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Abstract An infinite-dimensional family of analytic solu-
tions in pure SU (2) Yang–Mills theory at finite density in
(3 + 1) dimensions is constructed. It is labelled by two inte-
geres (p and q) as well as by a two-dimensional free massless
scalar field. The gauge field depends on all the 4 coordi-
nates (to keep alive the topological charge) but in such a way
to reduce the (3+1)-dimensional Yang–Mills field equations
to the field equation of a 2D free massless scalar field. For
each p and q, both the on-shell action and the energy-density
reduce to the action and Hamiltonian of the corresponding 2D
CFT. The topological charge density associated to the non-
Abelian Chern–Simons current is non-zero. It is possible to
define a non-linear composition within this family as if these
configurations were “Lego blocks”. The non-linear effects of
Yang–Mills theory manifest themselves since the topological
charge density of the composition of two solutions is not the
sum of the charge densities of the components. This leads to
an upper bound on the amplitudes in order for the topological
charge density to be well-defined. This suggests that if the
temperature and/or the energy is/are high enough, the topo-
logical density of these configurations is not well-defined
anymore. Semiclassically, one can show that (depending on
whether the topological charge is even or odd) some of the
operators appearing in the 2D CFT should be quantized as
Fermions (despite the Bosonic nature of the classical field).
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1 Introduction

A proper analytic understanding of formation and inter-
actions of topologically non-trivial configurations in non-
Abelian gauge theories (especially at finite density) is one of
the main open problems in high energy physics with impli-
cations both for the phases diagram of gauge theories and
for the color confinement mechanism. Color confinement
is closely related to topologically non-trivial configurations
(see [1–9] and references therein) while, due to asymptotic
freedom, at high energies Quark and Gluon should be liber-
ated and Hadrons are melted [10–12]. It has been possible
to create deconfined hadronic matter at high temperature in
relativistic heavy-ion colliders (see for instance [13–16] and
[17]) but also there non-perturbative effects (see [18] and
references therein) dominate. The lack of analytic control on
such effects in gauge theories is (partially) compensated by
the great advances in lattice QCD (LQCD) (see [19–28] and
references therein).

However, there are fundamental open issues (such as
formation and dynamics of configurations with topological
charge at finite density/volume and their temperature depen-
dence) where analytic results would shed considerable new
light on the phase diagram of QCD (as in these dynamical
situations even lattice simulations are extremely challeng-
ing). For instance, numerical lattice simulations show that
the leading corrections to an “ideal” gas term T 4 in four
dimensions are terms quadratic in the temperature ≈ T 2.
This feature (which is certainly of non-perturbative origin)
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is not well understood yet: see [29–33]. Other relevant ques-
tions are: what happens when two (or more) topologically
non-trivial configurations collide? What happens to the topo-
logical charge? and so on. From the analytic viewpoint, the
situation could appear to be hopeless. In (3+1)-dimensional
Yang–Mills theory, already the collision of (topologically
trivial) plane waves is intractable and numerical methods
must be used1 (see [34–40] and references therein). Thus,
one might think that the analysis of processes (such as col-
lisions) of solitonic-like configurations with non-vanishing
topological charge should be “even more intractable” with
analytic methods.2

In fact, in the present paper an infinite family of analytic
and topologically non-trivial solutions of Yang–Mills theory
with quite remarkable properties will be constructed. Such
configurations possess an infinite conformal symmetry, allow
a non-linear composition law (giving rise to a closed descrip-
tion of head-on collisions between these configurations) and
also (through such composition law) allow to compute the
critical amplitude beyond which the topological charge den-
sity become ill-defined.

The departure from spherical symmetry is a necessary
ingredient. A systematic tool to construct non-spherical
hedgehog ansatz are suitable to describe finite density effects
have been developed in [43–53] for the Skyrme model [54–
56] (which is the low energy limit of QCD [57–63] at leading
order in the ’t Hooft expansion). Such strategy is quite effec-
tive in the Einstein–Yang–Mills case as well [64–66]. Here
this approach will be adapted to the situation in which the
(3+1)-dimensional Yang–Mills theory is defined within a flat
region of finite spatial volume.

The paper is organized as follows: in the second section,
the action and the ansatz will be described. In the third section
the topological charge and density will be analyzed. In the
fourth section the properties of the energy–momentum tensor
will be discussed. In the fifth section, the allowed values of
the topological charge will be studied. In the sixth section,
some semi-classical considerations will be included. In the
seventh section, some conclusions will be presented.

1 In the collision of wave packets it is known since the early eighties that
for small amplitude wave packets, these pass through each other without
being destroyed, although it is impossible to compute analytically in
classical Yang–Mills theory in (3+1) dimensions (the quantum problem
being of course more difficult) the critical amplitude after which new
kinds of configurations arise.
2 Indeed, these issues can only be dealt numerically already in the
analysis of head-on collisions of (1+1)-dimensional kinks (which is far
simpler than Yang–Mills theory in (3+1)-dimensions): see [41,42] and
references therein.

2 Action and ansatz

The Yang–Mills theory is defined by the action (here we
will consider the SU (2) case but the present results can be
extended to the SU (N ) case)

I = 1

2e2

∫
d4x

√−gTr(FμνF
μν), (1)

where

Fμν = ∂μAν − ∂ν Aμ + [Aμ, Aν],
A = Aμdx

μ = A j
μt j dx

μ, t j = iσ j .

Here e is the Yang–Mills coupling constant and the matrices
t j are the generators of the SU (2) group being σ j the Pauli
matrices. The field equations read

∇νF
μν + [Aν, F

μν] = 0. (2)

The energy–momentum tensor is given by

Tμν = − 2

e2 Tr

(
FμαFν

α − 1

4
gμνFαβF

αβ

)
.

2.1 Spherically symmetric example

Here the usual spherically symmetric ansatz on flat spaces
for the gauge field will be described (this subsection is useful
to compare and contrast the usual case with the non-spherical
ansatz needed at finite volume). Let us consider a flat space-
time described by the metric

ds2 = −dt2 + dR2 + R2
(
d�2 + sin2 �d�2

)
, (3)

where R is the usual radial coordinate while � and � are
the usual polar angular coordinates of flat space-times (only
in this subsection, R together with capital greek letters are
used in order to avoid confusion with the coordinates system
which will be used at finite density in the next sections). The
most convenient ansatz for the non-Abelian gauge potential
adapted to spherical symmetry is the following (see [6] for a
pedagogical introduction):

Aμ = λ (R)U−1∂μU. (4)

The function λ (R) is called soliton profile: when λ is either 0
or 1 the gauge field is trivial as it either vanishes or becomes
a pure gauge, respectively. Consequently, λ encodes (part of)
the informations about the gauge field (especially, the infor-
mations about how the energy-density decays). On the other
hand, the “pure gauge part” U−1∂μU also carries relevant
informations in determining the non-Abelian fluxes. In par-
ticular, when U (x) ∈ SU (2) reads

U (xμ) = ni ti , nini = 1, (5)

n1 = sin � cos �, n2 = sin � sin �, n3 = cos �, (6)
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two nice things happen. Firstly, the complete set of Yang–
Mills field equations reduce to just one equation for the pro-
file λ. Secondly, the gauge field possesses a non-vanishing
magnetic flux (determined by the two-form 
 = d� ∧ d�).
In other words, the magnetic flux is non-vanishing across the
two-dimensional surfaces determined by the condition


 �= 0. (7)

More in general, the gauge field will possess non-trivial
fluxes in different directions when the “U” used to build the
“pure gauge” part of the ansatz (namely, the Maurer-Cartan
form U−1∂U ) possesses a non-trivial topological density
ρQ (U ):

ρQ (U ) =
(
U−1∂U

)3

= Tr
{
εi jk

(
U−1∂iU

) (
U−1∂ jU

) (
U−1∂kU

)}
.

The integral of the above density over a space-like three-
dimensional hypersurface is the third homotopy class of
U . In a sense, ρQ (U ) is a local measure of the genuine
three-dimensional nature of the configuration since, when
ρQ (U ) �= 0, the SU (2)-valued field can be used to build,
locally, a three-dimensional volume form. A further com-
ment about the spherical case is in order: the Maurer-Cartan
formU−1∂U can be expanded in terms of the right-invariant
one-forms 


j
μ along the basis of the algebra:

U−1∂U =
∑
j


 j
μ

t j
2

.

Thus, a natural basis to write down an ansatz for the gauge
field is of course provided by the 


j
μ. In the spherically sym-

metric case, one can see that the three 

j
μ “have the same

weight” in the ansatz (in other words, one needs only one
profile λ(R) to make the field equations consistent). This is
of course related with the well known spherical symmetry
up to internal rotation of the ansatz. On the other hand, if
one is interested in non-spherical situations (which are rele-
vant, for instance, at finite density and, more in general, when
non-trivial boundaries are present) one should expect that a
consistent ansatz should include, at least, two different pro-
files (namely, different weight for the 


j
μ). This apparently

obvious observation leads to the novel ansatz which is able
to disclose an infinite-dimensional family of topologically
non-trivial configuration in (3+1)-dimensional Yang–Mills
theory at finite Baryon density.

2.2 Non-spherical hedgehog approach

The main goal of the paper is to construct a formalism able
to describe how topologically non-trivial configurations of
Yang–Mills theory react when they are forced to live within
a finite box (an issue which must be addressed in the finite

density analysis). The most natural way to take into account
finite volume effects is to use the flat metric defined below:

ds2 = −dt2 + A
(
dr2 + dθ2

)
+ L2dφ2, (8)

where A1/2 and L are constants with dimension of length
(such that 8π3AL represents the volume of the box), while
r , θ and φ are dimensionless coordinates with ranges

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 4π, 0 ≤ φ ≤ π. (9)

The above ranges for the coordinates θ , φ and r are related
to the Euler angle parametrization for SU (2) valued fields.
Let us define the following U ∈ SU (2):

U = exp

(
pθ

t3
2

)
exp

(
H (t, φ)

t2
2

)
exp

(
qr

t3
2

)
. (10)

where p and q are non-vanishing integers (there will be one
more restriction on pq which will be discussed later on). The
theory of Euler angles for SU (N ) [67–69] tells that (when p
and q are non-vanishing integers) the range of θ (appearing
in the left factor of the decomposition in Eq. (10)) and the
range of r (appearing in the right factor of the decomposition
in Eq. (10)) must be as in Eq. (9). As far as the central factor
(namely H (t, φ)) is concerned, there are two options. If the
field H (t, φ) satisfies either periodic boundary conditions

H (t, φ = 0) = H (t, φ = π) (11)

or Dirichlet boundary conditions

H (t, φ = 0) = H0 = H (t, φ = π) (12)

with the same value H0 at φ = 0 and φ = π then the topolog-
ical charge of the configuration of the gauge field (which will
be defined in the next section) vanishes (although the topo-
logical density can still be non-trivial). The other boundary
condition for H (t, φ) arises naturally taking into account
that H (t, φ) appears in the central factor of the Euler angles
decomposition of an SU (2) element (see [67–69]):

H (t, φ = 0) = 0, H (t, φ = π) = π, (13)

or

H (t, φ = 0) = π, H (t, φ = π) = 0.

The two options here above ensure that the SU (2) values
elementU defined in Eqs. (9), (10) and (13) wraps an integer
number of times around the group manifold of SU (2) (in
other words,U has a non-vanishing winding number). In this
case both the topological charge and the topological density
associated to the gauge field (to be defined in the next section)
will be non-trivial.
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3 Topological density and charge

Relevant topological properties of a given ansatz for a non-
Abelian gauge field are encoded in Chern–Simons current:

JCS
μ = 1

8π2 εμνρσ Tr

(
Aν∂ρ Aσ + 2

3
Aν Aρ Aσ

)
, ρB = JCS

0 ,

(14)

where ρB is the corresponding topological density and its
integral along a space-like hypersurface is the topological
charge.

On the one hand, the topological density of plane waves as
well as colliding plane waves in Yang–Mills theory [34–40] is
identically zero. On the other hand, it is well known (see [70–
73] and references therein) that ρB is the “non-perturbatively
induced Baryonic charge” of the gauge configuration [74].
Hence, it is clear that the above topological current (as well
as the corresponding topological density ρB) encode very
important properties of the gauge field.

For these reasons, in the present work the sentence “topo-
logically non-trivial” refers to configurations with ρB �=
0: configurations with vanishing total Baryonic charge but
non-vanishing ρB still describe complex patterns in which
both regions with positive and negative charge densities are
present and interact. Thus, even when the overall topological
charge is vanishing, one can still learn a lot on the behavior
of these non-perturbative configurations as long as ρB �= 0.

Hence, we need an ansatz such that JCS
μ is non-zero and, at

the same time, the field equations can be solved analytically.
Naively, one could think that the situation is hopeless since
the two requirements (to have an ansatz with non-vanishing
ρB and, at the same time, leading to solvable Yang–Mills
field equations) are, at a first glance, in conflict. The rea-
son is that a non-zero ρB requires at least three independent
degrees of freedom in the ansatz depending on different spa-
tial coordinates while we already know that even the collision
of plane-waves in Yang–Mills theory necessarily involves
numerical analysis. And yet, following [44,45,52,53,64–66]
one arrives at the following ansatz for Aμ:

Aμ =
3∑
j=1

λ j

j
μt j , U−1∂μU =

3∑
j=1


 j
μt j , (15)

where

H (t, φ) = arccos (G) , G = G (t, φ) , (16)

λ1 (t, φ) = λ2 (t, φ)

= G√
G2 + exp 2η

de f= λ (t, φ) , λ3 (t, φ) = 1, η ∈ R,

(17)

G (t, φ) = exp 3η
F√

1 − (exp 4η) · F2
, F = F (t, φ) .

(18)

As far as the boundary conditions for F (t, φ) are con-
cerned, the two options in Eqs. (11) and (12) give rise to the
following two boundary conditions for F (t, φ):

F (t, φ = 0) = F (t, φ = π) (19)

or Dirichlet boundary conditions

F (t, φ = 0) = F0 = F (t, φ = π) (20)

with the same F0 at φ = 0 and φ = π : in this case the
topological charge (which is the spatial integral of ρB in Eq.
(26) in the next section) vanishes. On the other hand, the
option in Eq. (13), in terms of F (t, φ), reads:

F (t, φ = 0) = − exp (−2η)√
1 + exp (2η)

, F (t, φ = π) = exp (−2η)√
1 + exp (2η)

.

(21)

In this case both the topological charge and the topological
density will be non-trivial.

It is important to emphasize that these are not the only
possible boundary conditions. For instance (especially in col-
lision processes) one may wish to consider dynamical situa-
tions in which the topological charge inside the box we are
considering is time-dependent (as there is an in-flux and/or
out-flux of topological charge along the φ-direction). The
intuitive picture in these cases is of one (or more) topologi-
cally non-trivial configuration(s) moving in the φ-direction
in such a way that these configurations only spend a finite
amount of time in the interval 0 ≤ φ ≤ π (from the CFT
viewpoint, these situations are better described in terms of
Neumann or Robin boundary conditions for F instead of
Dirichlet). In these cases both F (t, φ = 0) and F (t, φ = π)

may depend on time (which would imply that the Baryon
charge contained in the box defined in Eqs. (8) and (9) also
depends on time: see Eq. (30) below). I will come back on
these more general boundary conditions in a future publica-
tion.

The components of the gauge field can be easily computed
taking into account the well known expression of the 


j
μ in

the case of the Euler parametrization. Thus, explicitly, Aμ

reads

Aμ = λ (t, φ)

[
t1
2

(− sin (qr) dH + p cos (qr) sin (H) dθ)

+ t2
2

(cos (qr) dH + p sin (qr) sin (H) dθ)

]

+ t3
2

(qdr + p cos Hdθ) , (22)

dH = ∂H

∂t
dt + ∂H

∂φ
dφ.

The fact that dλ ∧ dH = 0 together with the fact that the
gradients of the coordinates r , θ and φ are mutually orthog-
onal simplifies many of the computations. The above ansatz
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is the key to get the results of the main paper. The rest is a
direct computation.

With the above ansatz for the gauge field, the complete
set of (3+1)-dimensional Yang–Mills field equations with
the ansatz in Eqs. (10), (15), (16), (17) and (18) reduces
to the field equation of a free massless scalar field in two
dimensions:

�F =
(

∂2

∂t2 − 1

L2

∂2

∂φ2

)
F = 0. (23)

4 Energy–momentum tensor and topological density

The surprises related to the ansatz in Eqs. (10), (15), (16), (17)
and (18) do not finish in Eq. (23). Indeed, at a first glance, one
could naively think that the resulting Yang–Mills equations
are so simple because the configurations are topologically
trivial. In fact, the topological density is non-vanishing (as
long as ∂F

∂φ
�= 0: see Eq. (26) here below). Explicitly, the

energy density T00 and the on-shell Lagrangian Lon−shell
reduce to the Hamiltonian and the Lagrangian of the corre-
sponding CFT:

T00 = p2

e2A
(exp 5η) cosh (η)

[(
∂F

∂t

)2
+ 1

L2

(
∂F

∂φ

)2
]

,

(24)

Lon−shell = p2

e2A
(exp 5η) cosh (η)

[(
∂F

∂t

)2
− 1

L2

(
∂F

∂φ

)2
]

.

(25)

A direct computation reveals that the topological density is

ρB = pq (exp 3η)

16π2
[
1 − (exp 4η) F2

]3/2

∂F

∂φ
. (26)

Note that, in the Abelian case the case, the Chern–Simons
current would only have terms linear and quadratic in the
gauge potential: thus the non-linear character of ρB as func-
tion of F in Eq. (26) is a genuine non-Abelian feature of the
present family of configurations. It is also worth emphasiz-
ing that, in the topological density, both the term “AF ” and
the term “AAA” in the definition of Chern–Simons current
in Eq. (14) are non-vanishing. In particular, the second term
“AAA” has strong similarities with the topological charge
in Skyrme theory (see [54–56,58,59]). Indeed, the U−1∂U
part of the present ansatz has been constructed using as inspi-
ration the topologically non-trivial solutions of the Skyrme
model found in [43,45,49–53].

The full energy–momentum tensor reads:

Tμν =

⎡
⎢⎢⎣
T00 0 0 Pφ

0 Trr 0 0
0 0 Tθθ 0
Pφ 0 0 Tφφ

⎤
⎥⎥⎦ ,

where

Trr = p2

e2 (exp 5η) cosh (η)

[(
∂F

∂t

)2

− 1

L2

(
∂F

∂φ

)2
]

= −Tθθ , (27)

Tφφ = p2

e2A
(exp 5η) cosh (η)

[
L2

(
∂F

∂t

)2

+
(

∂F

∂φ

)2
]

.

(28)

Ttφ = Pφ = p2

Ae2 (exp 4η) (1 + exp (2η))
∂F

∂t

∂F

∂φ
. (29)

Hence, one can easily see that the energy–momentum tensor
is traceless: gμνTμν = 0 as it should in Yang–Mills the-
ory in (3+1)-dimensions. It is also interesting to note that if
one “eliminates” the coordinates r and θ , the resulting two-
dimensional energy–momentum tensor in the t and φ direc-
tion is still traceless (as it happens for a two-dimensional
conformal field theory). In other words, one can take Tab
defined as

Tab =
(
T00 Pφ

Pφ Tφφ

)
, a, b = t, φ

as the effective energy–momentum tensor associated to the
massless two-dimensional scalar field F .

From the expression in Eq. (29) it is clear that a solution
of the field equations of the form F1 = F1 (t/L − φ) has
opposite momentum with respect to a solution of the field
equations of the form F2 = F2 (t/L + φ). Consequently,
using such solutions F1 and F2 of Eq. (23) (which give rise to
two gauge fields A1 and A2 through (10), (15), (16), (17) and
(18)) one can define the composition of F1 and F2 replacing
in Eqs. (10), (15), (16), (17) and (18) F1 + F2 (or, in fact, any
linear combination of F1 and F2) in place of F . The solution
corresponding to F1 + F2 describes the head-on collision of
the two original solutions with opposite momentum.

From Eq. (26) it follows that the topological charge density
associated to F1 + F2 is the sum of the topological charge
density associated to F1 plus to one associated to F2 only for
small amplitudes (namely,

∣∣(exp 4η) F (t, φ)2
∣∣ 	 1).

Since the topological charge density in itself (and not
only the topological charge) has the physical meaning of
the (anomalous contribution to the) Baryonic charge den-
sity, it makes sense to ask what happens when the ampli-
tude is not small. In this case, non-linear effects cannot be
neglected. For instance, as it has been emphasized in the
main text, the sum of F1 (φ − t/L) and F2 (φ + t/L) (such
that both F1 and F2 possess a well-defined ρB) represents
the head-on collision of the two gauge potentials associated
to F1 (φ − t/L) and F2 (φ + t/L) (as these two configura-
tions have opposite momenta). Using the fact the F satisfies
a linear equation, one can construct examples where the ρB

associated to F1 + F2 becomes ill-defined. Configurations
where

∣∣(exp 4η) (F1 (t, φ) + F2 (t, φ))2
∣∣ > 1 somewhere
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in the bulk (but such that
∣∣(exp 4η) Fj (t, φ)2

∣∣ < 1 every-
where) discloses inelastic behavior in a very similar way as
the numerical results found in [40] (where the authors studied
the head-on collisions of wave-packets).

A natural question here arises: what is the physical rele-
vance of head-on collisions of topological objects? The inter-
est of this issue arises from the fact that head-on scattering
processes in non-integrable theories (such as Yang–Mills the-
ory in (3+1)-dimensions) are extremely complicated both at
classical and quantum level (so much so that even in much
simpler models in (1+1)-dimensions only numerical meth-
ods have been able, until recently, to detect the arising of
non-elastic thresholds). Classically, from the intuitive view-
point, one can think at “non-elastic thresholds” as situations
in which the scattering of classical objects (such as kinks)
produces, in the final state, other objects as well (besides the
original kinks). For instance, when two kinks collide (if their
amplitude is large enough), in the final state one can have
two kinks plus radiation. Unfortunately, to find analytically
how large the amplitude of the kinks should be in order to
see “new degrees of freedom” is a very difficult problem.
It is therefore very interesting that, in this framework, it is
possible to find explicitly the amplitude of the classical col-
liding solutions beyond which new degrees of freedom must
appear: in the case of the present manuscript, such critical
amplitude can be easily identified as the amplitude beyond
which the (3+1)-dimensional topological charge density is
not well defined anymore. This is the first analytic example
of this kind.

5 Allowed values of the topological charge

The topological charge B (which is the spatial integral of ρB)
reads

B = (exp 3η)

2
pq

(
F√

1 − (exp 4η) · F2

)∣∣∣∣∣
F(t,π)

F(t,0)

. (30)

As it has been already discussed, when F(t, 0) = F(t, π)

the topological charge vanishes. Thus, let us consider the
boundary conditions for F(t, φ) in Eq. (21). The requirement
to have an integer topological charge can be expressed as
follows. The following auxiliary function is useful:


(η, a, b)
de f= exp 3η

2

[
a√

1 − (exp 4η) · a2

− b√
1 − (exp 4η) · b2

]
. (31)

The topological charge reads

B = pq · 
(η, a = F(t, π), b = F(t, 0)) .

Taking into account the boundary conditions for F(t, φ)

in Eq. (21) (which arises from the theory of Euler angles)

(η, a = F(t, π), b = F(t, 0)) can be further simplified, so
that one arrives at the following expression for the topologi-
cal charge:

B = pq. (32)

Further constraints arise if one requires that not only the
Baryonic charge but also the Baryonic density in Eq. (26)
must be everywhere well defined as it will be discussed in
the next section.

6 Semi-classical considerations

Before going into the semiclassical considerations, let us
remind the usual mode expansion of the solutions of Eq.
(23):

F+ = φ+
0 + v+

(
t

L
+ φ

)
+

∑
n �=0

a+
n sin

[
n

(
t

L
+ φ

)]

+b+
n cos

[
n

(
t

L
+ φ

)]
, (33)

F− = φ−
0 + v−

(
t

L
− φ

)
+

∑
n �=0

a−
n sin

[
n

(
t

L
− φ

)]

+b−
n cos

[
n

(
t

L
− φ

)]
, (34)

where, as usual, F+ refers to the left movers and F− to the
right movers (v± and φ±

0 being integration constants which
must satisfy three constraints which will be discussed below).
Hence, the most general topologically non-trivial configura-
tion of the present sector arises replacing F = F+ + F− here
above into Eqs. (15), (10), (16), (17) and (18). In order to
have a clear physical picture, it is convenient to choose3 a±

n
and b±

n in such a way that

F̃(t, φ = 0) = F̃(t, φ = π) = 0,

where F̃(t, φ) is the part of F = F+ + F− coming from the
sum over the integers n in Eqs. (33) and (34). Therefore B
in Eq. (30) is non-zero when

v+ − v− �= 0.

In particular, v± and φ±
0 in Eqs. (33) and (34) must be chosen

in such a way to satisfy Eq. (21):

F (t, φ = π) = φ+
0 + φ−

0 + (v+ + v−)

t

L
= exp (−2η)√

1 + exp (2η)
⇒

3 However, this is not the only choice at all. There are many other
possible boundary conditions which are worth to be explored. I will
come back on this issue in a future publication.

123



Eur. Phys. J. C          (2021) 81:1032 Page 7 of 9  1032 

v+ + v− = 0, φ+
0 + φ−

0 = exp (−2η)√
1 + exp (2η)

,

F (t, φ = 0) = exp (−2η)√
1 + exp (2η)

+ (v+ − v−) π

= − exp (−2η)√
1 + exp (2η)

⇒ (35)

v− = exp (−2η)

π
√

1 + exp (2η)
. (36)

At classical level, this is the simplest possible choice of
boundary conditions since it allows to clearly identify the
terms which are responsible for the topological charge and
which are not. However, there are plenty of different options
which will be discussed in a forthcoming paper.

As usual, the semi-classical quantization [75–80] corre-
sponds to the quantization of the on-shell action evaluated on
the ansatz Eqs. (10), (15), (16), (17) and (18). Consequently,
as it has been shown in the previous section, for any fixed
value of the topological charge, the semiclassical quantiza-
tion of the theory corresponds to the quantization of a free
two dimensional scalar field. There are some intriguing dif-
ferences however.

Firstly, in Eqs. (33) and (34) any term in the expansion
corresponds to an exact solution of the (3+1)-dimensional
Yang–Mills equations and not just to a solution of the lin-
earized field equations. Therefore the Bosonic quantum oper-
ators α+

n ,
(
α+
m

)† and α−
n ,

(
α−
m

)† (which are annihilation and
creation operators for the left and right movers, satisfying
the obvious commutation relations, see [81]) are quantum
operators which create exact solutions of the semiclassical
Yang–Mills equations. This situation should be contrasted
with the more common scenario in which, given a particu-
lar solution of the (3+1)-dimensional Yang–Mills equations,
the small fluctuations (both at classical and quantum level)
around the given classical configuration are solutions of the
linearized field equations (while are not solutions of the exact
field equations, unless of course the theory is just a free the-
ory).

Secondly, the constant terms φ±
0 as well as the linear terms

in t and φ play an important role. To see this, let us remind
that the Baryonic charge is pq (where p and q are inte-
gers) however, the field equation for F does depend neither
on p nor on q. Since p and q label different topological
sectors, there will be annihilation and creation operators for
the left and right movers (satisfying the obvious commuta-
tion relations) in each sector pq. Consequently, one should
introduce an extra index b = pq to identify the topologi-
cal sector to which the operators belong (it is also natural
to assume that operators belonging to different topological
sectors commute):

α±
n → α±

n,b,
(
α±
n

)
† →

(
α±
n,b

)
†,

b �= b′ ⇒
[
α±
n,b,

(
α±
n′,b′

)
†
]

= 0 =
[
α±
n,b, α

±
n′,b′

]
∀n, n′.

An interesting point here arises. According to [70–74], the
topological charge B = pq should be interpreted as Baryonic
charge of the configuration. If this interpretation is accepted,
then when B is odd the configuration is a Fermion while
when B is even the configuration is a Boson. This observa-

tion has no consequences for the operators (α±
n,b,

(
α±
n′,b′

)
†)

since these operators are Bosonic in nature for any value of B
(as the corresponding classical solutions do not contribute to
B). On the other hand, the creation and annihilation operators
associated to the linear part of the solution create a Boson or
a Fermion depending on whether B is even or odd. Hence,
it is tempting to quantize φ±

0 and v± with commutators or
anticommutators depending on B. In this sense, the quanti-
zation of F would correspond to an “emergent superfield”
when B is odd since Fermionic (φ±

0 and v±) and Bosonic

(α±
n,b,

(
α±
n′,b′

)
†) operators would appear gathered on the

same footing in F .
Let us consider for now the case in which B is even so

that all the operators are Bosonic. In this case, for any fixed
p and q, the semiclassical partition function (when the tem-
perature is small enough) will coincide with the one of a
massless scalar field in two dimensions. Obviously, the pres-
sure and the grand partition function will be proportional to
T 2. Consequently, the contribution of the present family of
topologically non-trivial configuration to the grand partition
function (as well as to the pressure) of Yang–Mills theory at
finite volume is proportional to T 2.

The present framework also suggests that such a behavior
cannot go on for very high temperatures and/or energies. One
can see this using two intuitive arguments. However, before
explaining these arguments, it is necessary to provide the
classical condition to have a well defined Baryonic charge
density

(exp 4η) F2 (x) ≤ 1 (37)

(where, of course, F (x) means F(t, φ)) with a semiclassi-
cal interpretation. Hence, the classical field F (x) (which is
a solution of the field equation in Eq. (23)) is replaced by its
quantization F̂ (x) (in which the coefficients of the expan-
sions in Eqs. (33) and (34) are replaced by annihilation and
creation operators for right and left movers, here the Baryonic
charge is even so that all the relevant operators are Bosonic).

The first argument is related to the following semiclassical
interpretation of the classical condition in Eq. (37) to have a
well defined ρB :

(exp 4η) F2 (x) ≤ 1 → (exp 4η)
〈
F̂ (x) F̂ (x + ε)

〉 ≤ 1,

(38)

where
〈
F̂ (x) F̂ (y)

〉
is the two-point function of the field

quantum field F̂ and ε is the UV cut-off. It is clear that the
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above condition will be violated for small enough ε. For the
second argument one could interpret the classical condition
in Eq. (37) as a bound on the one-point function of the com-
posite operator F̂2 at finite temperature:

(exp 4η) F2 (x) ≤ 1 → (exp 4η)
〈
F̂2

〉
β

≤ 1, (39)

where
〈
Ô

〉
β

represents the vacuum expectation value (in the

Euclidean theory) of the operator Ô at temperature 1/β.
Dimensional analysis tells that in a two-dimensional CFT the
finite-temperature one point function of F̂2 should behave as〈
F̂2

〉
β

≈ (T L)2

where L is the length in the φ-direction in Eq. (8). Therefore,
for not too large temperatures, the one-point function of F̂2 is
small for small temperatures. For large enough temperatures,〈
F̂2

〉
β

is large leading to the violation of Eq. (39). Thus, both
in the UV and at high enough temperatures it could become
problematic to define the topological charge densities.

7 Conclusions

In the present manuscript I have constructed an infinite-
dimensional family (labelled by two integers and a 2D
free massless scalar field) of topologically non-trivial ana-
lytic solutions of (3+1)-dimensional Yang–Mills theory with
pretty unique properties. The topological charge density
(closely related to the Baryon density) associated to the non-
Abelian Chern–Simons current in (3+1)-dimensions is non-
zero and yet the complete set of (12, in the SU (2) case) Yang–
Mills field equations reduce to the field equation of a 2D
free massless scalar field. Moreover, these (3+1)-dimensional
topologically non-trivial configurations can be manipulated
as “Lego Blocks” as, given two solutions, one can get a
new solution using a suitable non-linear composition law.
Such non-linear composition law leads to a (semi-)classical
upper bound on the amplitudes of the solutions related to the
impossibility to define the topological charge density in the
UV and/or at high enough temperatures. The semi-classical
quantization of these configurations leads to the appearance
of emergent Fermionic operators out of a purely Bosonic
theory. These results open the surprising possibility to use
the powerful analytic tools of 2D CFT to analyze (3+1)-
dimensional Yang–Mills theory at finite Baryon density and
temperatures in topologically non-trivial sectors.
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