quirq/ph , (25)
h()P = T4y ird, (26)
NP = g Ty iy°T, 27)
hDPe = pi Tty iy itTy /2. (28)

The quark—j-gluon—quark correlators are given by
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Fig. 3 The first few diagrams p1p2 |
as examples of the considered |
diagram series with exchange of |
Jj-gluon(s) and different cuts.

Wesee (a) j =0,(bl)j=1 k

|
and left cut, (b2) j = 1 and right I
cut, (c1) j = 2 and left cut, (¢2) 4 App !
j = 2 and middle cut, and (c3) H '
Jj = 2 and right cut, respectively (a)

20 _ Z/ d§ Aty o—ipi ¢ Jetikrr

x (01£7(0, 00) ¥ (0)| pn» R, X)
X (pn, R, X|¥ () L(E, 00)[0), (29)

; Z/ d; d’¢r o~ iPNE T Jatikrir

x (01£7(0, 00) D, (0)y (0)| i, R, X)
X {pn, R, X1¥ (D) L(C, 00)0), (30)

H(zM) Z/ dC a? gT —ip;f ¢ aikrgr

[I] >

x (01£7(0, 00) D, (0)y (0)| pi, R, X)
X (pn, R, X1V (£) Dy ()L (L, 00)]0), 31)

+ 7= 72
2" :Z/ Py d§ d {Te_l‘p;r{*/z_ﬂ‘kT;T
P < 27

x p(01£7(0, 00) D, (0) Dy ()¢ (0)| p1s R, X)
x (pn, R, xw,(;)g(;, 00)[0), (32)

20 = Z[

eminteT /Z+tkT§Te*lp;,+n*/z

x (01£7 (0, 00) D, (1) Dy () LT (0, 7)1 (0)
x |pn, R, X){pn. R, XI¥($)L(E,00)[0).  (33)

al

Lipifdn

where D, =id, — gA, are the transverse covariant deriva-
tive, £(0, y) is the gauge link. To obtain the gauge link, one
should consider all the gluon exchanging diagrams. However,
we only show first few diagrams as examples up to twist-4
in this paper. Higher contributions are neglected for simplic-
ity. The argument ¢ in the quark filed operator 1 and gauge
link represents (0, ¢, ET) We note that the leading power
contribution of W(U is twist-(j 4 2). Therefore the second
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term in Eq. (24) has no contribution up to twist-4 because of

of the factor p? in the definition of & "‘( ) given by Eq. (32).
The leading power contribution of thls term is twist-5.

3.2 Decomposition of correlators

In the jet production semi-inclusive electron positron anni-
hilation process, there is no helicity flip, which implies
only the chiral even quantities are involved. We only need
to consider the y“- and the y>y“-terms in the decompo-
sition of correlators in terms of gamma-matrices, such as
20 = y“"(o) + ysy“"(o) +---.Here E((x ), :S” are coef-
ficient functions which can be obtained by

1 N
—=(0 ~(0
gy = Ty &%), (34)
= 1 SSEO
8¢ = Ty y &%) (35)

We see that they are respectively a vector and an axial-vector
and can be further decomposed according to their Lorentz
transformation properties in terms of the basic Lorentz
covariants constructed from basic variables at hand. The
coefficient functions are therefore expressed as the sum of
the basic Lorentz covariants multiplied by scalar functions
which are known as the DiFFs. From previous discussion, we
see only ny, ny, k7o and Rry as well as some scalars can be
used to construct Lorentz covariants. For example, we have

8O = y* (i, A + ngB + kroC + RroD) +---,  (36)

where A, B, C, D are scalar functions. We see that A,
C,D and B are leading twist, twist-3 and twist-4 func-
tions, respectively. In keeping with conventions, we rename
A~ Di,B ~ D3,C ~ D and D ~ D<. Inserting those
dimension coefficients, we therefore obtain Eq. (37). Similar
method of decomposing the correlator can be found in Refs.
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[23,24,26]. The other DiFFs can be obtained in the similar
way, we present them in the following.

Based on the previous discussion and conventions given
in Refs. [1,3], we present the decomposition of correlators at
twist-4 level. Most of the DiFFs given below are new, which
were not included in previous references. For the quark—
quark correlator, the coefficient functions are decomposed
as

M2
2B = figp) Dy + Rra D + kro D + nap—jfm, (37)
h
- _ L k-R - . k-R
2B =iiapf —5 G — RraG™ — k1o G + no—
M, Py
(38)

Gs,

where k- R = sﬁk = (#URT,LkTV with elrw = 8“/3““}5“11/5. In
this paper, we use D and G to denote chiral even DiFFs. The
notations are same to single hadron production FFs. How-
ever, only DiFFs are considered in this paper and notations
should not be misunderstood. Superscripts <, L are respec-
tively used to denote the Ry — and k7 —dependent DiFFs.
Subscript 3 denotes the twist-4 functions. The coefficient
functions obtained from quark—gluon—quark correlator are
given by

2E%0 = fia Rrppjf D + fiakr,pjf Dy
+ ngonf%D?ad + l.t‘)T,oot£ : Rng

+ RT(pRTa)DgId + kT(kaa)D3ld + (RT,OkTOt>D§(d1

(39)
28 = ifiaRr,pf G + inakrpp) Gy
+ieTpa Mp G3g + grpak - RGhy
i -
+ ERT{pRTa}G?d
i i -
+ Ekr{pkm}céd + 3 (Rrpkra)} G5y (40)

where we have used the following notations for convenience,

R2
RT(pRToz) = RTpRToc - TTnga: 41
<RTkaoz> = RTkaoz + kTpRTOl —Rp - kTngOla (42)
R7(pR7a) = R7pRre + R7a R1)p, 43)

{Rr(pkra)) = RTpkre + Rrokr, + krpRro + k1o RT).
(44)

Superscripts /, x are also used to mark certain DiFFs.

The metric tensoris defined as g7, = guv—nuny—7yn,.
Here we add a subscript d to denote DiFFs defined via quark—
gluon—quark correlator ég).

Up to twist-4, we only need the leading power contribu-

. AQ2 AQM) . _
tions from aég and afm ), i.e. the n,-terms.

ZEE)%I)CM = p}-:_;la[ngoM}%DMd + iSTpO']; . RDédd

+ Rr(pR76) D3y + kr(pkro) Digy

+ (Rrpkro) D3y - (45)
Zéﬁ)zo)a = p;ﬁa [ingUM}%G&id + ngaé ' RG/de
i R < L
) (RT{pRTU}GMd + k1 (pk70) G344
+ (Rripk10))G3) | (46)

where we use dd in the subscript to denote DiFFs defined
via quark—gluon—gluon—quark correlator EE)ZJ We require

the decomposition of @%M) takes exactly the same form

as that of @;2(3 We just add an additional superscript M to
distinguish them from each other and omit the equations here.
From Eqgs. (37)-(46), we see that the decomposition of E and
that of  have exact one to one correspondence. For each D,
there is a G corresponding to it. They always appear in pairs.
Because of the Hermiticity of 2@ and éf,%}M), the DiFFs

defined via them are real. For those defined via @g) and

éfg , there is no such constraint so that they can be complex.

From the QCD equation of motion, y - Dy = 0, we
can relate the quark—j-gluon—quark correlators to the quark—
quark correlator. This implies not all the DiFFs shown above
are independent. Instead of giving a detailed derivation here,
we just show the main steps for obtaining these relationships.
Since correlators are gauge invariant because of gauge links,
we first show the equation of the gauge link £,

9
—L(z.y) = L(z. )igAt (y).

oy 47)

For simplicity, we ((0))(1/(z)) to denote the correlator
£© . Similar conventions apply to other correlators. Mul-
tiplying (v (0)) (¥ (z)) by kT from the left gives,
K (W () (¥ (2)) = =¥ (0) (¥ () DT (2)), (48)

where D*(z) = id,- — gAT(2). If we insert y; into the
correlator, and repeating the derivation, we obtain

- 1
Ky O) @) = =3 (W O) (v @) D iy)

+ (pAED Y O) (@), 49)

Here we have used 1 = L (itjf + sfit). Using y# = " +
Antt + y#, the QCD equation of motion 1 (z)¥(z) = 0 can
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be rewritten as

DYity = — (D7 + yr - Dr) ¥, (50)
b D4t =—p (D i +yr- Dr). 51)

Substituting Egs. (50)—(51) into (49), we have

—s(wonweim
+ (iDFY ) (¥(2))

K (P (0) (Y (2)) =

1
+ Sieh 7 (W O) ¥ @Droiiy)

— U Dre O (@) (52)

If one inserts yﬁ > in the correlator, one will obtain the dual
relation, i.e

- 1
K py v O) I @) = =5 (W O @ Dy )

+ Uy D O) (¥ (2)))

1
+Sieh ?(Drov ) (v (@)

- (¢(0)><¢(Z)DTG¢>>- (53)

We obtain the relationships for the transverse components of
the correlators E;) " and E(To)p . It is convenient to rewrite

them in a unified form,

~(1)

=0 ~(1

KHEW? = —gl"ReE!) — e27ImE) (54)
~(0 ~(1 ~(1

KHED? = —gh7ReE) — &2 ImE!). (55)

To obtain Egs. (54)—(55), we have utilized that two terms in
each parenthesis in Egs. (52) and (53) are conjugate to each
other (translation should be used to prove this). Substituting
those correlators shown in Egs. (37)—(40) into Egs. (54) and
(55) leads the following relationships between twist-3 DiFFs,

%(D<I —iGY) =—(D} -G, (56)

1
(D —iGY) = —~(D7 — G, (57)
Z
where coefficients (e.g., Rr, kr) have been reduced.
We can use the similar way to obtam these relationships
g©
for the minus components of E,  and & ua , they are given

by

w25 — k+< p0~(1)+1800:(1)>

po =(2,M)

=87 EBpot Tie Yol (58)

1 Spot s

@ Springer

UPED — g+ (gT" B0 it g :gg)

po =(2,M)

=—gh" Epgy +ie po =(2,M) (59)

T ‘-‘pa+'

From Eqgs. (58) and (59), we can relate twist-4 DiFFs defined
via correlators 2© ,28M and 2 2.M) as,

D3 =zD_3g = —2°D, (60)
Gy =265, = =G5y, (6D

where D_3q = D3q — G34, G340 = G3q4 — D3y, Digdd =
D%d + G 5iq and G+3dd = G3dd + D%ii' The unified rela-
tionships given in Eqs. (56)—(57) and (60)—(61) are important
in the calculation of the hadronic tensor. They guarantee that
the hadron tensor satisfies current conservation law.

3.3 Hadronic tensor at twist-4

In this part we calculate the leading twist, twist-3 and twist-
4 hadronic tensor in turn based on the previous calculation.
First of all, we calculate the leading twist one.

The leading twist contributions only come from the quark—
quark correlator 2O To calculate them we use

R 4
Tr[h/(g?ﬁ] = _p_+ (clerpw +icerm), (62)
h
Te[h O] = — (L +icleru) (63)
h

and Eqgs. (37)—(38). Substituting them into Eq. (21) we obtain
the leading twist hadronic tensor,

ZW[Z;/,V = 2[C611gT;u) + icggT;w]Dl
, k-R
2 fgrun +icleru ]| TGt (64)
h

We find that Wtz;w satisfies the current conservation g* szw
=dq v Wt2;w =0.

Twist-3 contributions come from both the quark—quark
correlator 2 and the quark—gluon—quark correlator ”(1).
We first calculate these contributions from the quark—quark
correlator £©). Here we use

~ 4 -~
Te[A O] = = ( Uy + icgk[unv]) , (65)
Tel[ 75O, 55] — 4 (4 . q7
r[hlwy k] = —p_+ <C3k{unv} + ey k[p,nv]) s (66)
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where k denote k7, Ry, k7 and Ry. Using Egs. (37)-(38)
and substituting them into Eq. (21) we obtain

2 -
0 .
Wi = _F[(C?kT{u”v} +icikriuny) D
h
+ (c? Rriunyy +icl I?T[MnV])Dq]
2 ~ .
+ pj[(cng{an} — lcng[Mnu])GJ‘
h

+ (¢! Rrquny) — ichT[MnU])G<]. (67)

For the twist-3 contribution from the quark—gluon—quark cor-
relator Eﬁ,l), we have

Te[A()Pit] = —8(c{ g7 " +iclef "), (68)
Tr[flﬁgpysﬁ] = +8(c§1g’T)Mfz” + ic‘fs?uﬁ”), (69)

Using Egs. (39)—(40) and substituting them into Eq. (22), we
obtain

DL — ﬂ[(chT iy —iclkr,n )DJ‘

13y Phq 1~ ptty 3™Lputtv)=d
+ (¢! Ryt — ic4 Rruin) D |

2p

Ph-q

+ (¢ Ry + 14 Rryit) G | (70)

+
h

(ki + iclkr i) G f

The complete twist-3 hadronic tensor is the sum of all

the twist-3 contributions, i.e, W,g,w = Wt(gl)w + WL +

t3uv
~ *
(ngi) . Using Egs. (56)—(57), (67) and (70), we eliminate
the non-independent DiFFs and obtain the complete hadronic

tensor at twist-3.

Wiz = “ond [(C(fkmév} +ickriugn) D

+ (¢ Rriudo) + i<} Rriudu) D<)

n [cqlér Gor — il kprudo)) G+
ph-q(3 {n4v} 3 [uV])

+ (¢ Ry iy — icngquv])Gﬂ, 1)

where ¢ = g —2pj,/z. Itit can be shown that Wt3pw satisfies
the current conservation g* W,g,w = q"Wﬁw =0.

Correlators £©), @f]l) and @223 all have contributions to
twist-4 hadronic tensor. We first calculate contributions from

quark—quark correlator £© and use

. 8
Tr[A ] = p—+c(11nun,,, (72)
h

N 8
Tr[hl(?v)ysifi] = —p—_,_anMlm (73)
h

and Eqgs. (37)—(38). Substituting the twit-4 terms into Eq.
(21) we have

S0 4Mp o, D KR A
ZWt4uv_(p;:-)2C1nﬂnV 3—(phT)2c3nMn,,G3. (74)

To calculate the twist-4 contributions from quark—gluon—

Al
quark correlator aﬁ, ), we use

Te[A0Py*] = 4c] [2nit, 85" + grunsy” — 81,850
—4ic[2nuiived” + grhert + grlerh ],
(75)

Tr[fzf}ﬂpysy“] = 41‘C;1 [2n/4ﬁv5§a + gTﬁgT?;[ + gT‘l))[STfL]
— 4 [2nuiin g} + griwgl” — 8 g5 ].
(76)

Using twist-4 DiFFs given in Egs. (39)-(40) and Eq. (22),
we have

- 4M?} 4k - R
(HL h 4 q ’
Wiy =— cinunyD_3q + cin,n,G"_
t4pv ph.qlﬂU ph.q3ll“ 3d
+ Phq [C({kT(/LkTv) + icng{,uiéTu}]DJ_Ed
+ Phq [C(IIRTWRTU) + ichT{/LRTV}]Df3a’
+ (¢! (Rrukry) + il (Rrukron ] D sy

Pn-q
(77)

It is convenient to divide the contributions from quark—
gluon—gluon—quark correlator @;,%,) into two parts, one is the
middle-cut part and the other is the left- and right-cut part.
We first consider the middle-cut part and use the superscript
M to distinguish it from the others. Using

Te[h Q) 7 it pit = —8¢T prypivgly” — 8icd prupivel’ .
(78)

Te[h 2y v pif = 8¢t phyuping?” + 8ict pypavel’
(79

we obtain

oM ___AMy M
W == (o 2 1 PP Di3aa
4k - R
chphuphv G.Afédd- (80)
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To obtain the contributions from the left- and right-cut
parts, we use

- 4(ph q)
2
TI‘[NI(W)pUﬁ] = T q[gT 8T uv +gT[”,gTv]:|
4(pn-q) . o P
-3 i [8”8” gTvsT;L:I’
Py
(81)
. 4(pn - q)
Tr[Nl(fv)paysﬁ] p—+ q[gT 8Tuv + gT[ugTu]]
h
4(Ph CI) o, P
—+101 gTMETV 8Tveryu |
Py
(82)
and obtain
=~ 2)L ZMﬁ% q . q
ZWt4/1,v Z—ph ” [Clngl«V + lC387“,w] D_344, (83)

whereD_3450 = D344 — G344. Summing over all the twist-4
contributions and using Egs. (60)—(61) to eliminate the non-
independent DiFFs yields

M 4k-R ,_ _
hqc(llq/AquS - 7 ngM‘IvGS

ZWM/W = ;
)
4M?
h q 4
onq [clg,w + tc38T,w] ReD_344

+

H [k kryReD*

C T T (S5
PV (nRTv) 3d
—i—RT('uRTV)ReDfM + (RTukTv>ReDf3d]

k[ k[ ImD
C o —

+ RT{MﬁTv}ImDi%d + {RT{,ulva}}Ime&i]-
(84)

Itit can be shown that W,4 wv satisfies the current conservation
qMWt4;w =4q Wt4;w =0.

In this part we obtain the complete hadronic tensor up to
twist-4 level. We show the leading twist hadronic tensor in
Eq. (64) and show the twist-3 hadronic tensor in Eq. (71).
The twist-4 hadronic tensors are given in Eq. (84). All these
hadronic tensors satisfy the current conservation law.

3.4 Contributions from the four-quark correlator

In the previous calculations, we only consider the con-
tributions from quark—j-gluon—quark correlators. In fact, up
to twist-4, there are also contributions from diagrams involv-
ing the four-quark correlator [27]. The four-correlator for the

@ Springer

hadron pair production is define as
dty diy dy

2
H(O 8
ki, k, k
S k1 bk = / m)* 2m)* 2n)
—ikyy+i(ki—k)y1—i(ka—k)y2

X e

X Y (019 ()L, y2) ¥ (0) i, R, X)
X

X (pn, R, XI¥ (ML, yD¥ (yD|0).
(85)

Here g is the strong coupling constant. Some example of
the four-quark diagrams are shown in Fig. 4. We note that
if the cut is given at the middle we have contributions from
ete™ — pi1prgX (gluon jet). If the cut at the left and/or
right, we have contributions from e™e™ — p| p,gX (quark
jet). Both of them contribute to the hadron pair production
in the electron positron annihilation process, in this case we
consider them together.

It can be shown that gauge links included in the correlators
given by Eq. (85) are obtained by taking the multiple gluon
scattering into account [20,24]. The hadronic tensor Wigfw
for both the quark and gluon jet cases can be written as the
unified form

~ 1 R ) N
Wi(‘jl/;’v) = /a’zdmdzzhféq[(c(fgrw +iclerun)Cs

+ (ngT;w + ici]ng,v)éps:I’ (86)
Here letter with hat, e.g. z, is used to distinguish variables

from ones used before. C; and C ; are these correlators con-
sidered here. They can also be written as a unified form

A dzk/ 4y 47 14 + +
C;= an )2/dkdkd koé z—k— S(klm py)
_ 2 ~(0)

X <S(k2 2—p, y@2m)?s (kT + & )u(4q>]
x (ki k, k2; pn-R), 87)

where j = s, ps. The corresponding "24) )s and &9

S (dg)ps ATC
given by

2

4 4 4
50 _ 8 dy d'yi dY2 ik ytita by —iGa—k)y)

TGas T8 | @m)t o)t @)
x Y {01 0200y Ol i, R, X)
X

x (pn. R, XY ()it (y1)10)
x +(01 (v2)y s (0) | pn, R, X)

x (pus R XY )7 iy G010}, (88)

2

4 4 4
O & [ Ay dyi A i yrita kit
@aps = 8 | @2n)* 2n)* 2n)*
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p1 p2

p1 p2

ks

L

(@) (b)

p1 p2

Fig. 4 The first four of the four-quark diagrams where no multiple gluon scattering is involved. In (a), we have k| = k; — k and k} = k> — k; in
(b) we have the interchange of k| with kg; in (¢) we have the interchange of k, with ké; in (d) we have both interchanges of k; with kg and ko with

k

% [0 02y i i, R X)
X

X (pns R, X 1Y (0 (y1)10)
+ (01Y (»2)i ¥ (0| pr, R X)

X (pus R X1V )7 iy )10} . (89)

For simplicity, we have omitted gauge links in Eqs. (88)—(89).
In the hadronic tensor Eq. (86), hi;q denotes the sum of
all the hard parts.

2838 — 25)

hs =
47 (31— zp +ie) (22— 2 —i€)

22212282 — 2p)
(1/21 +i€)(1/22 — ie)
£3/228(2 — 2p)
T G- tie/z —ie)
£238(21 — 2p)
(z—2p —ie)(22—2p —i€)

-1 <27

(1 1 1)
Nz %
22 Z 22

2238(21 +2p — 12 1

R Lk e N
(2—z2p—ie€)(22—2p —i€)

(90)

qL __
h4q =

where £ = 25 = p;[ /KT, h) (21,2, %2) = hi, (2. 2, 20).
Summing over all the hard parts yields r4; = hﬁ + thR +
8
hyg,
As for the quark—j-gluon—quark correlators, we decom-
pose Cy and C) in terms of the four-quark DiFFs,

2 / d2d31d22hsgCy = M} Dag, (92)
: / d3d21d2ahagCps = k- RGay. 93)
Substituting Egs. (92)—(93) into Eq. (86) yields
. M, g
Wy = C18€Tuy +icreT Dy
quv ph,q(lé’ v 3€Tuv) Dag
IQ-R q . 4
corw +iclerw) Gag. (94)
oh-q ( 38Ty 1 /w) q

We see that they have the same modes as for the leading
twist contributions. They lead to twist-4 modifications of the
leading twist results.

4 Cross section and azimuthal asymmetries

In the previous section we obtained the complete hadronic
tensor at twist-4 level. Contracting with leptonic tensor gives
the cross section of the hadron pair production semi-inclusive
electron positron annihilation process. We present the results
in the following context.

The complete differential cross section at twist-4 is given
by

2

o D4
em X {Tl ) <D1 - KMTq> + D (WkrmRr M

[do] = 8702

x sin(g — ¢r) (GlL - w%)

— 26 [ T3(kr cos DY + T3(») Ryu cos ¢, D |

— 2k [T4(y)kTM sin g G + T4 (y) Ry sin ¢,G<]

D3
Z

+ 4K1%4 |:2CTC(]IB(y) + ZCfch(y)kTMRTM sin

G3
X (¢ — ¢k)7 -1 (}’)ReD73ddi|

— el B [k cos 2xRe DLy,
+R%M cos 2¢,ReDf3d
+k7m R p cos(dr + dpr)ReD”5, |
— 4k e{c B Ky sin 266Im D2y,

+R%,, sin2¢,ImDY,,

+krm Ry oy sin(¢r + ¢k)Iij3d] }v 95)

where [do] = do/dzdyd? Rrdéd*k),. We also used ky =
My/Q, kry = lkr|/Mp, Rty = |R7|/ M), and

Ti(y) = 2c8ct A(y) — el C(y), (96)
Ta(y) = 2¢{c§ A(y) — c5¢{C(y), (97)
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T5(y) = ¢{c{ C(»)D(y) + c5c3 D(y), (98)
Ty(y) = ¢{c§C(D(y) — 5¢{ DY) 99)

with A(y) = 5 —y+y* B(y) = 2y(1-), C(y) = 1 -2y
and D(y) = +/y(I — y) to simplify the expression. Contri-
butions from four-quark correlator are involved in Eq. (95).
From Eq. (95), we can see there are sets of azimuthal
modulations which can be measured in experiment and used
to extract the corresponding DiFFs. To illustrate this we first
present the definition of the azimuthal asymmetries, e.g.

f[d(f] sin ¢rd ¢y,

Jldoldgx (100

(singy) =

Other asymmetries can be defined in the similar way, we do
not show them for simplicity. In this case, we can write down
all the azimuthal asymmetries. The leading twist asymmetry
is given by

T2 (y)Gy

_— 101
2T1(y) Dy (101)

(sin(¢py — dr))2 = krmRrm

Here subscript 2 denotes the leading twist. The twist-4 cor-
rection of the leading twist asymmetry in Eq. (101) in the
numerator is k3, (—T>(y)G4g + 8c$cd B(y)G3) /z. We note
that a summation of flavor ¢ is explicit in the numerator and
in the denominator, respectively. This applies also to all the
results presented in the following of this paper. There are four
twist-3 azimuthal asymmetries which are given by

(cos i) = —kam%, (102)
(cos @)z = —KMRTM%, (103)
(sin )3 = —kaTM%, (104)
(sin ¢ )3 = —KMRTM%, (105)

where subscript 3 denotes the twist-3. There are six azimuthal
asymmetries appearing at twist-4. They are

(008 24)s = —k3kE Zcicil;l((yy)f ;DL“ (106)
(cos 2¢,)4 = —k 3 R%,, Zcicii((y y) ?DelDf” (107)
(sin26,)4 = 3 Ry chcgz((y y))Ileq“ (109)

@ Springer

ZCquB(}’)ReDX3d
(cos(¢y + ¢1))a = Kikrm R = —
METM M = (v) Dy
(110)
2¢¢c? B(y)ImD*

| , ¢t Z3d
T . (11
(sin(pr + ¢x))a = kjykrm Rrm zT1(y) Dy o

where subscript 4 denotes the twist-4.

If only the EM interaction is taken into account ¢}, =
Lc? = 0, thatis ¢ = 1,57 = 0 or Ti(y) =
2A(), T3(y) = C(y)D(y) and To(y) = Ta(y) = 0. In
this case, we have

(cos i)y = —KMkTM% 112)
«

(cos pr)3 = —KMRTM% (113)

(cos 2¢k)a = Ky %M% (114)

(cos 2¢y)q = —K@R%M% (115)

(cos(e, + pr))a = xﬁkTMRTMM (116)

zA(y) Dy

Only five azimuthal asymmetries are left. Asymmetries in
Egs. (101)—(116) can be measured to extract corresponding
DiFFs.

5 Summary

In this paper, we calculate the hadron pair production in
the semi-inclusive electron positron annihilation process at
twist-4 level. Semi-inclusive implies the back-to-back jet is
also measured in addition to the hadron pair. This process (jet
production) is better than the double hadron (pair) production
process because it does not introduce the extra uncertainties
if the jet is seen as a(n) (anti)quark. It is then an ideal place
to study the chiral even quantities (e.g. DiFFs). However,
the shortcoming of this process is that it is impossible to
study the chiral odd quantities since there is no helicity flip.
The hadron (pair) production process has been discussed at
leading twist, e.g. Refs. [7,28], in this paper we thus con-
sider the jet production process at twist-4. Both the EM and
weak interactions are considered. We calculate the cross sec-
tion according to the collinear expansion method. It provides
explicit expressions of the hadronic tensor at twist-4 level, see
Egs. (21)—(24), and the cross section can be easily obtained.
We obtain one leading twist azimuthal asymmetry which has
twist-4 corrections. Also, we have four twist-3 and six twist-4
azimuthal asymmetries. If only EM interaction is considered,
two twist-3 and three twist-4 azimuthal asymmetries are left.
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Electron positron annihilation is known as the cleanest pro-
cess in studying the quark fragmentation and/or hadroniza-
tion. Our calculation, considering the EM and weak interac-
tions simultaneously, provides a set of measurable quantities
for a better understanding of DiFFs, hadronization and even
quark flavor separation.
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