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Abstract Fragmentation functions are important quantities
in describing the hadronization process in high energy reac-
tions. They can induce various azimuthal modulations which
can be measured to reveal correlations between transverse
momenta and polarizations. Without introducing initial state
uncertainties, electron positron annihilation process is known
as an ideal process to investigate the fragmentation functions.
In this paper, therefore, we calculate the hadron pair produc-
tion in the semi-inclusive electron positron annihilation pro-
cess e+ +e− → h1 +h2 + q̄+X at twist-4 to study dihadron
fragmentation functions. Here q̄ denotes an antiquark that
corresponds to a jet of hadrons in experiments. Together with
single hadron fragmentation functions, dihadron fragmenta-
tion functions can provide additional ways to extract nucleon
parton distribution functions from the semi-inclusive deeply
inelastic scattering experiments with two detected final state
hadrons. We calculate the differential cross section of the
hadron pair production semi-inclusive electron positron anni-
hilation process at twist-4 level. The calculation is carried out
by using the collinear expansion method. We also calculate
azimuthal asymmetries in terms of dihadron fragmentation
functions. Contributions from four-quark correlator are also
taken into account. Both the electromagnetic and weak inter-
actions are considered in this paper.

1 Introduction

Fragmentation functions (FFs) are important quantities in
describing the hadronization process in high energy reac-
tions. The study of FFs or the distribution of hadrons pro-
duced in the fragmentation of a quark/gluon offers a great
opportunity to understand the mechanism of hadronization
and hadronic structures in certain high energy reactions.
From a phenomenological point of view, they induce vari-
ous azimuthal modulations which can be measured to reveal
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correlations between transverse momenta and polarizations.
The single hadron production FFs have been widely investi-
gated in the past several decades in the deeply inelastic scat-
tering and electron positron annihilation processes. Hadron
pair production FFs or DiFFs, meanwhile, have gained a great
deal of attention in recent years. They were first introduced
to describe the hadron pair production in a fragmenting jet at
leading twist level in Refs. [1,2] and extended to the twist-3
level in Ref. [3]. One of the reasons why one studies DiFFs
is that they are universal and can be factorized in high energy
reactions. By extracting from the two-jet events in the elec-
tron positron annihilation process [4–7], conveniently, they
can be used to study the nucleon structures, especially for
the transversity distribution function which reveals the trans-
versely polarized quarks in a transversely polarized nucleon
[8–11]. Because the intrinsic transverse momentum of the
quark can be integrated away and no transverse momen-
tum dependent (TMD) functions are required. Another rea-
son is that DiFFs are considered to be strongly related to
the jet handedness and can be used to investigate the quark
and/or gluon polarizations [4,11,12]. For example, DiFF G⊥

1
is the difference of probabilities for a longitudinally polarized
quark with opposite chiralities to produce a pair of unpolar-
ized hadrons.

In the quantum field theoretical formulation, both FFs and
DiFFs are defined via the corresponding quark–quark corre-
lators or correlation functions which are matrices in the Dirac
space depending on the hadron states. This suggests that they
can be decomposed into different components expressed in
terms of basic Lorentz covariants and scalar functions. These
scalar functions which contain the information of hadron pro-
duction mechanism are known as FFs and/or DiFFs. Previous
discussion of DiFFs are limited to twist-3 or subleading twist
level. In this paper, however, we extend the discussion to the
twist-4 level in the semi-inclusive electron positron annihi-
lation process. Semi-inclusive implies a back-to-back jet is
also measured in addition to the hadron pair. The produced
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hadrons are spinless. Spin-dependent hadron production pro-
cess is not considered in this paper. In the semi-inclusive elec-
tron positron annihilation process, we find that the only dif-
ference between the single hadron production and the hadron
pair production is the nonperturbative correlator. In this case,
it is straightforward to use the collinear expansion [13–16]
which has been used widely in deeply inelastic scattering
and annihilation processes [17–25] to calculate the hadron
pair production in this paper. With the collinear expansion,
we present a systematic calculation of the hadron-pair pro-
duction in the annihilation process, both the electromagnetic
(EM) and weak interactions are considered. We note that
if only higher twist contributions are considered, weak and
interference terms and corresponding results should not be
included in this paper. In other words, only the EM interaction
and/or higher twist contributions (twist-4) make sense at low-
energy limit. As for weak interaction, future electron positron
colliders, e.g., CEPC, FCC-ee, which are high-luminosity
high-energy colliders provide unique precise measurements
of Z, W and H bosons and the top quark, it must be consid-
ered. Of course, for the hadron production annihilation pro-
cess, leading twist contributions dominate, higher twist ones
are suppressed. In a word, we present a systematic calcula-
tion of the hadron-pair production in the annihilation process,
which includes both the higher twist and weak results. Our
calculation, for a new reaction, provide a set of measurable
quantities for a better understanding of hadronization and
quark flavor separation.

This paper is organized as follows. In Sect. 2 we present
a brief introduction to formalism of the semi-inclusive elec-
tron positron annihilation process. In Sect. 3 we calculate
the hadronic tensor at twist-4 level. Contributions from the
four-quark correlator are involved. We present the differential
cross section and azimuthal asymmetries in Sect. 4. Finally,
we present the summary in Sect. 5

2 The formalism

To be explicit, we consider the tree-level semi-inclusive pro-
cess e++e− → h1+h2+q̄+X where q̄ denotes an antiquark
that corresponds to a jet of hadrons and h1, h2 denote outgo-
ing hadrons in experiments, see Fig. 1. The differential cross
section of this process is given by

dσ = α2
em

2π2sQ4 Ar L
r
μν(l1, l2)W

μν
r (p1, p2, k

′)

× d3 p1

2E1

d3 p2

2E2

d3k′

2π2Ek
, (1)

where αem is the fine structure constant, s = Q2 = q2 with
q = l1 + l2, l1, l2 are momenta of the leptons, p1, p2 are

Fig. 1 Illustrating diagram for the e++e− → h1 +h2 +q̄+X process

momenta of the outgoing hadrons.The symbol r can be γ γ ,
Z Z and γ Z , for EM, weak and interference terms, respec-
tively. A summation over r in Eq. (1) is understood, i.e. the
total cross section is given by

dσ = dσ Z Z + dσγ Z + dσγγ . (2)

Ar ’s are defined as

Aγ γ = e2
q ,

AZZ = Q4
[
(Q2 − M2

Z )2 + �2
Z M

2
Z

]
sin4 2θW

≡ χ,

Aγ Z = −2eq Q2(Q2 − M2
Z )

[
(Q2 − M2

Z )2 + �2
Z M

2
Z

]
sin2 2θW

≡ χint , (3)

where eq is the charge of a certain quark with flavor q,
�Z , MZ are width and mass of Z0 boson, θW is the Weinberg
angle.

The leptonic tensors for different cases are given by

Lγ γ
μν (l1, l2) = l1μl2ν + l1νl2μ − (1l · l2)gμν, (4)

LZZ
μν (l1, l2) = ce1

[
l1μl2ν + l1νl2μ − (1l · l2)gμν

] + ice3εμνl1l2 ,

(5)

Lγ Z
μν (l1, l2) = ceV

[
l1μl2ν + l1νl2μ − (1l · l2)gμν

] + iceV εμνl1l2 ,

(6)

where ce1 = (ceV )2 + (ceA)2 and ce3 = 2ceV c
e
A. ceV and

ceA are defined in the weak interaction current Jμ(x) =
ψ̄(x)�μψ(x) with �μ = γμ(ceV − ceAγ 5). Similar notations
are also used for quarks where the superscript e is replaced
by q. The corresponding hadronic tensor are given by

Wμν
γ γ =

∑

X

δ(q − p1 − p2 − k′ − pX )〈0|Jμ
γγ (0)

× |p1, p2, k
′, X〉〈p1, p2, k

′, X |J ν
γ γ (0)|0〉, (7)

Wμν
Z Z =

∑

X

δ(q − p1 − p2 − k′ − pX )〈0|Jμ
Z Z (0)

× |p1, p2, k
′, X〉〈p1, p2, k

′, X |J ν
Z Z (0)|0〉, (8)

Wμν
γ Z =

∑

X

δ(q − p1 − p2 − k′ − pX )〈0|Jμ
Z Z (0)
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Fig. 2 Kinematics for the e+ + e− → h1 + h2 + q̄ + X process

× |p1, p2, k
′, X〉〈p1, p2, k

′, X |J ν
γ γ (0)|0〉, (9)

where Jμ
γγ (0) = ψ̄(0)γ μψ(0) and Jμ

Z Z (0) = ψ̄(0)�μψ(0).
Although, we have shown EM, weak and interference terms
for both the leptonic and hadronic tensors, we only present
calculations of the weak interaction in the following context
for simplicity. Other cases can be obtained in the similar
way or by changing c1, c3 into 1, 0 and cV , cA for EM and
interference cases, respectively.

To describe the hadron pair production in the electron
positron annihilation process, we define ph = p1 + p2,
R = (p1 − p2)/2 and introduce the frame, see Fig. 2, where
momenta can be parameterized as

q = Q(1, 0, 0, 0), (10)

l1 = Q

2
(1,− sin θ, 0,− cos θ), (11)

ph = (Eh, 0, 0, pz), (12)

R = (Er , |RT | cos φr , |RT | sin φr , Rz), (13)

k′ = (Ek, |k′
T | cos φk, |k′

T | sin φk, k
′
z). (14)

We also introduce the following variables used in this paper,

z = 2ph · q
Q2 = 2p1 · q

Q2 + 2p2 · q
Q2 = z1 + z2, (15)

ξ = z1

z
= 1 − z2

z
. (16)

In this case, the phase space factor can be rewritten as

d3 p1

2E1

d3 p2

2E2

d3k′

2Ek
= π

8
zQ2dzdydφr dM

2
hdξ

dk′
z

2Ek
d2k′

T .

(17)

Here we have used d� = 2dydφL = 4πdy, with y =
ph · l1/ph · q, φL is the angle of lepton with respect to ph ,
d2RT = ξ(1 − ξ)dφr dM2

h , M2
h = p2

h = (p1 + p2)
2. Thus,

the differential cross section can be rewritten as

dσ

dzdyd2RT dξd2k′
T

= α2
emz

16πQ4 χLμν(l1, l2)W
μν(ph, R, k′

T ).

(18)

Here we have defined the hadronic tensor in terms of ph, R
and integrated over dk′

z ,

Wμν(ph, R, k′
T ) =

∫
dk′

z

2π2Ek
Wμν(ph, R, k′). (19)

3 Hadronic tensor

From the previous section, we see that the cross section
is given by the contraction of the leptonic tensor and the
hadronic tensor. To obtain the cross section, we need the
explicit expression of the hadronic tensor in the parton model.
We calculate the hadronic tensor in the following context.

3.1 Hadronic tensor in the parton model

At the tree level of perturbative quantum chromodynam-
ics (pQCD), in the parton model, we need to consider the
series of diagrams illustrated in Fig. 3 where diagrams with
exchange of j gluon(s) ( j = 0, 1, 2, . . .) are included. After
the collinear expansion, the semi-inclusive hadronic tensor
is obtained as

Wμν(ph, R, k′
T ) =

∑

j,c

W̃ ( j,c)
μν (ph, R, k′

T ), (20)

where c denotes different cuts. The W̃ ( j,c)
μν is a trace of the

collinear-expanded hard part and gauge invariant quark– j-
gluon–quark correlator. The explicit expression are given by

W̃ (0)
μν = 1

2
Tr

[
ĥ(0)

μν �̂(0)
]
, (21)

W̃ (1,L)
μν = − 1

4(ph · q)
Tr

[
ĥ(1)ρ

μν �̂(1)
ρ

]
, (22)

W̃ (2,M)
μν = 1

4(ph · q)2 Tr
[
ĥ(2)ρσ

μν �̂(2,M)
ρσ

]
, (23)

W̃ (2,L)
μν = 1

4(ph · q)2 Tr
[
N̂ (2)ρσ

μν �̂(2)
ρσ + ĥ(1)ρ

μν �̂(2′)
ρ

]
, (24)

where we have omitted the arguments. The hard parts are
given by

ĥ(0)
μν = �q

μ/n�q
ν /p+

h , (25)

ĥ(1)ρ
μν = �q

μ/nγ ρ /̄n�q
ν , (26)

N̂ (2)ρσ
μν = q−�μγ ρ/nγ σ �ν, (27)

ĥ(2)ρσ
μν = p+

h �μ/̄nγ ρ/nγ σ /̄n�ν/2. (28)

The quark– j-gluon–quark correlators are given by
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Fig. 3 The first few diagrams
as examples of the considered
diagram series with exchange of
j-gluon(s) and different cuts.
We see (a) j = 0, (b1) j = 1
and left cut, (b2) j = 1 and right
cut, (c1) j = 2 and left cut, (c2)
j = 2 and middle cut, and (c3)
j = 2 and right cut, respectively (a) (b1) (b2)

(c1) (c2) (c3)

�̂(0) =
∑

X

∫
p+
h dζ−d2ζT

2π
e−i p+

h ζ−/z+ikT ζT

× 〈0|L†(0,∞)ψ(0)|ph, R, X〉
× 〈ph, R, X |ψ̄(ζ )L(ζ,∞)|0〉, (29)

�̂(1)
ρ =

∑

X

∫
p+
h dζ−d2ζT

2π
e−i p+

h ζ−/z+ikT ζT

× 〈0|L†(0,∞)Dρ(0)ψ(0)|ph, R, X〉
× 〈ph, R, X |ψ̄(ζ )L(ζ,∞)|0〉, (30)

�̂(2M)
ρσ =

∑

X

∫
p+
h dζ−d2ζT

2π
e−i p+

h ζ−/z+ikT ζT

× 〈0|L†(0,∞)Dρ(0)ψ(0)|ph, R, X〉
× 〈ph, R, X |ψ̄(ζ )Dσ (ζ )L(ζ,∞)|0〉, (31)

�̂(2′)
ρ =

∑

X

∫
p+
h dζ−d2ζT

2π
e−i p+

h ζ−/z+ikT ζT

× pσ
h 〈0|L†(0,∞)Dρ(0)Dσ (0)ψ(0)|ph, R, X〉

× 〈ph, R, X |ψ̄(ζ )L(ζ,∞)|0〉, (32)

�̂(2)
ρσ =

∑

X

∫
p+
h dζ−d2ζT

2π
i p+

h dη−

e−i p+ζ−/z+ikT ζT e−i p+
h η−/z

× 〈0|L†(η,∞)Dρ(η)Dσ (η)L†(0, η−)ψ(0)

× |ph, R, X〉〈ph, R, X |ψ̄(ζ )L(ζ,∞)|0〉. (33)

where Dρ = i∂ρ − gAρ are the transverse covariant deriva-
tive, L(0, y) is the gauge link. To obtain the gauge link, one
should consider all the gluon exchanging diagrams. However,
we only show first few diagrams as examples up to twist-4
in this paper. Higher contributions are neglected for simplic-
ity. The argument ζ in the quark filed operator ψ and gauge
link represents (0, ζ−, 	ζT ). We note that the leading power
contribution of W̃ ( j)

μν is twist-( j + 2). Therefore the second

term in Eq. (24) has no contribution up to twist-4 because of

of the factor pσ in the definition of �̂
(2′)
ρ given by Eq. (32).

The leading power contribution of this term is twist-5.

3.2 Decomposition of correlators

In the jet production semi-inclusive electron positron anni-
hilation process, there is no helicity flip, which implies
only the chiral even quantities are involved. We only need
to consider the γ α- and the γ 5γ α-terms in the decompo-
sition of correlators in terms of gamma-matrices, such as
�̂(0) = γ α�

(0)
α +γ 5γ α�̃

(0)
α +· · · . Here �

(0)
α , �̃

(0)
α are coef-

ficient functions which can be obtained by

�(0)
α = 1

4
Tr[γ α�̂(0)], (34)

�̃(0)
α = 1

4
Tr[γ αγ 5�̂(0)]. (35)

We see that they are respectively a vector and an axial-vector
and can be further decomposed according to their Lorentz
transformation properties in terms of the basic Lorentz
covariants constructed from basic variables at hand. The
coefficient functions are therefore expressed as the sum of
the basic Lorentz covariants multiplied by scalar functions
which are known as the DiFFs. From previous discussion, we
see only n̄α, nα, kTα and RTα as well as some scalars can be
used to construct Lorentz covariants. For example, we have

�̂(0) = γ α (n̄αA + nαB + kTαC + RTαD) + · · · , (36)

where A, B,C, D are scalar functions. We see that A,
C, D and B are leading twist, twist-3 and twist-4 func-
tions, respectively. In keeping with conventions, we rename
A ∼ D1, B ∼ D3,C ∼ D⊥ and D ∼ D�. Inserting those
dimension coefficients, we therefore obtain Eq. (37). Similar
method of decomposing the correlator can be found in Refs.
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[23,24,26]. The other DiFFs can be obtained in the similar
way, we present them in the following.

Based on the previous discussion and conventions given
in Refs. [1,3], we present the decomposition of correlators at
twist-4 level. Most of the DiFFs given below are new, which
were not included in previous references. For the quark–
quark correlator, the coefficient functions are decomposed
as

z�(0)
α = n̄α p

+
h D1 + RTαD

� + kTαD
⊥ + nα

M2
h

p+
h

D3, (37)

z�̃(0)
α = n̄α p

+
h
k̃ · R
M2

h

G⊥
1 − R̃TαG

� − k̃TαG
⊥ + nα

k̃ · R
p+
h

G3,

(38)

where k̃ ·R = εRkT = ε
μν
T RTμkT ν with ε

μν
T = εαβμν n̄αnβ . In

this paper, we use D and G to denote chiral even DiFFs. The
notations are same to single hadron production FFs. How-
ever, only DiFFs are considered in this paper and notations
should not be misunderstood. Superscripts �,⊥ are respec-
tively used to denote the RT− and kT−dependent DiFFs.
Subscript 3 denotes the twist-4 functions. The coefficient
functions obtained from quark–gluon–quark correlator are
given by

z�(1)
ρα = n̄αRTρ p

+
h D�

d + n̄αkTρ p
+
h D⊥

d

+ gTραM
2
h D3d + iεTρα k̃ · RD′

3d

+ RT 〈ρRTα〉D�
3d + kT 〈ρkTα〉D⊥

3d + 〈RTρkTα〉D×
3d ,

(39)

z�̃(1)
ρα = i n̄α R̃Tρ p

+
h G

�
d + i n̄α k̃Tρ p

+
h G

⊥
d

+ iεTραM
2
hG3d + gTρα k̃ · RG ′

3d

+ i

2
RT {ρ R̃Tα}G�

3d

+ i

2
kT {ρkTα}G⊥

3d + i

2
{RT {ρ k̃Tα}}G×

3d . (40)

where we have used the following notations for convenience,

RT 〈ρRTα〉 = RTρRTα − R2
T

2
gTρα, (41)

〈RTρkTα〉 = RTρkTα + kTρRTα − RT · kT gTρα, (42)

RT {ρ R̃Tα} = RTρ R̃Tα + RTα R̃Tρ, (43)

{RT {ρ k̃Tα}} = RTρ k̃Tα + RTα k̃Tρ + kTρ R̃Tα + kTα R̃Tρ.

(44)

Superscripts ′,× are also used to mark certain DiFFs.
The metric tensor is defined as gTμν = gμν−n̄μnν−n̄νnμ.

Here we add a subscript d to denote DiFFs defined via quark–
gluon–quark correlator �̂

(1)
ρ .

Up to twist-4, we only need the leading power contribu-
tions from �̂

(2)
ρσ and �̂

(2,M)
ρσ , i.e. the n̄α-terms.

z�(2)
ρσα = p+

h n̄α

[
gTρσ M

2
h D3dd + iεTρσ k̃ · RD′

3dd

+ RT 〈ρRTσ 〉D�
3dd + kT 〈ρkTσ 〉D⊥

3dd

+ 〈RTρkTσ 〉D×
3dd

]
, (45)

z�̃(2)
ρσα = p+

h n̄α

[
iεTρσ M

2
hG3dd + gTρσ k̃ · RG ′

3dd

+ i

2

(
RT {ρ R̃Tσ }G�

3dd + kT {ρkTσ }G⊥
3dd

+ {RT {ρ k̃Tσ }}G×
3dd

)]
, (46)

where we use dd in the subscript to denote DiFFs defined
via quark–gluon–gluon–quark correlator �̂

(2)
ρσ . We require

the decomposition of �̂
(2,M)
ρσ takes exactly the same form

as that of �̂
(2)
ρσ . We just add an additional superscript M to

distinguish them from each other and omit the equations here.
From Eqs. (37)–(46), we see that the decomposition of � and
that of �̃ have exact one to one correspondence. For each D,
there is a G corresponding to it. They always appear in pairs.
Because of the Hermiticity of �̂(0) and �̂

(2,M)
ρσ , the DiFFs

defined via them are real. For those defined via �̂
(1)
ρ and

�̂
(2)
ρσ , there is no such constraint so that they can be complex.
From the QCD equation of motion, γ · Dψ = 0, we

can relate the quark–j-gluon–quark correlators to the quark–
quark correlator. This implies not all the DiFFs shown above
are independent. Instead of giving a detailed derivation here,
we just show the main steps for obtaining these relationships.
Since correlators are gauge invariant because of gauge links,
we first show the equation of the gauge link L,

∂

∂y−L(z, y) = L(z, y)igA+(y). (47)

For simplicity, we 〈ψ(0)〉〈ψ̄(z)〉 to denote the correlator
�̂(0). Similar conventions apply to other correlators. Mul-
tiplying 〈ψ(0)〉〈ψ̄(z)〉 by k+ from the left gives,

k+〈ψ(0)〉〈ψ̄(z)〉 = −〈ψ(0)〉〈ψ̄(z)D+(z)〉, (48)

where D+(z) = i∂z− − gA+(z). If we insert γ
ρ
T into the

correlator, and repeating the derivation, we obtain

k+〈γ ρ
T ψ(0)〉〈ψ̄(z)〉 = −1

2

(
〈ψ(0)〉〈ψ(z)D+ /̄n/nγ

ρ
T 〉

+ 〈γ ρ
T /n /̄nD+ψ(0)〉〈ψ(z)〉

)
. (49)

Here we have used 1 = 1
2 (/̄n/n + /n /̄n). Using γ μ = /nn̄μ +

/̄nnμ + γ
μ
T , the QCD equation of motion /D(z)ψ(z) = 0 can
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be rewritten as

D+ /̄nψ = − (
D−/n + γT · DT

)
ψ, (50)

ψ̄
←−
D+ /̄n = −ψ̄

(←−
D− /̄n + γT · ←−

D T

)
. (51)

Substituting Eqs. (50)–(51) into (49), we have

k+〈γ ρ
T ψ(0)〉〈ψ̄(z)〉 = −1

2

(
〈ψ(0)〉〈ψ(z)Dρ

T /n〉
+ 〈/nDρ

Tψ(0)〉〈ψ(z)〉
)

+ 1

2
iερσ

T

(
〈ψ(0)〉〈ψ(z)DTσ /nγ 5〉

− 〈/nγ 5DTσ ψ(0)〉〈ψ(z)〉
)
. (52)

If one inserts γ
ρ
T γ 5 in the correlator, one will obtain the dual

relation, i.e

k+〈γ ρ
T γ 5ψ(0)〉〈ψ̄(z)〉 = −1

2

(
〈ψ(0)〉〈ψ(z)Dρ

T /nγ 5〉
+ 〈/nγ 5Dρ

Tψ(0)〉〈ψ(z)〉
)

+ 1

2
iερσ

T

(
〈/nDTσ ψ(0)〉〈ψ(z)〉

− 〈ψ(0)〉〈ψ(z)DTσ /n〉
)
. (53)

We obtain the relationships for the transverse components of
the correlators �

(0)ρ
T and �̃

(0)ρ
T . It is convenient to rewrite

them in a unified form,

k+�
(0)ρ
T = −gρσ

T Re�(1)
σ+ − ε

ρσ
T Im�̃

(1)
σ+, (54)

k+�̃
(0)ρ
T = −gρσ

T Re�̃(1)
σ+ − ε

ρσ
T Im�

(1)
σ+. (55)

To obtain Eqs. (54)–(55), we have utilized that two terms in
each parenthesis in Eqs. (52) and (53) are conjugate to each
other (translation should be used to prove this). Substituting
those correlators shown in Eqs. (37)–(40) into Eqs. (54) and
(55) leads the following relationships between twist-3 DiFFs,

1

z
(D� − iG�) = −(D�

d − G�
d ), (56)

1

z
(D⊥ − iG⊥) = −(D⊥

d − G⊥
d ), (57)

where coefficients (e.g., RT , kT ) have been reduced.
We can use the similar way to obtain these relationships

for the minus components of �
(0)
α and �̃

(0)
α , they are given

by

2k+2�
(0)
− = k+(

gρσ
T �(1)

ρσ + iερσ
T �̃(1)

ρσ

)

= −gρσ
T �

(2,M)
ρσ+ + iερσ

T �̃
(2,M)
ρσ+ , (58)

2k+2�̃
(0)
− = k+(

gρσ
T �̃(1)

ρσ + iερσ
T �(1)

ρσ

)

= −gρσ
T �̃

(2,M)
ρσ+ + iερσ

T �
(2,M)
ρσ+ . (59)

From Eqs. (58) and (59), we can relate twist-4 DiFFs defined
via correlators �̂(0), �̂(1) and �̂(2,M) as,

D3 = zD−3d = −z2DM+3dd , (60)

G3 = zG ′−3d = −z2GM ′+3dd , (61)

where D−3d ≡ D3d − G3d , G−3d ≡ G3d − D3d , DM+3dd ≡
DM

3dd + GM
3dd and GM ′+3dd ≡ GM ′

3dd + DM ′
3dd . The unified rela-

tionships given in Eqs. (56)–(57) and (60)–(61) are important
in the calculation of the hadronic tensor. They guarantee that
the hadron tensor satisfies current conservation law.

3.3 Hadronic tensor at twist-4

In this part we calculate the leading twist, twist-3 and twist-
4 hadronic tensor in turn based on the previous calculation.
First of all, we calculate the leading twist one.

The leading twist contributions only come from the quark–
quark correlator �̂(0). To calculate them we use

Tr
[
ĥ(0)

μν
/̄n
] = − 4

p+
h

(
cq1gTμν + icq3εTμν

)
, (62)

Tr
[
ĥ(0)

μνγ 5 /̄n
] = 4

p+
h

(
cq3gTμν + icq1εTμν

)
, (63)

and Eqs. (37)–(38). Substituting them into Eq. (21) we obtain
the leading twist hadronic tensor,

zW̃t2μν = − 2
[
cq1gTμν + icq3εTμν

]
D1

+ 2
[
cq3gTμν + icq1εTμν

] k̃ · R
M2

h

G⊥
1 . (64)

We find that W̃t2μν satisfies the current conservationqμW̃t2μν

= qνW̃t2μν = 0.
Twist-3 contributions come from both the quark–quark

correlator �̂(0) and the quark–gluon–quark correlator �̂
(1)
ρ .

We first calculate these contributions from the quark–quark
correlator �̂(0). Here we use

Tr
[
ĥ(0)

μν /k
] = 4

p+
(
cq1k{μnν} + icq3 k̃[μnν]

)
, (65)

Tr
[
ĥ(0)

μνγ 5/k
] = − 4

p+
(
cq3k{μnν} + icq1 k̃[μnν]

)
, (66)
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where k denote kT , RT , k̃T and R̃T . Using Eqs. (37)–(38)
and substituting them into Eq. (21) we obtain

zW̃ (0)
t3μν = − 2

p+
h

[(
cq1kT {μnν} + icq3 k̃T [μnν]

)
D⊥

+ (
cq1 RT {μnν} + icq3 R̃T [μnν]

)
D�

]

+ 2

p+
h

[(
cq3 k̃T {μnν} − icq3kT [μnν]

)
G⊥

+ (
cq1 R̃T {μnν} − icq3 RT [μnν]

)
G�

]
. (67)

For the twist-3 contribution from the quark–gluon–quark cor-
relator �̂

(1)
ρ , we have

Tr
[
ĥ(1)ρ

μν
/̄n
] = −8

(
cq1g

ρ
Tμn̄

ν + icq3ε
ρ
Tμn̄

ν
)
, (68)

Tr
[
ĥ(1)ρ

μν γ 5 /̄n
] = +8

(
cq3g

ρ
Tμn̄

ν + icq1ε
ρ
Tμn̄

ν
)
, (69)

Using Eqs. (39)–(40) and substituting them into Eq. (22), we
obtain

zW̃ (1)L
t3μν = 2p+

h

ph · q
[(
cq1kTμn̄ν − icq3 k̃Tμn̄ν

)
D⊥
d

+ (
cq1 RTμn̄ν − icq3 R̃Tμn̄ν

)
D�
d

]

− 2p+
h

ph · q
[(
cq1kTμn̄ν + icq3 k̃Tμn̄ν

)
G⊥

d

+ (
cq1 RTμn̄ν + icq3 R̃Tμn̄ν

)
G�

d

]
. (70)

The complete twist-3 hadronic tensor is the sum of all
the twist-3 contributions, i.e, W̃t3μν = W̃ (0)

t3μν + W̃ (1)L
t3μν +

(
W̃ (1)L

t3νμ

)∗
. Using Eqs. (56)–(57), (67) and (70), we eliminate

the non-independent DiFFs and obtain the complete hadronic
tensor at twist-3.

zW̃t3μν = − 2

ph · q
[(
cq1kT {μq̄ν} + icq3 k̃T [μq̄ν]

)
D⊥

+ (
cq1 RT {μq̄ν} + icq3 R̃T [μq̄ν]

)
D�

]
,

+ 2

ph · q
[(
cq3 k̃T {μq̄ν} − icq3kT [μq̄ν]

)
G⊥

+ (
cq1 R̃T {μq̄ν} − icq3 RT [μq̄ν]

)
G�

]
, (71)

where q̄ = q −2ph/z. It it can be shown that W̃t3μν satisfies
the current conservation qμW̃t3μν = qνW̃t3μν = 0.

Correlators �̂(0), �̂
(1)
ρ and �̂

(2)
ρσ all have contributions to

twist-4 hadronic tensor. We first calculate contributions from
quark–quark correlator �̂(0) and use

Tr
[
ĥ(0)

μν /n
] = 8

p+
h

cq1nμnν, (72)

Tr
[
ĥ(0)

μνγ 5/n
] = − 8

p+
h

cq3nμnν, (73)

and Eqs. (37)–(38). Substituting the twit-4 terms into Eq.
(21) we have

zW̃ (0)
t4μν = 4M2

h

(p+
h )2

cq1nμnνD3 − 4k̃ · R
(p+

h )2
cq3nμnνG3. (74)

To calculate the twist-4 contributions from quark–gluon–
quark correlator �̂

(1)
ρ , we use

Tr
[
ĥ(1)ρ

μν γ α
] = 4cq1

[
2nμn̄νg

ρα
T + gTμνg

ρα
T − g{ρ

Tμg
α}
T ν

]

− 4icq3
[
2nμn̄νε

ρα
T + g ρ

Tμε α
T ν + g α

T ν ε
ρ

Tμ

]
,

(75)

Tr
[
ĥ(1)ρ

μν γ 5γ α
] = 4icq1

[
2nμn̄νε

ρα
T + g ρ

Tμε α
T ν + g α

T ν ε
ρ

Tμ

]

− 4cq3
[
2nμn̄νg

ρα
T + gTμνg

ρα
T − g{ρ

Tμg
α}
T ν

]
.

(76)

Using twist-4 DiFFs given in Eqs. (39)–(40) and Eq. (22),
we have

zW̃ (1)L
t4μν = − 4M2

h

ph · q c
q
1nμnνD−3d + 4k̃ · R

ph · q c
q
3nμnνG

′−3d

+ 1

ph · q
[
cq1kT 〈μkT ν〉 + icq3kT {μk̃T ν}

]
D⊥−3d

+ 1

ph · q
[
cq1 RT 〈μRT ν〉 + icq3 RT {μ R̃T ν}

]
D�

−3d

+ 1

ph · q
[
cq1 〈RTμkT ν〉 + icq3 {RT {μk̃T ν}}

]
D×

−3d .

(77)

It is convenient to divide the contributions from quark–
gluon–gluon–quark correlator �̂

(2)
ρσ into two parts, one is the

middle-cut part and the other is the left- and right-cut part.
We first consider the middle-cut part and use the superscript
M to distinguish it from the others. Using

Tr
[
ĥ(2)ρσ

μν
/̄n
]
p+
h = −8cq1 phμ phνg

ρσ
T − 8icq3 phμ phνε

ρσ
T ,

(78)

Tr
[
ĥ(2)

μνγ
5γ α

]
p+
h = 8cq3 phμ phνg

ρσ
T + 8icq1 phμ phνε

ρσ
T ,

(79)

we obtain

zW̃ (2)M
t4μν = − 4M2

h

(ph · q)2 c
q
1 phμ phνD

M+3dd

+ 4k̃ · R
(ph · q)2 c

q
3 phμ phνG

M ′+3dd . (80)
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To obtain the contributions from the left- and right-cut
parts, we use

Tr
[
N̂ (2)ρσ

μν
/̄n
] = + 4(ph · q)

p+
h

cq1

[
gρσ
T gTμν + g ρ

T [μg
σ

T ν]
]

− 4(ph · q)

p+
h

icq3

[
g ρ
Tμε σ

T ν − g σ
T ν ε

ρ
Tμ

]
,

(81)

Tr
[
N̂ (2)ρσ

μν γ 5 /̄n
] = − 4(ph · q)

p+
h

cq3

[
gρσ
T gTμν + g ρ

T [μg
σ

T ν]
]

+ 4(ph · q)

p+
h

icq1

[
g ρ
Tμε σ

T ν − g σ
T ν ε

ρ
Tμ

]
,

(82)

and obtain

zW̃ (2)L
t4μν = 2M2

h

ph · q
[
cq1gTμν + icq3εTμν

]
D−3dd , (83)

whereD−3dd = D3dd −G3dd . Summing over all the twist-4
contributions and using Eqs. (60)–(61) to eliminate the non-
independent DiFFs yields

zW̃t4μν = 4M2
h

ph · q c
q
1 q̄μq̄νD3 − 4k̃ · R

ph · q c
q
3 q̄μq̄νG3

+ 4M2
h

ph · q
[
cq1gμν + icq3εTμν

]
ReD−3dd

+ 2

ph · q c
q
1

[
kT 〈μkT ν〉ReD⊥−3d

+RT 〈μRT ν〉ReD�
−3d + 〈RTμkT ν〉ReD×

−3d

]

− 2

ph · q c
q
3

[
kT {μk̃T ν}ImD⊥−3d

+ RT {μ R̃T ν}ImD�
−3d + {RT {μk̃T ν}}ImD×

−3d

]
.

(84)

It it can be shown that W̃t4μν satisfies the current conservation
qμW̃t4μν = qνW̃t4μν = 0.

In this part we obtain the complete hadronic tensor up to
twist-4 level. We show the leading twist hadronic tensor in
Eq. (64) and show the twist-3 hadronic tensor in Eq. (71).
The twist-4 hadronic tensors are given in Eq. (84). All these
hadronic tensors satisfy the current conservation law.

3.4 Contributions from the four-quark correlator

In the previous calculations, we only consider the con-
tributions from quark–j-gluon–quark correlators. In fact, up
to twist-4, there are also contributions from diagrams involv-
ing the four-quark correlator [27]. The four-correlator for the

hadron pair production is define as

�̂
(0)
(4q)(k1, k, k2) = g2

8

∫
d4y

(2π)4

d4y1

(2π)4

d4y2

(2π)4

× e−ik1y+i(k1−k)y1−i(k2−k)y2

×
∑

X

〈0|ψ̄(y2)L†(0, y2)ψ(0)|ph, R, X〉

× 〈ph, R, X |ψ̄(y)L(y, y1)ψ(y1)|0〉.
(85)

Here g is the strong coupling constant. Some example of
the four-quark diagrams are shown in Fig. 4. We note that
if the cut is given at the middle we have contributions from
e+e− → p1 p2gX (gluon jet). If the cut at the left and/or
right, we have contributions from e+e− → p1 p2q̄ X (quark
jet). Both of them contribute to the hadron pair production
in the electron positron annihilation process, in this case we
consider them together.

It can be shown that gauge links included in the correlators
given by Eq. (85) are obtained by taking the multiple gluon
scattering into account [20,24]. The hadronic tensor W (g)

4qμν

for both the quark and gluon jet cases can be written as the
unified form

Ŵ (g/q)
4qμν = 1

ph · q
∫

dẑdẑ1dẑ2h
g/q
4q

[(
cq1gTμν + icq3εTμν

)
Ĉs

+ (
cq3gTμν + icq1εTμν

)
Ĉ ps

]
, (86)

Here letter with hat, e.g. ẑ, is used to distinguish variables
from ones used before. Ĉs and Ĉ ps are these correlators con-
sidered here. They can also be written as a unified form

Ĉ j =
∫

d2k′
T

(2π)2

∫
d4k1d

4kd4k2δ

(

ẑ − p+
h

k+

)

δ(k+
1 ẑ1 − p+

h )

× δ(k+
2 ẑ2 − p+

h )(2π)2δ2(	kT + 	k′
T )�̂

(0)
(4q) j

× (k1, k, k2; ph .R), (87)

where j = s, ps. The corresponding �̂
(0)
(4q)s and �̂

(0)
(4q)ps are

given by

�̂
(0)
(4q)s = g2

8

∫
d4y

(2π)4

d4y1

(2π)4

d4y2

(2π)4 e
−ik1 y+i(k1−k)y1−i(k2−k)y2

×
∑

X

{
〈0|ψ̄(y2)/nψ(0)|ph, R, X〉

× 〈ph, R, X |ψ̄(y)/nψ(y1)|0〉
× +〈0|ψ̄(y2)γ

5/nψ(0)|ph, R, X〉
× 〈ph, R, X |ψ̄(y)γ 5/nψ(y1)|0〉

}
, (88)

�̂
(0)
(4q)ps = g2

8

∫
d4y

(2π)4

d4y1

(2π)4

d4y2

(2π)4 e
−ik1 y+i(k1−k)y1−i(k2−k)y2

123
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(a) (b) (c) (d)

Fig. 4 The first four of the four-quark diagrams where no multiple gluon scattering is involved. In (a), we have k′
1 = k1 − k and k′

2 = k2 − k; in
(b) we have the interchange of k1 with k′

1; in (c) we have the interchange of k2 with k′
2; in (d) we have both interchanges of k1 with k′

1 and k2 with
k′

2

×
∑

X

{
〈0|ψ̄(y2)γ

5/nψ(0)|ph, R, X〉

× 〈ph, R, X |ψ̄(y)/nψ(y1)|0〉
+ 〈0|ψ̄(y2)/nψ(0)|ph, R, X〉
× 〈ph, R, X |ψ̄(y)γ 5/nψ(y1)|0〉

}
. (89)

For simplicity, we have omitted gauge links in Eqs. (88)–(89).
In the hadronic tensor Eq. (86), hg/q4q denotes the sum of

all the hard parts.

hg4q = ẑ ẑ3
Bδ(ẑ − ẑB)

(
ẑ1 − ẑB + iε

)(
ẑ2 − ẑB − iε

)

+ ẑ2
B/ẑ1 ẑ2δ(ẑ − ẑB)

(
1/ẑ1 + iε

)(
1/ẑ2 − iε

)

− ẑ3
B/ẑ2δ(ẑ − ẑB)

(ẑ1 − ẑB + iε)(1/ẑ2 − iε)
− (1 ↔ 2)∗, (90)

hqL4q = ẑ ẑ3
Bδ(ẑ1 − ẑB)

(
ẑ − ẑB − iε

)(
ẑ2 − ẑB − iε

) −
( 1

ẑ2
→ 1

ẑ
− 1

ẑ2

)

− ẑ ẑ3
Bδ(ẑ1 + ẑB − ẑ1 ẑB

ẑ )
(
ẑ − ẑB − iε

)(
ẑ2 − ẑB − iε

) +
( 1

ẑ2
→ 1

ẑ
− 1

ẑ2

)
,

(91)

where ẑ = ẑB = p+
h /k+, hqR4q (ẑ1, ẑ, ẑ2) = hqL∗

4q (ẑ2, ẑ, ẑ1).

Summing over all the hard parts yields h4q = hqL4q + hqR4q +
hg4q .

As for the quark– j-gluon–quark correlators, we decom-
pose Ĉs and Ĉ ps in terms of the four-quark DiFFs,

ẑ
∫

dẑdẑ1dẑ2h4qĈs = M2
h D4q , (92)

ẑ
∫

dẑdẑ1dẑ2h4qĈ ps = k̃ · RG4q . (93)

Substituting Eqs. (92)–(93) into Eq. (86) yields

ẑW̃4qμν = M2
h

ph · q
(
cq1gTμν + icq3εTμν

)
D4q

+ k̃ · R
ph · q

(
cq3gTμν + icq1εTμν

)
G4q . (94)

We see that they have the same modes as for the leading
twist contributions. They lead to twist-4 modifications of the
leading twist results.

4 Cross section and azimuthal asymmetries

In the previous section we obtained the complete hadronic
tensor at twist-4 level. Contracting with leptonic tensor gives
the cross section of the hadron pair production semi-inclusive
electron positron annihilation process. We present the results
in the following context.

The complete differential cross section at twist-4 is given
by

[dσ ] = α2
emχ

8πQ2

{
T1(y)

(
D1 − κM

D4q

z

)
+ T2(y)kT M RTM

× sin(φr − φk)

(
G⊥

1 − κM
G4q

z

)

− 2κM

[
T3(y)kT M cos φk D

⊥ + T3(y)RTM cos φr D
�

]

− 2κM

[
T4(y)kT M sin φkG

⊥ + T4(y)RTM sin φrG
�

]

+ 4κ2
M

[
2ce1c

q
1 B(y)

D3

z
+ 2ce1c

q
3 B(y)kT M RTM sin

×(φr − φk)
G3

z
− T1(y)ReD−3dd

]

− 4κ2
Mce1c

q
1 B(y)

[
k2
T M cos 2φkReD⊥−3d

+R2
T M cos 2φrReD�

−3d

+kT M RTM cos(φr + φk)ReD×
−3d

]

− 4κ2
Mce1c

q
3 B(y)

[
k2
T M sin 2φkImD⊥−3d

+R2
T M sin 2φr ImD�

−3d

+kT M RTM sin(φr + φk)ImD×
−3d

] }
, (95)

where [dσ ] = dσ/dzdyd2RT dξd2k′
T . We also used κM =

Mh/Q, kT M = |	kT |/Mh , RTM = | 	RT |/Mh and

T1(y) = 2ce1c
q
1 A(y) − ce3c

q
3C(y), (96)

T2(y) = 2ce1c
q
3 A(y) − ce3c

q
1C(y), (97)
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T3(y) = ce1c
q
1C(y)D(y) + ce3c

q
3 D(y), (98)

T4(y) = ce1c
q
3C(y)D(y) − ce3c

q
1 D(y) (99)

with A(y) = 1
2 − y+ y2, B(y) = 2y(1− y),C(y) = 1−2y

and D(y) = √
y(1 − y) to simplify the expression. Contri-

butions from four-quark correlator are involved in Eq. (95).
From Eq. (95), we can see there are sets of azimuthal

modulations which can be measured in experiment and used
to extract the corresponding DiFFs. To illustrate this we first
present the definition of the azimuthal asymmetries, e.g.

〈sin φk〉 =
∫ [dσ ] sin φkdφk∫ [dσ ]dφk

. (100)

Other asymmetries can be defined in the similar way, we do
not show them for simplicity. In this case, we can write down
all the azimuthal asymmetries. The leading twist asymmetry
is given by

〈sin(φr − φk)〉2 = kT M RTM
T2(y)G⊥

1

2T1(y)D1
. (101)

Here subscript 2 denotes the leading twist. The twist-4 cor-
rection of the leading twist asymmetry in Eq. (101) in the
numerator is κ2

M

(−T2(y)G4q + 8ce1c
q
3 B(y)G3

)
/z. We note

that a summation of flavor q is explicit in the numerator and
in the denominator, respectively. This applies also to all the
results presented in the following of this paper. There are four
twist-3 azimuthal asymmetries which are given by

〈cos φk〉3 = −κMkTM
T3(y)D⊥

zT1(y)D1
, (102)

〈cos φr 〉3 = −κM RTM
T3(y)D�

zT1(y)D1
, (103)

〈sin φk〉3 = −κMkTM
T4(y)G⊥

zT1(y)D1
, (104)

〈sin φr 〉3 = −κM RTM
T4(y)G�

zT1(y)D1
, (105)

where subscript 3 denotes the twist-3. There are six azimuthal
asymmetries appearing at twist-4. They are

〈cos 2φk〉4 = −κ2
Mk2

T M

2ce1c
q
1 B(y)ReD⊥−3d

zT1(y)D1
, (106)

〈cos 2φr 〉4 = −κ2
M R2

T M

2ce1c
q
1 B(y)ReD�

−3d

zT1(y)D1
, (107)

〈sin 2φk〉4 = −κ2
Mk2

T M

2ce1c
q
3 B(y)ImD⊥−3d

zT1(y)D1
, (108)

〈sin 2φr 〉4 = −κ2
M R2

T M

2ce1c
q
3 B(y)ImD�

−3d

zT1(y)D1
, (109)

〈cos(φr + φk)〉4 = κ2
MkTM RTM

2ce1c
q
1 B(y)ReD×

−3d

zT1(y)D1
,

(110)

〈sin(φr + φk)〉4 = κ2
MkTM RTM

2ce1c
q
3 B(y)ImD×

−3d

zT1(y)D1
, (111)

where subscript 4 denotes the twist-4.
If only the EM interaction is taken into account ce,qV =

1, ce,qA = 0, that is ce,q1 = 1, ce,q3 = 0 or T1(y) =
2A(y), T3(y) = C(y)D(y) and T2(y) = T4(y) = 0. In
this case, we have

〈cos φk〉3 = −κMkTM
C(y)D(y)D⊥

2zA(y)D1
, (112)

〈cos φr 〉3 = −κM RTM
C(y)D(y)D�

2zA(y)D1
, (113)

〈cos 2φk〉4 = −κ2
Mk2

T M

B(y)ReD⊥−3d

zA(y)D1
, (114)

〈cos 2φr 〉4 = −κ2
M R2

T M

B(y)ReD�
−3d

zA(y)D1
, (115)

〈cos(φr + φk)〉4 = κ2
MkTM RTM

B(y)ReD×
−3d

zA(y)D1
. (116)

Only five azimuthal asymmetries are left. Asymmetries in
Eqs. (101)–(116) can be measured to extract corresponding
DiFFs.

5 Summary

In this paper, we calculate the hadron pair production in
the semi-inclusive electron positron annihilation process at
twist-4 level. Semi-inclusive implies the back-to-back jet is
also measured in addition to the hadron pair. This process (jet
production) is better than the double hadron (pair) production
process because it does not introduce the extra uncertainties
if the jet is seen as a(n) (anti)quark. It is then an ideal place
to study the chiral even quantities (e.g. DiFFs). However,
the shortcoming of this process is that it is impossible to
study the chiral odd quantities since there is no helicity flip.
The hadron (pair) production process has been discussed at
leading twist, e.g. Refs. [7,28], in this paper we thus con-
sider the jet production process at twist-4. Both the EM and
weak interactions are considered. We calculate the cross sec-
tion according to the collinear expansion method. It provides
explicit expressions of the hadronic tensor at twist-4 level, see
Eqs. (21)–(24), and the cross section can be easily obtained.
We obtain one leading twist azimuthal asymmetry which has
twist-4 corrections. Also, we have four twist-3 and six twist-4
azimuthal asymmetries. If only EM interaction is considered,
two twist-3 and three twist-4 azimuthal asymmetries are left.
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Electron positron annihilation is known as the cleanest pro-
cess in studying the quark fragmentation and/or hadroniza-
tion. Our calculation, considering the EM and weak interac-
tions simultaneously, provides a set of measurable quantities
for a better understanding of DiFFs, hadronization and even
quark flavor separation.
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