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Abstract

This thesis explores topics in two-dimensional quantum gravity, focusing on the specific model of

Jackiw-Teitelboim (JT) gravity and its relation to higher-dimensional black holes (BHs). Such a

study is motivated by (i) the fact that JT gravity is a full-fledged theory of quantum gravity and

(ii) because problematic features in higher-dimensional gravity, such as those related to black holes

or wormholes, can be addressed in two-dimensions.

Chapter 2 is based on work with S. Pufu, Y. Wang, and H. Verlinde [1]. We propose an exact

quantization of JT gravity by formulating the theory as a gauge theory. We find that this theory’s

partition function matches that of the Schwarzian theory. Observables are also matched: correlation

functions of boundary-anchored Wilson lines in the bulk are given by those of bi-local operators in

the Schwarzian.

Chapter 3 is based on work with J. Krutthof, G. Turiaci, and H. Verlinde [2]. We compute the

partition function of JT gravity at finite cutoff in two ways: (i) by evaluating the Wheeler-DeWitt

wavefunctional and (ii) by performing the path integral exactly. Both results match the partition

function in the Schwarzian theory deformed by the analog of the TT deformation in 2D CFTs, thus,

confirming the conjectured holographic interpretation of TT .

Chapter 4 is based on [3]. We study JT gravity coupled to Yang-Mills theory. When solely focus-

ing on the contribution of disk topologies, we show that the theory is equivalent to the Schwarzian

coupled to a particle moving on the gauge group manifold. When considering the contribution from

all genera, we show that the theory is described by a novel double-scaled matrix integral.

Chapter 5 is based on work with G. Turiaci [4]. We answer an open question in BH thermody-

namics: does the spectrum of BH masses have a “mass gap” between an extremal black hole and

the lightest near-extremal state? We compute the partition function of Reissner-Nordström near-

extremal BHs at temperature scales comparable to the conjectured gap. We find that the density

of states at fixed charge exhibits no gap; instead, we see a continuum of states at the expected gap

energy scale.
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Chapter 1

Introduction

1.1 The path integral in gravity

Reconciling general relativity with quantum mechanics remains one of the foundational open prob-

lems in modern physics. To understand the origin of this clash, we first review what goes wrong

when trying to naively view the theory of general relativity as a quantum field theory.1 The Einstein-

Hilbert action2

IEH =
1

16πGN

∫
ddx
√
−g R , (1.1)

governs the dynamics of general relativity through the evolution of the space-time metric, ds2 =

gµνdx
µdxν , that describes the geometry of the universe that we inhabit. The problem with the

quantization of the action (1.1) stems from dimensional analysis: given that the metric gµν is

dimensionless, the scaling dimension (i.e. how this quantity scales in units of energy) of the Newton

constant is given by

[GN ] = 2− d . (1.2)

While such a coupling does not seem problematic at first sight, the issue appears when expanding

the action (1.1) around it’s classical saddles, gµν = ηµν + hµν .3 Here, ηµν is the classical saddle

1See [5] for a more detailed perspective on these issues.
2Throughout this thesis, we will mostly focus on studying Euclidean gravity. However, since we want to explain

why gravity cannot be viewed as a consistent quantum field theory in our own universe, the action (1.1) is expressed
in Lorentzian signature.

3For concreteness, here we will will consider the expansion around that flat metric solution, ηµν = diag(−1, 1, 1, 1).
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while hµν is meant to capture quantum fluctuations. In such a case, the Einstein-Hilbert action

schematically becomes

IEH, pert. =
1

16πGN

∫
ddx

[
(∂h)2 + (∂h)2h+ . . .

]
, (1.3)

where the . . . capture terms with a higher number of derivatives or higher powers of h. Finally,

rescaling h̃µν =
√

8πGNhµν we arrive at

IEH, pert. =

∫
ddx

[
1

2
(∂h̃)2 +

√
2πGN (∂h̃)2h̃+ . . .

]
. (1.4)

The first term in the action above is that of a free field theory of spin-2 fields. All higher terms are

graviton interactions. However, all such interactions formed from derivatives or higher powers of h̃

are irrelevant for d > 2.4 At a technical level, this implies that the theory is nonrenormalizable: in

order for expectation values in the quantum theory to converge, an infinite number of counterterms

needs to be introduced in order to cancel all divergences. Consequently, such theories are not “UV

complete” as they do not make sense at arbitrary energy thresholds. If taken literally, this means

that the path integral
∫
Dgµν e

−IEH does not make sense for d > 2 – rather, the path integrals that

are well behaved are those perturbing Gaussian fixed points by relevant operators.

There are two lessons that one can extract from this analysis. The first lesson is that the naive

path integral of quantum gravity has the potential to make sense in d ≤ 2. In this thesis, we will

extensively study gravitational path integrals and their application in d = 2.5 The second lesson

is that (1.1) is not UV complete but rather is a low-energy effective theory for a complete theory

of quantum gravity. The main candidate for such a complete theory of quantum gravity is string

theory. There are numerous open problems in this higher dimensional gravitational theory that also

exist in d = 2. Throughout this thesis, we will make several observations that could provide insights

towards resolving these problems through the lens of two-dimensional quantum gravity. We now

point out several such open problems in the context of the holographic principle, a fundamental

concept in quantum gravity.

4There are however gravitational theories in d = 3 whose path integral is well defined[6, 7, 8].
5Due to diffeomorphism invariance, the case d = 1 is, in some sense, too constrained to be worth studying.
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1.2 The holographic principle

The holographic principle, or the gauge/gravity, duality is a tenet of quantum gravity which claims

that a theory of gravity in some volume of spacetime can be described by a quantum field theory

living on the boundary of that volume [9, 10, 11]. As we have explained in the previous section,

gravity in d spacetime dimensions cannot be viewed as a consistent renormalizable quantum theory.

Instead, at least in the case in which the cosmological constant is negative, it can consistently be

viewed as a quantum field theory in one lower dimension. The example that provides the most

computational evidence for this conjecture is the AdS/CFT correspondence, claiming that a theory

of quantum gravity in d+1-dimensional anti-de Sitter space (AdS) is dual to a conformal field theory

(CFT) that resides on the d-dimensional boundary. Before describing the details of this duality, it

is instructive to review the main ingredients, both in the bulk (in the gravitational theory) and on

the boundary (described by a quantum field theory).

Starting on the boundary side, conformal field theories are special types of quantum field theories

that exhibit additional spacetime symmetries. Specifically, in addition to invariance under trans-

lations and Lorentz transformations, such theories are also invariant under dilatations and special

conformal transformations. Put together, such transformations generate the conformal group which,

for CFTs in d dimensions (in Lorentzian signature), is isomorphic to SO(d− 1, 2). As in any quan-

tum field theory, operators transform in various possible representations of the symmetry group. To

characterize the representations under which CFT operators transform, one could choose a basis of

operators {O} that transform in a finite-dimensional irreducible representations of the Lorentz sub-

group, which are also eigenfunctions of the dilation operator (i.e., corresponding to transformations

which rescale the coordinates by an arbitrary constant). The eigenvalue under dilatations is denoted

by ∆ and defines the scaling dimension of each operator O.

On the gravitational side, we are interested in semi-classical solutions in quantum gravity which

are described by metrics which, close to the boundary, describe AdS space. AdSd+1 is a hyperboloid

in Rd,2, whose metric can be expressed in Poincaré coordinates as6

ds2 =
L2

z2

(
dz2 + dxµdx

µ
)
, (1.5)

where the boundary of AdSd+1 is located at z = 0. Since hyperboloids are maximally symmetric

spaces, the Ricci scalar R is constant, and fixed to R = − (d+1)d
L2 . A key ingredient in the AdS/CFT

6In this section, we are referring to AdSd+1 as a Loretzian spacetime. In later sections, we will also use AdSd+1

or Hd+1 interchangeably, to define a Euclidean spacetime.
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correspondence is the identification between the conformal group of a d-dimensional CFT (described

above) and the isometry group of AdSd+1. Explicitly, one could easily observe from the embedding

of AdSd+1 in Rd,2 that the isometry group is SO(d− 1, 2), since both the ambient metric ηMN and

the embedding equation ηMNX
MXN = −L2 are invariant under SO(d− 1, 2) transformations. The

existence of such an isometry implies that if in the gravitational theory, we introduce a bulk field φ,

then φ should also transform in representations of SO(d− 1, 2). This fact leads to the identification

between fields φ in the bulk, and operators Oφ in the boundary theory. Fields and operators both

transform under the same representation of SO(d − 1, 2). For instance, by equating the eigenvalue

of the quadratic Casimirs on a scalar field φ, with mass m in the bulk, to that of a scalar boundary

operator Oφ, with scaling dimension ∆, one finds that

∆(∆− d) = m2L2 . (1.6)

While at the level of representation theory, the identification of the fields in the bulk with operators

on the boundary might appear as a mathematical artifact, the AdS/CFT dictionary starts carrying

physical significance once one starts identifying correlation functions in the bulk with those measured

on the boundary. To be explicit, we can consider the example of a bulk scalar field in AdS dual to

a scalar operator Oφ on the boundary side. One can introduce boundary conditions for the bulk

scalar field φ such that to leading order in the Poincaré coordinates, φ ∼ jφ(x)zd−∆ + . . . as we

approach the boundary of AdSd. On the boundary side, one can source the operator O by adding∫
ddxjφ(x)O(x) to the action of the CFT. The AdS/CFT dictionary states that the generating

functional for connected correlators on the boundary side is identified with the on-shell gravitational

action when the field φ is sourced on the boundary:

W [jφ] = −Ion-shell[jφ(x)] ⇔ W [jφ] = log

〈
exp

∫
ddxjφ(x)O(x)

〉
(1.7)

This statement, in turn, implies that the correlation functions on the operator O(x) can be matched

with correlation functions of the bulk field φ, when the field φ is placed close to the boundary. To

obtain a complete dictionary, one should map correlation functions of any field in the bulk to that

of some operators on the boundary side. Understanding the mapping of all such correlators is the

goal of the bulk reconstruction program, whose features and related open problems we describe in

the next subsections.
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1.2.1 Bulk reconstruction

The bulk reconstruction program aims to find the exact map between the algebra of operators in the

bulk and that on the boundary.7 The field typically studied in the reconstruction program is again

a local bulk field φ(x, z), in an attempt to reconstruct correlation functions of this field anywhere

in the bulk from boundary correlators [14]. This match can be done by smearing the boundary

operator Oφ, using an appropriate integration kernel [14]. While this method provides a nice way

of reconstructing bulk fields from the boundary, this reconstruction procedure runs into several

problems that stem from the fact that field φ(x, z) is not diffeomorphism invariant (i.e., it depends

on the coordinate system that one chooses in the bulk).8 Instead, the physical operators that one

should aim to reconstruct should all be invariant under the diffeomorphism gauge symmetry of the

bulk. One can construct a diffeomorphism invariant operator by gravitationally “dressing” the field

φ(x, z) to obtain a non-local operator in the bulk. One problem with the dressing procedure is that

it is not unique, and a full classification of all diffeomorphism invariant operators in the bulk is

extremely difficult in known, higher-dimensional, holographic examples.

Luckily, as we shall explain shortly in certain models of 2D quantum gravity, it is possible to

construct a “complete” basis of gauge-invariant operators. We shall compute the possible correlators

of such gauge-invariant operators and map them to expectation values of various operators in an

equivalent boundary theory.

1.2.2 Black hole microstates and approximate bulk isometries

An important aspect of the gauge/gravity correspondence is the duality between correlators com-

puted in black hole geometries in the bulk and observables computed at finite temperature on the

boundary. The most basic example of such equality is between the logarithm of the finite tem-

perature partition function of the CFT and the bulk on-shell action measured in the black hole

geometry: ZCFT(β) = e−Ibulk . While one can thus view the black hole geometry to correspond to a

canonical ensemble in the CFT, a more fine-grained statement in the holographic dictionary is the

correspondence between black hole microstates and specific “heavy” (with large scaling dimension)

states in the CFT.

One could consequently ask what computation on the boundary side or in the bulk could shed

light on the properties of these microstates. For instance, can one compute the spacing between such

black hole microstates and their counter-parts on the CFT side, and what is the density of states on

7See [12, 13] for recent reviews of the bulk reconstruction program.
8In fact, it is straightforward to see that no local fields in quantum gravity are diffeomorphism invariant.
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either side? Unfortunately, such computations are difficult both in the bulk and on the boundary.

In the bulk, to understand the properties of black hole microstates, one would, in principle, need

a better understanding of the UV complete theory in a regime where it is strongly coupled. On

the boundary side, it is difficult to compute the spectrum of such heavy states in the absence of an

underlying symmetry principle – for instance, if such states are protected by supersymmetry.

As we shall soon explain, one special case where insight can be gained by performing computations

in the bulk is that of extremal and near-extremal black holes. Such black holes are special in so much

that the geometry in their near-horizon regions is drastically simplified: there is an AdS2 throat with

an internal space that varies slowly as the horizon is approached (see, for example, [15]). Thus, the

near-horizon region benefits from an additional AdS2 SO(2, 1) ∼ PSL(2,R) isometry. The goal in

the later sections of this thesis will be to understand the consequences of this additional isometry

for the spectrum of black hole masses and their dual “heavy” CFT states.

1.2.3 Moving the AdS boundary inside the bulk

A question related to that of bulk reconstruction is how to extend the holographic dictionary once

the bulk is no longer asymptotically AdSd+1. Rather, one would like to extend the gauge/gravity

duality when the bulk ends on a Dirichlet wall yielding a patch of spacetime with finite volume.

Equivalently, on the boundary side, one could ponder what the bulk dual is once we move away

from the conformal fixed point. While for general spacetime dimensions this is still an intractable

problem, the AdS3/CFT2 duality benefits from integrability properties that help shed light on this

problem. Specifically, there exists a general class of exactly solvable irrelevant deformations of 2D

CFTs, the simplest of which is the TT deformation (where T ≡ Tzz and T ≡ Tzz are the left and right

moving components of the stress tensor). In the holographic context, turning on this deformation

on the boundary side was conjectured to have the following bulk dual [16]:

ICFT + λ

∫
d2xTT ⇔ AdS3 with a Dirichlet wall at finite cutoff . (1.8)

While such a duality has been tested semi-classically, an exact check for a finite value of λ away from

the limit in which the bulk path integral is dominated by its saddle has yet to appear. Furthermore,

although Zamolodchikov [17] showed that the TT operator satisfies some remarkable properties, such

as factorization in translation invariant states, the quantum theory does have a peculiar feature. For

large enough energies and a fixed deformation parameter, the energy spectrum complexifies. It,

therefore, seems that the deformed theory becomes non-unitary. In the bulk, this corresponds to
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black hole states that fill up more spacetime than available in the finite cutoff geometry. The

resolution of this problem has not been fully understood and is further plagued by complications

having to do with properly defining the composite TT operator in two-dimensional field theories.

Once again, an analysis from the perspective of two-dimensional gravity proves to be fruitful.

In such a case, it has been conjectured that placing the two-dimensional bulk in a finite patch of

spacetime is equivalent to deforming its one-dimensional dual by an analog of the TT deformation,

a composite operator formed out of powers of the Hamiltonian. By computing the path integral

in two-dimensional dilaton gravity exactly, we are able to provide the first explicit check of this

conjecture. Furthermore, through the exact computation of the path integral we provide evidence

on the resolution of the complexification of energy levels that plagues the TT deformation and its

gravity dual.

1.2.4 The problem of Euclidean wormholes

From yet another perspective, we can again discuss the problem of properly identifying the correct

boundary dual of certain bulk geometries. As previously emphasized, AdS/CFT is thought to state

that the sum over all geometries with fixed boundary conditions is the same as the partition function

of a (conformal) field theory living on the boundary. A puzzle arises when considering Euclidean

geometries that have n disconnected boundaries (each having the same boundary conditions that

people traditionally consider for a single boundary of the bulk) [18]. On the boundary side, according

to the holographic dictionary, one should simply consider n decoupled copies of the holographic CFT

(which by itself would be dual to a single copy of the bulk). In such a case, one finds multiple solutions

for the bulk geometry: the obvious solution is given by a disconnected set of copies of the traditional

AdS geometry; the less obvious, more puzzling solutions are the ones which include Euclidean

wormholes that connect different (previously disconnected) boundaries. Examples of such Euclidean

wormhole solutions were found in [18]. If the contribution of such geometries to the gravitational

partition function is not vanishing we arrive at the following puzzle: for a single copy of the CFT

an a single bulk copy we have we have that Zbdy.(β) = #e−Ione-copy ; for multiple boundaries we

should find that [Zbdy.(β)]
n

= #e−n Ione-copy + #e−Iwormhole , inconsistent with the result for a single

boundary (for which we would get [Zbdy.(β)]
n

= #e−n Ione-copy 6= #e−n Ione-copy + #e−Iwormhole) [18].

Fully understanding the resolution to this issue is, as of yet, an open problem.9

9Of course, one could postulate that geometries that connect different boundaries should not be considered in the
gravitational partition function when summing over possible geometries. However, this is unnatural from multiple
perspectives. The first is that in string theory (the UV completion of gravity in the bulk) we are told to sum over all
possible topologies of the string worldsheet; the second is that there is no local term that one could add the the bulk
action that would exclude the contribution of such geometries to the gravitational partition function.
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Two-dimensional quantum gravity once again offers a different perspective to the problem [19].

Instead of considering a standard, unitary, quantum mechanical boundary theory, one can consider

an ensemble of theories on the boundary. Such an ensemble, can have the property that 〈Znbdy.〉 6=

〈Zbdy.〉n (where 〈. . .〉 denotes the ensemble average), offering a potential loophole to match the

contribution of Euclidean wormholes to the boundary result. As we shall soon review, the ensemble

of theories that we have to consider in the simplest example of dilaton gravity is given by a double-

scaled matrix model [19].

1.3 The resolutions that two-dimensional gravity provides

While AdS/CFT [9, 10, 11] has provided a broad framework to understand quantum gravity, most

discussions are limited to perturbation theory around a fixed gravitational background. The diffi-

culty of going beyond perturbation theory stems from our limited understanding of both sides of

the duality: on the boundary side, it is difficult to compute correlators in strongly coupled CFTs,

while in the bulk there are no efficient ways of performing computations beyond tree level in per-

turbation theory. 2D/1D holography provides one of the best frameworks to understand quantum

gravity beyond perturbation theory, partly because gravitons or gauge bosons in two dimensions

have no dynamical degrees of freedom.10 Nevertheless, many of the open questions from higher di-

mensional holography, such as questions related to bulk reconstruction or the physics of black holes

and wormholes, persist in 2D/1D holography.

1.3.1 Jackiw-Teitelboim gravity

One of the simplest starting points to discuss 2D/1D holography is the two-dimensional Jackiw-

Teitelboim (JT) theory [38, 39], which involves a dilaton field φ and the metric tensor gµν . The

Euclidean action is given by11

IJT [φ, g] =

φ0χ(M)
8GN︷ ︸︸ ︷

− 1

16πGN

∫
Σ

d2x
√
g φ0R−

1

8πGN

∫
∂Σ

du
√
γφ0K

− 1

16πGN

∫
Σ

d2x
√
g φ(R+ Λ)− 1

8πGN

∫
∂Σ

du
√
γ (φ|∂Σ)K , (1.9)

10See [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] for various discussions about models of
2D/1D holography.

11Moving forward we will fix the two-dimensional gravitational constant GN = 1/(8π).
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where we have placed the theory on a manifold M with metric gµν and where the boundary of this

manifold, ∂M , is endowed with the induced metric γ and the extrinsic curvature K. The first term

is a purely topological term which includes the Euler characteristic χ(M) of the manifold. For large

values of the dilaton displacement φ0 the topological term suppresses the contribution of higher

genus manifolds – thus, at first, we will solely focus on manifolds with the topology of a disk and

we will ignore the contribution of this term.

The bulk term in (1.9) yields the equations of motion

R = −Λ , ∇µ∇νφ =
Λ

2
gµνφ . (1.10)

Thus, on-shell, the bulk term in (1.9) vanishes. The remaining degrees of freedom are thus all on

the boundary of some connected patch of Euclidean AdS2 (or, equivalently, of the Poincaré disk).

The boundary term in (1.9) is in fact necessary in order to have a well-defined variational principle

when studying the theory with Dirichlet boundary conditions: one can fix

φ|∂Σ = φb = φr/ε , guu = 1/ε2 . (1.11)

such that the total proper boundary length is given by L = β/ε. JT gravity that is typically studied

is the asymptotically AdS2 limit in which ε→ 0, therefore making the proper length of the boundary

large.

1.3.2 A review: Asymptotic AdS2 spaces, the Schwarzian theory, and its

quantization

We now proceed to study the quantization of JT gravity by better understanding the nature of the

boundary degrees of freedom. The path integral of the action (1.9) is given by

ZJT [β, φr] =

∫
φ=φb+iR

DφDgµν e
−IJT [φ,g]

=

∫
Dgµνδ(R+ Λ)e

∫
duφbK . (1.12)

where in going from the first to the second line we have integrated the dilaton along imaginary

values. As can also be seen from the classical equations of motion, the contribution of the bulk

action term fully vanishes. We are thus left with a sum over all AdS2 patches which have a fixed

proper perimeter L and fixed metric guu. This constraint implies that when parametrizing the space
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Figure 1.1: Cartoon exemplifying a typical AdS2 patch with large proper boundary length. In this
cartoon of hyperbolic space, sketched by M. C. Escher, each demon/angel has the same proper area.

in terms of Poincaré coordinates and the boundary by some coordinate u such that

ds2 =
dτ2 + dx2

x2
,

1

ε2
=
τ ′2 + x′2

x2
, τ ′ = ∂uτ . (1.13)

then one can solve for x[τ(u)], at least to the first few orders in ε in perturbation theory [29],

x[τ(u)] = ετ ′ +O(ε2) . (1.14)

Using this result one can thus hope to rewrite the extrinsic curvature in (1.9) in terms of a single

field, τ(u). In order to do that we use the definition of the extrinsic curvature, which simplifies for

two-dimensional manifolds to

K = −g(T, ∇Tn)

g(T, T )
(1.15)

where g(X,Y ) = gabX
aY b with gab is the metric on M , where n is the normal vector to boundary

of M and T is the tangent vector along ∂M . In the coordinate system (1.13), the vectors T a and

na are given by

T a = (τ ′, x′) , na =
x√

τ ′2 + x′2
(−x′, τ ′) . (1.16)
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In such a case, the extrinsic curvarture becomes

K =
τ ′(τ ′2 + x′2 + x′x′′)− xx′τ ′′

(x′2 + τ ′2)3/2
= 1 + ε2Sch(τ, u) +O(ε4) (1.17)

where to obtain the second equality we have used (1.14). Here, Sch(τ, u) denotes the Schwarzian

derivative

Sch(τ, u) =
τ ′′′

τ ′
− 3

2

τ ′′2

τ ′2
. (1.18)

The JT gravity action simply reduces to

IJT = −
∫ β

0

duφr
(
Sch(τ, u) +O(ε2)

)
(1.19)

Thus, we have reduced the path integral for the two-dimensional gravitational theory (1.9) to that

over a theory in one dimension. In that sense, the equivalence between JT gravity and the Schwarzian

theory (1.19) can be viewed as a toy example of the AdS/CFT correspondence.

Our next goal is to analyze the classical and quantum behavior of this action. Following from

the approximation (1.14), the SL(2,R) isometry of AdS2 which we have discussed in section 1.2

reduces to a symmetry of the Schwarzian theory

τ → aτ + b

cτ + d
(1.20)

which acts on the field τ(u) through a fractional linear transformation. From the perspective of

effective field theory, one could, therefore, ponder why we have obtained an action which solely

depends on Sch(τ, u). It is because it is the action with the lowest derivative order, which is invariant

under SL(2,R). As we will explain later in this thesis, higher derivative orders are suppressed in an

ε expansion and only become important when studying the theory at finite cutoff.

There are three conserved charges associated to the transformation (1.20) whose Poisson alge-

bra is sl(2,R). The Casimir of these charges is also conserved and happens to once again be the

Schwarzian derivative Sch(τ, u). Therefore, the equation of motions of (1.19) are equivalent to

∂uSch(τ, u) = 0 (1.21)

The solution to this equation which is consistent with the boundary condition τ(0) = τ(β) is, up to
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SL(2,R) transformations, given by12

τ(u) = tan
πu

β
. (1.22)

Using this solution, we can determine the on-shell action to be

IJT = −2π2φb
β
. (1.23)

Having explained the classical behavior of the theory, we now briefly review its quantization.

Specifically, we are interested in performing the path integral

ZJT [β, φr] =

∫
dµ[τ ]

SL(2,R)
e
∫
duφbSch(τ,u) , dµ[τ ] =

∏
u∈[0,β)

dτ

τ ′
. (1.24)

The quotient by SL(2,R) is meant to eliminate patches that are identical up to the SL(2,R) transfor-

mations in AdS2. dµ[τ ] can be straightforwardly obtained by requiring that this measure should be

local and invariant under boundary diffeomorphisms. Alternatively, this measure could be obtained

by studying the symplectic form of a theory equivalent to JT gravity – an sl(2,R) BF theory (we

will review this equivalence in the next subsection). The integration space is over all real periodic

functions τ(u), with τ(0) = τ(β). Performing the rescaling τ → aτ and φb → φb/α under which the

action is invariant, one can conclude that φb/β serves as the effective coupling in the Schwarzian

theory – when φb/β is large the path integral should be dominated by classical saddle (1.23), while

when φb/β is small quantum fluctuation become relevant.

The result for the path integral (1.24) can be obtained using several methods: from fermionic

localization [25], exploiting the fact that Diff(S1)/SL(2,R) is a symplectic manifold, by using the

equivalence between the Schwarzian and a particle in a magnetic field moving in hyperbolic space

[35, 36] (we review this approach in appendix A), by using the equivalence between the Schwarzian

and a dimensionally reduced version of Liouville theory or by using an sl(2,R) BF theory with a

carefully chosen gauge group (we summarize this approach in the next section and present details in

12The solution (1.22) is however not unique. The general solution is given by τ(u) = tan nπu
β

, with n ∈ Z{0}. Such

saddles correspond to Euclidean solutions where the boundary is self-intersecting. There are two issues which such
solutions. Firstly, one could eliminate such solutions by requiring that manifolds appearing in the path integral of
Euclidean gravity have non-intersecting boundaries. Secondly, in [29] such saddles that correspond to higher boundary
winding have been proven to be unstable.
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section 2). The result for the path integral obtained from any of the approaches mentioned above is

ZJT [β, φr] ∼
∫
dE sinh(2π

√
E)e−

β
2φr

E ∼
(
φb
β

) 3
2

e2π2 φb
β . (1.25)

The first equation emphasizes that the Schwarzian density of states is ρ(E) = sinh(2π
√
E) while the

second shows that the path integral reproduces the classical saddle (1.24) to leading order in φb/β.

1.3.3 A review: Contributions from higher genus topologies

As mentioned in section 1.2.4, we are not only interested in summing over manifolds with a single

topology. Instead, in the case of JT gravity, we should sum over manifolds with any topology that

could support a hyperbolic geometry and which satisfy the boundary conditions mentioned in the

previous subsection. Therefore, we will once again consider the contribution of φ0 in (1.9).

The basic building blocks needed to compute the contribution to the partition function of higher

genus manifolds is [37]:

• The path integral over a “trumpet”,MT , which on one side has asymptotically AdS2 boundary

conditions specified by (4.2) and, on the other side, ends on a geodesic of length b.

• The path integral over a bordered Riemann surfaces of constant negative curvature that has

n boundaries and genus g. For such surfaces, we fix the lengths of the geodesic boundaries b1,

. . . , bn, across all n boundaries.

• The correct measure for gluing “trumpets” to the higher genus bordered Riemann surfaces.

By gluing the above geometries along the side where the boundary is a geodesic, we can obtain

any orientable geometry with constant negative curvature (with arbitrary genus g, and an arbitrary

number of boundaries n), which has asymptotically AdS2 boundaries.

To start, we compute the “trumpet” partition function which closely follows the computation for

the disk partition function. The JT gravity action, again reduces to an integral over the extrinsic

curvature K on the boundary where we impose Dirichlet boundary conditions. The boundary that

ends on the geodesic of length b requires no associated boundary term and, therefore, does not

contribute to the action.13 Therefore, the path integral over the boundary once again reduces to

that of the Schwarzian. What differs from the disk computation is the boundary condition for the

13This is because no boundary term is required when fixing K and guu.

13



Schwarzian field:

Ztrumpet =

∫
Dµ[τ ]

U(1)
e
∫
duφrSch(τ,u) (1.26)

where the boundary condition τ(β) = aτ(0)+b
cτ(0)+d , can be obtained by identifying two different geodesics

on the Poincaré plane. Here, the fractional linear transformation can be related to the length of the

geodesic b. The new boundary conditions can be viewed as a fugacity for the SL(2,R) symmetry in

the Schwarzian theory. In the presence of such a fugacity, we can no longer quotient the integration

space by SL(2,R); rather we should only quotient by the preserved U(1) subgroup. The result for

the path integral (1.26) can once again obtained from localization [25] or by a dimensionally reduced

version of Liouville theory [40]:

Ztrumpet ∼
∫

dE√
E

cos(b
√
E)e−

βE
2φr ∼ φ

1/2
r

(2π)1/2β1/2
e−

φr
2
b2

β (1.27)

The next step is to compute the volume of the moduli space of n-bordered Riemann surfaces with

constant curvature, denoted by Volg,n(b1, . . . , bn). While, we do not describe the exact procedure

to obtain these volumes, we will mention that a recursion relation for these volumes was found in

[41] (see [42] for a review). It was later showed that this recursion relation can be related to the

“topological recursion” seen in the genus expansion of a double-scaled matrix integral [43]. Finally,

the integration measure needed in order to glue the “trumpet” to a boundary of a bordered Riemann

surfaces one needs to use the Weyl-Peterson measure dbb.14 Thus, the contribution to the partition

function of a higher genus surface is given by:

ZJT (β, φr) ⊃ e2πφ0χg,1

∫
db bVolg,1(b)Ztrumpet(β, φr, b) . (1.28)

Similarly, one can compute the contribution of can compute the contribution of geometries that

connect n boundaries:

ZJT (β1, φr,1, . . . , βn, φr,n) ⊃ e2πφ0χg,n

∫
db1 b1 . . . dbn bn Volg,n(b1, . . . , bn)

×Ztrumpet(β1, φr,1, b1) . . . Ztrumpet(βn, φr,n, bn)︸ ︷︷ ︸
Zg,n(βj)

. (1.29)

which for n ≥ 1 is never vanishing. As emphasized in section 1.2.4, the gravitational path integral

14This measure can once again be obtained by considering the symplectic form in an equivalent BF theory.
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can receive contributions from such geometries which connect the n disconnected boundaries.

We now describe the equivalent matrix integral that reproduces the results above, following [37].

Consider a Hermitian matrix integral over N ×N Hermitian matrices with some potential S[H]:

Z =

∫
dHe−S(H) , S[H] ≡ N

1

2
TrNH

2 +
∑
j≥3

tj
j

TrNH
j

 , (1.30)

where TrN is the standard trace over N × N matrices. An observable that proves important in

the genus expansion of the gravitational theory is the correlator of the thermal partition function

operator, Z(β) = TrN e
−βH . Correlators of such operators have an expansion in 1/N , where each

order in N can be computed by looking at orientable double-line graphs of fixed genus [44, 45] (for

a review see [46]). Consequently, this is known as the genus expansion of the matrix model (1.30).

For a general set of potentials S[H], each order in the expansion can be determined in terms of

a single function ρ0(E). This function is simply the leading density of eigenvalues in matrices with

N → ∞. Consider the double-scaling limit of (1.30), in which the size of the matrix N → ∞ and

in which we focus on the edge of the eigenvalue distribution of the matrix H, where the eigenvalue

density remains finite and is denoted by eS0 . The expansion of the correlators mentioned above can

now be expressed in terms of eS0 instead of the size of the matrix N . In this double-scaled limit

the density of eigenvalues ρ0(E) is not necessarily normalizable and with an appropriate choice of

potential S[H], ρ0(E) can be set to be equal to the energy density in the Schwarzian theory (4.11)

ρ0(E) =
φb

2π2
sinh(2π

√
2φbE) . (1.31)

As previously emphasized, choosing (1.31) determines all orders (in the double scaled limit) in the

e−S0 perturbative expansion for correlators of operators such as Z(β) = TrN e
− βH

2φr [47]. The result

found by [37], building on the ideas of [43], is that the genus expansion in pure JT gravity agrees

with the eS0 genus expansion of the double-scaled matrix integral whose eigenvalue density of states

is given by (1.31):

ZnJT(β1, . . . , βn) = 〈Z(β1) . . . Z(βn)〉 =
∑
g

Zg,n(βj)e
−S0χ(Mg,n) . (1.32)

The density of states (1.31) was shown to arise when considering the matrix integral associated

to the (2, p) minimal string. Specifically, this latter theory was shown to be related to a matrix
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integral whose density of eigenvalues is given by [48, 49, 50, 51, 52]

ρ0(E) ∼ sinh

(
p

2
arccosh

(
1 +

E

κ

))
, (1.33)

where κ is set by the value of p and by the value of µ from the Liouville theory which is coupled

to the (2, p) minimal model [53]. Taking the p → ∞ limit in (1.33) and rescaling E appropriately,

one recovers the density of states (1.31). Consequently, one can conclude that the double-scaled

matrix integral which gives rise to the genus expansion in pure JT gravity is the same as the matrix

integral which corresponds to the (2,∞) minimal string. Thus, if we view the matrix integral as

the equivalent boundary theory we find that by considering ensemble averages, the open problem

brought up by Maldacena and Maoz is resolved [18].

1.4 Jackiw-Teitelboim gravity in the first order formalism

So far, we have focused on the partition function in the pure gravitational theory, but we have not

yet addressed what happens when we couple the theory to matter fields. To study this problem in

the approximation in which such fields are treated as probe particles, it is useful to consider the

spectrum of (non-local) operators in the theory.

While our discussion has mostly focused on understanding Jackiw-Teitelboim gravity in terms of

the metric and the dilaton, we will show that, if we want to better understand the exact quantization

of the theory as well as its operator spectrum, it is convenient to formulate the theory as an equivalent

gauge theory. Such a reformulation has the advantage that we can quickly identify the gauge-

invariant or, equivalently, diffeomorphism invariant operators in the theory (which, in turn, are

equivalent to the aforementioned probe particles). In general relativity, we can always rewrite the

dependence of the action on the metric in terms of two additional sets of fields: the frame fields and

spin connection. As we will discuss in detail below, when paired together, these fields constitute the

necessary component for a 2d gauge field appearing in the reformulation.

1.4.1 Classical equivalence

As shown in [54, 55], JT gravity (1.9) can be equivalently written in the first-order formulation,

which involves the frame and spin-connection of the manifold, as a 2D BF theory with gauge al-
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gebra sl(2,R).15 Let us review this correspondence starting from the BF theory.16 To realize this

equivalence on shell, we only need to rely on the gauge algebra of the BF theory and not on the

global structure of the gauge group. Thus, the gauge group could be PSL(2,R) or any of its central

extensions. For this reason, we will for now consider the gauge group to be G and will specify the

exact nature of G in Section 2.3.

To set conventions, let us write the sl(2,R) algebra in terms of three generators P0, P1, and P2,

obeying the commutation relations

[P0, P1] = P2 , [P0, P2] = −P1 , [P1, P2] = −P0 . (1.34)

For instance, in the two-dimensional representation the generators P0, P1, and P2 can be represented

as the real matrices

P0 =
iσ2

2
, P1 =

σ1

2
, P2 =

σ3

2
. (1.35)

An arbitrary sl(2,R) algebra element consists of a linear combination of the generators with real

coefficients. The field content of the BF theory consists of the gauge field Aµ and a scalar field

φ, both transforming in the adjoint representation of the gauge algebra. Under infinitesimal gauge

transformations with parameter ε(x) ∈ sl(2,R), we have

δφ = [ε, φ] , δAµ = ∂µε+ [ε, Aµ] . (1.36)

Consequently, the covariant derivative isDµ = ∂µ−Aµ (because then we have, for instance, δ(Dµφ) =

[ε,Dµφ]), and then the gauge field strength is Fµν ≡ −[Dµ, Dν ] = ∂µAν − ∂νAµ − [Aµ, Aν ]. In

differential form notation, F = dA−A ∧A.

Ignoring any potential boundary terms, the BF theory Euclidean action is

SBF = −i
∫

Tr (φF ) , (1.37)

where the trace is taken in the two-dimensional representation (1.35), such that TrφF = ηijφiFj/2,

where ηij = diag(−1, 1, 1), with i, j = 1, 2, 3. To show that the action (1.37) in fact describes JT

15Similarly, there is an equivalence between a different 2D gravitational model, the CallanGiddingsHarveyStro-
minger model and a 2D BF-theory with the gauge algebra given by a central extension of iso(1, 1) [56, 57]. Similar to
our work here, it would be interesting to explore exact quantizations of this gauge theory.

16Unlike [54, 55], we will work in Euclidean signature.
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gravity, let us denote the components of A and φ as

A(x) =

√
Λ

2
ea(x)Pa + ω(x)P0 , φ(x) = φa(x)Pa + φ0(x)P0 , (1.38)

where the index a = 1, 2 is being summed over, Λ > 0 is a constant, and ea and ω are one-forms

while φa and φ0 are scalar functions. An explicit computation using F = dA − A ∧ A and the

commutation relations (1.34) gives

F =

√
Λ

2

[
de1 + ω ∧ e2

]
P1 +

√
Λ

2

[
de2 − ω ∧ e1

]
P2 +

[
dω +

Λ

2
e1 ∧ e2

]
P0 . (1.39)

The action (1.37) becomes

SBF = − i
2

∫ √
Λ

2

[
φ1(de1 + ω ∧ e2) + φ2(de2 − ω ∧ e1)

]
− φ0

(
dω +

Λ

2
e1 ∧ e2

)
. (1.40)

The equations of motion obtained from varying φ yields F = 0. Specifically, the variation of φ1

and φ2 imply τa = dea + ωab ∧ eb = 0, with ω1
2 = −ω2

1 = ω, which are precisely the zero torsion

conditions for the frame ea with spin connection ωab. Plugging these equations back into (1.40) and

using the fact that for a 2d manifold dω = R
2 e

1 ∧ e2, with R being the Ricci scalar, we obtain

SBF =
i

4

∫
d2x
√
g φ0 (R+ Λ) , (1.41)

which is precisely the bulk part of the JT action with the dilaton φ in the second order formalism

identified with −iφ0/4.17 Here, the 2d metric is gµν = e1
µe

1
ν + e2

µe
2
ν , and d2x

√
g = e1 ∧ e2. The

equation of motion obtained from varying φ0 implies R = −Λ, and since Λ > 0, we find that the

curvature is negative. Thus, the on-shell gauge configurations of the BF theory parameterize a patch

of hyperbolic space (Euclidean AdS).

Note that the equations of motion obtained from varying the gauge field, namely

Dµφ = ∂µφ− [Aµ, φ] = 0 , (1.42)

17One might be puzzled by the fact that when φ0 is real, φ is imaginary. However, when viewing φ or φ0 as
Lagrange multipliers, this is the natural choice for the reality of both fields. However, note that in the second-order
formulation of JT-gravity (1.9) one fixes the value of the dilaton (φ) along the boundary to be real. As we describe
in Section 2.2.1, we do not encounter such an issue in the first-order formulation, since we will not fix the value of φ
along the boundary.
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can be written as

dφ0 =

√
Λ

2

(
−e1φ2 + e2φ1

)
,

dφ1 = −ωφ2 +

√
Λ

2
e2φ0 ,

dφ2 = ωφ1 −
√

Λ

2
e1φ0 .

(1.43)

It is straightforward to check that taking another derivative of the first equation and using the other

two gives the equation for φ in (1.10).

The spin connection ωab is a connection on the orthonormal frame bundle associated to a principal

SO(2) bundle. For a pair of functions εa transforming as an SO(2) doublet, the covariant differential

acts by Dεa = dεa + ωabε
b. With this notation, we see that the infinitesimal gauge transformations

(1.36) in the BF theory with gauge parameter ε =
√

Λ/2εaPa + ε0P0 take the form

δe1 = Dε1 − ε0e2 ,

δe2 = Dε2 + ε0e1 ,

δω = dε0 +
Λ

2
(ε2e1 − ε1e2) .

(1.44)

The interpretation of these formulas is as follows. The parameters εi act as local gauge parame-

ters for the SO(2) symmetry. When the gauge connection is flat with F = 0, infinitesimal gauge

transformation are related to infinitesimal diffeomorphisms generated by a vector fields ξµ (via

δgµν = ∇µξν +∇νξµ)

εa = eaµξ
µ , ε0(x) = ωµ(x)ξµ(x) . (1.45)

The parameter ε0 generates an infinitesimal frame rotation, and thus it leaves the 2d metric invariant.

Note that the gauge transformations in the BF theory preserve the zero-torsion condition and the 2d

curvature because these quantities appear in the expression for F in (1.39) and the equation F = 0

is gauge-invariant.

1.4.2 Quantum equivalence

So far, we have solely focused on the classical analysis of the equivalent gauge theory – explicitly,

we have shown that the on-shell equations of motion in the bulk agree between the gauge theory

formulation and the second order gravitational formulation. We have not yet specified the crucial
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ingredients that are needed to provide an exact description of the quantum theory: specifying the

boundary condition along ∂Σ in (1.37) or determining the global structure of the gauge group.

Thus, in this thesis we will first focus on possible boundary conditions and boundary terms such

that the resulting theory has a well defined variational principle, while later, we will discuss the global

structure of the gauge group. Putting the two together, we will then study the exact quantization

of this theory and study its observables.

We start by reviewing the possible boundary conditions on the gauge theory side. When placing

the gauge theory on a disk, the natural Dirichlet boundary conditions are set by fixing the gauge

field or, equivalently, the frame ea and spin connection ω at the boundary of the disk. In such

a case, a boundary term like that in (1.9) does not need to be added to the action in order for

the theory to have a well-defined variational principle. The resulting system can be shown to be a

trivial topological theory which does not capture the boundary dynamics of (1.9). Consequently, we

introduce a boundary condition changing defect whose role in the BF-theory is to switch the natural

Dirichlet boundary conditions to those needed in order to reproduce the Schwarzian dynamics. With

this boundary changing defect the first and second formulations of JT gravity give rise to the same

boundary theory:18

Schwarzian

First order formulation
(ωτ , ε

1,2
τ )|∂Σ = const.

Insertion of defect

Second order formulation
(guu, φ)|∂Σ = (1/ε2, φb/ε)

ε→ 0

Figure 1.2: Schematic representation showing that the dynamics on the defect in the gauge theory is
the same as that in the Schwarzian theory, which in turn describes the boundary degrees of freedom
of (1.9).

For the equivalence between the Schwarzian and the gauge theory to continue to hold at the

quantum level, we find the gauge group needed to properly capture the global properties of the

gravitational theory. As we will show, this is given by an extension of PSL(2,R) by R. This

extension is related to the universal cover of the group PSL(2,R), denoted by SL2.19 With this

18Possible boundary conditions for the gauge theory reformulation of JT-gravity were also discussed in [58]. A
concrete proposal for the rewriting of the boundary term in (1.9) was also discussed in [59], however the quantization
of the theory was not considered.

19A similar observation was made in [60]. There it was shown that in order for gravitational diffeomorphisms to be
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choice of gauge group, when placing the bulk theory in Euclidean signature on a disk, we find a

match between its exact partition function and that computed in the Schwarzian theory [61, 26, 62].

This match is obtained by demanding that the gauge field component along the boundary should

vanish.20

The first natural observable to consider beyond the partition function is given by introducing

probe matter in the gauge theory. On the gauge theory side, introducing probe matter is equivalent

to adding a Wilson line anchored at two points on the boundary. In the Schwarzian theory, we

expect that this coupling is captured by bilocal operators Oλ(u1, u2). We indeed confirm that all

the correlation functions of bi-local operators in the Schwarzian theory [40] match the correlation

functions of Wilson lines that intersect the defect. More specifically, the time-ordered correlators

of bi-local operators in the boundary theory are given by correlators of non-intersecting defect-

cutting Wilson lines, while out-of-time-ordered correlators are given by intersecting Wilson line

configurations. By computing the expectation value of bulk Wilson lines in the gauge theory, we

provide a clear representation of theoretic meaning to their correlators. Furthermore, we provide

the combinatorial toolkit needed to compute any such correlator. As we will show, these Wilson

lines also have a gravitational interpretation: inserting such Wilson lines in the path integral is

equivalent to summing over all possible world-line paths for a particle moving between two fixed

points on the boundary of the AdS2 patch. Furthermore, we discuss the existence of further non-

local gauge-invariant operators, which can potentially be used to compute the amplitudes associated

with a multitude of scattering problems in the bulk.

1.5 Revisiting the second-order formalism:

Going beyond the asymptotic AdS2 limit

As we have reviewed thus far, traditionally, the JT path integral is computed with Dirichlet boundary

conditions, for very large proper boundary lengths and boundary values for the dilaton (see [29]). In

that limit, we have shown that the partition function of JT gravity reduces to a simpler path integral

over a boundary quantum mechanics theory, the Schwarzian theory. As reviewed, this theory can

mapped to gauge transformations in the BF-theory when placed on a cylinder, one needs to consider a gauge group
given by SL2, instead of the typically assumed PSL(2,R).

20In a gauge-independent language, here we demand a trivial holonomy around the boundary of the disk. For
general boundary holonomy, the dual is given by a non-relativistic particle moving on H+

2 in a magnetic field, in the
presence of an SL2 background gauge field. As we point out in Appendix B.1, this is slightly different than considering
the Schwarzian with SL(2,R) twisted boundary conditions, which was considered in [26, 63].
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be solved exactly [61, 25, 40].21 At finite cutoff, the values for the boundary length and dilaton are

no longer large, and the computation of the partition function has been an open problem which we

resolve in this thesis.

Our computation is naturally motivated by the question of understanding the AdS/CFT cor-

respondence at finite cutoff. As mentioned in section 1.2.3, this question has recently attracted

tremendous attention, especially in the context of the AdS/CFT correspondence. In three bulk

dimensions, it was conjectured in [16] (see also [66]) that finite patches of asymptotically AdS3

spacetimes can be obtained by deforming the CFT by the irrelevant TT deformation. This duality

was only analyzed in the semi-classical limit and, as of yet, its fate in the quantum theory remains

unclear. Furthermore, while the TT operator satisfies some remarkable properties, its spectrum has

numerous unwanted features that we have emphasized in section 1.2.3. To circumvent the compli-

cations of 3D/2D holography and yet address some of its unwanted problems, we turn to analyzing

the problem in one dimension lower.

We will discuss two possible quantization techniques for the two-dimensional gravitational theory

at finite cutoff.

The first is the canonical quantization. In the canonical approach, one foliates the spacetime

with a certain, usually time-like, coordinate, and parametrizes the metric in an ADM decomposition

[67]. As a result of the diffeomorphism invariance of the action, the action becomes a sum of

constraints. These constraints are then uplifted to quantum mechanical constraints, and its solutions

are functionals of the data on the chosen foliation. In general, these constraints are difficult to solve

unless some approximations, such as the mini-superspace approximation is made. Luckily, for two-

dimensional theories of dilaton gravity, the constraints can be reduced to two first-order functional

differential equations that can be solved exactly in the quantum theory. This was first demonstrated

for JT gravity in the 80s by Henneaux [68] and generalized to general dilaton gravities in [69]. The

resulting solutions to the constraints are known as Wheeler-deWitt (WdW) wavefunctionals: they

are functionals of diffeomorphism invariant quantities, which in our case are the dilaton profile and

boundary length.

The WdW wavefunctionals relevant for our analysis are not the traditional ones, which are

constructed for geometries on a constant time slice. Instead, we consider a “radial quantization”

in Euclidean signature for which the wavefunctionals are related to the partition function (modulo

counterterms) at a finite value for the boundary length and dilaton. This provides a way to compute

21For further details about solvability properties of the Schwarzian theory and JT gravity, see [28, 20, 30, 31, 61,
40, 64, 65, 35, 36, 37, 63, 1].
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the path integral at finite cutoff.

In the second approach, we compute the Euclidean path integral directly. In general, this is very

complicated at finite proper boundary length as some of the gravitational modes are frozen in the

large volume limit. After integrating out the dilaton, the JT path integral localizes to one over a

boundary action given by the extrinsic curvature K of the boundary. By using constraints from the

SL(2,R) isometry of AdS2, we manage to express K in an expansion solely containing powers of the

Schwarzian derivative and its derivatives. This expansion greatly facilitates our computations and

allows us to express the partition function as the expectation value of an operator in the Schwarzian

theory. Using integrability properties in the Schwarzian theory, we manage to compute the partition

function to all orders in a perturbative expansion in the cutoff.

Both the canonical and path integral approaches use widely different techniques to compute the

finite cutoff partition function, yet, as expected from the equivalence between the two quantization

procedures, the results agree. Luckily we find a perfect agreement between the two approaches with

the proposed deformation of the Schwarzian partition function, analogous to the TT deformation

for 2D CFTs [70, 71]. This result thus provides concrete evidence that the duality between the TT

deformation and the bulk cutoff movement holds not only semi-classically; rather, we show that it

is an exact duality.

1.6 Mysteries in black hole thermodynamics

1.6.1 Generic features of extremal and near-extremal black holes

As briefly mentioned in section 1.2.2, extremal, and near-extremal black holes have long offered

a simplified set-up to resolve open questions in black hole physics, ranging from analytic studies

of mergers to microstate counting. The simplicity of near-extremal black holes comes from the

universality of their near-horizon geometry: there is an AdS2 throat with an internal space that

varies slowly as the horizon is approached (see, for example, [15]).

To understand the nature of extremal and near-extremal black holes we start by reviewing the

simplest example of Reissner-Nordström, a black hole with electric or magnetic charge. Such black

holes are solutions for the Einstein-Hilbert action coupled to electromagnetism22

IEH =

∫
d4x
√
−g(R− 2Λ + FµνF

µν) , (1.46)

22Here, we will neglect the discussion of boundary terms and boundary conditions at the AdS or flat space boundary.
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where, in what follows, we will consider black holes in AdS (with Λ < 0) or in flat space (with

Λ = 0). For a black hole with total electric charge Q and mass M ,23 one finds the solution

ds2
(4d) = −f(r)dt2 +

dr2

f(r)
+ r2dΩ2 , f(r) = 1− 2GNM

r
+
GN
4π

Q2

r2
+
r2

L2
. (1.47)

Such black holes have two horizons located at r+ and r− for which f(r±) = 0 (where we will always

take r+ > r−). We can now understand some basic thermal properties of the Reissner-Nordström

black hole. Analytically continuing the solution (1.47) to Euclidean signature via a Wick rotation

t → −iτ , we find that the space ends at the location of the exterior horizon r+. Expanding the

metric (1.47) around r+ we find a patch of flat space; for this patch to be smooth, we need to

require that there is no conical singularity which, in turn, implies that the Euclidean time τ needs

to be periodically identified, with period β = 4π/|f ′(r+)|. The identification of Euclidean time is

equivalent to putting a quantum mechanical system at finite temperature. Thus, β can be identified

as the inverse temperature of the black hole, and the radiation emitted at this temperature is called

Hawking radiation.

Next, we describe some properties of extremal and near-extremal black holes. Precisely at ex-

tremality, the extrior and interior horizons coincide with r+ = r− = r0. One can consequently

check that for such black holes |f ′(r+)| = 0 and consequently such black holes have temperature

T = β−1 = 0. Therefore, black holes that are extremal do not emit any Hawking radiation. In the

near-extremal limit, black holes have r+−r− � rh = r+; in such a limit, black holes have very small

temperatures as compared to their horizon size β � rh and therefore radiate slowly. If we consider

black holes with fixed charge Q, and temperature T , then one can determine from (1.47) that the

mass of the near-extremal black hole can be approximated by

M = M0 +
Mgap

T 2
(1.48)

where one can in principle also capture higher order corrections in T . The meaning of the parameter

Mgap will be clarified shortly.

As previously mentioned, a crucial property that we will use in the final chapters of this thesis

is that the near-horizon geometry simplifies. If one expands ρ = r − rh for δr � rh then one finds

23In what follows, we will assume that the black hole solely has an electric charge. However, due to 4d electric-
magnetic duality, all results are equally applicable to magnetic black holes.

24



that the metric can be rewritten as

ds2
(4d) =

ρ2 − δr2
h

L2
2

dτ2 +
L2

2

ρ2 − δr2
h

dρ2 + (r0 + ρ)2dΩ2 (1.49)

where δrh = r+ − r−. The first two terms capture the geometry of AdS2, while the second term

captures the geometry of an internal space (S2) whose size is slowly varying as we go away from the

horizon. As it turns out, this feature, together with our understanding of JT gravity, will greatly

simplify our analysis in what follows.

1.6.2 The problem of the mass gap

While the near-horizon geometry exhibits great simplicity, the thermodynamics of extremal and near-

extremal black holes brings up several important open questions. At extremality, black holes have

zero temperature, mass M0, and area A0. Performing a semiclassical analysis when raising the mass

slightly above extremality, one finds that the energy growth of near-extremal black holes scales with

temperature as δE = E −M0 = T 2/Mgap. Naively, one might conclude that when the temperature,

T < Mgap, the black hole does not have sufficient mass to radiate even a single Hawking quanta of

average energy. Consequently, Mgap is considered the energy scale above extremality at which the

semiclassical analysis of Hawking must breakdown [72, 73, 74].24 A possible way to avoid the failings

of the semiclassical analysis is to interpret Mgap as a literal “mass gap” between the extremal black

hole and the lightest near-extremal state in the spectrum of black hole masses. Such a conjecture

is, in part, supported by microscopic constructions [75, 76, 77] which suggest that, in the case of

black holes with sufficient amounts of supersymmetry, Mgap could indeed be literally interpreted

as a gap in the spectrum of masses.25 Nevertheless, it is unclear if such results are an artifact of

supersymmetry or whether such a gap truly exists for the most widely-studied non-supersymmetric

examples: in Reissner-Nordström (RN) or Kerr-Newman (KN) black holes.

The mass-gap puzzle is related to another critical question of understanding the large zero-

temperature entropy of extremal black holes. If a gap exists, and the semiclassical analysis is correct

at low temperatures, extremal black holes would exhibit a huge degeneracy proportional to the

macroscopic horizon area measured in Planck units. In the absence of supersymmetry, it is unclear

24Even at temperatures T ∼ O(Mgap) there is a breakdown of thermodynamics since a single Hawking quanta
with average energy could drastically change the temperature of the black hole.

25In [77], it is assumed that the lightest near-extremal state has non-zero spin, in contrast to the extremal Reissner-
Nordström. However, in section 5.3, we show that in fact the lightest near-extremal state has zero spin. [75, 76] focus
on string constructions for near-extremal black holes in supergravity. Since our analysis depends on the massless
matter content in the near-horizon region, we cannot compare our results with the gaped results of [76]. Nevertheless,
an analysis of the 2d effective theory in the near-horizon region for near-extremal black holes in supergravity is
currently underway [78].
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E −M0
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M = M0, T = 0
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gap T
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T + M−1

gap T
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One Hawking quanta:

〈E〉 ∼ T

Mgap

Figure 1.3: Energy above extremality at fixed charge as a function of the temperature when obtained
from the semiclassical analysis (in red) and when accounting for the quantum fluctuations in the
near-horizon region (in purple). This should be compared to the average energy of one Hawking
quanta (dashed line) whose energy is on average 〈E〉 ∼ T .

how such a degeneracy could exist without being protected by some other symmetry. Alternatively,

if one takes the semiclassical analysis seriously only at temperatures T � Mgap, then it is possible

that the entropy obtained by this analysis, would not count the degeneracy of the ground-state;

rather, it could count the total number of states with energy below E −M0 . Mgap [74]. We find

this solution unsatisfactory; from the Gibbons-Hawking prescription, we should be able to compute

the Euclidean path integral at lower temperatures.

In this thesis, we settle the debate about the existence of a mass-gap for 4d Reissner-Nordström

black holes. We show that such near-extremal black holes do not exhibit a mass gap at the scale

Mgap.26 To arrive at this conclusion, we go beyond the semiclassical analysis and account for quan-

tum fluctuations to reliably compute the partition function of such black holes at temperatures

T ∼Mgap in the canonical and grand canonical ensembles. By taking the Laplace transform of the

partition function, we find the density of states in the spectrum of black holes masses. Due to the

presence of T log(T/Mgap) corrections to the free energy, 27 we find that the spectrum looks like a

continuum of states and, consequently, exhibits no gap of order ∼Mgap. This continuum is observed

because our computation is not sensitive enough to distinguish between individual black hole mi-

26While in this thesis we will mostly focus on studying 4d black holes in an asymptotically flat or AdS4 space, our
analysis could be applied to RN black holes in any number of dimensions.

27The T log T corrections discussed throughout this thesis should not be confused with the logarithmic area cor-
rections to the entropy studied for extremal black holes in [79, 80, 81, 82]. While we did not find any connection
between the two corrections (as the logarithmic area correction to the entropy is studied in a specific limit for the
mass, charge and temperature; such a limit is not employed in this thesis), it would be interesting to understand
whether the results obtained in this thesis can be used to also account for the entropy corrections from [79, 80, 81, 82].
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Figure 1.4: Purple: Density of states (at fixed charge) for black holes states as a function of energy
above extremality E −M0, including backreaction effects given in (5.72). Red: Plot of the naive
density of states ρ ∼ exp (Ahor/4GN ) which starts deviating from the full answer below energies of
order Mgap.

crostates; for that, a UV complete gravitational theory is necessary. Nevertheless, our computation

does suggest that, for non-supersymmetric theories, the degeneracy of extremal black holes is much

smaller than that obtained from the area-law Bekenstein-Hawking entropy (in figure 1.4 we show

the shape of the density of states at fixed charge)28.

The potential breakdown of Hawking’s analysis raised in [72] is also resolved. In figure 1.3, we

compare the temperature dependence of the energy above extremality in the classical analysis and

when accounting for quantum fluctuations. As opposed to the semiclassical analysis, we find that

when only slightly above extremality, E −M0 ∼ 3
2T > T , therefore resolving the naive failure of

thermodynamics at very small temperatures.

A similar analysis was done recently for near-extremal rotating BTZ black holes in AdS3 [84].

These black holes present a breakdown of their statistical description at low temperatures when re-

stricted to the semiclassical analysis. The breakdown is similarly resolved by including backreaction

effects in the Euclidean path integral.

To reliably compute the partition function at such small temperatures, we perform a dimensional

reduction to the two dimensional AdS2 space in the near-horizon region29. We find that the only

relevant degrees of freedom that affect the density of states are the massless modes coming from the

gravitational sector, the electromagnetic gauge field, and the SO(3) gauge fields generated by the

28The logic in this thesis is very different from the argument in [83]. The degeneracy of the extremal black hole
and the presence of a gap depends on the amount of supersymmetry in the theory (see section 5.5).

29The geometry describing the throat is AdS2×S2. Even though the size of the transverse sphere r0 is large, we
will consider temperatures well below the KK scale T �MKK ∼ 1/r0. This is consistent since, in all cases, we study
the gap is a parametrically smaller scale T ∼Mgap �MKK.
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dimensional reduction. The resulting effective theory turns out to be that of 2d Jackiw-Teitelboim

(JT) gravity [85, 39] coupled to gauge degrees of freedom. The Euclidean path integral of such

an effective theory can be computed exactly by first integrating out the gauge degrees [3, 86] and

then by analyzing the boundary modes [87] of the resulting model using the well-studied Schwarzian

theory.30

The connection between JT gravity and near-extremal black holes has been widely discussed in

past literature.31 In fact, in [88], the scale Mgap defined through the thermodynamics was identified

as the symmetry breaking scale for the emergent near-horizon AdS2 isometries, SL(2,R). Moreover,

this is also the scale at which the equivalent Schwarzian theory becomes strongly coupled. However,

compared to past literature, to compute the partition function at small temperatures, T ∼Mgap, we

had to keep track of all the fields generated through the dimensional reduction and exactly compute

the path integral for the remaining massless relevant degrees of freedom. Our qualitative picture is

nevertheless similar to that presented in [88] as we show that the semiclassical analysis fails due to

the backreaction of the dilaton and gauge fields on the metric.

For the reasons described above, to avoid confusion from now on, we will stop calling the scale

in which the semiclassical analysis breaks down Mgap since there is no gap at that scale. Instead we

will redefine it as Mgap → 1
2π2MSL(2).

32 More importantly, we want to stress that the appropriate

meaning of this energy is the symmetry breaking scale of the approximate near horizon conformal

symmetry.

30See [28, 20, 29, 31, 61, 25, 40, 37] for details.
31See [88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]
32The factor of 2π2 will be useful but is just conventional.
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Chapter 2

Dilaton gravity in the first-order

formalism

2.1 Outline of results

This section elaborates on the ideas presented in section 1.4 and is organized as follows. In Section 2.2

we show the on-shell equivalence between the equations of motion of the Schwarzian theory and those

in the gauge theory description of JT gravity, when boundary conditions are set appropriately. In

Section 2.3 we discuss the quantization of the gauge theory. In this process, in order to match

results in the Schwarzian theory, or, alternatively in the second order formulation of JT gravity,

we determine a consistent global structure for the gauge group and determine potential boundary

conditions such that the partition function of the gauge theory agrees with that of the Schwarzian.

In Section 2.4, we show the equivalence between Wilson lines in the gauge theory and bi-local

operators in the boundary theory. Furthermore, we discuss the role of a new class of gauge invariant

non-local operators and compute their expectation value. Finally we discuss future directions of

investigation in Section 2.5. In Appendix B.1, we review various properties of the Schwarzian theory

and derive at the level of the path integral, its equivalence to a non-relativistic particle moving in

hyperbolic space in the presence of a magnetic field. For the readers interested in details, we suggest

reading Appendix B.3 and B.4 where we provide a detailed description of harmonic analysis on the

SL2 group manifold and derive the fusion coefficients for various representations of SL2. Finally,

we revisit the gravitational interpretation of the gauge theory observables in Appendix B.5 and

we show that Wilson lines that intersect the defect are equivalent to probe particles in JT-gravity
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propagating between different points on the boundary.

2.2 Classical analysis of sl(2,R) gauge theory

2.2.1 Variational principle, boundary conditions, and string defects

Infinitesimal variations of the action (1.37) yield

δSBF = (bulk equations of motions) − i
∫
∂Σ

Tr (φδAτ ) , (2.1)

where τ is used to parametrize the boundary ∂Σ. As is well-known [101] and can be easily seen from

the variation (2.1), the BF theory has a well-defined variational principle when fixing the gauge field

Aτ along the boundary ∂Σ. In the first-order formulation of JT gravity, this amounts to fixing the

spin connection and the frame and no other boundary term is necessary in order for the variational

principle to be well defined.1 In fact, due to gauge invariance, observables in the theory will depend

on Aτ only through the holonomy around the boundary,

g̃ = P exp

(∫
∂Σ

A

)
∈ G , (2.2)

instead of depending on the local value of Aτ . However, solely fixing the gauge field around the

boundary yields a trivial topological theory (see more in Section 2.3). Of course, such a theory

cannot be dual to the Schwarzian. In order to effectively modify the dynamics of the theory we

consider a defect along a loop I on Σ. A generic way of inserting such a defect is by adding a term

SI , to the BF action,

SE = SBF + SI , SI = e

∫ β

0

duV (φ(u)) . (2.3)

where u is the proper length parametrization of the loop I, whose coordinates are given by xI(u)

and whose total length is β measured with the induced background metric from the disk.2

Since, the overall action needs to be gauge invariant we should restrict V (φ) to be of trace-class;

as we will prove shortly in order to recover the Schwarzian on-shell we simply set V (φ) = −Trφ2/4,

with the trace in the fundamental representation of sl(2,R).

1This is in contrast with the second-order formulation of JT gravity (1.9), when fixing the metric and the dilaton
along the boundary. In such a case the boundary term in (1.9) needs to be added to the action in order to have a
well defined variational principle.

2Consequently, the defect is not topological.
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I I

= =
Schwarzian

dynamics

Figure 2.1: Cartoon emphasizing the properties of the string defect. The resulting theory is invariant
under perimeter preserving defect diffeomorphisms and thus the defect can be brought arbitrarily
close to the boundary of the manifold. Furthermore, the degrees of freedom of the gauge theory
defect can be captured by those in the Schwarzian theory.

Note that as a result of the Schwinger-Dyson equation

〈
dTrφ2(x) . . .

〉
BF

= −2i

〈
Tr

(
φ(x)

δ

δA(x)

)
. . .

〉
BF

= 0 (2.4)

Trφ2 is a topological operator in the BF theory independent of its location on the spacetime manifold,

as long as the other insertions represented by . . . above do not involve A.3

As emphasized in Figure 2.1, due to the fact that theory is topological away from I and due

to the appearance of the length form in (2.3) the action is invariant under diffeomorphisms that

preserve the local length element on I.4 Thus, one can modify the metric on Σ, away from I, in

order to bring it arbitrarily close to the boundary ∂Σ. This proves convenient for our discussion

below since we fix the component Aτ of the gauge field along the boundary and can thus easily use

the equations of motion to solve for the value of φ along I.

Specifically, we choose

Aτ

∣∣∣∣
bdy

≡ ω `0 +

√
Λ

2
e+ `+ +

√
Λ

2
e− `− , (2.5)

3In the sl(2,R) gravitational theory, −Trφ2 is usually interpreted as a black hole mass and its conservation law
can be interpreted as an energy conservation law [59].

4This is similar to 2d Yang-Mills theory which is invariant under area preserving diffeomorphisms [102, 103, 104].
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where

`0 ≡ iP0 , `+ ≡ −P2 − iP1 , `− ≡ P2 − iP1 ,

ω ≡ −iωτ
∣∣∣∣
bdy.

, e+ ≡
ie1
τ − e2

τ

2

∣∣∣∣
bdy.

, e− ≡
ie1
τ + e2

τ

2

∣∣∣∣
bdy.

. (2.6)

The generators `0 and `± satisfy the commutation relations

[`±, `0] = ±`± , [`+, `−] = 2`0 . (2.7)

As previously discussed, all observables can only depend on the value of the holonomy, thus without

loss of generality we can set ω and e± to be constants whose value we discuss in the next subsection.

Fixing the value of the gauge field, in turn, sets the metric in the JT-gravity interpretation along

the boundary to be gττ = −4e+e−.

The equation of motion obtained by varying Aτ close to the boundary, Dτφ = ∂τφ−[Aτ |bdy, φ] =

0, can be used to solve for the value of φ along I. It is convenient to relate the two parametrizations

of the defect I through the function u(τ), choosing τ in such a way that eφ−(τ) ≡
√

Λe−/∂τu(τ),

where φ = φ0`0 +φ+`+ +φ−`−. Instead of solving the equation of motion for Aτ in terms of u(τ) it

is more convenient to perform a reparametrization and rewrite the equation in terms of τ(u) using

Au = Aττ
′(u), where τ ′(u) ≡ ∂uτ(u). The solution to the equation of motion for the `− and `0

components of Duφ = 0 yields

eφ(u) =
√

2Λe−`−τ
′ + 2`0

(
ωτ ′ − τ ′′

τ ′

)
+
√

2Λ`+

(
e+τ

′ +
τ ′′′

Λe−(τ ′)2
− ωτ ′′

Λe−τ ′
− (τ ′′)2

Λe−(τ ′)3

)
,

(2.8)

where τ(u) is further constrained from the component of the Duφ = 0 along `+,

0 = 4 detAτ (τ ′)4τ ′′ + 3(τ ′′)3 − 4τ ′τ ′′τ ′′′ + (τ ′)2τ ′′′′ , (2.9)

with detAτ =
(
−ω2 + 2Λe−e+

)
/4 = (2ω2

τ − Λgττ )/8|bdy. When considering configurations with

τ ′(u) = 0 (and τ ′′ 6= 0 or τ ′′′ 6= 0), φ(u) becomes divergent and consequently the action also

diverges. Thus, we restrict to the space of configurations where τ(u) is monotonic, and we can set

τ(β) − τ(0) = L, where L is an arbitrary length whose meaning we discuss shortly. Using this

solution for φ(u) we can now proceed to show that the dynamics on the defect is described by the

Schwarzian.
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2.2.2 Recovering the Schwarzian action

We can now proceed to show that the Schwarzian action is a consistent truncation of the theory

(2.3). We start by integrating out φ inside the defect which sets F = 0 and thus the nonvanishing

part of the action (2.3) comes purely from the region between (and including) the defect and the

boundary. Next we partially integrate out Aτ in this region using the equations of motion of Duφ = 0

along the `− and `0 directions, whose solution is given by (2.8). Plugging (2.8) back into the action

(2.3), we find that the total action can be rewritten as5

SE [τ ] = −1

e

∫ β

0

du
(
{τ(u), u}+ 2τ ′(u)2 detAτ

)
, τ(β)− τ(0) = L , (2.10)

where the determinant is computed in the fundamental representation of sl(2,R). The equation of

motion obtained by infinitesimal variations δτ(u) in (2.10) yields [29]

∂u
[
{τ(u), u}+ 2τ ′(u)2 detAτ

]
= 0 (2.11)

which is equivalent to (2.9) that was obtained directly from varying all components of Aτ in the

original action (2.3). This provides a check that the dynamics on the boundary condition changing

defect in the gauge theory is consistent with that of the action (2.10).

Finally, performing a change of variables,

F (u) = tan
(√

detAτ τ(u)
)
, (2.12)

we recover the Schwarzian action as written in (1.19),

SE [F ] = −1

e

∫ β

0

du{F (u), u} . (2.13)

While we have found that the dynamics on the defect precisely matches that of the Schwarzian we

have not yet matched the boundary conditions for (2.13) with those typically obtained from the

second-order formulation of JT gravity: β = L and F (0) = F (β).6 The relation between L and β

is obtained by requiring that the field configuration is regular inside of the defect I: this can be

5This reproduces the result in [58, 59] where the Schwarzian action was obtained by adding a boundary term
similar to that in (2.3), by imposing a relation between the boundary value of the gauge field Aτ and the zero-form
field φ and by fixing the overall holonomy around the boundary. In our discussion, by using the insertion of the
defect, we greatly simplify the quantization of the theory. Our method is similar in spirit to the derivation of the 2D
Wess-Zumino-Witten action from 3D Chern-Simons action with the appropriate choice of gauge group [105].

6Instead the relation between F (0) and F (β) in (2.13), with the boundary conditions set by those in (2.10), is
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achieved by requiring that the holonomy around a loop inside of I be trivial. In order to discuss

regularity we thus need to address the exact structure of the gauge group instead of only specifying

the gauge algebra. To gain intuition about the correct choice of gauge group it will prove useful to

first discuss the quantization of the gauge theory and that of the Schwarzian theory.

2.3 Quantization and choice of gauge group

So far we have focused on the classical equivalence between the sl(2,R) gauge theory formulation

of JT gravity and the Schwarzian theory. This discussion relied only on the gauge algebra being

sl(2,R), with the global structure of the gauge group not being important. We will now extend this

discussion to the quantum level, where, with a precise choice of gauge group in the 2d gauge theory,

we will reproduce exactly the partition function and the expectation values of various operators in

the Schwarzian theory.

2.3.1 Quantization with non-compact gauge group G

We would like to consider the theory with action (2.3) and (non-compact) gauge group G (to be

specified below), defined on a disk D with the defect inserted along the loop I of total length β. The

quantization of gauge theories with non-compact gauge groups has not been discussed much in the

literature,7 although there is extensive literature on the quantum 2d Yang-Mills theory with compact

gauge group [102, 103, 104, 108, 109, 110, 111, 112].8 Let us start with a brief review of relevant

results on the compact gauge group case, and then explain how these results can be extended to the

situation of interest to us.

What is commonly studied is the 2d Yang-Mills theory defined on a manifoldM with a compact

gauge group G, with Euclidean action

S2d YM [φ,A] = −i
∫
M

Tr (φF )− g2
YM

∫
M
d2x
√
g V (φ) , V (φ) =

1

4
Trφ2 . (2.15)

After integrating out φ, this action reduces to the standard form − 1
2g2

YM

∫
M d2x

√
gTrFµνF

µν . When

quantizing this theory on a spatial circle, it can be argued that due to the Gauss law constraint,

given by,

F (β) =
cos(
√

detAτL)F (0) + sin(
√

detAτL)

− sin(
√

detAτL)F (0) + cos(
√

detAτL)
. (2.14)

7See however, [106] and comments about non-unitarity in Yang-Mills with non-compact gauge group in [107].
8See also the more recent discussion about the quantization of Yang-Mills theory when coupled to JT gravity [3].
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the wave functions are simply functions Ψ[g] of the holonomy g = P exp[
∮
AaTa] around the circle

that depend only on the conjugacy class of g. Here T a are anti-Hermitian generators of the group

G. The generator T a are normalized such that Tr (T iT j) = Nηij , where for compact groups we

set ηij = diag(−1, . . . , −1). Thus, the wavefunctions Ψ[g] are class functions on G, and a natural

basis for them is the “representation basis” given by the characters χR(g) = TrRg of all unitary

irreducible representations R of G.

The partition function of the theory (2.15) when placed on a Euclidean manifoldM with a single

boundary is given by the path integral,

Z2d YM
M (g, g2

YMA) =

∫
DφDAe−S

2d YM [φ,A] (2.16)

where we impose that overall G holonomy around the boundary of M be given by g. Note that

this partition function depends on the choice of metric forM only through the total area A (as the

notation in (2.16) indicates, it depends only on the dimensionless combination g2
YMA). The partition

function can be computed using the cutting and gluing axioms of quantum field theory from two

building blocks: the partition function on a small disk and the partition function on a cylinder. For

the disk partition function Z2d YM
disk (g, g2

YMA), which in general depends on the boundary holonomy g

and g2
YMA, the small A limit is identical to the small g2

YM limit in which (2.15) becomes topological.

In this limit, the integral over φ imposes the condition that A is a flat connection, which gives g = 1,

so [103]

lim
A→0

Z2d YM
disk (g, g2

YMA) = δ(g) =
∑
R

dimRχR(g) . (2.17)

Here, δ(g) is the delta-function on the group G defined with respect to the Haar measure on G,

which enforces that
∫
dg δ(g)x(g) = x(1).

To determine this partition functions at finite area, note that the action (2.15) implies that the

canonical momentum conjugate to the space component of the gauge field Ai1(x) is φi(x), and thus

the Hamiltonian density that follows from (2.15) is just
g2
YM

4 Tr (φiT
i)2. In canonical quantization,

one find that πj = −iNφj and the Hamiltonian density becomes H = − g
2
YM

4N ηijπiπj . Using πj =

δ

δAj1
, each momentum acts on the wavefunctions χR(g) as πiχR(g) = χR(Tig). It follows that the

Hamiltonian density derived from the action (2.15) acts on each basis element of the Hilbert space

χR(g) diagonally with eigenvalue g2
YMC2(R)/(4N) [104], where C2(R) is the quadratic Casimir, with
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C2(R) ≥ 0 for compact groups. One then immediately finds

Z2d YM
disk (g, g2

YMA) =
∑
R

dimRχR(g)e−
g2
YM
4N AC2(R) . (2.18)

From these expressions, sticking with compact gauge groups for now, one can determine the disk

partition function of a modified theory

S = −i
∫
M

Tr (φF )− e
∫
I

duV (φ) , V (φ) =
1

4
Trφ2 , (2.19)

where I is a loop of length β as in Figure 2.1. Such an action can be obtained by modifying the

Hamiltonian of the theory to a time-dependent one and by choosing time-slices to be concentric to

the loop I. 9 Applying such a quantization to the theory with a loop defect we obtain

Z(g, eβ) =
∑
R

dimRχR(g)e−
eβ C2(R)

4N . (2.20)

One modification that one can perform in the above discussion is to consider, either in (2.15) or

in (2.19) a more general V (φ) than 1
4Trφ2. For example, if V (φ) = 1

4Trφ2 + 1
4α(Trφ2)2, then one

should replace C2(R) by C2(R) + α
NC2(R)2 in all the formulas above.

The discussion above assumed that G is compact, and thus the spectrum of unitary irreps is

discrete. The only modification required in the case of a non-compact gauge group G is that the

irreducible irreps are in general part of a continuous spectrum.10 To generalize the proof above, we

have to use the Plancherel formula associated with non-compact groups in (2.17)

δ(g) =
∑
R

dimRχR(g) → δ(g) =

∫
dR ρ(R)χR(g) , (2.21)

where ρ(R) is the Plancherel measure.11 Then, following the same logic that led to the disk partition

function in (2.18), by determining the Hamiltonian density and applying it to the characters in (2.21),

9Alternatively, one can consider the gluing of a topological theory with g2YM = 0 in the regions inside and outside
I, and a theory of type (2.15) in a fattened region around I of a small width (so that the region does not intersect
with other operator insertions such as Wilson lines).

10For the case with non-compact gauge group we will continue to maintain the same sign convention in Euclidean
signature as that shown in (2.16).

11In the case in which the spectrum of irreps has both continuous and discrete components, ρ(R) will be a distri-
bution with delta-function support on the discrete components.
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g2

Figure 2.2: Cartoon showing an example of gluing of three disk patches whose overall partition
function is given by the gluing rules in (2.23). Each segment has an associated group element ha and
each patch has an associated holonomy gi. In the case pictured above: g1 = h1h2h

−1
3 , g2 = h3h4h

−1
5

and g3 = h5h6h
−1
1 . We take all edges to be oriented in the counter-clockwise direction.

we find that the disk partition function of the theory (2.19) reduces to

Z(g, eβ) =

∫
dR ρ(R)χR(g)e−

eβ C2(R)
4N . (2.22)

where we normalize the generators P i of the non-compact group by Tr (P iP j) = Nηij , where ηij

is diagonal with ±1 entries. In these conventions we set the Casimir of the group to be given by

Ĉ2 = −ηijPiPj . One may worry that if the gauge group is non-compact, then it is possible for

the quadratic Casimir C2(R) to be unbounded from below, and then the integral (2.22) would not

converge. If this is the case, we should think of V (φ) in (2.19) as a limit of a more complicated

potential such that the integral (2.22) still converges. For instance, we can add 1
4α(Trφ2)2 to (2.19)

and consequently αC2(R)2 to the exponent of (2.22) as described above.

In order to consider more complicated observables, we can glue together different segments of

the boundary of the disk. In general, the gluing of n disks, each containing a defect Ij of length

βj , onto a different manifold Σ with a single boundary with holonomy g, will formally be given by

integrating over all group elements h1, h2, . . . , hm associated to the C1, . . . , Cm segments which need
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to be glued. Here, hi = P exp
∫
Ci A. The resulting partition function is given by12

Z(g, eβ, Σ) =
1

Vol(G)m

∫ ( m∏
i=1

dhi

) n∏
j=1

Z(gj(ha), eβj)

 δ

g−1
n∏
j=1

gj(ha)

 , (2.23)

where the product i runs over all m edges which need to be glued, while the product j runs over

the labels of the n disks. Each disk j comes with a total holonomy gj(ha) depending on the group

elements ha associated to each segment Ca along the boundary of disk j. Thus, for instance if

the edge of the disk j consists of the segments C1, . . . , Cmj (in counter-clockwise order), then

gj(ha) = h1 · · ·hmj . Furthermore, dhi denotes the Haar measure on the group G, which is normalized

by the group volume. The group δ-function imposes that the total holonomy around the boundary

of Σ is fixed to be g. An example of the gluing of three patches is given in Figure 2.2.

While for compact gauge groups (2.23) yields a convergent answer when considering manifolds

Σ with higher genus or no boundary, when studying non-compact gauge theories on such manifolds

divergences can appear. This is due to the fact that the unitary representations of a non-compact

group G are infinitely dimensional.13

2.3.2 The Schwarzian theory and SL2 representations

In order to identify the gauge group G for which the theory (2.3) becomes equivalent to the

Schwarzian theory at the quantum level, let us first understand what group representations are

relevant in the quantization of the Schwarzian theory. Specifically, the partition function of the

Schwarzian theory at temperature β is given, up to a regularization dependent proportionality con-

stant, by

ZSchwarzian(β) ∝
∫ ∞

0

dss sinh(2πs)e−
β

2C s
2

, (2.24)

(computed using fermionic localization in [26]), can be written as an integral of the form

ZSchwarzian(β) ∝
∫
dR ρ(R)e−

β
2C [C2(R)− 1

4 ] . (2.25)

12Various formulae useful for gluing in gauge theory are shown in Appendix B.2, where results for compact gauge
groups and non-compact gauge groups are compared.

13When setting G to be PSL(2,R) or one of its extensions, these divergences are in tension with the expected
answers in the gravitational theory (1.9). This is a reflection of the fact that while the moduli space of Riemann
surfaces has finite volume, the moduli space of flat PSL(2,R) (or other group extensions of PSL(2,R)) connections
does not. Thus, the techniques applied in this chapter are only valid for manifolds with the topology of a disk. See
[37, 42, 113, 3] for a detailed discussion about a sum over all topologies.
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over certain irreps of the universal cover SL2.14

To identify the representations R needed to equate (2.24) to (2.25), let us first review some basic

aspects of SL2 representation theory, following [115]. The irreducible representations of S̃L(2,R) are

labeled by two quantum numbers λ and µ. These can be determined from the eigenvalue λ(1 − λ)

of the quadratic Casimir Ĉ2 = −ηijPiPj = P 2
0 − P 2

1 − P 2
2 = −`20 + (`−`+ + `+`−)/2, as well as the

eigenvalue e2πiµ under the generator e−2πi`0 of the Z center of the SL2. Furthermore, states within

each irreducible representation are labeled by an additional quantum number m which represents

the eigenvalue under `0. Thus,

Ĉ2|λ, µ,m〉 = λ(1− λ)|λ, µ,m〉 ,

`0|λ, µ,m〉 = −m|λ, µ,m〉 with m ∈ µ+ Z .
(2.26)

One can go between states with different values of m using the raising and lowering operators:

`−|λ, µ,m〉 = −
√

(m− λ)(m− 1 + λ)|λ, µ,m− 1〉 , (2.27)

`+|λ, µ,m〉 = −
√

(m+ λ)(m+ 1− λ)|λ, µ,m+ 1〉 .

where the generators satisfy the sl(2,R) algebra (2.7). Using these labels and requiring the positivity

of the matrix elements of the operators L+L− and L−L+ one finds that there are four types of

irreducible unitary representations:15

• Trivial representation I: µ = 0 and m = 0;

• Principal unitary series Cµ
λ= 1

2 +is
: λ = 1

2 + is, m = µ+ n, n ∈ Z, −1/2 ≤ µ ≤ 1/2;

• Positive/negative discrete series D±λ : λ > 0, λ = ±µ, m = ±λ± n, n ∈ Z+, µ ∈ R;

• Complementary series Cµλ : |µ| < λ < 1/2, m = µ+ n, n ∈ Z,16

Only the principal unitary series and the positive/negative discrete series admit a well defined

Hermitian inner-product, so for them one can define a density of states given by the Plancherel

measure (up to a proportionality constant given by the regularization of the group’s volume).

14As already discussed in [40, 35, 114] and as we explain in Appendix B.1, we can interpret H =
(
Ĉ2 − 1/4

)
/C as

the Hamiltonian of a quantum system and ρ(R) as the density of states. Such an interpretation can be made precise
after noticing that the Schwarzian theory is equivalent to the theory of a non-relativistic particle in 2D hyperbolic
space placed in a pure imaginary magnetic field.

15The two-dimensional representation (corresponding to λ = −1/2 and µ = ±1/2) used in Section 2.2 in order to
write down the Lagrangian is not a unitary representation and therefore does not appear in the list below.

16Since in the Plancherel inversion formula the complementary series does not appear, we will not include it in any
further discussion.
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As reviewed in Appendix B.3, the principal unitary series has the Plancherel measure given by

ρ(µ, s) dµ ds =
(2π)−2s sinh(2πs)

cosh(2πs) + cos(2πµ)
ds dµ , with − 1

2
≤ µ ≤ 1

2
, (2.28)

and for the positive and negative discrete series

ρ(λ)dλ = (2π)−2

(
λ− 1

2

)
dλ , with λ = ±µ, λ ≥ 1

2
, (2.29)

where λ = µ for the positive discrete series and λ = −µ for the negative discrete series.

Matching (2.25) to (2.24) can be done in two steps:

1. We first restrict the set of R that appear in (2.25) to representations with fixed e2πiµ. As

mentioned above, this quantity represents the eigenvalue under the generator of the Z center

of SL2. After this step, (2.25) becomes

∫ ∞
0

ds
(2π)−2s sinh(2πs)

cosh(2πs) + cos(2πµ)
e−

β
2C s

2

+

nmax∑
n=1

1

2π2

(
µ+ n− 1

2

)
e−

β
2C [(µ+n)(1−µ−n)− 1

4 ] , (2.30)

provided that we took µ ∈ [− 1
2 ,

1
2 ). In writing (2.30) we imposed a cutoff nmax on the discrete

series representations. A different regularization could be achieved by adding the square of

the quadratic Casimir in the exponent, with a small coefficient. As a function of µ, Eq. (2.30)

can be extended to a periodic function of µ with unit period.

2. We analytically continue the answer we obtained in the previous step to µ → i∞. When

doing so, the sum in (2.30) coming from the discrete series goes as e−
β
C (Imµ)2

, and the integral

coming from the continuous series goes as e−2π|Imµ|. Thus, when Imµ → ∞ the continuous

series dominates, and (2.30) becomes proportional to the partition function of the Schwarzian.

As was already discussed in [28, 35, 114, 40] and we review in Appendix B.1, fixing µ → i∞

can also be understood in deriving the equivalence between the Schwarzian and a non-relativistic

particle in 2D hyperbolic space, as fixing the magnetic field B̃ to be pure imaginary, B̃ = − iB2π = µ,

with B →∞. As we shall see below, on the gauge theory side, fixing the parameter µ→ i∞ can be

done with an appropriate choice of the gauge group G and boundary conditions.
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2.3.3 PSL(2,R) extensions, one-form symmetries, and revisiting the bound-

ary condition

In Section 2.3.2 we have gained some insight about the SL2 representations that are needed in

order to write the Schwarzian partition function as in (2.25). We thus seek to choose a gauge

group and boundary conditions that automatically isolate precisely the same representations as in

Step 1 above. We then choose the defect potential for the 2D gauge theory to achieve the desired

analytically continued gauge theory partition function presented in Step 2.

Choice of gauge group

In a pure gauge theory the center of the gauge group gives rise to a one-form symmetry under which

Wilson loops are charged [116]. Thus, since an SL2 gauge group gives rise to a Z one-form symmetry,

fixing the charge under the center of the gauge group is equivalent to projecting down to states of a

given one-form symmetry charge. A well known way to restrict the one-form symmetry charges in

the case of a compact gauge group G is by introducing an extra generator in the gauge algebra and

embedding the group G into its central extension [116, 117].

In the case of non-compact groups we proceed in a similar fashion, and consider a new gauge

group which is given by the central extension of PSL(2,R) by R,17

GB ≡
SL2× R

Z
, (2.31)

where the quotient, and, consequently, the definition of the group extension, is given by the identi-

fication

(g̃, θ) ∼ (hng̃, θ +Bn) . (2.32)

Above, g̃ ∈ SL2 and θ ∈ R, hn is the n-th element of Z and B ∈ R is the parameter which defines

the extension. The resulting irreducible representations of GB can be obtained from irreducible

representation of SL2× R which are restricted by the quotient (2.31). The unitary representations

of R are one-dimensional and are labeled by their eigenvalue under the R generator, I|k〉 = k|k〉.

In other words, the action of a general R group element UR(θ) = eiIθ on the state |k〉 is given by

17Such extensions are classified by the Čech cohomology group Ȟ1(SL(2,R),R) ' Hom(π1(SL(2,R) → R) '
Hom(Z→ R) ' R where Hom(Z→ R) classifies the set of homomorphisms from Z to R. In other words, all extensions
by R will be given by a push-forward from the elements of Z center of SL2 to elements of R. A basis of homomorphisms
from Z to (R,+) are given by fB(n) = Bn for B ∈ R. Such a homomorphism imposes the identification (2.31) for
different elements of the group [118].
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multiplication by UR
k (θ) = eikθ.

Considering the representation Uk of R and a representation Uλ,µ of the SL2, evaluated on the

group element (hn, θ) we have USL2×R
λ,µ,k (hn, θ) = Uλ,µ(hn)UR

k (θ) = e2πiµn+ikθ. We now impose the

quotient identification (2.32) on the representations, eikθ = e2πiµn+ik(θ+Bn), which implies k =

−2π (µ− p) /B, with p ∈ Z. Thus, R irreps labeled by k restrict the label µ of representations in

(2.26) to be18

µ = −Bk
2π

+ p , with p ∈ Z . (2.33)

Thus, by projecting down to a representation k of R in the 2D gauge theory partition function, we

can restrict to representations with a fixed eigenvalue e2πiµ for the center of the gauge group Z.

In order to understand how to perform the projection to a fixed k (or e2πiµ) in the BF theory, it

is useful to explicitly write down the GB gauge theory action.

To start, we write the gauge algebra sl(2,R)⊕ R,

[˜̀±, ˜̀
0] = ±˜̀± , [˜̀+, ˜̀−] = 2˜̀

0 −
BI

π
, e2πi˜̀0 = 1 , [˜̀0,± , I] = 0 , (2.34)

where the condition e2πi˜̀0 = 1, imposed on the group, enforces the representation restriction (2.33).

Of course at the level of the algebra, we can perform the redefinition `0 = ˜̀
0−BI/(2π) and `± = ˜̀±

to still find that `0,± satisfy an sl(2,R) algebra (2.7) from which we can once again define the set

of generators Pi using (2.6). Considering a theory with gauge group GB in (2.31), we can write the

gauge field and zero-form field φ as19

A = eaPa + ωP0 +
B2

π2
ARI , φ = φaPa + φ0P0 + φRI , (2.35)

where a = 1, 2 and where α is the R gauge field. Thus, the gauge invariant action (2.3) can be

written as

SE = −i
∫

Σ

(
φaFa + φ0F0

2
+ φRFR

)
− e

∫
∂Σ

du V (φ0, φ±) . (2.36)

Since the sl(2,R) generators form a closed algebra, it is clear that under a general gauge transforma-

tion the ea and ω transform under the actions of sl(2,R), while α transforms independently under

the action of R. Thus one can fix the holonomy of the sl(2,R) gauge components independently

18For B = 0 one simply finds the trivial extension of PSL(2,R) by R which does not contain SL2 as a subgroup.
19Note that the normalization for the R component of A is such that the BF-action in (2.36) is in a standard form.
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from that of R.20

Revisiting the boundary condition

Since the two sectors are decoupled, we can independently fix the holonomy g̃ of the sl(2,R) compo-

nents of the gauge field, as specified in Section 2.2, and fix the value of φR = k0 on the boundary. In

order to implement such boundary conditions and in order for the overall action to have a well-defined

variational principle, one can add a boundary term

Sbdy. = i

∮
∂Σ

φRAR . (2.37)

to the action (2.36). The partition function when fixing this boundary condition can be related to

that in which the GB holonomy g = (g̃, θ), is fixed, with g̃ =
∮
∂Σ
AiPi ∈ SL2 and θ =

∮
∂Σ
AR ∈ R,

as

Zk0
(g̃, eβ) =

∫
dθZ((g̃, θ), eβ)e−ik0θ . (2.38)

More generally, without relying on (2.38), following the decomposition of the partition function

into a sum of irreducible representation of GB , fixing φR = k0, isolates the contribution of the

R representation labeled by k0, in the partition function, or equivalently fixes e2πiµ with µ =

−Bk0

2π + integer. This achieves the goal of Step 1 in the previous subsection 2.3.2.

To achieve Step 2, namely sending µ→ i∞, or equivalently kB → i∞, we can choose

G ≡ GB with B →∞ , φR = k0 = −i . (2.39)

Note that all the groups GB with B 6= 0 are isomorphic. Therefore, one can make different choices

when considering the limits in (2.39) as long as the invariant quantity kB → i∞.

Alternatively, instead of fixing the value of φR on the boundary, the change in boundary condition

(2.38) can be viewed as the introduction of a 1D complexified Chern-Simons term for the R gauge

field component α, SCS = ik0

∮
∂Σ
AR, which is equivalent to the boundary term in (2.37). By adding

20We now briefly revisit the equivalence between the gauge theory and JT-gravity, as discussed in Section 1.4.1.
One important motivation for this is that Section 1.4.1 solely focused on an sl(2,R) gauge algebra while GB has
an sl(2,R) ⊕ R algebra. The equations of motion for the sl(2,R) components are independent from those for the R
components, namely FR = 0 and φR = constant. Thus, the sl(2,R) and R sectors are fully decoupled and, since
FR = 0, the R sector does not contribute to the bulk term in the action. Finally, note that GB indeed has a two-
dimensional representation with (λ, µ, k) = (−1/2,±1/2,∓π/B), as discussed in Section 2.2.2 when recovering the
Schwarzian action. Since we will be considering the limit B →∞ throughout this chapter, the contribution from the
R component to Trφ2 in this two dimensional representation is suppressed. Thus, the classical analysis in Section 2.2
is unaffected by the extension of the group.
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such a term to the action and by integrating over the R holonomy we once again recover the partition

function given by (2.38) .

Thus, the choice of gauge group G (with B →∞) together with the boundary condition for the

field φR or through the addition of the boundary Chern-Simons discussed above, will isolate the

contribution of representations with k = k0 in the partition function.21 Finally, note that in order

to perform the gluing procedure described in Section 2.3.1, one first computes all observables in the

presence of an overall G holonomy. By using (2.38) one can then fix φR = k0 along the boundary

and obtain the result with k0 = −i by analytic continuation.22

Higher order corrections to the potential V (φ)

Finally, as shown in Section 2.2 in order to reproduce the Schwarzian on-shell the potential V (φ0, φ±, φR)

needed to be quadratic to leading order. However, as we shall explain below, one option is to intro-

duce higher order terms, suppressed in O(1/B), in order to regularize the contribution of discrete

series representations whose energies (given by the quadratic Casimir) are arbitrarily negative. Thus,

we choose

V (φ0, φ±, φR) =
1

2
+

1

4
Tr (2,− π

B ) φ
2

+ higher order terms in φ suppressed in 1/B , (2.40)

where Tr (2,− π
B ) is the trace taken in the two-dimensional representation with k = − π

B , and the shift

in the potential is needed in order to reproduce the shift for the Casimir seen in (2.25). Note that

in the limit B → ∞, the trace only involves the sl(2,R) components of φ. While observables are

unaffected by the exact form of these higher order terms, their presence regularizes the contribution

of such representations to the partition function.23

2.3.4 The partition function in the first-order formulation

Since we have proven that the degrees of freedom in the second-order formulation of JT-gravity can

be mapped to those in the first-order gauge theory formulation, we expect that with the appropriate

21Note that in such a case the representations of R with k ∈ C \ R are not δ-function normalizable.
22This analytic continuation is analogous to the one needed in Chern-Simons gravity when describing Euclidean

quantum gravity [119].
23An example for such a higher-order term is given by e(2)

((
φ0
)2

+ 2φ+φ− + 1
4

)
/B where e(2) ∼ O(1) is a new

coupling constant in the potential .
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choice of measure and boundary conditions, the two path integrals agree:

∫
DφDAe−SE [φ,A] ∼=

∫
Dgµν Dφe

−SJT [φ, g] . (2.41)

Using all the ingredients in Section 2.3.3, we can now show that the partition function of the

gravitational theory (2.41) matches that of the Schwarzian. We first compute the partition function

in the presence of a fixed G holonomy is given by

Z(g, eβ) ∝
∫ ∞
−∞

dk

∫ ∞
0

ds
s sinh(2πs)

cosh(2πs) + cos(Bk)
χ(s,µ=−Bk2π ,k)(g)e−

eβs2

2

+ discrete series contribution , (2.42)

where, we remind the reader that the generators Pi satisfying the sl(2,R) algebra are normalized by

Tr 222(P iP j) = −ηij/2 with ηij = diag(−1, 1, 1). When using the symbol “∝” in the computation

of various observables in the gauge theory we mean that the result is given up to a regularization

dependent, but β-independent, proportionality constant.

Using this result, we can now understand the partition function in the presence of the mixed

boundary conditions discussed in the previous subsection. To leading order in B the partition

function with a fixed holonomy g̃ and a fixed value of φR = k0 = −i is dominated by terms coming

from the principal series representations,

Zk0
(g̃, eβ) ∝ e−B

∫ ∞
0

ds s sinh(2πs)χ
s,µ=−Bk0

2π
(g̃)e−

eβs2

2 +O(e−2B) , (2.43)

where χs,µ(g̃) is the character of the SL2 principal series representation labeled by (λ = 1/2 + is, µ)

evaluated on the group element g̃, which can be parametrized by exponentiating the generators in

(2.7) as g̃ = eφP0eξP1e−ηP0 . For φ − η ∈ [2π(n − 1), 2πn), the character for the continuous series

representation s is given by

χs,µ(g̃) =


e2πiµn

(
|x|1−2λ+|x|−1+2λ

|x−x−1|

)
, for g̃ hyperbolic,

0 , for g̃ elliptic.

(2.44)

Here, x (and x−1) are the eigenvalues of the group element g̃, when expressed in the two-dimensional

representation (see Appendix B.3). Note that for hyperbolic elements, x ∈ R, with |x| > 1, and

the character is non-vanishing, while for elliptic elements, we have |x| = 1 (with x /∈ R) and the
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character is always vanishing.24

Note that since in the partition function only representations with a fixed value of µ contribute,

when the holonomy is set to different center elements hn of G, the partition function will only differ

by an overall constant e2πiµn as obtained from (2.44). For simplicity we will consider g̃ = 1. The

character in such a case can be found by setting n = 0 and taking the limit x → 1+ from the

hyperbolic side in (2.44). In this limit, the character is divergent, yet the divergence is independent

of the representation, s. Thus, as suggested in Section 2.3.3, we find that after setting k0 = −i via

analytic continuation in the limit B →∞,

Zk0
∝ Ξ

∫ ∞
0

ds ρ(s)e−
eβs2

2 , ρ(s) ≡ s sinh(2πs) , (2.45)

where Ξ = limx→1+,n=0 χs,µ(g) is the divergent factor mentioned above, which comes from summing

over all states in each continuous series irrep λ = 1/2 + is. Note that we have absorbed the factor

of e−B in (2.43) by redefining our regularization scheme, thus changing the partition function by

an overall proportionality constant. In the remainder of this chapter we will use this regularization

scheme in order to compute all observables.

Performing the integral in (2.45) we find

Zk0
= Ξ

(
2π

eβ

) 3
2

e
2π2

eβ . (2.46)

Thus, up to an overall regularization dependent factor, we have constructed a bulk gauge theory

whose energies and density of states (2.45) match that of the Schwarzian theory (2.24) for 1
C = e,

reproducing the relationship suggested in the classical analysis.

2.4 Wilson lines, bi-local operators and probe particles

An important class of observables in any gauge theory are Wilson lines and Wilson loops,

ŴR(C) = χR

(
P exp

∫
C
A

)
, (2.47)

where R is an irreducible representation of the gauge group, C denotes the underlying path or loop,

and χR(g) is the character of G. When placing the theory on a topologically trivial manifold all

24In Appendix B.1 we confirm the expectation that (2.43) reproduces the partition function in the Schwarzian theory
when twisting the boundary condition for the field F (u) by an SL2 transformation g̃. We expect such configurations
with non-trivial holonomy to correspond to singular gravitational configurations.
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Wilson loops that do not intersect the defect are contractible and therefore have trivial expectation

values. A more interesting class of non-trivial non-local operators in the gauge theory are the Wilson

lines that intersect the defect loop and are anchored on the boundary.

To determine the duals of such operators, we start by focusing on Wilson lines in the positive

or negative discrete series irreducible representation of G, with R = (λ±,∓ 2πλ
B ) where the ± su-

perscripts distinguish between the positive and negative discrete series. In the B → ∞ limit, this

representation becomes R = (λ±, 0).25 As we will discuss in detail below, in order to regularize

the expectation value of these boundary-anchored Wilson lines, we will replace the character χR(g)

in (2.47) by a truncated sum χR(g) over the diagonal elements of the matrix associated to the

infinite-dimensional representation R.

We propose the duality between such Wilson lines, “renormalized” by an overall constant NR,

Wλ ≡ ŴR(Cτ1,τ2)/NR = χR

(
P exp

∫
C
A

)
/NR , (2.48)

and bi-local operators Oλ(τ1, τ2) in the Schwarzian theory, defined in terms of the field F (u) ap-

pearing in (1.19)

Oλ(τ1, τ2) ≡

(√
F ′(τ1)F ′(τ2)

F (τ1)− F (τ2)

)2λ

. (2.49)

Our goal in this section will thus be to provide evidence that 26

Oλ(τ1, τ2) ⇐⇒ Wλ(Cτ1,τ2) , (2.50)

for any boundary-anchored path Cτ1,τ2 on the disk D that intersects I at points τ1 and τ2 (see the

bottom-left diagram in Figure 2.3).27

If imposing that gauge transformations are fixed to the identity along the boundary, the group

25If choosing the Wilson lines to be in the principal series representations, they would have imaginary correlation
functions whose meaning is not clear in the context of a physical theory where we expect the expectation value
of observables to be real. From the perspective of a particle moving on a worldline discussed in section 2.4.1 and
in appendix B.5, Wilson lines in the principal series representation are equivalent to probe particles whose mass is
imaginary.

26As we will elaborate on shortly, when using the proper normalization, both Wilson lines in the positive or negative
discrete series representation D±λ will be dual to insertions of Oλ(τ1, τ2). For intersecting Wilson-line insertions we
will consider the associated representations to be either all positive discrete series or all negative discrete series. Note
that the gauge theory has a charge-conjugation symmetry due to the Z2 outer-automorphism of the sl(2,R) algebra
that acts as (P0, P1, P2) → (−P0, P1,−P2). In particular, the principal series representations are self-conjugate,
but the positive and negative series representations D±λ are exchanged under this Z2. Since the boundary condition

Aτ = 0 preserves the charge-conjugation symmetry, the Wilson lines associated to the representations D±λ have equal
expectation values.

27Similar Wilson lines have been previously considered for compact gauge group [120]. They have also been
considered in the context of a dimensional reduction from 3D Chern-Simons gravity [121, 122].
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element g = P exp
∫
C A is itself gauge invariant. While so far it was solely necessary to fix the

holonomy around the boundary, to make the boundary-anchored Wilson lines (2.48) well-defined,

we have to now specify the value of the gauge field on the boundary.28 For this reason throughout

this section we will set Aτ = 0. With this choice of boundary conditions, we will perform the path

integral with various Wilson line insertions and match with the corresponding correlation functions of

the bilocal operators computed using the equivalence between the Schwarzian theory and a suitable

large c limit of 2D Virasoro CFT [40]. We then generalize our result to any configuration of Wilson

lines and reproduce the general diagrammatic ‘Feynman rules’ conjectured in [40] for correlation

functions of bi-local operators in the Schwarzian theory .

2.4.1 Gravitational interpretation of the Wilson line operators

The matching between correlation functions of the bilocal operator and of boundary-anchored Wilson

lines should not come as a surprise. On the boundary side, the bilocal operator should be thought of

as coupling the Schwarzian theory to matter. After rewriting JT-gravity as the bulk gauge theory,

the Wilson lines are described by coupling a point-probe particle to gravity. A similar situation

has been studied when describing 3D Einstein gravity in terms of a 3D Chern-Simons theory with

non-compact gauge group [8, 123, 124, 125, 126, 127, 128, 129], and the relation is analogous in 2D,

in the rewriting presented in Section 1.4.1. Specifically, as we present in detail in Appendix B.5, the

following two operator insertions are equivalent in the gauge theory/gravitational theory:29

Wλ(Cτ1τ2) ∼=
∫

paths∼Cτ1τ2

[dx] e
−m

∫
Cτ1τ2

ds
√
gαβ ẋαẋβ

, (2.51)

The right-hand side represents the functional integral over all paths x(s) diffeomorphic to the curve

Cτ1τ2 weighted with the standard point particle action (with ẋα = dxα

ds ). In turn, this action is

equal to the mass m times the proper length of the path, where the mass m is determined by the

representation λ of the Wilson line, m2 = −C2(λ) = λ(λ−1). In computing their expectation values,

the mapping between the gauge theory and the gravitational theory should schematically yield

∫
DφDAe−SE [A]χR(g)

CR
=

∫
DgµνDφ

∫
paths∼Cτ1τ2

[dx]e
−SJT [g, φ]−m

∫
Cτ1τ2

ds
√
gαβ ẋαẋβ

. (2.52)

28More precisely we have to specify the holonomy between any two points at which the Wilson lines intersect the
boundary.

29Note that the discussion in appendix B.5 shows the equivalence of the two insertions beyond the classical level.
Typically, in 3D Chern-Simons theory the equivalence has been shown to be on-shell. See for instance [127].
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Figure 2.3: Several Euclidean Wilson line configurations, equivalent to different finite tem-
perature correlation functions of the bi-local operator Oλ(x1, x2): the top-left figure shows
〈Oλ(τ1, τ2)〉β = 〈Wλ(Cτ1,τ2)〉, the top-right figure yields the equality of the time-ordered correla-
tors 〈Oλ1

(τ1, τ2)Oλ2
(τ3, τ4)〉β = 〈Wλ1

(Cτ1,τ2)Wλ2
(Cτ3,τ4)〉, the bottom-left figure shows a pair of

intersecting Wilson lines that can be disentangled to the top-right configuration, while the bottom-
right figure gives the out-of-time-ordered configurations. Note that the results are independent of
the trajectory of the Wilson line inside of the bulk and only depend on the location where the Wilson
lines intersect the defect.

Thus, the expectation value of Wilson lines does not only match the expectation value of bi-local

operators on the boundary, but it also offers the possibility to compute the exact coupling to probe

matter in JT-gravity (see [114] for an alternative perspective).

2.4.2 Two-point function

The correlation function for a single Wilson line that ends on two points on the boundary, in a

2D gauge theory placed on a disk D, is given by the gluing procedure described in Section 2.3.1.
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Specifically, for the group G, the un-normalized expectation value is given by

〈Ŵλ±,k(Cτ1,τ2)〉(g) =

∫
dhZ (h, eτ21)χ±λ,k(h)Z

(
gh−1, eτ12

)
, (2.53)

where τ21 = τ2 − τ1 is the length of I enclosed by the boundary-anchored Wilson line Cτ1,τ2 and

τ12 = β − τ2 + τ1 is the complementary length of I. Here and below, Z(h, eτ) is the partition

function computed in (2.42) on a patch of the disk, in the presence of a defect of length τ inside the

patch, when setting the holonomy to be h around the boundary of the patch. The total G holonomy

around the boundary holonomy of the disk is set to g. Since we are interested in the case in which

the gauge field along the boundary is trivial, we will want to consider the limit g̃ → 1 at the end

of this computation. As was previously mentioned, the Wilson line is in the positive or negative

discrete series representation (λ±, k = 0) of G, where k = ∓ 2πλ
B is the R representation mentioned

in Section 2.3 that becomes 0 due to the B →∞ limit. Expanding (2.53) in terms of characters by

using (2.42), we find

〈Ŵλ±,k(Cτ1,τ2)〉(g) =

∫
dh

∫ ∞
−∞

dk1dk2

∫ ∞
0

ds1ds2 ρ

(
Bk1

2π
, s1

)
ρ

(
Bk2

2π
, s2

)
× χ

(s1,µ1=−Bk1
2π ,k1)

(h)χ±λ,k(h)χ
(s2,µ2=−Bk2

2π ,k2)
(gh−1)e−

e
2 [s21τ21+s22τ12]

+ discrete series contributions . (2.54)

As in the previous sections, we are interested in obtaining observables in the presence of mixed

boundary conditions in which we set φR = k0 = −i. This isolates the representations with k1 =

k2 = −i and, the limit B → ∞ sets the R representation of the Wilson line k = ∓2πλ/B → 0.30

However, an order of limits issue appears: since the G representation of the Wilson line is infinite

dimensional we have to consider the B → ∞ limit carefully. Thus, instead of inserting the full

character in (2.53) we truncate the number of states in the positive or negative discrete series using

the cut-off Ξ, with Ξ� B,

χλ±,0(g) =

Ξ∑
k=0

U
±(λ+k)
λ,±(λ+k)(g̃) , (2.55)

where g = (g̃, θ) with g̃ an element of SL2 and θ an element of R, U
±(λ+k)
λ,±(λ+k)(g̃) is the SL2 matrix

element computed explicitly in Appendix B.3.

30In this limit, all contributions appearing as sums over the discrete series representations in (2.54) once again
vanish.
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Since the values of ki are fixed and the integral over the R component of h is trivial, we are thus

left with performing the integral over the SL2 components h̃ of h. In order to perform this integral,

we use the SL2 fusion coefficients between two continuous series representations and a discrete series

representation that we computed in Appendix B.4 in the limit µ1, µ2 → i∞. When expanding the

product of an Cµ→i∞s1 continuous series and a Dλ± discrete series character into characters of the

continuous series Cµ±λs2 = Cµ→i∞s2 , we find the fusion coefficients between the three representations,

Nλ
s1,s2 = Ns2

s1,λ. Specifically, as we describe in great detail in Appendix B.4,

∫
dh̃χ(s1,µ1→i∞)(h̃)χλ±(h̃)χ(s2,µ2→i∞)(g̃h̃

−1) = Nλ± N
s2
s1,λ χ(s2,µ2→i∞)(g̃) (2.56)

+ discrete series contributions , (2.57)

where Ns2
s1,λ is given by

Ns2
s1,λ =

|Γ(λ+ is1 − is2)Γ(λ+ is1 + is2)|2

Γ(2λ)
=

Γ(λ± is1 ± is2)

Γ(2λ)
, (2.58)

where Γ(x± y ± z) ≡ Γ(x+ y + z)Γ(x− y − z)Γ(x+ y − z)Γ(x− y + z). The fusion coefficient has

an overall normalization coefficient, Nλ± , that appears in (2.56) and is computed in Appendix B.4

and is independent of s1 and s2. We can thus properly define the “renormalized” Wilson line, as

previously mentioned in (2.48),

Wλ(Cτ1,τ2) ≡
Ŵλ±,k→0(Cτ1,τ2)

Nλ±
, (2.59)

for which the associated fusion coefficient Ns2
s1,λ is independent of whether the discrete series

representation is given Dλ+ or Dλ− . Furthermore, since all unitary discrete series representations

appearing in the partition function are suppressed in the B → ∞ limit, they do not contribute in

the thermal correlation function of any number of Wilson lines. Consequently, plugging (2.56) and

(2.43) into (2.54) we find

〈Wλ(Cτ1,τ2)〉k0(g̃) ∝
∫
ds1ρ(s1)ds2ρ(s2)Ns2

s1,λ χs2(g̃)e−
e
2 [(τ2−τ1)s21+(β−τ2+τ1)s22] . (2.60)

where we have set the value of φR = −i along the boundary. When taking the limit g̃ → 1, one can
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evaluate the limit of the SL2 characters to find the normalized expectation value

〈Wλ(Cτ1,τ2)〉k0

Zk0

∝
(
eβ

2π

)3/2

e−
2π2

eβ

∫
ds1ρ(s1)ds2ρ(s2)Ns2

s1,λ e
− e2 [(τ2−τ1)s21+(β−τ2+τ1)s22]

∝
(
eβ

2π

)3/2

e−
2π2

eβ

∫
ds2

1ds
2
2 sinh(2πs1) sinh(2πs2)

Γ(λ± is1 ± is2)

Γ(2λ)

× e−
e
2 [(τ2−τ1)s21+(β−τ2+τ1)s22] . (2.61)

where Γ(λ ± is1 ± is2) was defined after (2.58). Using the correspondence e = 1/C, the result

agrees precisely with the computation [40] of the expectation value of a single bi-local operator

〈Oλ(τ1, τ2)〉 in the Schwarzian theory. The result there was obtained using the equivalence between

the Schwarzian theory and a suitable large c limit of 2D Virasoro CFT and had no direct inter-

pretation in terms of SL2 representation theory.31 Here we can generalize their result and study

more complicated Wilson line configurations to reproduce the conjectured Feynman rules [40] in the

Schwarzian theory.

2.4.3 Time-ordered correlators

For instance, we can consider n non-intersecting Wilson lines inserted along the contours Cτ1,τ2 , ...,

Cτ2n−1,τ2n with τ1 < τ2 < · · · < τ2n. As an example, the Wilson line configuration for the time-

ordered correlator of two bi-local operators is represented in the top right column of Figure 2.3. The

n-point function is given by,

〈
n∏
i=1

Ŵλ±i ,ki
(Cτ2i−1,τ2i)

〉
(g) =

∫ ( n∏
i=1

dhi

)(
n∏
i=1

Z (hi, eτ2i, 2i−)χ±λi,k(hi)

)

× Z
(
g(h1 . . . hn)−1, eτ1,2n

)
, (2.62)

where τ2i, 2i−1 = τ2i − τ2i−1 is the length of an individual segment along I enclosed by the contour

Cτ2i−1,τ2i , while τ2n,1 = β − τ12 − . . .− τ2n−1,2n is the length of the segment along I complementary

to the union of Cτ1,τ2 , . . . , Cτ2n−1,τ2n . Once again, all Wilson lines are in the positive or negative

discrete series representation (λ±i , ki) = limB→∞(λ±i ,∓2πλi/B) = (λ±i , 0). Following the procedure

presented in the previous subsection, we set the overall holonomy for the sl(2,R) components of the

31However, the recent paper of [122, 121] offer an interpretation in terms of representations of the semigroup
SL+(2,R).
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gauge field to g̃ → 1 and isolate the representations with k0 = φR = −i. We find

〈
∏n
i=1Wλi(Cτ2i−1,τ2i)〉k0

Zk0

=

(
eβ

2π

)3/2

e−
2π2

eβ

∫
ds0ρ(s0)

(
n∏
i=1

ds1ρ(s1)

)(
n∏
i=1

Ns0
si,λi

)

× exp

{
−e

2

[(
n∑
i=1

s2
i (τ2i − τ2i−1)

)
+ s2

0

(
β −

n∑
i=1

(τ2i − τ2i−1)

)]}
.

(2.63)

This result does not only agree with the time-ordered correlator of two bilocal operators in the

Schwarzian theory, but it also reproduces the conjectured Feynman rule for any time-ordered bi-local

correlator [40] and gives them an interpretation in terms of SL2 representation theory. Specifically, to

each segment between two anchoring points on the boundary we can associate an S̃L(2,R) principal

series representation labeled by si. Furthermore, at each anchoring point of the Wilson line, or at

each insertion point of the bi-local operator, we associate the square-root of the fusion coefficient.

Diagrammatically [40],

τ1τ2

s

= e−s
2(τ2−τ1) ,

s2

s1

λ =
√
Ns1s2,λ . (2.64)

Finally, we integrate over all principal series representation labels si associated to boundary segments

using the Plancherel measure ρ(s0) · · · ρ(sn). Since for time-ordered correlators, both anchoring

points of any Wilson line contributes the same fusion coefficient, we square the contribution of the

right vertex in (2.64), in agreement with our expression in (2.63).

2.4.4 Out-of-time-ordered correlators and intersecting Wilson lines

While for time-ordered correlators we have considered disjoint Wilson lines,32 in order to reproduce

correlators of out-of-time-ordered correlators we have to discuss intersecting Wilson line configu-

rations. As an example, we show the Wilson line configuration associated to the correlator of two

out-of-time-ordered bi-locals in Figure 2.3 in the bottom-right. The correlator of intersecting Wilson

loops in Yang-Mills theory with a compact gauge group has been determined in [103]. Using the

gluing procedure, the expectation value of the intersecting Wilson lines in the bottom-right of Figure

32We will revisit this assumption shortly.
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2.3, when fixing the overall boundary G holonomy, is given by33

〈Ŵλ±1 ,0
(Cτ1,τ2)Ŵλ±2 ,0

(Cτ3,τ4)〉(g) =

∫
dh1dh2dh3dh4 Z

(
h1h

−1
2 , eτ31

)
Z
(
h2h

−1
3 , eτ32

)
×

× Z
(
h3h

−1
4 , eτ42

)
Z
(
g h4h

−1
1 , eτ41

)
×

× χλ±1 ,0(h1h
−1
3 )χλ±2 ,0

(h2h
−1
4 ) , (2.65)

where we consider the ordering 0 < τ1 < τ3 < τ2 < τ4 < β, with τ41 = β − τ4 + τ1, and we are once

again interested in the limit g̃ → 1. Using the formula (2.43) for the partition function, one finds that

performing the group integrals over h1, . . . , h4 gives eight Clebsch-Gordan coefficients associated to

the representations of the four areas separated by Wilson lines and to the two representations of

the Wilson lines themselves (see Appendix B.4.3 for a detailed account). Collecting the Clebsch-

Gordan coefficients associated to the bulk vertex one finds the 6-j symbol of S̃L(2,R), which we call

Rsasb

[
s2
s1

λ2

λ1

]
, which can schematically be represented as

s4s3
λ2 λ1

s1

s2

= Rs3s4

[
s2
s1
λ2

λ1

]
. (2.66)

As we discuss in detail in Appendix B.4.3, the 6-j symbol is given by [130, 131]

Rsasb

[
s2
s1

λ2

λ1

]
= W(sa, sb;λ1 + is2, λ1 − is2, λ2 − is1, λ2 + is1) (2.67)

×
√

Γ(λ2 ± is1 ± isa)Γ(λ1 ± is2 ± isa)Γ(λ1 ± is1 ± isb)Γ(λ2 ± is2 ± isb) ,

where W(sa, sb;λ1 + is2, λ1− is2, λ2− is1, λ2 + is1) denotes the Wilson function which is defined by

a linear combination of 4F3 functions. Thus, the expectation value of two intersecting Wilson lines

when setting the holonomy for the sl(2,R) components to g̃ → 1 and setting φR = −i is given by

〈Wλ1
(Cτ1,τ2)Wλ2

(Cτ3,τ4)〉k0
(g̃) ∝

∫
Rs3 s4

[
s2
s1

λ2

λ1

]√
Ns4λ1,s1N

s3λ1,s2N
s3λ2,s1N

s4λ2,s2

× χsb(g̃) e−
e
2 [s21(τ3−τ1)+s23(τ3−τ2)+s22(τ4−τ2)+s24(β−τ4+τ1)]

4∏
i=1

dsiρ(si)

(2.68)

33Once again the ± signs for the two discrete series representation of the two lines are uncorrelated.
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where the exponential factors are those associated to each disk partition function Z(h, eτij) appear-

ing in (2.65), while the factors Nsi
λk,sk are the remainder from the fusion coefficients after collecting

all factors necessary for the 6-j symbol. Evaluating the correlator with a Aτ = 0 on the boundary

and dividing by the partition function, we find

〈Wλ1(Sτ1,τ2)Wλ2(Sτ3,τ4)〉
Zk0

=

(
eβ

2π

)3/2

e−
2π2

eβ

∫
Rs3s4

[
s2
s1

λ2

λ1

]√
Ns4λ1,s1N

s3λ1,s2N
s3λ2,s1N

s4λ2,s2

× e−
e
2 [s21(τ3−τ1)+s23(τ3−τ2)+s22(τ4−τ2)+s24(β−τ4+τ1)]

4∏
i=1

dsi ρ(si) , (2.69)

which is in agreement with the result for the out-of-time order correlator for two bi-local operators

obtained in the Schwarzian theory in [40].

The result (2.69) is easily generalizable to any intersecting Wilson line configuration as one simply

needs to associated the symbol Rs3s4

[
s2
s1

λ2

λ1

]
to any intersection.34 This reproduces the conjectured

Feynman rule for the Schwarzian bi-local operators,

s4s3
λ2 λ1

s1

s2

= Rs3s4

[
s2
s1
λ2

λ1

]
s4s3

λ1

λ2

s1

s2

. (2.70)

where one multiplies the diagram on the right by the 6-j symbol before performing the integrals

associated to the SL2 representation labels along the edges.35

Finally, as a consistency check we verify that correlation functions are insensitive to Wilson lines

intersections that can be uncrossed in the bulk, without touching the defect loop I (as that in the

bottom-left figure 2.3). Diagrammatically, we want to prove for instance the Feynman rule

s4ss3

λ1

λ2

s1

s2

= δ(s3−s4)
ρ(s3,µ3)

s3s3

λ1

λ2

s1

s2

. (2.71)

We will denote the contours of two such Wilson lines as C̃τ1,τ2 and C̃τ3,τ4 , where we assume that

34Note that in the compact case discussed in [103] the gauge group 6-j symbol appears squared. This is due to the
fact that when considering two Wilson loops which are not boundary-anchored they typically intersect at two points
in the bulk.

35Note that the right diagram in (2.70) is just a useful mnemonic for performing computations that involve inter-
secting Wilson lines. It does not correspond to a configuration in the gauge theory since the representations s3 and
s4 are kept distinct even though they would correspond to the same bulk patch in the gauge theory.
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0 < τ1 < τ2 < τ3 < τ4 < β. The expectation value in such a configuration is given by

〈Ŵλ±1 ,0
(C̃τ1,τ2)Ŵλ±2 ,0

(C̃τ3,τ4)〉(g) =

∫
dh1dh2dh3dh4dh5dh6 Z

(
h1h

−1
2 , eτ41

)
Z
(
h−1

5 h−1
3 h−1

1 , eτ12

)
× Z

(
h−1

6 h5, eτ23

)
Z (g h2h4h6, eτ43)Z

(
h3h

−1
4 , 0

)
× χλ±1 ,0(h1h4h5)χλ±2 ,0

(h2h3h6) . (2.72)

Using (2.43), we will associate the representation labeled by s4, s2, s3, s1, and s, in this order,

to the five disk partition functions in (2.72). Performing all the group integrals we once again

obtain a contracted sum of Clebsch-Gordan coefficients each of which is associated to a Wilson

line representation and the representations labelling two neighboring regions. Performing the con-

tractions for all of the Clebsch-Gordan coefficients we find two 6-j symbol symbols, Rs3s

[
s2
s1

λ2

λ1

]
and Rs4s

[
s2
s1

λ2

λ1

]
, each associated to the 6 representations that go around each of the two vertices.

The remaining sums over Clebsch-Gordan coefficients yield the product of four fusion coefficients,√
Ns4λ1,s2N

s2λ1,s3N
s3λ2,s1N

s1λ2,s4 .

Using the orthogonality relation for the 6-j symbol that follows from properties of the Wilson

function (see [130, 131])

∫
dsρ(s, µ)Rs3s

[
s2
s1

λ2

λ1

]
Rs4s

[
s2
s1

λ2

λ1

]
+ discrete series contribution =

δ(s3 − s4)

ρ(s3, µ3)
, (2.73)

where ρ(s, µ) is the Plancherel measure defined in (2.28), we find that if there’s a bulk region enclosed

by intersecting Wilson that does not overlap with the defect loop, one can always perform the integral

over the corresponding representation label s to eliminate this region. The integral over s3 or s4

then becomes trivial due to the delta-function in (2.73) and thus the remaining fusion coefficients

reproduce those in (2.63) for two non-intersecting Wilson lines.

Thus, putting together (2.71), (2.70), and (2.64), we have re-derived the diagrammatic rules

needed to compute the expectation value of any bi-local operator configuration. These rules are

simply reproduced combinatorially in the gauge theory starting from the basic axioms presented in

Section 2.3.1.

2.4.5 Wilson lines and local observables

While one can recover the correlation functions of some local observables by considering the zero

length limit for various loop or line operators, it is informative to also independently compute

correlation functions of local operators. In this section, we consider the operator Trφ2(x) which
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is topological (see (2.4)). Consequently correlators of Trφ2(x) are independent of the location of

insertion. Indeed they can be easily obtained by insertions of the Hamiltonian operator at various

points in the path integral, the un-normalized correlation function is given by

〈Trφ2(x1) . . .Trφ2(xn)〉k0
= (e/4)

−n 〈H(x1) . . . H(xn)〉k0

∝ Ξ

∫
ds ρ(s)s2ne−eβs

2/2 , (2.74)

where we first evaluated the correlator for a generic value of the boundary G holonomy and then

fixed the value of the field φR on the boundary and send B → ∞ as described in Section 2.3. At

separated points, the correlator (2.74) agrees with that of n insertions of the Schwarzian operator

[25, 40], thus showing that the Schwarzian operator and Trφ2 are equivalent, as shown classically

in Section 2.2.2.36 This computation explains why the correlators of the Schwarzian operator at

separated points are given by moments of the energy E computed with the probability distribution

ρ(
√
E/e), as first observed in [25].

In the presence of Wilson line insertions, the operator Trφ2 remains topological as long as we

do not move it across a Wilson line. Consequently the correlation functions of Trφ2 depend only

on the number of Trφ2 insertions within each patch separated by the Wilson lines. For instance,

we can consider the insertion of p = p0 + p1 + p2 + · · ·+ pn Trφ2 operators in the non-intersecting

Wilson lines correlator considered in Section 2.4.3, as follows. Let us put p0 operators in the bulk

and outside of the contour of any of the Wilson lines, together with p1 Trφ2, operators enclosed by

Cτ1, τ2 , p2 such operators enclosed by Cτ3, τ4 , and so on. The separated point correlator is then

〈
(∏p

j=1 Trφ2(xj)
) (∏n

i=1Wλi(Cτ2i−1,τ2i)
)
〉k0

Zk0

=

(
eβ

2π

)3/2

e−
2π2

eβ

∫
ds0ρ(s0)

(
n∏
i=1

dsiρ(si)

)

× sp1

1 . . . spnn s
pn+1

0

(
n∏
i=1

Ns0
si,λi

)
e−

e
2 [(
∑n
i=1 s

2
i (τ2i−τ2i−1))+s20(β−

∑n
i=1(τ2i−τ2i−1))] . (2.75)

In the Schwarzian theory, such a correlator is expected to reproduce the expectation value

〈 p∏
j=1

{F, u}|u=τ̃j

[ n∏
i=1

Oλi(τ2i−1, τ2i)

]〉
, (2.76)

where τ1 < τ̃1 < . . . < τ̃p1
< τ2 < . . .. Such a computation can also be performed using the

Virasoro CFT following the techniques outlined [40]. Following similar reasoning, one can consider

36However, the contact terms associated with these correlators are different. We hope to determine the exact bulk
operator dual to the Schwarzian in future work.
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Figure 2.4: An example of a three-particle bulk interaction vertex corresponding to the junction of
three Wilson lines defined by a Clebsch-Gordan coefficient at the vertex.

the correlators of the operator Trφ2 in the presence of any other Wilson line configurations.

2.4.6 A network of non-local operators

While so far we have focused on Wilson lines that end on the boundary, we now compute the expecta-

tion values of more complex non-local operators that are invariant under bulk gauge transformations

that approach the identity on the boundary. Such objects, together with the previously discussed

Wilson lines, serve as the basic building blocks for constructing “networks” of Wilson lines that

capture various scattering problems in the bulk. The simplest such operator that includes a vertex

in the bulk is given by the junction of three Wilson lines

Cλ1,λ2,λ3
(gCτ1,v , gCτ2,v , gCτ3,v ) =

∑
m1=λ1+Z+

<Ξ,

m2=λ2+Z+
<Ξ

∑
n1=λ1+Z+,
n2=λ2+Z+

C
λ+

1 ,λ
+
2 ,λ

+
3

m1,m2,m1+m2
(C

λ+
1 ,λ

+
2 ,λ

+
3

n1,n2,n1+n2
)∗

Nλ+
1 ,λ

+
2 ,λ

+
3

× Um1

(λ+
1 ,0), n1

(gCτ1,v )Um2

(λ+
2 ,0), n2

(gCτ2,v )Um1+m2

(λ+
3 ,0), n1+n2

(gCτ3,v ) , (2.77)

with

gCτi,v = P exp

(∫
Cτi,v

A

)
, (2.78)

where Cτi,v is a contour which starts on the boundary, intersects the defect at a point τi, and ends

at a bulk vertex point v. As indicated in (2.77), the sums over m1 and m2 are truncated by the

cut-off Ξ. Such a non-local object is schematically represented in Figure 2.4. For simplicity, we
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assume 0 < τ1 < τ2 < τ3 < β and we consider λ1, λ2, λ3 labelling the Wilson lines to be positive

discrete series representations. Once again, Um(λ+,0), n(g) is the G matrix element for the discrete

representation (λ+, 0), C
λ+

1 ,λ
+
2 ,λ

+
3

m1,m2,m3 is the SL2 (or, equivalently, G) Clebsch-Gordan coefficient for

the representations λ1, λ2, and λ3, and Nλ+
1 ,λ

+
2 ,λ

+
3

is a normalization coefficient for the Clebsch-

Gordan coefficients discussed in Appendix B.4. Note that the operator (2.77) is invariant under

bulk gauge transformations. This follows from combining the fact that a gauge transformation

changes gCτi,v → gCτi,vhv, where hv is an arbitrary G element, with the identity

∑
m1,m2

Um1

(λ+
1 ,0), n1

(hv)U
m2

(λ+
2 ,0), n2

(hv)U
m1+m2

(λ+
3 ,0), n1+n2

(hv)C
λ+

1 ,λ
+
2 ,λ

+
3

m1,m2,m1+m2
= C

λ+
1 ,λ

+
2 ,λ

+
3

n1,n2,n1+n2
. (2.79)

Using the gluing rules specified in Section 2.3.1, the expectation value of the operator (2.77) with

holonomy g between the defect intersection points 3 and 1, and trivial holonomy between all other

intersection points, is given by

〈Cλ1,λ2,λ3〉(g) =

∫
dh1dh2dh3Z(h1h

−1
2 , eτ12)Z(h2h

−1
3 , eτ12)Z(gh3h

−1
1 , eτ12)

× Cλ1,λ2,λ3
(h1, h2, h3) . (2.80)

As before, we are interested in the case where we fix the SL2 component of G to g̃ → 1. Expanding

(2.80) into G matrix elements we find the product of eight Clebsch-Gordan coefficients. Summing up

the Clebsch-Gordan coefficients that have unbounded state indices (those that involve that ni indices

instead of the mi indices in (2.77)) we obtain the 6-j symbol with all representations associated to

the bulk vertex, Rλ1s1

[
λ2
s2

λ3
s3

]
, which is also related to the Wilson function as shown in [131]. Setting

the boundary condition φR = −i and take g̃ → 1 we find that the 6-j symbol together with the sum

over the remaining four Clebsch-Gordan coefficients yield

〈Cλ1,λ2,λ3
〉

Zk0

=

(
eβ

2π

)3/2

e−
2π2

eβ Nλ+
1 ,λ

+
2 ,λ

+
3

∫
ds1ρ(s1)ds2ρ(s2)ds3ρ(s3)

√
Ns1λ1,s2N

s2λ2,s3N
s3λ3,s1

×Rλ1s1

[
λ2
s2

λ3
s3

]
e−

e
2 [s21(τ2−τ1)+s22(τ3−τ2)+s23(β−τ3+τ1)] , (2.81)

where in the limit in which all continuous representations have µ1, µ2, µ3 → i∞, Nλ+
1 λ

+
2 λ

+
3

is a

normalization constant independent of the representations s1, s2 or s3 that can be absorbed in the

definition of the operator Cλ1,λ2,λ3
.

We expect that the same reasoning as that applied for boundary-anchored Wilson lines should

show that such a non-local operator corresponds to inserting the world-line action of three particles
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which intersect at a point in AdS2 in the gravitational path integral (summing over all possible

trajectories diffeomorphic to the initial paths shown in Figure 2.4).37 Thus, such insertions of non-

local operators should capture the amplitude corresponding to a three-particle interaction in the

bulk, at tree-level in the coupling constant between the three particles, but exact in the gravitational

coupling. Similarly, by inserting a potentially more complex network of non-local gauge invariant

operators in the path integral of the BF theory one might hope to capture the amplitude associated

to any other type of interaction in the bulk.

2.5 Discussion and future directions

We have thus managed to formulate a comprehensive holographic dictionary between the Schwarzian

theory and the G gauge theory: we have shown that the dynamics of the Schwarzian theory is

equivalent to that of a defect loop in the G gauge theory. Specifically, we have matched the partition

function of the two theories, and have shown that bi-local operators in the boundary theory are

mapped to boundary-anchored defect-cutting Wilson lines. The gluing methods used to compute

the correlators of Wilson lines provide a toolkit to compute the expectation value of any set of

bi-local operators and reveal their connections to SL2 representation theory.

There are numerous directions that we wish to pursue in the future. As emphasized in Section 2.2,

while the choice of gauge algebra was sufficient to understand the on-shell equivalence between the

gauge theory and JT-gravity, a careful analysis about the global structure of the gauge group was

necessary in order to formulate the exact duality between the bulk and the boundary theories. While

we have resorted to the gauge group G with a simple boundary potential for the scalar field φ, it

is possible that there are other gauge group choices which reproduce observables in the Schwarzian

theory or in related theories. For instance, it would be instructive to further study the reason for the

apparent equivalence between representations of the group G in the B →∞ limit and representations

of the non-compact subsemigroup SL+(2,R) which was discussed in [121, 122, 132]. Both gauge

theory choices seemingly reproduce correlation functions in the Schwarzian theory. However, in the

latter case the exact formulation of a two-dimensional action seems, as of yet, unclear. Another

interesting direction is to study the role of q-deformations for the 2d gauge theory associated to

a non-compact group, which have played an important role in the case of compact groups [133].

Such a deformation is also relevant from the boundary perspective, where [134] have shown that

correlation functions in the large-N double-scaled limit of the SYK model can be described in terms

37It would be interesting to understand if this can be proven rigorously following an analogous approach to that
presented in Appendix B.5.
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of representations of q-deformed SU(1, 1).

It is likely that one can generalize the 2D gauge theory/1D quantum mechanics duality for

different choice of gauge groups and scalar potentials [59]. A semi-classical example was given in

[22], where various 1D topological theories were shown to be semi-classically equivalent to 2D Yang-

Mills theories with more complicated potentials for the field strength. It would be interesting to

further understand the exact duality between such systems [135].

Finally, one would hope to generalize our analysis to the two other cases where the BF-theory with

an sl(2,R) gauge algebra is relevant: in understanding the quantization of JT-gravity in Lorentzian

AdS2 and in dS2.38 By making appropriate choices of gauge groups and boundary conditions in the

two cases, one could once again hope to exactly compute observables in the gravitational theory by

first understanding their descriptions and properties in the corresponding gauge theory. We hope to

address some of these above problems in the near future.

38See [34, 136] for a recent analysis of the quantization of the two gravitational systems. Furthermore, recently
a set of gauge invariant operators was identified in the Schwarzian theory whose role is to move the bulk matter in
the two-sided wormhole geometry relative to the dynamical boundaries [137]. It would be interesting to identify the
existence of such operators in the gauge theory context.
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Chapter 3

Dilaton gravity in the second-order

formalism

3.1 Outline of results

This chapter expands on the ideas presented in section 1.5. Before outlining the main results of this

chapter, in order to further motivate our computation, it is useful to review some details about the

1d TT deformation.

3.1.1 Review 1d TT

In the past work of [70], a particular deformation of the Schwarzian quantum mechanics was shown

to be classically equivalent to JT gravity with Dirichlet boundary conditions for the metric and

dilaton. The deformation on the Schwarzian theory follows from a dimensional reduction of the

TT deformation in 2D CFTs 1. Explicitly the deformation involves a flow of the action S of the

quantum mechanical theory,

∂λS =

∫ 1

0

dθ
T 2

1/2− 2λT
(3.1)

where T is the trace of the stress-‘scalar’ of the quantum mechanical theory and λ is the deformation

parameter. By going from the Lagrangian to the Hamiltonian formulation, we can write an equivalent

1This reduction is valid in the classical limit and should be seen as a motivation for the proposed deformation. It
would be interesting to extend it to a precise statement using the methods of [84].
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flow for the Hamiltonian instead of S and find the flow of the energy eigenvalues,2

∂λH =
H2

1/2− 2λH
⇒ E±(λ) =

1

4λ

(
1∓
√

1− 8λE
)
. (3.2)

Here E are the energy levels of the undeformed theory and matching onto the original spectrum as

λ → 0 results in picking the minus sign for the branch of the root in (3.2). In section 3.4 we will

see that the other branch of the root will also make its appearance. In the case of the Schwarzian

theory, which has a partition function that can be exactly computed [25],3

Z(β) =

∫ ∞
0

dE
sinh(2π

√
2CE)√

2Cπ3
e−βE =

e2Cπ2/β

β3/2
, (3.3)

of the deformed partition function is,

Zλ(β) =

∫ ∞
0

dE
sinh(2π

√
2CE)√

2Cπ3
e−βE+(λ). (3.4)

Let us make two observations. First, the integral over E runs over the full positive real axis and

therefore will also include complex energies E+(λ) when λ > 0, i.e. for E > 1/8λ the deformed

spectrum complexifies. This violates unitarity and needs to be dealt with. We will come back to this

issue in section 3.4. Second, given that there is a closed from expression of the original Schwarzian

partition function, one can wonder whether this is also the case for the deformed partition function.

This turns out to be the case. For the moment let us assume λ < 0 so that there are no complex

energies, then it was shown in [70] that the deformed partition function is given by an integral

transform of the original one, analogous to the result of [138] in 2d. The integral transform reads,

Zλ(β) =
β√
−8πλ

∫ ∞
0

dβ′

β′3/2
e

(β−β′)2

8λβ′ Z(β′), (3.5)

Plugging (3.3) into this expression and performing the integral over β′ yields,

Zλ(β) =
βe−

β
4λ

√
−2πλ(β2 + 16Cπ2λ)

K2

(
− 1

4λ

√
β2 + 16Cπ2λ

)
. (3.6)

2Since the deformation is a function of the Hamiltonian, the eigenfunctions do not change under the flow.
3In the gravitational theory C is equal to φr, the renormalised boundary value of the dilaton. Furthermore, here

we picked a convenient normalisation of the partition function.
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with the associated density of states given by

ρλ(E) =
1− 4λE√

2π3C
sinh

(
2π
√

2CE(1− 2λE)
)

(3.7)

Although we have derived this formula assuming that λ < 0, we will simply analytically continue to

λ > 0 to obtain the partition function of the deformed Schwarzian theory that describes JT gravity

at finite cutoff. One might be worried that this would not yield the same as (3.4) and indeed there

are a few subtleties involved in doing that analytic continuation as discussed in the end of section

3.3 and in section 3.4.

3.1.2 Summary of results

The purpose of this chapter is to give two independent bulk computation that reproduce the partition

function (3.4). In section 3.2 we present a derivation of the partition function of JT gravity (with

negative cosmological constant) at finite cutoff by computing the radial Wheeler-de Witt (WdW)

wavefunctional. Due to Henneaux it is known since the 80’s that the contraints of 2d dilaton gravity

can be solved exactly in the full quantum theory [68]. We will review this computation and fix the

solution by imposing Hartle-Hawking boundary conditions. In particular we find that

ΨHH[φb(u), L] =

∫ ∞
0

dM sinh(2π
√
M) e

∫ L
0
du

[√
φ2
b−M−(∂uφb)2−∂uφ tan−1

(√
φ2
b
−M

(∂uφb)
2−1

)]
. (3.8)

This wavefunction is computed in a basis of fixed dilaton φb(u), where u corresponds to the proper

length along the boundary, and L the total proper length of the boundary. The above results

obtained through the WdW constraint are non-perturbative in both L and φb(u).

When considering a constant dilaton profile φb(u) = φb, the wavefunction (3.8) reproduces the

TT partition function in (3.4), with the identification

M → 2CE, φ2
b →

C

4λ
, L→ β√

4Cλ
, (3.9)

In terms of these variables, (3.8) matches with TT up to a shift in the ground state energy, which can

be accounted for by a boundary counterterm e−Ict = e−φbL added to the gravitational theory. An

important aspect that this analysis emphasizes if the fact that, for JT gravity, studying boundary

conditions with a constant dilaton is enough. As we explain in section 3.2.2, if the wavefunction

for a constant dilaton is known, the general answer (3.8) is fixed by the constrains and does not
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constain any further dynamical information [139].

The partition function (3.4) is also directly computed from the path integral in JT gravity at

finite cutoff in section 3.3. We will impose dilaton and metric Dirichlet boundary conditions, in

terms of φb and the total proper length L. For the reasons explain in the previous paragraph, it is

enough to focus on the case of a constant dilaton. It is convenient to parametrize these quantities

in the following way

φb =
φr
ε
, L =

β

ε
, (3.10)

in terms of a renormalized length β and dilaton φr. We will refer to ε as the cutoff parameter

4. When comparing with the TT approach this parameter is ε =
√

2λ (in units for which we set

φr → 1/2). In order to compare to the asymptotically AdS2 case previously studied in the literature

[29, 37], we need to take φb, L → ∞ with a fixed renormalized length L/φb. In terms of the cutoff

parameter, this limit corresponds to ε→ 0, keeping φr and β fixed.

We will solve this path integral perturbatively in the cutoff ε, to all orders. We integrate out the

dilaton and reduce the path integral to a boundary action comprised of the extrinsic curvature K

and possible counter-terms. We find an explicit form of the extrinsic curvature valid to all orders

in perturbation theory in ε. A key observation in obtaining this result is the realisation of a (local)

SL(2,R) invariance of K in terms of lightcone coordinates z = τ − ix, z = τ + ix:

K[z, z] = K

[
az + b

cz + d
,
az + b

cz + d

]
. (3.11)

Solving the Dirichlet boundary condition for the metric allows us to write K as a functional of the

Schwarzian derivative of the coordinate z.5 As we will explain in detail, the remaining path integral

can be computed exactly using integrability properties in the Schwarzian theory to all orders in ε2.

Thus, by the end of section 3.3, we find agreement between the WdW wavefunctional, the

Euclidean partition function and the TT partition function from (3.4):

e−IctΨHH[φb, L]
non−pert.

= Zλ(β)
pert.
= ZJT[φb, L] . (3.12)

Here we emphasize again that we show that the first equality is true non-perturbatively in ε (re-

spectively in λ), whereas we prove the second equality to all orders in perturbation theory.

4In Poincaré coordinates ε corresponds semiclassically to the bulk coordinate of the cutoff surface.
5This generalizes the computation of [29] which found the relation between the extrinsic curvature and the

Schwarzian derivative in the infinite cutoff limit.
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In section 3.4 we discuss various extensions of the deformed partition function including further

corrections. In particular we discuss two types of corrections in the path integral and in the integral

over energies in (3.4): first, we analyze non-perturbative terms in ε coming from contributions that

cannot be written as a path integral on the disk (the contracting branch of the wavefunction) and

second, we speculate about non-perturbative corrections coming from the genus expansion. Related

to the first kind of ambiguity, given the exact results we obtained for the wavefunctional and partition

function, we explore how the complexification of the energy levels (that we mentioned above) can

be cured. In particular, we propose that it requires the inclusion of the other branch of the root

in (3.2), but still results in a negative density of states. The structure of the negative density of

states suggests that the (unitary) partition function is not an ordinary one, but one with a chemical

potential turned on. Related to the second type, we compute the partition function of the finite

cutoff “trumpet” which is a necessary ingredient when constructing higher genus hyperbolic surfaces.

Finally, we speculate about the range of the remaining Weil-Petersson integral which is needed in

order to compute the finite cutoff partition function when including the contribution of surfaces with

arbitrary topology.

Section 3.5 applies the computation from section 3.2 to the case of JT gravity with a positive

cosmological constant and finds the wavefunctional on a de Sitter time-slice at finite time. This

wavefunctional has some interesting behaviour, similar to the Hagedorn divergence present in (3.6).

We finish with a discussion of our results and future directions in section 3.6.

3.2 Wheeler-deWitt wavefunction

In this section, we will start by reviewing the canonical quantization of 2D dilaton-gravity following

the approach of [68, 69]. In these references, the authors find the space of exact solutions for both

the momentum and Wheeler-deWitt constrains. Later, in subsections 3.2.3 and 3.2.4, we will focus

on JT gravity, and we will explain how to impose the Hartle-Hawking condition appropriately to

pick a solution corresponding to finite cutoff AdS2.

Let us consider the more general two dimensional dilaton gravity in Lorentzian signature,

I =
1

2

∫
M

d2x
√
g[φR− U(φ)] +

∫
∂M

du
√
γuu φK, (3.13)

with an arbitrary potential U(φ). g is the two-dimensional space-time metric on M and γ the induced

metric on its boundary ∂M . The boundary term in (3.13) is necessary in order for the variational
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principle to be satisfied when imposing Dirichlet boundary conditions for the metric and dilaton. In

(3.13) we could also add the topological term 1
2

∫
M
d2x
√
g φ0R +

∫
∂M

du
√
γuu φ0K = 2πφ0 which

will be relevant in section 3.4.3.

It will be useful to define also the prepotential W (φ) by the relation ∂φW (φ) = U(φ). In the

case of JT gravity with negative (or positive) cosmological constant we will pick U(φ) = −2φ (or

U(φ) = 2φ) and W (φ) = −φ2 (W (φ) = φ2), which has as a metric solution AdS2 (dS2) space with

unit radius.

We will assume the topology of space to be a closed circle, and will use the following ADM

decomposition of the metric

ds2 = −N2dt2 + h(dx+N⊥dt)
2, h = e2σ (3.14)

where N is the lapse, N⊥ the shift, h the boundary metric (which in this simple case is an arbitrary

function of x) and we identify x ∼ x+ 1. After integrating by parts and using the boundary terms,

the action can then be written as

I =

∫
d2x eσ

[ φ̇
N

(N⊥∂xσ + ∂xN⊥ − σ̇)

+
∂xφ

N

(
N∂xN

e2σ
−N⊥∂xN⊥ +N⊥σ̇ −N2

⊥∂xσ

)
− 1

2
NU(φ)

]
(3.15)

where the dots correspond to derivatives with respect to t. As usual the action does not involve

time derivatives of fields N and N⊥ and therefore

ΠN = ΠN⊥ = 0, (3.16)

which act as primary constrains. The momenta conjugate to the dilaton and scale factor are

Πφ =
eσ

N
(N⊥∂xσ + ∂xN⊥ − σ̇), Πσ =

eσ

N
(N⊥∂xφ− φ̇). (3.17)

With these equations we can identify the momentum conjugate to the dilaton with the extrinsic

curvature Πφ ∼ K, and the momentum of σ with the normal derivative of the dilaton Πσ ∼ ∂nφ.

The classical Hamiltonian then becomes

H =

∫
dx
[
N⊥P + e−σNHWdW

]
(3.18)
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where

P ≡ Πσ∂xσ + Πφ∂xφ− ∂xΠσ, (3.19)

HWdW ≡ −ΠφΠσ +
1

2
e2σU(φ) + ∂2

xφ− ∂xφ∂xσ, (3.20)

and classically the momentum and Wheeler-deWitt constrains are respectively P = 0 andHWdW = 0.

So far the discussion has been classical. Now we turn to quantum mechanics by promoting field

to operators. We will be interested in wavefunctions obtained from path integrals over the metric

and dilaton, and we will write them in configuration space. The state will be described by a wave

functional Ψ[φ, σ] and the momentum operators are replaced by

Π̂σ = −i δ

δσ(x)
, Π̂φ = −i δ

δφ(x)
, (3.21)

The physical wavefunctions will only depend on the boundary dilaton profile and metric.

Usually, when quantizing a theory, one needs to be careful with the measure and whether it can

contribute Liouville terms to the action. Such terms only appear when in conformal gauge, which is

not what we are working in presently. Actually, the ADM decomposition (3.14) captures a general

metric and is merely a parametrization of all 2d metrics and so we have not fixed any gauge. The

quantum theory is thus defined through the quantum mechanical version of the classical constraints

(3.19) and (3.20) 6. As a result, we do not need to include any Liouville term in our action in the

case of pure gravity. If matter would have been present, there could be Liouville terms coming from

integrating out the matter, but that is beyond the scope of this thesis.

3.2.1 Solution

In references [68, 69], the physical wavefunctions that solve the dilaton gravity constrains are con-

structed as follows. The key step is to notice that the constraints P and HWdW are simple enough

that we can solve for Πσ and Πφ separately. For instance, by combing ΠσP with the WdW con-

straint, we get

∂x(e−2σΠ2
σ) = ∂x(e−2σ(∂xφ)2 +W (φ)) ⇒ Πσ = ±

√
(∂xφ)2 + e2σ[M +W (φ)], (3.22)

6From the path integral perspective, we are assuming an infinite range of integration over the lapse. Different
choices for the contour of integration can drastically modify the constrains after quantization. We thank S. Giddings
for discussions on this point.
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with M an integration constant that is proportional to the ADM mass of the system as we will see

momentarily. It is then straightforward to plug this into the WdW constraint to find an expression

for Πφ. Quantum mechanically, we want the physical wavefunction to satisfy,

Π̂σΨphys = ±Q[M ;φ, σ]Ψphys, Π̂φΨphys = ± g[φ, σ]

Q[M ;φ, σ]
Ψphys, (3.23)

where we defined the functions

Q[E;φ, σ] ≡
√

(∂xφ)2 + e2σ[M +W (φ)], g[φ, σ] ≡ 1

2
e2σU(φ) + ∂2

xφ− ∂xφ∂xσ. (3.24)

Wavefunctions that solve these constrains also solve the momentum and Wheeler de Witt constrains

as explained in [68, 69]. In particular they solve the following WdW equation with factor ordering,7

(
g − Q̂Π̂φQ̂

−1Π̂σ

)
Ψphys = 0 (3.25)

The most general solution can be written as

Ψ = Ψ+ + Ψ−, Ψ± =

∫
dMρ±(M)Ψ±(M), (3.26)

where we will distinguish the two contributions

Ψ±(M) = exp

[
±i
∫
dx

(
Q[M ;φ, σ]− ∂xφ tanh−1

(
Q[M ;φ, σ]

2∂xφ

))]
, (3.27)

with the function Q defined in (3.24) which depends on the particular dilaton potential. We will

refer in general to Ψ+ (Ψ−) as the expanding (contracting) branch.

This makes explicit the fact that solutions to the physical constrains reduce the naive Hilbert

space from infinite dimensional to two dimensional with coordinate M (and its conjugate). The

most general solution of the Wheeler-deWitt equation can then be expanded in the base Ψ±(M)

with coefficients ρ±(M). The new ingredient in this thesis will be to specify appropriate boundary

conditions to pick ρ±(M) and extract the full Hartle-Hawking wavefunction. We will see this is only

possible for JT gravity for reasons that should will be clear in the next section.

It will be useful to write the physical wavefunction in terms of diffeomorphism invariant quanti-

ties. This is possible thanks to the fact that we are satisfying the momentum constrains. In order

7Here we think of Q̂ as well as M̂ as operators. The physical wavefunctions can be written as linear combinations

of eigenfunctions of the operator M̂ with eigenvalue M .
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to do this we will define the proper length u of the spacelike circle as

du = eσdx, L ≡
∫ 1

0

eσdx, (3.28)

where L denotes the total length. The only gauge invariant data that the wavefunction can depend

on is then L and φ(u), a dilaton profile specified as a function of proper length along the boundary.

The wavefunction (3.27) can be rewritten as

Ψ±(M) = e
±i
∫ L
0
du

[√
W (φ)+M+(∂uφ)2−∂uφ tanh−1

(√
1+

W (φ)+M

(∂uφ)2

)]
, (3.29)

which is then manifestly diffeomorphism invariant.

The results of this section indicate the space of physical states that solve the gravitational

constrains is one dimensional, labeled by M . In the context of radial quantization of AdS2 that we

will analyze in the next section, this parameter corresponds to the ADM mass of the state, while

in the case of dS2, it corresponds to the generator of rotations in the spatial circle. Phase space is

even-dimensional, and the conjugate variable to E is given by

ΠM = −
∫
dx

e2σΠρ

Π2
ρ − 2(∂xφ)2

(3.30)

such that [M,ΠM ] = i.8

3.2.2 Phase space reduction

Having the full solution to the WdW equation, we now study the minisuperspace limit. In this

limit, the dilaton φ and boundary metric e2σ are taken to be constants. In a general theory of

gravity, minisuperspace is an approximation. In JT gravity, as we saw above, the physical phase

space is finite-dimensional (two dimensional to be precise). Therefore giving the wavefunction in the

minisuperspace regime encodes all the dynamical information of the theory, while the generalization

to varying dilaton is fixed purely by the constrains. In this section, we will directly extract the

equation satisfied by the wavefunction as a function of constant dilaton and metric, from the more

general case considered in the previous section.

If we start with the WdW equation and fix the dilaton and metric to be constant, the functional

8The simplicity of the phase space of dilaton gravity theories was also noted in [140].
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derivatives then become ordinary derivatives and the equation reduces to

(
1

2
e2σU(φ)− Q̂∂φQ̂−1∂σ

)
Ψ(φ, σ) = 0. (3.31)

with Q̂ = (M̂ +W (φ))1/2. Due to the factor ordering, this differential equation still depends on the

operator M̂ , which is a bit unsatisfactory. Fortunately, we know that a σ derivative acting on Ψ is

the same as acting with Q2/g∂φ. In the minisuperspace limit, we can therefore write (3.31) as

(LU(φ)− 2L∂L(L−1∂φ))Ψ(φ,L) = 0, (3.32)

where L is the total boundary length. This equation is the exact constrain that wavefunctions with

a constant dilaton should satisfy even though it was derived in a limit. We can explicitly check this

by using (3.27) and noticing that any physical wavefunction, evaluated in the minisuperspace limit,

will satisfy precisely this equation.

This equation differs from the one obtained in [139] by Ψhere = LΨthere and, therefore, changes

the asymptotics of the wavefunctions, something we will analyze more closely in the next subsection.

3.2.3 Wheeler-deWitt in JT gravity: radial quantization

In this section, we will specialize the previous discussion to JT gravity with a negative cosmological

constant. We fix units such that U(φ) = −2φ. We will analytically continue the results of the

previous section to Euclidean space and interpret them in the context of radial quantization, such

that the wavefunction is identified with the path integral in a finite cutoff surface. Then, we will

explain how to implement Hartle-Hawking boundary conditions, obtaining a proposal for the exact

finite cutoff JT gravity path integral that can be compared with results for the analog of the TT

deformation in 1d [70, 71].

Lets begin by recalling some small changes that appear when going from Lorenzian to Euclidean

radial quantization. The action we will work with is

IJT = −1

2

∫
M

√
gφ(R+ 2)−

∫
∂M

√
γφK, (3.33)

and the ADM decomposition of the metric we will use is

ds2 = N2dr2 + h(dθ +N⊥dr)
2, h = e2σ , (3.34)
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Figure 3.1: (a) We show the slicing we use for Euclidean JT gravity in asymptotically AdS2, which has
disk topology (but not necessarily rigid hyperbolic metric). (b) Frame where the geometry is rigid EAdS2

with r increasing upwards and a wiggly boundary denoted by the blue curve.

where r is the radial direction while θ ∼ θ + 1 corresponds to the angular direction that we will

interpret as Euclidean time. We show these coordinates in figure 3.1. In terms of holography we will

eventually interpret θ as related to the Euclidean time of a boundary quantum mechanical theory.

As shown in figure 3.1, and as we will explicitly show in section 3.3, the radial quantization

wavefunction is identified with the gravitational path integral at a finite cutoff (inside the black

circle) with Dirichlet boundary conditions

Ψ[φb(u), σ(u)] =

∫
DgDφ e−IJT[φ,g], with φ|∂ = φb(u), g|∂ = γuu = e2σ(u). (3.35)

The geometry inside the disk in figure 3.1 is asymptotically EAdS2. From this path integral we can

derive the WdW and momentum constrains and therefore solving the latter with the appropriate

choice of state should be equivalent to doing the path integral directly.

The result of previous section implies that this path integral is given by a linear combination of

Expanding branch: Ψ+(M) = e

∫ L
0
du

[√
φ2
b−M−(∂uφb)2−∂uφb tan−1

(√
φ2
b
−M

(∂uφb)
2−1

)]
, (3.36)

Contracting branch: Ψ−(M) = e
−
∫ L
0
du

[√
φ2
b−M−(∂uφb)2−∂uφb tan−1

(√
φ2
b
−M

(∂uφb)
2−1

)]
. (3.37)

We will focus on the purely expanding branch of the solution (3.36), as proposed in [141] and

[139] to correspond to the path integral in the disk and therefore set ρ−(M) = 0. We will go back
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to possible effects coming from turning on this term later. Thus, we will study the solutions

Ψdisk[φb(u), σ(u)] =

∫
dMρ(M) e

∫ L
0
du

[√
φ2
b−M−(∂uφb)2−∂uφb tan−1

(√
φ2
b
−M

(∂uφb)
2−1

)]
. (3.38)

To make a choice of boundary conditions that fix the boundary curve very close to the boundary of

the disk we will eventually take the limit of large L and φb.

3.2.4 Hartle-Hawking boundary conditions and the JT wavefunctional

To determine the unknown function ρ(M), we will need to impose a condition that picks the Hartle-

Hawking state. For this, one usually analyses the limit L → 0 [142]. Such a regime is useful

semiclassically but not in general. From the no-boundary condition, L → 0 should reproduce the

path integral over JT gravity inside tiny patches deep inside the hyperbolic disk; performing such a

calculation is difficult. Instead, it will be simpler to impose the Hartle-Hawking condition at large

L→∞. In this case, we know how to do the path integral directly using the Schwarzian theory. The

derivation of the Schwarzian action from [29] explicitly uses the no-boundary condition, so we will

take this limit instead, which will be enough to identify a preferred solution of the WdW equation.

To match the wavefunction with the partition function of the Schwarzian theory, it is enough to

consider the case of constant dilaton and metric. Then, the wavefunction simplifies to

Ψ[φb, σ] =

∫
dMρ(M) e

∫ 1
0
dθeσ
√
φ2
b−M =

∫
dMρ(M) e

∫ L
0
du
√
φ2
b−M (3.39)

with φb and σ constants. Expanding the root at large φb and large L = eσ gives,

Ψ[φb, σ] = eLφb
∫
dMρ(M) e

−L M
2φb

+...
(3.40)

We find the usual divergence for large L and φ, which can be removed by adding to (3.33) the

counter term, Ict =
∫ L

0
duφb. In fact, we will identify the JT path integral with this counter term

as computing the thermal partition function at a temperature specified by the boundary conditions.

At large L and φb we know that the gravity partition function is given by the Schwarzian theory:

∫
DgDφ e−IJT[φ,g] → eLφb

∫
Df

SL(2,R)
eφb

∫ L
0
du Sch(tan π

L f,u), (3.41)

where Sch(F (u), u) ≡ F ′′′

F ′ −
3
2

(
F ′′

F ′

)2

. By rescaling time we can see the path integral only depends
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on L/φb which we will sometimes refer to as renormalized length. This result can be derived by first

integrating over the dilaton over an imaginary contour, localizing the geometry to rigid AdS2. Then

the remaining degree of freedom is the shape of the boundary curve, from which the Schwarzian

theory arises.

The Schwarzian partition function can be computed exactly and gives

ZSch(`) ≡
∫

Df
SL(2,R)

e
∫ `
0
du Sch(tan π

` f,u) =
(π
`

)3/2

e
2π2

` =

∫
dk2 sinh(2πk)e−`k

2/2 (3.42)

Applying this result to the JT gravity path integral with the replacement ` → L/φb gives the

partition function directly in the form of equation (3.40) where we can straightforward identify the

Schwarzian density of states with the function of M as

ρHH(M) = sinh(2π
√
M), (3.43)

where the subscript indicates that we picked the Hartle-Hawking state. It is important that we

are able to compute the path integral of JT gravity for φb, L → ∞ but fixed L/φb. This involves

an exact treatment of the Schwarzian mode since otherwise we would only obtain ρHH(M) in some

limits. This ingredient was missing in [68, 69] making them unable to identify the HH state from

the full space of physical states.

To summarize, the solution of the gravitational constrains gives the finite cutoff JT gravity path

integral as

ΨHH[φb(u), L] =

∫ ∞
0

dM sinh(2π
√
M) e

∫ L
0
du

[√
φ2
b−M−(∂uφb)2−∂uφ tan−1

(√
φ2−M
(∂uφ)2

−1

)]
. (3.44)

By construction, this matches the Schwarzian limit when φb and σ are constant.

When the dilaton is constant but σ(u) is not, it is clear that we can simply go to coordinates

dθ̃ = eσdθ in both the bulk path integral and the WdW wavefunction and see that they give the same

result. Since we can always choose time-slices with a constant value for the dilaton, this situation

will suffice for comparing our result to the analog of the TT deformation in the next subsection.

The more non-trivial case is for non-constant dilaton profiles. We provide a further check of our

result in appendix A.1.1, where we compare the wavefunctional (3.44) to the partition function of

JT gravity with a non-constant dilaton profile when the cutoff is taken to infinity.
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3.2.5 Comparison to TT

Let us now compare the wavefunctional (3.44) to the partition function obtained from the 1D analog

of the TT deformation (3.4). First of all, let us consider configurations of constant φb, so ∂uφb = 0.

This will simplify ΨHH to

ΨHH[φb, L] =

∫ ∞
0

dM sinh(2π
√
M)eφbL

√
1−M/φ2

b . (3.45)

The partition function is then obtained by multiplying this wavefunction by e−Ict = e−Lφb . The

resulting partition function agrees with (3.4) with identifications:

M → 2CE, φ2
b →

C

4λ
, L→ β√

4Cλ
, (3.46)

up to an unimportant normalization. In fact, we can say a little more than just mapping solution onto

each other. In section 3.2.2 we showed that in the minisuperspace approximation the wavefunctions

satisfy (3.32). With the identifications made above and the inclusion of the counter term, the

partition function Zλ(β) satisfies

[
4λ∂λ∂β + 2β∂2

β −
(

4λ

β
− 1

)
∂λ

]
Zλ(β) = 0. (3.47)

This is now purely written in terms of field theory variables and is precisely the flow equation as

expected from (3.1), i.e. solutions to this differential equation have the deformed spectrum (3.2).

This is also the flow of the partition function found in two dimensions in [143], specialised to

purely imaginary modular parameter of the torus. We will analyze the associated non-perturbative

ambiguities associated to this flow in section 3.4.

Let us summarise. We have seen that the partition function of the deformed Schwarzian theory

is mapped to the exact dilaton gravity wavefunctions for constant φb and γuu. In fact, any quantum

mechanics theory that is deformed according to (3.1) will obey the quantum WdW equation (for

constant φb and σ). This principle can be thought of as the two-dimensional version of [141]. It

is only the boundary condition at λ → 0 (or large φbL), where we know the bulk JT path integral

gives the Schwarzian theory, that tells us that the density of states is sinh(2π
√
M). Next, we will

show that the wavefunction for constant φb and γuu can be reproduced by explicitly computing the

Euclidean path integral in the bulk, at finite cutoff.
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3.3 The Euclidean path integral

We will once again consider the JT gravity action, (3.33), and impose Dirichlet boundary conditions

for the dilaton field φ|∂M2
≡ φb ≡ φr/ε, boundary metric γuu, and proper length L ≡ β/ε and with

the addition the counter-term,

Ict =

∫
du
√
γφ , (3.48)

whose addition leads to an easy comparison between our results and the infinite cutoff results in JT

gravity. As in the previous section we will once again focus on disk topologies.

As discussed in section 3.2.4, the path integral over the dilaton φ yields a constrain on the

curvature of the space, with R = −2. Therefore, in the path integral we are simply summing over

different patches of AdS2, which we parametrize in Euclidean signature using Poincaré coordinates

as ds2 = (dτ2 + dx2)/x2. To describe the properties which we require of the boundary of this patch

we choose a proper boundary time u, with a fixed boundary metric γuu = 1/ε2 (related to the fix

proper length L =
∫ β

0
du
√
γuu). Fixing the intrinsic boundary metric to a constant, requires:

τ ′2 + x′2

x2
=

1

ε2
,

−t′2 + x′2

x2
=

1

ε2
, τ = −it . (3.49)

If choosing some constant ε ∈ R then we require that the boundary has the following properties:

• If working in Euclidean signature, the boundary should never self-intersect. Consequently if

working on manifolds with the topology of a disk this implies that the Euler number χ(M2) = 1.

• If working in Lorentzian signature, the boundary should always remain time-like since (3.49)

implies that −(t′)2 + (x′)2 = (x′ − t′)(t′ + x′) > 0.9 From now on we will assume without loss

of generality that t′ > 0.

Both conditions are important constraints which we should impose at the level of the path integral.

Such conditions are not typical if considering the boundary of the gravitational theory as the world-

line of a particle moving on H2 or AdS2: in Euclidean signature, the worldline could self-intersect,

while in Lorentzian signature the worldline could still self-intersect but could also become space-like.

These are the two deficiencies that [35, 36] encountered in their analysis, when viewing the path

integral of JT gravity as that of a particle moving in an imaginary magnetic field on H2.

9While fixing the metric γuu to be a constant is not diffeomorphism invariant, the notion of the boundary being
time-like (sgn γuu) is in fact diffeomorphism invariant.
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For the purposes of this chapter it will also prove convenient to introduce the light-cone coordi-

nates (with z = −ix+ τ , z = ix+ τ), for which fixing the intrinsic boundary metric implies:

− 4z′z′

(z − z)2
=

1

ε2
. (3.50)

In Euclidean signature z = z∗, while in Lorentzian signature z, z ∈ iR. The constraint that the

boundary is time-like implies that iz′ > 0 and iz′ < 0 (alternatively, if assuming t′ < 0, iz′ < 0

and iz′ > 0). In order to solve the path integral for the remaining boundary fluctuations in the

1D system it will prove convenient to use light-cone coordinates and require that the path integral

obeys the two properties described above.

3.3.1 Light-cone coordinates and SL(2,R) isometries in AdS2

As is well known, AdS2, even at finite cutoff, exhibits an SL(2,R) isometry. This isometry becomes

manifest when considering the coordinate transformations:

E & L : z → az + b

cz + d
, z → az + b

cz + d
,

E : x+ iτ → a(x+ iτ) + b

c(x+ iτ) + d
, L : t+ x→ a(t+ x) + b

c(t+ x) + d
, (3.51)

It is straightforward to check that under such transformations the boundary metrics, (3.49) and

(3.50), both remain invariant. The same is true of the extrinsic curvature, which is the light-cone

parametrization of the boundary degrees of freedom can be expressed as

K[z(u), z(u)] =
2z′2z′ + (z − z)z′z′′ + z′(2z′2 + (z − z)z′′)

4(z′z′)3/2
. (3.52)

Consequently, invariance under SL(2,R) transformations gives:

K[z, z] = K

[
az + b

cz + d
,
az + b

cz + d

]
, (3.53)

Therefore, if solving for z[z(u)] (as a functional of z(u)) we will find that

z[z(u)] ⇒ K[z] = K

[
az + b

cz + d

]
(3.54)

As we will see in the next subsection, such a simple invariance under SL(2,R) transformations

will be crucial to being able to relate the path integral of the boundary fluctuations to that of
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some deformation of the Schwarzian theory. An important related point is that when solving for

τ [x(u)] as a functional of x(u), the resulting extrinsic curvature is not invariant under the SL(2,R)

transformations, τ → aτ+b
cτ+d . Rather this is only a valid symmetry in the ε → 0 limit, for which

x→ 0, while τ is kept finite. It is only in the asymptotically AdS2 limit that the transformation in

the second line of (3.51) can be identified with τ → aτ+b
cτ+d . If keeping track of higher orders in ε, the

transformation on τ would involve a growing number of derivatives on the τ field which should be

proportional to the order of the ε-expansion.

3.3.2 Restricting the extrinsic curvature

Next, we discuss the expansion of the extrinsic curvature K[z] to all orders in perturbation in ε:

K[z] =

∞∑
n=0

εnKn[z] , Kn[z] = Kn

[
az + b

cz + d

]
, (3.55)

We could in principle explicitly solve for z[z(u)] to first few orders in perturbation theory in ε and

then plug the result into (3.63). The first few orders in the expansion can be solved explicitly and

yield:

K0[z] = 1, K1[z] = 0, K2[z] = Sch(z, u),

K3[z] = −i ∂uSch(z, u) , K4[z] = −1

2
Sch(z, u)2 + ∂2

u Sch(z, u) . (3.56)

The fact that all orders in Kn[z(u)] solely depend on the Schwarzian and its derivatives is not a

coincidence. In fact, one generally finds that:

Kn[z] = Kn[Sch(z, u), ∂u] . (3.57)

The reason for this is as follows. Kn[z] is a local function of z(u) since solving for z[z(u)] involves

only derivatives of z(u). The Schwarzian can be written as the Casimir of the sl(2,R) transformation,

z → a z+b
c z+d [29]. Because the rank of the sl(2,R) algebra is 1, higher-order Casimirs of sl(2,R) can

all be expressed as a polynomial (or derivatives of powers) of the quadratic Casimir. Since local

functions in u that are SL(2,R) invariant, can also only be written in terms of the Casimirs of sl(2,R)

this implies that they should also be linear combinations of powers (or derivatives of powers) of the

quadratic Casimir, which is itself the Schwarzian.

Alternatively, we can prove that Kn[z(u)] is a functional of the Schwarzian by once again noting
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that Kn[z(u)] only contains derivatives of z(u) up to some finite order. Then we can check explicitly

how each infintesimal SL(2,R) transformation constrains Kn[z(u)]. For instance, translation trans-

formations z → z+b imply that Kn solely depends on derivatives of z(u). The transformation z(u)→

az(u) implies that Kn[z(u)] depends solely on ratios of derivatives with a matching order in z between

the numerator and denominator of each ratio, of the type (
∏
k z

(ki))/(
∏
k z

(k̃i)). Finally considering

all possible linear combinations between ratios of derivatives of the type (
∏
k z

(ki))/(
∏
k z

(k̃i)) and

requiring invariance under the transformation z(u) → 1/z(u), fixes the coefficients of the linear

combination to those encountered in arbitrary products of Schwarzians and of its derivatives.

Once again, we emphasize that this does not happen when using the standard Poincaré parametriza-

tion (3.49) in τ and x. When solving for τ [x] and plugging into K[τ(u)], since we have that

K[τ(u)] 6= K[aτ(u) + b/(cτ(u) + d)] and consequently K[τ(u)] is not a functional of the Schwarzian;

it is only a functional of the Schwarzian at second-order in ε. This can be observed by going to

fourth order in the ε-expansion, where

K4[τ(u)] =
τ (3)(u)2

τ ′(u)2
+

27τ ′′(u)4

8τ ′(u)4
+
τ (4)(u)τ ′′(u)

τ ′(u)2
− 11τ (3)(u)τ ′′(u)2

2τ ′(u)3
, (3.58)

which cannot be written in terms of Sch(τ(u), u) and of its derivatives.

3.3.3 Finding the extrinsic curvature

Perturbative terms in K[z(u)]

The previous subsection identified the abstract dependence of the extrinsic curvature as a function

of the Schwarzian. To quantize the theory, we need to find the explicit dependence of Kn on the

Schwarzian. To do this, we employ the following trick. Consider the specific configuration for z(u):10

z(u) = exp(au) , Sch(z, u) = −a
2

2
. (3.59)

Since K[z(u)] is a functional of the Sch(z, u) and of its derivatives to all orders in perturbation

theory in ε, then Kn[z(u) = exp(au)] = Kn[Sch(z, u), ∂u] = Kn[a]. On the other hand, when

using a specific configuration for z(u) we can go back to the boundary metric constraint (3.50) and

explicitly solve for z(u). Plugging-in this solution together with (3.59) into the formula for the

extrinsic curvature K[z(u), z(u)] (3.52), we can find Kn[a] and, consequently, find the powers of the

10While (3.59) is, in fact, a solution to the equation of motion for the Schwarzian theory it is not necessarily a
solution to the equation of motion in the theory with finite cutoff.
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Figure 3.2: Cartoon exemplifying typical AdS2 patches with a finite proper boundary length. The
surface on the left represents the K > 0 solution and the surface on the right corresponds to the
K < 0 solution.

Schwarzian in Kn[Sch(z, u), ∂u].

The metric constraint involves solving the first order differential equation

− 4 a eauz′

(eau − z)
2 =

1

ε2
, (3.60)

whose solution, to all orders in perturbation theory in ε, is given by

z(u) = eau
(

1− 2a2ε2 − 2aε
√
−1 + a2ε2

)
. (3.61)

We can plug this solution for z(u) together with the configuration z(u) = exp(au) to find that

K [z(u) = exp(au)] =
√

1− ε2a2 . (3.62)

Depending on the choice of branch one can reverse the sign of (3.62) to find thatK [z(u) = exp(au)] =

−
√

1− ε2a2 which corresponds to the considering the exterior of an AdS2 patch as our surface

(instead of a regular AdS2 patch). This is analogous to the contracting branch in of the WdW

functional in (3.37).

Consequently, it follows that in a perturbative series in ε we find:11

K±[z(u)] = ±
(√

1 + 2ε2 Sch(z, u) + derivatives of Sch.
)
, (3.63)

11The terms containing derivatives of the Schwarzian are not necessarily total derivatives and thus we need to
explain why they do not contribute to the path integral.
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where we find that the quadratic term in ε for the + branch of (3.63) agrees with the expansion of K

in terms of ε in JT gravity in asymptotic AdS2 [29] (which found that K[z(u)] = 1+ε2Sch(z, u)+. . . ).

The + branch in (3.63) corresponds to compact patches of AdS2 for which the normal vector points

outwards; the − branch corresponds to non-compact surfaces (the complement of the aforementioned

AdS2 patches) for which the normal vector is pointing inwards. While the + branch has a convergent

path integral for real values of φr, for a normal choice of countour for z(u), the path integral of

the − branch will be divergent. Even for a potential contour choice for which the path integral

were convergent, the − branch is non-perturbatively suppressed by O(e−
∫ β
0
duφb/ε) = O(e−1/ε2).

Therefore, for now, we will ignore the effect of this different branch (−) and set K[z(u)] ≡ K+[z(u)];

we will revisit this problem in section 3.4 when studying non-perturbative corrections in ε.

In principle, one can also solve for the derivative of the Schwarzian in (3.63) following a similar

strategy to that outlined above. Namely, it is straightforward to find that when Sch(z, u) = aun, for

some n ∈ Z, then z(u) is related to a Bessel function. Following the steps above, and using the fact

that ∂n+1Sch(z, u) = 0 for such configurations, one can then determine all possible terms appearing

in the extrinsic curvature. However, since we are interested in quantizing the theory in a constant

dilaton configuration, we will shortly see that we can avoid this more laborious process.

Therefore, the JT action that we are interested in quantizing is given by:

IJT = −
∫ β

0

du

ε2
φr

(√
1 + 2ε2 Sch(z, u)− 1 + derivatives of Sch.

)
, (3.64)

where we have added the correct counter-term needed in order to cancel the 1/ε2 divergence in the

ε→ 0 limit.

While we have found K[z(u)] and IJT to all orders in perturbation theory in ε, we have not

yet studied other non-perturbative pieces in ε (that do not come from the − branch in (3.63)).

Such corrections could contain non-local terms in u since all terms containing a finite number of

derivatives in u are captured by the ε-perturbative expansion. The full solution of (3.60) provides

clues that such non-perturbative corrections could exist and are, indeed, non-local (as they will not

be a functional of the Schwarzian). The full solution to (3.60) is

z(u) = eau

1− 2a2ε2 + 2aε

√−1 + a2ε2 − 2ε
ε√

−1+a2ε2
+ C1e

u
ε

√
−1+a2ε2

 , (3.65)

for some integration constant C1. When C1 6= 0, note that the correction to z(u) in (3.65) are

exponentially suppressed in 1/ε and do not contribute to the series expansion Kn. However, when
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taking C1 6= 0, (3.65) there is no way of making z(u) periodic (while it is possible to make z(u)

periodic). While we cannot make sure that every solution has the feature that non-perturbative

corrections are inconsistent with the thermal boundary conditions, for the remainder of this section

we will only focus on the perturbative expansion of K[z(u)] with the branch choice for the square root

given by (3.63). We will make further comments about the nature of non-perturbative corrections

in section 3.4.

3.3.4 Path integral measure

Before we proceed by solving the path integral of (3.64), it is important to discuss the integration

measure and integration contour for z(u). Initially, before imposing the constraint (3.50) on the

boundary metric, we can integrate over both z(u) and z(u), with the two variables being complex

conjugates in Euclidean signature. However, once we integrate out z(u) we are free to choose

an integration contour consistent with the constraint (3.50) and with the topological requirements

discussed at the beginning of this section. Thus, for instance if we choose z(u) ∈ R then the

constraint (3.50) would imply that z′(u) > 0 (or z′(u) < 0); this, in turn, implies that we solely

need to integrate over strictly monotonic functions z(u). The boundary conditions for z(u) should

nevertheless be independent of the choice of contour; therefore we will impose that z(u) is periodic,

z(0) = z(β). Of course, this implies that z(u) has a divergence. In order to impose that the boundary

is never self-intersecting we will impose that this divergence occurs solely once.12 Such a choice of

contour therefore satisfies the following two criteria:

• That the boundary is not self-intersecting.

• The boundary is time-like when going to Lorentzian signature. This is because redefining

z(u) → zLor.(u) = −iz(u) ∈ R leaves the action invariant and describes the boundary of a

Lorentzian manifold. Since i(zLor.)′ > 0, it then follows that the boundary would be time-like.

Furthermore, while we have chosen a specific diffeomorphism gauge which fixes γuu = 1/ε2, the

path integral measure (as opposed to the action) should be unaffected by this choice of gauge and

should rather be diffeomorphism invariant. The only possible local diffeomorphism invariant path

integral measure is that encountered in the Schwarzian theory [144, 61, 25] and, in JT gravity at

12All this is also the case in the Schwarzian theory whose classical solution is τ(u) = tan(πu/β). [29] has found
that if considering solutions where τ(u) diverges multiple times (τ(u) = tan(nπu/β) with n ∈ Z) then the fluctuations
around such solutions are unbounded, and the path integral is divergent (one can still make sense of this theory
though, as explained in [63]).
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infinite cutoff [37]:

Dµ[z] =
∏

z∈[0,β)

dz(u)

z′(u)
. (3.66)

In principle, one should also be able to derive (3.66) by considering the symplectic form for JT gravity

obtained from an equivalent sl(2,R) BF-theory. In [37] this symplectic form (which in turn yields

the path integral measure (3.66)) was derived in the limit ε → 0. It would however be interesting

to rederive the result of [37] at finite ε in order to find a more concrete derivation of (3.66).

To summarize, we have therefore argued that both the path integration measure, as well as

the integration contour, in the finite-ε theory, can be taken to be the same as those in the pure

Schwarzian theory.

3.3.5 Finite cutoff partition function as a correlator in the Schwarzian

theory

The path integral which we have to compute is given by

ZJT [φb, L] =

∫
z′(u)>0

Dµ[z] exp

[ ∫ β

0

du

ε2
φr

(√
1 + 2ε2Sch(z, u)− 1+

+ derivatives of Sch.

)]
, (3.67)

Of course, due to the agreement of integration contour and measure, we can view (3.67) as the

expectation value of the operator in the pure Schwarzian theory with coupling φr:

ZJT [φb, L] = 〈Odeformation〉 ≡ (3.68)

≡
〈

exp

[ ∫ β

0

du

ε2
φr

(√
1 + 2ε2Sch(z, u)− 1− ε2 Sch(z, u) + derivatives of Sch.

)]〉
.

A naive analysis (whose downsides will be mention shortly) would conclude that, since in the pure

Schwarzian theory, the Schwarzian can be identified with the Hamiltonian of the theory (− H
2φ2
r

=

Sch(z, u)), then computing (3.68) amounts to computing the expectation value for some function of

the Hamiltonian and of its derivatives. In the naive analysis, one can use that the Hamiltonian is

conserved and therefore all derivatives of the Schwarzian in (3.68) can be neglected. The conservation

of the Hamiltonian would also imply that the remaining terms in the integral in the exponent (3.68)
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are constant. Therefore, the partition function simplifies to

ZJT [φb, L] =naive

〈
exp

[
βφr
ε2

(√
1− ε2

φ2
r

H − 1 +
ε2

2φ2
r

H

)]〉
. (3.69)

which can be conveniently rewritten in terms of the actual boundary value of the dilaton φb = φr/ε

and the proper length L = β/ε as

ZJT [φb, L] =naive

〈
exp

[
Lφb

(√
1− H

φ2
b

− 1 +
H

φb

]〉
. (3.70)

The result for this expectation value in the Schwarzian path integral is given by

ZJT [φb, L] =naive

∫
ds s sinh(2πs)e

Lφb

(√
1− s2

φ2
b

−1

)
(3.71)

where we have identified the energy of the Schwarzian theory in terms of the sl(2,R) Casimir for

which (for the principal series) E = C2(λ = is+ 1
2 ) + 1

4 = s2 (see [115, 35, 36, 1]). The result (3.71)

agrees with both the result for the WdW wavefunctional presented in section 3.2 (up to an overall

counter-term) and with the results of [70, 71] (reviewed in the introduction), obtained by studying

an analogue of the TT deformation in 1d.13

As previously hinted, the argument presented above is incomplete. Namely, the problem appears

because correlation functions of the Sch(z, u) are not precisely the same as those of a quantum

mechanical Hamiltonian. While at separated points correlation functions of the Schwarzian are

constant (just like those of 1d Hamiltonians), the problem appears at identical points where contact-

terms are present. Therefore, the rest of this section will be focused on a technical analysis of the

contribution of these contact-terms, and we will show that the final result (3.71) is indeed correct

even when including such terms.

The generating functional

To organize the calculation we will first present a generating functional for the Schwarzian operator

in the undeformed theory. This generating functional is defined by

ZSch[j(u)] ≡
∫

Dµ[z]

SL(2,R)
e
∫ β
0
duj(u)Sch(z(u),u), (3.72)

13We identify the deformation parameter λ = ε2

4φr
in [70, 71].
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for an arbitrary function j(u) which acts as a source for Schwarzian insertions. This path integral

can be computed repeating the procedure in [25], which we also review in appendix A.1.1. The final

answer is given by

ZSch[j(u)] ∼ e
∫ β
0
du

j′(u)2

2j(u)

∫
ds s sinh(2πs)e−

s2

2

∫ β
0

du
j(u) . (3.73)

We will use (3.73) to evaluate the integrated correlator (3.68), by rewriting it as

〈Odeformation〉 =

[
exp

(∫ β

0

du

ε2
φr :

(√
1 + 2ε2

δ

δj(u)
− 1 +K

[
∂u

δ

δj(u)

])
:

)

×ZSch[j(u)]

]∣∣∣∣
j(u)=0

, (3.74)

where K
[
∂u

δ
δj(u)

]
is a placeholder for terms containing derivative terms of the Schwarzian and,

equivalently, for terms of the from . . . ∂u
δ

δj(u) . . . . Finally, : O : is a point-splitting operation whose

role we will clarify shortly.

Computing the full path integral

To understand the point splitting procedure necessary in (3.77), we start by analyzing the structure

of correlators when taking functional derivatives of ZJT [j(u)]. Schematically, we have that

(
δ

δj(u1)
. . .

δ

δj(un)
ZSch[j(u)]

)∣∣∣∣
j(u)=φr

= a1 + a2[δ(uij)] + a3[∂uδ(uij)] + . . . , (3.75)

where a1 is a constant determined by the value of the coupling constant φr and a2[δ(uij)]] captures

terms which have δ-functions in the distances uij = ui − uj , while a3[∂uδ(uij)] contains terms with

at least one derivative of the same δ-functions for each term.14 The . . . in (3.75) capture potential

higher-derivative contact-terms.

If in the expansion of the square root in the exponent of (3.74) one takes the functional derivative

δ/δj(u) at identical points then the contact terms in (3.75) become divergent (containing δ(0), δ′(0),

. . . ). An explicit example about such divergences is given in appendix A.3 when evaluating the

contribution of K4[z] in the perturbative series. In order to eliminate such divergences we define the

point-splitting procedure

:
δn

δj(u)n
:≡ lim

(u1, ..., un)→u

δ

δj(u1)
. . .

δ

δj(un)
. (3.76)

14For example, when n = 2 the exact structure of (3.75) is computed in [25] and is reviewed in appendix A.3.
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Such a procedure eliminates the terms containing δ(0) or its derivatives since we first evaluate the

functional derivatives in the expansion of (3.77) at separated points.

The structure of the generating functional also suggests that when integrating the correlator

(3.75) the contribution of the derivatives of δ(uij) vanish after integration by parts since we will be

evaluating (3.77) for constant dilaton values. As we explain in more detail in appendix A.3, the origin

of the derivatives of δ(uij) is two-fold: they either come by taking functional derivatives δ/δj(u) of

the term exp
(∫ β

0
du j

′(u)2

2j(u)

)
in ZSch[j(u)], or they come from the contribution of the derivative terms

K
[
∂u

δ
δj(u)

]
. In either case, both sources only contribute terms containing derivatives of δ-functions

(no constant terms or regular δ-functions). Thus, since such terms vanish after integration by parts,

neither K
[
∂u

δ
δj(u)

]
nor exp

(∫ β
0
du j

′(u)2

2j(u)

)
contribute to the partition function. Consequently, we

have to evaluate

〈Odeformation〉

=

(∫
ds s sinh(2πs) exp

[ ∫ β

0

du

ε2
φr

(
:

√
1 + 2ε2

δ

δj(u)
: −1

)]
e−

s2

2

∫ β
0
du 1

j(u)

)∣∣∣∣
j(u)=0

. (3.77)

To avoid having to deal with the divergences eliminated by the point-splitting discussed in the

continuum limit, we proceed by discretizing the thermal circle into β/δ units of length δ (and will

ultimately consider the limit δ → 0).15 Divergent terms containing δ in the final result correspond

to terms that contain δ(0) in the continuum limit and thus should be eliminated by through the

point-splitting procedure (3.76). Therefore, once we obtain the final form of (3.77), we will select

the universal diffeomorphism invariant δ-independent term.

To start, we can use that

e−
s2δ

2j(u) =
1

2πi

∫ −c+i∞
−c−i∞

dαu

[
−
πY1(2

√
αu)

√
αu

]
e−

2αuju
s2δ (3.78)

where we have introduced a Lagrange multiplier αu for each segment in the thermal circle. The

integration contours for all αu are chosen along the imaginary axis for some real constant c. The

15Sums and products of the type
∑
u∈[0,β) and

∏
u∈[0,β) will iterate over all β/δ intervals.
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next step is to apply the differential operator in the exponent in (3.77) to (3.78),

(
e
∫ β
0
duφr

ε2

(
:
√

1+2ε2 δ
δj(u)

:−1
)) ∏

u∈[0,β)

e−
2αuju
s2δ

∣∣∣∣
ju=0

=

=

(
e
∫ β
0
duφr

ε2

(
:
√

1+2ε2 δ
δj(u)

:−1
))

e−
∫ β
0
du 2αuju

s2δ2

∣∣∣∣
ju=0

= : exp

 ∑
u∈[0,β)

δφr
ε2

(√
1− 4αuε2

s2δ2
− 1

) : , (3.79)

where : · · · : indicates that we will be extracting the part independent of the UV cutoff, δ, when

taking the limit δ → 0. Thus, we now need to compute

ZJT [φb, L] =
1

2πi
:

∫ ∞
0

ds s sinh(2πs)

∫ −c+i∞
−c−i∞

(∏
dαu

)[
−
πY1(2

√
αu)

√
αu

]
× e

∑
u∈[0,β)

δφr
ε2

(√
1− 4αuε2

s2δ2
−1

)
: . (3.80)

In order to do these integrals we introduce an additional field σu, such that

e
δφr
ε2

(√
1− 4αuε2

s2δ2
−1

)
=

∫ ∞
0

dσu

σ
3/2
u

√
− δφr

2πε2
e
− 2σuαuφr

s2δ
+ δφr

2σuε2
(1−σu)2

, (3.81)

where in order for the integral (3.81) to be convergent, we can analytically continue φr to complex

values. We can now perform the integral over αu using (3.78), since αu now appears once again in

the numerator of the exponent:

ZJT [φb, L] = :

∫ ∞
0

ds s sinh(2πs)

×
∫ ∞

0

 ∏
u∈[0,β)

dσu

σ
3/2
u

√
− δφr

2πε2

 e
∑
u∈[0,β)

[
− s2δ

2σuφr
+ δφr

2σuε2
(1−σu)2

]
: . (3.82)

We now change variable in the equation above from σu → 1/σ̃u and perform the Laplace transform,

once again using (3.81). We finally find that (when keeping the finite terms in δ) the partition

function is given by:16

ZJT [φb, L] ∼
∫ ∞

0

ds s sinh(2πs) e
βφr
ε2

(√
1− s2ε2

φ2
r
−1

)

∼
∫ ∞

0

ds s sinh(2πs) e
β
4λ

(√
1−4λs2/φr−1

)
, (3.83)

16Once again to integrate over σ̃u we have to analytically continue φr to complex values. Finally, to perform the
integral over s in (3.83) we analytically continue back to real values of φr and, equivalently, φb.
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where we defined λ = ε2/(4φr). This partition function agrees with the naive result (3.71) obtained

by replacing the Schwarzian with the Hamiltonian of the pure theory. Consequently, we arrive to the

previously mentioned matching between the Euclidean partition function, the WdW wavefunctional

and the partition function of the TT deformed Schwarzian theory,

e−IctΨHH [φb, L] = Zλ=ε2/(4φr)(β) = ZJT [φb, L] . (3.84)

As a final comment, the Euclidean path integral approach hides two ambiguities. First, as we

briefly commented in section 3.3.3, the finite cutoff expansion of the extrinsic curvature might involve

terms that are non-perturbatively suppressed in ε. As we have mentioned before, such terms can

either come from considering non-local terms in the extrinsic curvature K[z(u)] or by considering

the contribution of the negative branch in (3.63). Second, even if these terms would vanish, the

perturbative series is only asymptotic. Performing the integral (3.83) over energies explicitly gives

a finite cutoff partition function

ZJT [φb, L] =
Lφ2

be
−Lφb

L2 + 4π2
K2

(
−
√
φ2
b(L

2 + 4π2)
)
. (3.85)

This formal result is not well defined since the Bessel function is evaluated at a branch cut 17. The

ambiguity related to the presence of this branch cut can be regulated by analytic continuation; for

example, in L→ Leiε, and the ε→ 0 limit we find different answers depending on the sign of ε. The

ambiguity given by the choice of analytic continuation can be quantified by the discontinuity of the

partition function Disc Z for real φ and L.

A similar effect is reproduced by the contracting branch of the wavefunction from the canonical

approach, there are two orthogonal solutions to the gravitational constraint Ψ±, defined by their

small cutoff behavior Ψ± ∼ e±φLZ±, where Z± is finite. In the language of the Euclidean path

integral, the different choice of wavefunctionals correspond to different choices for the square root

in the extrinsic curvature (3.63). Imposing Hartle-Hawking boundary conditions fixes Ψ+, which

matches the perturbative expansion of the Euclidean path integral. The corrections to the partition

function from the other branch are exponentially suppressed Ψ−/Ψ+ ∼ e−
1
ε2 .

As previously hinted, contributions from turning on Ψ− are not only related to the choice of

branch for K[z(u)], but is the same as the branch-cut ambiguity mentioned above for (3.85). To

17This can be tracked to the fact that we are sitting at a Stokes line. It is curious that this explicit answer gives a
complex function even though the perturbative terms we found from the path integral are all real (this phenomenon
also happens in more familiar setups like WKB).
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see this, we can notice that Disc Z is a difference of two functions that separately satisfy the WdW

equation and goes to zero at small cutoff. Therefore it has to be of the same form as the Ψ− branch

given in (3.37).

3.4 The contracting branch and other topologies

In this section, we will analyze two different kinds of non-perturbative corrections to the partition

function. First we will study corrections that are non-perturbative in the cutoff parameter ε in

sections 3.4.1 and 3.4.2, which come from turning on the contracting branch of the wavefunction.

Then, we will comment on non-perturbative corrections coming from non-trivial topologies in section

3.4.3.

3.4.1 Unitarity at finite cutoff

Given the exact form of the wavefunction for general cutoff surfaces, we can study some of the more

detailed questions about TT in AdS2. One such question is whether the theory can be corrected to

become unitarity. As can be seen from the expression for the dressed energy levels (3.2), the energies

go complex whenever λ > 1/(8E). This is unsatisfactory if we want to interpret the finite cutoff JT

gravity partition function as being described by a 0 + 1 dimensional theory, just like the Schwarzian

theory describes the full AdS2 bulk of JT gravity. There are a few ways in which one can go around

this complexification.

Firstly, we can truncate the spectrum of the initial theory so that E is smaller than some Emax.

This is totally acceptable, but if we want to have an initial theory that describes the full AdS2

geometry, we cannot do that without making the flow irreversible. In other words, the truncated

Schwarzian partition function is not enough to describe the entire JT bulk. The second option is

to accept there are complex energies along the flow but truncate the spectrum to real energies after

one has flowed in the bulk. In 1D this was emphasized in [70] (and in [16, 145] for 2D CFTs). The

projection operator that achieves such a truncation will then depend on λ and, in general, will not

solve the flow equation (3.47) of the partition function. A third option is that we use the other

branch of the deformed energy levels E− (see (3.2)) to make the partition function real. In doing

so, we will be guaranteed a solution to the Wheeler-de-Witt equation. Let us pursue option three

in more detail and show that we can write down a real partition function Zλ(β) with the correct

(Schwarzian) boundary condition at λ→ 0.
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The solution to the TT flow equation (3.47) that takes the form of a partition function is,

Znon−pert.
λ (β) =

∫ ∞
0

dEρ+(E)e−βE+(E,λ) +

∫ ∞
−∞

dEρ−(E)e−βE−(E,λ). (3.86)

Here, we took the ranges of E to be such that E± are bounded from below. As λ→ 0, we see that

the first term goes to some constant (as we already saw previously), but the second term goes to

zero non-perturbatively in λ as e−β/(2λ). From the boundary condition λ→ 0 we can therefore not

fix the general solution, but only ρ+(E) = sinh(2π
√

2CE). If we demand the partition function to

be real, then both integrals over E in (3.86) should be cutoff at E = 1/(8λ) and it will therefore

not be a solution to (3.47) anymore, because the derivatives with respect to λ can then act on the

integration limit. However, by picking

ρ− =

 − sinh(2π
√

2CE) 0 < E < 1
8λ

ρ̂(E) E < 0
, (3.87)

with ρ̂(E) an arbitrary function of E, the boundary terms cancel and we obtain a valid solution to

(3.47) and the associated wavefunction Ψ = eLφbZ will solve the WdW equation (3.32). The final

partition function is then given by (see appendix A.2 for details),

Znon−pert.
λ (β) =

πβe−
β
4λ

√
2λ(β2 + 16Cπ2λ)

I2

(
1

4λ

√
β2 + 16Cπ2λ

)
+

∫ 0

−∞
dEρ̂(E)e−βE−(E,λ). (3.88)

Notice that when we redefine E such that we have the canonical Boltzman weight in the second

term of (3.88), the support of ρ̂ is for E > 1
2λ , because for this redefined energy E = 0 maps to

1
2λ . Let us comment on this partition function. First, because of the sign in (3.87), the first part

of (3.88) has a negative density of states and turns out the be equal to (3.7) with support between

0 ≤ E ≤ 1
2λ , see Fig. 3.3. Second, there is a whole function worth of non-perturbative ambiguities

coming from the second term in (3.88) that cannot be fixed by the Schwarzian boundary condition.

From the Euclidean path integral approach, assuming that the extrinsic curvature does not receive

non-perturbative corrections, we could fix ρ̂(E) = 0 by choosing an appropriate analytic continuation

on L when defining the partition function.

3.4.2 Relation to 3d gravity

The analysis in the previous section can be repeated in the context of 3D gravity and TT deformations

of 2D CFTs on a torus of parameters τ and τ . The deformed partition function satisfies an equation
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Figure 3.3: In orange, we show the undeformed density of states sinh(2π
√
E) of JT gravity at infinite

cutoff. In dashed black, we show the density of states of the theory with just the branch of the root,
E−, that connects to the undeformed energies, until the energy complexifies. In blue, we show the
density of states ρλ(E) of the deformed partition function (3.88) which includes non-perturbative
corrections in λ. Above we have set ρ̂(E) = 0 and λ = 1/4 and C = 1/2, the black line therefore
ends at E = 1

4λ = 1. The vertical dashed line indicates the energy beyond which ρ̂ has support.

similar to (3.47) derived in [143]. This is given by

−∂λZλ =

[
8τ2∂τ∂τ + 4

(
i(∂τ − ∂τ )− 1

τ2

)
λ∂λ

]
Zλ (3.89)

The solutions of this equation, written in a form of a deformed partition function, can be written as

Z(τ, τ , λ) =
∑
±, k

∫ ∞
E0

dEρ±(E)e−τ2E±(E,k)+2πikτ1 (3.90)

where τ = τ1 + iτ2 and τ = τ1 − iτ2. Here we have set the radius to one and

E±(E, k) =
1

4λ

(
1∓

√
1− 8λE + 64π2k2λ2

)
. (3.91)

As usual we pick the minus sign of the root as that connects to the undeformed energy levels at

λ = 0. The energy levels of the deformed partition function complexify when Ec = 1
8λ + 8k2π2λ2.

So we would like to cutoff the integral there. Similarly, a hard cutoff in the energy will not solve

the above differential flow equation anymore. We can resolve this by subtracting the same partition

function but with the other sign of the root in (3.91). This is again a solution, but (again) with

negative density of states.
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3.4.3 Comments about other topologies

Finally, we discuss the contribution to the path integral of manifolds with different topologies. The

contribution of such surfaces is non-perturbatively suppressed by e−φ0χ(M), where χ(M) is the Euler

characteristic of the manifold.

We start with surfaces with two boundaries of zero genus, where one boundary has the Dirichlet

boundary conditions (3.10) and the other ends on a closed geodesic with proper length b. The

contribution of such surfaces to the partition function, referred to as “trumpets”, has been computed

in the infinite cutoff limit in [37]. We can repeat the method of section 3.2.4 to a spacetime with

the geodesic hole of length b by applying the WdW constraints to the boundary on which we have

imposed the Dirichlet boundary conditions. This constraint gives the trumpet finite cutoff partition

function

Ztrumpet[φb, L, b] =
φL√
L2 − b2

K1

(
−
√
φ2
b(L

2 − b2)
)
. (3.92)

The partition function diverges as L → b, indicating the fact that the boundary with Dirichlet

boundary conditions overlaps with the geodesic boundary.

In order to construct higher genus surfaces or surfaces with more Dirichlet boundaries one can

naviely glue the trumpet to either a higher genus Riemann bordered surface or to another trumpet.

In order to recover the contribution to the partition function of such configurations we have to

integrate over the closed geodesic length b using the Weil-Petersson measure, dµ[b] = db b. However,

if integrating over b in the range from 0 to ∞ for a fixed value of L we encounter the divergence at

L = b.

One way to resolve the appearance of this divergence is to once again consider the non-perturbative

corrections in ε discussed in section 3.4.1 for the trumpet partition function (3.92). We can repeat

the same procedure as in 3.4.1 by accounting for the other WdW branch thus making the density

of states of the “trumpet” real. Accounting for the other branch we find that

Znon−pert.
trumpet [φb, L, b] =

2πφL√
L2 − b2

I1

(√
φ2
b(L

2 − b2)
)
, (3.93)

where we set the density of states for negative energies for the contracting branch to 0. Interestingly,

the partition function (3.93) no longer has a divergence at L = b which was present in (3.92) and
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precluded us previously from performing the integral over b. We could now integrate 18

Znon−pert.
cyl. [φb1 , L1, φb2 , L2] =naive

∫ ∞
0

db bZnon−pert.
trumpet [φb1 , L1, b]Z

non−pert.
trumpet [φb2 , L2, b] , (3.94)

to obtain a potential partition function for the cylinder.19

Besides the ambiguity related to the non-perturbative corrections, there is another issue with the

formula for the cylinder partition function (3.94). Specifically, for any value of the proper length L1

and L2 and for a closed geodesic length b (with b < L1 and b < L2) there exist cylinders for which the

Dirichlet boundaries intersect with the closed geodesic of length b. Such surfaces cannot be obtained

by gluing two trumpets along a closed geodesic as (3.94) suggests when using the result (3.92). Given

that the partition function (3.93) does not have a clear geometric interpretation when including the

contributions from the contracting branch, it is unclear if (3.94) accounts for such geometries. Given

these difficulties, we hope to revisit the problem of summing over arbitrary topologies in the near

future.

As another example of non-trivial topology, one can study the finite cutoff path integral in a disk

with a conical defect in the center. Such defects were previously studied at infinite cutoff in [63].

The answer from the canonical approach is given by

Zdefect[φb, L] =
φL√

L2 + 4π2α2
K1

(
−
√
φ2
b(L

2 + 4π2α2)
)
, (3.95)

where α is the opening angle, and α = 1 gives back the smooth disk wavefunction. This function is

finite for all L.

3.5 de Sitter: Hartle-Hawking wavefunction

As a final application of the results in this chapter, we will study JT gravity with positive cosmological

constant, in two-dimensional nearly dS spaces. We will focus on the computation of the Hartle-

Hawking wavefunction, see [139], and [147]. The results in these references focus on wavefunctions

at late times, with an accurate Schwarzian description. Using the methods in this chapter, we will

be able to compute the exact wavefunction at arbitrary times.

18Alternatively, one might hope to directly use WdW together with the results of [37] for arbitrary genus to directly
compute the partition function at finite cutoff. However, as pointed out in [146], the WdW framework is insufficient
for such a computation; instead, computing the full partition function requires a third-quantized framework which
greatly complicates the computation.

19While unfortunately we cannot compute the integral over b exactly it would be interesting to check whether the
partition function for the cylinder can be reproduced by a matrix integral whose leading density of states is given by
the one found from the disk contribution.
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t

Figure 3.4: Frame in which geometry is rigid dS2. Time runs upwards. We show the wiggly curve where
we compute the wavefunction in blue (defined by its length and dilaton profile).

The Lorenzian action for positive cosmological constant JT gravity is given by

IJT =
1

2

∫
M

√
gφ(R− 2)−

∫
∂M

√
γφK. (3.96)

Following section 3.2.3, we use the ADM decomposition of the metric

ds2 = −N2dt2 + h(dθ +N⊥dt)
2, h = e2σ (3.97)

where now t is Lorenzian time and θ the spatial direction. We will compute the wavefunction of the

universe Ψ[L, φb(u)] as a function of the total proper length of the universe L and the dilaton profile

φb(u) along a spatial slice. The proper spatial length along the boundary is defined by du = eσdθ.

The solution satisfying the gravitational constrains is given by

Ψ+[φb(u), L] =

∫
dMρ(M)e

−i
∫ L
0
du

[√
φ2
b−M+(∂uφb)2−∂uφb tanh−1

(√
1+

φ2
b
−M

(∂uφb)
2

)]
, (3.98)

where the index + indicates we will focus on the expanding branch of the wavefunction. This is

defined by its behavior Ψ+ ∼ e−i
∫ L
0
du φb(u) in the limit of large universe (large L).

To get the wavefunction of the universe, we need to impose the Hartle-Hawking boundary condi-

tion. We will look again to the limit of large L, and for simplicity, we can evaluate it for a constant

dilaton setting ∂uφb = 0 (this is enough to fix the expanding branch of the wavefunction completely).

As explained in [139], one can independently compute the path integral with Hartle-Hawking

boundary conditions in this limit by integrating out the dilaton first. This fixes the geometry to be

rigid dS2, up to the choice of embedding of the boundary curve inside rigid dS2, see figure 3.4. Then

the result reduces to a Schwarzian path integral parametrizing boundary curves, just like in AdS2.
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The final result for a constant dilaton and total length L is given by

Ψ+[φb, L] ∼ e−iφbL
∫
dM sinh (2π

√
M)e

iL M
2φb , Lφb →∞, φb/L fixed. (3.99)

This boundary condition fixes the function ρ(M) in (3.98), analogously to the procedure in section

3.2.4.

Then the final answer for the expanding branch of the Hartle-Hawking wavefunction of JT gravity

is

Ψ+[φb, L] =

∫ ∞
0

dM sinh(2π
√
M)e

−i
∫ L
0
du

[√
φ2
b−M+(∂uφb)2−∂uφb tanh−1

(√
1+

φ2
b
−M

(∂uφb)
2

)]
. (3.100)

The same result can be reproduced for constant values of φb(u) = φb by following the procedure in

section 3.3, writing the extrinsic curvature along the spatial slice as a functional of the Schwarzian

derivative. Following the same steps as in section 3.3.5, one could then recover the wavefunction

(3.100) by computing the Lorentzian path integral exactly, to all orders in cutoff parameter ε.

The procedure outlined so far parallels the original method of Hartle and Hawking [142]. First,

we solve the WdW equation, which for this simple theory can be done exactly. Then, we impose the

constrains from the no-boundary condition. The only subtlety is that, while Hartle and Hawking

impose their boundary conditions in the past, we are forced to impose the boundary condition at

late times. This is a technical issue since the limit L → 0 is strongly coupled. Nevertheless, we

could, in principle, do it at early times if we would know the correct boundary condition in that

regime.

A different procedure was proposed by Maldacena [148]. The idea is to compute the no-boundary

wavefunction by analytic continuation, where one fills the geometry with ‘−AdS’ instead of dS.20

We can check now in this simple model that both prescriptions give the same result. For simplicity,

after fixing the dilaton profile to be constant, one can easily check that the result (3.100) found

following Hartle and Hawking matches with the analytic continuation of the finite cutoff Euclidean

path integral in AdS computed in section 3.3.

For a constant dilaton profile, we can perform the integral to compute the wavefunction

Ψ+[φb, L] =
Lφ2

b

L2 − 4π2 − iε
K2

(
i
√
φ2
b(L

2 − 4π2 − iε)
)
, (3.101)

where the iε prescription is needed to make the final answer well defined (see also section 3.4). This

20For a review in the context of JT gravity see section 2.3 of [139].
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wavefunction satisfies the reduced WdW equation 21

(Lφ− L∂L(L−1∂φ))Ψ[L, φ] = 0. (3.102)

One interesting feature of this formula is the fact that it also satisfies the naive no-boundary condition

since Ψ+[L → 0, φb] → 0. Nevertheless, even though it behaves as expected for small lengths, it

has a divergence at Ldiv = 2π (the Bessel function blows up near the origin). Semiclassically, the

geometry that dominates the path integral when L = 2π is the lower hemisphere of the Euclidean S2

(dashed line in figure 3.4). This is reasonable from the perspective of the JT gravity path integral

since this boundary is also a geodesic, but it would be nice to understand whether this divergence

is unique to JT gravity, or would it also be present in theories of gravity in higher dimensions.

We can also comment on the TT interpretation of dS gravity. For large L it was argued in [139]

that a possible observable in a dual QM theory computing the wavefunction can be Ψ+[L] ∼ Tr[eiLH ],

with an example provided after summing over non-trivial topologies by a matrix integral (giving a

dS version of the AdS story in [37]). We can extend this (before summing over topologies) to a

calculation of the wavefunction at finite L by TT deforming the same QM system. This is basically

an analytic continuation of the discussion for AdS2 given in previous sections.

So far we focused on the expanding branch of the wavefunction following [139]. We can also find

a real wavefunction analogous to the one originally computed by Hartle and Hawking [142], which

we will call ΨHH,real. This is easy to do in the context of JT gravity and the answer is

ΨHH,real[L, φb] =
πLφ2

b

L2 − 4π2
I2

(
i
√
φ2
b(L

2 − 4π2)
)

(3.103)

This wavefunction is real, smooth at L = 2π and also satisfies ΨHH,real[L→ 0, φb]→ 0. We plotted

the wavefunction in Fig. 3.5. For large universes this state has an expanding and contracting branch

with equal weight.

Finally, the results of this section can be extended to pure 3D gravity with positive cosmological

constant Λ = 2/`2. Using Freidel reconstruction kernel, the wavefunction Ψ[e±] satisfying WdW, as

a function of the boundary frame fields e±, is given by

Ψ+[e±] = e
i `

16πGN

∫
e
∫
DE e

−i `
8πGN

∫
E+∧E−

Z(E + e). (3.104)

21This differs from the wavefunction written in [139] since we found a modification in the WdW equation. The
solutions are related by Ψhere = LΨthere. The Klein-Gordon inner product defined in [139] should also be modified
accordingly.
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Figure 3.5: Plot of the wavefuntion ΨHH,real for φb = 1/4. The vertical dashed line indicates the
location, L = 2π, where the expanding branch Ψ+ of the wavefunction (3.101) diverges, but ΨHH,real

remains finite.

This is the most general, purely expanding, solution of WdW up to an arbitrary function of the

boundary metric Z(E). We can fix Ψ+ uniquely by looking at the late time limit, or more accurately,

boundary metrics with large volume. In this limit Freidel formula gives Ψ+[Te±] ∼ eiSc.t.(T,e)Z(e)

for large T . The first term is rapidly oscillating with the volume T at late times and we see the

finite piece is precisely the boundary condition we need Z(e). The path integral calculation of the

finite piece Z(e) was done in [147] for the case of a boundary torus (see their equation 4.121 and also

[149]) and gives a sum over SL(2,Z) images of a Virasoro vacuum character. We leave the study of

the properties of this wavefunction for future work.

3.6 Outlook

JT gravity serves as an essential toolbox to probe some universal features of quantum gravity.

In the context of this chapter, we have shown that the WdW wavefunctional at finite cutoff and

dilaton value in AdS2 agrees with an explicit computation of the Euclidean path integral; this,

in turn, matches the partition function of the Schwarzian theory deformed by a 1D analog of the

TT deformation. Consequently, our computation serves as a check for the conjectured holographic

duality between a theory deformed by TT and gravity, in AdS, at a finite radial distance.

Finite cutoff unitarity

Beyond providing a check, our computations indicate paths to resolve several open problems related

to this conjectured duality. One such issue is that of complex energies that were present when

deforming by TT (both in 1 and 2D), and were also present in the WdW wavefunctional when solely
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accounting for the expanding branch. However, from the WdW perspective, one could also consider

the contribution of the contracting branch, and, equivalently, in the Euclidean path integral, one

could also account for the contribution of non-compact geometries. In both cases, such corrections

are non-perturbative in the cutoff parameter ε or, in the context of TT , in the coupling of the

deformation λ. Nevertheless, we have shown that there exists a linear combination between the two

wavefunctional branches that leads to a density of states which is real for all energies. Thus, this

suggests that a natural resolution to the problem of complex energy levels is the addition of the other

branch, instead of the proposed artificial cutoff for the spectrum once the energies complexify [16].

While the problem of complex energy levels is resolved with the addition of the contracting branch,

a new issue appears: the partition function now has a negative density of states. This new density of

states implies that, even with such a resolution, the partition function is not that of a single unitary

quantum system. In three bulk dimensions, one has a similar state of affairs. The energy levels

again complexify, and the other branch of the solution space can cure this, with the caveat that the

density of states will become negative. A possible resolution consistent with unitarity would be that

the finite cutoff path integral is not computing a boundary partition function but something like an

index, where certain states are weighted with a negative sign.

A related issue that leads to the ambiguity in the choice of branches is that the non-perturbative

piece of the partition function that cannot be fixed by the λ→ 0 boundary condition. This ambiguity

can be cured by putting additional conditions on the partition function. Fixing the λ-derivative of

Znon−pert.
λ (β) does not work, but for instance Znon−pert.

λ (β) → 0 as β → 0 would be enough to

fix the partition function completely. One other possibility, motivated by the bulk, is to fix the

extrinsic curvature K at ε → 0. This will eliminate one of the two branches and, therefore, also ρ̂

in (3.88).22 One can also try to foliate the spacetime with different slices, for instance, by taking

constant extrinsic curvature slices.23 In 3D, this was done explicitly in [151] for a toroidal boundary

and in [152] for more general Rieman surfaces. In particular, for the toroidal boundary, it was

found that the wavefunction in the mini-superspace approximation inherits a particular modular

invariance, and it would be interesting to compare that analysis to the one done in [143].

In the AdS3/CFT2 context, it would also be interesting to understand the non-perturbative

corrections to the partition function purely from the field theory. As the TT deformation is a

particular irrelevant coupling, it is not unreasonable to suspect that such corrections are due to

22However, such a resolution appears to bring back the complex energies.
23Appendix A.1.2, in fact, provides a non-trivial check of the form of the extrinsic curvature K[z(u)] by considering

boundary conditions with fixed extrinsic curvature slices. We will provide further comments about such boundary
conditions in [150].
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instanton effects contributing at O(e−1/λ). The fate of such instantons can be studied using, for

example, the kernel methods [138, 153] or the various string interpretation of TT [154, 155]; through

such an analysis, one could hope to shed some light on the complexification of the energy levels.

Application: Wavefunction of the universe

The techniques presented in this chapter also apply to geometries with constant positive curvature.

We do this calculation in two ways. On one hand we solve the WdW constraint that this wavefunction

satisfies, imposing the Hartle-Hawking boundary condition. On the other hand, we compute the

wavefunction as an analytic continuation from the Euclidean path integral on ‘-AdS’. As expected,

we find that both results match. We also analyze two possible choices to define the wavefunction.

The first solely includes the contribution of the expanding branch and has a pole when the size of

the universe coincides with the dS radius. The second is a real wavefunctional, which includes the

non-perturbative contribution of the contracting branch and is now smooth at the gluing location.

It would be interesting to identify whether this divergence is present in higher dimensions or if it

is special to JT gravity. We also leave for future work a better understanding of the appropriate

definition of an inner product between these states.24 Finally, we outlined how a similar analysis

can be used to find the no-boundary wavefunction for pure 3D gravity with a positive cosmological

constant, the simplest example corresponding to a toroidal universe.

Sum over topologies

An important open question that remains unanswered is the computation of the JT gravity partition

function when including the contribution of manifolds with arbitrary topology. While we have

determined the partition function of finite cutoff trumpets using the WdW constraint, this type of

surface is insufficient for performing the gluing necessary to obtain any higher genus manifold with

a fixed proper boundary length. It would be interesting to understand whether the contribution of

such manifolds to the path integral can be accounted for by using an alternative gluing procedure

that would work for any higher genus manifold.

For the cylinder, we can actually avoid the gluing. From a third quantisation point of view,

one way to think about the cylinder partition function, or double trumpet, is as the propagator

associated to the WdW equation in mini-superspace,

[
−Lφ+ L∂L(L−1∂φ)

]
Ψcylinder(φ, φ

′, L, L′) = δ(L− L′)δ(φ− φ′). (3.105)

24In the limit of large universes, some progress in this direction was made in [139].
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This avoids the integral over b and since the WdW equation (3.105) is just the propagator of a

massive particle in a constant electric field25, we can solve it with standard methods. The resulting

propagator is proportional to a Hankel function of the geodesic distance on mini-superspace, but

does not have the same form as the double trumpet computed in [37] once L,L′, φ and φ′ are taken

large. In fact, it vanishes in that limit. Furthermore, there is a logarithmic divergence when the

geodesic distance in mini-superspace vanishes, i.e. when L = L′ and/or φ = φ′. There are several

reasons for this discrepancy. The obvious one would be that the cylinder is not the propagator in

third quantisation language, but this then raises the question, what is this propagator? Does it have

a geometric interpretation? It would be interesting to understand this discrepancy better and what

the role of the third quantised picture is.

Coupling to matter & generalizations

Finally, it would be interesting to understand the coupling of the bulk theory to matter. When

adding gauge degrees of freedom to a 3D bulk and imposing mixed boundary conditions between

the graviton and the gauge field, the theory is dual to a 2D CFT deformed by the JT deformation

[156].26 In 2D, the partition function of the theory coupled to gauge degrees of freedom can be

computed exactly even at finite cutoff; this can be done by combining the techniques presented

in this chapter with those in [3] 27 . It would be interesting to explore the possibility of a 1D

deformation, analogous to the JT deformation in 2D, which would lead to the correct boundary

dual for the gravitational gauge theory. Since gauge fields do not have any propagating degrees of

freedom in 2D, it would also be interesting to explore the coupling of JT gravity to other forms of

matter.28 In the usual finite cutoff AdS3/TT deformed CFT correspondence, adding matter results

in the dual gravitational theory having mixed boundary conditions for the non-dynamical graviton

[158]. Only when matter fields are turned off are these mixed boundary conditions equivalent to the

typical finite radius Dirichlet boundary conditions. In 2D this was done for the matterless case in

[71] and it would be interesting to generalise this to include matter.

25In the coordinates u = φ2 and v = L2, (3.32) reduces to
(
∂u∂v − 1

4
− 1

2v
∂u
)

Ψ = 0. This is the KG equation for

m2 = 1/2 and external gauge field A = i
2v
dv. Notice that the mini-superspace is Lorentzian, whereas the geometries

Ψ describes are Euclidean.
26Here, JT is a composite operator containing J , a chiral U(1) current, and T , a component of the stress tensor.
27Another possible direction could be to understand the result for 2D gravity as a limit of 3D (either for near

extremal states [84] or in relation to SYK-like models [157]).
28One intriguing possibility is to couple JT gravity to a 2D CFT. The effect of the CFT on the partition function

has been studied in [36, 4] through the contribution of the Weyl anomaly in the infinite cutoff limit. It would be
interesting to see whether the effect of the Weyl anomaly can be determined at finite cutoff solely in terms of the
light-cone coordinate z(u).
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Chapter 4

Coupling to gauge fields

4.1 Outline of results

As emphasized in the introduction, the geometry of the near-horizon region in near-extremal black

holes is universal: as we approach the horizon there is an AdS2 throat with a slowly varying internal

space. The low-energy behavior of such black holes is expected to arise from the near-horizon

region which, in turn, can be captured by a two-dimensional effective gravitational action coupled

to Yang-Mills theory1

SEJTYM =− 1

2
φ0

∫
M
d2x
√
gR− 1

2

∫
M
d2x
√
g φ(R+ 2)

−
∫
M
d2x
√
g gµηgνρ

(
1

4e2
+
φ0 + φ

4e2
φφ0

)
TrFµνFηρ + Sboundary(g, φ,A) . (4.1)

As we will rigorously show in the next chapter, the action (4.1) captures all the massless degrees of

freedom that can generically arise in such an effective description.2 The first line in (4.1) describe the

bulk terms in pure Jackiw-Teitleboim (JT) gravity [38, 39], with a cosmological constant normalized

to Λ = −2. The dilaton φ0 + φ parametrizes the size of the internal space and is split into two-

1It is instructive to consider how the action (4.1) arises from the dimensional reduction to AdS2 in a specific
example of near-extremal black holes. The dimensional reduction of the near-horizon region in Reissner-Nordström
black holes in flat space is discussed extensively in the review [90]. The inclusion (in asymptotically flat or AdS4

space) of the Maxwell field under which the black hole is charged is discussed in [88, 92, 97], while the addition of the
massless gauge degrees of freedom appearing due to the isometry of the S2 internal space is discussed in [89, 92].

2Through-out this chapter we solely work with the action (4.1) written in Euclidean signature. Above, gµν is the
metric, R is the scalar curvature (here we use the notation R for the scalar curvature which should not be confused
with the notation R for unitary irreducible representations of G which will be used shortly) and Fµν is the field
strength associated to the gauge field Aµ. Further details about the conventions in (4.1) will be discussed in the
beginning of section 4.2. Details about the integration contours for the fields are also discussed in that section and
the meaning of the φ integral contour in the context of the low energy effective action of near-extremal black holes is
discussed in footnote 10.
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parts: φ0 parametrizes the size of the internal space at extremality, while φ gives the deviation from

this values. While generically, the dimensional reduction on the internal space gives rise to a more

complicated dependence in the action of the dilaton field φ0 + φ, because we are solely interested in

describing the near-horizon region close to extremality, we may assume that φ� φ0. Consequently,

we can linearize the potential for the dilaton field to obtain the effective gravitational action (4.1)

which is linear in the deviation φ.

The gauge fields that appear in (4.1) through the field strength F = dA−A∧A have two possible

origins: (i) they are present in the higher dimensional gravitational theory, and the near-extremal

black hole could, for instance, be charged under them; for example, for Reissner-Nordström black

holes in AdS4 or in flat space, the U(1) Maxwell field under which the black hole is charged is also

present in the dimensionally reduced theory; (ii) the fields can arise from the dimensional reduction

on the internal space, in which case, the gauge group is given by the isometry of this space; including

such degrees of freedom in the effective action describes the behavior of the black hole beyond the

S-wave sector [92].3

As mentioned in the introduction, beyond appearing in the effective action that describes the

dimensional reduction of the near-horizon region of such black holes, pure JT gravity serves as a

testbed for ideas in 2D/1D holography and quantum gravity. For instance, when solely isolating

contributions from surfaces with disk topology, the quantization of pure JT gravity can be shown to

be equivalent to that of the Schwarzian theory [29, 37]; in turn, this 1d model arises as the low-energy

limit of the SYK model [159, 160, 28, 20]. When considering the quantization of the gravitational

theory on surfaces with arbitrary topology, the partition function of the theory can be shown to

agree with the genus expansion of a certain double-scaled matrix integral [37, 113]. The solubility of

pure JT gravity is due, in part, to the fact that the bulk action can be re-expressed as a topological

field theory [54, 55, 161, 37, 1]. Consequently, all bulk observables in the purely gravitational theory

are invariant under diffeomorphisms and can oftentimes be shown to be equivalent to boundary

observables directly at the level of the path integral. The addition of the Yang-Mills term in (4.1)

provides an additional layer of complexity for a theory of 2d quantum gravity since the bulk action

is no longer topological. Consequently, there is a richer set of diffeomorphism invariant observables

that could be explored in the bulk.

In this chapter, we present an exact quantization of the gravitational theory (4.1), for an arbitrary

choice of gauge group G and gauge couplings, e, and eφ.4 By combining techniques used to quantize

3Depending on the origin of the gauge fields, the couplings e and eφ can be related to the value of the dilaton at
extremality φ0.

4The bulk term in (4.1) is equivalent in the first order formalism to a Poisson-sigma model. The quantization
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pure JT gravity and the Schwarzian theory [38, 39, 37, 1], together with known results from the

quantization of 2D Yang-Mills [108, 109, 102, 103, 110, 111, 104, 112], we derive the partition

function of the new gravitational gauge theory (4.1) for surfaces with arbitrary genus. While in this

chapter we mainly focus on performing the gravitational path integrals over orientable manifolds,

our derivation can be easily generalized to the unorientable cases discussed in [113], and we outline

the ingredients necessary for this generalization.

The derivation of the partition function depends on the choice of boundary conditions for the

metric, dilaton and gauge field. In turn, this choice fixes the boundary term Sboundary(g, φ,A) needed

in order for (4.1) to have a well-defined variational principle. For the metric and dilaton field, we

solely set asymptotically AdS2 Dirichlet boundary conditions [25],

guu|bdy. =
1

ε2
, φ|bdy. =

φb
ε
, (4.2)

where u ∈ [0, β] is a variable that parametrizes the boundary, whose total proper length is fixed,∫ β
0
du
√
guu = β/ε. In this chapter, we analyze the limit ε → 0 which implies that we are indeed

considering surfaces which are asymptotically AdS2.5 However, for the gauge field, we study a

variety of boundary conditions for which the gravitational gauge theory (4.1) will prove to be dual

to different soluble 1d systems.

Specifically, when solely focusing on the contribution to the path integral of surfaces with disk

topology, we find that with the appropriate choice of boundary conditions for the gauge field, the

theory (4.1) is equivalent to the Schwarzian theory coupled to a particle moving on the gauge group

manifold. Based on symmetry principles, one expects such a theory to arise in the low energy limit

of SYK or tensor models with global symmetries [166, 167, 168, 169, 170, 171, 172, 173, 174]. For

instance, the low-energy limit of the complex SYK model with a U(1) global symmetry can be

described by the Schwarzian coupled to a U(1) phase-mode [166, 167, 97]; on the gravitational side,

such a theory arises from (4.1) when fixing the gauge group to be U(1) [89, 92, 97].

When considering the path integral over surfaces with arbitrary genus, we find that the partition

function of the gravitational gauge theory can equivalently be described in terms of a collection

of double-scaled matrix integrals. Each matrix is associated with a unitary irreducible representa-

tion of the gauge group, and the size of that matrix is related to the dimension of its associated

representation. Yet another equivalent description of this matrix integral, and consequently of the

of such theories was studied in the first order formalism in [162, 163] and in [164] for manifolds with boundary.
Nevertheless, the quantization of the Euclidean gravitational theory (in which a sum over all genera is required) or
its relation to matrix integrals has not been previously discussed in the literature.

5An analysis for any value of ε is forthcoming [165].
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gravitational theory, can be obtained by considering Hermitian matrices whose elements are not

regular complex numbers,6 but instead are functions which map group elements of G to complex

numbers. Such matrix elements are given by the complex group algebra C[G].7 This construction

can easily be extended to include the contribution of unorientable manifolds by studying the same

matrix integral, this time considering symmetric matrices whose elements are functions mapping

group elements of G to real numbers (i.e., the real group algebra R[G]).

Beyond, our computation of partition functions, we construct several diffeomorphism invariant

bulk observables, compute their expectation value in the weakly coupled limit and discuss their

boundary dual. One such observable is obtained by coupling the gauge field to the world-line action

of a charged particle (for instance, a quark) moving on the surfaceM in (4.1). The resulting operator

is a generalization of the Wilson lines from pure Yang-Mills theory to a non-local diffeomorphism

invariant operator in the gravitational gauge theory (4.1). Studying such observables is crucial for

understanding the coupling of (4.1) to charged matter. From the perspective of the effective theory

describing the aforementioned black holes, such charged matter fields can arise from the Kaluza-

Klein reduction on the internal space and can play an essential role in the low-energy behavior of

near-extremal black holes [92].

The remainder of this chapter is organized as follows. In section 4.2 we discuss the preliminaries

needed for the quantization of the theory with action (4.1). As a warm-up problem which emphasizes

the role of boundary conditions in the gauge theory, we start by discussing the simple case in which

the gauge theory is weakly coupled. In section 4.3 we move on to discuss the case of general coupling,

compute the partition function of the gravitational gauge theory on surfaces with disk topology,

and describe the dual boundary theory. In section 4.4, we compute the partition function of the

gravitational theory on surfaces with arbitrary genus, g, and an arbitrary number of boundaries, n.

Next, we show how this result can be obtained from the genus expansion of the previously introduced

matrix integrals. We discuss the construction of several diffeomorphism invariant observables in

section 4.5 and compute their expectation values in a variety of scenarios. Finally, in section 4.6 we

summarize our results and discuss future research directions.

6In the case in which the path integral is solely over orientable manifolds.
7We thank H. Verlinde for providing the unpublished pre-thesis work of A. Solovyov [175] and for suggesting the

useful mathematical references [176, 177, 178]. While these works focus on an analysis of matrix integrals in the case
of discrete groups, they proved to be a valuable source of inspiration for our analysis of gauge theories whose gauge
groups are compact Lie groups.
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4.2 Preliminaries and a first example

Before, proceeding with the quantization of theory (4.1), we first recast the bulk action into a more

convenient form, by introducing the field φ as a G-adjoint valued zero-form [103]. The path integral

associated to the action (4.1) can be rewritten as:

ZJTYM =

∫
DgµνDφDAe

−SE [φ,gµν ,A]

=

∫
DgµνDφDφDA exp

[
1

2
φ0

∫
M
d2x
√
g R+

1

2

∫
M
d2x
√
g φ(R+ 2)

+

∫
M
iTrφF +

1

2

∫
M
d2x
√
g

(
e2e2

φ

e2(1 + φ
φ0

) + e2
φ

)
Trφ2 + Sboundary(g, φ,A)

]
. (4.3)

Throughout the chapter, we use Tr (. . . ) to denote the trace in the fundamental representation of

the group G. The trace in the fundamental representation can be explicitly expressed in terms of

the G generators T i, normalized such that Tr (T iT j) = Nηij , where N is the Dynkin index and ηij

is chosen such that ηij = diag(−1, . . . , −1). The trace in all representations R of the gauge group

G is denoted by χR(. . . ).

After (once again) considering the limit in which φ � φ0, the action appearing in (4.3) can be

rewritten as,

SEJTYM = −1

2
φ0

∫
M
R− 1

2

∫
M
φ(R+ 2)−

∫
M
iTrφF − 1

2

∫
M
d2x
√
g (ẽ− ẽφφ) Trφ2

+ Sboundary(g, φ,A) , (4.4)

where,

ẽ ≡
e2e2

φ

e2 + e2
φ

, ẽφ ≡
e2
φe

4

φ0(e2 + e2
φ)2

. (4.5)

In the remainder of this chapter we solely use ẽ and ẽφ and we will quantize the theory (4.4) without

making any assumptions about these two gauge couplings.

As previously mentioned, in order to compute the partition function (4.3) we need to specify the

boundary term Sboundary(g, φ,A) which is needed in order for the theory to have a well-defined vari-

ational principle. When considering the boundary condition (4.2) for the metric and the dilaton field,

one needs to include a Gibbons-Hawking term in Sboundary(g, φ,A) ⊇ −
[
φ0

∫
∂M du

√
guuK +

∫
∂M du

√
guu φ(K − 1)

]
.

Here, K is the boundary extrinsic curvature.

For the gauge field, we can, for instance, consider Dirichlet boundary conditions, in which we fix
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the value of the gauge field along the boundary, δAu = 0. Equivalently, due to the invariance of the

partition function under large gauge transformations, instead of fixing Au|∂M = Au(u) all along the

boundary,8 we solely need to fix the holonomy around the boundary9

h ≡ P exp

(∮
∂M
Aa Ta

)
(Dirichlet) . (4.6)

As we will explain shortly, the states obtained by performing the path integral on surfaces with disk

topology and fixed boundary holonomy h, span the entire Hilbert space associated to Yang-Mills

theory; as we exemplify shortly, we can always compute correlators in the presence of a different set

of boundary conditions for the gauge field, by inserting a boundary condition changing defect [1] in

the theory with Dirichlet boundary.

With Dirichlet boundary conditions for the gauge field and the boundary conditions (4.2) for

the metric and dilaton, no other boundary term besides the Gibbons-Hawking term is needed in

order for the theory to have a well-defined variational principle. Thus, the action (4.4) can finally

be recasted as,

SEJTYM
Dirichlet

=− 2π φ0χ(M)−
[

1

2

∫
M
d2x
√
g φ(R+ 2) +

∫
∂M

du
√
guuφ(K − 1)

]
−
[∫
M
iTrφF +

1

2

∫
M
d2x
√
g (ẽ− ẽφφ) Trφ2

]
, (4.7)

where χ(M) is the Euler characteristic of the manifoldM, which appears due to the Gauss-Bonnet

relation 1
2

∫
M
√
gR+

∫
∂MK = 2πχ(M). From here on, we denote S0 = 2πφ0 and eS0 serves as the

genus expansion parameter when discussing path integral over surfaces with arbitrary genus.

Our goal is thus to quantize the theory with action (4.7) and theories related to (4.7) by a

change of boundary conditions for the gauge field. Towards that scope, it is first useful to discuss

the symmetries of the problem in the weak gauge coupling limit ẽ and ẽφ → 0. In this case the

theory becomes topological: the third-term in the action (4.4) describes a BF topological theory and

in fact, as previously mentioned, the bulk JT gravity action itself, can also be recast as a BF theory

whose gauge algebra is sl(2,R) [54, 55, 161, 37, 1]. This limit proves useful for understanding the

boundary dual of the gravitational theory in a simpler setting and for the computation of various

diffeomorphism invariant observables in section 4.5. Therefore, as a warm-up, we discuss it first in

the next subsection.

8Here, we take Au(u) to be an arbitrary periodic function on the thermal circle.
9We, however, need to fix gauge transformations on the boundary in section 4.5.3, when discussing correlators of

boundary anchored Wilson lines.
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4.2.1 A warm up: the weakly coupled limit on the disk topology

Because in the weakly coupled limit, the gauge theory is topological, we can proceed by separately

computing the path integral for the pure JT sector and the gauge theory sector. Thus, we first

review the computation of the path integral in JT gravity following [29, 37]. By integrating out

the dilaton field φ along the contour φ = φb/ε + iR,10 we find that the curvature of the surfaces

considered in the path integral is constrained:

ZJT =

∫
Dgµνe

∫
∂M du

√
guu

φb
ε K[gµν ] δ(R+ 2) . (4.8)

The remaining path integral is thus solely over the boundary degrees of freedom of AdS2 patches. In

order to simplify the path integral over the boundary degrees of freedom, we consider parametrizing

the AdS2 patches by using Poincaré coordinates, under which the boundary condition for the metric

becomes

ds2 =
dF 2 + dz2

z2
, guu|bdy. =

(F ′)2 + (z′)2

z2
=

1

ε2
, (4.9)

where the boundary is parametrized using the variable u, with F ′ = ∂F/∂u. Solving the latter

equation to first order in ε, we find z = εF ′+O(ε2). Since z(u) is small in the ε→ 0 limit, the path

integral is thus indeed dominated by asymptotically AdS2 patches. In this set of coordinates, the

extrinsic curvature can be expressed as

K[F (u), z(u)] =
F ′(F ′2 + z′2 + zz′′)− zz′F ′′

(F ′2 + z′2)3/2
= 1 + ε2 Sch(F, u) +O(ε3) . (4.10)

Thus, (4.8) can be rewritten as a path integral over the boundary coordinate F (u)

Zdisk
JT (φb, β) = ZSchw.(φb, β) = eS0

∫
DF eφb

∫ β
0
{F (u),u} , DF =

∏
u∈∂M

dF (u)

F ′(u)
. (4.11)

10To understand the meaning of this contour in the context of the near-extremal black hole effective action it is
useful to review how the integral over φ behaves in Lorentzian signature. In that case, the contour for φ is restricted
from −φ0 to ∞, due to the fact that the internal space should have a positive volume (φ + φ0 > 0). In the limit
considered in this chapter, φ0 → ∞, the integral over φ indeed converges to δ(R + 2) in a distributional sense. To
make this statement precise we could keep track of the higher powers of the dilaton in the action, whose coefficients
are suppressed in φ0, and vanish in the limit φ → ±∞. Then, the path integral over φ would be peaked around the
configurations where R = −2 +O(1/φ0). When in Euclidean signature, we have to analytically continue φ along the
complex axis in order to get a convergent answer, still peaked around R = −2 + O(1/φ0). While such a contour for
φ does not have a nice geometric meaning when relating φ + φ0 to the volume of the internal space, it isolates the
same type of constant curvature configurations in Euclidean signature as those that dominate in the Lorentzian path
integral. We thank R. Mahajan and D. Kapec for useful discussions about this point.
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where the measure DF is obtained by using the symplectic form over flat gauge connections in the

sl(2,R) BF theory rewriting of JT gravity [37]. The path integral (4.11) can be computed by using

localization and has been found to be one-loop exact [25]. The solution obtained from localization

is given by

Zdisk
JT (φb, β) = ZSchw.(φb, β) = eS0

∫
ds

s

2π2
sinh(2πs)e

− βs
2

2φb = eS0
φ

3/2
b e

2π2φb
β

(2π)1/2β3/2
, (4.12)

where one can consequently read-off the density of states for the Schwarzian theory:

ρ0(E) =
φb

2π2
sinh(2π

√
2φbE) . (4.13)

We now move on to describing the gauge theory side. With Dirichlet boundary conditions, the

disk partition function is trivial, ZBF (h) = δ(h) and, consequently, ZJTBF (h) = ZSchw.δ(h). In

order to obtain a non-trivial result, the boundary conditions imposed on the gauge field need to

explicitly break invariance under arbitrary diffeomorphisms in the topological theory. One such

boundary condition is obtained by relating the value of the gauge field on the boundary to the

zero-form field φ

Au|∂M −
√
guuiεẽbφ|∂M = Au (mixed) , (4.14)

for some constant Au. We label this class of boundary conditions as “mixed”.

In order for the action to have a well-defined variational principle, one needs to add

Sgauge
boundary[φ,A] =

i

2

∫
∂M

duTrφAu , (4.15)

to the aforementioned Hawking-Gibbons term specified in (4.7). As in pure JT gravity, we can

reduce the BF path integral to an integral over boundary degrees of freedom, whose action is given

by (4.15). The integral over the zero-form field φ in the bulk, restricts the path integral to flat gauge

connections, with A = q−1dq, where q is a function mapping M to group elements of G. Plugging

in this solution for A into the boundary term (4.15) and using the boundary condition (4.14), we
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find that

Zdisk
BF

mixed
(β, h) = ZG(β, h) =

∫
Dq e

1
2εẽb

∫ β
0
du
√
guug

uuTr [(q−1∂uq)
2+Au(q−1∂uq)] ,

Zdisk
JTBF
mixed

(φb, β, h) = ZSchw.(φb, β)ZG(β, h) . (4.16)

Just like in the case of the pure JT gravity path integral, the measure for the boundary degree of

freedom Dh is obtained from the symplectic form in the BF theory with gauge group G.

The path integral in (4.16) describes a particle moving on the G group manifold, whose partition

function we denote as ZG(β,Au); as we will explain shortly, Au serves as a background gauge field

for one of the G symmetries present in this theory.

4.2.2 Reviewing the quantization of a particle moving on a group mani-

fold

To proceed, we briefly review the quantization of a particle moving on a group manifold G [179,

180, 181], in the presence of an arbitrary 1d background metric and of a G background gauge field.

In order to do so it is again useful to introduce a Lagrange multiplier ααα, valued in the adjoint

representation of G. The path integral (4.15) can be rewritten as

ZG(β, h) =

∫
DqDααα e

∫ β
0
du
(
iTr (ααα q−1DAq)+

√
guu

ε ẽb
2 Tr ααα2

)
, DAq = ∂uq + qAu . (4.17)

At this point it proves useful to turn-off the background Au and analyze the symmetries of the action

appearing in (4.17). Firstly, we note that (4.17) is invariant under reparametrizations, u → F (u)

and thus, instead of using the variable u we can also use the AdS2 boundary coordinate F (u)

to describe the action in (4.17).11 Furthermore, for an arbitrary choice of parametrization of the

boundary, such that guu(u) is an arbitrary function of u, we can always perform a diffeomorphism

and assume a constant boundary metric guu, as in the boundary condition (4.2). Invariance under

such diffeomorphisms also implies that the temperature dependence of the partition function appears

as ZG(ẽb, β, Au) = ZG(ẽbβ, Au).

Expanding q(u) around a base-point, with q(u) = ex
a(u)Taq(u0) we find that the canonical

11This is oftentimes done when discussing the low energy behavior of SYK models with global symmetries. For
instance, this appears when coupling the Schwarzian to a phase mode [89, 171, 92, 97, 174].
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momenta associated to xa(u) in the action in (4.17) are given by

πxi = Tr (Tiqαααq
−1) , (4.18)

which are in fact the generators of the G symmetry which acts by left multiplication on q, as

q → Uq and ααα → ααα. Similarly, one finds that the generators of the G symmetry that acts by right

multiplication on q, as q → q U and ααα → U−1αααU are simply given by αααi. The background Au,

which appeared in the choice of mixed boundary conditions (4.14), gauges the right acting copy of

the symmetry group G (alternatively, we could choose to background gauge the left acting copy).

The Hamiltonian is time dependent and is given by H(u) = εẽb
√
guuTrααα2/4. In turn, this is

proportional to the quadratic Casimir associated to G, given by

Ĉ2

N
= −η

ijπxiπxj

N
= Tr (ααα2) =

4H(u)

εẽb
√
guu

. (4.19)

The Hilbert space of the theory, HG, is given by normalizable functions on the group manifold

that are spanned by the matrix element of all unitary irreducible representations R, UnR,m(h). By

definition, such states of course transform correctly under the action of the left- and right- acting G

symmetry groups. Namely, we take the generators of the G symmetry that acts by left multiplication

to act on the left index, n, and those of the right-acting symmetry to act on m. Such states are

also eigenstates of the Hamiltonian with Ĉ2 U
n
R,m(h) = C2(R)UnR,m(h). Thus, the thermal partition

function at inverse-temperature β associated to the action (4.17) is given by,12

ZG(β) = TrHGe
−
∫ β
0
H(u)du =

∑
R

(dimR)2e−
εẽbC2(R)

4N
∫ β
0
du
√
guu =

∑
R

(dimR)2e−
βẽbC2(R)

4N . (4.20)

Here, the sum is over all unitary irreducible representations R of the gauge group G. Because we

will encounter this situation when discussing the boundary dual of gravitational Yang-Mills theory,

we note that if we replace Trααα2 by a general function V̂ (ααα) (that preserves the G symmetries by

being a trace-class function) in the action in (4.17), the resulting theory has a Hamiltonian that

can always be expressed in terms of the Casimirs of the group G. Thus, in the partition function,

the eigenvalue C2(R) of the quadratic Casimir is replaced by a function V (R) that can be easily be

related to V̂ (ααα).13

12Note that the path ordering which is needed in (4.20) does not affect the exponentiated integral since the
Hamiltonian is always proportional to the Casimir of G and, therefore, commutes with itself at any time.

13For instance, when G = SU(2) or SO(3), all higher-order Casimirs can be expressed in terms of powers of

the quadratic Casimir and, consequently, the potential can always be expressed as V̂ (ααα) ≡ Ṽ (Trααα2). In this case
V (R) = Ṽ (C2(R)).
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We now re-introduce the background gauge field A which appeared through the boundary con-

dition (4.14), to obtain the partition function of (4.17) in the more general case. Just like in the

case of Yang-Mills theory with Dirichlet boundary conditions, the action in (4.17) is invariant un-

der background gauge transformations and, consequently, the partition function depends solely on

the holonomy of the background A, h = P exp(
∮
A) through trace-class functions. The insertion

of such a background is equivalent to adding a chemical potential for the left-acting G-symmetry,

that exponentiates the associated charges of the left G-symmetry to a G group element in the same

conjugacy class as h. Thus, the partition function (4.17) becomes

ZG(β, h) = TrH

(
h e−

∫ β
0
H(u)du

)
=
∑
R

(dimR)χR(h)e−
ẽbβC2(R)

4N , (4.21)

where χR(h) are the characters of the group element h associated to the representation R. Similarly,

in the theory whose potential is V̂ (ααα), the partition function is given by

Z V̂G (β, h) =
∑
R

(dimR)χR(h)e−ẽbV (R)
∫ β
0
du
√
guu =

∑
R

(dimR)χR(h)e−ẽbβV (R) . (4.22)

Thus, to summarize, in the weak gauge coupling limit, we have found that the gravitational gauge

theory (4.1) is equivalent to the Schwarzian theory decoupled from a particle moving on the gauge

group manifold. Its partition function, with boundary conditions (4.2) for the metric and dilaton

and (4.14) for the gauge field, is given by

Zdisk
JTBF
mixed

(φb, β, h) = eS0

(∫
ds

s

2π2
sinh(2πs)e

− βs
2

2φb

)[∑
R

dimRχR

(
Pe
∫
Au
)
e−

ẽbβC2(R)

4N

]
. (4.23)

4.2.3 Reviewing the quantization of 2d Yang-Mills

While in the weakly coupled limit we were able to directly reduce the bulk path integral to a

boundary path integral, since the theory is not topological at non-zero gauge coupling, this cannot

be easily done more generally. Thus, it proves instructive to reproduce the partition function (4.23)

by performing the path integral directly in the bulk.

Before performing the bulk path integral, it is useful to review the well known quantization

of the gauge theory [108, 109, 102, 103, 110, 111, 104, 112], when fixing the metric gµν and the

dilaton as backgrounds. Thus, we seek to quantize Yang-Mills theory, SEYM = −
∫
M iTrφF −

1
2

∫
M d2x

√
gj(x)Trφ2, where j(x) ≡ ẽ − ẽφφ(x) is an arbitrary source for the operators Trφ2.14

14In this chapter, we omit the possibility of adding a θ-angle for the gauge field. This will be discussed in the study
of the weak gauge coupling limit [182].
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The source j(x) can be absorbed by changing the surface form d2x
√
g. Due to the fact that the

theory is invariant under local area preserving diffeomorphisms, the partition function can thus

solely depend on the dimensionless quantity a =
∫
M d2x

√
g j(x). It is therefore sufficient to review

the quantization of the theory on a flat manifold with area ã and coupling e2
YM, such that a = e2

YMã.

The quantization of this theory is similar to that of the particle moving on the gauge group

manifold discussed in the previous subsection and, for pedagogical purposes, it is useful to emphasize

these similarities. When using the Dirichlet boundary conditions (4.6) the partition function of the

gauge theory is a trace-class function of h and thus it is spanned by characters of the group χR(h).

Consequently, the characters χR(h) can be viewed as a set of wavefunctions which span the Hilbert

space HYM of the gauge theory.

The partition function on a manifold with arbitrary genus g and an arbitrary number of bound-

aries n can be computed using the cutting and gluing axioms of quantum field theory and by solely

using the partition function of the gauge theory on the disk with the Dirichlet boundary condition

(4.6). As previously mentioned, in the limit a → 0 the gauge theory becomes topological. In this

limit, the integral over φ imposes the condition that A is a flat connection, which yields h = e (where

e is the identity element of G), so [103]

lim
a→0

Zdisk
YM (a, h) = δ(h) =

∑
R

dimRχR(h) , (4.24)

where δ(h) is the delta-function on the group G defined with respect to the Haar measure on G,

which enforces that
∫
dh δ(h)x(h) = x(e). This is the same as the partition function of the particle

moving on the G group manifold (4.20) in the limit ẽb → 0.

For non-zero a, note that the canonical momentum conjugate to the space component of the

gauge field Ai1(x) is φi(x), and thus the Hamiltonian density is just H =
e2YM

4 Tr (φiT
i)2. It then

follows, from πi = −iNφi, that H = − e
2
YM

4N ηijπiπj . Using πj = δ

δAj1
, each momentum acts on the

wavefunctions χR(g) as πiχR(h) = χR(Tih). It follows that the Hamiltonian density acts on each

basis element of the Hilbert space χR(g) diagonally with eigenvalue e2
YMC2(R)/(4N ) [104], where

C2(R) is the quadratic Casimir, with C2(R) ≥ 0 for compact groups. Note that the Hamiltonian of

the gauge theory is therefore closely related to that of the particle moving a group manifold (4.19).

One then immediately finds

Zdisk
YM (a, h) =

∑
R

dimRχR(h)e−
e2YMãC2(R)

4N =
∑
R

dimRχR(h)e−
C2(R)

4N
∫
d2x
√
gj(x) . (4.25)
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Following from the relation between the Hamiltonian of the gauge theory and that of a particle

moving on the G group manifold, we of course find that (4.25) agrees with (4.21) for the appropriate

choice of ẽb or j(x).

The partition function of Yang-Mills theory on an orientable manifold Mg,n of genus g, with n

boundaries, can be obtained by gluing different segments on the boundary of the disk [102, 103, 110,

111, 104]. This is given by

Z
(g,n)
YM (a, h1, . . . , hn) =

∑
R

(dimR)χ(Mg,n)χR(h1)χR(g2) . . . χR(hn)e−
C2(R)

4N
∫
d2x
√
gj(x) . (4.26)

With these results in mind, we can therefore proceed with the analysis of the simplified case of

obtaining the contribution to the path integral of the disk topology in the weakly coupled limit by

directly performing the path integral in the bulk.

4.2.4 Quantization with a boundary condition changing defect

To determine the partition function with the boundary condition (4.14) we consider a boundary

changing defect

SEDefect[g, φ] = −εẽb
2

∫
I

du
√
guuTrφ2 , (4.27)

which we can insert along a contour I which is arbitrarily close to the boundary ∂M. We now show

that the boundary condition changing defect indeed implements the change of boundary conditions

from Dirichlet to those listed in (4.14). By integrating the equation of motion obtained from the

variation of φ at the location of defect on an infinitesimal interval in the direction perpendicular to

the defect we find,

Au|∂M −Au|I = −i√guuεẽbφ|I , (4.28)

where Au|∂M is the gauge field on the boundary onM that is fixed when using Dirichlet boundary

conditions for the action, Au|I is the gauge field in the immediate neighborhood inside of the defect

and φ|I is the value of the zero-form field on the defect. Moving Au|I to the RHS and setting

Au|∂M = Au, we reproduce the boundary condition (4.14). Thus, the theory with the defect and

Dirichlet boundary conditions should reproduce the results in the theory without the defect and

with the boundary condition (4.14) for the gauge field.
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As we further exemplify in section 4.5, the advantage of using the description of the BF theory

in the presence of the defect (4.27) is that the expectation value of any observable can easily be

computed by using standard techniques in 2d Yang-Mills theory. For example, when computing

the partition function of the theory with the defect (4.27) on a disk, we can use (4.25) setting

j(x) ∼ δ(x− xI) and h = P exp(
∫
∂MA), to find that

Zdisk
BF

mixed
(β, h) =

∑
R

dim(R)χR(h)e−
ẽbβC2(R)

4N . (4.29)

Using this result together with the reduction of the JT gravity path integral on a disk to that of the

Schwarzian, we find the result (4.23). Moving forward, we fix the normalization of the Casimir by

fixing the Dynkin index, N ≡ 1/2.

More generally, we can consider adding a defect which depends on a general gauge invariant

potential V̂ (φ), SDefect[g, φ] = −
∫
I
du
√
guu εV̂ (φ). In this case, the boundary condition which

the gauge field needs to satisfy is again given by the φ equation of motion, which implies that

(Au − iε∂V̂ (φ)/∂φ)|∂M = Au. The quantization of Yang-Mills theory with such a general potential

was discussed in [111, 112] and closely follows the quantization of a particle moving on a group

manifold with the general potential V̂ (ααα) discussed in the previous subsection. In fact the result for

the bulk partition function

Zdisk
BF

mixed V̂ (φ)

(β, h) =
∑
R

dim(R)χR(h)e−ẽbβV (R) (4.30)

agrees with the partition function (4.22) obtained by considering a particle moving on the G group

manifold with a potential V̂ (ααα) and in the presence of the background gauge field Au. Therefore,

we obtain the first general equivalence which we schematically present in figure 4.1.

Schwarzian and a particle moving
on G with potential V̂ (ααα)

JT gravity with a BF theory

and b.c. δ(Au + i∂V̂ (φ)
∂φ )|∂M = 0

Figure 4.1: Schematic representation of the equivalence between the gravitational gauge theory at
weak gauge coupling and the Schwarzian decoupled from a particle moving on the group manifold
G.
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4.3 Disk partition function

4.3.1 2D Yang-Mills theory with Dirichlet boundary conditions

We finally arrive at the quantization of the theory (4.1) for arbitrary gauge group and gauge cou-

plings, when fixing the boundary conditions to (4.2) for the metric and dilaton and when using

Dirichlet boundary conditions for the gauge field Au|bdy. = Au. Using (4.26) for χ(M) = 1,

j(x) = ẽ− ẽφφ(x) and setting h = P exp(
∫
∂MA), we find that after integrating out the gauge field

Aµ and the zero-form field φ, the partition function is given by15

Z disk
JTYM

Dirichlet
(φb, β, h) =

∫
DgµνDφe

−SJT [gµν , φ]

(∑
R

dim(R)χR(h)e−
C2(R)

∫
M d2x

√
g[ẽ−ẽφφ]

2

)

= eS0

∑
R

dim(R)χR(h)

∫
DgµνDφe

1
2

∫
M d2x

√
g φ(R+2+ẽφC2(R))

× e−
ẽC2(R)

2

∫
M d2x

√
g+
∫
∂M du

√
guuφ(K−1), (4.31)

where the couplings ẽ and ẽφ are related to the initial couplings by (4.5). We can now view the

terms in the exponent in (4.31) as coming from an effective action for each representation R of the

gauge group.

Integrating out the dilaton field φ, we once again find that the path integral localizes to AdS2

patches, whose cosmological constant is now given by Λ̃ = −2 − ẽφC2(R) and whose boundary

degrees of freedom is the sole remaining dynamical degrees of freedom in the path integral. Thus,

we are summing over AdS2 patches whose curvatures depend on the representation sector from the

sum in (4.31).

After integrating out the dilaton field φ one can rewrite the remaining area term ẽ
∫
M d2x

√
g

using the Gauss-Bonnet theorem

ẽ

∫
M
d2x
√
g = − ẽ

2 + ẽφC2(R)

∫
d2x
√
gR =

ẽ

1 +
ẽφC2(R)

2

[∫
∂M

√
hK − 2πχ(M)

]
, (4.32)

where for the disk, the Euler characteristic is χ(M) = 1. Thus, the path integral becomes,

Z disk
JTYM

Dirichlet
(φb, β, h) = eS0

∑
R

dim(R)χR(h)

∫
Dµ[F ] exp

[
2πẽC2(R)

2 + ẽφC2(R)
(4.33)

+

(
φb
ε
− ẽ C2(R)

2 + ẽφC2(R)

)∫
∂M

du
√
guuK[F (u)]− φb

ε

∫
∂M

du
√
guu

]
.

15Here we assume the path integral over the gauge degrees of freedom can always be made convergent with the
proper choice of integration contour for the field φ.
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where we have used the fact that the path integral over the gauge degrees of freedom does not affect

the measure for the Schwarzian field, Dµ[F ], and we have added a counter-term −φbε
∫
∂M du

√
guu to

cancel the leading divergence appearing in the exponent. It is convenient to define a “renormalized”

Casimir

C̃2(R) ≡ C2(R)

2
(

1 +
ẽφC2(R)

2

) , (4.34)

to capture the dependence on the G-group second-order Casimir appearing in (4.33). The origin

of this modified Casimir comes from the R dependence of the cosmological constant that can be

seen through (4.32). Note that for compact Lie groups, when choosing the coupling e and eφ to

be real, C̃2(R) is a real positive function of R, which for representations with growing dimensions,

asymptotes to a constant value.

The path integral can then be rewritten using the relation (4.10) between the extrinsic curvature

and the Schwarzian derivative

Z disk
JTYM

Dirichlet
(φb, β, h) =

∑
R

dim(R)χR(h)

∫
Dµ[F ]e

[
2πẽC̃2(R)−φbβ

ε2
+(φb−εẽC̃2(R))

∫ β
0
du( 1

ε2
+Sch(F,u))

]
.

(4.35)

For now, let’s ignore the fact that the coupling in front of the Schwarzian might be negative for

sufficiently large ε and assume that φb > εẽC̃2(R). Once again using the computation for the

Schwarzian path integral, which is one-loop exact, we find

Z disk
JTYM

Dirichlet
(φb, β, h) =

∑
R

dim(R)χR(g)

∫
ds

s

2π2
sinh(2πs)e

− β

(φb−ε ẽC̃2(R))
s2+ẽC̃2(R)(2π− βε )

=
∑
R

dim(R)χR(h)
1

(2π)1/2

(
φ̃b(R)

β

)3/2

e
π2φ̃b(R)

β +ẽC̃2(R)(2π− βε ) , (4.36)

where we have defined

φ̃b(R) ≡ φb − ε ẽ C̃2(R) , (4.37)

which can be seen as the “renormalization” of the boundary value of the dilaton φb. Thus, the

addition of the Yang-Mills term to the JT gravity action has the effect of “re-normalizing” all the

dimensionful quantities appearing in JT gravity by a representation dependent factor.

As previously mentioned, our result is reliable only in the regime in which φb > εẽC̃2(R) for

116



which the coupling in the Schwarzian action in (4.35) is positive. If this was not the case than the

path integral over the field F (u) would no longer be convergent, at least when considering a contour

along which F (u) is real. From the perspective of near-extremal black holes, this inequality is indeed

obeyed: namely, for representations with very large dimensions one expects C2(R) → ∞ and thus

C̃2(R)→ 2/ẽφ. Since ẽφ > 0 when the couplings e and eφ are real in (4.1) , C̃2(R) asymptotes to a

negative constant and therefore satisfies φb > εẽC̃2(R) for sufficiently small ε.

In the (ε/ẽ → 0, ẽφ → 0) limit the singlet representation dominates in the sum in (4.36). This

1/ε divergence in the exponent appears due to a divergence in the area of the nearly AdS2 patches

that dominate in the gravitational gauge theory path integral. In the upcoming subsection, we show

that such a divergence can be eliminated using a change in boundary conditions for the gauge field,

which amounts to adding the appropriate boundary counter-term that cancels the divergence in the

action. In the limit (ε → 0, ẽφ → 0), with ε/ẽ kept finite, the partition function of the theory

matches the one we have found in section 4.2 when coupling JT gravity to a BF theory.

Going away from the strict ε→ 0 limit and instead viewing (4.36) in an ε expansion we note that

if we keep the next order terms in ε in the extrinsic curvature in (4.10) they would only contribute

O(ε2) in the exponent.16 Thus, the Casimir dependent terms shown in (4.36), which are O(1/ε)

to O(ε), are the most important contributions in the ε expansion of the partition function of the

gravitational gauge theory (4.1).

4.3.2 Counter-terms from a change in boundary conditions

As is typical when analyzing theories in AdS in the holographic context, the action of the theory

under consideration is generically not finite on-shell and needs to be supplemented by boundary

terms, a procedure referred to as holographic renormalization. Given the appropriate boundary

terms, one could then use the variational principle to check what boundary conditions can be con-

sistently imposed in order for the variational problem to be well defined and in order for the overall

on-shell action to be finite. Although various boundary terms supplementing the Maxwell or Yang-

Mills actions have been considered in the past in the context of 2d/1d holography (for example, see

[183, 184, 185, 186, 30, 22]), here we take a different approach and show that, in order to cancel the

16This can be easily seen by computing the next order in the ε expansion in the solution of (4.9), τ = εF ′ +

ε3
(F ′′)2

2F ′ +O(ε5). Plugging this result in the extrinsic curvature formula (4.10), we find that

K[F (u)] = 1 + ε2Sch(F, u) + ε4

(
27

8

(F ′′)4

(F ′)4
+

(F (3))2

(F ′)2
+
F (4)F ′′

(F ′)2
−

11(F ′′)2F (3)

2(F ′)3

)
+O(ε6) (4.38)

Consequently the first correction on the gravitational side coming from φbK[F (u)]/ε2 is O(ε2). Work on computing the
partition function in pure JT gravity to all perturbative orders in ε is currently underway [165]. A similar perspective
can be gained by studying an analog of the TT deformation in 1d [70].
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divergence in the exponent in (4.36), it is sufficient to add a boundary condition changing defect

similar to the one considered in section 4.2.4. After stating the proper form of the boundary condi-

tion changing defect, we can immediately derive the necessary boundary conditions that the gauge

theory needs to satisfy.

Namely, we consider adding

Sdefect =
1

2

∫
I

du
√
guu

[
ẽTrφ2

1 +
ẽφ Trφ2

2

− ε ẽbTrφ2

]
, (4.39)

to the action (4.7) where, once again, I is a contour which is arbitrarily close to the boundary

∂M and ẽb is an arbitrary constant. Similar to our analysis in subsection 4.2.4, multiplying ẽb

by Trφ2 instead of a more general trace-class function V (φ) is an arbitrary choice that is only

meant to regularize the sum over all irreducible representations appearing in the partition function.

Integrating the equation of motion on the defect yields

Au|∂M −Au|I = −i√guu

 ẽφ

1 +
ẽφ
2 Trφ2

− ẽ ẽφ φTrφ2

2
(

1 +
ẽφ
2 Trφ2

)2 − εẽbφ

 ∣∣∣∣
I

. (4.40)

Once again moving Au|I to the right hand side and denoting Au|∂M = Au, we find that by inserting

the defect the new “mixed” boundary condition in the resulting theory is given by

δ

Au − i√guu
 ẽφ

1 +
ẽφ
2 Trφ2

− ẽ ẽφ φTrφ2

2
(

1 +
ẽφ
2 Trφ2

)2 − εẽbφ


∣∣∣∣

I

= 0 . (4.41)

Adding this defect modifies the path integral computation at the step (4.35). Following the procedure

presented in subsection 4.2.4, we find that after integrating out the gauge field degrees of freedom

we get

Zdisk
JTYM,
mixed

(φb, β, h) =
∑
R

dim(R)χR(g)

×
∫
DFe

[
ẽC̃2(R)(2π+ β

ε )−βẽbC2(R)−φbβ
ε2

+(φb−εC̃2(R))
∫ β
0
du( 1

ε2
+{F,u})

]
. (4.42)

After performing the integral over F (u) by following the steps in (4.36), we find

Zdisk
JTYM,
mixed

(φb, β, h) =
∑
R

dim(R)χR(g)
1

(2π)1/2

(
φ̃b(R)

β

)3/2

e
π2φ̃b(R)

β +2πẽC̃2(R)−ẽbβC2(R) . (4.43)
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Note that, the 1/ε divergence present in the exponent in (4.36) has vanished, the singlet represen-

tation is no longer the dominating representation and the sum over all irreducible representations

R is generically convergent for ẽb ≥ 0. With these results in mind, we now discuss the boundary

dual of the 2d gravitational Yang-Mills theory (4.1), both with Dirichlet boundary conditions and

the mixed conditions discussed in this subsection.

4.3.3 Equivalent boundary theory

As extensively discussed in subsections 4.2.1–4.2.4, when adding a BF theory to the JT gravity

action, and using mixed boundary conditions between the gauge field and the zero-form scalar φ,

the gravitational theory can be equivalently expressed as the Schwarzian theory decoupled from a

particle moving on the group manifold G. Here, we show how, by going to finite gauge coupling,

the two boundary theories become coupled.

To find the dual of JT gravity coupled to Yang-Mills theory it is useful to interpret the partition

functions (4.36) (Dirichlet) or (4.43) (mixed) in terms of the path integral of a particle moving on

a group manifold with a time dependent metric guu. Towards that aim, we use this particle’s path

integral to reproduce the intermediate steps (4.35) and (4.42) in which we have integrated out the

gauge degrees of freedom, but have not yet integrate out the Schwarzian field F (u). To do this we

set
√
guu(u) ≡ j(u) for the particle moving on the group manifold G:17


jDirichlet(u) = 1

ε −
2π
β + εSch(F, u) , for dual of Dirichlet b.c. from (4.36) ,

jmixed(u) = − 2π
β + εSch(F, u) for dual of mixed b.c. from (4.43) .

(4.44)

Fixing the action of the particle moving on a group manifold coupled to the Schwarzian theory to

be given by


SSchwoG

Dirichlet
≡
∫ β

0
du

[(
φb
2 −

ε ẽTrααα2

2(1+ẽφTrααα2)

)
Sch(F, u)− iTr (αααh−1DAh) +

ẽ( 1
ε−

2π
β ) Trααα2

2(1+ẽφTrααα2)

]
,

SSchwoG
mixed

≡
∫ β

0
du
[(

φb
2 −

ε ẽTrααα2

2(1+ẽφTrααα2)

)
Sch(F, u)− iTr (αααh−1DAh) + 2πẽTrααα2

β(1+ẽφTrααα2) −
ẽb
2 Trααα2

]
.

(4.45)

17One should not be concerned about the invertibility of the 1d metric in (4.44). Rather one can view this metric

as an arbitrary source for the potential V̂ (ααα) in the path integral of the particle moving on the G group manifold.
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After integrating out h and ααα that the partition function of this theory is given by,

ZSchwoG
j(u)

(β, h) =
∑
R

(dimR)χR(h)

∫
Dµ[F ] e−

βẽbC2(R)

2 −(ẽC̃2(R)
∫ β
0
du j(u))+(φb

∫ β
0
du Sch(F,u)) . (4.46)

where j(u) is the source in (4.44). Comparing this partition function to (4.35) for Dirichlet boundary

conditions in the bulk or with (4.42) for mixed boundary conditions, we conclude that the partition

function of the particle moving on the group manifold coupled to the Schwarzian theory matches the

partition function of gravitational Yang-Mills theory, for an arbitrary G holonomy h: Zdisk
JTYM,

Dirichlet

(h) =

ZSchwoG,
Dirichlet

(h) and Zdisk
JTYM,
mixed

(h) = ZSchwoG,
mixed

(h). Based on this result we conjecture the result presented

in figure 4.2.

Schwarzian coupled
to a particle moving
on G with potential

V̂ (ααα) = ẽTrααα2

2
(

1+
ẽφ
2 Trααα2

)
JT-gravity coupled to YM theory

with Dirichlet or mixed b.c.

Figure 4.2: Schematic representation of the equivalence between the gravitational gauge theory and
the Schwarzian coupled to a particle moving on the group manifold G.

More generally, one can replace ẽTrφ2 and ẽφTrφ2 in the action (4.7) by generic gauge-invariant

functions of φ.18 In such a case we expect that the dual quantum mechanical theory be given by

SSchwoG
General

=

∫ β

0

du
[
−iTr (αααh−1DAh)− Ŵ(ααα) + V̂(ααα) Sch(F (u), u)

]
. (4.47)

The functions V̂(ααα) and Ŵ(ααα) are invariant under adjoint transformations of ααα and can be straight-

forwardly related to the functions of φ that appear in the generalization of the action (4.7).19

The action (4.47) is a generic effective action with aG×SL(2,R) symmetry.20 Based on symmetry

principles, we expect that such an effective action, preserving G×SL(2,R), appears in the low energy

18Such functions could appear when keeping tracks of higher field-strength powers in the effective action for higher-
dimensional near-extremal black holes.

19Explicitly if considering replacing the terms in the action of the gravitational gauge theory (4.4)

SJTYM ⊇
1

2

∫
M
d2x
√
g
(
ẽ− ẽφφ

)
Trφ2 →

∫
M
d2x
√
g (V1(φ)− φV2(φ)) (4.48)

and considering the boundary condition δ(Au + i
√
guu V̂b(φ)) = 0, we find that the the functions V̂(ααα) and Ŵ(ααα) in

(4.47) are given by

V̂(ααα) = φb −
εV̂1(ααα)

1 + 2V̂2(ααα)
, Ŵ(ααα) =

(
1

ε
−

1

β

)
V̂1(ααα)

1 + 2V̂2(ααα)
−
V̂b(ααα)

ε
. (4.49)

20In fact, the global symmetry group in this action is enhanced to G×G× SL(2,R).
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limit of a modification of SYK models which have a global symmetry G [166, 167, 168, 169, 170,

171, 172, 173, 174]. For instance, when G = U(1), (4.47) should appear in the low-energy limit of

the complex SYK model studied in [166, 167]; it would be interesting to derive the functions V(ααα)

and W(ααα) directly in this model.

4.4 Higher genus partition function

Following the same strategy of firstly integrating out the gauge field degrees of freedom and rewriting

the resulting area dependence from the Yang-Mills path integral in terms of the extrinsic curvature,

we determine the partition function of the gravitational gauge theory for surfaces of arbitrary genus.

4.4.1 The building blocks

In computing the contribution of the gravitational degrees of freedom to the higher genus partition

function, we follow the strategy presented in [37]. The basic building blocks needed in order to

obtain the genus expansion of the gravitational gauge theory are given by [37]:

• The disk partition functions computed in sections 4.2 or 4.3.

• The path integral over a “trumpet”,MT , which on one side has asymptotically AdS2 boundary

conditions specified by (4.2) and, on the other side, ends on a geodesic of length b. For the

gauge field, we first consider Dirichlet boundary conditions by fixing the holonomy on both

sides of “trumpet”: we denote hnAdS2
to be the holonomy of the side with asymptotically AdS2

boundary conditions and hb to be the holonomy on the other side. Following our analysis

in section 4.3.2 we then consider mixed boundary conditions on the asymptotically AdS2

boundary.

• The path integral over a bordered Riemann surfaces of constant negative curvature that has

n boundaries and genus g. For such surfaces, we fix the holonomies h1, h2, . . . , hn and the

lengths of the geodesic boundaries b1, . . . , bn, across all n boundaries.

By gluing the above geometries along the side where the boundary is a geodesic, we are able to

obtain any constant negative curvature geometry that is orientable (with arbitrary genus g and an

arbitrary number of boundaries n) and has asymptotically AdS2 boundaries.
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We start by computing the path integral over the trumpet geometry, by integrating out the gauge

field. Using (4.26) we find

Ztrumpet
JTYM

Dirichlet

=

∫
DgµνDφe

−SJT [gµν , φ]

(∑
R

χR(gnAdS2
)χR(gb)e

−
C2(R)

∫
MT

d2x
√
g[ẽ−ẽφφ(x)]

2

)
(4.50)

where the area term depends on the bulk metric configuration. Integrating out the dilaton field φ

in each representation sector R, we localize over trumpets with constant negative curvature (once

again, with Λ̃ = −2 − ẽφC2(R)), whose boundary degrees of freedom are given by Schwarzian field

describing the wiggles on the nearly-AdS2 boundary. The trumpet area term is given by Gauss-

Bonnet:

∫
MT

d2xẽ
√
g = − ẽ

2 + ẽφC2(R)

∫
MT

d2x
√
gR =

ẽ

1 +
ẽφC2(R)

2

∫
∂MT

du
√
guuK , (4.51)

where, for the trumpet, we have used the Euler characteristic χ(MT ) = 0 and the fact that the

extrinsic curvature has K = 0 along the geodesic boundary. Above we have denoted ∂MT to be the

boundary of the trumpet with asymptotically AdS2 boundary conditions. Thus, the path integral

becomes

Ztrumpet
JTYM

Dirichlet

=
∑
R

χR(hnAdS2
)χR(hb)

∫
dµ(τ)

U(1)
e

(
φb
ε −ẽC̃2(R)

) ∫
∂MT

du
√
guu K−

φb
ε

∫
∂MT

du
√
guu , (4.52)

The metric can be parametrized as ds2 = dσ2 + cosh2(σ)dτ2, with the periodic identification τ(u) ∼

τ(u) + b. Writing the extrinsic curvature (4.10) in these coordinates, the path integral becomes [37]

Ztrumpet
JTYM

Dirichlet

=
∑
R

χR(hnAdS2
)χR(hb)

∫
dµ(τ)

U(1)
e−

φbβ

ε2
+(φb−ε ẽ C̃2(R))

∫ β
0
du( 1

ε2
+{exp[−τ(u)],u}) , (4.53)

where we note that the periodic identification of τ breaks the SL(2,R) isometry of the disk down to

U(1) translations of τ . Once again performing the one-loop exact path integral over the Schwarzian
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field τ(u) [25, 37], we find

Ztrumpet
JTYM

Dirichlet

= π
∑
R

χR(hnAdS2)χR(hb)e
− C̃2(R)β

ε

∫
ds

π1/2
cos(bs)e

− β

2(φb−εC̃2(R))
s2

=
∑
R

χR(hnAdS2)χR(hb)

(
φb − εC̃2(R)

2πβ

)1/2

e
−φbb

2

2β −C̃2(R)
(
β
ε−

εb2

2β

)

=
∑
R

χR(hnAdS2
)χR(hb)

(
φ̃b(R)

2πβ

)1/2

e−
φ̃b(R)b2

2β − β ẽ C̃2(R)
ε , (4.54)

where C̃2(R) is given by (4.34) and φ̃b(R) is given by (4.37). We again encounter a 1/ε divergence

appearing in the exponent in (4.54) which is due to the divergence of the area of the trumpet at

finite values of b.

In order to eliminate such a divergence we consider the change of boundary conditions for the

gauge field given by (4.40) at the nearly-AdS2 boundary. As explained in section 4.3.2 this change

can be implemented by inserting the boundary condition changing defect. The insertion of such a

defect indeed leads to a convergent term in the exponent in (4.54), as can be seen from the resulting

partition function

Ztrumpet
JTYM
mixed

(φb, β, b, hnAdS2 , hb) =
∑
R

χR(hnAdS2)χR(hb)

(
φ̃b(R)

2πβ

)1/2

e−
φ̃b(R)b2

2β e−ẽbβC2(R) . (4.55)

We now compute the partition function associated to the n-bordered Riemann surface of genus

g, which we denote by Z
(g,n)
JTYM

Dirichlet

(bj , hj). Integrating out the gauge field by using (4.26) and then

integrating out the dilaton, we find

Z
(g,n)
JTYM

Dirichlet

(bj , hj) =
∑
R

(dimR)2−n−2gχR(h1) . . . χR(hn) eχ(Mg,n)S0

×
∫
Dgµνδ (R+ 2 + ẽφC2(R)) e−

ẽ C2(R)
∫
Mg, n

d2x
√
g

2 , (4.56)

where
∫
Mg, n

d2x
√
g is the area of the constant curvature manifold. From Gauss-Bonnet, we find

∫
Mg, n

d2x
√
g = − 1

2 + ẽ C2(R)

∫
Mg, n

d2x
√
gR =

2π(2g + n− 2)

1 + ẽC2(R)
2

, (4.57)

where we have used χ(Mg,n) = 2 − 2g − n and have used the fact that the extrinsic curvature

vanishes on the geodesic borders of this Riemann surface. Thus, the partition function of the n-
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bordered Riemann surface is given by

Z
(g,n)
JTYM

Dirichlet

(bj , hj) =
∑
R

χR(h1) . . . χR(hn)Volg,n(b1, . . . , bn)
(

dimReS0 e2πẽC̃2(R)
)χ(Mg,n)

, (4.58)

where Volg,n(b1, . . . , bn) is the volume of the moduli space of n-bordered Riemann surfaces with

constant curvature. A recursion relation for these volumes was found in [41] (see [42] for a review).

It was later showed that this recursion relation can be related to the “topological recursion” seen in

the genus expansion of a double-scaled matrix integral [43]. As we discuss later, this relation proves

important when discussing the matrix integral interpretation of the genus expansion in pure and

gauged JT gravity.

Using (4.54) or (4.55), together with (4.58) we now determine the partition function on surfaces

with arbitrary genus.

4.4.2 The genus expansion

Using the gluing rules outlined above, the partition function when summing over all orientable

manifold is given by the genus expansion,

Zn=1
JTBF
mixed

(φb, β, h) = Zdisk
JTBF
mixed

(φb, β, h) +

∞∑
g=1

∫
dh̃

∫
db bZtrumpet

JTBF
mixed

(φb, β, b, h, h̃)Z
(g, 1)
JTBF

Dirichlet

(b, h̃) . (4.59)

Putting (4.36), (4.54) and (4.58) together, we find the genus expansion for the gravitational partition

function for surfaces with a single boundary on which we fix Dirichlet boundary conditions for the

gauge field:

Zn=1
JTYM

Dirichlet
(φb , β, h) =

∑
R

χR(h)e−
C̃2(R)β

ε

[(
dim(R)e2πẽC̃2(R)eS0

) 1

(2π)1/2

(
φ̃b(R)

β

)3/2

e
2π2φ̃b(R)

β

(4.60)

+

∞∑
g=1

(
dim(R)e2πẽC̃2(R)eS0

)χ(Mg, 1)
(
φ̃b(R)

2πβ

) 1
2 ∫ ∞

0

db b e−
φ̃b(R)b2

2β Volαg,1(b)

]
.

It is instructive to express this result in terms of Zg,1(φb1 , . . . , φbn , β1, . . . , βn), the contribution of

surfaces of genus g with n asymptotically AdS2 boundaries to the pure JT gravity partition function.
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Thus (4.60) can be compared to the result in pure JT gravity:

Zn=1
JT (φb, β) =

∞∑
g=0

eS0χ(Mg,1)Zg,1(β/φb)

===========⇒
adding Yang-Mills

term

Zn=1
JTYM

Dirichlet
(φb , β, h) =

∑
R

χR(h)e−
C̃2(R)β

ε (4.61)

×

[ ∞∑
g=0

(
dim(R)e2πẽC̃2(R)eS0

)χ(Mg,1)

Zg,1

(
β/φ̃b(R)

)]
,

where we have absorbed the entropy dependence eχ(Mg,n)S0 , in Zg,n(φb1 , . . . , φbn , β1, . . . , βn): Z
(g,n)
JT (φb1 , . . . , φbn , β1, . . . , βn) ≡

eχ(Mg,n)S0Zg,n(β1/φb1 , . . . , βn/φbn) (from the partition function on trumpet geometries, one imme-

diately deduces that Zg,n solely depends on the ratios βj/φbj ). The coefficients Zg,n(βj/φbj ) ≡

Zg,n(β1/φb1 , . . . , βn/φbn) are in fact those encountered in the genus expansion of correlators of the

partition function operator in the double-scaling of the certain matrix integral that we have previ-

ously mentioned.

We can also determine the partition function of the space which has n boundaries,

ZnJTYM
Dirichlet

(φb,j , βj , hj) =
∑
R

χR(h1) . . . χR(hn)e−
ẽC̃2(R)

∑n
j=1 βj

ε

[ ∞∑
g=0

(dimRe2πẽC̃2(R)eS0)χ(Mg, n)

×

(
φ̃b,1(R) . . . φ̃b,1(R)

πnβ1 . . . βn

) 1
2 ∫ ∞

0

db1b1 . . .

∫ ∞
0

dbnbn Volαg,n(b1,...,n)e
−
∑n
i=1

φ̃b,i(R)b2i
βi

]
. (4.62)

In terms of the coefficients Zg,n(βj/φbj ), this becomes

ZnJTYM
Dirichlet

(φbj , βj , hj) =
∑
R

χR(h1) . . . χR(hn)e−
ẽC̃2(R)

∑n
j=1 βj

ε

×

[ ∞∑
g=0

(
dim(R)e2πẽC̃2(R)eS0

)χ(Mg,n)

Zg,n

(
βj/φ̃bj (R)

)]
. (4.63)

In the ε → 0 limit, φ̃bj (R) = φbj for all j and, in the square parenthesis in (4.61) and (4.63), the

dependence on the irreducible representation R can be absorbed in the overall entropy on the disk

S0 → S0− ẽC̃2(R)− log dimR; thus, the density of states associated to each representation sector is

the same as in pure JT gravity. As we explain shortly, this serves as a useful guide in determining

the matrix integral derivation of (4.60).

With Dirichlet boundary conditions and in the limit ε→ 0, the singlet representation dominates

in the sum over representations due to the 1/ε divergence in the first exponent of (4.60) or (4.62).

This behavior can be altered by the change of boundary conditions (4.41) presented in section 4.3.2
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or, equivalently, by the addition of a defect close to each one of the n boundaries of the manifold.

When using the boundary condition changing defect, the result in each representation sector gets

regularized such that

ZnJTYM
mixed

(φbj , βj , hj) =
∑
R

ZnJTYM
Dirichlet

(φbj , βj , hj)R e

(
ẽC̃2(R)

ε

)
(
∑n
j=1 βj)− 1

2C2(R)(
∑n
j=1 ẽbjβj) , (4.64)

where ZnJTYM
Dirichlet

(φbj , βj , hj)R is the contribution of the representation R to the sum in (4.63). Above,

the mixed boundary condition obtained from (4.41) with a coupling ẽbj is considered for each of the

n boundaries.

The result (4.64) simplifies further in the (topological) weak gauge coupling limit

ZnJTBF
mixed

(φbj , βj , hj) =
∑
R

χR(h1) . . . χR(hn)e−
C2(R)

∑n
i=j ẽbj

βj

2

×

[ ∞∑
g=0

(
dim(R)eS0

)χ(Mg,n)
Zg,n(βj/φbj )

]
, (4.65)

where we have used the boundary condition (4.28)

δ(Au + i
√
guu ebj φ)|(∂M)j = 0 , (4.66)

for each of the n-boundaries.

It is worth pondering the interpretation of (4.65). While for the disk contribution to the partition

function (4.29), the gravitational and topological theories were fully decoupled, the topological theory

of course couples to JT gravity through the genus expansion.

One case in which the sum over R can be explicitly computed is when ẽb = 0, for which the

sum over irreducible representations evaluates to the volume of flat G connection on each surface of

genus g. For instance, in the case when G = SU(2) all such volumes have been computed explicitly

in [103]. More generally for any G, when focusing on surfaces with a single boundary (n = 1)

and setting h 6= e, the contribution from surfaces with disk topology to (4.65) vanishes, and the

leading contribution is given by surfaces with the topology of a punctured torus. In this limit,

the contribution of non-trivial topology is, in fact, visible even at large values of eS0 . In the limit

in which h → e, the contribution from surfaces with the topology of a disk or a punctured torus

are divergent; in the case when G = SU(2) such divergences behave as O(1/ẽ
3/2
b ) and O(1/ẽ

1/2
b )

respectively. The leading contribution for all other surfaces behaves as O(1). In other words, this

limit further isolates the contribution of surfaces with disk and punctured torus topology in the
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partition function.

4.4.3 Matrix integral description

Reviewing the correspondence between pure JT gravity and matrix integrals

In order to understand how to construct the matrix integral that reproduces the genus expansion in

the gravitational gauge theory (4.1) we first briefly review this correspondence in the case of pure

JT gravity, following [37]. Consider a Hermitian matrix integral over N × N Hermitian matrices

with some potential S[H]:

Z =

∫
dHe−S(H) , S[H] ≡ N

1

2
TrNH

2 +
∑
j≥3

tj
j

TrNH
j

 , (4.67)

where TrN is the standard trace over N × N matrices. An observable that proves important in

the genus expansion of the gravitational theory is the correlator of the thermal partition function

operator, Z(β) = TrN e
−βH . Correlators of such operators have an expansion in 1/N , where each

order in N can be computed by looking at orientable double-line graphs of fixed genus [44, 45] (for

a review see [46]). Consequently, this is known as the genus expansion of the matrix model (1.30).

For a general set of potentials S[H], each order in the expansion can be determined in terms of

a single function ρ0(E). This function is simply the leading density of eigenvalues in matrices with

N → ∞. Consider the double-scaling limit of (1.30), in which the size of the matrix N → ∞ and

in which we focus on the edge of the eigenvalue distribution of the matrix H, where the eigenvalue

density remains finite and is denoted by eS0 . The expansion of the correlators mentioned above can

now be expressed in terms of eS0 instead of the size of the matrix N . In this double-scaled limit

the density of eigenvalues ρ0(E) is not necessarily normalizable and with an appropriate choice of

potential S[H], ρ0(E) can be set to be equal to the energy density in the Schwarzian theory (4.11)

ρ0(E) =
φb

2π2
sinh(2π

√
2φbE) . (4.68)

In the remainder of this subsection, we follow [37] and normalize

φbj ≡ 1/2 , Zg,n(βj) ≡ Zg,n(βj/φbj ) , (4.69)

for all the n boundaries of the theory, and use the short-hand notation in (4.69). As previously

emphasized, choosing (4.68) determines all orders (in the double scaled limit) in the e−S0 pertur-
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bative expansion for correlators of operators such as Z(β) = TrN e
−βH [47]. The result found by

[37], building on the ideas of [43], is that the genus expansion in pure JT gravity agrees with the

eS0 genus expansion of the double-scaled matrix integral whose eigenvalue density of states is given

by (4.68):

ZnJT(β1, . . . , βn) = 〈Z(β1) . . . Z(βn)〉 =
∑
g

Zg,n(βj)e
−S0χ(Mg,n) . (4.70)

The density of states (4.68) was shown to arise when considering the matrix integral associated

to the (2, p) minimal string. Specifically, this latter theory was shown to be related to a matrix

integral whose density of eigenvalues is given by [48, 49, 50, 51, 52]

ρ0(E) ∼ sinh

(
p

2
arccosh

(
1 +

E

κ

))
, (4.71)

where κ is set by the value of p and by the value of µ from the Liouville theory which is coupled to

the (2, p) minimal model [53]. Taking the p→∞ limit in (4.71) and rescaling E appropriately, one

recovers the density of states (4.68). Consequently, one can conclude that the double-scaled matrix

integral which gives rise to the genus expansion in pure JT gravity is the same as the matrix integral

which corresponds to the (2,∞) minimal string.

Our goal is to extend this analysis and find a modification of the matrix integral presented in

(1.30) such that the partition function includes the contributions from the gauge field that appeared

in the genus expansion of JT gravity coupled to Yang-Mills theory. As we will show below, there

are two possible equivalent modifications of the matrix integral (1.30):

• As shown in subsection 4.4.2, in the ε → 0 limit, the contribution of the gauge degrees of

freedom to the partition function can be absorbed in each representation sector R by an R-

dependent shift of the entropy S0. This indicates that instead of obtaining the gravitational

gauge theory partition function from a single double-scaled matrix integral, one can obtain

the contribution of the gauge degrees of freedom from a collection of double-scaled matrix

integrals, where each matrix HR is associated to a different irreducible representation R of G.

The size of HR is proportional to the dimension of the representation R.

• In order to obtain such a collection of random matrix ensembles in a natural way, we consider

a different modification of the matrix integral (1.30). Specifically, instead of considering a

Hermitian matrix whose elements are complex, we rather consider matrices whose elements are

complex functions on the group G (equivalently, they are elements of the group algebra C[G]).
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Equivalently, as we will discuss shortly, one can consider matrices that in addition to the two

discrete labels characterizing the elements, have two additional labels in the group G and are

invariant under G transformations. By defining the appropriate traces over such matrices, we

show that such matrix integrals are equivalent to the previously mentioned collection of matrix

integrals, which in turn reproduce the genus expansion in the gravitational gauge theory. This

latter model serves as our starting point.

In our analysis, we first consider the necessary modifications of the matrix integral (1.30) which

reproduce the results from the weak gauge coupling limit and, afterward, we discuss the case of

general coupling.

Modifying the matrix integral: the weakly coupled limit

We start by modifying the structure of the Hermitian matrix H, by supplementing the discrete

indices i, j ∈ 1, . . . , N that label the elements Hij , by two additional elements g, h ∈ G.21 Thus,

elements of the matrix are given by H(i,g),(j,h). For such matrices, their multiplication is defined by

(HM)(i,g),(j,g̃) =

N∑
k=1

∫
dhH(i,g),(k,h)M(k,h),(j,g̃) (4.72)

where dh is the Haar measure defined on the group, normalized by the volume of group such that∫
dh = 1.

The (left) action of the group element f ∈ G on the matrix H(i,g),(j,h) is defined as H(i,g),(j,h) →

H(i,fg),(j,fh), where we emphasize that the integer indices remain unaltered. In order to reproduce

the collection of matrix integrals that we have previously mentioned, in this work we are interested

in G-invariant matrices [175], defined by the property

H(i,g), (j,h) = H(i,fg), (j,fh) , (4.73)

for any f ∈ G. For such matrices one can therefore, define Hi,j(g) by using [175]

H(i,g), (j,h) = H(i,e), (j,g−1h) ≡ Hi,j(g
−1h) ∈ C[G] (4.74)

where C[G] is the complex group algebra associated to G. In other words, each element Hi,j ,

instead of being viewed as a complex element, can be viewed as a function on the group G → C.

21Here we consider the case when G is a compact Lie group, while the past discussion of matrix integrals of this
type focused solely on the case when G is a finite group [175, 176, 177, 178].
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For G-invariant matrices, the product (4.72) simplifies to

(HM)ij(g) =

N∑
k=1

∫
dhHik(h)Mkj(h

−1g) , (4.75)

where the integral over h simply gives the convolution of functions defined on the group G.

We wish to understand the free energy of a matrix model whose action is given by [175]

S[H] = N

1

2
χel(H

2) +
∑
j≥3

tj
j
χel(H

j)

 , (4.76)

where H is a G-invariant matrix defined through (4.74) and χel is the trace which, at first, we take

to be in the elementary representation of the group G. The trace in the (reducible) elementary

representation of the group is given by evaluating the H in (4.74) on the identity element e of the

group G,22

χel(H) ≡
N∑
i=1

Hi,i(e) =

∫
dh̃ δ(h̃)

N∑
i=1

Hi,i(h̃) =

N∑
i=1

∑
R

∫
dh̃ (dimR)χR(h̃−1)Hi,i(h̃)

=
∑
R

(dimR)

N∑
i=1

dimR∑
j=1

(Hi,i)
j
R,j =

∑
R

(dimR)Tr(dimR)N (HR) , (4.78)

Here, we have used the decomposition Hi,j(g) =
∑
R

∑dimR
k,l=1 (dimR)UkR,l(g)(Hi,j)

k
R,l where UkR,l(g)

are the matrix elements of G.23 Thus, we can view HR as an (dimRN) × (dimRN) matrix and,

above, TrdimRN (. . . ) is the standard trace over such matrices. Furthermore, to evaluate the trace

in the elementary representation for products of such matrices we can use

(Hk)i1,ik+1
(h) =

∑
R

dimR∑
j1, ...,
jk+1=1

(dimR)

N∑
i2, ...,
ik=1

(Hi1,i2)j1R,j2 . . . (Hik,ik+1
)jkR,jk+1

U j1R,jk+1
(h) , (4.79)

22One might contemplate whether (4.78) is indeed a well-defined trace. We, in fact, show that the trace is still
valid when replacing δ(h̃) in (4.83) by an arbitrary trace-class function, σ(h̃−1). This can, of course, be viewed as a
trace in an arbitrary (most often) reducible representation of G. To show this, we have

χf (HM) =

∫
dh̃ dh σ(h̃−1)

n∑
i,k=1

Hik(h)Mki(h
−1h̃) =

∑
R

σR

∫
dh

n∑
i,k=1

Hik(h)UR(h−1)(Mki)R

=
∑
R

σR

n∑
i,k=1

dimR∑
m,p=1

(Hik)pR,m(Mki)
m
R,p = χf (MH) =⇒ χf ([H,M ]) = 0 , (4.77)

which indeed implies that χel(. . . ) is a well-defined trace. Above, we have used the fact that for trace-class function
σ(h̃−1), there is a decomposition σ(h̃−1) =

∑
R σR χR(h̃−1) .

23Note that Hi,j(g) is generically not trace class since Hi,j(h
−1gh) 6= Hi,j(g), for generic group elements g and h.

Thus, Hi,j(g) should be decomposed in the matrix elements of G, UkR,l(g), instead of its characters χR(g).
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which yields

χel(H
k) =

∑
R

(dimR)(Hi1,i2)j2R,j1 . . . (Hik,i1)j1R,jk =
∑
R

(dimR)Tr(dimR)N (Hk
R) . (4.80)

Thus, the action (4.76) becomes [175]

S[H] =
∑
R

N(dimR)

1

2
Tr(dimR)N (H2

R) +
∑
j≥3

tj
j

Tr(dimR)N (Hj
R)

 , (4.81)

which is the same as a collection of decoupled GUE-like matrix integrals, where each matrix HR is

Hermitian, is associated to the representation R, and has dimension (dimRN) × (dimRN). Such

matrix integrals are truly decoupled if the measure for the path integral in (4.76) associated to H(g)

is chosen such that it reduces to the standard measure for GUE-like matrix integrals associated

to dHR. To summarize, this result simply comes from the harmonic decomposition onto different

representation sectors of our initial Hermitian matrices whose elements were in C[G].

We now compare correlation functions in the standard Hermitian matrix model with N × N

matrices, to those in the model whose matrix elements are part of the group algebra C[G], when

having the same couplings in both models. Equivalently, we can compare such correlators to those

in the collection of matrix models in (4.81). In order to do this we compare correlation functions of

the trace of e−βH to the gravitational answer. When H is an N ×N Hermitian matrix the trace is

the standard TrNe
−βH . However, when H has elements in C[G] the trace needs to be modified :

Z(β) = TrN
(
e−βH

)
⇒ Zcyl.(h,E) = χcyl., h(e−βH) , (4.82)

where,

χcyl., h(H) =

∫
dh̃ Z

(0, 2)
BF

mixed

(h̃−1, h)

N∑
i=1

Hi,i(h̃) =

∫
dh̃
∑
R

χR(h̃−1)χR(h)e−
ẽbβC2(R)

2

N∑
i=1

Hi,i(h̃)

=
∑
R

χR(h)e−
ẽbβC2(R)

2 Tr(dimR)N (HR) , (4.83)

where Z
(0, 2)
BF

mixed

(g−1, h) is the partition function of BF theory on the cylinder given by (4.26), where

on one of the edges we use Dirichlet boundary conditions and on the other we impose the mixed

boundary conditions discussed for BF theory.
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Consequently, using the multiplication properties for the C[G] matrices (4.80), we find

χcyl., h(e−βH) =
∑
R

χR(h)e−
ẽbβC2(R)

2 Tr(dimR)N (e−βHR) . (4.84)

When h = e and ẽb = 0, one finds that χcyl., h(H) = χel(H) and this will correspond to imposing

Dirichlet boundary conditions on the boundary on the gravitational gauge theory. The role of the

trace (4.82) is to reproduce results when setting mixed boundary conditions for each boundary of

Mg,n in the genus expansion of the partition function in the gravitational gauge theory.

We start by checking that by using the matrix ensemble given by (4.76), or equivalently (4.81),

together with the new definition of the trace we are able to reproduce this expansion for surfaces

with a single boundary (n = 1). Using (4.81), we find that in comparison to the initial regular

matrix integral the one-point function of Zcyl.(h, β) becomes

〈Z(β)〉conn. '
∞∑
g=0

Z̃g,1(β)

Nχ(Mg,n)

===========⇒
Hij→H(i,g),(j,h)

Tr(... )→χel(... )

〈Zcyl.(h, β)〉conn. =
∑
R

χR(h)e−
ẽbβC2(R)

2 〈Tr(dimR)Ne
−βHR〉

'
∞∑
g=0

∑
R

(dimRN)χ(Mg,1)χR(h)e−
ẽbβC2(R)

2 Z̃g,1(β) , (4.85)

where Z̃g,n(βj) are the factors appearing in the genus expansion of the regular matrix integral

(1.30). Replacing N → eS0 as the expansion parameter in the double-scaling limit, and using the

matrix integral discussed in [37], the coefficients Z̃g,1(βj) in (4.85) become Zg,1(βj) which gives the

contribution of surfaces of genus g with n-boundaries to the JT gravity path integral. Thus, we find

that in the double-scaling limit the perturbative expansion (4.85) matches the genus expansion in

the weakly coupled gravitational gauge theory (4.65) when n = 1.

Next, we check that the genus expansion of the gravitational gauge theory and the matrix integral

matches for surfaces with an arbitrary number of boundaries. In order to obtain a match, we need

to specify what to do with the holonomies appearing in the traces (4.82). The procedure is to

associate each holonomy to the boundary of a separate disk; in order to obtain a single surface with

n-boundaries it is necessary to glue the boundaries of the n-disks, such that the holonomy of the

resulting n-boundaries are h1, . . . , hn. This is precisely the same procedure used to glue n disks

into an n-holed sphere in Yang-Mills or BF-theory. Such a gluing implies that instead of having a

separate sum over irreducible representations for each insertion of Zcyl.(hj , βj), we obtain a unique
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sum over R. We denote correlation functions after performing such a gluing as 〈. . .〉glued(h1, . . . , hn).

Thus, we find that the matrix integral results from pure JT gravity are modified such that24

===========⇒
Hij→H(i,g),(j,h)

Tr(... )→χel(... )

〈Zcyl.(β1) . . . Zcyl.(βn)〉glued
conn.(h1, . . . , hn) '

'
∑
R

χR(h1) . . . χR(hn) e−
C2(R)

∑n
i=j ẽbj

βj

2 〈Tr(dimR)Ne
−β1HR . . .Tr(dimR)Ne

−βnHR〉

=

∞∑
g=0

∑
R

(dimReS0)χ(Mg,n)χR(h1) . . . χR(hn) e−
C2(R)

∑n
i=j ẽbj

βj

2 Zg,n(β1, . . . , βn) , (4.86)

where the dependence on φbj is realized through the overall re-scaling of the proper length βj

associated to each boundary. Of course one can use the second line in (4.86) as the definition of the

observable in the collection of matrix integrals (4.81).

Thus, if we consider the matrix integral associated to the (2, p) minimal string [48] in the p→∞

limit [37] and if we promote the matrix H to be of the form (4.73), we find we can reproduce the

genus expansion in the gravitational gauge theory with the mixed boundary conditions (4.66) for

the gauge field (or with Dirichlet boundary conditions when ẽbj = 0 for all j).

Modifying the matrix integral: arbitrary gauge couplings

Similarly, we can reproduce the genus expansion with arbitrary gauge couplings ẽ and ẽφ for asymp-

totically AdS2 (ε→ 0) boundaries by modifying the matrix integral (4.76). We start by considering

mixed boundary conditions for the gauge field. Instead of taking the trace in the elementary repre-

sentation we can consider the more general trace for the matrix H:

χYM(H) ≡
∫
dg Zdisk

YM (g−1)

N∑
i=1

(H)i,i(g) =

N∑
i=1

∑
R

∫
dg (dimR)χR(g−1)(H)i,i(g) e2πẽC̃2(R)

=
∑
R

(dimR) e2πẽC̃2(R) Tr(dimR)N (HR) , (4.87)

24In (4.86) when referring to the correlator 〈Zcyl.(β1) . . . Zcyl.(βn)〉gluedconn. we have omitted to specify the holonomies
associated to the traces χcyl.(. . . ) appearing in Zcyl.. That is because there are multiple gluing procedures that can
be chosen to obtain a surface with the topology of the n-holed sphere starting from n-disks. We thus only specify the
final holonomies h1, . . . , hn along the n-boundaries of Mg,n.
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where C̃2(R) is given by (4.34). In such a case the action of the associated matrix model can be

rewritten as,

S[H] = N

1

2
χYM(H2) +

∑
j≥3

tj
j
χYM(Hj)


=
∑
R

N(dimR)e2πẽC̃2(R)

1

2
Tr(dimR)N (H2

R) +
∑
j≥3

tj
j

Tr(dimR)N (Hj
R)

 , (4.88)

Once again, this is a collection of decoupled matrix models, whose expansion parameter is given by

N(dimR)eẽC̃2(R). In order to produce correlators with mixed boundary conditions, we again use

the operator insertion χcyl,h(e−βjH). Thus, compared to the standard (2, p) double-scaled matrix

integral in the p→∞ limit, correlation functions of Zcyl.(βj) become

===========⇒
Hij→H(i,g),(j,h)

Tr(... )→χYM(... )

〈Zcyl.(β1) . . . Zcyl.(βn)〉glued
conn.(h1, . . . , hn) '

'
∞∑
g=0

∑
R

(dimRe2πẽC̃2(R)eS0)χ(Mg,n)χR(h1) . . . χR(hn) e−
C2(R)

∑n
i=j ẽbj

βj

2 Zg,n(β1, . . . , βn) .

(4.89)

Thus, the matrix integral (4.96) together with the cylindrical trace (4.83), describe the partition

function of JT gravity coupled to Yang-Mills on surfaces whose boundaries are asymptotically AdS2

(ε → 0). However, in section 4.4.2 we have computed the first order correction in ε which has led

to the renormalization of the dilaton boundary value (4.37), φb ⇒ φ̃b(R) = φb − ε ẽ C̃2(R). This

renormalization changes the density of states that appears in the contribution of disk topologies in

each representation sector R, ρ0(E) = φb
2π2 sinh(2π

√
2φbE)⇒ ρR0 (E) = φ̃b(R)

2π2 sinh

(
2π
√

2φ̃b(R)E

)
.

This implies that when setting φb ≡ 1/2, if rescale the temperature βj in each representation sector,

such that in the cylindrical trace (4.84) we replace TrR(dimN)e
−βHR ⇒ TrR(dimN)e

−β HR
1−εẽC̃2(R) ,

we can reproduce the genus expansion of the partition functions (4.60) and (4.62); as previously

mentioned, this accounts for the first order correction in ε to correlators of Zcyl., h(β). Therefore,

including this correction in ε simply amounts to correcting the trace (4.83) for the matrix integral

operator insertion.

Thus, the equivalence between the genus expansion of correlators in the gravitational gauge

theory and the genus expansion of the matrix integral is schematically summarized in figure 4.3.

134



JT gravity coupled to Yang-
Mills in the genus expansion
with Dirichlet or mixed b.c.

A collection of GUE-like
matrix integrals, with
matrices

∏⊗
RHNR×NR

with NR = (dimR)N

Matrix integral for matri-
ces with elements in C[G]

Figure 4.3: Schematic representation of the equivalence between the gravitational gauge theory in
the genus expansion, a collection of Hermitian random matrix ensembles

∏⊗
RHNR×NR and a single

Hermitian random matrix ensemble with elements in C[G].

4.4.4 An interlude: the theory on orientable and unorientable manifolds

In subsection 4.4.3 we have reviewed the relation between the gravitational genus expansion on

orientable manifolds and matrix integrals over complex Hermitian matrices [37], for which the sym-

metry group that acts on the ensemble of such matrices is U(N) (this is known as the β = 2

Dyson-ensemble [187], also referred to as GUE). Furthermore, we have shown how these matrix in-

tegrals account for the gauge degrees of freedom when considering Hermitian matrices with elements

in C[G] (i.e., G-invariant matrices (4.73) whose complex elements are labeled by two discrete labels

and two group elements).

To conclude our discussion about the equivalence between the genus expansions in the gravita-

tional gauge theories and the random matrix ensemble, it is worth schematically mentioning how

the results in the previous sections can be modified when also summing over unorientable manifolds.

Considering such manifolds in the path integral is relevant whenever the boundary theory has time-

reversal symmetry, T [113]. Thus, for pure JT gravity, the matrix integral which reproduces the

correct genus expansion should be over matrices in which time-reversal is assumed. The contribu-

tion of such surfaces to the partition function and the relation to matrix integrals with time-reversal

was studied in [113]. Depending on the way in which one accounts for cross-cap geometries, one

obtains two different bulk theories (whose partition function differs by a factor of (−1)c factor for

the contribution of surfaces that include c cross-caps)25 which are related to two different random

25As mentioned in [113], the gravitational computation in fact involves the factor (−1)χ(M), however, it is conve-
nient to replace the factor (−1)χ(M) by (−1)c. As noted in [113], the factors (−1)χ(M) by (−1)c differs by a minus
sign for each boundary component, since 2− 2g is always an even number. This replacement serves to make a more
clear map between JT gravity and random matrix resolvents.
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matrix ensembles [187]: (i) if T2 = 1 then the integral was shown to be over real symmetric matrices

(Hij = Hji) for which the associated group is O(N) (labeled as the β = 1 Dyson-ensemble or as

GOE-like); (ii) if T2 = −1 then the associated group is Sp(N) (labeled as the β = 4 Dyson-ensemble

or as GSE-like).

As was shown in [188, 189, 113], the volume of the moduli space of unorientable manifolds has

a divergence appearing from the contribution of geometries that include small cross-caps. A similar

divergence is found in the relevant double-scaled matrix integral, predicting the correct measure

for the cross-caps, but impeding the study of arbitrary genus correlators [113]. Nevertheless, when

coupling the gravitational theory to Yang-Mills theory, we can still determine the contribution of

the gauge degrees of freedom in the genus expansion of partition function even if the volume of the

moduli space is divergent. On the matrix integral side, we can also understand how to modify the

random matrix ensembles (i) or (ii) to account for this contribution (however, for matrix integrals

we will focus on (i)).

We start by analyzing the path integral in the gravitational gauge theory over both orientable and

unorientable surfaces. As before, the contribution of the gauge degrees of freedom to the partition

function of the gravitational gauge theory is simply given by dressing the gravitational contribution

Z
(β=1,4)
M by the appropriate representation dependent factors. Here, Z

(β=1,4)
M is the contribution of

manifolds with the topology of M to the pure JT gravity path integral. Since we are also summing

over orientable manifolds, the partition function already includes all the terms in (4.62), but also

includes the contributions from unorientable manifolds which can always be obtained by gluing

together surfaces with the topology of trumpets, three-holed spheres, punctured Klein bottles and

cross-cap geometries (punctured RP 2) [103]. Thus, we label such surfaces by Mg,n,s,c, where s is

the number of Klein bottles and c is the number of cross-caps.

When gluing together only trumpets, three-holed spheres, and Klein bottles, the contribution of

the gauge fields exactly follows from (4.26) [103], accounting for the contribution of the Klein bottles

to the Euler characteristic and only including the sum over representations that are isomorphic to

their complex conjugates, R = R (real or quaternionic). The non-trivial contribution comes from

the gluing of cross-cap geometries. Therefore, we first consider the example of a trumpet geometry,

glued to a cross-cap and will then generalize our derivation to surfaces with arbitrary topology. To

understand the contribution to the path integral in pure Yang-Mills theory of a surface with the

topology of a cross-cap, it is useful to understand how to construct such a surface by gluing a 5-edged

polygon [103]. Specifically, introducing the holonomies h1 and h2, the cross-cap can be constructed
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by gluing the edges of the polygon [103]:

h

h−1
1 h1

h2 h2

(4.90)

Above, h is the holonomy on the resulting boundary of the cross-cap. Thus, the contribution of a

single cross-cap glued to a trumpet whose boundary is asymptotically AdS2 is schematically given

by

Z
(0,1,0,1)
JTYM
mixed

(φb, β, h) = eS0χ(M0,1,0,1)

∫
Dgµνδ (R+ 2 + ẽφC2(R)) e

∫
du
√
guuφK

×
(∑

R

(dimR) e−ẽbβC2(R)−
ẽ C2(R)

∫
M0,1,0,1

d2x
√
g

2

∫
dh1dh2χR(hh1h

2
2h
−1
1 )

)
,

(4.91)

where M0,1,0,1 are surfaces with cross-cap topology (equivalent to RP2 with a puncture) that

has genus 0, 1 boundary, 0 Klein bottles and, of course, 1 cross-cap component. Consequently,

χ(M0,1,0,1) = 0. Above, the measure over the gravitational degrees of freedom of course depends

on whether the bulk theory is defined to weight cross-cap geometries by a factor of (−1)c.

After integrating out h1 we are left with the group integral
∫
dh2χR(h2

2). Thus, in order to

compute (4.91) we need to identify the Frobenius-Schur indicator for the representations R of the

compact Lie group G:

fR =

∫
dhχR(h2) , fR =


1 ∃ symm. invar. bilinear form R⊗R→ C ,

−1 ∃ anti-symm. invar. bilinear form R⊗R→ C ,

0 6 ∃ invar. bilinear form R⊗R→ C .

(4.92)

Such an invariant bilinear form exists if and only if R = R. The representation is real, R ∈ Ĝ1,

if fR = 1 and quaternionic (equivalent, to a pseudo-real irreducible representation), R ∈ Ĝ4, if

fR = −1. When the representation R is complex, R ∈ Ĝ2 and fR = 0.

Integrating out the the gauge field we thus find that the contribution of a single cross-cap-
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trumpet, with holonomy h, is given by

Z
(0,1,0,1)
JTYM

Dirichlet

(φb, β, h) =
∑
R

fR χR(h)
(

dimReS0e2πẽC̃2(R)
)χ(M0,1,0,1)

e−ẽbβC2(R)Z0,1,0,1(β/φb) , (4.93)

where Z0,1,0,1(β/φb) is the (divergent) contribution of the cross-cap topologies to the partition

function [113]. As previously mentioned, depending on the definition of the bulk theory Z0,1,0,1(β/φb)

could differ by an overall sign for this cross-cap geometry.

Thus, when gluing this cross-cap geometry to other surfaces, we dress the gravitational results

by the factors appearing in (4.93). Thus, the result in the gravitational gauge theory can be ob-

tained from the result in pure JT gravity, by introducing a sum over representations, dressing the

entropy factor eS0 → dimReS0eẽC2(R), introducing a factor (fR)c for geometries with c cross-caps,

replacing the boundary value of the dilaton φb → φ̃b(R) and adding the terms corresponding to the

introduction of the boundary condition changing defect (or to the use of mixed bounday conditions)

introduced in section 4.3. Thus, the result from pure JT gravity over orientable and unorientable

manifolds becomes

Z
n, (β=1,4)
JT (φbj , βj) =

∑
Mg,n,s,c

n fixed

eS0χ(Mg,n,s,c)Z(β=1,4)
g,n,s,c (βj/φbj )

===========⇒
adding Yang-Mills

term

Z
n, (β=1,4)
JTYM (φbj , βj) =

∑
R

[{ ∑
Mg,n

n fixed

(dimRe2πẽC̃2(R)eS0)χ(Mg,n)e−
C2(R)

2 (
∑n
j=1 ẽbjβj)

× Z(β=1,4)
g,n,s,c (βj/φ̃bj (R))

}
+

{ ∑
Mg,n,s,c

unorientable
n fixed

(fR)c(dimRe2πẽC̃2(R)eS0)χ(Mg,n,s,c)

× e−
C2(R)

2 (
∑n
j=1 ẽbjβj)Z(β=1,4)

g,n,s,c (βj/φ̃bj (R))

}]
, (4.94)

where the first sum in the first parenthesis is over all orientable manifold Mg,n and the sum in

the second parenthesis is over all distinct topologies among the manifoldsMg,n,s,c which are unori-

entable. Above, the number of boundaries n is kept fixed.

Only real and quaternionic representations appear in the contribution of unorientable manifolds

to the path integral since fR = 0 for complex representations. In fact, due to the factor (fR)c,

switching between the β = 1 and β = 4 bulk definitions is equivalent to switching the role of real

and quaternionic representations.

As mentioned previously, the contributions from all geometries which contain a cross-cap have a

divergence appearing from small cross-caps, and thus, in practice, the contribution of higher genus
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or demigenus unorientable surfaces is impossible to compute. Nevertheless, we can still formally

reproduce the genus expansion over orientable and unorientable surfaces from matrix integrals. For

simplicity, we only discuss the limit ε→ 0, in which we consider φ̃b(R) = φb ≡ 1/2. Once again, for

this normalization, we use the shorthand notation Z
(β=1,4)
g,n,s,c (βj) ≡ Z

(β=1,4)
g,n,s,c (βj/φbj ). We also focus

on the case in which we start from a GOE-like matrix integral (β = 1), for which matrices are real

and symmetric.

Our starting point is once again the same general matrix potential from subsection 4.4.3, however,

we now consider matrices whose elements are real functions on the group manifold G (describing

the real group algebra, R[G]), instead of complex functions; i.e. they are G-invariant matrices (4.73)

that have real elements which are labeled by two discrete labels and two group elements. Similar

to our derivation for C[G], we wish to decompose R[G], accounting for the contribution of each

representation R. Using the trace (4.87), we conclude that the decomposition is given by26

χYM(H) ≡
∫
dhZdisk

YM (h−1)

N∑
i=1

(H)i,i(h) =
∑
Ri∈Ĝ1
i=1,2,4

(dimRi) e
2πẽC̃2(Ri) Tr(dimRi)N (HRi) , (4.95)

where Ĝ1 are all the real unitary irreducible representations of G, Ĝ2 are all the complex ones and

Ĝ4 are all the quaternionic (pseudo-real) representations of G. Consequently, the symmetry groups

associated to the matrices HRi follow from the properties of UkiRi,li(h): HR1
is GOE-like, HR2

is

GUE-like and HR4
is GSE-like (also known as a quaternionic matrix) [176, 177, 178, 190]. Similarly,

the same decomposition follows for any power of H, following the convolution properties (4.80). The

matrix model (4.96) thus becomes

S[H] = N

1

2
χYM(H2) +

∑
j≥3

tj
j
χYM(Hj)


=

∑
Ri∈Ĝi
i=1,2,4

N(dimRi)e
2πẽC̃2(Ri)

1

2
Tr(dimRi)N (H2

Ri) +
∑
j≥3

tj
j

Tr(dimRi)N (Hj
Ri

)

 . (4.96)

The appropriate choice of measure for the initial path integral dH(g) decomposes to give the standard

GOE-like matrix integral measure for HR1 , the GUE-like measure for HR2 and the GSE-like measure

for HR4
. Once again we find that the matrix integral over Hij(g) is equivalent to a collection of

matrix integrals, where each integral is associated to a unitary irreducible representation R and the

associated symmetry group to each matrix is set by the reality of this representation. As was the case

26Once again, [176, 177, 178] list a similar decomposition to (4.95) for finite groups.
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for C[G], all the results presented so far in this subsection are due to the harmonic decomposition

of our matrices whose elements in R[G].

Compared to the (formal) topological expansion of correlators of Z(βj) in the matrix integral

associated to pure JT gravity, the expansion of correlators of the thermal partition sum Zcyl.(βj) =

χcyl.(e
−βjH) becomes,

〈Z(β1) . . . Z(βn)〉(β=1) =
∑

Mg,n,s,c

n fixed

eS0χ(Mg,n,s,c)Z(β=1)
g,n,s,c(βj/φbj )

===========⇒
Hij→H(i,g),(j,h)

Tr(... )→χYM(... )

〈Zcyl.(β1) . . . Zcyl.(βn)〉glued, (β=1)
conn. (h1, . . . , hn) '

'
[ ∑
Mg,n,s,c

orientable &
unorientable

∑
Ri∈Ĝi
i=1,4

(fRi)
c(dimRi e

2πẽC̃2(Ri)eS0)χ(Mg,n,s,c)χRi(h1) . . . χRi(hn)

× e−
C2(Ri)

∑n
i=j ẽbj

βj

2 Zβ=1
g,n,s,c(β1, . . . , βn)

]
+

[ ∑
Mg,n

∑
R2∈Ĝ2

(dimRi e
2πẽC̃2(Ri)eS0)χ(Mg,n)

× χR2(h1) . . . χR2(hn)e−
C2(R2)

∑n
i=j ẽbj

βj

2 Zβ=1
g,n,s,c(β1, . . . , βn)

]
. (4.97)

Since the matrix integrals over HR1 and HR4 are GOE-like and GSE-like respectively, the sum

in the first parenthesis is over all distinct topologies among both the orientable and unorientable

manifoldsMg,n,s,c . The factor of (fRi)
c precisely accounts for the (−1)c factor for the GOE and GSE

ensembles associated to the integrals over HR1 and, respectively, HR4 . Because HR2 is hermitian,

the sum in the second square parenthesis is solely over orientable manifolds. Noting that fR2
= 0,

for complex representation R2 it is straightforward to realize that the sums in (4.97) reduce to

those in (4.94), in the limit in which φ̃b(R) = φb. Thus, we indeed find a (formal) agreement

between the matrix integral and the gravitational gauge theory genus expansion. A similar proof is

straightforward to derive when starting with a GSE-like matrix integral (and, consequently, using

the other definition for the bulk theory).

Thus, we suggest the equivalence between the Euler characteristic expansion of correlators in

the gravitational gauge theory, on both orientable and unorientable surfaces, and the expansion in

the matrix integral discussed above. This relation is summarized through diagram 4.4. With this

generalization in mind, we now return to the usual situation in which we sum solely over orientable

manifolds, with the goal to analyze the diffeomorphism and gauge-invariant operators of the theory.
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JT gravity coupled to Yang-Mills
in the genus expansion with

Dirichlet or mixed b.c. on ori-
entable & unorientable manifolds

A collection of matrix integrals
with matrices

∏⊗
RHNR×NR

with NR = (dimR)N ,
whose class is set by fR

Matrix integral for GOE-like
matrices with elements in R[G]

Figure 4.4: Schematic representation of the equivalence between the gravitational gauge theory in
the genus expansion on orientable and unorientable surfaces, a collection of random matrix ensembles∏⊗
RHNR×NR whose class is specified by fR and a single GOE-like random matrix ensemble with

elements in R[G].

4.5 Observables

4.5.1 Diffeomorphism and gauge invariance

The goal in this section is to define a set of diffeomorphism and gauge invariant observables in the

gravitational BF or Yang-Mills theories. In order to do this it useful to first review how diffeomor-

phisms act on the zero-form and one-form fields in the theory. Under a diffeomorphism defined by

an infinitesimal vector field ξ, the zero form field and the one form field transform as,

φ→ φ+ iξdφ ,

A→ A+ iξdA+ d(iξA) = A+ iξF +DA(iξA) , (4.98)

where iξ represents the standard map from a p-form to a (p−1)-form. Since we are fixing the metric

along the boundary, we fix diffeomorphisms on ∂M to vanish, ξ|∂M = 0.

To start, we first analyze the possible set of local operators. In Yang-Mills theory, the local

operator Trφ2(x) (which is also proportional to the quadratic Casimir of the gauge group G) is

indeed a good diffeomorphism invariant operator since dTrφ2(x) = 0 (also valid as an operator

equation). Similarly, all other local gauge-invariant operators are given by combinations of Casimirs

of the group G. Since all other Casimirs are constructed by considering the trace of various powers

of φ, they are also conserved on the entire manifold. Consequently, they also serve as proper

diffeomorphism and gauge-invariant observables in the gravitationally coupled Yang-Mills theories.
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We also analyze the insertion of non-local operators of co-dimension 1: i.e. Wilson lines and

loops,

WR(C) = χR

(
Pe
∫
C A
)

(4.99)

where the meaning of the contour C will be specified shortly.

Before moving forward with the analysis of correlators for (4.99), we have to require that non-local

observables are also diffeomorphism invariant. In the weak gauge coupling limit (BF theory) the path

integral localizes to the space of flat connections, and thus the infinitesimal diffeomorphism (4.98) is,

in fact, equivalent to an infinitesimal gauge transformation with the gauge transformation parameter

given by Λ = iξA. Since Wilson loops or lines are invariant under bulk gauge transformations, in BF

theory they are also invariant under diffeomorphisms (which, of course, also follows from the fact

that in BF theory the expectation value of Wilson loops or lines only depends on their topological

properties rather than on the exact choice of contour). When computing such correlators in the

genus expansion, one has to also specify the homotopy class of the Wilson line or loop. Since the

manifolds that we are summing over in the genus expansion, have different fundamental groups and,

therefore, different homotopy classes for the Wilson loops(or lines), there is no way to specify the

fact that the contour of the loop or line belongs to a particular class within the genus expansion. Of

course, the exceptions are the trivial classes in which the contour can always be smoothly contracted

to a segment of the boundary (for boundary anchored lines) or to a single point (for closed loops).

An even more pronounced problem appears in Yang-Mills theory where the observable (4.99) is

not diffeomorphism invariant, even when placing the theory on a disk; because the path integral

no longer localizes to the space of flat connections, the infinitesimal diffeomorphism in (4.98) is no

longer equivalent to a gauge transformation. Rather, the expectation value of a Wilson line or loop is

affected by performing the infinitesimal diffeomorphism (4.98). Therefore, we are forced to consider

generalizations of (4.99) which should be diffeomorphism invariant. Thus, we define the generalized

Wilson loops, by summing over all contours (either closed or anchored at two boundary points) on

the manifolds Mg,n, included in the genus expansion in (4.60) or (4.62):

WR ≡
∫

[dC]χR
(
Pe
∫
C A
)
, Wλ,R ≡

∫
[dC] eim

∫
C ds
√
gµν ẋµẋνχR

(
Pe
∫
C dsẋ

µAµ
)
. (4.100)

where m2 = λ(1 − λ) the measure [dC] is chosen such that (4.100) is diffeomorphism invariant.27

27Instead of expressing our results in terms of the mass m of the particle, it proves convenient to use the SL2
representation λ [115, 165], which is the charge of the particle under AdS2 isometries.
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When considering lines that are anchored, we can fix gauge transformations on the boundary in

order for (4.100) to be gauge invariant. When fixing gauge transformations on the boundary, we can

consider the more general diffeomorphism and gauge invariant operators28

Um2

R,m1
≡
∫

[dC]Um2

R,m1

(
Pe
∫
C A
)
, Um2

(λ,R),m1
≡
∫

[dC] eim
∫
C ds
√
gµν ẋµẋνUm2

R,m1

(
Pe
∫
C A
)
, (4.101)

where Um2

R,m1
(h) is the a matrix element of the R representation.

The first operators (4.100) and (4.101) can be associated to the worldline path integrals of

massless particle charged in the R representation, while the second corresponds to the worldline

of a massive particle. Because of this connection, we refer to these operators as “quark worldline

operators”. In (4.101), we not only specify the representation R but we also specify the states m and

n within the representation R in which the quark should be at the two end-points on the boundary;

(4.100) is insensitive to the states of the particle at the end-points as long as the two are the same.

When the worldlines are boundary anchored and the end-points of the contours C are both kept fix

to u1 and u2, we denote such operators by Wλ,R(u1, u2) or by Um2

R,m1
(u1, u2).

For simplicity, in this chapter, we solely focus on the expectation values of the quark worldline

operators when the theory is in the weak gauge coupling limit. Moreover, we take the contours

associated to the worldlines to be anchored at two fixed points on the boundary and to be smoothly

contractable onto the boundary segment in between the two anchoring points.

4.5.2 Local operators

To start, we consider correlation functions of local operators first on surfaces with disk topology,

then in the genus expansion, and, in both cases, we determine the equivalent observables on the

boundary side.

In section 4.3.3, we have proven that Zdisk
JTYM(φb, β, h) = ZSchwoG(β, h) for both Dirichlet and

mixed boundary conditions, for any choice of holonomy of the gauge field Au. Given this equality, it

is straightforward to determine how to reproduce boundary correlators of G-symmetry charges from

the bulk perspective. By using functional derivatives with respect to the background gauge field on

the boundary side and derivatives with respect to the gauge field Au appearing in the boundary

28In fact, one only needs to fix gauge transformations at the anchoring points in order for (4.100) and (4.101) to

be gauge invariant. The expectation value of such operators in depends on the group elements hj,j+1 = Pe
∫ uj+1
uj

A
,

where uj and uj+1 are all the pairs of neighboring anchoring points.
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condition for the bulk gauge field, we find the following match:

δkZdisk
JTYM(φb, β,Pe

∫
∂MA)

δAa1
u (u1) . . . δAaku (uk)

←→ δkZSchwoG(β,Pe
∫
∂MA)

δAa1
u (u1) . . . δAaku (uk)

= ik〈αααa1(u1) . . .αααak(uk)〉 . (4.102)

The equivalence above holds when choosing both Dirichlet or mixed boundary conditions for the

bulk gauge field and, as presented in subsection 4.3.3, when choosing the appropriate boundary

theory. Note that since ααα(u) is not invariant under background gauge transformations, in (4.102)

we should fix Au(u) at every point and not only its overall holonomy for any choice of gauge field

boundary conditions.

Similarly, we find a match between the conserved G quadratic Casimir in Yang-Mills theory and

the conserved G quadratic Casimir on the boundary side:

Trφ2 ←→ Trααα2 . (4.103)

The correlators or such operators are obtained by inserting the G quadratic Casimir in the path

integral, to find that29

〈Trφ2(x1) . . .Trφ2(xk)〉(h) ∝
∑
R

dim(R)χR(h)(2C2(R))n

(
φ̃b(R)

β

)3/2

× e
π2φ̃b(R)

β +2πẽC̃2(R)−ẽbβC2(R) =

= 〈Trααα2(u1) . . .Trααα2(un)〉 , (4.104)

where we note that the correlator is independent of the bulk insertion points x1, . . . , xn and of the

boundary insertion points u1, . . . , un.30 Following the same reasoning, the correlation functions of

any gauge invariant operators match:

V̂ (φ)←→ V̂ (ααα) . (4.105)

Correlation functions such as 〈V̂1(φ(u1)) . . . V̂n(φ(un))〉 can be matched by replacing the factor of

the Casimir (C2(R))n in (4.104) by V1(R) . . . Vn(R). Since all diffeomorphism and gauge invariant

operators are of the form (4.105) we conclude that the correlation functions of local operators on

surfaces with disk topology match those in the boundary theory (4.45).

29For brevity, we use ∝ to denote the solution to correlators, un-normalized by the partition function in the
associated theories.

30The factor of 2 in front of the Casimir comes from the normalization N ≡ 1/2.
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We now consider such correlators in the genus expansion of orientable surfaces. With mixed

boundary conditions for the gauge field in the gravitational gauge theory, such correlators are given

by

〈Trφ2(x1) . . .Trφ2(xk)〉(φbj , βj , hj) ∝
∑
R

χR(h1) . . . χR(hn)e−
ẽbC2(R)

∑n
j=1 βj

2

×

[ ∞∑
g=0

(
dim(R)e2πẽC̃2(R)eS0

)χ(Mg,n)

(2C2(R))
k
Z

(φbj (R))
g,n (βj)

]
, (4.106)

when considering surfaces with n-boundaries. For simplicity we assume ε → 0 such that we take

φ̃bj (R) = φbj . This result can be reproduced from the random matrix ensemble (4.96) by considering

correlators of the operator

χTrφ2 ,h(e−βjH) ≡
∫
dh̃ 〈Trφ2〉(0, 2)

BF
mixed

(h̃−1, h)

N∑
i=1

(
e−βjH

)
i,i

(h̃)

=

∫
dh̃
∑
R

χR(h̃−1)χR(h)(2C2(R))e−
ẽbβC2(R)

2

N∑
i=1

(
e−βjH

)
i,i

(h̃)

=
∑
R

χR(h)(−C2(R))e−
ẽbβC2(R)

2 Tr(dimR)N (e−βjHR) , (4.107)

where 〈Trφ2〉(0, 2)
BF

mixed

is the expectation value of the operator Trφ2 on the cylinder (M(0,2)) in the

BF-theory with the mixed boundary condition (4.14) on one of the sides of the cylinder and with

Dirichlet boundary conditions on the other. Plugging the above into the “glued” matrix integral

correlator, we indeed find that31

〈Trφ2(x1) . . . Trφ2(xk)〉(φbj , βj , hj) = 〈χTrφ2 (e−β1H) . . . χTrφ2 (e−βkH)〉glued
conn.(φbj , βj , hj) (4.108)

Similarly, by modifying the trace function in (4.107) by replacing Trφ2 by the arbitrary function

V (φ), we can prove that for all gauge and diffeomorphism invariant observables on the boundary

side one can construct the equivalent set of operators on the matrix integral side.

4.5.3 Quark worldline operators in the weakly coupled limit

Since we have discussed the correlators of all gauge-invariant local operators, we can now move-

on to computing the expectation value of the aforementioned quark worldline operators (4.100)

and (4.101). As previously stated, in this subsection we solely consider boundary anchored quark

31Once again we omit to specify the holonomies associated to the traces χTrφ2 (. . . ). See footnote24.
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worldlines in the weakly coupled topological limit, with the mixed boundary conditions studied in

section 4.2. We again start by studying surfaces with disk topology and then discuss correlators of

such operators in the genus expansion. For higher genus manifolds, we only consider massless quark

worldline operators whose contours have both endpoints on the same boundary. Moreover, we solely

consider contours that can be smoothly contractible to a segment on the boundary when keeping

these boundary endpoints fixed.

Considering the weak gauge coupling limit offers two advantages.

The first is that the expectation value of operators with self-intersecting contours C is the same

as the expectation value of operators with contours C̃ that have the same endpoints and are not self-

intersecting; i.e., there is a smooth transformation taking C and C̃ which vanishes at the endpoints.32

Therefore, in the weak gauge coupling limit, we only have to consider the expectation value of lines

that are not self-intersecting.

The second advantage of the weak gauge coupling limit is that on surfaces with disk topology,

the contribution of the gauge field in the worldline operators (4.100) and (4.101) can be factorized:

Um2

(λ,R),m1
=

∫
[dC] eim

∫
C
ds
√
gµν ẋµẋνUm2

R,m1

(
Pe
∫
C A
)

=

(∫
[dC] eim

∫
C
ds
√
ẋµẋµ

)
Um2

R,m1

(
Pe
∫
C̃
A
)
.

(4.109)

The above equation holds for any contour choice C̃ which has the same end-points as the contours

C. Correlators of Oλ(C) ≡
(∫

[dC] eim
∫
C
ds
√
gµν ẋµẋν

)
have been studied in pure JT gravity on

disk topologies in [121, 1]. Such operators were shown to be equivalent to Wilson lines in a BF

theory with sl(2,R) gauge algebra. In turn, the expectation value of such lines were shown to match

correlation functions of bi-local operators in the Schwarzian theory [40, 64, 191, 1],

Oλ(C) ≡
(∫

[dC] eim
∫
C
ds
√
gµν ẋµẋν

)
↔ Oλ(u1, u2) ≡

(
F ′(u1)F ′(u2)

|F (u1)− F (u2)|2

)λ
, (4.110)

where F (u) is the Schwarzian field and u1 and u2 are the locations of the end-points for the countours

C.

Thus, by using the correlator functions of Wilson lines in sl(2,R) BF theory,33 together with

32As previously discussed, when quantizing BF-theory each patch has an associated irreducible representation R.
As we will summarize shortly, for each Wilson line intersection, one associates a 6j-symbol of the group G which
includes the four representation associated to the patches surrounding the intersection and the two representations
associated to the two lines. When the line is self-intersecting, one instead uses two copies of the representation
associated with that line. The fact that Wilson lines with the contour C and C̃ have the same expectation value
follows from orthogonality properties of the 6j-symbol.

33Or, equivalently, the expectation value of bi-local operators in the Schwarzian theory [40].
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the expectation value of boundary anchored non-intersecting Wilson lines in G-BF theory,34 we

determine arbitrary correlators of quark worldlines in the weak gauge coupling limit on surfaces

with disk topology. Using closely related techniques, we then move-on to the genus expansion when

setting the mass of the quark to m = 0.

A single line on the disk

When fixing the boundary conditions for the gauge field to be given by (4.14), the expectation value

of a boundary anchored quark worldline operator can be computed in two different ways.

The first follows the reasoning presented in subsection 4.2.1: we reduce the bulk path integral

in the presence of a quark worldline operator to a boundary path integral. Such a reduction was

studied in the case of pure BF theory in [120, 192, 121]. As mentioned in subsection 4.2.1 the path

integral over the zero-form field φ imposes a restriction to the space of flat connections, A = q−1dq.

For such configuration the path-ordered integral that appears in the Wilson-line becomes Pe
∫
C
A =

q−1(u2)q(u1), for any contour C whose end-points are u1 and u2. Similarly, one can show that

the the Wilson line in the sl(2,R) BF-theory reduces to the bi-local operator (4.110). Thus in the

boundary path-integral (4.17), we need to insert the operator Um2

R,m1
(q−1(u2)q(u1)):35

〈Um2

(λ,R),m1
(u1, u2)〉 ∝

[∫
DqDαααUm2

R,m1
(q−1(u2)q(u1)) e

∫
du
(
iTr (ααα q−1DAq)+

√
guu

εẽb
2 Tr ααα2

)]
×
[∫

DF Oλ(u1, u2)e
∫ β
0
duSch(F,u)

]
. (4.111)

The path integral in the first parenthesis was computed in [121, 120] when the background gauge

field Au = 0. Nevertheless, we follow the same reasoning as in [121, 120] to solve the path integral

for an arbitrary background. By using the quantization procedure from subsection 4.2.2 and using

Um2

R,m1
(q−1(u2)q(u1)) = Um2

R,p(q
−1(u1))UpR,m1

(q(u2)), we find that the first square parenthesis can be

rewritten as [121, 120]

〈Um2

R,m1
〉G ≡ TrHGU

m2

R,p(q
−1(u1))h12e

−u12HUpR,m1
(q(u2))h21e

−u21H , (4.112)

where h12 = Pe
∫ u2
u1
A

and h21 is given by the integral along the complementary segment. Further-

more, we have simplified notation by denoting uij = |ui − uj | for i > j and uji = |β − uj + ui|. By

34The expectation value of boundary anchored Wilson lines in the more general Yang-Mills theory with gauge
group G were studied in [120, 192, 121].

35Note that because the action in the first path integral in (4.111) is invariant under 1d diffeomorphisms, one
can equivalently use the AdS2 coordinate given by the Schwarzian field F (u) to parametrize the boundary and the
anchoring points.
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inserting the complete basis of eigenstates of the Hamiltonian H at various locations in (4.112) one

can easily compute the expression above [120, 121].

Before, discussing the final result (4.116) of the path integral in (4.111), we briefly summarize

how one can compute the expectation value of Um2

(λ,R),m1
(u1, u2) by directly performing the bulk path

integral. By using the fact that the mixed boundary conditions are equivalent to the insertion of the

boundary condition changing defect (4.27), we find that the contribution of the gauge field is given

by the gluing formula

〈Um2

R,m1
〉G =

∫
dhZ

(0,1)
BF

mixed

(u12, h12h)Um2

R,m1
(h)Z

(0,1)
BF

mixed

(u21, h21h
−1) . (4.113)

This, or equivalently (4.112), yields36

〈Um2

R,m1
〉 BF
mixed

= 〈Um2

R,m1
〉G =

∑
R1, R2

(dimR1)(dimR2) e−
1
2 ẽb(u12 C2(R1)+u21 C2(R2))

×
dimRj∑
pj , qj=1
j=1,2

R1 R R2

p1 m1 −p2


R1 R R2

q1 m2 −q2

Uq1R1,p1
(h12)Uq2R2,p2

(h21) , (4.115)

where

R1 R̃ R2

p1 m1 −p2

 is the 3j-symbol for the representations R1, R and R2 of the group G.

Putting this together with the result for the expectation value of the bi-local operator in the

Schwarzian theory [40] or, equivalently, for the expectation value of a Wilson line in an sl(2,R)

BF-theory [121, 1], we find that

〈Un(λ,R),m(u1, u2)〉 ∝
∫
ds1ρ0(s1) ds2ρ0(s2)Ñs2

s1,λ

∑
R1, R2

(dimR1)(dimR2) e
−u12

(
s21
2φb

+
ẽbC2(R1)

2

)

× e
−u21

(
s22
2φb

+
ẽbC2(R2)

2

)
dimRj∑
pj , qj=1
j=1,2

R1 R R2

p1 m1 −p2


R1 R R2

q1 m2 −q2

Uq1R1,p1
(h12)Uq2R2,p2

(h21),(4.116)

where Ñs2
s1,λ can be viewed as the fusion coefficient for the principal series repesentations λ1 =

36Here we have normalized the 3− j symbol following [121], such that∫
dhUm1

R1,n1
(h)Um2

R2,n2
(h)Um3

R3,n3
(h−1) =

(
R1 R2 R3

m1 m2 −m3

)(
R1 R2 R3

n1 n2 −n3

)
. (4.114)
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1/2 + is1 and λ2 = 1/2 + is2 and the discrete series representation λ in SL2, given by37

Ñs2
s1,λ =

|Γ(λ+ is1 − is2)Γ(λ+ is1 + is2)|2

Γ(2λ)
=

Γ(λ± is1 ± is2)

Γ(2λ)
. (4.117)

A simplifying limit for (4.116) appears when considering the operator Wλ, R̃(u1, u2), with Au = 0

all along the boundary (h12 = h21 = e):

〈Wλ,R(u1, u2) 〉 ∝
∑
R1, R2

(dimR1)(dimR2)

∫
ds1ρ0(s1) ds2ρ0(s2)

×NR2
R1,R Ñ

s2
s1,λe

− 1
2φb

[
(u2−u1)

(
s21
2φb

+
ẽbC2(R1)

2

)
+(β−u2+u1)

(
s22
2φb

+
ẽbC2(R2)

2

)]
, (4.118)

where NR2
R1,R̃

is the fusion coefficient for the tensor product of representations, R1 ⊗ R̃ →

NR2
R1,R̃

R2 .

Following the same techniques presented so far we can compute correlation functions of an

arbitrary number of quark worldline operators, Un(λ,R),m(uj , uj+1) orWλ, R̃(uj , uj+1), by performing

the bulk path integral directly; alternatively, we can compute the expectation value of operators

such as UnR,m(q−1(uj)q(uj+1))Oλ(uj , uj+1) on the boundary side. To better exemplify the power of

these techniques we give results for two other examples of quark worldline correlators on surfaces

with disk topology.

Time-ordered correlators

First we consider the case of multiple boundary anchored lines whose end-points are uj and uj+1

(with j = 1, 3, . . . 2n−1) and the points are ordered as u1 ≤ u2 ≤ · · · ≤ u2n. In such a configuration,

we find that when setting Au = 0, the correlation function of Wmi,R̃i
is given by

〈
n∏
i=1

Wmi,R̃i
(u2i−1, u2i) 〉 ∝

∑
R1,... ,Rn,

R0

∫
ds0ρ(s0)(dimR0)

(
n∏
i=1

dsiρ(si)(dimRi)

)

×

(
n∏
i=1

NR0

Ri,R̃i
Ñs0

si,λi

)
e
−
(∑n

i=1 u2i,2i−1

(
s2i
2φb

+
ẽbC2(Ri)

2

))
−(β−

∑n
i=1 u2i,2i−1)

(
s20
2φb

+
ẽbC2(R0)

2

)
. (4.119)

This case corresponds to studying time-ordered correlators of the equivalent boundary operators,

χR(h−1(uj)h(uj+1))Oλ(uj , uj+1).

37For details about the computation of (4.117), see [1].
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Multiple intersecting lines and out of time-ordered correlators

As our second example we consider the case of two set of boundary anchored worldlines whose

end-points are u1, u2 and u3, u4 and the points are ordered as u1 ≤ u3 ≤ u2 ≤ u4. The Wilson

lines associated to the two quark worldlines operators are in a configuration that is homotopically

equivalent (when fixing the endpoints) to the case in which the contours of the two lines intersect

solely once. Therefore, we solely consider this latter configuration to compute the contribution of

the gauge degrees of freedom to the correlator. Once again, we find that when setting Au = 0 the

result simplifies. In particular, the correlation function is given by:

〈Wm1,R̃1
(u1, u2)Wm2,R̃2

(u3, u4)〉 ∝
∑

R1, ... ,R4

∫ ( 4∏
i=1

dsiρ0(si) dimRi

)
(4.120)

×
√
Ñs4λ1,s1Ñ

s3λ1,s2Ñ
s3λ2,s1Ñ

s4λ2,s2Rs3 s4

[
s2
s1

λ2

λ1

]R3 R2 R̃2

R4 R1 R̃1


2

× e
−
[(

s21
2φb

+
ẽbC2(R1)

2

)
u13+

(
s23
2φb

+
ẽbC2(R3)

2

)
u32+

(
s22
2φb

+
ẽbC2(R2)

2

)
u24+

(
s24
2φb

+
ẽbC2(R4)

2

)
u41

]
,

where

R3 R2 R̃2

R4 R1 R̃1

 is the 6− j symbol for the representations of the group G and Rs3 s4

[
s2
s1

λ2

λ1

]
is the 6− j symbol for 4 principal and two discrete series representation of SL2.38

Moving to higher genus: massless quark worldlines in the genus expansion

To conclude our discussion about non-local operators in the gravitational gauge theory, we move

away from the disk topology and compute an example of a quark worldline correlator on the bulk-

side. Finally, we again show how this correlator can be reproduced through a matrix integral.

Specifically, we consider a boundary anchored quark massless (m = 0 and, consequently λ = 0 or 1)

worldline operators with homotopically trivial contours in the weak coupling.39 By using the gluing

procedure described above we find that the correlator for a single quark worldline on a surface with

38Once again, for details about the appearance of the SL2 6j-symbol, see [1, 130, 131].
39The reason we are solely considering correlation functions of massless field is due to the divergence observed in

[37] when considering correlation functions of matter fields on higher genus surfaces for which the length of the closed
geodesic along which the trumpet is glued has b→ 0.

150



n-boundaries is given by,

〈Un(0,R),m(u1, u2)〉(h12, h21, h2, . . . , hn) ∝
∞∑
g=0

Zg,ne
S0χ(Mg,n)

∫
dhZ

(0,1)
BF

mixed

(h12h)Z
(g,n)
BF

mixed

(h−1h21)

× UnR,m(h) =

∞∑
g=0

Zg,n
∑
R1,R2

(dimR1)
(
dimR2 e

S0
)χ(Mg,n)

χR(h2) . . . χR(hn)e−
C2(R)

∑n
j=2 ebj

βj

2

× e−
ẽbu12C2(R1)

2 − ẽbu21C2(R2)

2

dimRj∑
pj , qj=1
j=1,2

R1 R R2

p1 m1 −p2


R1 R R2

q1 m2 −q2

Uq1R1,p1
(h12)Uq2R2,p2

(h21) .

(4.121)

Here, when g > 0, the contours are contractible to the segment of the boundary whose length is

u12, with u12 + u21 = β. Once again, while on the disk the the contribution of the gauge and

gravitational degrees of freedom are factorized, the two theories which are topological in the bulk

are once again coupled through the genus expansion. The gluing procedure in (4.121) is easily

generalized for any number of quark worldlines whose contours are each contractible to a boundary

segment. Specifically, results for time-ordered and out-of-time order correlators easily follow from

(4.119) and (4.120), respectively.

It is instructive to understand how such correlators can be reproduced from matrix integrals.

For simplicity, we focus on reproducing (4.121) for a single boundary (n = 1). Once again, we rely

on modifying the trace of of operator e−βH that we have previously used in the correlator of matrix

integrals. Therefore we define

χUm2
R,m1

, h12, h21
(e−βH) ≡

∫
dh̃ 〈Um2

R,m1
〉 BF
mixed

(h12, h21h̃
−1)

N∑
i=1

(
e−βH

)
i,i

(h̃)

=
∑
R1,R2

e−
ẽb
2 (u12C2(R1)+u21C2(R2))Tr(dimR2)N

(
e−βHR2

)
(4.122)

×
dimRj∑
pj , qj=1
j=1,2

R1 R R2

p1 m1 −p2


R1 R R2

q1 m2 −q2

Uq1R1,p1
(h12)Uq2R2,p2

(h21) ,

where 〈UnR,m〉 BF
mixed

(h12, h21h̃
−1) is the expectation value of the boundary anchored Wilson line

UnR,m(h) inserted in a G-BF theory with the mixed boundary conditions (4.14). Using the ma-

trix integral whose action is given by (4.96), it quickly follows that

〈Um2

(0,R),m1
(u1, u2)〉 n=1

JTBF
mixed

(h12, h21) = 〈χUm2
R,m1

, h12, h21
(e−βH)〉 . (4.123)
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The construction of the traces in (4.107), corresponding to the insertion of the local operator

Trφ2, and the trace (4.122), corresponding to the insertion of the massless quark worldline operator

suggest the general prescription needed in order to reproduce any gauge theory observable in the

weak gauge coupling limit. For an operator O, that can be entirely contracted to the boundary of

the gauge theory, one can schematically construct the operator

χO(e−βH) =

∫
dh̃〈O〉 BF

mixed
(h̃−1)

N∑
i=1

(
e−βH

)
i,i

(h̃) , 〈O〉JTBF
mixed

= 〈χO(e−βH)〉 . (4.124)

Of course, it would be interesting to extend this construction and the analysis performed in this

subsection to worldline operators which cannot necessarily be contracted to the boundary and when

the gauge theory is not necessarily weakly coupled. We hope to report in the future on progress in

this direction.

4.6 Outlook

We have managed to quantize JT gravity coupled to Yang-Mills theory, both through the metric

and through the dilaton field, when the theory has an arbitrary gauge group G and arbitrary gauge

couplings.

When solely looking at surfaces with disk topology, we have found that the theory is equivalent

to the Schwarzian coupled to a particle moving on the gauge group manifold. Explicitly, we have

computed a great variety of observables in the gravitational gauge theory, ranging from the partition

functions presented in section 4.3, to correlators of quark worldline operators discussed in section

4.5. We matched each of them with the proper boundary observable. This boundary theory (the

Schwarzian coupled to a particle moving on a group manifold) is expected to arise in the low-

energy limit of several disordered theories and tensor models that have a global symmetry G; the

argument primarily relies on the fact that the resulting effective theory needs to have an SL(2,R)×G

symmetry.40 Nevertheless, it would be interesting to understand whether one can derive the potential

and coupling to the Schwarzian theory that we have encountered for the particle moving on the group

manifold G directly from a specific disordered theory or a particular tensor model.41

In parallel to our analysis of surfaces with disk topology, we also computed the same correlators in

the genus expansion, when considering orientable surfaces with an arbitrary number of boundaries.

For all such correlators, we have found two equivalent matrix integral descriptions. In both, the

40See [166, 167, 168, 169, 170, 171, 172, 173, 174] for details
41We thank G. Tarnopolskiy for useful discussions about this direction.
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starting point was to consider the matrix integral description of the (2, p) minimal string, in the

p → ∞ limit. In the first matrix integral description, one promotes the matrix elements Hi,j

from complex numbers to complex group algebra elements in C[G]. Keeping the couplings in the

associated matrix model to be the same, but redefining the traces appearing in the model, after

some algebraic manipulation, we obtain the second equivalent matrix integral description.

This description is given by a collection of random matrix ensembles, where each matrix is

Hermitian, is associated to a unitary irreducible representation R of G, and has its size is simply

proportional to the dimension of the irreducible representation R. Using this latter matrix descrip-

tion, we have found that the genus expansion of correlators in the gravitational gauge theory on

surfaces with n boundaries matches the expectation value of n operator insertions e−βH in the matrix

integral ensemble. Depending on which operators we include in the correlator on the gravitational

side, we have shown that one can construct the appropriate trace for the operator e−βH on the

matrix integral side.

Besides considering correlators in the gravitational gauge theory defined on orientable surfaces,

we have also briefly discussed the computation of the partition function of the theory on both

orientable and unorientable surfaces. In this case, we have recovered the partition function from a

GOE-like matrix integral with matrix elements in R[G]. It would, of course, be interesting to analyze

the same more general correlators as those studied in this chapter, both in this gravitational gauge

theory and in its associated random matrix ensemble. However, as mentioned in [113], when studying

unorientable surfaces, all computations are limited by the logarithmic divergence encountered due

to small cross-cap geometries.

Relation to SYK-like models

As discussed in [37], the random matrix statistics encountered when studying pure JT gravity only

qualitatively describe some aspects of the SYK model. Similarly, the random matrix ensembles that

we have encountered when analyzing the gravitational gauge theory reproduce the same features

of SYK models with global symmetries but do not adequately describe the disordered theory. One

example in which the matrix integral provides a qualitative description is for the ramp saddle point

encountered in SYK [19] which was found to be analogous to the double trumpet configuration from

pure JT gravity. When studying an SYK model with global symmetry, one expects similar ramp

saddle points in each representation sector; as can be inferred from our results, the contribution

of each representation sector to the double trumpet configuration in the gravitational gauge theory

indeed reproduces the linearly growing “ramp” contribution to the spectral form factor.
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Rewriting 2D Yang-Mills theory as a string theory

One significant development in the study of 2d Yang-Mills has been its reformulation as a theory

of strings [193, 194]. Furthermore, as presented in [19] and [113], and as reviewed in this chapter,

the genus expansion of pure JT gravity is related to the matrix integral obtained from the (2, p)

minimal string, in the p → ∞ limit. Consequently, it is natural to ask whether, when coupling

2d Yang-Mills to JT gravity, it is possible to rewrite the partition function or the diffeomorphism

and gauge-invariant correlators in this theory as a sum over the branched covers considered in

[193, 194].42

A further study of correlators

Regarding the classification of all diffeomorphism and gauge-invariant operators in the gravitational

gauge theory and the computation of their associated correlators, we have managed to understand

all local observables coming from pure Yang-Mills theory and have computed their expectation

values. For non-local operators we have defined a set of quark worldline operators which generalize

the Wilson lines from pure Yang-Mills theory. The purpose of this generalization was to obtain

observables which are diffeomorphism invariant. We have, however, only studied these operators

when considering worldlines that are boundary anchored and are smoothly contractible to a segment

on the boundary. It would, of course, be interesting to understand how to perform computations for

more general topological configurations. This brings up two problems. The first is to determine a

way to assign weights in the path integral to the different homotopy classes in which the contours of

the boundary anchored worldlines can belong. Such an assignment is well known for worldline path

integrals in quantum mechanics [195], however, considering worldlines in the genus expansion in 2d

quantum gravity adds a layer of complexity. This is because the first homotopy group for surfaces

with different genera is, of course, different. The second problem with studying worldline path

integrals with topologically non-trivial contours is that for certain homotopy classes such contours

are necessarily self-intersecting.43 Consequently, one needs to develop a bookkeeping device for

tracking the 6j-symbols associated with each intersection that would necessarily appear in the genus

expansion.

A further research direction that would lead to a better understanding of quark worldline opera-

42In fact, investigating the behavior of 2d Yang-Mills coupled to 2d quantum gravity is an open research direction
suggested in the review [104].

43For instance, consider a closed curve on the torus M1,0, for which π1(M1,0) = Z × Z. Consider a curve that
winds p times around one cycle and q times around the other with (p, q) ∈ π1(M1,0). Then the minimum number of
self-intersections for such a curve is gcd(p, q)− 1 [196] for p, q > 0.
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tors would be to compute their associated correlators beyond the weak gauge coupling limit. Perhaps

one can use diffeomorphism invariance to simplify this computation. For instance, by working in a

diffeomorphism gauge where the metric determinant
√
g is concentrated around the boundary and

is almost vanishing in the bulk, it might be possible to reduce the computation at arbitrary gauge

coupling to the computation at weak gauge coupling.
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Chapter 5

Relation to near-extremal black

holes

5.1 Outline of results

This chapter expands on the ideas presented in section 1.6 and is organized as follows. In section

5.2, we describe the set-up for Reissner-Nordström black holes, discuss details about the dimensional

reduction, dynamics and boundary conditions for massless fields in the near-horizon region. In

section 5.3, we reduce the dynamics in the near-horizon region to that of a 1d system, the Schwarzian

theory coupled to a particle moving on a U(1)× SO(3) group manifold. We compute the partition

function and density of states in such a system in the canonical and grand canonical ensembles,

thus obtaining the main result of this chapter in section 5.3.2 and 5.3.3. In section 5.3.4, we also

account for deviations from the spinless Reissner-Nordström solution to Kerr-Newman solutions

with small spin, in a grand canonical ensemble that includes a chemical potential for the angular

momentum (or equivalently, fixing the boundary metric). More details about the connection between

the SO(3) gauge field appearing from the dimensional reduction and the angular momentum of the

black hole are discussed in appendix C. In section 5.4, we revisit the contribution of massive Kaluza-

Klein modes to the partition function. We show their effect is minimal and does not modify the

shape of the density of states. Finally, in section 5.5 we summarize our results and discuss future

research directions, focusing on possible non-perturbative corrections to the partition function and

speculating about the role that geometries with higher topology have in the near-horizon region.
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5.2 Near-extremal black hole and JT gravity

In this chapter, we will focus on several kinds of 4d black hole solutions. Specifically, in this section,

we will consider the Reissner-Nordström black holes solutions and Kerr-Newman solutions of low

spin, in both asymptotically AdS4 spaces and flat spaces. While here we focus on black holes in

D = 4, the techniques used here apply to a broader set of near-extremal black holes in any number

of dimensions.

5.2.1 Setup

In this section we will study Einstein gravity in asymptotically AdS4 coupled to a U(1) Maxwell

field. The Euclidean action is given by

IEM =− 1

16πGN

[∫
M4

d4x
√
g(M4) (R+ 2Λ)− 2

∫
∂M4

√
h∂M4K

]
− 1

4e2

∫
M4

d4x
√
g(M4) FµνF

µν , (5.1)

where F = dA and where we take A to be purely imaginary. The coupling constant of the gauge

field is given by e, and Λ = 3/L2 denotes the cosmological constant with corresponding AdS radius

L. It will be more intuitive to sometimes keep track of GN by using the Planck length instead,

GN = `2Pl.

The focus of this chapter will be to compute the Euclidean path integral (fixing boundary con-

ditions in the boundary of flat space or AdS4) around certain background geometries. Throughout

this chapter, we fix the boundary metric hij of the manifold M4, which requires the addition of

the Gibbons-Hawking-York term in (5.1). For the gauge field, we will pick boundary conditions

dominated by solutions with a large charge at low temperatures, in the regime where the black hole

will be close to extremality. Specifically, the two boundary conditions that we will study will be:

• Fixing the components of Ai along the boundary ∂M4. With such boundary conditions, (5.1)

is a well defined variational problem. As we will see shortly, dimensionally reducing the action

(5.1) to 2d, amounts to fixing the holonomy around the black hole’s thermal circle; in turn, this

amounts to studying the system in the charge grand canonical ensemble with the holonomy

identified as a chemical potential for the black hole’s charge.

• We will also be interested in fixing the charge of the black hole, which corresponds to studying

the charge microcanonical ensemble. Fixing the charge amounts to fixing the field strength
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Fij on the boundary. In this case, we need to add an extra boundary term for (5.1) to have a

well defined variational principle [197, 198]

ĨEM = IEM −
1

e2

∫
∂M4

√
hF ij n̂iAj , (5.2)

where n̂ is outwards unit vector normal to the boundary. To compute the free energy in the

case of black holes in AdS4, we could alternatively add the usual holographic counterterms in

the AdS4 boundary [199, 200]. A detailed analysis of all possible saddles was done in [201].

For our purposes, we will focus on the charged black hole contribution.

To start, we review the classical Reissner-Nordström solution of (5.1), obtained when fixing the

field strength on the boundary and consequently the overall charge of the system. The metric is

given by

ds2
(4d) = f(r)dτ2 +

dr2

f(r)
+ r2dΩ2

2 , f(r) = 1− 2GNM

r
+
GN
4π

Q2

r2
+
r2

L2
, (5.3)

For concreteness we will pick the pure electric solution with F = eQ
4π ∗ ε2, with ε2 the volume form

on S2, while the magnetic solution has F = eQ
4π ε2.1 Such black holes have two horizons r+ and r−

located at the zeroes of f(r±) = 0. We will refer to the larger solution as the actual horizon radius

rh = r+. As a function of the charge, the temperature and chemical potential are given by

β =
4π

|f ′(rh)|
, µ =

e

4π

Q

rh
. (5.4)

In terms of the chemical potential the vector potential can be written as A = iµ
(
1− rh

r

)
dτ such

that its holonomy is eµβ along the boundary thermal circle. The Bekenstein-Hawking entropy for

these black holes is given by

S =
A

4GN
=
πr2
h

GN
. (5.5)

However, as we will see below, if the entropy is defined through the Gibbons-Hawking procedure

instead, the result can be very different due to large fluctuations in the metric. To enhance this

effects we will consider the regime of low temperatures and large charge next.

Near-extremal Limits

1As we will show shortly, in these units the charge is quantized as Q ∈ e · Z.
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In the extremal limit, both radii become degenerate and f(r) develops a double zero at r0 (which

can be written in terms of for example the charge). In this case, the extremal mass, charge and

Bekenstein-Hawking entropy are given by

Q2 =
4π

GN

(
r2
0 +

3r4
0

L2

)
, M0 =

r0

GN

(
1 +

2r2
0

L2

)
, S0 =

πr2
0

GN
. (5.6)

This is the naive zero temperature extremal black hole. As we will see below, the small temperature

limit of the entropy will not be given by the extremal area S0 but it will still be a useful parameter

to keep track of.

Since the semiclassical description breaks down at sufficiently small temperatures, we will study

near-extremal large black holes with very large β = T−1. We will first review its semiclassical

thermodynamics in this limit. To be concrete, we will do it here by fixing the charge and the

temperature. We will write the horizon radius as rh = r0 + δrh where r0 is the extremal size for the

given charge. Then the temperature is related to δrh as

rh = r0 + δrh, δrh =
2π

β
L2

2 + . . . , L2 ≡
Lr0√
L2 + 6r2

0

, (5.7)

where the dots denote sub-leading terms in the large β limit and the physical interpretation of the

quantity L2(r0) will become clear later. The energy and Bekenstein-Hawking entropy if we fix the

charge behave as

E(β,Q) = M0 +
2π2

MSL(2)

T 2 + . . . , S(β,Q) = S0 +
4π2

MSL(2)

T + . . . , (5.8)

where the dots denote terms suppressed at low temperatures, and where we define the gap scale

M−1
SL(2) ≡

r0L
2
2

GN
, (5.9)

where r0 is a function of the charge given by (5.11). Due to this scaling with temperature, as

reviewed in the introduction, the statistical description breaks down at low temperatures β &M−1
SL(2)

so we identify this parameter with the proposed gap scale of [72] (as anticipated in the introduction,

we will see in the next section that this intuition is wrong). A similar analysis to the one above can

be done for fixed chemical potential.

Two limits of this near-extremal black hole will be particularly useful. The first is the limit

L → ∞ where we recover a near-extremal black hole in flat space, and large Q. In this case the
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mass and entropy scale with the charge as

r0 ∼ `PLQ, M0 ∼
Q

`PL
, S0 ∼ Q2. (5.10)

We will take the limit also of large charge Q for two reasons. First, we want the black hole to be

macroscopic with a large size compared with Planck’s length. Second, we want S0 � 1. As we

will see below, this will suppress topology changing processes near the horizon [37]. In this limit

MSL(2) ∼ GN/Q3.

The second limit we will consider is a large black hole in AdS, keeping L fixed. Following [91]

we will take large charges such that r0 � L. We achieve this by choosing boundary conditions such

that Q� L/`Pl (or µ� e/`Pl). In this regime the charge and mass are approximately

Q2 =
4π

GN

3r4
0

L2
, M0 =

2r3
0

GNL2
∼ Q3/2, S0 =

πr2
0

GN
∼ Q . (5.11)

For a bulk of dimension D = d + 1, the mass of the extremal state scales as M0 ∼ Q
d
d−1 for large

charge. This scaling is dual to the thermodynamic limit of the boundary CFTd in a state with finite

energy and charge density, see for example [202]. Since L � `Pl, then r0 � L implies r0 � `Pl

and therefore S0 � 1, suppressing topology changing processes near the horizon. In this limit

MSL(2) ∼ G3/4
N /Q1/2.

Near-extremal Geometry

Finally, in the near-extremal limit we will divide the bulk geometry in a physically sensible way

that will be very useful below [91]. We will separately analyze the near-horizon region and the far

region, as depicted in figure 5.1. They are described as:

Near-horizon region (NHR): This is located at radial distances r − r0 � r0 and is approxi-

mately AdS2 × S2 with an AdS2 and S2 radius given by

L2 =
Lr0√
L2 + 6r2

0

, RS2 = r0. (5.12)

Indeed from the metric (5.3) we can approximate, defining ρ = r − r0, in the near-horizon region

ds2
(4d) =

ρ2 − δr2
h

L2
2

dτ2 +
L2

2

ρ2 − δr2
h

dρ2 + (r0 + ρ)2dΩ2 (5.13)

where the first two terms correspond to the thermal AdS2 factor with AdS radius L2 and the second
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Horizon

NHR
AdS2 × S2

JT gravity

Quantization is easy

(linear dilaton)

FAR
Near-extremal

solution

Figure 5.1: A cartoon of the near-horizon region (NHR) and the far-away region (FAR) separated
by a boundary at which the boundary term of JT gravity will need to be evaluated. In the throat
quantization is easy and necessary to account for at low temperatures. In the FAR quantization is
hard but quantum corrections are suppressed.

factor is a sphere with an approximately constant radius r0. For a black hole in flat space limit the

radius of AdS2 is L2 ≈ r0 while for a large black hole in AdS it is given by L2 ≈ L/
√

6.

We kept the slowly varying term in the size of the transverse S2 since this small correction

breaks the AdS2 symmetries and dominates the low-temperature dynamics [87, 29]. As indicated

in figure 5.1, we will review how the four-dimensional theory reduces to JT gravity in this region.

At positions ρ � δrh, the finite temperature effects can be neglected, and the geometry becomes

vacuum AdS2. Since we will take very low temperatures δrh � L2 and therefore the geometry

becomes approximately vacuum AdS2 before we reach the asymptotic AdS2 regime ρ� L2.

We also look at the behavior of the U(1) field strength in this region Fτρ ∼ Q/(4πr2
0). Therefore

the throat is supported by a constant electric field.

Far-away region (FAR): This is located instead at large r, where the metric can be approxi-

mated by the extremal AdS4 metric

ds2
(4d) = f0(r)dτ2 +

dr2

f0(r)
+ r2dΩ2, f0(r) =

(r − r0)2

r2L2
(L2 + 3r2

0 + 2rr0 + r2) (5.14)

with the identification τ ∼ τ + β. As the temperature is taken to zero this region keeps being well

approximated by the semiclassical geometry. This is appropriate for the case of large black hole

limit in AdS4. For the case of black holes in the flat space limit, we take L → ∞ of the metric
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above, finding the extremal geometry in asymptotically flat space.

Both the NHR and the FAR region overlap inside the bulk. We will match the calculations

in each region at a surface included in the overlap, denoted by the blue line in figure 5.1. This

happens at radial distances such that L2 � r − r0 � r0. We will denote the gluing radius by

r∂MNHR = r0 + δrbdy, but as we will see below, the leading low-temperature effects are independent

of the particular choice of r∂MNHR
as long as its part of the overlapping region.

5.2.2 Dimensional reduction

So far, we analyzed the semiclassical limit of large near-extremal black holes. We explained how the

full four-dimensional geometry decomposes in two regions near the horizon throat (NHR) and far

from the horizon (FAR). The parameter controlling quantum effects in the FAR region is GN which

we always keep small, while in the throat the parameter becomes the inverse temperature βMSL(2)

(due to the pattern of symmetry breaking). Since the geometry in the throat is nearly AdS2 × S2

we can do a KK reduction on the transverse sphere, and the dominant effects become effectively two

dimensional.

In this section, we will work out the dimensional reduction from four dimensions to two dimen-

sions. With respect to [91], our new ingredients will be to point out that the reduction works for

low temperatures βMSL(2) & 1 where the semiclassical approximation breaks down, and to include

the SO(3) gauge mode associated to diffeomorphisms of the transverse sphere. We will begin by

analyzing the reduction of the metric and will include the gauge fields afterwards. The ansatz for

the four dimensional metric that we will use, following [203], is

ds2
(4d) =

r0

χ1/2
gµνdx

µdxν + χ hmn(dym + Baξma )(dyn + Bbξnb ) , (5.15)

where xµ = (τ, ρ) label coordinates on AdS2 and ym = (θ, φ) coordinates on S2 with metric hmn =

diag(1, sin2 θ). At this point r0 is a constant parameter which will later be chosen to coincide with

the extremal radius introduced above, when we look at solutions. The size of the transverse sphere

is parametrized by the dilaton χ(x) while we also include the remaining massless mode from sphere

fluctuations B. We can use diffeomorphisms to make the gauge field independent of the coordinates
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on S2, so Ba = Baµ(x)dxµ. Here ξa = ξna∂n are the (three) Killing vectors on S2 given by

ξ1 = cosϕ∂θ − cot θ sinϕ∂ϕ,

ξ2 = − sinϕ∂θ − cot θ cosϕ∂ϕ,

ξ3 = ∂ϕ, (5.16)

and via the Lie bracket [ξa, ξb] = εabcξc they generate the Lie algebra of the SU(2) isometry group.

The consistency of this reduction was analyzed perturbatively in [204]. Some useful technical results

involving this ansatz were derived in [205]. The Einstein action after the reduction, keeping only

massless fields, is

I
(2d)
EH =− 1

4GN

[∫
M2

d2x
√
g[χR− 2U(χ)] + 2

∫
∂M2

du
√
hχK

]
− 1

12GNr0

∫
M2

d2x
√
gχ5/2 Tr(HµνH

µν) , (5.17)

which has the form of a two dimensional dilaton-gravity theory coupled to SO(3) Yang-Mills field

with dilaton potential and field strength

U(χ) = −r0

(
3χ1/2

L2
+

1

χ1/2

)
, (5.18)

We also defined a SO(3) valued field B = BaµT
adxµ, with T a antihermitian generators in the adjoint

representation normalized such that [T a, T b] = εabcT
c and Tr(T aT b) = − 1

2δ
ab, and field strength

H = dB −B ∧B. We will see below how in the state corresponding to a large near-extremal black

hole this reduces to Jackiw-Teitelboim gravity [39, 85].

Finally, we can reduce the Maxwell term to the massless s-wave sector. In order to do this, we

decompose the gauge field as [204]2

Aµ(x, y) = aµ(x)
1√
4π

+
∑
`≥1,m

a(`,m)
µ (x)Y m` (y), (5.19)

An(x, y) =
∑
`≥1,m

a(`,m)(x)εnp∇pY m` (y) +
∑
`≥1,m

ã(`,m)(x)∇nY m` (y), (5.20)

where in the first line Y m` (y) are the scalar spherical harmonics in S2, and in the second line we

wrote the vector spherical harmonics in terms of the scalar ones. This decomposition shows that the

only massless field after reduction is the two dimensional s-wave gauge field aµ(x). In the second

2The expansion in (5.19) assumes that no overall magnetic flux is thread through S2.
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line we see there is no component for An that is constant on S2 (since such configurations would

yield a singular contribution to the action from the poles of S2) and therefore no other massless field

is generated. Therefore the s-wave massless sector of the Maxwell action becomes

I
(2d)
M = − 1

4e2r0

∫
M2

d2x
√
gχ3/2fµνf

µν , f = da (5.21)

Putting everything together, the massless sector of the dimensionally reduced Einstein-Maxwell

action (5.1) is given by

I
(2d)
EM = − 1

4GN

[∫
M2

d2x
√
g[χR− 2U(χ)] + 2

∫
∂M2

du
√
hχK

]
− 1

12GNr0

∫
M2

d2x
√
gχ5/2 Tr(HµνH

µν)− 1

4e2r0

∫
M2

d2x
√
gχ3/2fµνf

µν , (5.22)

where the first terms corresponds to two dimensional gravity, the second to the SO(3) gauge theory

generated from the KK reduction and the third to the reduction of the four dimensional U(1) gauge

field. The contribution of the remaining massive fields coming from the U(1) gauge field, metric or

other potential matter couplings is summarized in section 5.4 and their contribution to the partition

function is discussed in section 5.4.3. As explained in the introduction, such modes are shown to

have a suppressed contribution at low temperatures and, therefore, in order to answer whether or

not there is an energy gap for near-extremal black holes it is sufficient to study the contribution of

the massless fields from (5.22). Consequently, we proceed by studying the quantization of the 2d

gauge field in (5.22), neglecting the coupling of the SO(3) gauge field to the massive Kaluza-Klein

modes and coupling of the U(1) gauge field to other potential matter fields that can be present in

(5.1).

5.2.3 Two dimensional gauge fields

In order to proceed with the quantization of the gauge field in (5.22) it is necessary to introduce

two Lagrange multipliers zero-form fields, φU(1) and φSO(3), with the latter valued in the adjoint

representation of SO(3). The path integral over the gauge fields with action (5.22) can be related

to the path integral over A, B and φU(1), SO(3) for the action

ĨEM = − 1

4GN

[∫
M2

d2x
√
g[χR− 2U(χ)] + 2

∫
∂M2

du
√
hχK

]
− i
∫
M2

(
φU(1)f + TrφSO(3)H

)
−
∫
M2

d2x
√
g

[
3GNr0

2χ5/2
Tr(φSO(3))2 +

e2r0

2χ3/2
(φU(1))2

]
, (5.23)

164



by integrating out the Lagrange multipliers φU(1), SO(3). One subtlety arises in going between

(5.23) and (5.22). When integrating-out φU(1), SO(3) there is a one-loop determinant which de-

pends on the dilaton field χ which yields a divergent contribution to the measure (behaving as

exp 4δ(0)
∫
M2

du logχ(u)) for the remaining dilaton path integral. There are two possible resolu-

tions to this problem. The first is to define the measure for the dilaton path integral for the action

(5.22) in such a way that it cancels the contribution of the one-loop determinant coming from (5.23).

The second resolution is to rely on the fact that logarithmic corrections to the free energy (that are of

interest in this chapter) solely come from integrating out fields in the near-horizon region. However,

as we will see shortly, in the near-horizon region, the dilaton field χ is dominated by its value at

the horizon and consequently the one-loop determinant is simply a divergent constant which can be

removed by the addition of counterterms to the initial action (5.22). Regardless, of which resolution

we implement, the gauge degrees of freedom in two dimensional Yang-Mills theory coupled to dilaton

gravity as in (5.23) can be easily integrated-out [3].

To begin, we fix the gauge field along the three-dimensional boundary which implies that we are

also fixing the holonomy at the boundary ∂M2, eµ = exp
∮
a and take eiβµSO(3)σ3 ∼ [P exp(

∮
B)].3

In such a case we find that by integrating out the gauge degrees of freedom yields an effective theory

of dilaton gravity for each U(1) charge Q and each SO(3) representation j:

ZRN[µ, β] =
∑

Q∈e·Z, j∈Z
(2j + 1)χj(µSO(3))e

βµQe

∫
DgµνDχe

−IQ,j [gµν ,χ], (5.24)

where χj(θ) = sin(2j+1)θ
sin θ is the SO(3) character, and the gravitational action includes extra terms

in the dilaton potential from the integrated out gauge fields

IQ,j [g, χ] = − 1

4GN

∫
M2

d2x
√
g [χR− 2UQ,j(χ)]− 1

2GN

∫
∂M2

du
√
hχK, (5.25)

UQ,j(χ) = r0

[
GN

4πχ3/2
Q2 +

3G2
N

χ5/2
j(j + 1)− 3χ1/2

L2
− 1

χ1/2

]
. (5.26)

Fixing the field strength (which corresponds to studying the system in the canonical ensemble)

instead of the gauge field holonomy (the grand canonical ensemble) simply isolates individual terms

in the sum over Q and j which corresponds to fixing the black hole charge and, as we will show

shortly, to its angular momentum.

3Here, and throughout the rest of this chapter, ∼ specifies equality of conjugacy classes. The meaning of the
holonomy for the SO(3) gauge field arising from the dimensional reduction is that as one observer travels along ∂M2

the internal space S2 is rotated by an angle µSO(3) around a given axis.
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The equations of motion corresponding to this theory are given by [206]

∇µ∇νχ− gµν∇2χ− gµνUQ,j(χ) = 0 (5.27)

R− 2∂χUQ,j(χ) = 0. (5.28)

By fixing part of the gauge freedom, the most general static solution can be put into the following

form

χ = χ(r), ds2 =
χ1/2

r0

[
f(r)dτ2 +

dr2

f(r)

]
. (5.29)

The equation for the dilaton gives ∂r2χ = constant, and using remaining gauge freedom the solution

can be put in the form χ(r) = r2. For this choice the metric equation becomes

f(χ) =
1

χ1/2

[
C − 1

2r0

∫ χ

dχUQ,j(χ)

]
, (5.30)

where C is an integration constant that can be fixed by the boundary conditions. This gives the

complete solution of the dilaton gravity equations. After analyzing some particular cases, we will

see why the specific ansatz (5.29) that we chose is convenient.

First, the simplest case is to study states with j = 0. Then the equation of motion for the metric

and dilaton for each effective action (5.25) yields

f(χ) =
1

χ1/2

[
C − 1

2r0

∫ χ

dχUQ,0(χ)

]
= 1 +

χ

L2
+
GN
4π

Q2

χ
+

C

χ1/2
. (5.31)

Using χ = r2 and the boundary conditions at large r we can fix the integration constant C =

−2GNM . Replacing this in the equation above, and replacing the two dimensional metric (5.29)

into the four dimensional (5.15), we see that this precisely agrees with the Reinsner-Nordström

solution (5.3) described in section 5.2.1 for fixed charge Q.

We can now discuss the case of arbitrary small j. Up to subtleties about the backrection of the

SO(3) gauge field on the grr and gττ metric components, the states with fixed j can be identified as

the KN solutions reviewed in appendix C. Specifically, as we show in appendix C, the deformation

from Reissner-Nordström (5.3) is given by SO(3) gauge field solutions, plugged into the metric

ansatz (5.15):

gµν = gRN
µν + δgµν , δgµνdx

µdxν = 4ir2 sin2 θ
(
α1 +

α2

r3

)
dφdτ . (5.32)

166



α1 and α2 are two constants which are determining by the boundary conditions on the SO(3) gauge

field and by requiring that the gauge field be smooth at the black hole horizon. Turning on a

non-trivial profile for the SO(3) gauge field as in (5.32) breaks the SO(3) rotational isometry down

to U(1). This is the same as in the well-known KN solution reviewed in appendix C. Solving the

equations of motion in the semiclassical limit when fixing the field strength on the boundary to

H3
rτ |∂M2

= i 6GN j
2

√
2r4
|∂M2

, corresponds to fixing j in the sum in (5.24), and using that α2 = 1√
2
GN j

2

yields a solution with a fixed 4d total angular momentum J = j/
√

2.4 Since the KN solution is

the unique solution with a U(1) rotation isometry and with fixed angular moment and charge, this

makes the metric ansatz that includes the deformation (5.32) agree (for sufficiently small j) with

the KN solution up to diffeomorphisms.

We can now address the subtlety about the SO(3) gauge field backreacting on the grr and gττ

components of the metric. The reason why we need to account for such backreaction is that it can

source other massive Kaluza-Klein modes of the metric, which are not accounted for in the action

(5.25). In order to understand the SO(3) gauge field backreaction, we can repeat the analysis above

in which we studied the backreaction of the U(1) gauge field on f(r). For j 6= 0 we get a correction

to the metric δjf ∼ G2
N j(j+1)
r4 . Since we do not want to source further backreaction on the massive

Kaluza-Klein modes, we will require that this correction is small everywhere far from the horizon

and require that the spin of the black hole satisfy j(j + 1)� (rh/`Pl)
4.

5.2.4 New boundary conditions in the throat

While quantizing the action (5.25) directly is out of reach, we can do better by separating the

integral in the action in the NHR and FAR. To conveniently manipulate the action into a form

where quantization can be addressed, we follow the strategy of [91]. Namely we choose the NHR

and FAR to be separated by an arbitrary curve with a fixed dilaton value χ|∂MNHR = χb and fixed

intrinsic boundary metric huu = 1/ε2 and proper length ` =
∫
du
√
h.

In the NHR, the equations of motion fixes the value of the dilaton at the horizon to be

φ0 ≡
χ(rh)

GN
=
r2
0(Q)

GN
, (5.33)

which acts as a very large constant background. The function r0(Q) obtained from dilaton-gravity

is equivalent to solving (5.6). In the NHR where r−rh � rh we can study small fluctuations around

4Where J is normalized as in the KN solution (C.1).
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this value χ(r) = [φ0 + φ(r)]/GN . Expanding the action to first order we find that

IQ,jNHR[gµν , χ] =
1

4

∫
MNHR

d2x
√
g

[
−φ0R− φ

(
R+

2

L2
2

)
+O

(
φ2

φ0

)]
, (5.34)

where the two dimensional AdS radius is L2 = Lr0√
L2+6r2

0

, which in general (except for the case of

large black holes in AdS4) also depends on the charge of the black hole through r0(Q). From now,

L2 and r0 should be understood as functions of the charge. The last term captures a quadratic

correction in the dilaton variation. The quantization of the above action has been widely discussed

in the presence of an appropriate boundary term.

We will see next how this boundary term arises from including fluctuations in the FAR region. We

proceed by expanding the near-extremal metric and dilaton in the FAR region into their contribution

from the extremal metric and their fluctuation:

gµν = gext
µν + δgnear-ext

µν , χ = χext + δχnear-ext . (5.35)

Both the extremal and near-extremal 4d metrics are solutions to the equations of motion at fixed β,

i.e. with periodic Euclidean time τ ∼ τ + β. The extremal solution however contains a singularity

at the horizon if imposing any periodicity for the Euclidean time. Nevertheless, if separating the

space into the NHR and the FAR, the singularity would not be present in the latter region and we

can safely expand the action around the extremal solution. If expanding around the the extremal

metic, following from the variational principle the first order term in the expansion is solely a total

derivative term which when integrated by parts results in a total boundary term. Explicitly, the

action is given by

IQ,jFAR[gµν , χ] = IQ,jFAR[gext
µν , χ

ext]− 1

2GN

∫
∂MNHR

du
√
h
[
χδK − (∂nχ− χK)δ

√
huu

]
,

δK ≡ KNHR −Kext , δ
√
huu = 0 . (5.36)

The last equality follows from the fact that we have imposed Dirichlet boundary conditions for the

intrinsic boundary metric. Consequently, as sketched in figure 5.2, we obtained a surface which has

a small discontinuity precisely on the curve that separates the NHR from the FAR. Above, KNHR is

the extrinsic curvature evaluated on the boundary of the NHR (defined with respect to the direction

of the normal vector n̂NHR) and Kext is the extrinsic curvature evaluated on the boundary of the

FAR with the extremal metric on it (wrt the normal vector n̂FAR).
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GHY term

δK ∼ KNHR −Kext

n̂NHR

n̂FAR

Figure 5.2: A cartoon of the near-horizon region (NHR) and the far-away region (FAR) separated
by a curve along which the boundary term of JT gravity will need to be evaluated.

We can now understand the effect of the Dirichlet boundary conditions for the dilaton χb =

GN (φ0 + φb/(2ε)) and proper boundary length ` =
∫
du
√
h = βL2/ε. Here, ε is some parameter

fixed by the value of ` and β whose role we will understand shortly. Curves of constant dilaton in the

extremal solution are fixed to have a constant value of r∂MNHR
≡ r0 + δrbdy and are parametrized

by τ when using the coordinate system in (5.14). In the extremal solution, the dilaton value, proper

length and extrinsic curvature Kext on the extremal side are all fixed by the value of δrbdy:

χb = GN

(
φ0 +

φb,Q
2ε

)
, with

φb,Q
2ε

=
r0δrbdy

GN
,

` =

∫
du
√
h =

βL2

ε
, with ε =

L2
2

δrbdy
, φb,Q = M−1

SL(2) =
r0L

2
2

GN
,

Kext =
1

L2

(
1− 4

3

δrbdy

r0
+

(L2 + 25δr2
bdy)

(12r2
0)

+O

(
δr3

bdy

r3
0

))
, (5.37)

where we computed the extremal extrinsic curvature using the metric (5.14). In the near-extremal

limit we have that β � ε and φb � ε. These inequalities will prove important in relating (5.37) to

a boundary Schwarzian theory.

We see here explicitly that the renormalized value of the dilaton is precisely given by the inverse

mass gap scale in the way defined previously by thermodynamic arguments. Consequently, the

overall action is given by
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IQ,jEM =− 1

4

∫
MNHR

d2x
√
g

[
φ0R+ φ

(
R+

2

L2
2

)]
− 1

2

∫
∂MNHR

du
√
h(φ0 + φ)

[
KNHR −

1

L2

(
1 +

4

3

δrbdy

r0

)]
+ IQ,jFAR[gext

µν , χ
ext] . (5.38)

The quadratic fluctuations in the FAR region are suppressed compared to the contribution of

the first two NHR terms in (5.38).5 Therefore, we will neglect the possible quadratic (or higher

order) fluctuations around the extremal metric in the FAR region and proceed by evaluating the

contribution of FAR action on-shell. To simplify the computation, we will, for now, focus on the

j = 0 sector where there is no backreation from the SO(3) gauge field on the other components of

the metric. On-shell, the bulk term in the FAR action evaluates to

IQ,j=0
FAR, bulk[gext

µν , χ
ext] = − 1

4GN

∫
d2x
√
gext

[
χR− 2UQ,0[gµνext, χ

ext]
]

= −3r∂M2
β

4GN

(
1 +

r2
∂M2

12L2

)
+

2r0β

GN

(
1 +

2r2
0

L2

)
− βδrbdy

2GN

(
1 +

6r2
0

L2

)
. (5.39)

where, as we will see shortly, the divergent terms can be canceled by adding counter-terms to the

boundary term in the action (5.1) (which we have so far neglected). We now include this boundary

term from (5.1) (associated to the Dirichlet boundary conditions on ∂M2) together with possible

counter-terms. This evaluates to:

IQ,j=0
FAR, bdy.[g

ext
µν , χ

ext] =
1

2GN

∫
∂M2

du
√
h
(
χK + C1

χ3/4

r
3/2
0

+ C2
r

1/2
0

χ1/4

)
=
βr3

∂M2

(
2C1L− 3r2

0

)
4GNL2r2

0

+
βr∂M2

(
C1L2 + 2C2r2

0 − Lr2
0

)
4GNLr2

0

−
βC1

(
L2 + 2r2

0

)
2GNLr0

, (5.40)

where the terms including C1 and C2 are the counterterms necessary to cancel the divergence in

(5.39). In order to cancel the divergence in (5.39) we set,

C1 =
2r2

0

L
, C2 = L . (5.41)

We can also find precisely the same terms with the right prefactors by dimensionally reducing the

holographic counterterm of [207], reproducing the same overall on-shell action. In total we thus find

5Even when we will integrate over order one fluctuations of the Schwarzian mode in the next section, the fluctua-
tions in the metric near the boundary of AdS2 is suppressed by the cut-off. For example δgττ ∼ ε2Sch(τ, u). Therefore
fluctuations in the FAR region are always small, and become large only very close to the horizon far inside the throat.
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that

IQ,j=0
FAR = IQ,j=0

FAR, bulk[gext
µν , χ

ext] + IQ,j=0
FAR, bdy.[g

ext
µν , χ

ext] =
r0β

GN

(
1 +

2r2
0

L2

)
− βδrbdy

2GN

(
1 +

6r2
0

L2

)
= βM0(Q)− βδrbdy

2GN

(
1 +

6r2
0(Q)

L2

)
, (5.42)

where in the last line we emphasize the charge dependence of the extremal mass and horizon radius,

given by (5.11). The δrbdy dependent term in the action (5.42), 2
√

6
3GN

∫
∂MNHR

du
√
h
χδrbdy

r0
, also

precisely cancels the δrbdy term in (5.39). This is simply a consequence of the fact that the parameter

δrbdy is chosen arbitrarily to separate M2 into the NHR and the FAR and, consequently, the fact

that all our results are independent of δrbdy can be seen as a consistency check.

Next, we can consider the contribution to the action of the SO(3) gauge fields and of the backre-

action of the field on other components of the metric. Corrections could appear in the contribution

to the partition function in the extremal area term or in the extremal energy. The former is of order

δφ0 ∼ GNL
2

r4
0
j(j + 1) (for a large black hole in AdS) or δφ0 ∼ GN

r2
0
j(j + 1) (for a black hole in flat

space) and therefore is very small and can be neglected in either case. The term coming from the

correction to the extremal mass, originating from the backreaction on the metric and by the SO(3)

Yang-Mills term in the action, is multiplied by a large factor of β and gives the leading correction

M0(Q, j) = M0(Q, j = 0) +
GN
2r3

0

j(j + 1) +O(j4), (5.43)

where r0(Q) is the extremal horizon size for the RN black hole given by (5.6). In principle, the

backreaction of the SO(3) gauge field also affects the boundary value of the dilaton φb/(2ε). However,

such a contribution appears at the same order as other O(1/φ0) corrections, which we have ignored

in the NHR. Therefore, we will solely track the Q-dependence of φb(Q, j)→ φb,Q.

We find this result reliable for the case of large black holes in AdS with r0 � L. For temperatures

of order the gap, the correction to the partition function is δ logZ ∼ βδM ∼ δM/MSL(2) = L2

r2
0
j(j+1).

This way we can take large order one values of j while still not affecting the answer considerably.

We can check this by comparing with the result from the KN black hole since we know that the

SO(3) gauge field sources angular momentum. We get

δMKN
0 (Q, j) = GNJ

2 (L4 + 5L2r2
0 + 8r4

0)

2r3
0(L2 + 2r2

0)2
∼ GNJ

2

r3
0

. (5.44)

This matches in the limit r0 � L with the result we found from the dimensional reduction when
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J � 1. For black holes in flat space or for smaller black holes in AdS4 one has to in principle account

for the backreaction of the SO(3) gauge field on other Kaluza-Klein modes in (5.43), to recover the

exact correction (5.44).

Thus, in total we find that the dynamics of the near-extremal black hole is described by

IQ,jEM [gext
µν , χ

ext] = βM0(Q, j)− 1

4

∫
MNHR

d2x
√
g

[
φ0(Q, j)R+ φ

(
R+

2

L2
2

)
+O

(
φ2

φ2
0

)]
− 1

2

∫
∂MNHR

du
√
h

[
φ0(Q, j)KNHR +

φb,Q
ε

(
KNHR −

1

L2

)]
, (5.45)

where the on-shell contribution of the FAR action can be seen as an overall shift of the ground state

energy of the system. We can now proceed by using (5.39) to determine the exact ground state

energy of the system, and then by quantizing the remaining degrees of freedom in (5.38).

Before moving on, we can briefly comment on corrections coming from non-linearities in the dila-

ton potential present in the first line of (5.45). To leading order, we get the JT gravity action written

above. The next correction behaves like δU ∼ φ2/φ0. The contribution to the partition function

from such a term was computed in [208] and scales as δ logZ ∼ φ2
b/(β

2φ0). Such a contribution is

suppressed by the large extremal area φ0 � 1. Higher-order corrections to the dilaton potential are

further suppressed by higher powers of φ0 and, more importantly, decay faster at low temperatures.

Therefore, they can all be neglected.

5.3 The partition function for near-extremal black holes

5.3.1 An equivalent 1D boundary theory

We will now evaluate the contribution to the partition function of the quantum fluctuations from the

remaining graviton and dilaton fields present in the effective action of the NHR (5.45). We briefly

review this procedure by first reducing the path integral of (5.45) to that of a boundary Schwarzian

theory.

Integrating out the dilaton enforces that the curvature is fixed to R = −2/L2
2.6 Thus, each near-

horizon region configuration that contributes to the path integral is a patch of AdS2 cut along a curve

6In order to enforce such a condition, the contour for dilaton fluctuation φ(x) needs to go along the imaginary
axis such that ∫

Dgµν

∫ φb+i∞

φb−i∞
Dφ e

∫
MNHR

d2x
√
gφ
(
R+ 2

L2
2

)
=

∫
Dgµνδ

(
R−

2

L2
2

)
. (5.46)

This choice of contour for φ isolates the same type of constant curvature configurations in Euclidean signature as
those that dominate in the Lorentzian path integral. More details about this choice of countour in the context of
near-extremal black holes are discussed in footnote 9 of [3].
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with a fixed proper length `. Following [29], we can write the AdS2 metric by ds2
AdS2

= L2
2
dF 2+dz2

z2

and parametrize the boundary with a proper time u, with u ∈ [0, β) and huu = 1/ε2. In this case,

one can solve for the value of z(u) in terms of F (u) on the boundary, in the limit in which β � ε

to find that z(u) = εF ′(u). The extrinsic curvature can then be written in terms of the Schwarzian

derivative [29]:

KNHR =
1

L2

[
1 + ε2 Sch(F, u) +O(ε4)

]
, Sch(F, u) =

F ′′′

F ′
− 3

2

(
F ′′

F ′

)2

. (5.47)

The geometry we are working with in the NHR after reducing on S2 is actually the hyperbolic disk.

We can easily go from the Poincare coordinates to the disk by replacing

F (u) = tan
πτ(u)

β
, τ(u+ β) = τ(u) + β (5.48)

in the Schwarzian action. Here τ parametrizes the Euclidean circle at the boundary of the NHR

which we glue to the FAR region. For simplicity we will mostly write the Schwarzian action in terms

of F (u) instead.

The path integral over the the metric reduces to an integral over the field F (u) and the partition

function becomes:7

ZRN[β, µ, µSO(3)] =
∑

Q∈e·Z,j∈Z
(2j + 1)χj(µSO(3))e

−Qe βµeπφ0(Q,j)e−βM0(Q,j)

×
∫
Dµ[F ]

SL(2,R)
eφb,Q

∫ β
0
du Sch(F,u) . (5.49)

This relation shows that we can identify the term giving the extremal area S0 = πφ0 coming from

the topological part of the dilaton gravity NHR action. The extremal mass term comes from the

action in the FAR region. The path integral over the Schwarzian theory includes finite temperature

near-extremal effects. The effective coupling of this mode depends on the charge and spin of each

black hole in the ensemble.

Before reviewing the quantization of (5.49), it is also interesting to study the possibility that

the sum over all the possible representations is reproduced by a single 1d theory. Reproducing the

sum over charges can be done by coupling the Schwarzian theory to a theory having a U(1)×SO(3)

symmetry. As explained in [89, 3], the theory that exhibits this symmetry and correctly captures

the sum over charges is that of a particle moving on a U(1) × SO(3) group manifold. To obtain

7Above, the path integral measureDµ[F ] over the field F (u) can be determined from the symplectic form associated
to an SL(2,R) BF-theory which is equivalent on-shell to JT gravity.
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this model, we introduce four additional fields: a compact scalar θ(u) ∼ θ(u) + 2π together with

a Lagrange muliplier α(u) and a field h(u) ∈ SO(3) together with another Lagrange multiplier

ααα(u) ∈ SO(3). The general coupling between the particle moving on a group manifold and the

Schwarzian theory is given by:

ISch×U(1)×SO(3) = −
∫ β

0

du
[
iαθ′ + iTr

(
αααh−1h′

)
+ V(α,Trααα2)−W(α) Sch (F, u)

]
, (5.50)

where the potentialW(α) is independent of the the SO(3) degrees of freedom since we are neglecting

the effect of angular momentum of the boundary value of the dilaton φb,Q.

When the generic potential V(α,Trααα2) is of trace-class, the theory has a U(1) symmetry θ →

θ + a and two SO(3)-symmetries generated by the transformations h → gLhgR and ααα → g−1
R αααgR,

with gL, gR ∈ SO(3). Consequently, the Hilbert space arranges itself in representations of U(1) ×

SO(3) × SO(3). However, the quadratic Casimir of both SO(3)-symmetries is in fact the same.

Therefore, the Hilbert space arranges itself in representations of U(1) and two copies of the same

SO(3)-representation. If we are interested in reproducing the near-extremal black hole partition

function with Dirichlet boundary conditions for the U(1) and SO(3) gauge fields, then we need to

introduce a chemical potential for the U(1) symmetry of (5.50) and for one of its SO(3) symmetries.

This can be done by introducing a U(1) background gauge field, A with exp(
∮
A) = eβµ, and an

SO(3) background gauge field, B with P exp(
∮
B) ∼ eiβµSO(3)σ3 , coupling the first background to

the U(1) charge through −i
∫ β

0
duαAu and the second background to the SO(3) charges through

−i
∫ β

0
duTr(αααBu). In such a case, the partition function of the general theory (5.50) can be shown

to be [3]:8

ZSch×U(1)×SO(3) =
∑

Q∈e·Z,j∈Z
eβµ

Q
e (2j + 1)χj(µSO(3))e

−βV(Qe ,j(j+1))eW(Qe ,j(j+1))
∫ β
0
du Sch(F,u) , (5.51)

which up to an overall proportionality constant corresponding to the extremal black hole entropy

agrees with the form of (5.49). Therefore, the potentials V(α,ααα) and W(α,ααα) need to be tuned in

order for the partition function of the theory (5.50) to reproduce the charge dependence in the sum

in (5.49). For example, for large black holes in AdS4 we find that:

V(α,ααα) =
|α|3/2

(3π)3/4(2L)1/2G
1/4
N

+

√
2G

1/4
N (3π)3/4

L3/2|α|3/2
Trααα2 , W(α) =

|α|1/2L5/2

6
√

2(3πG3
N )1/4

. (5.52)

8When taking the trace over the Hilbert space of the theory (5.50) and summing over states within the two copies
of some SO(3) representation j then the sum over the gauged copy yields χR(θ) while the sum over the other copy
yields the degeneracy dimR in (5.51).
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For black holes in flat space we find:

V(α,ααα) =
|α|

2(πGN )1/2
+

4π3/2

G
1/2
N |α|3

Trααα2 , W(α) =
|α|3G1/2

N

8π3/2
. (5.53)

We will see in the next section that for fluctuations around extremality the action for the U(1) and

SO(3) mode further simplifies.

5.3.2 The partition function at j = 0

We have identified the effects that dominate the temperature dependence in the near-extremal limit.

In this section, we will put everything together to find a final answer for the partition function. To

at first simplify the discussion, we will pick boundary conditions in the four-dimensional theory that

fix the angular momentum j to zero. In the dimensional reduced theory this is equivalent to picking

only the j = 0 sector of expression (5.49). We will analyze fixed U(1) charge and chemical potential

separately.

Fixed Charge

This is the simplest case to consider where we fix the temperature, U(1) charge Q and angular

momentum to zero. From a Laplace transform of equation (5.49) the partition function is given by

ZRN[β,Q] = eπφ0(Q)e−βM0(Q)

∫
Dµ[F ]

SL(2,R)
eφb,Q

∫ β
0
du Sch(F,u). (5.54)

This means that for boundary conditions of fixed charge, the U(1) mode is effectively frozen and

does not contribute to the partition function, leaving only the Schwarzian mode. The path integral

of the Schwarzian theory can be computed exactly and gives

ZSch(φb,Q, β) ≡
∫
Dµ[F ]

SL(2,R)
eφb,Q

∫ β
0
du Sch(F,u) =

(φb,Q
β

)3/2

e
2π2

β φb,Q0 . (5.55)

Then the final expression for the canonical partition function is

ZRN[β,Q] =
(φb,Q

β

)3/2

eπφ0(Q)−βM0(Q)+ 2π2

β φb,Q0 . (5.56)

Here the first term comes from the gravitational one-loop correction from the JT mode which

dominates at low temperatures. This gives a correction − 3
2T log T to the free energy (equivalently

a 3
2 log T correction to logZ). The terms in the exponential are first the extremal entropy through
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S0 = πφ0, the extremal mass term −βM0(Q) and the third gives the leading semiclassical correction

near extremality. The temperature dependence of this expression is exact even for φb,Q/β finite.

The result is valid as long as, stringy effects are not important, r0 � `Pl (equivalently, Q� 1) and

when the black hole is near-extremal, β � r0

(
equivalently, β2 � L2

6

[√
1 + 3GNQ2

πL2 − 1
])

.

With this expression we can analyze the thermodynamics of the system. The entropy is given by

S(β,Q) = (1− β∂β) logZ = S0 +
4π2φb,Q

β
− 3

2
log

β

eφb,Q
, (5.57)

E(β,Q) = M0 +
2π2φb,Q
β2

+
3

2β
(5.58)

This gives a resolution of the “thermodynamic gap scale” puzzle. At very low temperatures the

energy goes as E −M0 ∼ 3
2T (as opposed to ∼ T 2). Therefore the energy is always bigger than the

temperature and the argument of [72] does not apply. We will see this again in the next section when

we work directly with the density of states, showing explicitly that there is no gap in the spectrum.

Finally, there are well-known corrections to the partition function of an extremal black hole

computed by Sen [81] coming from integrating out matter fields. Those effects can correct the

extremal entropy S0 at subleading orders. These corrections are significant compared to the ones

coming from the Schwarzian mode but are temperature-independent in the limit we are taking (see

also the results of [100]) and can be absorbed by a shift of S0. As previously stated, the goal of this

chapter is to study the leading temperature-dependent contributions to the free energy. Therefore,

we can neglect these possible shifts of S0.

Fixed Chemical Potential

The partition function with fixed U(1) chemical potential µ and zero angular momentum is given

by

ZRN[β, µ] =
∑
Q∈e·Z

eβµ
Q
e eπφ0(Q)e−βM0(Q)ZSch(φb,Q, β) (5.59)

As previously mentioned the terms in the sum for which the near-extremal black hole approximations

made above are those with Q� 1 and with 4π
GN

(
β2 + 3β4

L2

)
� Q2 (this is equivalent to β � r0(Q)).

Consequently, in order for the sum (5.59) to be valid we need it to be dominated by charges within

this (very large) range. This problem is only well-defined when the sum converges, which only

happens at finite L (in flat space the integrand grows too fast with the charge). Therefore, when

fixing the chemical potential we will only consider finite L.
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In order to make contact with previous work in the literature and simplify the equivalent bound-

ary theory, it is interesting to study the dominating charge within this sum and the charge fluctua-

tions around it.

In the large charge limit the Schwarzian contribution is order one and balancing only the chemical

potential and mass term gives

∂Q

(
µ
Q

e
−M0

)∣∣∣
Q0

= 0 ⇒ Q2
0 =

(4π)2L2µ2

3e4
(4πGNµ

2 − e2). (5.60)

The near-extremal approximation is valid as long as µ � e
2L

√
L2+3β2

GN
. This formula is consistent

with (5.4) but now the extremal charge Q0 should be thought of as a function of µ. This extremal

value of the charge is not the true saddle point of the full partition function in (5.59). It is useful

anyways to expand around it Q = Q0 + eq, such that q ∈ Z. Then keeping terms up to quadratic

order in q we obtain

ZRN[β, µ] = eβµ
Q0
e eπφ0(Q0)e−βM0(Q0)

∑
q∈Z

e2πEq−β q
2

2KZSch(φb,Q0+eq, β), (5.61)

where following [97], we defined the coefficients

K ≡ 4π(L2 + 6r2
0)

3e2r0
=

4πL2r0

3e2L2
2

, E ≡ eLr0

√
L2 + 3r2

0√
4πGN (L2 + 6r2

0)
=
L2

2

4π

Q0

r2
0

. (5.62)

It is easy to understand in general the origin of these terms. The chemical potential and mass terms

do not produce linear pieces since Q0 is chosen for them to cancel. Then the linear piece in Q comes

purely from expanding S0 = πφ0(Q0 + eq) to linear order. This gives

2πE = e
(∂S0

∂Q

)
T=0

, (5.63)

which we can verify also directly from (5.62) and matches with Sen’s relation between the charge

dependence of the extremal entropy and the electric field near the horizon [209]. A similar argument

gives the prefactor of the quadratic piece (coming to leading order from the βµQe − βM term) as

K =
1

e

(∂Q
∂µ

)
T=0

, (5.64)

which also is consistent with (5.62) and with the results of [97].
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The first three terms of (5.61) give the extremal contribution to the partition function while the

sum includes energy fluctuations (through the Schwarzian) and charge fluctuations. These are not

decoupled since the Schwarzian coupling depends on the charge. Nevertheless it is easy to see that

corrections from the charge dependence of the dilaton are suppressed in the large Q0 limit and can

be neglected (this can be checked directly from (5.55)). Then we have

ZRN[β, µ] = eβµ
Q0
e eπφ0(Q0)e−βM0(Q0)ZSch(φb,Q0

, β)
∑
q∈Z

e2πEq−β q
2

2K (5.65)

The partition function in this limit can be reproduced by a one dimensional theory that is a simplified

approximation of the one presented in the previous section for small charge fluctuations around the

extremal value

ISch×U(1) = φb,Q0

∫ β

0

du Sch
(

tan
πτ

β
, u
)

+
K

2

∫ β

0

du
(
θ′(u) + i

2πE
β
τ ′(u)

)2

, (5.66)

written in terms of the field τ(u). This matches the result of [97] obtained from a different perspec-

tive. As explained in the introduction the main point of this chapter is to present a derivation that

clarifies the fact that this analysis is true at energies lower than the gap scale. Therefore we conclude

that besides matching the semiclassical thermodynamics, the quantum corrections of this theory are

also reliable. The exact partition function of the Schwarzian mode was given in (5.55) and besides

the semiclassical term it only contributes an extra one-loop exact 3
2 log T to the partition function.

On the other hand the contribution from the U(1) mode is

ZU(1)(K, E , β) =
∑
q∈Z

e2πEq−β q
2

2K = θ3

(
i
β

2πK
, iE
)

(5.67)

so the total partition function is given by

ZRN[β, µ] = eβµ
Q0
e +S0(Q0)−βM0(Q0)

(φb,Q0

β

)3/2

e
2π2

β φb,Q0 θ3

(
i
β

2πK
, iE
)
, (5.68)

where θ3 is the Jacobi theta function. In this formula Q0 is seen as a function of the chemical

potential.

In general we do not need the full result for the U(1) mode. The partition function is dominated

by a charge q = 2πKE/β giving a saddle point contribution logZs.p.
U(1) = 2π2E2K/β. We can define
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a U(1) scale by9

MU(1) ≡ 2K−1 = MSL(2)

3

2π

e2L4
2

L2GN
. (5.69)

For T �MU(1) charge fluctuations are frozen since their spectrum does have a gap of order MU(1)

and thermal fluctuations are not enough to overcome it. For T � MU(1) the U(1) mode becomes

semiclassical and its one-loop correction can contribute an extra factor of 1
2 log T to the partition

function (see [63] for more details of these limits) from its approximate continuous spectrum.

For large black holes in AdS, MU(1) ∼MSL(2)
e2L2

GN
and therefore is a tunable parameter depending

on e. If e is small but order one, then MU(1) � MSL(2) and for T ∼ MSL(2) there is no 1
2 log T

contribution and charge fluctuations are frozen. If the theory is supersymmetric then e2 ∼ GN and

MU(1) ∼MSL(2).

5.3.3 Density of states at j = 0

In the previous section we computed the partition function and free energy of the black hole. We can

also look at the density of states directly as a function of energy and charge, for states of vanishing

angular momentum. For this we can start from (5.59) and solve the Schwarzian theory first. This

gives

ZRN[β, µ] =
∑
Q∈e·Z

eβµ
Q
e eπφ0(Q)e−βM0(Q)

∫ ∞
0

ds2 sinh(2πs)e
−β s2

2φb,Q (5.70)

This can be used to automatically produced the Legendre transform of the partition function giving

the density of states. Now we can define the energy as E = M0(Q)+ s2

2φb,Q
to rewrite this expression

in a more suggestive way as

ZRN[β, µ] =
∑
Q∈e·Z

∫ ∞
M0(Q)

dE eS0(Q) sinh
[
2π
√

2φb,Q(E −M0(Q))
]
eβµ

Q
e −βE . (5.71)

From this expression we can read off the density of states for each fixed charge Q sector as

ρ(E,Q) = eS0(Q) sinh
[
2π
√

2φb,Q(E −M0(Q))
]
Θ(E −M0(Q)), (5.72)

where M0(Q) and S0(Q) are the mass and entropy associated to an extremal black hole of charge

Q while φb,Q = M−1
SL(2). At large energies we can match with semiclassical Bekenstein-Hawking

9If we consider a black hole in flat space L → ∞ and MU(1) → 0, leading to large charge fluctuations. This is
related to the fact that the sum over charges is divergent in flat space.
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expanded around extremality, while for E . MSL(2) the density of states goes smoothly to zero as

E−M0(Q)→ 0. Therefore there is no gap of order MSL(2) in the spectrum. Finally, as we commented

above, the path integral over the matter fields can only produce temperature-independent shifts of

S0 and M0 in the partition function. This means that the energy dependence of the expression

(5.72) is reliable in this limit.

This result is not inconsistent with the analysis of Maldacena and Strominger [77]. In that paper,

the authors claim the first excited black hole state corresponds to a state with j = 1/2, with an

energy above extremality that coincides with the gap scale. Here, we have shown that a more careful

analysis of the Euclidean path integral shows the presence of excited black holes states of energy

smaller than MSL(2), and they are all within the j = 0 sector.

5.3.4 The grand canonical ensemble with fixed boundary metric

Finally we will comment on the situation when we fix the metric in the boundary of AdS4. For

simplicity we will consider the case of a large black hole in AdS4 with r0 � L. In this case, the

dimensional reduction produces a partition function given by (5.49) setting the SO(3) chemical

potential to zero µSO(3) → 010. This gives

ZRN[β, µ] =
∑

Q∈e·Z,j∈Z
(2j + 1)2e−βµ

Q
e eπφ0(Q,j)e−βM0(Q,j)ZSch(φb,Q, β) . (5.73)

After repeating the analysis of section 5.3.2 we can obtain the following expression

ZRN[β, µ] = eβµ
Q0
e +πφ0(Q0)−βM0(Q0)ZSch(φb,Q, β)ZU(1)(K, E , β)

∑
j∈Z

(2j + 1)2e
−βGNj(j+1)

2r30 . (5.74)

Since the correction in the energy from spin δM = GN j(j+1)/2r3
0 is very small for large macroscopic

black holes (being suppressed by GN and also by r0) we can approximate the contribution of the

SO(3) gauge field by

ZRN[β, µ] = eβµ
Q0
e +πφ0(Q0)−βM0(Q0)ZSch(φb,Q, β)ZU(1)(K, E , β)

( GN
2r3

0β

)3/2

. (5.75)

10the result for the general case can be found in appendix C.2.
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Therefore at low temperatures, T � TU(1), the non trivial temperature dependence of the partition

functions is given by

ZRN[β, µ] ∼ eβµ
Q0
e +S0−βM0

(φb,Q0

β

GN
2r3

0β

)3/2

e
2π2

β φb,Q0 . (5.76)

As a final comment, in a similar manner to the previous section, we can write a simplified,

approximate, one dimensional theory capturing the physics of these states. We need to add an extra

term

ISch×U(1)×SO(3) = φb,Q0

∫ β

0

du Sch
(

tan
πτ

β
, u
)

+
K

2

∫ β

0

du
(
θ′ + i

2πE
β
τ ′
)2

+
KSO(3)

2

∫
Tr
[
h−1h′ + i

µSO(3)

β
τ ′
]2
, (5.77)

where KSO(3) = r3
0/GN . This is a simplification of the more general action written down previously

in equation (5.50) since it only captures fluctuations around the angular momentum saddle-point in

the sum (5.74). From the discussion here its clear that the prefactor of the SO(3) action is given by

KSO(3) =
1

2

(∂J2

∂E

)
T=0

. (5.78)

Finally the gap scale for the SO(3) mode is given by

MSO(3) = 2
GN
r3
0

= MSL(2)

L2

r2
0

�MSL(2) , (5.79)

for large black holes in AdS4. Therefore when we fix the boundary metric the sphere modes produce

an extra factor of 3
2 log T as long as T � MSO(3). For T � MSO(3) the thermal energy is not

large enough to overcome the gap of this sector, the angular momentum is frozen, and it does not

contribute to log T factors. If we are interested in scales of order, MSL(2) then we are always above

the gap for the SO(3) mode.

5.4 Contributions from massive Kaluza-Klein modes

In the previous section we neglected the contribution from massive Kaluza-Klein modes to the

the partition function at low temperatures T ∼ MSL(2). We will argue that this is correct in this

section. First, we will summarize the spectrum of masses for the remaining Kaluza-Klein modes

in the Reissner-Nordström solution, following the analysis of [204]. As an example, we perform
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the dimensional reduction of the 4d scalar field in the theory, to obtain the contribution of the

Kaluza-Klein modes to the action of the 2d theory. Then, we will argue that the partition function

of massive fields does not contribute to the leading temperature dependence close to extremality.

5.4.1 A summary of the Kaluza-Klein spectrum of masses

The full analysis involving the metric KK modes and the gauge field KK modes is very complicated.

Instead, since we will be most interested in the spectrum of masses, a linearized analysis is enough.

This was done in detail by Michelson and Spradlin [204] (see also [210]). As we will explicitly show

for the case of a 4d scalar field, the dimensional reduction can be performed by decomposing the

fields into scalar or vector spherical harmonics (labeled by the spin `) on the internal S2 space.

At the ` = 0 level [204] found two relevant modes. One is the dilaton and two-dimensional metric,

which combine into JT gravity and also the s-wave of the gauge field, which gives a massless 2d U(1)

field, as pointed out in section 5.2.2. At ` = 1 level, we have a massive 2d scalar and vector coming

from the gauge field and a massless field from the metric which coincides with the 2d gauge field B

related to the SO(3) symmetry of S2 (which we also already identified in 5.2.2). Finally, for ` ≥ 2,

[204] found massive graviton KK modes (although they point out they are not independent degrees

of freedom on-shell) and massive vector degrees of freedom from KK modes of the dilaton and U(1)

gauge field. Therefore, besides the massless modes that we have already considered in section 5.2

and 5.3, we solely have massive fields whose minimum mass is given by m2 = 1/χ2.

5.4.2 An example: the dimensional reduction of a 4d scalar

To clarify the summary, we will give the simplest example of a massive mode appearing in the KK

reduction of a scalar field in four dimensions. The action for a scalar field X of mass m is

IX =

∫
d4x
√
g4(gAB4 ∂AX∂BX +m2X2). (5.80)

In order to carry out the KK reduction we wrote an ansatz for the metric (5.15). To compute the

action of the KK modes it is useful to write explicitly the inverse metric in this notation, which is

given by

gµν4 = χ1/2gµν2 , gmµ4 = −χ1/2Baµξma , gmn4 =
1

χ
hmn + χ1/2BaµB

bµξma ξ
n
b , (5.81)
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where the µ index of B is raised with the 2d metric. Also, the determinant of the metric is g4 = χg2h.

We will expand the scalar field into spherical harmonics as

X(x, y) =
∑
`

X`(x) ·Y`(y) (5.82)

where we use the (uncommon) notation of denoting the scalar spherical harmonics of spin ` as a

vector Y`(y) = [Y `−`(y), Y `−`+1(y), . . . , Y `` (y)]. Correspondingly, we denoted the modes of the scalar

field also a vector in a similar way X`(x) = [X−`` , X−`+1
` , . . . , X`

` ]. Then the inner product above

denotes X`(x) ·Y`(y) ≡
∑
mX

m
` Y

m
` .

We will begin by reducing the kinetic term. For this we need the inverse metric and its clear it

will produce terms linear and quadratic in the gauge field B. The following formulas for integrating

spherical harmonics will be useful

∫
S2

dy
√
hY†`(ξa · ∂)Y`′ = iT aδ`′`,

∫
S2

dy
√
h(ξa · ∂)Y†`(ξb · ∂)Y`′ = −T aT bδ`′`, (5.83)

where ξa denote the Killing vectors of the sphere and since this is a matrix equation the T a are

matrices giving the spin ` representation of the rotation group. Then we can obtain the reduction

of the kinetic term as

∫
d4x
√
g4(∂X)2 =

∑
`

∫
d2x
√
gχ1/2

[
(DµX`)

†(DµX`) +
`(`+ 1)

χ
X†`X`

]
, (5.84)

where we also used the fact that �S2Y = −`(`+ 1)Y, where �S2 is the laplacian on the two-sphere.

We also defined the covariant derivative

DµX = ∂µX− iBaµ(T a)`X, (5.85)

where (T a)` are the spin ` representation matrices acting on the vector X. Adding the mass term,

we can obtain the full 2d action for the KK reduction of the scalar field as

IX =
∑
`

∫
d2x
√
gχ1/2(|DX`|2 +m2

` |X`|2), m2
` = m2 +

`(`+ 1)

χ
. (5.86)

To summarize, a single scalar field KK reduces to a tower of massive fields X` of dimension (2`+ 1)

with ` = 0, 1, 2, . . . with increasing mass.

This is a complicated action: besides being coupled to the two-dimensional metric, it is also
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coupled to the dilaton. The dilaton coupling is not particularly useful in the FAR region since the

dilaton varies with the radius. Of course, in this region, the picture of a single scalar in the 4d black

hole background is more appropriate. In the NHR this becomes very useful since χ ≈ χ0 = r2
0. Then

we end up, after rescaling X` → r
−1/2
0 X` in the NHR with a tower of KK modes with action

IX =
∑
`

∫
d2x
√
g(|DX`|2 +m2

` |X`|2), m2
` = m2 +

`(`+ 1)

r2
0

, (5.87)

fixing the KK mode scale ΛKK ∼ 1/r0. Naively it seems the correction to the mass is small, but

we will take such low temperatures that βΛKK � 1. Then we end up with a tower of canonically

normalized free fields.

We can see what happens when turning on scalar field interactions in the initial 4d theory. To

simplify lets consider self interactions of the scalar field In = λn
∫
d4x
√
g4X

n. After KK reducing,

this produces a term of order λnr0. After rescaling the scalar field by r
−1/2
0 to make the 2d action

canonically normalized the effective two dimensional coupling becomes λ2d
n = λnr

1−n/2
0 . Therefore

even if selfinteractions are large in four dimensions, the reduction to two dimensions gives λ2d
n → 0

(for large r0) and therefore, in the NHR, its enough to consider free fields. Moreover, since we will

only consider states for which fluctuations in the gauge field are small B ∼ j/r3
0 we will also neglect

its coupling to 2d matter.

5.4.3 The massive Kaluza-Klein modes in the partition function

As we have summarized in the previous subsection, besides the 2d massless gravitational and gauge

degrees of freedom, all other modes generated by the dimensional reduction have masses given by

the value of the dilaton field at the horizon 1/χ2. Furthermore, as we observed in section 5.2, the

dominating background for the SO(3) gauge fields is that in which they are turned off, Ba = 0.

Therefore, we will assume that the massive modes are decoupled from the SO(3) gauge field. With

this set-up in mind, we can now proceed to compute the contribution to the partition function of the

massive KK modes. To show that such fields do not yield any correction to the log(T ) term, we will

solely focus on scalar fields and compute their contribution in the NHR. As discussed in preceding

subsections, in such a region, their mass is constant and given by m2 = 1/r2
0. We will also ignore

the fluctuations of the Schwarzian boundary mode because the contribution of these fluctuations to

the massive modes is suppressed by the scale ε/r0 from (5.37).

Therefore, we will compute the contribution of the massive modes in a circular patch of the

Poincaré disk, where the proper length of the boundary is ` = βL2/ε and its extrinsic curvature
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is constant. We will choose Dirichlet boundary conditions for the scalar field X|∂MNHR
= 0 at

the boundary ∂MNHR; this is consistent with the classical solution X for the field in the FAR

when fixing X|M2
= 0. The contribution of a KK mode in the NHR is then abstractly given by

ZKK = det(gNHR
µν ∂µ∂ν + r−2

0 )−1/2.

To compute the β-dependence of this determinant we will us the Gelfand-Yaglom method [211],

studying the assymptotics of solutions to the Klein-Gordon equation (�NHR+m2)ψ = 0.11 Parametriz-

ing the AdS2 coordinates by ds2
NHR = L2

2

(
dr2 + sinh2(r)dφ2

)
, we find that the boundary is located

at r∂NHR = log
(
β
πε

)
+O(β2/ε2)→∞. Expanding ψ(r, φ) = ψk(r)eikφ with k ∈ Z, the Klein-Gordon

equation becomes

1

sinh r
∂r(sinh r∂rψk)− k2

sinh2 r
ψk + (mL2)2ψk = 0 , (5.88)

whose regular solution at the horizon (r = 0) is given by 12

ψk(r) =
(tanh r)|k|

(cosh r)∆+
2F1

(
1

4
+
|k|
2

+
ν

2
,

3

4
+
|k|
2

+
ν

2
, 1 + |k|, tanh2 r

)
, (5.89)

where we define

∆± ≡
1

2
±
√

1

4
+ (mL2)2 , ν =

√
1

4
+ (mL2)2 . (5.90)

The Gelfand-Yaglom method requires that we normalize ψk such that its derivative at r = 0 is

independent of m; this is indeed the case, when expanding (5.89) to first order in r around the

horizon. Asymptotically, for r = r∂NHR →∞, the solution is given by

ψk =
Γ(1 + |k|)2|k|√

π

[
1

(2 cosh r∂NHR)∆−

Γ(∆+ − 1/2)

Γ(∆+ + |k|)
+

1

(2 cosh r∂NHR)∆+

Γ(∆− − 1/2)

Γ(∆− + |k|)

]
. (5.91)

The Gelfand-Yaglom theorem states that the determinant with Dirichlet boundary conditions for

the scalar field is given by det(�NHR + m2) = N (β, ε)
∏
k ψk(r∂NHR), where N (β, ε) is a mass-

independent proportionality constant.

The contribution to the free energy coming from the determinant is then given by,

logZKK = −1

2
logN (β, ε)− 1

2

∑
k∈Z

log

[
Γ(1 + |k|)2|k|√

π(2 cosh r∂NHR)∆−

Γ(∆+ − 1/2)

Γ(∆+ + |k|)

]
. (5.92)

11This strategy was previously used to study the mass-dependence of the determinant [136].
12The other solution diverges at the horizon.
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To determine N (β, ε) we use the result for the partition function of a massless scalar on a circular

patch of the Poincaré disk [36]. Since the massless scalar can be treated as a 2d CFT, the result

can be determined by computing the Weyl anomaly when mapping a unit-disk in flat-space to the

circular AdS2 patch of interest. The first few orders in the large β expansion of the free energy

obtained from the Weyl-anomaly are given by,

logZm2=0 =
c

24

β

πε
+
c

6

[
log (2L2)− 1

2

]
+O

( ε
β

)
, (5.93)

where c = 1 is the central charge of one free boson 13. The term at order O(β/ε) can in prin-

ciple be canceled by adding a cosmological constant counter-term to the boundary of the NHR,

Icounter-term, CFT =
∫ β

0
du c
√
huu/(24π). However, since we are solely interested in reproducing the

log β dependence of the free energy we will not delve into how this term is reproduced by studying

the coupling of these scalars to the FAR.

At such low temperatures, the Schwarzian mode is strongly coupled, so we might be worried that

it can affect the answer. In [36] it was observed that the boundary Schwarzian fluctuations lead

to correction of O(ε) to the partition function (5.93). Since we expect the same to be true when

turning on a mass, the contribution of the Schwarzian fluctuations to the partition function of the

Kaluza-Klein fields can be safely ignored.

Therefore, up to terms proportional to β/ε obtained from the counter-term, this fixes

logZKK =
1

6

[
log (2L2)− 1

2

]
− 1

2

∑
k∈Z

log

[
1

(2 cosh r∂NHR)∆−

Γ(1 + |k|)
Γ(∆+ + |k|)

]
. (5.94)

The sum in (5.92) needs to be regularized in order for it to converge; in principle, this can be done

by accounting for the divergent non-universal terms in the massless partition function (5.93). The

β-dependent factor in the sum appears through the relation r∂NHR = log
(
β
πε

)
; consequently, the

sum is given by −
∑
k∈Z ∆− log(cosh r∂NHR) which vanishes in ζ-function regularization. Therefore,

the contribution of the KK-modes to the partition function is given by

logZKK =
1

6

[
log (2L2)− 1

2

]
− 1

2

∑
k∈Z

log
Γ(1 + |k|)

Γ(∆+ + |k|)
, (5.95)

which, to leading order, is β-independent. In conclusion, to leading order in O(1/φ0), the KK modes

only affect the entropy of the black hole and not the shape of the density of states. Consequently,

13To get this result, we write the metric of the hyperbolic disk at finite cut-off g as g = e2ρĝ where ĝ is the flat
unit disk metric. Then we evaluate the Liouville action for the particular choice of ρ associated to the hyperbolic disk
and expand for small ε.

186



they also to do not change our prior conclusion about the absence of near-extremal black hole gap.

Finally, we will quickly go over a more direct (yet less rigurous) method to compute the functional

determinant following [79] 14. The starting point is again ds2
NHR = L2

2

(
dr2 + sinh2(r)dφ2

)
with a

cutoff at r∂NHR (for simplicity we turn off the Schwarzian mode). We will first take the large cut-off

limit for the matter fields and impose ψ ∼ (cosh r∂NHR)−∆+ giving eigenvalues that depend only on

L2. Then the contribution from the matter field to the partition function is [79]

logZmatter = (cosh r∂NHR − 1)

∫ ∞
εUV

ds
1

s

∫ ∞
0

dλ(λ tanhπλ)e
−s
[
λ2+ 1

4
L2

2
+m2

]
. (5.96)

The whole temperature dependence comes then from the prefactor through sinh(r∂NHR) = β
2πε and

this is true regardless of the mass. Expanding at large r∂NHR gives

cosh(r∂NHR)− 1 =
β

2πε
− 1 +O(ε). (5.97)

From this expression we can easily see the matter contribution is only a shift of the extremal

mass, or a temperature independent (L2 dependent) finite correction to the partition function which

potentially can only correct S0. Following [79] one could even resum the whole tower of KK modes

and reach the same conclusion. One might wonder whether imposing boundary conditions for ψ at

a finite cut-off might affect the temperature dependence. However, we have already checked through

the Gelfand-Yaglom theorem that this does not happen.

5.5 Outlook

In this chapter, we have computed the partition function of 4d near-extremal charged and of slowly-

spinning black holes, in the canonical and grand canonical ensembles. By showing that we can

reliably neglect all massive Kaluza-Klein modes and by solving the path integral for the remaining

massless mode in the near-horizon region, we have shown that our result can be trusted down to

low-temperatures, smaller than the scale ∼ MSL(2). At this energy scale, we find a continuum of

states, disproving the conjecture that near-extremal black holes exhibit a mass gap of order MSL(2)

above the extremal state. The existence of a continuum of states suggests that the degeneracy of the

extremal state is not given by the naive extremal entropy, fixed by the horizon area. Instead, the

horizon area fixes the scaling of the density of states and the level spacing of the states. However,

14We would like to thank A. Castro for discussions about the relation between the calculation in this chapter and
the previously studied logA terms [79, 80, 81, 82].
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as we will discuss in the following subsection, to make a quantitative statement about the scale of

this extremal degeneracy, we need to discuss possible non-perturbative contributions to the 2d path

integral.

The process of solving the path integral for the massless modes in the 2d dimensionally reduced

theory, involved obtaining an equivalent 1d theory which can be thought to live on a curve at the

boundary of the throat, between the near-horizon region and the far-away region. This equivalent 1d

theory is given by the Schwarzian coupled to a particle moving on a U(1)× SO(3) group manifold.

Generally, the potential of the particle moving on the U(1)× SO(3) is quite complicated. However,

when looking at the theory that approximates the charge and angular momentum fluctuations in

the grand canonical ensemble for black holes in AdS4, the theory is simply given by:

ISch×U(1)×SO(3) = ISch[τ ] + IU(1)[θ, τ ] + ISO(3)[h, τ ] (5.98)

where we defined the Schwarzian, U(1) and SO(3) contributions of the action as

ISch[τ ] =
1

MSL(2)

∫ β

0

du Sch
(

tan
πτ

β
, u
)
, (5.99)

IU(1)[θ, τ ] =
1

MU(1)

∫ β

0

du
(
θ′ + i

2πE
β
τ ′
)2

, (5.100)

ISO(3)[h, τ ] =
1

MSO(3)

∫ β

0

du Tr
(
h−1h′ + i

µSO(3)

β
τ ′
)2

, (5.101)

where θ(u) is a compact scalar and h(u) is an element of SO(3) and the mass scales MSL(2), MU(1) and

MSO(3) are fixed by thermodynamic relations. Additionally, MSL(2), MU(1) and MSO(3) can be viewed

as the breaking scales for each of their associated symmetries (SL(2,R), U(1) and, respectively,

SO(3)) for the near-horizon region of an ensemble of near-extremal black holes.

Beyond the goal of resolving the mass-gap puzzle for near-extremal Reissner-Nordström black

holes, the effective 2d dimensionally reduced theory of dilaton gravity (and its equivalent boundary

theory) provides a proper framework to resolve several future questions, some of which we discuss

below.

Other black holes and different matter contents

While we have successfully analyzed the case of Kerr-Newman black holes with small spin, for which

we could neglect the sourcing of massive Kaluza-Klein modes for some of the metric components,

it would be instructive to compute the partition function of Kerr-Newman black holes for arbitrary
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spin. An effective 1d boundary theory capturing the dynamics of such black holes was recently

described in [89, 96, 99]; however, the quantum fluctuations relevant for understanding the mass-

gap puzzle were not analyzed. In the framework described above, resolving such a puzzle for Kerr-

Newman black holes amounts to studying how the massive Kaluza-Klein modes are sourced and

whether their fluctuations could significantly affect the partition function. If the analysis in section

5.4 follows even in when such fields have a non-trivial classical saddle-point, then it is likely that

near-extremal Kerr-Newman black holes do not exhibit a gap for arbitrary angular momenta.

Perhaps an even more intriguing case is that of near-extremal (and, at the same time, near-BPS)

black holes in 4d N = 2 supergravity. As mentioned in the introduction, in such cases, microscopic

string theory constructions [75, 76] suggest that the scale MSL(2) should genuinely be identified as

the gap scale in the spectrum of near-extremal black holes masses. While an analysis of the proper

effective theory describing such black holes is underway [78], perhaps some intuition can be gained

by looking at a related theory that has less supersymmetry: the N = 2 super-Schwarzian. In such

a theory, the partition function was computed [25, 40] and its resulting spectrum indeed exhibits a

gap whose scale is fixed by the inverse of the super-Schwarzian coupling. Since the inverse of the

super-Schwarzian coupling coincides with the conjectured gap [72, 74, 88], it is tantalizing to believe

that the thermodynamic mass-gap observed in [75, 76] is indeed an artifact of supersymmetry 15.

It would also be interesting to study the contribution of charged scalar or fermionic fields to

the partition function of the near-extremal Reissner-Nordström black holes. In AdS, the presence

of such fields has been widely used to study the holographic dual for several phases of matter

[212, 213, 214, 215]. For black holes in flat space, it would be nice to compute the contribution from

charged matter with q/m > 1 and see its effect at the level of the microstates.

Finally, it would be interesting to consider black holes in AdSD, which have known CFT duals.

The result of this chapter can be interpreted as a universality of their spectrum when looking at

large charges and low temperatures. Those degrees of freedom should be properly described by the

effective theory found in this chapter. One approach to this problem can be to apply the conformal

bootstrap at large charge for higher dimensional CFT (this was done for the case of rotating BTZ

in [84]). Another, perhaps more ambitious, approach is to start directly with the boundary theory

and try to derive an equivalent quantum mechanical system in the extremal limit. Such a theory

would be similar to SYK (would reduce to the Schwarzian and be maximally chaotic) but would be

dual to a local bulk (as opposed to also other higher dimensional versions of SYK [216, 157, 217]).

15The exact density of states of the N = 2 Schwarzian presents a delta function at extremality with weight eS0

which would be consistent with a highly degenerate extremal black hole. This degeneracy is also consistent with
previous microscopic counting and shows that it also relies on supersymmetry to work.
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Non perturbative effects

It was recently made precise how including non-trivial topologies in the Euclidean path integral of

2d dilaton gravity can fix certain problems with unitarity [37] (the price to pay when accounting

for such non-trivial topologies is to allow for disorder in the boundary theory). In the case of JT

gravity the non-perturbative completion is given by a random matrix and one has to sum over all

two-dimensional topologies consistent with the boundary conditions. It would be tempting to trust

these corrections in the context of a near-extremal black hole. Then the spectrum would be random,

with an averaged level spacing of order e−S0 and a non-degenerate ground state (moreover there

is an exponentially suppressed probability of lying below the extremality bound, but this can be

avoided by considering supersymmetry).

Of course, this is too optimistic in the case of 4d near-extremal black holes. Other non-

perturbative effects can appear from the 4d perspective, which are not captured by JT gravity.

For example, one can consider multi-black hole solutions [73] or topology changes that involve the

whole 4D space.

Even within JT gravity, there can be configurations with conical defects in two dimensions, which

are smooth when uplifted to the higher dimensional metric. These can be important and hint into

solving problems with pure 3d gravity [218]. For near-extremal black holes in higher dimensions,

one would need to include similar geometries.

The replica ensemble and the Page curve

A procedure was recently found to reproduce the Page curve from the gravitational Euclidean path

integral in JT gravity. In order to reproduce the Page curve [219, 220] computed the radiation

Renyi entropy, including replica wormholes. In those calculations, one couples JT gravity in AdS2

with a bath in flat space, making the evaporation of the black hole possible. This setup can be

directly understood as an approximate description of an evaporating near-extremal black hole in

four dimensions (we can consider this at temperatures T � MSL(2) to simplify the problem so that

backreaction around each semiclassical saddle is suppressed).

To turn the recent calculations into a justified approximation, we have to make the following

changes. First, the gravitational part of the theory should be JT gravity coupled to the appropriate

gauge fields (both KK and the ones sourcing extremality) and coupled to a matter CFT. This

theory should then be glued to the 2d s-wave reduction of the four-dimensional extremal black hole

metric in asymptotically flat space (we assume in this region gravity is weak). This is justified as
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long as the dominant evaporation channel happens through s-waves (if higher angular momenta are

exponentially suppressed). Since this is usually the case, the calculation of [219] can be repeated in

the context of 4d near-extremal black holes. The main complication is to account for the contribution

from all the matter fields in this new geometry, and we hope to address this in more detail in future

work.
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Appendix A

The analysis of JT gravity at finite

cut-off

A.1 Additional checks

A.1.1 WdW with varying dilaton

In this section we will check our formula (3.44) in the case of a varying dilaton with an arbitrary

profile φb(u). We will still work in the limit of large L and φb such that we are working near the

boundary of AdS2. Expanding the solution of the WdW equation gives

ΨHH[φb(u), L] =

∫
dMρHH(M) exp

[∫ L

0

du

(
φb −

M

2φb
+

(∂uφb)
2

2φb
+ . . .

)]
(A.1)

where the dots denote terms that are subleading in this limit. The first term produces the usual diver-

gence piece
∫ L

0
duφb(u). The second term after integrating over M would produce the Schwarzian

partition function with an effective length given by ` =
∫ L

0
du
φb(u) , which can be interpreted as a

renormalized length. The final answer is then

ΨHH[L, φ] = e
∫ L
0
du φb(u)ZSch

(∫ L

0

du

φb(u)

)
e

1
2

∫ L
0
du

(∂uφb)
2

φb . (A.2)

Now we will show the full answer, including the last term in (A.2), 1
2

∫ L
0
du (∂uφ)2

φ , can be reproduced

by the Euclidean path integral through the Schwarzian action.
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For a varying dilaton the bulk path integral of JT gravity can be reduced to

∫
DgDφ e−IJT[φ,g] → e

∫ L
0
duφb(u)

∫
Df

SL(2,R)
e
∫ L
0
duφb(u) Sch(F (u),u), F = tanπf (A.3)

For simplicity we will assume that φb(u) > 0. Following [25] we can compute this path integral using

the composition rule of the Schwarzian derivative

Sch(F (ũ(u)), u) = Sch(F, ũ)(∂uũ)2 + Sch(ũ, u). (A.4)

We can pick the reparametrization to be ∂uũ = 1/φb(u). This implies in terms of the coordinate ũ

the total proper length is given by L̃ =
∫ L

0
du/φb(u). This simplifies the Schwarzian term and we

can write the second term as

∫ L

0

du φb(u) Sch(ũ, u) =
1

2

∫ L

0

du
(∂uφb)

2

φb
(A.5)

up to total derivative terms that cancel thanks to the periodicity condition of the dilaton. Then we

can rewrite the path integral as

∫
DgDφ e−IJT[φ,g] → e

∫ L
0
du φb(u)+ 1

2

∫ L
0
du

(∂uφb)
2

φb

∫
Df

SL(2,R)
e
∫ L̃
0
dũ Sch(F,ũ), (A.6)

= e
∫ L
0
du φb(u)+ 1

2

∫ L
0
du

(∂uφb)
2

φb ZSch

(
L̃ =

∫ L

0

du

φb

)
(A.7)

which matches with the result coming from the WdW wavefunction (A.2). This is a nontrivial check

of our proposal that ΨHH in (3.44) computes the JT gravity path integral at finite cutoff.

A.1.2 JT gravity with Neumann boundary conditions

To provide a further check of the form of the extrinsic curvatureK at finite cutoff (3.64), we can study

the theory with Neumann boundary conditions, when fixing the extrinsic curvature K[z(u)] = Kb

instead of the boundary dilaton value φr and when fixing the proper length L to be finite in both

cases.1 We will work in Poincaré coordinates (3.49). Since Kb > 0 it means (in our conventions) that

we are considering a vector encircling a surface with genus 0 (normal vector pointing outwards). On

the Poincaré plane, curves of constant Kb are circles, semi-circles (that intersect the H2 boundary)

1A more detailed analysis of the theory with such boundary conditions will be presented in [150].
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or lines. All of them can be parametrized in the Poincaré boundary coordinates τ(u) and x(u) as:

τ(u) = a+ b cos(u) , x(u) = d+ b sin(u) , Kb =
d

b
,

√
γuu =

b

d+ b sinu
, (A.8)

with b, d ∈ R. Note that if we want the circle above to be fully contained within the Poincaré

half-plane (with x > 0) we need to require that d > 0 and d ≥ b which implies Kb ≥ 1. Thus, for

contractible boundaries which contain the surface inside of them we must have Kb ≥ 1.

For this value of Kb, the boundary proper length is restricted to be

β

ε
=

∫
du
√
γuu =

2π√
(Kb + 1)(Kb − 1)

. (A.9)

Therefore, the partition function with Neuman boundary conditions should solely isolate configura-

tions which obey (A.9). A non-trivial check will be to recover this geometric constraint by going

from the partition function with Dirichlet boundary conditions (for which we obtained the action

(3.64)) and the partition function with Neumann boundary conditions.

In the phase space of JT gravity K[z(u)] and φ(u) are canonical conjugate variables on the

boundary. Therefore, in order to switch between the two boundary conditions at the level of the

path integral, we should be able to integrate out φr(u) to obtain the partition function with Neumann

boundary conditions. Explicitly we have that,2

ZN[Kb(u), L] =

∫ φ̃b+i∞

φ̃b−i∞
Dφb(u)ZJT [φb(u), L] e

1
ε

∫ β
0
duφb(u)(1−Kb(u))

=

∫ φ̃b+i∞

φ̃b−i∞
Dφb(u)

∫
DφDgµν e

φ0χ(M)−Sbulk[φ,gµν ]+ 1
ε

∫
duφb(u)(K−Kb(u))

∼
∫
DφDgµν e

φ0χ(M)−Sbulk[φ,gµν ]
∏

u∈∂M

δ(K(u)−Kb(u)) . (A.10)

which of course fixes the extrinsic curvature on the boundary. To simplify our computation, we will

work with the “renormalized” extrinsic curvature Kb,r, defined as Kb ≡ 1 + ε2Kb,r and choose a

constant value for Kb,r.

Using the formula (3.64) for K[z(u)] in (A.10) we can rewrite the second line in terms of a path

2Where φ̃b is some arbitrary constant which is used to shift the contour along the real axis.
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integral for the Schwarzian mode z(u):

ZN
[
Kb = 1 + ε2Kb,r, L = β/ε

]
=

∫
dµ[z(u)]

SL(2,R)

∏
u∈∂M

δ

(√
1 + 2ε2Sch(z(u), u)− 1− ε2Kb,r

+ derivatives of Sch.

)
. (A.11)

One set of solutions for which the δ-function in (A.11) are the configurations for which the Schwarzian

is a constant (related to Kb,r) for which all the derivatives of the Schwarzian vanish.3 Specifically,

for such configurations which obey z(0) = z(β), we have that z(u) = tan(πu/β), which yields:

√
1 + 4ε2

π2

β2
− 1 = ε2Kb,r ⇒ β

ε
=

2π√
ε2Kb,r(2 + ε2Kb,r)

=
2π√

(Kb + 1)(Kb − 1)
(A.12)

which exactly matches the constraint (A.9). This is a strong consistency check that the relation

between the deformed Schwarzian action (3.64) and the extrinsic curvature when moving to finite

cutoff.

A.2 General solution to (3.47)

In this appendix we present a more general analysis of the differential equation (3.47), which we

reproduce here for convenience,

[
4λ∂λ∂β + 2β∂2

β −
(

4λ

β
− 1

)
∂λ

]
Zλ(β) = 0. (3.47)

In particular, since (3.4) appears (at least naively) to not converge and the integral transform (3.5)

is not well-defined for the sign of λ, i.e. λ > 0, which is appropriate for JT gravity at finite cutoff,

the solution to the differential equation provides a solution for the partition function for that sign.

To solve the differential equation (3.47) it is useful to decouple λ and β. This can be done by

defining R = β/(8λ) and eσ = β/(2C) and writing the problem in terms of R and σ. The differential

equation becomes,

−R2(∂2
R + 4∂R)Z + (∂2

σ − ∂σ)Z = 0 (A.13)

3It is possible that there are other solutions which we do not account for in (A.11) that do not have Sch(z(u), u)
constant but have the sum between the non-derivative terms and derivative terms in (A.11) still yield the overall
constant 1 + ε2Kb,r. While we do not analyze the possible existence of these configuration, it is intriguing that they
do not affect the result of (A.12). We will once again ignore non-perturbative corrections in ε.
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By using seperation of variables we find that the general solution is,

Z(R, σ) =

∫ ∞
−∞

dνe−νσ
√
Re−2R

(
aνK1/2+ν(−2R) + bνK1/2+ν(2R)

)
(A.14)

where ν is the related to the seperating contant. We are interested in find the solution with the

Schwarzian boundary condition at R → ∞. Expanding the above general solution for R → ∞ we

find

Z0 = lim
R→∞

Z(R, σ) = −i
√
π

2

∫ ∞
−∞

dνe−νσaν . (A.15)

Notice that the bν coefficients do not play any role, since the Bessel function with positive argument

goes as e−4R. The function Z0 is given by Schwarzian partition function,

Z0 =

(
1

2Ceσ

)3/2

eπ
2e−σ , (A.16)

Expanding this in eσ fixes the coefficients aν and after resumming using the multiplicative theorem

for the Bessel Ks(z) functions,

α−sKs(αz) =

∞∑
n=0

(−1)n

2nn!
(α2 − 1)nznKs+n(z), (A.17)

we find the solution with the boundary condition (A.15) to be,

Z(R, σ) = i
1√

2πC3

R3/2e−2R−σ/2

Reσ + π2
K2

(
−2
√
R2 + π2Re−σ

)
+

∫ ∞
0

dνe−νσbν
√
Re−2RKν+1/2(2R). (A.18)

The first term is precisely the deformed Schwarzian partition function found in [70]. The second

term is there because the boundary condition at R→∞ is not enough to fully fix the solution. They

are non-perturbative corrections to the partition function, discussed in 3.4. In that same section a

proposal is presented how to fix, or at least partially, the bν . In particular, by requiring Z(R, σ) to

be real. We know that Ks(z) is real for z > 0 and since R > 0, we need bν to be complex in general.

The Bessel Ks(z) functions have a branch cut at the negative real axis and furthermore for integer

s we have,

Ks(−z) = (−1)sKs(z) + (log(z)− log(−z))Is(z)⇒ K2(−z) = K2(z)− iπI2(z), (A.19)
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where we used z > 0 and real after the implication arrow. Notice that here we also picked a particular

branch of the logarithm so that log(−z) = log(z) + iπ. This choice is motivated by the fact that as

R → ∞ the density of states of the corresponding partition function is positive. Consequently, to

make Z(R, σ) real we need the imaginary part of bν , bImν , to satisfy.

1√
2πC3

R3/2e−2R−σ/2

Reσ + π2
K2

(
2
√
R2 + π2Re−σ

)
+

∫ ∞
0

dνe−νσbImν
√
Re−2RKν+1/2(2R) = 0. (A.20)

But this is the same matching as we did to implement the boundary condition (A.15), up to some

signs. In fact, picking bImν = −(−1)νaν does the job and we get

Z(R, σ) =

√
π

2C3

R3/2e−2R−σ/2

Reσ + π2
I2

(
2
√
R2 + π2Re−σ

)
+ Z̃(R, σ), (A.21)

where

Z̃(R, σ) =

∫ ∞
−∞

dνe−νσ
√
Re−2RcνK1/2+ν(2R) (A.22)

with cν real. Going back to the λ and β variables, we find

Zλ(β) =

√
π

2λ

βe−
β
4λ

β2 + 16Cπ2λ
I2

(
1

4λ

√
β2 + 16Cπ2λ

)
+ Z̃(β, λ). (A.23)

If one insists on getting a partiton function as a solution, i.e a solution that can be written as a sum

over energies weighted by some Boltzman factor, we can find solution in a simpler way. The ansatz

is then

Zλ(β) =
∑
E

g(λ)e−βEλ(E). (A.24)

Plugging this in the differential equation (3.47) we precisely find the energy levels in (3.2) and

g(λ) = 1, i.e. the density of states is not changed under the flow. If we consider a continuous

spectrum we thus find (3.86).
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A.3 Details about regularization

Some explicit perturbative calculations for K[z(u)]

Since the discussion is section 3.3.5 is mostly formal, in this appendix we will compute the finite

cutoff partition function to leading order in the cutoff ε. The unrenormalized quantities are L = β/ε

and φb = φr/ε. We want to reproduce the answer from WdW or TT which is given in (3.85).

Expanding at small ε gives

logZTT =
2π2φr
β

+
3

2
log
(φr
β

)
− ε2

(2φrπ
4

β3
+

5π2

β2
+

15

8φrβ

)
+O(ε4) (A.25)

We want to reproduce the ε2 term evaluating directly the path integral over the mode z(u).

Removing the leading 1/ε2 divergence we need to compute

ZJT[ε] =

∫
Dz

SL(2,R)
e
∫ β
0
duφrK2eε

∫ β
0
duφrK3+ε2

∫ β
0
duφrK4+..., (A.26)

where K2[z(u) = Sch(z, u) gives the leading answer and K3[z(u)] and K4[z(u)] are both given in

(3.56) and contribute to subleading order. This integral is easy to do perturbatively. First we know

that the expectation value of an exponential operator is equal to the generating function of connected

correlators. Then any expectation value over the Schwarzian theory gives

log
〈
eεO[z]

〉
Sch

= logZ0 + ε〈O[z]〉+
ε2

2
〈O[z]O[z]〉conn + . . . . (A.27)

Using this formula we can evaluate the logarithm of the partition function to order ε2 in terms of

K3 and K4 as

logZJT = logZSch + ε

∫ β

0

duφr〈K3〉+
ε2

2

∫ β

0

dudu′ 〈K3K
′
3〉+ ε2

∫ β

0

duφr〈K4〉+O(ε3). (A.28)

The first correction is K3 = −i∂uSch(z, u), which is a total derivative. This guarantees that, for a

constant dilaton profile, the first two terms vanish since
∫
du〈K3〉 = 0 and

∫ ∫
dudu′ 〈K3K

′
3〉 = 0.

The second correction is

K4 = −1

2
Sch(z, u)2 + ∂2

uSch(z, u) (A.29)
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Then, since the second term in K4 is a total derivative it can be neglected, giving

logZJT = logZSch −
ε2

2
φr

∫
〈Sch(z, u)2〉+O(ε3). (A.30)

Using point-splitting we can regulate the Schwarzian square. Schwarzian correlators can be obtained

using the generating function. The one-point function is

〈Sch(z, u)〉 =
1

β
∂φr logZ =

2π2

β2
+

3

2φrβ
(A.31)

The two point function is given by

〈Sch(z, u)Sch(z, 0)〉 = − 2

φr
〈Sch(z, 0)〉δ(u)− 1

φr
δ′′(u) + 〈: Sch(z, u)2 :〉 (A.32)

where we define the renormalized square schwarzian expectation value as

〈: Sch(z, u)2 :〉 =
4π4

β4
+

10π2

β3φr
+

15

4β2φ2
r

. (A.33)

This term only gives the right contribution matching the term in the TT partition function

ε2

2
φr

∫
〈: Sch(z, u)2 :〉 = ε2

(2φrπ
4

β3
+

5π2

β2
+

15

8φrβ

)
. (A.34)

If evaluating K4[z(u)] without using the point-splitting procedure prescribed in section 3.3.5 then one

naviely evaluates (A.33) at identical points. The divergent contributions can precisely be eliminated

with the point-splitting prescription (3.76).

Why derivatives of the Schwarzian don’t contribute to the partition function

Here we discuss in more detail why terms in K[z(u)] containing derivatives of the Schwarzian do

not contribute to the partition function (with constant dilaton value φr) after following the point-

splitting procedure (3.76). As mentioned in section 3.3.5 the schematic form of Schwarzian correla-

tors is given by

(
δ

δj(u1)
. . .

δ

δj(un)
ZSch[j(u)]

)∣∣∣∣
j(u)=φr

= a1 + a2[δ(uij)] + a3[∂uδ(uij)] + . . . , (A.35)
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where the derivatives in the δ-function terms above come by taking functional derivatives of the

term exp
(∫ β

0
du j

′(u)2

2j(u)

)
in ZSch[j(u)]. After following the point-splitting prescription (3.76) none

of the functional derivatives of the form (A.35) that we will have to consider in the expansion of

the exponential will be evaluated at identical points and therefore (A.35) will not contain terms

containing δ(0) or its derivatives.

Consequently, note that when series-expanding the exponential functional derivative in (3.74),

terms that contain derivatives in K
[
∂u

δ
δj(u)

]
would give terms with contributions of the form

∫ β

0

du1 . . .

∫ β

0

dua . . .

∫ β

0

duN

(
. . . ∂ua

δ

δj(ua)
. . . ZJT [j(u)]

) ∣∣∣∣
j(u)=φr

=

=

∫ β

0

du1 . . .

∫ β

0

dua . . .

∫ β

0

duN
[
a2[∂uδ(uai)] + a3[∂2

uδ(uai), ∂uδ(uai)∂uδ(uak)] + . . .
]

= 0 , (A.36)

where we note that a1 vanishes after taking the derivative ∂ua .

In the second to last line we have that a2[∂uδ(uai)] contains first order derivatives in δ(uai) and

a3[∂2
uδ(uai), ∂uδ(uai)∂uδ(uak)] contains second-order derivatives acting on δ-functions involving ua.

Since the functions above only contain δ-functions involving other coordinates than ua, all terms in

the integral over ua vanish after integration by parts; consequently, the last line of (A.36) follows.

Note that if we consider dilaton profiles that are varying φr(u) such derivative of δ-function in fact

would contribute after integration by parts. Consequently, it is only in the case of constant dilaton

where such derivative terms do not give any contribution.

A very similar argument leads us to conclude that all other terms containing derivatives of δ-

functions in (A.35), vanish in the expansion of the exponential functional derivative from (3.74) when

the δ-function is evaluated at non-coincident points. Therefore, since the term exp
(∫ β

0
du j

′(u)2

2j(u)

)
only gives rise to terms containing derivatives of δ(u), this term also does not contribute when

evaluating (3.74).
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Appendix B

The analysis of JT gravity in the

second-order formalism

B.1 A review of the Schwarzian theory

In this section, we review the Schwarzian theory, its equivalence to the particle on the hyperbolic

plane H+
2 placed in a magnetic field and the computation of observables in both theories. The

partition function for the Schwarzian theory on a Euclidean time circle of circumference β is given

by

ZSchw.(β) =

∫
f∈Diff(S1)

SL(2,R)

Dµ[f ]

SL(2,R)
exp

[
C

∫ β

0

du

(
{f, u}+

2π2

β2
(f ′)2

)]
, (B.1)

where C is a coupling constant with units of length, {f, u} denotes the Schwarzian derivative,

f ′ = ∂uf(u) and the path integral measure Dµ[f ] will be defined shortly. The field f(u) obeying

f(u+β) = f(u)+β parameterizes the space Diff(S1) of diffeomorphisms of the circle. By performing

the field redefinition F (u) = tan (πf(u)/β) with the consequent boundary condition F (0) = F (β),

as suggested in (1.19), one can rewrite (B.1) as

S[F ] = −C
∫ β

0

du{F, u} . (B.2)
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Classically, the action in (B.1) can be seen to be invariant under SL(2,R) transformations1

F → aF + b

cF + d
. (B.3)

In the path integral (1.19) one simply mods out by SL(2,R) transformations (1.19) which are

constant in time (the SL(2,R) zero-mode). As we will further discuss in Section B.1, such a quotient

in the path integral is different from dynamically gauging the SL(2,R) symmetry. An appropriate

choice for the measure on diff(S1)/SL(2,R) which can be derived from the symplectic form of the

Schwarzian theory is given by,

Dµ[f ] =
∏
u

df(u)

f ′(u)
=
∏
u

dF (u)

F ′(u)
. (B.4)

where the product is taken over a lattice that discretizes the Euclidean time circle.

Finally, the Hamiltonian associated to the action (B.2) is equal to the sl(2,R) quadratic Casimir,

H = 1/C
[
−`20 + (`−`+ + `+`−)/2

]
, where `0 and `± are the sl(2,R) charges associated to the

transformation (B.3), which can be written in terms of F (u) as

`0 =
iC√

2

[
F ′′′F

F ′2
− FF ′′2

F ′2
− F ′′

F ′

]
,

`+ =
iC√

2

[
F ′′′F 2

F ′2
− F ′′2F 2

F ′3
− 2FF ′′

F ′
+ 2F ′

]
,

`− =
iC√

2

[
F ′′′

(F ′)2
− (F ′′)2

(F ′)3

]
, (B.5)

The equality between the Hamiltonian and the Casimir suggests a useful connection between the

Schwarzian theory and a non-relativistic particle on the hyperbolic upper-half plane, H+
2 , placed in

a constant magnetic field B. In the latter the system, the Hamiltonian is also given by an sl(2,R)

quadratic Casimir. Below we discuss the equivalence of the two models at the path integral level.

An equivalent description

The quantization of the non-relativistic particle on the hyperbolic plane, H+
2 , placed in a constant

magnetic field B̃ was performed in [221, 222]. Writing the H+
2 metric as ds2 = dφ2 +e−2φdF 2 where

1SL(2,R) is the naive symmetry when performing the transformation (B.3) at the level of the action. We will
discuss the exact symmetry at the level of the Hilbert space shortly.
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both φ and F take values in R, the non-relativistic action in Lorentzian time2

SB̃ =

∫
dt

(
1

4
(φ̇)

2
+

1

4
e−2φ(Ḟ )

2
+ B̃Ḟ e−φ + B̃2 +

1

4

)
. (B.6)

The Hamiltonian written in terms of the canonical variables (φ, πφ) and (F, πF ), is given by3

HB̃ = π2
φ + π2

F e
2φ − 2B̃πF e

φ − 1

4
. (B.7)

The thermal partition function at temperature T = 1/β can be computed by analytically continuing

(B.6) to Euclidean signature by sending t → −iu and computing the path integral on a circle of

circumference β with periodic boundary conditions φ(0) = φ(β) and F (0) = F (β). At the level of

the path integral, the partition function with such boundary conditions is given by

ZB̃(β) =

∫
φ(0)=φ(β),F (0)=F (β)

DφDF e−
∫ β
0
du( 1

4φ
′2+ 1

4 (e−φF ′−2iB̃)2) . (B.8)

with the sl(2,R) invariant measure,

DφDf ≡
∏

u∈[0,β]

dφ(u)dF (u)e−φ(u)
(B.9)

For the purpose of understanding the equivalence between this system and the Schwarzian we

will be interested in the analytic continuation to an imaginary background magnetic field B̃ = − iB2π
with B ∈ R,

ZB(β) =

∫
φ(0)=φ(β),F (0)=F (β)

DφDF e−
∫ β
0
du( 1

4φ
′2+ 1

4 (e−φF ′−B/π)2) .

∼
∫
φ(0)=φ(β), F (0)=F (β)

DφDF e
−
∫ β
0
du
(

1
4φ
′2+ B2

4π2 e
−2φ(F ′−eφ)2

)
,

(B.10)

where we have shifted φ → φ − log B
π in the second line above and dropped an overall factor that

only depends on B.

The Schwarzian theory emerges as an effective description of this quantum mechanical system

in the limit B → ∞. Indeed, we can apply a saddle point approximation in this limit to integrate

out φ. This sets F ′ = eφ and gives, after taking into account the one-loop determinant for φ around

2For convenience, we distinguish Lorentzian time derivative ḟ from Euclidean time derivatives f ′.
3We have shifted both the Lagrangian and the Hamiltonian by a factor of ±B2 in order to set the zero level for

the energies of the particle on H+
2 to be at the bottom of the continuum.
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the saddle,

ZB(β) ∼
∫
F (0)=F (β)

∏
u

dF (u)

F ′(u)
e
−
∫ β
0
du

(
1
4

(
F ′′
F ′

)2
)

=

∫
F (0)=F (β)

Dµ[F ] e
1
2

∫ β
0
du{F,u} , (B.11)

where to obtain the second equality we have shifted the action by a total derivative.

Thus, as promised, we recover the Schwarzian partition function with the same measure for the

field F (u) in the B → ∞ limit (and B̃ → i∞), when setting the coupling C = 1
2 .4 However, the

space of integration for F (u) in (B.11) is different from that in the Schwarzian path integral (1.19).

This is most obvious after we transform to the other field variable f(u) = β
π tan−1 F (u) and

ZB(β) ∼
∑
n∈Z

∫
f(0)=f(β)+nβ

Dµ[f ] e
1
2

∫ β
0
du
(
{f,u}+ 2π2

β2 (f ′)2
)
. (B.12)

While for the Schwarzian action f(u) ∈ Diff(S1), obeying the boundary condition f(u + β) =

f(u) + β, the path integral (B.12) consists of multiple topological sectors labeled by a winding

number n ∈ Z such that f(u+ β) = f(u) + β n. In other words, the (Euclidean) Schwarzian theory

is an effective description of the quantum mechanical particle in the n = 1 sector.

Reproducing the partition function of the Schwarzian theory from the particle of magnetic field

thus depends on the choice of integration cycle for F (u) (or f(u)). As we explain below, the

integration cycle needed in order for the partition function of the particle of magnetic field to be

convergent is given by B̃ = iB → i∞. In order to do this it is useful to consider how the wave-

functions in this theory transform as representations SL2.

When quantizing the particle on H+
2 in the absence of a magnetic field, the eigenstates of the

Hamiltonian transform as irreducible representations of PSL(2,R) [222]. When turning on a mag-

netic field, the Hamiltonian eigenstates transform as projective representations of PSL(2,R), which

are the proper representations of S̃L(2,R) mentioned in Section 2.3.3 [222].5 Specifically, the wave-

functions for the particle in magnetic field B̃ ∈ R transform in a subset of irreducible representa-

tions of S̃L(2,R) with fixed eigenvalues under the center of the group e2πiµ = e2πiB̃ .6 Such unitary

representations admit a well-defined associated Hermitian inner-product and the Hamiltonian is a

4Note that the meaningful dimensionless parameter β
C

is unconstrained.
5Note that not all unitary irreducible representations of SL2 need to appear in the decomposition of the Hilbert

space under SL2. While there exist states transforming in any continuous series representation of SL2, there are also
states transforming in the discrete series representations as long as λ = −B̃ + n with, n ∈ Z and 0 ≤ n ≤ |B̃| − 1.

6The fact that states transform in projective representations of the classical global symmetry can be understood
as an anomaly of the global symmetry. An straightforward example of this phenomenon happens when studying a
charged particle on a circle with a θ-angle with θ = π [117]. Note that when B = p

q
∈ Q states transform in absolute

irreps of the q-cover of PSL(2,R), which are also abolute irreps of S̃L(2,R). It is only when B ∈ R \ Q that these

irreps are absolute for the univesal cover S̃L(2,R).
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Hermitian operator. Up to a constant shift, their energies are real and are given by the SL2 Casimir

in (2.26), Eλ = −(λ− 1/2)2.

When making B̃ ∈ C \R the Hamiltonian is no longer Hermitian and the representations of SL2

do not admit a well defined Hermitian inner-product. However, the partition function defined by

the path-integral (B.6) is convergent. As we explain in Section 2.3.3, if we analytically continue

the Plancherel measure and Casimir to imaginary B̃ → i∞, the thermal partition function in this

limit reproduces that of the Schwarzian theory (2.24). Thus, the theory makes sense in Euclidean

signature where the correlation function of different observables is convergent, but a more careful

treatment is needed in Lorentzian signature.

An SL2 chemical potential

While the classical computation performed in Section 2.2.2 suggests the equivalence between im-

posing a non-trivial PSL(2,R) twist for the Schwarzian field and the gauge theory (2.3) with a

non-trivial holonomy around its boundary this equivalence does not persist quantum mechani-

cally. Instead, in the presence of a non-trivial holonomy, the gauge theory is equivalent to the

non-relativistic particle in the magnetic field (B.6) with B̃ → i∞ and in the presence of an SL2

chemical potential. Note that in the derivation performed above, in order to prove the equivalence

between the Schwarzian and the action (B.6) with B̃ → i∞, we have assumed that the field F (u) is

periodic: specifically, if one assumes a PSL(2,R) twist around the thermal circle for the field F (u),

one can no longer use the equality in (B.11). Specifically, (B.11) assumes that when adding a total

derivative to the action, the integral of that derivative around the thermal circle vanishes – this is

no longer true in the presence of a non-trivial twist for the Schwarzian field.

In order to study (B.6) with B̃ → i∞ in the presence of an SL2 chemical potential, we start

by considering the case of B̃ ∈ R and then we analytically continue to an imaginary magnetic field

B̃ ∈ iR. The partition function is given by

ZiB(g̃, β) ∼
∫
dsρB(s)e−

β
2C s

2
∞∑

m=−∞
〈1
2

+ is, m|g̃|1
2

+ is, m〉+ discrete series contributions

=

∫ ∞
0

dsρB(s)χs(g̃)e−
β

2C s
2

+ disrete series contributions , (B.13)

where χs(g̃) = Trs(g̃) is the SL2 character of the principal series representation labelled by λ =

1/2 + is (see Appendix B.3 for the explicit character χs(g̃)). To recover the partition function when

B̃ = − iB2π → i∞ we again perform the analytic continuation used to obtain (2.24). Once again
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the discrete series states have a contribution of O(Be−βB
2/C) and can be neglected. Thus, up to a

proportionality factor

ZiB(g̃, β) ∝
∫ ∞

0

dsρ(s)χs(g̃)e−
β

2C s
2

. (B.14)

This formula generalizes (2.24) for any g̃ and matches up to an overall proportionality factor, with

the result obtained in the gauge theory in Section 2.3.3 (see (2.43)).

B.2 Comparison between compact and non-compact groups

For convenience, we review the schematic comparison between various formulae commonly used

for compact gauge groups (which we will denote by G) with finite dimensional unitary irreducible

representations and the analogous formulae that need to be used in the non-compact case (which

we denote by G) with infinite-dimensional unitary irreducible representations:

δ(g) =
∑
R dimRχR(g) δ(g) =

∫
dRρ(R)χR(g)∫

dg
volGU

n
R,m(g)Um

′

R′,n′(g
−1) = δRR′δmm′δnn′

dimR

∫
dg

volGU
n
R,m(g)Um

′

R′,n′(g
−1) = δ(R,R′)δmm′δnn′

ρ(R)∫
dg

volGχR(g)χR′(g
−1) = δRR′

∫
dg

volGχR(g)χR′(g
−1) = Ξ δ(R,R′)

ρ(R)∫
dg

volGχR(gh1g
−1h2) = χR(h1)χR(h2)

dimR

∫
dg

volGχR(gh1g
−1h2) = χR(h1)χR(h2)

Ξ∫
dg

volGχR1(gh1)χR2(g−1h1) =
δR1,R2

χR1
(h1h2)

dimR1

∫
dg

volGχR1(gh1)χR2(g−1h2) =
δ(R1,R2)χR1

(h1h2)

ρ(R)

where χR(g) are the characters of the group G or G, UnR,m(g) are the associated matrix elements and

Ξ is a divergent factor, which can be evaluated by considering the limit limg→1 χR(g) = Ξ. In the

case of SL2 and G the limit needs to be taken from the direction of hyperbolic elements and for the

group GB we have shown that Ξ is independent of the representation R. We consider an in-depth

discussion of the above formulae and their consequences in 2D gauge theories with the non-compact

gauge group GB below.

B.3 Harmonic analysis on SL2 and GB

We next describe how to work with the characters of SL2 and its R extension, GB (and consequently

the group G ≡ GB when taking the limit B → ∞). In order to get there we first need to discuss

the meaning of the Fourier transform on the group manifold of SL2 or GB . Given a finite function
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x(g̃) with g̃ ∈ SL2,7 for every unitary representation UR of the continuous and discrete series we can

associate an operator

UR(x) =

∫
x(g̃)UR(g̃)dg̃ . (B.15)

The operator UR(x) is called the Fourier transform of x(g̃). Just like in Fourier analysis on R,

our goal will be to find the inversion formula for (B.15) and express x(g̃) in terms of its Fourier

transform. To start, we can express the Delta-function δ(g̃) on the group manifold, in terms of its

Fourier components

δ(g̃) =

∫
ρ(R)tr(UR(g̃))dR , (B.16)

where as we will see later in the subsection that ρ(R) is the Plancherel measure on the group

and χR(g̃) ≡ Tr (UR(g̃)) will define the character of the representation R. The integral over R is

schematic here (see later section for explicit definitions) and represents the integral over the principal

and discrete series of the group. The Delta-function is defined such that,

∫
x(g̃g̃0)δ(g̃)dg̃ = x(g̃0) . (B.17)

Multiplying (B.16) by x(g̃g̃0) and integrating over the group manifold we find that

x(g̃0) =

∫
ρ(R)tr(UR(x)UR(g̃−1

0 ))dR . (B.18)

We will review the calculation of the matrix elements UmR,n(g̃), characters χR(g̃) and of the Plancherel

measure ρ(R) in the next subsections.

B.3.1 Evaluation of the matrix elements and characters

As explained in [115], one can parameterize S̃L(2,R) using the coordinates (ξ, φ, η), where we can

restrict φ + η ∈ [0, 4π). The S̃L(2,R) element g̃ takes the form g̃ = eφP0eξP1e−ηP0 , where the

generators Pi are given by (2.7). In this parameterization, the metric is

ds2 = dξ2 − dφ2 − dη2 + 2 cosh ξdφdη (B.19)

7Here finite means that it is infinitely differentiable if the group manifold is connected and is constant in a
sufficiently small domain if the group manifold is disconnected.
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and the Haar measure is

dµ = sinh ξ dξ dφ dη . (B.20)

For the full group GB , we normalize the measure by,

dg̃ ≡ dµdθ (B.21)

As shown in [115], the matrix elements in the representation with quantum numbers λ and µ are

given by

Umλ,n(g̃) = ei(nφ−mη)(1− u)λu
n−m

2

√
Γ(n− λ+ 1)Γ(n+ λ)

Γ(m− λ+ 1)Γ(m+ λ)
F(λ−m,n+ λ,−m+ n+ 1;u) ,

(B.22)

where, F(a, b, c, z) = Γ(c)−1
2F1(a, b, c; z), u = tanh2(ξ/2) and m,n ∈ µ + Z. We can similarly

parametrize elements GB by g = (θ, g̃) where x is an element of R. The matrix element for the

representation (λ, µ = −Bk2π + q, k) in GB is thus given by,

Um
(λ, µ=−Bk2π +q, k), n

(g) = eikθUmλ,n(g̃) . (B.23)

Once again, this expression depends on µ only in that m, n, k ∈ µ+ Z. The diagonal elements are

thus given by

Um(λ,µ,k),m(g) = (1− u)λeim(φ−η)eikθ 2F1(λ−m,λ+m; 1;u) . (B.24)

The characters of the various representations are obtained by summing (B.24) over m. Because

the characters are class functions, they must be functions of the eigenvalues x, x−1 of the SL2 matrix

g̃, when g̃ is expressed in the two-dimensional representation. x can be obtained from the angles φ,
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η and ξ for any representation to be8

x =



cos φ−η2 ±
√
u− sin2 φ−η

2√
1− u

, if u ≥ sin2 φ−η
2 ,

cos φ−η2 ± i sin φ−η
2

√
1− u

sin2 φ−η
2√

1− u
, if u < sin2 φ−η

2 ,

(B.25)

where one of the solutions represents x and the other x−1. Note that for hyperbolic elements, x ∈ R,

which happens whenever u > sin2 φ−η
2 . Simple examples of hyperbolic elements have φ = η = 0, and

in this case x = e±ξ/2. For elliptic elements, we have |x| = 1 (with x /∈ R), which happens whenever

u < sin2 φ−η
2 . Simple examples of elliptic elements have u = η = 0, and in this case x = e±iφ/2.

Lastly, for parabolic elements, we have x = ±1, and in this case u = sin2 φ−η
2 . For convenience, from

now on we choose x such that |x| > 1 and |x−1| < 1 for hyperbolic elements. For elliptic elements,

we choose x to be associated with the negative sign in the 2nd equation of (B.25).

Continuous series

To obtain the characters for the continuous series, we should set λ = 1
2 + is and sum over all values

of m = µ+ p with p ∈ Z. The sum is given by

χs,µ,k(g) = (1− u)
1
2 +iseikθ

∑
p∈Z

ei(µ+p)(φ−η)
2F1(

1

2
+ is− µ− p, 1

2
+ is+ µ+ p; 1;u) , (B.26)

where we consider φ − η ∈ [2π(n − 1), 2πn), with n ∈ Z. This sum can be evaluated using the

generating formula for the 2F1 hypergeometric function. Evaluating the sum defined in (B.25)

yields, in terms of the eigenvalue x associated to g̃ group element, the R element θ and the branch

number, n, for the angle φ− η,

χs,µ,k(g) =


eikθe2πiµn

(
|x|1−2λ+|x|−1+2λ

|x−x−1|

)
, for g̃ hyperbolic,

0 , for g̃ elliptic,

(B.27)

where λ = 1
2 + is and, we remind the reader about the restriction that µ = −Bk

2π + Z.

8(We wrote two distinct formulas depending on whether u is greater or smaller than sin2 φ−η
2

in order to make
explicit the choice of branch cut we use for the square root.)
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Discrete series

For the positive discrete series, we have µ = λ and the sum over m goes over values equal to λ+ p

with p ∈ Z+:

χ+
λ,k(g) = eikθ

∞∑
p=0

Uλ+p
λ,λ+p(g) = (1− u)λeikθeiλ(φ−η)

∞∑
p=0

eip(φ−η)P (0,2λ−1)
p (1− 2u) , (B.28)

where P
(α,β)
n (x) are the Jacobi polynomials. We can once again evaluate the sum using the generating

formula for the Jacobi polynomial to find that in terms of the eigenvalue x, the character is given

by

χ+
k,λ(g) =

eikθx1−2λ

x− x−1
(B.29)

for both hyperbolic and elliptic elements. This expression is identical to the first term in (B.27).

For the negative discrete series, we have µ = −λ and so we should take m = −λ− p, with p ∈ Z+,

and sum over p:

χ−k,λ(g) = (1− u)λeikθe−iλ(φ−η)
∞∑
p=0

e−ip(φ−η)P (0,2λ−1)
p (1− 2u) . (B.30)

Comparing (B.30) with (B.28), we conclude that

χ−λ,k(g) = eikθ
(
χ+
λ (g̃)

)∗
= eikθ

(
x1−2λ

x− x−1

)∗
. (B.31)

This expression is identical to the second term in (B.27).

Before we end this subsection, we summarize a few identities satisfied by the characters above.

We have

χR(g) = χR(g−1) (B.32)

which follows from the unitarity of the representations. We also have

χs,µ,k(g−1) = χs,−µ,−k(g), χ+
k,λ(g−1) = χ−−k,λ(g) . (B.33)
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B.3.2 The Plancherel inversion formula

The normalization of the matrix elements UR given by (B.22) - (B.24) can be computed following

[115]. For the continuous series one finds that,

〈Um( 1
2 +is,µ,k),n|U

m′

( 1
2 +is′,µ′,k′),n′〉 =

∫
dg Um( 1

2 +is,µ,k),n(g)Un
′

( 1
2 +is′,µ′,k′),m′(g

−1)

= 4π2B
cosh(2πs) + cos(Bk)

s sinh(2πs)
δ(s− s′)δ(µ− µ′)δkk′δnn′δmm′ ,

with s, s′ > 0,
−1

2
≤ µ ≤ 1

2
,

k, k′ ∈ −2π(µ+ Z)

B
, m, n, m′, n′ ∈ µ′ + Z . (B.34)

Similarly, for the positive/negative discrete series one finds that,

〈Um(λ,k),n)|U
m′

(λ′,k′),n′〉 =
8π2B

2λ− 1
δ(λ− λ′)δkk′δmm′δnn′

with λ, λ′ >
1

2
, k, k′ ∈ −2π(±λ+ Z)

B
, m, n, m′, n′ ∈ ±(λ+ Z+) . (B.35)

Given the orthogonality of the matrix elements one can then write the δ-function in (B.16) as,

δ(g) =
1

2π

∫ ∞
−∞

dk ds

(2π)2

s sinh(2πs)

cosh(2πs) + cos(Bk)
χ(s,µ=−Bk2π ,k)(g)+

+

∫ ∞
1
2

dλ

(2π)2B

(
λ− 1

2

) ∞∑
q=−∞

(
χ+

(λ,k=− 2π(λ+q)
B ))

(g) + χ−
(λ,k=− 2π(−λ+q)

B )
(g)

)
, (B.36)

For the purpose of evaluating the partition function of the gauge theory in Section 2.2 it is more

convenient to write all the terms in (B.36) under a single k-integral. To do this one can perform a

contour deformation [223] to find that δ(g) can also be expressed as

δ(g) = −i
∑
p∈Z

∫ ∞
−∞

dk

∫ ∞
−∞

ds

(
Bk

2π
+ p+ is

)
tanh(πs)U

Bk
2π +p

(Bk2π +p+is+ 1
2 ,
Bk
2π +q,k)Bk2π +p

(g̃) , (B.37)

with q ∈ Z. Using δ(g) from (B.36), the Plancherel inversion formula for SL2 can be generalized to

functions acting on the group GB ,

x(1) =
1

2π

∫ ∞
−∞

dk ds

(2π)2

s sinh(2πs)

cosh(2πs) + cos(2πk)
χ(s,µ=−Bk2π ,k)(x)+

+

∫ ∞
1
2

dλ

(2π)2B

(
λ− 1

2

) ∞∑
q=−∞

(
χ+

(λ,k=− 2π(λ+q)
B ))

(x) + χ−
(λ,k=− 2π(−λ+q)

B )
(x)

)
, (B.38)
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with

χR(x) ≡
∫
dg̃

∫ B

0

dθx(g)χR(g−1) . (B.39)

In practice, in order to keep track of divergences evaluating the characters on a trivial we introduce

the divergent factor Ξ, for which χ(s,µ=−Bk2π ,k)(x) = Ξ. One can check this s-independent divergence

by taking the limit

lim
g̃→e

χ(s,µ)(g̃) = lim
x→1, θ→0

eikθ
x2is + x−2is

x− x−1
= lim
x→1

1

|x− x−1|
= Ξ . (B.40)

Similarly, for n ∈ Z,

lim
g̃→e2πin`0

χ(s,µ)(g̃) = e2πiµn lim
x→±1

1

|x− x−1|
= e2πiµnΞ . (B.41)

Another operation that proves necessary for the computations performed in Section 2.2 is per-

forming the group integral

1

volGB

∫
dgχs,k=i(gh1g

−1h2) =
1

Ξ
χs,k=i(h1)χs,k=i(h2) , (B.42)

for principal series representation s and for group elements h1 and h2. The normalization of this

formula is set by taking the limit h1 → e and h2 → e and using the normalization for the matrix

elements UR, (B.34) and (B.35).

B.3.3 An example: Isolating the principal series representation

The goal of this appendix is to use the techniques presented in the previous subsections to show

that we can isolate the contribution of principal series representations in the partition function.

Specifically, we want to show that the regularization procedure suggested in Section 2.3.3 by adding

higher powers of the quadratic Casimir leads to suppression of the discrete series. Using the rewriting

of δ(g) as in (B.37) we find that the partition function with an overall GB holonomy g is given by,

Z(g, eβ) ∼−i
∑
p∈Z

∫ ∞
−∞

dk

∫ ∞
−∞

ds

(
−Bk

2π
+ p+ is

)
tanh (πs)U

−Bk2π +p

−Bk2π +p+is+ 1
2 ,−

Bk
2π +p

(g̃)

× eikθe
eβ
2 [(p+is)2− ··· ] , (B.43)
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where g = (g̃, θ) and · · · captures the contribution of higher powers of the quadratic Casimir. Setting

the boundary condition φR = k0 = −i, we find that the partition function becomes

Zk0
(g̃, eβ) ∼−i

∑
p∈Z

∫ ∞
−∞

ds (p+ is) tanh

(
πs− B

2

)
U
Bi
2π+p

p+is+ 1
2 ,
Bi
2π+p

(g̃)

× e
eβ
2 [(p+is)2− ··· ] , (B.44)

where, in order to obtain (B.44), we have also performed the contour re-parametrization s→ s− B
2π .

The form of higher order terms captured by · · · is given by higher powers of the quadratic Casimir:

thus, for instance the first correction given by the square of the quadratic Casimir is given by

∼ (p + is)4/B. For each term in the sum, we can now deform the contour as s → s − ip. Such a

deformation only picks up poles located at s∗ = 1
2πB −

(2n+1)i
2 with n ∈ Z and 2n + 1 < p.9 The

residue of each such pole gives rise to the contribution of the discrete series representations to the

partition function. However, by choosing the negative sign for the fourth order and higher order

terms in the potential the resulting contribution is suppressed as O(Be−
eβB2

2 ). This is the reason

why the partition function is finite and is solely given by the contribution of principal unitary series

representations.

Zk0
(g̃, eβ) ∼

∑
p∈Z

∫ ∞
−∞

ds s tanh

(
πs− B

2

)
U
Bi
2π+p

is+ 1
2 ,
Bi
2π+p

(g̃)e−
eβs2

2 +

+O(Be−
eβB2

2 ) . (B.45)

Note that the integral is even in s and that tanh
(
πs− B

2

)
= (sinh(2πs) − sinh(B))/(cosh(2πs) +

cosh(B)). Thus, when considering theB →∞ limit the Plancherel measure becomes dss sinh(2πs)/e−B .

Thus, summing up all matrix coefficients in (B.45) we recover the fact that the partition function

only depends on characters, and we recover the result in Section 2.3.4.

B.4 Clebsch-Gordan coefficients, fusion coefficients and 6-j

symbols

The purpose of this section is to derive the fusion coefficients and the 6-j symbols needed in the main

text. To do so, we find it convenient to represent the states in the unitary representation (µ, λ) of

9The only poles in (B.44) come from the measure factor tanh(πs−B/2).
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SL2 as functions f(φ) on the unit circle obeying the twisted periodicity condition

f(φ+ 2π) = e2πiµf(φ) , (B.46)

with the rule that under a diffeomorphisms V ∈ D̃iff+(S1) of the unit circle, these functions transform

as

(V f)(φ) =
(
∂φV

−1(φ)
)λ
f(V −1 (φ)) . (B.47)

Such a transformation property can be thought of arising from a “µ-twisted λ-form,” namely an

object formally written as f(φ)(dφ)λ. We denote the space of such forms as Fµλ . In infinitesimal

form, a diffeomorphism is described by a vector field v(φ) = vφ(φ)∂φ, which acts on f via the

infinitesimal from of (B.47):

vf = −vφ∂φf − λ(∂φv
φ)f . (B.48)

To see why the space Fµλ is isomorphic with the representation (µ, λ) of SL2, note that (B.48)

implies that the vector fields Lφn = −ieinφ with n = −1, 0, 1 obey the commutation relations

[L±1, L0] = ±L±1 , [L1, L−1] = 2L0 (B.49)

so the transformations (B.48) corresponding to them generate an SL2 subalgebra of D̃iff+(S1). By

comparison with (2.7), we can identify `0 = L0, `+ = L1, `− = L−1 when acting on Fµλ . From

(B.48), we can also determine the action of the quadratic Casimir

Ĉ2f =

(
−L2

0 +
L1L−1 + L−1L1

2

)
f = λ(1− λ)f . (B.50)

This fact, together with e−2πiL0f(φ) = e2π∂φf(φ) = f(φ+ 2π) = e2πiµf(φ) implies that Fµλ should

be identified with the representation (λ, µ) (or with the isomorphic representation (1−λ, µ)) of SL2.

Let us now identify the function corresponding to the basis element |m〉 in the (µ, λ) represen-

tation. This basis element has the property that L0|m〉 = −m|m〉, which becomes i∂φf = −mf , so

it should be proportional to fλ,m = eimφ. (Recall that m ∈ µ+Z for the irrep (µ, λ), so fλ,m obeys
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the twisted periodicity (B.46).) In other words

|m〉 corresponds to cλ,mfλ,m(φ) ≡ 〈φ|m〉 (B.51)

for some constant cλ,m. To determine cλ,m, note that from (B.48), we obtain

Lnfλ,m = −(m+ nλ)fλ,m+n· (B.52)

By comparison with the action (2.27) of the raising and lowering operators on the states |m〉, we

conclude that cm,λ obeys the recursion relation

cλ,m+1 = cλ,m
(λ+m)√

(λ+m)(1− λ+m)
(B.53)

with the solution10

cλ,m =
Γ(λ+m)√

Γ(λ+m)Γ(1− λ+m)
. (B.54)

Note that this expression holds both for the continuous series which we will denote as cλ,m and for

the positive discrete series c+λ,m. For negative discrete series we have instead

c−λ,m−1 = c−λ,m
(m− λ)√

(m− λ)(m− 1 + λ)
, (B.55)

which leads to

c−λ,m =(−1)m−µ
√

Γ(1−m− λ)Γ(λ−m)

Γ(1− λ−m)
(B.56)

for m = −λ,−λ− 1,−λ− 2, . . . .

From these expressions and 〈m|n〉 = δmn, we can infer the inner product on the space Fµλ .

Indeed, any two functions f and g obeying (B.46) can be expanded in Fourier series as

f(φ) =
∑
m

ame
imφ ⇐⇒ am =

1

2π

∫
dφ e−imφf(φ) ,

g(φ) =
∑
m

bme
imφ ⇐⇒ bm =

1

2π

∫
dφ e−imφg(φ) .

(B.57)

10The recursion formula only fixes cλ,m (similarly for c−λ,m in (B.56)) up to an m independent constant that could

depend on λ. Here we have chosen a particular normalization for convenience. The physical observables we compute
are however independent of such normalizations.
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Then we can write

〈f |g〉 =
∑
m,n

a∗mbn
c∗λ,mcλ,n

〈m|n〉 =
∑
m

a∗mbm

|cλ,m|2
. (B.58)

Writing am and bm in terms of f1 and f2 using the Fourier series inversion formula, we obtain

〈f |g〉 =

∫
dφ1 dφ2 f(φ1)∗g(φ2)G(φ1 − φ2) (B.59)

where G(φ) given by

G(φ) =
1

4π2

∑
m

eimφ

|cλ,m|2
. (B.60)

For the continuous series, |cλ,m|2 = 1, and the sum is over m ∈ µ+ Z. We obtain

continuous series: G(φ) =
1

4π2
eiµ(φ1−φ2)D

(
φ1 − φ2

2π

)
, (B.61)

where D(x) =
∑
k∈Z δ(x − k) is a Dirac comb with unit period. For the positive discrete series,

m ∈ λ+ Z+ and µ = λ > 0. We find that (B.60) evaluates to

positive discrete series: G(φ) =
eiλφ2F1(1, 1, 2λ, eiφ)

4π2Γ(2λ)
. (B.62)

To obtain the fusion coefficients, we need to consider tensor products of representations. As a

warm-up, let us consider the tensor product

C 1
2 +is,µ ⊗ C 1

2 +is,−µ (B.63)

and identify the state corresponding to the identity representation. This state is

∑
m∈µ+Z

(−1)m|m〉| −m〉 , (B.64)

and it can be obtained as the unique state invariant under L
(1)
n + L

(2)
n , where the L

(i)
n (with n =

−1, 0, 1 and i = 1, 2) are the SL2 generator acting on the ith factor of the tensor product.

The state (B.64) can also be found in a more indirect way by first constructing the two-variable
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function Y (eiφ1 , eiφ2) representing it. This function obeys the conditions

2∑
i=1

∂φiY (eiφ1 , eiφ2) = 0 ,

2∑
i=1

(
ie±iφi∂φi ∓ λe±iφi

)
Y (eiφ1 , eiφ2) = 0 , (B.65)

(with λ = 1
2 + is) representing the invariance under the SL2 generators, as well as the periodicity

conditions (B.46) in φ1 and φ2 individually. When 0 < φ1 − φ2 < 2π, the solution of the equations

(B.65) is

Y (eiφ1 , eiφ2) = C sin

(
φ1 − φ2

2

)−2λ

(B.66)

for some constant C. Away from this interval, the expression (B.66) should be extended using

the periodicity condition (B.46). The state corresponding to this function is generally of the form∑
m1∈µ+Z

∑
m2∈−µ+Z Cm1,m2

|m1〉|m2〉, with coefficients Cm1,m2
obtained by taking the inner prod-

uct with the basis elements:

Cm1,m2
=

1

4π2

∫
dφ1

∫
dφ2 c

∗
λ,m1

c∗λ,m2
e−im1φ1e−im2φ2Y (eiφ1 , eiφ2) (B.67)

Because Y depends only on φ1 − φ2, the only non-zero Cm1,m2
are those with m1 = −m2. Using

∫ 2π

0

dφ e−imφ
(

sin
φ

2

)−2λ

=
−2e−imπ sin(mπ)Γ(1− 2λ)Γ(λ−m)

Γ(1− λ−m)
, (B.68)

and λ = 1
2 + is, the expression (B.67) with m1 = −m2 = m evaluates to

Cm,−m = e−iπmC
sin(πµ)

2s sin(π(µ− λ)) sinh(2πs)Γ(2is)

√
cos(2πµ) + cosh(2πs)

2
. (B.69)

We see that up to an m-independent constant, Cm,−m ∝ (−1)m, so (B.69) agrees with (B.64).

B.4.1 Clebsch-Gordan coefficients: Cµ1
λ1= 1

2
+is1
⊗D±λ2 → C

µ

λ= 1
2

+is

In [115] a general recipe was outlined for obtaining the “Clebsch-Gordan” coefficients for SL2.11

and, in particular, Ref. [115] constructed the decomposition of the tensor products D+
λ1
⊗ D+

λ2
and

D+
λ1
⊗D−λ2

. Here we follow the same recipe to determine the Clebsch-Gordan coefficients and fusion

coefficients between two continuous series representations and a positive/negative discrete series

11Alternatively, see [224] and [225] for a more mathematical approach.
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representation:

Cµ1

λ1= 1
2 +is1

⊗D±λ2
→ Cµ

λ= 1
2 +is

, (B.70)

with µ = µ1 ± λ. The state |s,m〉 that is part of Cµ
λ= 1

2 +is
in the tensor product (B.70) must take

the form

|s,m〉 =
∑

m2=±(λ+Z+)

C
s1, λ

±
2 , s

m−m2,m2,m|m−m2〉|m2〉 (B.71)

where C
s1, λ

±
2 , s

m−m2,m2,m is the Clebsch-Gordan coefficient and the range of m2 depends on whether it

comes from the positive or negative discrete series.

As in the previous section, we determine C
s1, λ

±
2 , s

m−m2,m2,m in a rather indirect way by first constructing

the functions Ys,m(eiφ1 , eiφ2) that represent the state (B.71). This function can be found using the

conditions that

L0Ys,m = −mYs,m ,(
−L2

0 +
L1L−1 + L−1L1

2

)
Ys,m = λ(1− λ)Ys,m ,

(B.72)

where Ln = L
(1)
n + L

(2)
n and λ = 1

2 + is. Let us first solve these equations for 0 < φ1 < 2π and

0 < φ1 − φ2 < 2π. (The expression for Y can then be continued away from this range using the

appropriate periodicity condition (B.46) in both φ1 and φ2.)

The first equation in (B.72) implies that Ys,m equals eimφ1 times a function of φ1 − φ2. The

second condition gives a second order differential equation for this function of φ1 − φ2 with two

linearly independent solutions

Y −s,m(eiφ1 , eiφ2) = B−s,me
imφ1eiλ2(φ1−φ2)

(
1− ei(φ1−φ2)

)λ−λ1−λ2

× 2F1(λ− λ1 + λ2, λ+m, 1 +m− λ1 + λ2, e
i(φ1−φ2)) .

(B.73)

and

Y +
s,m(eiφ1 , eiφ2) = B+

s,me
imφ2ei(λ2−m)(φ2−φ1)

(
1− ei(φ2−φ1)

)λ−λ1−λ2

× 2F1(λ− λ1 + λ2, λ−m, 1−m− λ1 + λ2, e
i(φ2−φ1)) .

(B.74)

for some constant B±s,m. Both of the solutions are linearly dependent under s → −s, thus from
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now on, we will restrict to s > 0. As suggested by the notation, this specific basis of solutions

correspond precisely to the generating functions for Clebsch-Gordon coefficients for the tensor prod-

uct Cµ1

λ1= 1
2 +is1

⊗ D±λ2
. This is fixed by requiring that Y +

s,m(z, w)w−λ2 and Y −s,m(z, 1/w)w−λ2 to be

holomorphic inside the unit disk |w| < 1, as suggested by the one-side bounded sum in m2 in (B.71),

with m2 = ±(λ2 + Z+) [115].

The dependence of B−s,m on m is fixed by requiring Y −s,m to transform appropriately under the

action of the raising and lowering operators. Explicit computation shows that

L1Y
−
s,m = − (λ+m)(1− λ+m)

1 +m− λ1 + λ2

B−s,m

B−s,m+1

Y −s,m+1 . (B.75)

Comparing with the desired relation L1Y
−
s,m = −

√
(λ+m)(1− λ+m)Y −s,m+1, we obtain the recur-

sion formula

B−s,m+1 =

√
(λ+m)(1− λ+m)

1 +m− λ1 + λ2
B−s,m . (B.76)

Up to an overall constant which we denote by B−s , this recursion is solved by

B−s,m =

√
Γ(λ+m)Γ(1− λ+m)

Γ(1− λ1 + λ2 +m)
B−s . (B.77)

Similarly we can determine B+
s,m by recursion relations

L1Y
+
s,m = −(λ1 − λ2 +m)

B+
s,m

B+
s,m+1

Y +
s,m+1 . (B.78)

to be

B+
s,m =

Γ(λ1 − λ2 +m)√
Γ(λ+m)Γ(1− λ+m)

B+
s . (B.79)

Normalization

We would like to compute the normalization constant N (s) for the inner product of states (B.71),

〈s,m|s′,m′〉 = N (s)δ(s− s′)δmm′ (B.80)
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For this purpose, it is sufficient to consider m = m′, and take the inner product of the functions

representing the LHS of (B.80). Using (B.71), we can write this inner product as

〈s,m|s′,m〉 =
∑
m2

(C
s1, λ

±
2 , s

m−m2,m2,m)∗C
s1, λ

±
2 , s
′

m−m2,m2,m (B.81)

(The answer should be independent of m.) The expected delta functions in (B.80) arise from the

large m2 terms in the sum. Thus, let us compute

C
s1, λ

±
2 , s

m−m2,m2,m = 〈m−m2|〈m2,
± |s,m〉 =

1

c±λ2,m2
eim2φ2

1

2π

∫
dφ1 c

∗
λ1,m−m2

e−i(m−m2)φ1Y ±s,m(eiφ1 , eiφ2)

(B.82)

at large m2.

We first start by considering λ2 in the negative discrete series. After plugging in the expression

for Y and writing φ1 = φ2 + φ, we obtain

C
s1, λ

−
2 , s

m−m2,m2,m = Bs
c∗λ1,m−m2

2πc−λ2,m2

√
Γ(λ+m)Γ(1− λ+m)

Γ(1− λ1 + λ2 +m)

∫ 2π

0

dφ eim2φeiλ2φ
(
1− eiφ

)λ−λ1−λ2

× 2F1(λ− λ1 + λ2, λ+m, 1 +m− λ1 + λ2, e
iφ) .

(B.83)

The large m2 behavior of the φ integral comes from the regions where the integrand is singular or

non-analytic (because the φ integral extracts a Fourier coefficient, and in general, Fourier coefficients

with large momenta come from singularities in position space). In this case, the singularities of the

integrand are at eiφ = 1, where the integrand is approximately

ei(m2+λ2)φ

[
(1− eiφ)λ−λ1−λ2

Γ(1− 2λ)Γ(1 +m− λ1 + λ2)

Γ(1 +m− λ)Γ(1− λ− λ1 + λ2)
+ (λ↔ 1− λ)

]
. (B.84)

The integral
∫ 2π

0
dφ e−ikφ(1− eiφ)α has the same large k asymptotics as the integral

∫ ∞
0

dφ e−ikφ(−i)α |φ|α +

∫ 0

−∞
dφ e−ikφiα |φ|α . (B.85)

Using the formula
∫∞

0
dφφαe−ikφ−εφ = Γ(1+α)

(ε+ik)1+α , the integral in (B.83) gives, approximately at

large m2,

− 2|m2|λ1+λ2−λ−1 sinπ(λ− λ1 − λ2)Γ(λ− λ1 − λ2 + 1)

× Γ(1− 2λ)Γ(1 +m− λ1 + λ2)

Γ(1 +m− λ)Γ(1− λ− λ1 + λ2)
+ (λ↔ 1− λ) .

(B.86)
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The prefactor in (B.83) gives

B−s c
∗
λ1,m−m2

e−iπ(m2+λ2)

2π

√
Γ(λ+m)Γ(1− λ+m)

Γ(1− λ1 + λ2 +m)
|m2|−λ2+ 1

2 (B.87)

In total, we have

lim
m2→−∞

C
s1, λ

−
2 , s

m−m2,m2,m = −
c∗λ1,m−m2

π
B−s e

−iπ(m2+λ2) sinπ(λ− λ1 − λ2)

(
Γ(λ− λ1 − λ2 + 1)

Γ(1− λ− λ1 + λ2)

× Γ(1− 2λ)

√
Γ(λ+m)√

Γ(1− λ+m)
|m2|λ1−λ− 1

2 + (λ↔ 1− λ)

) (B.88)

Thus, the large m2 asymptotics of the product (C
s1, λ

−
2 , s

m−m2,m2,m)∗C
s1, λ

−
2 , s
′

m−m2,m2,m are,

|Bs|2
[
|m2|i(s−s

′)−1

∣∣∣∣ Γ(−2is)

Γ(is1 − is+ λ2)Γ(−is− is1 + λ2)

∣∣∣∣2 +

 s→ −s

s′ → −s′

] , (B.89)

where we kept s 6= s′ only in the power of m2, anticipating that the sum over m2 gives a term

proportional to δ(s− s′). To see why the sum
∑
m2

(m2)−1+iα gives a delta function, note that we

can regularize the sum by taking ε > 0, thus writing
∑
m−1+iα−ε

2 = ζ(1− iα− ε). Close to α = 0,

this becomes i
α+iε → P i

α + πδ(α) as ε→ 0. The P i
α cancels from the final answer. We finally find

Ns1, λ−2 , s =2
∣∣B−s ∣∣2 ∣∣∣∣ Γ(−2is)

Γ(−is± is1 + λ2)

∣∣∣∣2 . (B.90)

Similarly, we compute N+ by focusing on the large m2 limit of (C
s1, λ

+
2 , s

m−m2,m2,m)∗C
s1, λ

+
2 , s

m−m2,m2,m with

C
s1, λ

+
2 , s

m−m2,m2,m = B+
s

c∗λ1,m−m2

2πc+λ2,m2

Γ(λ1 − λ2 +m)√
Γ(λ+m)Γ(1− λ+m)

∫ 2π

0

dφ ei(λ2−m2)φ
(
1− eiφ

)λ−λ1−λ2

× 2F1(λ− λ1 + λ2, λ−m, 1−m− λ1 + λ2, e
iφ) .

(B.91)

We find after similar manipulations that when fixing λ2 to be in the positive discrete series,

Ns1, λ+
2 , s

=2
∣∣B+

s

∣∣2 ∣∣∣∣ Γ(−2is)

Γ(−is± is1 + λ2)

sin(π(µ1 + λ2 + λ))

sin(π(µ1 + λ1))

∣∣∣∣2 . (B.92)

Clebsch-Gordan coefficients in the µ1 → i∞ limit

In order to compute the expectation of Wilson lines value once fixing the the value of φR = −i along

the boundary we are interested in analytically continuing the product of Clebsch-Gordan coefficients
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for imaginary values of µ1. Specifically, we would like to compute

I
s1, λ

±
2 , s

m−m2,m2,m ≡ (Ns1, λ±2 , s)
−1C

s1, λ
±
2 , s

m−m2,m2,m(C
s1, λ

±
2 , s

m−m2,m2,m)∗ (B.93)

in the limit µ1 → i∞, with m−m2 = µ1 + Z. Note that in the above expression we will first take

conjugate, and then take the limit µ1 → i∞.

We start with (B.83) and (B.91) and use

lim
x→∞ 2F1(a, b+ x, c+ x, z) = (1− z)−a , (B.94)

which holds away from z = 1. In this limit the Clebsch-Gordan coefficients become

C
s1, λ

−
2 , s

m−m2,m2,m ∼ B
−
s

c∗λ1,m−m2

2πc−λ2,m2

√
Γ(λ+m)Γ(1− λ+m)

Γ(1− λ1 + λ2 +m)

∫ 2π

0

dφ eim2φeiλ2φ
(
1− eiφ

)−2λ2
,

(C
s1, λ

−
2 , s

m−m2,m2,m)∗ ∼ (B−s )∗
cλ1,m−m2

2π(c−λ2,m2
)∗

√
Γ(λ+m)Γ(1− λ+m)

Γ(λ1 + λ2 +m)

∫ 2π

0

dφ e−im2φe−iλ2φ
(
1− e−iφ

)−2λ2
,

(B.95)

Now using

∫ 2π

0

dφ eiaφ
(
1− eiφ

)b
=
i(1− e2πia)Γ(a)Γ(b+ 1)

Γ(1 + a+ b)
=

2πeπiaΓ(b+ 1)

Γ(1− a)Γ(1 + a+ b)
, (B.96)

valid by analytic continuation in b, and

lim
z→∞,z /∈R−

Γ(z) ∼ e−zzz
√

2π

z
(1 +O(1/z)) , (B.97)

we have that in the limit µ1 → i∞, and consequently in the limit m→ i∞,

C
s1, λ

−
2 , s

m−m2,m2,m ∼
B−s
c−λ2,m2

m−λ2eπi(m2+λ2) Γ(1− 2λ2)

Γ(1− λ2 ±m2)
,

(C
s1, λ

−
2 , s

m−m2,m2,m)∗ ∼ (B−s )∗

(c−λ2,m2
)∗
m−λ2eπi(m2+λ2) Γ(1− 2λ2)

Γ(1− λ2 ±m2)
.

(B.98)

Putting this together, we obtain

I
s1, λ

−
2 , s

m−m2,m2,m ∼= µ−2λ2
1

Γ(1−m2 − λ2)

Γ(λ2 −m2)

Γ(1− 2λ2)2

Γ(1− λ2 ±m2)2
I

= µ−2λ2
1 (−1)m2+λ2

Γ(1− 2λ2)

Γ(2λ2)Γ(1− λ2 ±m2)
I ,

(B.99)
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with

I =
1

2

∣∣∣∣Γ(−is± is1 + λ2)

Γ(−2is)

∣∣∣∣2 =
s sinh(2πs)

π
Γ(±is± is1 + λ2) . (B.100)

Similarly we have in this limit

C
s1, λ

+
2 , s

m−m2,m2,m ∼ B
+
s

c∗λ1,m−m2

2πcλ2,m2

Γ(λ1 − λ2 +m)√
Γ(λ+m)Γ(1− λ+m)

∫ 2π

0

dφ ei(λ2−m2)φ
(
1− eiφ

)−2λ2
,

(B.101)

which, together with the conjugate relation, yields in the limit µ1 → i∞ and m−m2 → i∞,

C
s1, λ

+
2 , s

m−m2,m2,m ∼
B+
s

cλ2,m2

m−λ2eπi(m2−λ2) Γ(1− 2λ2)

Γ(1− λ2 ±m2)

(C
s1, λ

+
2 , s

m−m2,m2,m)∗ ∼ (B+
s )∗

c∗λ2,m2

m−λ2eπi(m2−λ2) Γ(1− 2λ2)

Γ(1− λ2 ±m2)
,

(B.102)

and

I
s1, λ

+
2 , s

m−m2,m2,m ∼µ
−2λ2
1

Γ(m2 + 1− λ2)

Γ(m2 + λ2)

Γ(1− 2λ2)2

Γ(1− λ2 ±m2)2
I

=µ−2λ2
1 (−1)m2−λ2

Γ(1− 2λ2)

Γ(2λ2)Γ(1− λ2 ±m2)
I ,

(B.103)

which is identical to I
s1, λ

−
2 , s

m+m2,−m2,m.

B.4.2 Fusion coefficient as µ→ i∞

We are interested in generalizing the simple Clebsch-Gordan decomposition of the product of matrix

element for some group element g (given by UmR1, n
(g)Um

′

R1, n′
(g)) for compact groups, to the case of

SL2. To do this we start by inserting two complete set of states to re-express the product of two

SL2 matrix elements

Um1

(λ1= 1
2 +is1, µ1), n1

(g)Um2

λ±2 , n2
(g) = 〈(λ1, µ1),m1;λ±2 ,m2|g|(λ1, µ1), n1;λ±2 , n2〉 =

=

∫
ds

Ns1, λ±2 , s
ds′

Ns1, λ±2 , s′
〈(λ1, µ1),m1;λ±2 ,m2|(λ, µ1 ± λ2),m1 +m2〉

× 〈(λ1, µ1), n1;λ±2 , n2|(λ′, µ1 ± λ2), n1 + n2〉∗〈λ,m1 +m2|g|λ′, n1 + n2〉

+ discrete series contributions . (B.104)
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Thus, the product of two matrix elements is given by

Um1

(λ1= 1
2 +is1, µ1), n1

(g)Um2

λ2, n2
(g) =

∫
ds

Ns1, λ+
2 , s

C
s1,λ

±
2 ,s

m1,m2,m1+m2
(C

s1,λ
±
2 ,s

n1,n2,n1+n2
)∗ Um1+m2

(λ= 1
2 +is,µ+λ2), n1+n2

(g)

+ discrete series contributions . (B.105)

In the limit µ1 → i∞ we are interested in computing the fusion between the regular character

χ(s1,µ1)(g) and the truncated character χλ±2
(g) defined in (2.55). Thus, the product of characters is

given by

χ(s1,µ1)(g)χλ±2
(g) =

∫
ds

(
Ξ∑
k=0

Is1, λ2, s

µ1+k̃,±(λ2+k), µ1+k̃±(λ2+k)

)
χ(s,µ1+λ2)(g)

+ discrete series contributions , (B.106)

where we identify m1 = µ1 + k̃ and m2 = ±(λ2 + k) with k̃ ∈ Z and k ∈ Z+. We note that the

sum over k yields a result that is independent of k̃, therefore leading to the separation of the sums

in (B.105). Alternatively, the results above can be recasted as the group integral of three matrix

elements given by

∫
dg Um1

(is1, µ1), n1
(g)Um2

λ2, n2
(g)Un1+n2

(s,µ1+λ2),m1+m2
(hg−1)

=
C
s1,λ

±
2 ,s

m1,m2,m1+m2
(C

s1,λ
±
2 ,s

n1,n2,n1+n2
)∗Un+n′

(λ= 1
2 +is,µ+λ2),m+m′

(h)

ρ(s, µ+ λ2)Ns1, λ+
2 , s

, (B.107)

where ρ(s, µ + l2) is the SL2 Plancherel measure in (B.38), and where we note that the product

ρ(s, µ+λ2)Ns1, λ+
2 , s

is symmetric under the exchange of s1 and s. Consequently, the product of two

regular continuous series characters and a regularized discrete series character is given by

∫
dg χ(s1, µ1)(g)χλ±2

(g)χ(s,µ1+λ2)(hg
−1) =

χ(s,µ1+λ2)(h)

ρ(s, µ1 + λ2)

∑
m1−m2

I
s1,λ

±
2 ,s

m1,m2,m1+m2
. (B.108)

Using Eq. (B.99) and (B.103) we thus find that by taking the µ1 → i∞ limit and truncating the

sum over m1 −m2,

lim
µ1→i∞

∫
dg χ(s1, µ1)(g)‘χλ±2

(g)χ(λ= 1
2 +is,µ1+λ2)(hg

−1) =
Nλ±2

Ns
s1,λ

±
2

ρ(s, µ1 + λ2)
χ(s,µ1+λ2)(h) , (B.109)
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where we define the fusion coefficient Ns1,λ1
s in the µ1 → i∞ limit,

Ns
s1,λ

±
2
≡ |Γ(λ2 + is1 − is)Γ(λ2 + is1 + is)|2

Γ(2λ2)
, (B.110)

up to a λ±2 dependent normalization constant,

Nλ±2
=

Ξ∑
k=0

µ−2λ2
1 (−1)k

Γ(1− 2λ2)

Γ(1 + k)Γ(1− k − 2λ2)
=

(−1)Ξµ−2λ2
1 Γ(−2λ2)

Ξ!Γ(−Ξ− 2λ2)
, (B.111)

As we take the cut-off, Ξ→∞, the normalization constant becomes

Nλ±2
=
µ−2λ2

1 Ξ2λ2

Γ(1 + 2λ2)
(B.112)

Using the fusion coefficient, together with the normalization factor, we compute the expectation

value of the Wilson lines in Section 2.4.

B.4.3 6-j symbols

To obtain the OTO-correlator in Section 2.4.4 we need to consider the integral of six characters in

(2.65),

∫
dh1dh2dh3dh4 χs1(h1h

−1
2 )χs2(h2h

−1
3 s)χs3(h3h

−1
4 )χs4(gh4h

−1
1 )χλ±1

(h1h
−1
3 )χλ±2

(h2h
−1
4 ) =

=

∫
dh1dh2dh3dh4

∑
mi,ni,qi,m̃i

Um1
s1,n1

(h1)Un1
s1,m1

(h−1
2 )Um2

s2,n2
(h2)Un2

s2,m2
(h−1

3 )Um3
s3,n3

(h3)

× Un3
s3,m3

(h−1
4 )Um4

s4,n4
(g)Un4

s4,q4(h4)Uq4s4,m4
(h−1

1 )U m̃1

λ±1 ,ñ1
(h1)U ñ1

λ±1 ,m̃1
(h−1

3 )U m̃2

λ±2 ,ñ2
(h2)U ñ2

λ±2 ,m̃2
(h4) ,

(B.113)

where, for the case of interest in Section 2.4.4, s1, s2, s3, and s4 label continuous series representa-

tions, and λ±1 and λ±2 label representations in the positive/negative discrete series. As in the case of

computing the time-ordered correlators of the Wilson lines we first consider the result when µ1 ∈ R

and only afterwards analytically continue the final result to µ1 → i∞.

The sums over m̃1 and ñ1, as well as that over m̃2 and ñ2 are truncated according to the

regularization prescription for the characters associated to the Wilson lines. Evaluating the integrals
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we find

∑
mi,ni,m̃i,ñi,q4

Um4
s4,q4(g)

C
s1,λ

±
1 ,s4

m1, m̃1,m4
(C

s1,λ
±
1 ,s4

n1, ñ1, q4
)∗

ρ(s4, µ4)Ns1, λ±1 , s4

C
s2,λ

±
2 ,s1

m1, m̃2,m1
(C

s2,λ
±
2 ,s1

n2, ñ1, n1
)∗

ρ(s1, µ1)Ns2, λ±2 , s1

×
C
s3,λ

±
1 ,s2

m3, m̃1,m2
(C

s3,λ
±
1 ,s2

n3, ñ1, n2
)∗

ρ(s2, µ2)Ns3, λ±1 , s2

C
s4,λ

±
2 ,s3

n4, ñ2,m3
(C

s4,λ
±
2 ,s3

q4, m̃2, n3
)∗

ρ(s3, µ3)Ns4, λ±2 , s3
, (B.114)

Performing the sums over the n1, n2, n3, ñ1 and ñ2 states we obtain the 6-j symbol associated to

the six representations s1, s2, s3, s4, λ
±
1 , and λ±2 . Furthermore, the sum also imposes the constraint

m4 = q4. The remaining sum over four Clebsch-Gordan coefficient yields the square root for the

factor present in (B.109). Specifically, we obtain that (B.114) equals

Nλ±1
Nλ±2

χs4(g)
√
Ns4

λ±1 ,s1
Ns3

λ±1 ,s2
Ns3

λ±2 ,s1
Ns4

λ±2 ,s2
Rs3s4

[
s2
s1

λ2

λ1

]
. (B.115)

The 6-j symbol for SL2 is given by [131]

Rs3s4

[
s2
s1

λ2

λ1

]
= W(s3, s4;λ1 + is2, λ1 − is2, λ2 − is1, λ2 + is1) (B.116)

×
√

Γ(λ2 ± is1 ± is3)Γ(λ1 ± is2 ± is3)Γ(λ1 ± is1 ± is4)Γ(λ2 ± is2 ± is4) ,

where the Wilson function W(sa, sb;λ1 + is2, λ1 − is2, λ2 − is1, λ2 + is1) is given by [130]

W(α, β, a, b, c, d) ≡
Γ(d− a)4F3

[
a+iβ
a+b

a−iβ
a+c

a−iβ
a+c

ã+iα
1+a−d

ã−iα; 1
]

Γ(a+ b)Γ(a+ c)Γ(d± iβ)Γ(d̃± iα)
+ (a↔ d) , (B.117)

with ã = (a + b + c − d)/2 and d̃ = (b + c + d − a)/2. The normalization for the 6-j symbol in

(B.116) is obtained by imposing the orthogonality relation (2.73) using the orthogonality properties

of the Wilson function [130, 131]. Such an orthogonality condition on the 6-j symbol follows from

its definition in terms of a sum of Clebsch-Gordan coefficients as that shown in (B.114).

Firstly we note that the result is the same when considering λ1 or λ2 in the positive or negative

discrete series. Furthermore, since the result is explicitly independent of µ1, µ2, µ3 and µ4 one can

easily perform the analytic continuation to µ1, µ2, µ3, µ4 → i∞ as required by our boundary condi-

tions on the field φR. Putting this together with the analytic continuation of the fusion coefficients

presented in the previous sub-section we find the final results from Section 2.4.
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B.5 Wilson lines as probe particles in JT gravity

As mentioned in Section 2.4, the insertion of a Wilson loop in 3D Chern-Simons theory with gauge

algebra so(2, 2) (or an isomorphic algebra) can be interpreted as the effective action of a massive

probe in AdS3 (or other spaces with an isomorphic symmetry algebra) [8, 123, 124, 125, 126, 127].

In this Appendix we extend this interpretation to 2D. Specifically, we outline the proof of the

equivalence, as stated in section 2.4.1, between the boundary-anchored Wilson line observables

Wλ(Cτ1τ2) in the G = GB BF theory formulation, and the boundary-to-boundary propagator of a

massive particle in the metric formulation of JT gravity. The latter is given by the functional integral

over all paths x(s) diffeomorphic to the curve Cτ1τ2 weighted with the standard point particle action

(here ẋµ = dxµ

ds )

S[x, gµν ] = m

∫
Cτ1τ2

ds
√
gµν ẋµẋν . (B.118)

Concretely, we would like to demonstrate that

Ŵλ,k=0(Cτ1τ2) = Tr λ,k=0

(
P exp

∫
Cτ1τ2

A
)
∼=

∫
paths∼Cτ1τ2

[dx] e−S[x,gµν ], (B.119)

where the mass of the particle is determined by the GB representation (λ, k = −2πλ/B) as m2 =

λ(λ − 1) = −C2(λ).12 From now on we assume |λ| > 1 in order for m2 > 0. In the equation

above, we have taken the limit B →∞ thus set k = 0. Consequently the Wilson line Ŵλ,k=0(Cτ1τ2)

only couples to the sl(2,R)-components of the GB gauge field. In the rest of this Appendix, we will

implicitly assume that A take values in sl(2,R). For notation convenience, we will refer to these

Wilson lines as Ŵλ(Cτ1τ2) from now on.13

The congruence symbol ∼= in (B.119) indicates that we want to prove an operator equivalence

inside the functional integral of JT gravity. Indeed, the right-hand side of (B.119) depends only

on the diffeomorphism class of the path Cτ1τ2 , whereas the Wilson line operator Ŵλ(Cτ1τ2) on the

left-hand side follows some given path. So in writing (B.119), we implicitly assume that Ŵλ(Cτ1τ2)

is evaluated inside the functional integral of a diffeomorphism invariant BF gauge theory.

To start proving (B.119), following [226, 227], we rewrite the Wilson line Ŵλ(Cτ1τ2) around a

given space-time contour Cτ1τ2 , parametrized by an auxiliary variable s, as a functional integral over

12For notational simplicity, we take all Wilson lines to be in the positive discrete series representations in this
section. We also emphasize that the Wilson line in the representation (λ, k) is a defect operator (external probe),
thus k is not constrained to be k0.

13Equivalently, one can think of the boundary-anchored Wilson lines Ŵλ(Cτ1τ2 ) as PSL(2,R) Wilson lines in the
discrete series representation λ (projective for λ /∈ Z) of PSL(2,R).
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paths g(s) ∈ PSL(2,R) via 14

Tr λ

(
P exp

∮
Cτ1τ2

A

)
=

∫
Cτ1τ2

[dg]ααα e
−Sααα[g,A] (B.120)

where Sααα[g,A] denotes the (first order) coadjoint orbit action of the representation λ, coupled to a

background sl(2,R) gauge field As(s) ≡ Aµ(x(s))ẋµ(s)

Sααα[g,A] =

∫
Cτ1τ2

dsTr
(
ααα g−1DAg

)
=

∫
Cτ1τ2

ds
(
Tr (ααα g−1∂sg)− Tr (Asgαααg

−1)
)
. (B.121)

Here ααα = αiP
i ∈ sl(2,R) denotes some fixed Lie algebra element with specified length squared equal

to the second Casimir

Tr (ααα2) = −C2(λ) = −λ(λ− 1) (B.122)

The classical phase space in (B.121) is over the (co)adjoint orbit of the Lie algebra element ααα

Oααα ≡ {gαααg−1|g ∈ PSL(2,R)} (B.123)

Consequently the path integral is over maps from Cτ1τ2 → Oααα which can be equivalently described

by their lift g : Cτ1τ2 → PSL(2,R) up to an identification due to local right group action by the

stabilizer of ααα on g. This is the meaning of path integral measure [dg]ααα in (B.120).

Let us briefly recall why equation (B.120) holds. Expanding g around a base-point, with g =

ex
a(s)Pag(s0), we find from (B.121) that the canonical momenta associated to xa(s) are give by

πxi = Tr (P igαααg−1), (B.124)

which are in fact the generators of the PSL(2,R) symmetry which acts by left multiplication on g,

as g → Ug. The Casimir associated to sl(2,R) component of GB is given by Ĉ
sl(2,R)
2 = −ηijπxiπxj =

−Tr (ααα2). The Hilbert space of the theory is spanned by functions on the group GB which are

invariant under right group actions that stabilize ααα. The Hilbert space of the quantum mechanics

model on Oααα thus forms an irreducible (projective) PSL(2,R) representation λ. Since the functional

integral around a closed path g(s) ∈ PSL(2,R) amounts to taking the trace over the Hilbert space,

14Note that coadjoint orbits of a connected semisimple Lie group are identical with those of the universal cover
groups, as evident from the definition (B.123) for the PSL(2,R) case and its coverings.

228



we arrive at the identity (B.120).15

Since the identity (B.120) holds for any choice of Lie algebra element ααα with length squared

given by (B.122), we are free to include in the definition of Wλ(Cτ1τ2) a functional integral over all

Lie algebra elements of the form

ααα(s) = αa(s)P a = α1(s)P 1 + α2(s)P 2 (B.125)

subject to the constraint (B.122). This leads to the identity (up to an overall factor that does not

depend on A)

Ŵλ(Cτ1τ2) ∼
∫

[dα1,2dgdΘ] e−Sααα[g,Θ,A] (B.126)

with

Sααα[g,Θ, A] =

∮
Cτ1τ2

ds
(
Tr
(
ααα g−1DAg

)
+ iΘ(ηabαaαb −m2)

)
. (B.127)

Here m2 = λ(λ− 1) and Θ denotes a Lagrange multiplier that enforces the constraint (B.122). This

already looks closely analogous to the world line action of a point particle of mass m.

So far we have considered a general background gauge field A in the bulk. In the context in which

we make A dynamical and perform the path integral in the BF-theory in the presence of a defect

(2.3), the path integral (after integrating out the adjoint scalar φ) localizes to configurations of flat

A, away from the defect. Similarly, on the JT gravity side (in the metric formulation), integrating

out the dilaton φ forces the ambient metric on the disk to be that of AdS2. Thus for the purpose of

proving (B.119), we can take A to be flat on the BF theory side, and the metric to be AdS2 on the

JT gravity side.

The action (B.127) is invariant under gauge transformations U(s) for which g → U(s)g, together

with the corresponding gauge transformation of A which leaves the connection flat. Note however

the gauge transformation mixes the components of A associated to the frames and spin connection.

We can always (partially) gauge fix by setting g = 1 by choosing U(s) = g−1(s) along the curve

Cτ1τ2 and smoothly extending this gauge transformation onto the entire disk.16 After such a gauge

15This is because we are considering a boundary condition with Aτ = 0. Consequently, the boundary-anchored
Wilson line has the same expectation value as a Wilson loop that touches the boundary.

16There’s no obstruction for such extensions since GB is simply connected.
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fixing, the action (B.127) simply becomes,

S1[x, k, λ, gµν ] ≡
∫
Cτ1τ2

ds(kµẋ
µ + iΘ(gµνkµkν −m2)) (B.128)

=

∫
Cτ1τ2

ds
(
ηabα

aẽbµ ẋ
µ + iΘ(ηabαaαb −m2)

)
,

where gµν = ηabe
a
µe
b
ν is the AdS2 metric associated to the background flat connection A and kµ ≡

αae
a
µ. The action (B.128) agrees with the first order action for a particle moving on the world-line

Cτ1τ2 . To finish the proof, we need to show that the path integral over flat A in the BF theory

reproduces the integral over paths diffeomorphic to Cτ1τ2 for the particle in the JT gravity.

As mentioned in Section 1.4.1, space-time diffeomorphisms can be identified with field dependent

gauge transformations in the BF theory when the gauge field is flat

δdiff
ξ = δgauge

ε , (B.129)

where the the vector field ξµ(x) generating the diffeomorphism transformation and the infinitesimal

gauge transformation parameter εa(x) (vanish on the boundary) are related by

εa(x) = eaµ(x)ξµ(x) , ε0(x) = ωµ(x)ξµ(x) . (B.130)

Since flat connections A are generated by gauge transformations, the equivalence (B.129) acting on

ẽbµ implies that,

∫
Cτ1τ2

ds
(
ηabα

a(ẽbµ)ε ẋ
µ + iΘ(ηabαaαb −m2)

)
=

∫
Cξτ1τ2

ds
(
ηabα

aẽbµ ẋ
µ + iΘ(ηabαaαb −m2)

)
where (ẽbµ)ε denotes the finite gauge transformation of ẽbµ generated by ε, and Cξτ1τ2 denotes a path

diffeomorphic to Cτ1τ2 generated by displacement vector field ξ. Consequently integrating over flat

connections A of the BF theory in the presence of the Wilson line insertion is equivalent to integrating

over all paths diffeomorphic to the curve Cτ1τ2 , which precisely gives the first order form of (B.118)

that describes a particle propagating between boundary points in AdS2.17

Alternatively, to get the second order formulation for the world-line action we can directly perform

the Gaussian integration over αa in (B.127) and then integrate out the Lagrange multipler Θ. The

17Note that in the world-line action (B.128), the fields (xν , kµ(x)) take values in the co-tangent bundle T ∗Σ. The
path integration measure is the natural one induced by the symplectic structure of T ∗Σ.
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world-line path integral (B.126) becomes (up to an A independent factor),

Ŵλ(Cτ1τ2) ∼
∫

[dg] e−S2[g,A] , (B.131)

where the action S2[g,A] is specified by

S2[g,A] = m

∫
Cτ1τ2

ds
√
ηab(g−1DAg)a(g−1DAg)b . (B.132)

Due to the integration over g(s), this is a gauge invariant observable as expected. Note that while

(B.132) is exact on-shell in order for the path-integral (B.131) to agree with (B.120) one has to

appropriately modify the measure [dg] in (B.131).

Once again performing the gauge transformation with U(s) = g−1(s) along the curve Cτ1τ2 to

gauge fix g(s) = 1 and smoothly extending the gauge transformation onto the entire disk, the action

(B.132) simply becomes,

S2[g,A] = m

∫
Cτ1τ2

ds
√
ηabeaαe

b
β ẋ

αẋβ = m

∫
Cτ1τ2

ds
√
gαβ ẋαẋβ , (B.133)

which agrees with the 2nd order action (B.118) for a particle moving on the world-line Cτ1τ2 . Follow-

ing the same reasoning as before, the gauge transformation can be mapped to a diffeomorphism, and

integrating over flat connections in the BF theory path integral with the Wilson line insertion, is once

again equivalent to integrating over all paths diffeomorphic to the curve Cτ1τ2 . Using this, we finally

arrive at the desired equality between the Wilson line observable and the worldline representation

of the boundary-to-boundary propagator given by (B.119).18

18As usual in AdS/CFT, the worldline observable (boundary-to-boundary propagator) requires appropriate regu-
larization and renormalization due to the infinite proper length near the boundary of AdS2. Here in the gauge theory
description, we also require a proper renormalization of the boundary-anchored Wilson line to remove the divergence
due to the infinite dimensional representation carried by the Wilson line (see (2.55)). It would be interesting to
understand the precise relation between the two renormalization schemes.
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Appendix C

Gravitational interpretation of the

SO(3) gauge fields for

near-extremal black holes

C.1 The Kerr-Newman solution

When reducing the Einstein action in four dimensions to two dimensions a SO(3) gauge field emerges

from the symmetries of the transverse sphere S2. We denoted the charges associated to this field

by J . In this appendix we will explicitly check that two dimensional solutions with charge J can

be uplifted to KN solution in four dimensions. In the approximation where all SO(3) charged fields

can be neglected, the angular momentum J on the black hole is directly related to the value of the

SO(3) field strength given by the SO(3) Casimir [89].

The KN solution in AdS4 with radius L is given by

(dsKN )2 =
ρ2∆r̃∆θ

Σ
dτ̃2 +

ρ2

∆r̃
dr̃2 +

ρ2

∆θ̃

dθ̃2 + sin2 θ̃
Σ

ρ2Ξ2
(dφ̃+ Bτ̃ dt̃)2, (C.1)

where the mass, angular momentum and charge are parametrized as

M =
m

GNΞ2
, J =

ma

GNΞ2
, Q =

q

Ξ
, Ξ ≡ 1− a2

L2
, (C.2)
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and the functions appearing in the metric are

ρ2 = r̃2 + a2 cos2 θ̃ , ∆r̃ = (r̃2 + a2)

(
1 +

r̃2

L2

)
− 2mr̃ + q2 , ∆θ̃ = 1− a2

L2
cos2 θ̃ ,

Σ = (r̃2 + a2)2∆θ̃ − a
2∆r̃ sin2 θ̃ , Bτ̃ = i

aΞ[(a2 + r̃2)∆θ̃ −∆r̃]

Σ
. (C.3)

For small a the relation between the angular momentum is given (to first order) by J = Ma. At

small a the metric (C.1) can be seen as a deformation of the RN solution from (5.3) in which one

turns on a non-trivial profile for the SO(3) gauge field with

δgµνdx
µdxν =

2Bτ̃Σ sin2 θ̃

ρ2Ξ2
dφ̃dτ̃ = 2ia sin2 θ̃(1− f(r̃))dφdτ̃ , (C.4)

where f(r̃) is the function appearing in equation (5.3).

As we will show the deformation in (C.4) does not precisely match with the solution for the

SO(3) gauge fields inserted into the dimensional reduction ansatz (5.15). Nevertheless, as we will

explain in the next subsection, the perturbed solution for the KN metric gKNµν = gRNµν + δgµν will

turn to be equivalent, up to diffeomorphisms, with the solution for the SO(3) gauge fields inserted

into the dimensional reduction ansatz.

Thus, to first order at small J (or equivalently in small a), the partition function is well approx-

imated by considering the quantization of the SO(3) gauge field coupled to the standard RN metric

given in each sector with fixed Q. In the next subsections we further show that this approximation

is valid by studying the solutions to the equations of motion for the SO(3) gauge field. Furthermore,

we show that the average value of angular momentum contributing to the grand canonical partition

function does not strongly backreact on the metric (i.e. its contribution is much smaller than that

of the U(1) charge).

C.2 Classical SO(3) gauge field configurations

In order to compare the perturbed RN solution to the ansatz for the dimensional reduction (5.15)

we need to solve the equations of motion for the 2d SO(3) gauge fields whose contribution to the

action is given by (5.22),

I
SO(3)
EM = − 1

12GNr0

∫
M4

√
gχ5/2Tr(HµνH

µν) . (C.5)

233



We first start with the case in which we fix the boundary holonomy of the SO(3) gauge fields

(which corresponds to fixing the boundary metric on ∂M4) rather than the overall charge of the

system.1 For practical purposes, it proves convenient to choose the boundary component of the gauge

field to be constant with B|∂M2
= i

µSO(3)

β T 3dτ such that the holonomy is given by exp(
∮
∂M2

B) =

exp(iµSO(3)σ
3) with µSO(3) ∈ [0, 2π) (according to our conventions T a = 1

2σ
a with σ the Pauli

matrices).

We can find the solution in the gauge in which Br = 0 and make the ansatz that B =

i
µSO(3)T

3

β ξ(r)dτ for some function ξ(r) satisfying ξ(r∂M2
) = 1. Then, the field strength is H =

i
µSO(3)T

3

β ∂rξ(r)dr ∧ dτ and the equation of motion d∗H = 0 implies that
[
ξ′(r)/

√
gχ−5/2

]′
= 0.

Using the solution χ(r) = r2, this implies that

ξ(r) = α1 +
α2

r3
, Hrτ = −iµSO(3)

β

3α2

r4
T 3

δgSO(3)
µν dxµdxν = 2r2i sin2(θ)

µSO(3)

β

(
α1 +

α2

r3

)
dτdφ . (C.6)

Demanding that the gauge field has unit holonomy around the point with r = r0 imposes that

µSO(3)

(
α1 + α2/r

3
0

)
= 2πn with n ∈ Z. Furthermore imposing that ξ(r|∂M2) = 1 implies that

α1 = 1, and, consequently, α2 = r3
0

(
2πn
µSO(3)

− 1
)
. Consequently, we have that

Bτ =
iT 3

β

[
µSO(3) +

r3
0

r3
(2πn− µSO(3))

]
δgSO(3)
µν dxµdxν = 2ir2 sin2(θ)

β

[
µSO(3) +

r3
0

r3
(2πn− µSO(3))

]
dτdφ . (C.7)

Gauge field configurations with different n correspond to different instanton configurations for the

SO(3) gauge field and different metric solutions, all obeying the same boundary condition on ∂M2.

As a consistency check, when adding the metric defomation in (C.6) to the RN metric as in

the ansatz (5.15) Einstein’s field equations are still satisfied to first order in an expansion in 1/β,

meaning that the action (5.22) resulting from the dimensional reduction is correct. The total action

(C.6) evaluates to

H3
rτ = −i 1

β

3r3
0

r4
(2πn− µSO(3)) ,

I
SO(3)
EM =

1

6GN

∫ β

0

dτ

∫ ∞
r0

dr
9r6

0

β2r4
(2πn− µSO(3))

2 =
2r3

0(2πn− µSO(3))
2

GNβ
(C.8)

1We thank Silviu Pufu and Yifan Wang for sharing notes during a past project about instanton solutions in 2d
SO(3) Yang-Mills theory.
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in each instanton sector. To make contact with the effective action in each j sector in the sum over

SO(3) representations we can evaluate the sum over j for the contribution of each representation to

the partition function (5.25) for the on-shell solution χ(r) = r2:

Z
SO(3)
RN =

∑
j≥0

(2j + 1)χj(µSO(3))e
−GNβ

2r30
j(j+1)

= − e
GNβ

8r30

4 sinµSO(3)

ϑ′3

(
ζ/2, e

−GNβ
8r30

)
=
∑
n∈Z

2
√
π(µSO(3) − 2πn)(

GNβ
2r3

0

)3/2
sin(µSO(3) − 2πn)

e
− 2r30
GNβ

(µSO(3)−2πn)2

, (C.9)

where ϑ′3(u, q) is the derivative with respect to u of ϑ3(u, q) and where to obtain the final equation

we have used the expansion in terms GNβ
r3
0

. Consequently, we find that the sum over instanton saddle

in the partition function (C.8) precisely agrees with the sum over SO(3) representations appearing

in the partition function associated to the action (5.25).2

To find the relation between the SO(3) representation j and the angular momentum it proves

convenient to also analyze the classical solutions in the case in which we fix the field strength at the

boundary (or equivalently the Lagrange multiplier zero-form φSO(3)). In this case, we will fix gauge

such that Hrτdr ∧ dτ |∂M2
= i
√
gσ3

3GNr0√
2χ5/2

j|∂M2
= i 3GNσ3j√

2r4
|∂M2

, for some constant j. The resulting

gauge field, field strength and 4d metric perturbation is given by

Bτ = iT 3

(√
2GN j

r3
h

+
2πn

β
−
√

2GN j

r3

)
, Hrτ = i

3GNσ3j√
2r4

,

δgSO(3)
µν dxµdxν = 4ir2 sin2(θ)

[
GN j√

2r3
0

+
2πn

β
− GN j√

2r3

]
dτdφ , (C.10)

where we have fixed gauge such that Br = 0 and have once again obtained the first r-independent

term in Bτ by requiring unit holonomy around the point with r = rh (i.e. nowhere is H singular).

Next we determine the contribution of the SO(3) gauge field to the action. As for the U(1) gauge

field (5.2), in order for to have a well defined variational principle we need to add a boundary term

to the action: I
SO(3),N
EM = I

SO(3)
EM + 1

12GNr0

∫
du
√
g nµTrHµνBν . Accounting for this boundary term

we find that the

I
SO(3),N
EM =

1

6

∫ β

0

dτ

∫ ∞
r0

dr
GN j

2

r4
−
∫ β

0

dτ

(
GN j

3r3
0

+
2πn

β

)
j ∼ GNβj

2

r3
0

+ 2πnj . (C.11)

We need to be careful about the n-dependent term appearing in the final result in (C.11). If the

2The prefator in front of the exponent in (C.9) can in fact be obtained by computing the one-loop correction to
each instanton saddle. The fact that the one loop expansion recovers the complete result is related to the fact that
the path integral in 2d Yang-Mills theory can be obtained using localization techniques.

235



solutions (C.11) are gauge inequivalent then, in order to obtain the partition function, we truly

have to sum over all different instanton solutions; since the sum over n is unbounded, the partition

function would be ill defined. Consequently, the only possibility is that the gauge field solutions in

(C.10) are in fact all gauge equivalent. This can only happen if the holonomies around any closed

curve on M2 are the same for all solutions. This, in turn, implies that j ∈ Z and we can fix gauge

transformations on the boundary in such a way that we only get contributions from the solution

with n = 0.

Consequently, there is a unique SO(3) gauge field solution for which the action is given by

I
SO(3),N
EM = GNβj

2

r3
0

. For sufficiently large j � 1, this agrees with terms in the exponent in the sum

over j (C.9). Since the r-dependence of the gauge field in (C.10) is the same as that in (C.7) we can

once again check that when j is sufficiently small that it does not backreact on f(r),3 then Einstein’s

equations are indeed satisfied for the 4d metric ansatz when using the solution (C.10).

C.3 Uplift of the SO(3) solution

In this section we will take the solution for the SO(3) gauge field and show that it can be understood

as a solution of the higher dimensional metric for small angular momentum. The KN solution is the

unique solution with fixed U(1) charge and angular momentum that also has a U(1) spatial isometry

[228, 229]. Therefore, by finding the angular momentum for the solutions analyzed in C.3 in which

we either fix the SO(3) holonomy or the SO(3) field strength we will determine the diffeomorphic

equivalent KN solution.

We saw above a solution for the gauge fields appears in the metric as

δgSO(3)
µν dxµdxν = 2ir2 sin2(θ)

(
α1 +

α2

r3

)
dτdφ (C.12)

to linear order in the angular momentum (i.e. no backreaction to f(r)), with respect to the charged

black hole solution. The equation of motion for the four dimensional Einstein Maxwell theory is

GAB ≡ RAB− 1
2gABR−

3
L2 gAB = 8πGNTAB where TAB = 1

4e2 (FACF
C
B −gABF 2) is the stress tensor

of the U(1) gauge field. Expanding this to linear order in α1 and α2 we can check this corrections

satisfies the equation of motion to linear order

1

8πG
δGτφ = δTτφ =

Q2

32π2r2

(
α1 +

α2

r3

)
sin2 θ, (C.13)

3j(j + 1)� (rh/`Pl)
4 as discussed in section 5.2.3.

236



and all other components for both δG and δT vanish. The uniqueness of KN solution suggests (C.1)

is the correct non-linear completion of this correction, written in a different gauge.
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